Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Non-electrical input responsive (e.g., light responsive imager, input programmed by size of storage sites for use as a read-only memory, etc.)

Subclass of:

257 - Active solid-state devices (e.g., transistors, solid-state diodes)

257213000 - FIELD EFFECT DEVICE

257215000 - Charge transfer device

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
257229000 Having structure to improve output signal (e.g., exposure control structure) 63
257231000 2-dimensional area architecture 59
257228000 Light responsive, back illuminated 30
257226000 Sensor element and charge transfer device are of different materials or on different substrates (e.g., "hybrid") 7
257227000 With specified dopant (e.g., photoionizable, "extrinsic" detectors for infrared) 3
20100117123IMAGE SENSOR PIXEL HAVING A LATERAL DOPING PROFILE FORMED WITH INDIUM DOPING - An active pixel using a transfer gate that has a polysilicon gate doped with indium. The pixel includes a photosensitive element formed in a semiconductor substrate and an n-type floating node formed in the semiconductor substrate. An n-channel transfer transistor having a transfer gate is formed between the floating node and the photosensitive element. The pixel substrate has a laterally doping gradient doped with an indium dopant.05-13-2010
20100207170IMAGE SENSOR HAVING 3-DIMENSIONAL TRANSFER TRANSISTOR AND ITS METHOD OF MANUFACTURE - In an embodiment, an image sensor includes an isolation layer disposed in a semiconductor substrate to define a first active region and a second active region extending from the first active region. A photodiode is disposed in a portion of the first active region. A floating diffusion region is provided in the second active region at a position spaced apart from the photodiode. A transfer gate electrode is disposed on the second active region between the photodiode and the floating diffusion region. The transfer gate electrode is disposed to cover both sidewalls and an upper portion of the second active region. The transfer gate electrode has a region extending onto the first active region and overlapping the photodiode. The photodiode has a protrusion into the second active region at the portion adjacent to the transfer gate electrode. A deep n-impurity region of the photodiode extends in the protrusion.08-19-2010
20150091065PIXEL STRUCTURES OF CMOS IMAGING SENSORS AND FABRICATION METHOD THEREOF - A method is provided for fabricating a pixel structure of a CMOS transistor. The method includes providing a semiconductor substrate doped with first type doping ions; and forming a trench in the semiconductor substrate by etching the semiconductor substrate. The method also includes forming isolation layers on side surfaces of the trench to prevent dark current from laterally transferring; and forming an epitaxial layer doped with second type doping ions with a doping type opposite to a doping type of the first type doping ions in the trench. Further, the method includes forming a pinning layer on a top surface of the epitaxial layer; and forming a gate structure on a surface of the semiconductor substrate at one side of the epitaxial layer. Further, the method also includes forming a floating diffusion region in the semiconductor substrate at one side of the gate structure far from the epitaxial layer.04-02-2015
257234000 Single strip of sensors (e.g., linear imager) 1
20140217476TDI-TYPE LINEAR IMAGE SENSOR - In a TDI-type linear image sensor in which pixels are constituted of CCDs (Charge Coupled Devices) of n phases (n being an integer not smaller than 3), a gate opening portion and a gate non-opening portion functioning as a TDI transfer channel (08-07-2014
Entries
DocumentTitleDate
20080210982Image Sensor and Method for Manufacturing the Same - An image sensor and manufacturing process thereof are provided. An image sensor according to an embodiment comprises a first wafer formed with a photodiode cell without a microlens and a second wafer formed with a circuit part including transistor and a capacitor. The first wafer is stacked on the second wafer such that a connecting electrode can be used to electrically connect the photodiode cell of the first wafer to the circuit part of the second wafer.09-04-2008
20080217660Solid Image Pick-Up Element and Method of Producing the Same - A solid image pick-up element comprises: a photoelectric converting portion; a charge transmitting portion comprising a charge transmitting electrode that transmits a charge generated by the photoelectric converting portion; and a peripheral circuit portion connected to the charge transmitting portion, wherein a surface level of a field oxide film provided at the peripheral circuit portion and the charge transmitting portion to surround an effective image pick-up region of the photoelectric converting portion is to a degree the same as a surface level of the photoelectric converting portion.09-11-2008
20080265287INTERLINE CCD IMPLEMENTATION OF HYBRID TWO COLOR PER PIXEL ARCHITECTURE - An image sensor includes at least first and second photo-sensitive regions; a color filter array having at least two different colors that selectively absorb specific bands of wavelengths, and the two colors respectively span portions of predetermined photo-sensitive regions; and wherein the two photo sensitive regions are doped so that electrons that are released at two different depths in the substrate are collected in two separate regions of the photo sensitive regions so that, when wavelengths of light pass through the color filter array, light is absorbed by the photo sensitive regions which photo sensitive regions consequently releases electrons at two different depths of the photo sensitive regions and are stored in first and second separate regions; at least two charge-coupled devices adjacent the first photo sensitive regions; and a first transfer gate associated with the first photo sensitive region that selectively passes charge at first and second levels which, when at the first level, causes the charge stored in the first region to be passed to one of its associated charge-coupled devices, and when the transfer gate is at the second level, charge stored in the second region is passed to one of the associated charge-coupled devices.10-30-2008
20080315261Dual conversion gain gate and capacitor combination - A pixel cell array architecture having a dual conversion gain. A dual conversion gain element is coupled between a floating diffusion region and a respective storage capacitor. The dual conversion gain element having a control gate switches in the capacitance of the capacitor to change the conversion gain of the floating diffusion region from a first conversion gain to a second conversion gain. In order to increase the efficient use of space, the dual conversion gain element gate also functions as the bottom plate of the capacitor. In one particular embodiment of the invention, a high dynamic range transistor is used in conjunction with a pixel cell having a capacitor-DCG gate combination; in another embodiment, adjacent pixels share pixel components, including the capacitor-DCG combination.12-25-2008
20090039395SOLID STATE IMAGE SENSOR - Forming an impurity region 02-12-2009
20090095986PHOTO SENSOR WITH A LOW-NOISE PHOTO ELEMENT, SUB-LINEAR RESPONSE AND GLOBAL SHUTTER - A photo sensor exhibiting low noise, low smear, low dark current, high dynamic range and global shutter functionality consists either of a pinned (or buried) photodiode or a photo-sensitive charge-coupled device, each with associated transfer gate, a sub-linear element, a shutter transistor, a reset circuit and a read-out circuit. Using two output paths global shutter and high speed operation are possible for the linear and the sub-linear output of the sensor. Because of its compact size, the photo sensor can be employed in one- and two-dimensional image sensors, fabricated with industry-standard CMOS and CCD technologies.04-16-2009
20090166684PHOTOGATE CMOS PIXEL FOR 3D CAMERAS HAVING REDUCED INTRA-PIXEL CROSS TALK - A CMOS photodetector pixel formed of a substrate, an epitaxial layer above the substrate including a first region having the same polarity but a lower impurity concentration as that of the substrate, and a gate arrangement including a first gate that forms a charge accumulation region in the epitaxial layer when the gate is energized, wherein the charge accumulation region extends deeper toward the substrate than in conventional constructions. The epitaxial layer includes a shielding structure for absorbing electrons generated therein by photons impinging on the pixel, except electrons generated close to the charge accumulation region. The shielding structure may have opposite polarity from that of the substrate, including a first portion under the first gate, and a second portion extending upward from the first portion at the margin of the pixel. Alternatively, the shielding structure may have the same polarity as the substrate, but a lower impurity concentration.07-02-2009
20090184344Solid-state image capturing element, method for manufacturing the solid-state image capturing element, and electronic information device - A solid-state image capturing element according to the present invention is provided, in which one or a plurality of light receiving sections for photoelectrically converting an incident light to generate a signal charge is provided on a surface of a semiconductor area or a surface of a semiconductor substrate and a peripheral circuit with a transistor is provided, where a reflection preventing film provided above the light receiving sections and a gate sidewall film of the transistor are formed with a common nitride film that is formed simultaneously.07-23-2009
20090184345CONTACTS FOR CMOS IMAGERS AND METHOD OF FORMATION - Low leakage contacts on leakage sensitive areas of a CMOS imager, such as a floating diffusion region or a photodiode, are disclosed. At least one low leakage polysilicon contact is provided over a leakage sensitive area of a CMOS imager. The polysilicon contact comprises a polysilicon region in direct contact with the area of interest (the leakage sensitive area) and a metal region located over the polysilicon region. The polysilicon contact provides an improved ohmic contact with less leakage into the substrate. The polysilicon contact may be provided with other conventional metal contacts, which are employed in areas of the CMOS imager that do not require low leakage.07-23-2009
20090250728SOLID STATE IMAGING DEVICE AND METHOD OF MANUFACTURING THE SAME - A solid state imaging device has a plurality of photodetector parts 10-08-2009
20090256176SOLID-STATE IMAGING APPARATUS - A solid-state imaging apparatus, controlling a potential on a semiconductor substrate for an electronic shutter operation, includes: a first semiconductor region of the first conductivity type for forming a photoelectric conversion region; a second semiconductor region of the first conductivity type, formed separately from the photoelectric conversion region, for accumulating carriers; a third semiconductor region of a second conductivity type arranged under the second semiconductor region, for operating as a potential barrier; a fourth semiconductor region of the second conductivity type extending between the first semiconductor region and the semiconductor substrate, and between the third semiconductor region and the semiconductor substrate; and a first voltage supply portion for supplying a voltage to the third semiconductor region; wherein the first voltage supply portion includes a fifth semiconductor region of the second conductivity type arranged in the pixel region, and a first electrode connected to the fifth semiconductor region.10-15-2009
20090273008IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME - In a solid state imaging device, and a method of manufacture thereof, the efficiency of the transfer of available photons to the photo-receiving elements is increased beyond that which is currently available. Enhanced anti-reflection layer configurations, and methods of manufacture thereof, are provided that allow for such increased efficiency. They are applicable to contemporary imaging devices, such as charge-coupled devices (CCDs) and CMOS image sensors (CISs). In one embodiment, a photosensitive device is formed in a semiconductor substrate. The photosensitive device includes a photosensitive region. An anti-reflection layer comprising silicon oxynitride is formed on the photosensitive region. The silicon oxynitride layer is heat treated to increase a refractive index of the silicon oxynitride layer, and to thereby decrease reflectivity of incident light at the junction of the photosensitive region.11-05-2009
20090283804SOLID-STATE IMAGE SENSOR, SOLID-STATE IMAGE SENSING DEVICE, AND METHOD OF PRODUCING THE SAME - It is an object to provide a CCD solid-state image sensor, in which an area of a read channel is reduced and a rate of a surface area of a light receiving portion (photodiode) to an area of one pixel is increased. There is provided a solid-state image sensor, including: a first conductive type semiconductor layer; a first conductive type pillar-shaped semiconductor layer formed on the first conductive type semiconductor layer; a second conductive type photoelectric conversion region formed on the top of the first conductive type pillar-shaped semiconductor layer, an electric charge amount of the photoelectric conversion region being changed by light; and a high-concentrated impurity region of the first conductive type formed on a surface of the second conductive type photoelectric conversion region, the impurity region being spaced apart from a top end of the first conductive type pillar-shaped semiconductor layer by a predetermined distance, wherein a transfer electrode is formed on the side of the first conductive type pillar-shaped semiconductor layer via a gate insulating film, a second conductive type CCD channel region is formed below the transfer electrode, and a read channel is formed in a region between the second conductive type photoelectric conversion region and the second conductive type CCD channel region.11-19-2009
20100078686Image Sensor and Method for Manufacturing the Same - An image sensor and manufacturing method thereof are provided. The image sensor can include a readout circuitry, an interconnection, a second interlayer dielectric, an image sensing device, a contact plug, and a sidewall dielectric. The contact plug can electrically connect the first conductive type layer to the interconnection through a via hole passing through the image sensing device. The sidewall dielectric can be disposed on a sidewall of the second conductive type layer within the via hole.04-01-2010
20100084690CMOS IMAGER PHOTODIODE WITH ENHANCED CAPACITANCE - A pixel sensor cell having a semiconductor substrate having a surface; a photosensitive element formed in a substrate having a non-laterally disposed charge collection region entirely isolated from a physical boundary including the substrate surface. The photosensitive element comprises a trench having sidewalls formed in the substrate of a first conductivity type material; a first doped layer of a second conductivity type material formed adjacent to at least one of the sidewalls; and a second doped layer of the first conductivity type material formed between the first doped layer and the at least one trench sidewall and formed at a surface of the substrate, the second doped layer isolating the first doped layer from the at least one trench sidewall and the substrate surface. In a further embodiment, an additional photosensitive element is provided that includes a laterally disposed charge collection region that contacts the non-laterally disposed charge collection region of the photosensitive element and underlies the doped layer formed at the substrate surface.04-08-2010
20100102362SOLID-STATE IMAGE PICKUP ELEMENT, SOLID-STATE IMAGE PICKUP DEVICE AND PRODUCTION METHOD THEREFOR - It is intended to provide a solid-state image pickup element capable of reducing an area of a read channel to increase a ratio of a surface area of a light-receiving section to the overall surface area of one pixel. The solid-state image pickup element comprises a first-conductive type planar semiconductor layer formed on a second-conductive type planar semiconductor layer, a hole portion formed in the first-conductive type planar semiconductor layer to define a hole therein, a first-conductive type high-concentration impurity region formed in a bottom wall of the hole portion, a first-conductive type high-concentration impurity-doped element isolation region formed in a part of a sidewall of the hole portion and connected to the first-conductive type high-concentration impurity region, a second-conductive type photoelectric conversion region formed beneath the first-conductive type high-concentration impurity region and in a part of a lower region of the remaining part of the sidewall of the hole portion, and adapted to undergo a change in charge amount upon receiving light, a transfer electrode formed on the sidewall of the hole portion through a gate dielectric film, a second-conductive type CCD channel region formed in a top surface of the first-conductive type planar semiconductor layer and in a part of an upper region of the remaining part of the sidewall of the hole portion, and a read channel formed in a region of the first-conductive type planar semiconductor layer sandwiched between the second-conductive type photoelectric conversion region and the second-conductive type CCD channel region.04-29-2010
20100133590SHARED PHOTODIODE IMAGE SENSOR - An image sensor with a shared photodiode is provided. The image sensor includes at least two unit pixels, each of which includes a photodiode, a diffusion region which gathers electrons from the photodiode, a transfer transistor which connects the photodiode with the diffusion region, and a readout circuit which reads out a signal from the diffusion region. Photodiodes of neighboring unit pixels are disposed symmetrically to be adjacent to one another to form a shared photodiode. The image sensor does not have a STI region which causes a dark current restricting its performance and does not require a basic minimum design factor (a distance or an area) related to a STI region. A region corresponding to a STI region may be used as a region of a photodiode or for additional pixel scaling. Therefore, a limitation in scaling of a photodiode is overcome, and pixel performance is improved in spite of pixel scaling.06-03-2010
20100140668SHALLOW TRENCH ISOLATION REGIONS IN IMAGE SENSORS - An image sensor includes an imaging area that includes a plurality of pixels, with each pixel including a photosensitive charge storage region formed in a substrate. A passivation implantation region contiguously surrounds the side wall and bottom surfaces of each trench in the one or more trench isolation regions. A portion of each passivation implantation region is laterally adjacent to a respective charge storage region and resides only in an isolation gap disposed between the respective charge storage region and a respective trench isolation region and does not substantially reside under the charge storage region. Each passivation implantation region is formed by implanting one or more dopants at a low energy into the side wall and bottom surfaces of each trench after annealing the image sensor and prior to filling the trenches with an insulating material.06-10-2010
20100148221VERTICAL PHOTOGATE (VPG) PIXEL STRUCTURE WITH NANOWIRES - An embodiment relates to a device comprising a nanowire photodiode comprising a nanowire and at least on vertical photogate operably coupled to the nanowire photodiode.06-17-2010
20100163932IMAGE SENSOR AND METHOD FOR MANUFACTURING THEREOF - An image sensor may include a readout circuit formed over a first substrate made of InSb, the first substrate including a pixel part and a periphery part. A wiring and interlayer dielectric layer may be formed over the first substrate including the readout circuit. A photodiode may be formed over the interlayer dielectric layer and over the pixel part of the first substrate, and an upper electrode layer may be connected with the photodiode.07-01-2010
20100176423SOLID-STATE IMAGE SENSOR AND METHOD FOR PRODUCING THE SAME - A floating diffusion (07-15-2010
20100181602Solid-state image sensor, method of manufacturing the same, and image pickup apparatus - Disclosed is a solid-state image sensor including a photoelectric converter, a charge detector, and a transfer transistor. The photoelectric converter stores a signal charge that is subjected to photoelectric conversion. The charge detector detects the signal charge. The transfer transistor transfers the signal charge from the photoelectric converter to the charge detector. In the solid-state image sensor, the transfer transistor includes a gate insulating film, a gate electrode formed on the gate insulating film, a first spacer formed on a sidewall of the gate electrode on a side of the photoelectric converter, and a second spacer formed on another sidewall of the gate electrode on a side of the charge detector. The first spacer is longer than the second spacer.07-22-2010
20100193844SOLID-STATE IMAGING DEVICE AND MANUFACTURING METHOD THEREOF - A solid-state imaging device including: light-receiving units which are formed in rows and columns; a transfer channel formed in each column; first and second transfer electrodes that are formed in the same layer and deposited alternately above the transfer channel; insulating regions each formed above the transfer channel and between one of the first transfer electrodes and one of the second transfer electrodes which are adjacent to each other; an antireflection film formed above the light-receiving units, and formed on the insulating regions to cover the insulating regions; a first wire formed in each row in a layer upper than the antireflection film, and electrically connected to second transfer electrodes; and a light-shielding film which is formed in a layer upper than the first wire, covers the transfer channel, and has an opening above each of the light-receiving units.08-05-2010
20100200895UNIT PIXEL IMPROVING IMAGE SENSITIVITY AND DYNAMIC RANGE - Provided are a unit pixel for improving sensitivity in low illumination conditions and a method of manufacturing the unit pixel. The unit pixel includes: a photodiode generating image charges corresponding to an image signal; a transfer transistor transferring the image charges to a floating diffusion area; and a reset transistor having a terminal connected to the floating diffusion area and the other terminal applied with a power supply, wherein concentration of impurity ions implanted into the floating diffusion area is lower than concentration of impurity ions implanted into a diffusion area of the reset transistor applied with the power supply.08-12-2010
20100270594IMAGE SENSOR - An image sensor according to the present invention includes a second conductivity type first impurity region provided on a surface of a first conductivity type semiconductor substrate for constituting a transfer channel for signal charges, a charge increasing portion provided on the first impurity region for increasing the amount of signal charges by impact ionization, an increasing electrode provided on the side of the surface of the semiconductor substrate for applying a voltage to the charge increasing portion, and a second conductivity type second impurity region opposed to the first impurity region through a prescribed region of the semiconductor substrate and suppliable with charges.10-28-2010
20100295099IMAGE SENSING DEVICE AND PACKAGING METHOD THEREOF - An image sensing device and packaging method thereof is disclosed. The packaging method includes the steps of a) providing an image sensing module, having a light-receiving region exposed, on a first substrate; b) forming a plurality of first contacts around the light-receiving region on the image sensing module; c) providing a second substrate, having a plurality of second contacts corresponding to the plurality of first contacts and an opening for allowing the light-receiving region to be exposed while the second substrate is placed over the image sensing module, the plurality of second contacts being disposed around the opening; d) connecting the plurality of first contacts and the plurality of second contacts; and e) disposing a transparent lid above the light-receiving region, on a side of the second substrate which is opposite to the plurality of second contacts.11-25-2010
20100314667CMOS PIXEL WITH DUAL-ELEMENT TRANSFER GATE - Embodiments of a pixel that includes a photosensitive region, a floating diffusion region, and a transistor transfer gate disposed between the photosensitive region and the floating diffusion region. The transfer gate includes first and second transfer gate elements, the first transfer gate element having a different doping than the second transfer gate element. By controlling the doping of the first and second transfer gate elements a transfer gate can be provided with a greater threshold voltage near the photosensitive region and a lesser threshold voltage near the floating diffusion region. Other embodiments, including process embodiments, are disclosed and claimed.12-16-2010
20100327326TWO-PHASE CHARGE-COUPLED DEVICE - A charge-coupled unit formed in a semiconductor substrate and including an array of identical electrodes forming rows and columns, wherein: each electrode extends in a cavity with insulated walls formed of a groove, oriented along a row, dug into the substrate thickness, and including, at one of its ends, a protrusion extending towards at least one adjacent row.12-30-2010
20100327327PHOTOSENSITIVE CHARGE-COUPLED DEVICE COMPRISING VERTICAL ELECTRODES - A charge transfer device formed in a semiconductor substrate and including an array of electrodes forming rows and columns, wherein: the electrodes extend, in rows, in successive grooves with insulated walls, disposed in the substrate thickness and parallel to the charge transfer direction.12-30-2010
20100327328SOLID-STATE IMAGING DEVICE AND METHOD FOR MANUFACTURING SAME - A solid-state imaging device includes: a semiconductor substrate having a plurality of vertical transfer channel regions and a plurality of photoelectric conversion regions arranged in a matrix; a plurality of vertical transfer electrodes, each constructed of a gate electrode and a first metal light-shielding film, formed via a gate insulating film; a transparent insulating film formed in gaps existing between the vertical transfer electrodes above the vertical transfer channel regions; and a second metal light-shielding film formed via a first interlayer insulating film to cover at least the vertical transfer channel regions.12-30-2010
20110042723SOLID-STATE IMAGING DEVICE, ELECTRONIC APPARATUS, AND METHOD FOR MAKING SOLID-STATE IMAGING DEVICE - A solid-state imaging device includes a photoelectric conversion unit that includes a first region of a first conductivity type and a second region of a second conductivity type between which a pn junction is formed, the first region and the second region being formed in a signal-readout surface of a semiconductor substrate, the second region being located at a position deeper than the first region; and a transfer transistor configured to transfer signal charges accumulated in the photoelectric conversion unit to a readout drain through a channel region that lies under a surface of the first region and horizontally adjacent to the photoelectric conversion unit, the transfer transistor being formed in the signal-readout surface. The transfer transistor includes a transfer gate electrode that extends from above the channel region with a gate insulating film therebetween to above the first region so as to extend across a step.02-24-2011
20110101420INCREASING FULL WELL CAPACITY OF A PHOTODIODE USED IN DIGITAL PHOTOGRAPHY - A CMOS pixel circuit and timing for use in digital photography where the photodiode has increased full well. The circuit includes the photodiode, a reset transistor, a first transfer gate to move a charge from the photodiode to a floating diffusion node, a source follower transistor, a row select transistor, a second transfer gate located between the photodiode and the first transfer, and a capacitor located between the first and second transfer gates.05-05-2011
20110227134PIXEL SENSING CIRCUIT - Systems and methods of pixel sensing circuits. In accordance with a first embodiment of the present invention, a pixel sensing circuit includes a floating diffusion functionally coupled to and surrounded by a ring transfer gate. The ring transfer gate is functionally coupled to and surrounded by a photo diode. The photo diode may be surrounded by a region of poly silicon. The disclosed structure provides radiation hardening and low light performance.09-22-2011
20110233619 EXPOSURE MASK USED FOR MANUFACTURING A SEMICONDUCTOR DEVICE HAVING IMPURITY LAYER AND A SEMICONDUCTOR DEVICE - An exposure mask according to an embodiment of the invention includes a first transmission region where a plurality of dots through which light is shielded or transmitted are arrayed into a matrix form having rows and columns and a second transmission region where a plurality of dots through which the light is shielded or transmitted are arrayed into a matrix form having rows and columns and is disposed adjacent to the first transmission region.09-29-2011
20110233620PHOTOELECTRIC CONVERSION APPARATUS, IMAGE PICKUP SYSTEM, AND MANUFACTURING METHOD THEREFOR - A photoelectric conversion apparatus includes a semiconductor substrate on which a photoelectric conversion element and a transistor are arranged and a plurality of wiring layers including a first wiring layer and a second wiring layer above the first wiring layer, in which a connection between the semiconductor substrate and any of the plurality of wiring layers, between a gate electrode of the transistor and any of the plurality of wiring layers, or between the first wiring layer and the second wiring layer, has a stacked contact structure.09-29-2011
20110241079SOLID-STATE IMAGING DEVICE, METHOD OF MANUFACTURING SOLID-STATE IMAGING DEVICE, AND ELECTRONIC APPARATUS - Disclosed herein is a solid-state imaging device including a photoelectric conversion element operable to generate electric charge according to the amount of incident light and to accumulate the electric charge in the inside thereof, an electric-charge holding region in which the electric charge generated through photoelectric conversion by the photoelectric conversion element is held until read out, and a transfer gate having a complete transfer path through which the electric charge accumulated in the photoelectric conversion element is completely transferred into the electric-charge holding region, and an intermediate transfer path through which the electric charge generated by the photoelectric conversion element during an exposure period and being in excess of a predetermined charge amount is transferred into the electric-charge holding region. The complete transfer path and the intermediate transfer path are formed in different regions.10-06-2011
20110241080SOLID-STATE IMAGING DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTRONIC APPARATUS - Disclosed herein is a solid-state imaging device, including a plurality of unit pixels, wherein the plurality of unit pixels include: a photoelectric conversion element; a first transfer gate; a charge retaining region; a second transfer gate; and a floating diffusion region; a boundary part between the photoelectric conversion element and the charge retaining region having a structure of an overflow path formed at a potential determining a predetermined amount of charge, the overflow path transferring a charge by which the predetermined amount of charge is exceeded as a signal charge from the photoelectric conversion element to the charge retaining region, and the first transfer gate having two electrodes with different work functions as gate electrodes arranged above the overflow path and above the charge retaining region, respectively.10-06-2011
20110278649NON-UNIFORM GATE DIELECTRIC CHARGE FOR PIXEL SENSOR CELLS AND METHODS OF MANUFACTURING - A non-uniform gate dielectric charge for pixel sensor cells, e.g., CMOS optical imagers, and methods of manufacturing are provided. The method includes forming a gate dielectric on a substrate. The substrate includes a source/drain region and a photo cell collector region. The method further includes forming a non-uniform fixed charge distribution in the gate dielectric. The method further includes forming a gate structure on the gate dielectric.11-17-2011
20110291161PHYSICAL QUANTITY DETECTING DEVICE AND IMAGING APPARATUS - A physical quality detecting device including: a detecting unit that detects a physical quantity supplied from the outside with photo-converting pixels which are two-dimensionally arranged, each of which has a selecting transistor for outputting a signal from the detecting unit to a signal line. In the physical quality detecting device, the selecting transistor is a depletion-type transistor. The signal line is selectively coupled to a reference voltage.12-01-2011
20120007148SOLID-STATE IMAGE PICKUP DEVICE AND METHOD FOR MANUFACTURING SAME - A solid-state image pickup device includes: a light-transmitting substrate including a terminal electrode for external connection, an inside electrode for bonding a solid-state image pickup element, and a trace that connects the terminal electrode to the corresponding inside electrode; and the solid-state image pickup element which is placed such that a light receiving area opposes the light-transmitting substrate and which is connected to the inside electrode. The trace is made of a light-transmitting conductive film at least in a region opposing the light receiving area of the solid-state image pickup element.01-12-2012
20120007149SOLID IMAGING DEVICE - In a solid-state imaging device 01-12-2012
20120012899Distance measuring sensor including double transfer gate and three dimensional color image sensor including the distance measuring sensor - Provided are a distance measuring sensor including a double transfer gate, and a three dimensional color image sensor including the distance measuring sensor. The distance measuring sensor may include first and second charge storage regions which are spaced apart from each other on a substrate doped with a first impurity, the first and second charge storage regions being doped with a second impurity; a photoelectric conversion region between the first and second charge storage regions on the substrate, being doped with the second impurity, and generating photo-charges by receiving light; and first and second transfer gates which are formed between the photoelectric conversion region and the first and second charge storage regions above the substrate to selectively transfer the photo-charges in the photoelectric conversion region to the first and second charge storage regions.01-19-2012
20120043589ENTRENCHED TRANSFER GATE - An image sensor pixel includes a semiconductor layer, a photosensitive region to accumulate photo-generated charge, a floating node, a trench, and an entrenched transfer gate. The photosensitive region and the trench are disposed within the semiconductor layer. The trench extends into the semiconductor layer between the photosensitive region and the floating node and the entrenched transfer gate is disposed within the trench to control transfer of the photo-generated charge from the photosensitive region to the floating node.02-23-2012
20120068230IMAGE SENSOR CAPABLE OF INCREASING PHOTOSENSITIVITY AND METHOD FOR FABRICATING THE SAME - An image sensor capable of overcoming a decrease in photo sensitivity resulted from using a single crystal silicon substrate, and a method for fabricating the same are provided. An image sensor includes a single crystal silicon substrate, an amorphous silicon layer formed inside the substrate, a photodiode formed in the amorphous silicon layer, and a transfer gate formed over the substrate adjacent to the photodiode and transferring photoelectrons received from the photodiode.03-22-2012
20120080726SOLID-STATE IMAGING DEVICE, METHOD OF MANUFACTURING THE SAME, AND ELECTRONIC DEVICE - Disclosed herein is a solid-state imaging device including: a semiconductor layer including a photoelectric conversion section receiving incident light and generating a signal charge; and a light absorbing section for absorbing transmitted light transmitted by the photoelectric conversion section and having a longer wavelength than light absorbed by the photoelectric conversion section, the transmitted light being included in the incident light, the light absorbing section being disposed on a side of another surface of the semiconductor layer on an opposite side from one surface of the semiconductor layer, the incident light being made incident on the one surface of the semiconductor layer.04-05-2012
20120104465IMAGE SENSOR - An image sensor including: a substrate that includes a first surface onto which light is irradiated, a second surface opposite to the first surface, and a light receiving device disposed adjacent to the second surface; a transistor that includes a source region, a drain region, and a gate electrode disposed between the source region and the drain region, wherein the transistor is disposed on the second surface of the substrate; a wiring line that is disposed on the second surface of the substrate; and a plurality of contact plugs that are disposed on the source region, the drain region, or the gate electrode, wherein at least one of the plurality of contact plugs is connected to the wiring line.05-03-2012
20120132965Photoelectric Conversion Device And Electronic Device Having The Same - A plurality of transistors in which ratios of a channel length L to a channel width W, α=W/L, are different from each other is provided in parallel as output side transistors 05-31-2012
20120146100SOLID STATE IMAGE PICKUP DEVICE AND MANUFACTURING METHOD THEREFOR - A MOS-type solid-state image pickup device is provided on a semiconductor substrate and includes a photoelectric conversion unit having a first semiconductor region, a second semiconductor region, and a third semiconductor region. A transfer gate electrode is disposed on an insulation film and transfers a carrier from the second semiconductor region to a fourth semiconductor region, and an amplifying MOS transistor has a gate electrode connected to the fourth semiconductor region. In addition, a fifth semiconductor region is continuously disposed to the second semiconductor region, under the gate electrode. An entire surface of the third semiconductor region is covered with the insulation film, and a side portion of the third semiconductor region that is laterally opposite to the transfer gate is in contact with the first semiconductor region.06-14-2012
20120168825Charged Coupled Device Module and Method of Manufacturing the Same - A charged coupled device (CCD) module fixed between a lens assembly and a main board having a first plate surface is disclosed. The CCD module comprises a hard PCB having a first surface and a second surface, a CCD component, and at least one fixed member. The first surface of the hard PCB faces the first plate surface of the main board. The CCD component facing the lens assembly is located on the second surface of the hard PCB. The fixed member is used for combining the hard PCB and the main board. The hard PCB and the fixed member can be used as a buffer to reduce possible damages to the CCD component and/or the main board.07-05-2012
20120175685IMAGE SENSOR BASED ON DEPTH PIXEL STRUCTURE - An image sensor based on a depth pixel structure is provided. The image sensor may include a pixel including a photodiode, and the photodiode may include a transfer gate to transfer, to a floating diffusion node, an electron generated by a light reflected from an object.07-12-2012
20120175686SOLID-STATE IMAGING DEVICE AND CAMERA - A solid-state imaging device including: a substrate; a light-receiving part; a second-conductivity-type isolation layer; a detection transistor; and a reset transistor.07-12-2012
20120181582MANUFACTURING METHOD OF A PHOTOELECTRIC CONVERSION DEVICE - A manufacturing method of a photoelectric conversion device comprises a first step of forming a gate electrode, a second step of forming a semiconductor region of a first conductivity type, a third step of forming an insulation film, and a fourth step of forming a protection region of a second conductivity type, which is the opposite conductivity type to the first conductivity type, by implanting ions in the semiconductor region using the gate electrode of the transfer transistor and a portion covering a side face of the gate electrode of the transfer transistor of the insulation film as a mask in a state in which the semiconductor substrate and the gate electrode of the transfer transistor are covered by the insulation film, and causing a portion of the semiconductor region of the first conductivity type from which the protection region is removed to be the charge accumulation region.07-19-2012
20120193683CHARGE-INTEGRATION MULTILINEAR IMAGE SENSOR - The invention relates to time-delay and signal-integration linear image sensors (or TDI sensors). According to the invention, a pixel comprises a succession of several insulated gates covering a semiconducting layer, the gates of one pixel being separated from one another and separated from the gates of an adjacent pixel of another line by narrow uncovered gaps of a gate and comprising a doped region of a second type of conductivity covered by a doped superficial region of the first type; the superficial regions are kept at one and the same reference potential; the width of the narrow gaps between adjacent gates is such that the internal potential of the region of the second type is modified in the whole width of the narrow gap when a gate sustains the alternations of potential necessary for the transfer of charges from one pixel to the following one.08-02-2012
20120199883SOLID-STATE IMAGE PICKUP DEVICE - An N-type semiconductor region and a floating diffusion region are disposed in an active region. A transfer gate electrode for transferring charges from a PD to an FD is disposed on a semiconductor substrate through an insulator. A part of the N-type semiconductor region constituting the PD and a part of the transfer gate electrode are overlapped with each other. A P-type semiconductor region is disposed in the active region. The P-type semiconductor region and the portion overlapped with the transfer gate electrode of the N-type semiconductor region are disposed adjacent to each other in the direction parallel to the interface of the semiconductor substrate and the insulator. The position of the impurity concentration peak of the N-type semiconductor region and the position of the impurity concentration peak of the P-type semiconductor region are different from each other in depth.08-09-2012
20120211804CHARGE TRANSFER PHOTOSITE - A photosite may include, in a semi-conductor substrate, a photodiode pinched in the direction of the depth of the substrate including a charge storage zone, and a charge transfer transistor to transfer the stored charge. The charge storage zone may include a pinching in a first direction passing through the charge transfer transistor defining a constriction zone adjacent to the charge transfer transistor.08-23-2012
20120267690SOLID-STATE IMAGE PICKUP DEVICE AND IMAGE PICKUP SYSTEM - The present invention relates to a solid-state image pickup device. The device includes a first substrate including a photoelectric conversion element and a transfer gate electrode configured to transfer charge from the photoelectric conversion element, a second substrate having a peripheral circuit portion including a circuit configured to read a signal based charge generated in the photoelectric conversion element, the first and second substrates being laminated. The device further includes a multilayer interconnect structure, disposed on the first substrate, including an aluminum interconnect and a multilayer interconnect structure, disposed on the second substrate, including a copper interconnect.10-25-2012
20120267691X-Y ADDRESS TYPE SOLID STATE IMAGE PICKUP DEVICE AND METHOD OF PRODUCING THE SAME - In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein. and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer. wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.10-25-2012
20120267692X-Y ADDRESS TYPE SOLID STATE IMAGE PICKUP DEVICE AND METHOD OF PRODUCING THE SAME - In an X-Y address type solid state image pickup device represented by a CMOS image sensor, a back side light reception type pixel structure is adopted in which a wiring layer is provided on one side of a silicon layer including photo-diodes formed therein. and visible light is taken in from the other side of the silicon layer, namely, from the side (back side) opposite to the wiring layer. wiring can be made without taking a light-receiving surface into account, and the degree of freedom in wiring for the pixels is enhanced.10-25-2012
20130001650SOLID-STATE IMAGING DEVICE - The present invention provides a solid-state imaging device in which high S/N is achieved. A solid-state imaging device includes a photodiode, a transfer transistor, a floating diffusion, a floating diffusion wiring, an amplifying transistor, a power line, and first output signal lines, in which the first output signal lines are formed one on each side of the floating diffusion wiring in a layer having the floating diffusion wiring formed on a semiconductor substrate, and the power line is formed above the floating diffusion wiring.01-03-2013
20130001651SEMICONDUCTOR LIGHT DETECTING ELEMENT - A semiconductor light detecting element is provided with a silicon substrate having a semiconductor layer, and an epitaxial semiconductor layer grown on the semiconductor layer and having a lower impurity concentration than the semiconductor layer; and conductors provided on a surface of the epitaxial semiconductor layer. A photosensitive region is formed in the epitaxial semiconductor layer. Irregular asperity is formed at least in a surface opposed to the photosensitive region in the semiconductor layer. The irregular asperity is optically exposed.01-03-2013
20130056800Image Sensor With Reduced Noise By Blocking Nitridation Using Photoresist - An image sensor is described in which the imaging pixels have reduced noise by blocking nitridation in selected areas. In one example, a method includes forming a first and second gate oxide layer over a substrate, forming a layer of photoresist over the first gate oxide layer, applying nitridation to the photoresist and the second gate oxide layer such that the first gate oxide layer is protected from the nitridation by the photoresist, and forming a polysilicon gate over the first and second gate oxide layers.03-07-2013
20130069119SOLID-STATE IMAGING DEVICE - Provided is a solid-state imaging device. Two unit cells are prepared each having three pixels and sharing an output circuit. One of the basic blocks is rotated by 180° such that a reset drain is shared, resulting in a 6-pixel 1-cell, and the cells are disposed in a square lattice pattern or checkerboard pattern. Thus, element isolation regions between the pixels and the output circuit disposed adjacent thereto are minimized, and the number of wirings disposed around the pixels is reduced. As a result, a margin for white scratches and saturation charge amounts may be increased despite the miniaturization of cells.03-21-2013
20130075791DEPLETED CHARGE-MULTIPLYING CCD IMAGE SENSOR - In various embodiments, a charge-coupled device includes channel stops laterally spaced away from the channel by fully depleted regions.03-28-2013
20130099290SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING SAME - Disclosed is a method for manufacturing a semiconductor device that can improve the performance of a photodiode that is formed on a same substrate as a thin film transistor without greatly deteriorating the productivity of the semiconductor device. On a glass substrate 04-25-2013
20130099291SOLID-STATE IMAGING DEVICE AND MANUFACTURING METHOD THEREFOR - A solid-state imaging device includes a first and second pixel regions. In the first pixel region, a photoelectric conversion unit, a floating diffusion region (FD), and a transferring transistor are provided. In the second pixel region, an amplifying transistor, and a resetting transistor are provided. A first element isolation portion is provided in the first pixel region, while a second element isolation portion is provided in the second pixel region. An amount of protrusion of an insulating film into a semiconductor substrate in the first element isolation portion is smaller, than that in the second element isolation portion.04-25-2013
20130113024SOLID-STATE IMAGE PICKUP DEVICE, IMAGE PICKUP SYSTEM INCLUDING THE SAME, AND METHOD FOR MANUFACTURING THE SAME - A solid-state image pickup device including a photoelectric conversion element, a floating diffusion, and an element isolation region that are disposed above a first semiconductor region has a second semiconductor region of a first conductivity type disposed on the first semiconductor region. An interface between the first semiconductor region and a portion of the second semiconductor region corresponding to the photoelectric conversion element is located at a first depth, whereas the interface between the first semiconductor region and a portion of the second semiconductor region disposed under the element isolation region and the floating diffusion is located at a second depth smaller than the first depth.05-09-2013
20130119438PIXEL FOR DEPTH SENSOR AND IMAGE SENSOR INCLUDING THE PIXEL - A unit pixel of a depth sensor including a light-intensity output circuit configured to output a pixel signal according to a control signal, the pixel signal corresponding to a first electric charge and a second electric charge, a first light-intensity extraction circuit configured to generate the first electric charge and transmit the first electric charge to the light-intensity output circuit, the first electric charge varying according to an amount of light reflected from a target object and a second light-intensity extraction circuit configured to generate the second electric charge and transmit the second electric charge to the light-intensity output circuit, the second electric charge varying according to the amount of reflected light. The light-intensity output circuit includes a first floating diffusion node. Accordingly, it is possible to minimize waste of a space, thereby manufacturing a small-sized pixel.05-16-2013
20130140609MATRIX CHARGE-TRANSFER IMAGE SENSOR WITH ASYMMETRIC GATE - The invention relates to image sensors, more particularly but not exclusively to scanning sensors with signal integration (or TDI sensors, for ‘Time Delay Integration linear sensors’). The adjacent pixels along a column each comprise an alternation of at least one photodiode and one storage gate adjacent to the photodiode. The gates comprise a main body and, on the upstream side in the direction of the transfer of the charges but not on the downstream side, a series of narrow fingers extending from the main body toward the upstream side, the ends of the fingers on the upstream side being adjacent to a photodiode situated upstream of the gate, the narrow fingers being separated from one another by doped insulating regions of the first type of conductivity, with a higher doping and preferably deeper than the surface regions, connected, as they are, to the reference potential of the active layer, these insulating regions being interposed between the main body of the gate and the photodiode. These fingers induce a directionality on the charge transfer.06-06-2013
20130221410UNIT PIXEL OF IMAGE SENSOR AND IMAGE SENSOR INCLUDING THE SAME - A unit pixel of an image sensor includes a photoelectric conversion region, an isolation region, a floating diffusion region and a transfer gate. The photoelectric conversion region is formed in a semiconductor substrate. The isolation region surrounds the photoelectric conversion region, extends substantially vertically with respect to a first surface of the semiconductor substrate, and crosses the incident side of the photoelectric conversion region so as to block leakage light and diffusion carriers. The floating diffusion region is disposed in the semiconductor substrate above the photoelectric conversion region. The transfer gate is disposed adjacent to the photoelectric conversion region and the floating diffusion region, extends substantially vertically with respect to the first surface of the semiconductor substrate, and transmits the photo-charges from the photoelectric conversion region to the floating diffusion region.08-29-2013
20130248937ENTRENCHED TRANSFER GATE - An image sensor pixel includes a semiconductor layer, a photosensitive region to accumulate photo-generated charge, a floating node, a trench, and an entrenched transfer gate. The photosensitive region and the trench are disposed within the semiconductor layer. The trench extends into the semiconductor layer between the photosensitive region and the floating node and the entrenched transfer gate is disposed within the trench to control transfer of the photo-generated charge from the photosensitive region to the floating node.09-26-2013
20130320406IMAGE SENSOR DEVICES HAVING DUAL-GATED CHARGE STORAGE REGIONS THEREIN - An image sensor device may include a dual-gated charge storage region within a substrate. The dual-gated charge storage region includes first and second diodes within a common charge generating region. This charge generating region is configured to receive light incident on a surface of the image sensor device. The first and second diodes include respective first conductivity type regions responsive to first and second gate signals, respectively. These first and second gate signals are active during non-overlapping time intervals.12-05-2013
20130341683SOLID-STATE IMAGING DEVICE AND CAMERA - A solid-state imaging device includes a photoelectric conversion unit that has a charge accumulation region and is configured to accumulate a charge that is generated in accordance with incident light in the charge accumulation region, and a transfer unit configured to transfer the charge accumulated in the charge accumulation region from the charge accumulation region. A potential distribution having a plurality of steps is formed in the charge accumulation region, and the further away from the transfer unit a step of the plurality of steps is, the greater the magnitude of the step is.12-26-2013
20140015012SOLID STATE IMAGING DEVICE, DRIVING METHOD OF THE SOLID STATE IMAGING DEVICE AND ELECTRONIC EQUIPMENT - A solid state imaging device including multiple unit pixels including a photoelectric converter generating electrical charge in accordance with incident light quantity and accumulating the charge, a first transfer gate transferring the accumulated charge, a charge holding region holding the transferred charge, a second transfer gate transferring the held charge, and a floating diffusion region converting the transferred charge into voltage; an intermediate charge transfer unit transferring, to the charge holding region, a charge exceeding a predetermined charge amount as a first signal charge; and a pixel driving unit setting the first transfer gate to a non-conducting state, set the second transfer gate to a conducting state, transfer the first signal charge to the floating diffusion region, set the second transfer gate to a non-conducting state, set the first transfer gate to a conducting state, and transfer the accumulated charge to the charge holding region as a second signal charge.01-16-2014
20140035006DETECTION APPARATUS, DETECTION SYSTEM, AND METHOD FOR MANUFACTURING DETECTION APPARATUS - A detection apparatus includes a plurality of pixels and a plurality of signal wires arranged on a substrate, in which each of the plurality of pixels includes a switch element arranged on the substrate and a conversion element arranged on the switch element, the conversion element includes a first electrode which is arranged on the switch element and electrically connected to the switch element and a semiconductor layer arranged over a plurality of the first electrodes, and a plurality of the switch elements is electrically connected to the plurality of signal wires, and the detection apparatus further includes a constant potential wire which is supplied with a constant potential, in which the first electrode is electrically connected to the constant potential wire in apart of pixels among the plurality of pixels.02-06-2014
20140110762METHOD FOR PRODUCTION OF SOLID-STATE IMAGING ELEMENTS, SOLID-STATE IMAGING ELEMENT, AND IMAGING APPARATUS - A method for producing a solid-state imaging element which has photoconversion pixels, the method including forming an impurity region of the first conduction type and a second impurity region of the second conduction type on the impurity region of the first conduction type by ion implantation by using the same mask; forming on the surface of the semiconductor substrate a transfer gate constituting the charge transfer section which extends over the second impurity region of the second conduction type; forming a charge accumulating region of the first conduction type constituting the sensor section by ion implantation; and forming a first impurity region of the second conduction type, which has a higher impurity concentration than the second impurity region of the second conduction type, by ion implantation.04-24-2014
20140183604SOLID-STATE IMAGING DEVICE, DRIVING METHOD THEREOF, AND ELECTRONIC DEVICE - A solid-state imaging device including a pixel region in which a plurality of pixels are arranged. The pixels each includes a photoelectric conversion section, a transfer transistor, a plurality of floating diffusion sections receiving a charge from the photoelectric conversion section through the transfer transistor, a reset transistor resetting the floating diffusion sections, a separating transistor performing on-off control of a connection between the plurality of floating diffusion sections, and an amplifying transistor outputting a signal corresponding to a potential of the floating diffusion sections.07-03-2014
20140217474UNIT PIXEL OF IMAGE SENSOR AND IMAGE SENSOR INCLUDING THE SAME - A unit pixel of an image sensor includes a photoelectric conversion region, a floating diffusion region, and a transfer gate. The photoelectric conversion region is in an active region defined by an isolation region of a semiconductor substrate. The photoelectric conversion region generates electric charges corresponding to incident light. The transfer gate transfers the electric charges to the floating diffusion region, which is located in the active region. The transfer gate includes first and second portions divided relative to a reference line, and at least one of the first or second portions does not overlap the isolation region08-07-2014
20140239351PROCESS TO ELIMINATE LAG IN PIXELS HAVING A PLASMA-DOPED PINNING LAYER - Embodiments of a process including depositing a sacrificial layer on the surface of a substrate over a photosensitive region, over the top surface of a transfer gate, and over at least the sidewall of the transfer gate closest to the photosensitive region, the sacrificial layer having a selected thickness. A layer of photoresist is deposited over the sacrificial layer, which is patterned and etched to expose the surface of the substrate over the photosensitive region and at least part of the transfer gate top surface, leaving a sacrificial spacer on the sidewall of the transfer gate closest to the photosensitive region. The substrate is plasma doped to form a pinning layer between the photosensitive region and the surface of the substrate. The spacing between the pinning layer and the sidewall of the transfer gate substantially corresponds to a thickness of the sacrificial spacer. Other embodiments are disclosed and claimed.08-28-2014
20140284663Method of Manufacturing an imager and imager device - Embodiments related to a method of manufacturing of an imager and an imager device are shown and depicted.09-25-2014
20140284664IMAGE SENSORS INCLUDING A GATE ELECTRODE SURROUNDING A FLOATING DIFFUSION REGION - Image sensors are provided. The image sensors may include first and second stacked impurity regions having different conductivity types. The image sensors may also include a floating diffusion region in the first impurity region. The image sensors may further include a transfer gate electrode surrounding the floating diffusion region in the first impurity region. Also, the transfer gate electrode and the floating diffusion region may overlap the second impurity region.09-25-2014
20140291732PHOTOELECTRIC CONVERSION APPARATUS AND IMAGING SYSTEM USING THE PHOTOELECTRIC CONVERSION APPARATUS - In a photoelectric conversion apparatus including a charge holding portion, a part of an element isolation region contacting with a semiconductor region constituting the charge holding portion extends from a reference surface including the light receiving surface of a photoelectric conversion element into a semiconductor substrate at a level equal to or deeper than the depth of the semiconductor region in comparison with the semiconductor region.10-02-2014
20140299921SOLID-STATE IMAGING DEVICE WITH CHANNEL STOP REGION WITH MULTIPLE IMPURITY REGIONS IN DEPTH DIRECTION AND METHOD FOR MANUFACTURING THE SAME - Channel stop sections formed by multiple times of impurity ion implanting processes. Four-layer impurity regions are formed across the depth of a semiconductor substrate (across the depth of the bulk), so that a P-type impurity region is formed deep in the semiconductor substrate; thus, incorrect movement of electric charges is prevented. Other four-layer impurity regions of another channel stop section are decreased in width step by step across the depth of the substrate, so that the reduction of a charge storage region of a light receiving section due to the dispersion of P-type impurity in the channel stop section is prevented in the depth of the substrate.10-09-2014
20140361346SOLID-STATE IMAGE PICKUP DEVICE - A photoelectric conversion portion, a charge holding portion, a transfer portion, and a sense node are formed in a P-type well. The charge holding portion is configured to include an N-type semiconductor region, which is a first semiconductor region holding charges in a portion different from the photoelectric conversion portion. A P-type semiconductor region having a higher concentration than the P-type well is disposed under the N-type semiconductor region.12-11-2014
20150014750SOLID-STATE IMAGING APPARATUS, METHOD OF MANUFACTURING THE SAME, AND ELECTRONIC APPARATUS - A solid-state imaging apparatus includes a semiconductor substrate in which a charge transfer section configured to transfer a charge generated in a photoelectric conversion section is formed. The semiconductor substrate includes a surface that is formed in a convex shape in an area in which the charge transfer section is formed.01-15-2015
20150021668PHOTOSENSITIVE CELL OF AN IMAGE SENSOR - An image sensor cell formed inside and on top of a substrate of a first conductivity type includes: a storage region of the second conductivity type; a read region of the second conductivity type; a transfer region located between the storage region and the read region; and a transfer gate topping the transfer region and which does not or does not totally top the storage region. The transfer region comprises a first area of the first conductivity type in the vicinity of the storage region, and a second area of the second conductivity type extending between the first area and the read region.01-22-2015
20150137188SOLID-STATE IMAGING DEVICE, METHOD OF MANUFACTURING SOLID-STATE IMAGING DEVICE, AND ELECTRONIC APPARATUS - A solid-state imaging device including a photoelectric conversion element operable to generate electric charge according to the amount of incident light and to accumulate the electric charge in the inside thereof, an electric-charge holding region in which the electric charge generated through photoelectric conversion by the photoelectric conversion element is held until read out, and a transfer gate having a complete transfer path through which the electric charge accumulated in the photoelectric conversion element is completely transferred into the electric-charge holding region, and an intermediate transfer path through which the electric charge generated by the photoelectric conversion element during an exposure period and being in excess of a predetermined charge amount is transferred into the electric-charge holding region. The complete transfer path and the intermediate transfer path are formed in different regions.05-21-2015
20150318324SOLID-STATE IMAGING DEVICE AND CAMERA - A solid-state imaging device which includes a plurality of pixels in an arrangement, each of the pixels including a photoelectric conversion element, pixel transistors including a transfer transistor, and a floating diffusion region, in which the channel width of transfer gate of the transfer transistor is formed to be larger on a side of the floating diffusion region than on a side of the photoelectric conversion element.11-05-2015
20150333101SOLID-STATE IMAGING DEVICE WITH PHOTOELECTRIC CONVERSION SECTION, METHOD OF MANUFACTURING THE SAME, AND ELECTRONIC DEVICE WITH PHOTOELECTRIC CONVERSION SECTION - A solid-state imaging device including a semiconductor layer including a photoelectric conversion section receiving incident light and generating a signal charge; and a light absorbing section for absorbing transmitted light transmitted by the photoelectric conversion section and having a longer wavelength than light absorbed by the photoelectric conversion section, the transmitted light being included in the incident light, the light absorbing section being disposed on a side of another surface of the semiconductor layer on an opposite side from one surface of the semiconductor layer, the incident light being made incident on the one surface of the semiconductor layer.11-19-2015
20150357365SEMICONDUCTOR DEVICE - A semiconductor device is reduced in power consumption, the semiconductor device including a solid-state imaging device that includes pixels each having a plurality of light receiving elements. A pixel having first and second photodiodes is provided with a first transfer transistor that transfers charge in the first photodiode to a floating diffusion capacitance section, and a second transfer transistor that combines charge in the first photodiode and charge in the second photodiode, and transfers the combined charge to the floating diffusion capacitance section. Consequently, the semiconductor device is reduced in power required for activation of each transfer transistor in operation such as imaging with the solid-state imaging device.12-10-2015
20160013228SOLID-STATE IMAGING DEVICE AND METHOD FOR MANUFACTURING SOLID-STATE IMAGING DEVICE01-14-2016
20160013236SOLID-STATE IMAGE PICKUP APPARATUS AND IMAGE PICKUP SYSTEM01-14-2016
20160013239SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR01-14-2016
20160013241SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SAME01-14-2016
20160020233PHOTOELECTRIC CONVERSION APPARATUS AND IMAGING SYSTEM USING THE PHOTOELECTRIC CONVERSION APPARATUS - In a photoelectric conversion apparatus including a charge holding portion, a part of an element isolation region contacting with a semiconductor region constituting the charge holding portion extends from a reference surface including the light receiving surface of a photoelectric conversion element into a semiconductor substrate at a level equal to or deeper than the depth of the semiconductor region in comparison with the semiconductor region.01-21-2016
20160020243PHOTODIODE GATE DIELECTRIC PROTECTION LAYER - The present disclosure relates to a method the present disclosure relates to an active pixel sensor having a gate dielectric protection layer that reduces damage to an underlying gate dielectric layer during fabrication, and an associated method of formation. In some embodiments, the active pixel sensor has a photodetector disposed within a semiconductor substrate. A transfer transistor having a first gate structure is located on a first gate dielectric layer disposed above the semiconductor substrate. A reset transistor having a second gate structure is located on the first gate dielectric layer. A gate dielectric protection layer is disposed onto the gate oxide at a position extending between the first gate structure and the second gate structure and over the photodetector. The gate dielectric protection layer protects the first gate dielectric layer from etching procedures during fabrication of the active pixel sensor.01-21-2016
20160043130SOLID-STATE IMAGING DEVICE - According to one embodiment, a solid-state imaging device includes an element isolation film, a photoelectric conversion element, and a transfer transistor. The element isolation film is embedded in a first trench penetrating a semiconductor substrate from a first main surface to a second main surface. The photoelectric conversion element is embedded in a pixel region isolated by the element isolation film, and includes a P-type region formed on the second main surface side along the first trench and an N-type region formed at a region surrounded by the P-type region. The transfer transistor is formed at the first main surface and configured to transfer a charge of the photoelectric conversion element. A part of the element isolation film on the first main surface side is formed of an active region.02-11-2016
20160043131SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Provided is a semiconductor device with improved performance. The semiconductor device includes a photodiode having a charge storage layer (n-type semiconductor region) and a surface layer (p-type semiconductor region), and a transfer transistor having a gate electrode and a floating diffusion. The surface layer (p-type semiconductor region) of a second conductive type formed over the charge storage layer (n-type semiconductor region) of a first conductive type includes a first sub-region having a low impurity concentration, and a second sub-region having a high impurity concentration. The first sub-region is arranged closer to the floating diffusion than the second sub-region.02-11-2016
20160056192VERTICAL GATE TRANSISTOR AND PIXEL STRUCTURE COMPRISING SUCH A TRANSISTOR - The present disclosure relates to a photodiode comprising: a P-conductivity type substrate region, an electric charge collecting region for collecting electric charges appearing when a rear face of the substrate region receives light, the collecting region comprising an N-conductivity type region formed deep in the substrate region, an N-conductivity type read region formed in the substrate region, and an isolated transfer gate, formed in the substrate region in a deep isolating trench extending opposite a lateral face of the N-conductivity type region, next to the read region, and arranged for receiving a gate voltage to transfer electric charges stored in the collecting region toward the read region.02-25-2016
20160056198COMPLEMENTARY METAL-OXIDE-SEMICONDUCTOR IMAGE SENSORS - A complementary metal-oxide-semiconductor (CMOS) image sensor is provided. The CMOS image sensor may include an epitaxial layer having a first conductivity type and having first and second surfaces, a first device isolation layer extending from the first surface to the second surface to define first and second pixel regions, a well impurity layer of a second conductivity type formed adjacent to the first surface and formed in the epitaxial layer of each of the first and second pixel regions, and a second device isolation layer formed in the well impurity layer in each of the first and second pixel regions to define first and second active portions spaced apart from each other in each of the first and second pixel regions.02-25-2016
20160071892DOPANT CONFIGURATION IN IMAGE SENSOR PIXELS - An image sensor pixel including a photodiode includes a first dopant region disposed within a semiconductor layer and a second dopant region disposed above the first dopant region and within the semiconductor layer. The second dopant region contacts the first dopant region and the second dopant region is of an opposite majority charge carrier type as the first dopant region. A third dopant region is disposed above the first dopant region and within the semiconductor layer. The third dopant region is of a same majority charge carrier type as the second dopant region but has a greater concentration of free charge carriers than the second dopant region. A transfer gate is positioned to transfer photogenerated charge from the photodiode. The second dopant region extends closer to an edge of the transfer gate than the third dopant region.03-10-2016
20160071902SOLID-STATE IMAGE SENSOR AND CAMERA - An image sensor including a first semiconductor region of a first conductivity type that is arranged in a substrate, a second semiconductor region of a second conductivity type that is arranged in the first semiconductor region to form a charge accumulation region. The second semiconductor region includes a plurality of portions arranged in a direction along a surface of the substrate. A potential barrier is formed between the plurality of portions. The second semiconductor region is wholly depleted by expansion of a depletion region from the first semiconductor region to the second semiconductor region. A finally-depleted portion to be finally depleted, of the second semiconductor region, is depleted by the expansion of the depletion region from a portion of the first semiconductor region, located in a lateral direction of the finally-depleted portion.03-10-2016
20160093653SOLID-STATE IMAGING DEVICE AND METHOD FOR MANUFACTURING SOLID-STATE IMAGING DEVICE, AND ELECTRONIC DEVICE - A solid-state imaging device includes a first-conductivity-type semiconductor well region, a plurality of pixels each of which is formed on the semiconductor well region and is composed of a photoelectric conversion portion and a pixel transistor, an element isolation region provided between the pixels and in the pixels, and an element isolation region being free from an insulation film and being provided between desired pixel transistors.03-31-2016
20160111469SOLID-STATE IMAGE SENSOR - A solid-state image sensor includes: a pixel array that includes first pixels, each having first and second photoelectric conversion units, and second pixels, each having third and fourth photoelectric conversion units; first to fourth transfer gates via which a signal charge respectively generated in the first to fourth photoelectric conversion units is respectively transferred to first to fourth charge voltage conversion units. At least one of a gate width, a gate length and an installation position of at least one transfer gate among the first to fourth transfer gates is altered to achieve uniformity in voltage conversion efficiency at the first to fourth charge voltage conversion units.04-21-2016
20160126282CMOS IMAGE SENSOR WITH ENHANCED DYNAMIC RANGE - An image sensor includes a semiconductor substrate having a main surface, a transfer transistor having a transfer gate disposed on the main surface, a light-sensing structure on one side of the transfer gate, a floating diffusion node on the other side of the transfer gate, a reset transistor serially connected to the transfer transistor via the floating diffusion node, a source-follower transistor having a source-follower gate, and a vertical capacitor having a first vertical electrode plate and a second vertical electrode plate. The first vertical electrode plate is electrically connected to the source-follower gate and the floating diffusion node.05-05-2016
20160148961ACTIVE PIXEL SENSOR HAVING A RAISED SOURCE/DRAIN - In some embodiments, the present disclosure relates to an integrated circuit having a device. The device has a first raised source/drain area arranged over a first source/drain region of a substrate, and a second raised source/drain area arranged over a second source/drain region of the substrate. A first gate stack has a dielectric layer positioned over the substrate and an overlying conductive layer. The first gate stack is laterally between the first raised source/drain area and the second raised source/drain area. Sidewall spacers are located over the dielectric layer and laterally between the first gate stack and the first raised source/drain area and the second raised source/drain area.05-26-2016
20160155767SOLID-STATE IMAGING DEVICE AND ELECTRONIC APPARATUS06-02-2016
20160155773PIXEL CIRCUIT06-02-2016
20160163758METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE - Provided is a semiconductor device with improved performance. In a method for manufacturing a semiconductor device, after forming a gate electrode of a transfer transistor over a p-type well, a photodiode is formed in one part of the p-type well positioned on one side with respect to the gate electrode. Then, a cap insulating film including silicon and nitrogen is formed over the photodiode before implanting impurity ions for formation of an n-type low-concentration semiconductor region of the transfer transistor, into the other part of the p-type well positioned on a side opposite to the one side with respect to the gate electrode.06-09-2016
20160163759PIXEL HAVING TWO SEMICONDUCTOR LAYERS, IMAGE SENSOR INCLUDING THE PIXEL, AND IMAGE PROCESSING SYSTEM INCLUDING THE IMAGE SENSOR - An image sensor having pixels that include two patterned semiconductor layers. The top patterned semiconductor layer contains the photoelectric elements of pixels having substantially 100% fill-factor. The bottom patterned semiconductor layer contains transistors for detecting, resetting, amplifying and transmitting signals charges received from the photoelectric elements. The top and bottom patterned semiconductor layers may be separated from each other by an interlayer insulating layer that may include metal interconnections for conducting signals between devices formed in the patterned semiconductor layers and from external devices.06-09-2016
20160172409SOLID-STATE IMAGING APPARATUS AND ELECTRONIC DEVICE06-16-2016
20160190199IMAGE SENSOR DEVICE WITH FIRST AND SECOND SOURCE FOLLOWERS AND RELATED METHODS - An image sensor device may include an array of image sensing pixels arranged in rows and columns. Each image sensing pixel may include an image sensing photodiode, a first source follower transistor coupled to the image sensing photodiode, and a switch coupled to the image sensing photodiode. Each image sensor device may include a second source follower transistor coupled to the switch, and a row selection transistor coupled to the first and second source follower transistors.06-30-2016
20160197117SOLID-STATE IMAGE SENSING DEVICE AND CAMERA SYSTEM WITH DIVIDED PIXELS07-07-2016
20160197118IMAGE SENSORS INCLUDING PHOTOELECTRIC CONVERSION PORTIONS WITH INCREASED AREA07-07-2016
20180026073SOLID-STATE IMAGING DEVICE, MANUFACTURING METHOD OF SOLID-STATE IMAGING DEVICE, AND IMAGING SYSTEM01-25-2018
20190148447IMAGE SENSORS05-16-2019

Patent applications in class Non-electrical input responsive (e.g., light responsive imager, input programmed by size of storage sites for use as a read-only memory, etc.)

Patent applications in all subclasses Non-electrical input responsive (e.g., light responsive imager, input programmed by size of storage sites for use as a read-only memory, etc.)

Website © 2025 Advameg, Inc.