Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Coating selected area

Subclass of:

205 - Electrolysis: processes, compositions used therein, and methods of preparing the compositions

205080000 - ELECTROLYTIC COATING (PROCESS, COMPOSITION AND METHOD OF PREPARING COMPOSITION)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
205122000 Specified product produced 169
205131000 Internal coating (e.g., coating inside of cylinder, etc.) 22
205136000 Utilizing means other than mask 13
205135000 Utilizing specified mask material 10
205120000 Design or ornamental article produced 9
205129000 Selectively coating moving substrate of indeterminate length (e.g., strip, wire, fiber, etc.) 5
20140076732DEVICE FOR SINGLE-SIDED ELECTROLYTIC TREATMENT OF A FLAT SUBSTRATE - The present invention provides a device for single-sided electrolytic treatment of a flat substrate. The device comprises a bath for electrolytic fluid and conveying means for conveying the flat substrate in a conveying direction at the free surface of the fluid in the bath, with the flat substrate being horizontally oriented such that the underside of the flat substrate makes contact with the free surface of the fluid in the bath. The conveying means comprise two conveying elements disposed opposite each other, which extend along two respective conveying paths, which conveying paths each comprise an electrolytic part, which electrolytic parts extend on two opposite longitudinal sides of the bath.03-20-2014
20090057158PLATING SYSTEMS AND METHODS - Embodiments of the invention relate to plating systems configured to strip plate a selected portion of a workpiece (e.g., a lead frame) and methods of plating. In one embodiment, a plating system is configured to plate a selected portion of a workpiece and at least partially compensate for wheel run out. As an alternative, or in addition, to the plating system being configured to at least partially compensate for wheel run out, in another embodiment, a plating system is configured to plate the selected portion of the workpiece and provide for controllably adjusting plating dimensions on the selected portion to be plated.03-05-2009
20090242412CONTINUOUS PLATING SYSTEM AND METHOD WITH MASK REGISTRATION - A continuous plating system with mask registration is disclosed herein that uses drums and rollers with protruding pins which engage with guide holes in a masking belt and a lead frame. Through engagement with the pins the masking belt is keyed to the lead frame as the lead frame passes through a plating solution tank.10-01-2009
20100193367Methods and structures for the production of electrically treated items and electrical connections - This invention involves unique electroplated items comprising electrically conductive polymers. In addition, novel processing is taught to facilitate continuous production of electrically treated items. Many embodiments employ directly electroplateable resins for particular advantage. Unique methods of establishing electroplated electrical connections are taught.08-05-2010
20130334055Plating Method and Apparatus, and Strip Obtained by this Method - A method for plating strips including providing a strip of material, providing a masking belt including patterned windows, providing a tank with a plating solution, generating a continuous movement in the cell of an assembly of the strip and masking belt, whereby the structure of the masking belt masks portions of the strip in the tank.12-19-2013
205133000 Directing electrolyte to selected area (e.g., jet plating, etc.) 5
20090045068Apparatus and method for plating a substrate - A plating apparatus and method bubbles generated at the plating surfaces easily removed and the uniformity of the thickness of the plated film within the plated surface can be improved. The plating apparatus has a cassette table for loading a cassette in which a substrate having a plating surface is contained. An aligner for aligning the substrate, a rinser-dryer for rinsing and drying the substrate, and a plating unit for plating the substrate are also provided. The plating unit includes a plating vessel containing a plating solution, and a holder holds the substrate to immerse the substrate in the plating solution in the plating vessel. The plating surface is exposed to a nozzle which ejects the plating solution toward the plating surface.02-19-2009
20090078579Systems And Methods For Electroplating Embossed Features On Substrates - Systems and methods for electroplating embossed features on substrates are disclosed. In an exemplary implementation, a method may include positioning a device in close proximity to an anode. The device may have embossed trenches. The method may also include delivering pressurized electrolyte to the anode. The method may also include activating electrical power between the anode and the device. The metal ions migrate into the embossed trenches to form electroplated metal traces on the device03-26-2009
20110203937ADDITIVE MANUFACTURING PROCESSES - A method is disclosed which includes applying a surface treatment to a substrate to form a patterned area having at least some electrical conductivity; electroplating onto the patterned area with a tool having a first electrode and a source for in situ supply of electrolyte, by providing an anode current to the first electrode, causing the patterned area at least in the vicinity of the tool to function as a cathode, and passing electrolyte between the patterned area and the first electrode, thereby to deposit conductive material onto the patterned area.08-25-2011
20120292195APPARATUS AND METHOD FOR ELECTROPLATING FOR SEMICONDUCTOR SUBSTRATE - An apparatus for electroplating a semiconductor device includes a plating bath accommodating a plating solution, and a paddle in the plating bath, the paddle including a plurality of holes configured to pass the plating solution through the paddle toward a substrate, and a plating solution flow reinforcement portion configured to selectively reinforce a flow of the plating solution to a predetermined area of the substrate, the predetermined area of the substrate being an area requiring a relatively increased supply of metal ions of the plating solution.11-22-2012
20140183049ENHANCEMENT OF ELECTROLYTE HYDRODYNAMICS FOR EFFICIENT MASS TRANSFER DURING ELECTROPLATING - The embodiments herein relate to methods and apparatus for electroplating one or more materials onto a substrate. In many cases the material is a metal and the substrate is a semiconductor wafer, though the embodiments are no so limited. Typically, the embodiments herein utilize a channeled plate positioned near the substrate, creating a cross flow manifold defined on the bottom by the channeled plate, on the top by the substrate, and on the sides by a cross flow confinement ring. During plating, fluid enters the cross flow manifold both upward through the channels in the channeled plate, and laterally through a cross flow side inlet positioned on one side of the cross flow confinement ring. The flow paths combine in the cross flow manifold and exit at the cross flow exit, which is positioned opposite the cross flow inlet. These combined flow paths result in improved plating uniformity.07-03-2014
205134000 Partially submerging substrate in bath 5
20090159452ELECTROPLATING METHOD - An electroplating method includes steps of: providing a substrate having a first portion and a second portion connected to the first portion; forming a metallic layer on a surface of the second portion; immersing the first portion of the substrate in an electrolyte solution, applying a current to the metallic layer to electroplate the first portion of the substrate with a metal layer; and moving the substrate in a direction away from the electrolyte solution during electroplating the first portion of the substrate. The method can improve a uniformity of the obtained plating layer.06-25-2009
20120217164Apparatus and Method for Electroplating - A processed product is continuously partially plated without being covered. Electroplating is carried out on a portion other than a head of a processed product also having a lower part and a constricted part between the head and the lower part. A pair of rails has an opening between the rails narrower than the head and broader than the constricted part, and electrodes are arranged thereon. A plating bath is positioned below the rails, and electrode plates are arranged in a plating solution. The constricted part of the processed product is positioned at the opening between the rails, and a pushing element extending from above the rails through the opening contacts the processed product at a position lower than the center of gravity at the lower part. The pushing element is displaced along the rails to plate a portion of the processed products positioned below the rails.08-30-2012
20130075269ACRYLIC ANTICRATER ADDITIVE FOR ELECTROCOATS - The present disclosure is directed to an anticrater additive that is useful for providing a smooth surface to a cured layer of an electrocoating composition on a substrate. The anticrater additive comprises the reaction product of a polyisocyanate with an acrylic polymer having one isocyanate reactive functional group. The acrylic polymer can be an acrylic polymer that is terminated with a chain transfer agent. Also disclosed is an electrocoat composition comprising the anticrater additive and a substrate coated with a cured layer of the electrocoat composition.03-28-2013
20150083603PARTIAL ANODIZING APPARATUS AND ANODIZING METHOD USING THE SAME - An apparatus and a method are disclosed that form an anodic oxide coating on part of the outer surface of a profile having an irregular cross-sectional shape. A partial anodizing apparatus that is used to partially anodize a profile having an irregular cross-sectional shape includes an electrolytic bath that is divided into two or more partial baths. The profile is held using the two or more partial baths so that part of the profile is situated outside the electrolytic bath to form a sealed electrolysis chamber.03-26-2015
20150322583Devices, Systems and Methods for Coating Surfaces - The present disclosure provides devices, systems and methods with applicability in the coating of surfaces, in particular three-dimensional surfaces, via anodization reactions. For example, the disclosed devices, systems and methods find use in the formation of microstructured or nanostructured layers, e.g., metal oxide microstructured or nanostructured layers, via anodization on a variety of devices including, e.g., medical devices. Devices modified with one or more microstructured or nanostructured layers are also provided.11-12-2015
205128000 Simultaneous or sequential coating of a plurality of separate articles 4
20090255821CONTINUOUS PLATING SYSTEM AND METHOD WITH MASK REGISTRATION - A continuous plating system with mask registration is disclosed herein that uses drums and rollers with protruding pins which engage with guide holes in a masking belt and a lead frame. Through engagement with the pins the masking belt is keyed to the lead frame as the lead frame passes through a plating solution tank.10-15-2009
20140102906Selective Plating Apparatus and Method - This invention relates generally to an apparatus and method for electroplating selected portions of a connector part, such as a pin or a socket. The selective plating apparatus of the present invention is capable of continuously depositing plating solution on precisely the right contact surface of the connector part irrespective of its shape and center of gravity. According to the preferred embodiment of the present invention, the selective plating apparatus is capable of plating either side of the connector part, such as a pin or a socket, allowing plating of different type of metals on each side of the machined or stamped parts. The parts are handled automatically with minimum physical stress resulting in more consistent and reliable plating deposits.04-17-2014
20140326607Methods and Apparatus for Forming Multi-Layer Structures Using Adhered Masks - Numerous electrochemical fabrication methods and apparatus are provided for producing multi-layer structures (e.g. having meso-scale or micro-scale features) from a plurality of layers of deposited materials using adhered masks (e.g. formed from liquid photoresist or dry film), where two or more materials may be provided per layer where at least one of the materials is a structural material and one or more of any other materials may be a sacrificial material which will be removed after formation of the structure. Materials may comprise conductive materials that are electrodeposited or deposited in an electroless manner. In some embodiments special care is undertaken to ensure alignment between patterns formed on successive layers.11-06-2014
20160145760PLATING APPARATUS AND PLATING METHOD - A plating apparatus according to the present disclosure includes an anode holder configured to hold an anode; a substrate holder placed opposite the anode holder and configured to hold a substrate; and an anode mask installed on a front face of the anode holder and provided with a first opening adapted to allow passage of an electric current flowing between an anode and the substrate. The diameter of the first opening in the anode mask is configured to be adjustable. When a first substrate is plated, a diameter of the first opening is adjusted to a first diameter. When a second substrate is plated, the diameter of the first opening is adjusted to a second diameter smaller than the first diameter.05-26-2016
205119000 Depositing ferromagnetic coating or coating ferromagnetic substrate 3
20090188805SUPERCONFORMAL ELECTRODEPOSITION OF NICKEL IRON AND COBALT MAGNETIC ALLOYS - A process for electrodepositing at least one ferromagnetic material into a three dimensional pattern within a substrate is provided. The process comprises providing a substrate material, dielectric or conductor, having a three dimensional recessed pattern in at least one outer surface thereof, dielectric substrate materials also having an electrical conductive seed layer at least within the three dimensional pattern. An electrolytic bath is prepared comprising at least one ferromagnetic material and at least one accelerating, inhibiting, or depolarizing additive. The at least one ferromagnetic material comprises at least one metal cation selected from the group consisting of Ni07-30-2009
20140069816NICKEL PLATING SOLUTION AND METHOD FOR FORMING NICKEL PLATING LAYER USING THE SAME - Disclosed herein are a nickel plating solution and a method for forming a nickel layer on an external electrode of a chip component by using the nickel plating solution, the nickel plating solution including: a nickel ion; a chloride ion; and a pH buffer, wherein the pH buffer is used by mixing an inorganic acid, and an organic acid and a salt thereof, so that the damage to a body of the chip component can be reduced by containing organic acid and a salt thereof in the nickel plating solution for forming the nickel plating layer on the external electrode of the chip component having a body formed of a material including ferrite or manganese oxide.03-13-2014
20140251816METHOD FOR MAKING A MAGNET ROTOR ASSEMBLY - A method for making a magnet rotor assembly part by providing a bonded metal part having a determinable crush strength, impregnating the bonded metal part with a curable resin and curing the resin so that the crush strength of the assembly part is increased above the determinable crush strength both initially and after extended exposure to temperatures of at least 160° C. Improved crush strength in the magnet sleeve and in other bonded metal parts, both initially and after exposure to high temperatures is accomplished by impregnating the parts with a curable resin.09-11-2014
Entries
DocumentTitleDate
20080210563Conformable Contact Masking Methods and Apparatus Utilizing In Situ Cathodic Activation of a Substrate - Electroplating processes (e.g. conformable contact mask plating and electrochemical fabrication processes) that include in situ activation of a surface onto which a deposit will be made are described. At least one material to be deposited has an effective deposition voltage that is higher than an open circuit voltage, and wherein a deposition control parameter is capable of being set to such a value that a voltage can be controlled to a value between the effective deposition voltage and the open circuit voltage such that no significant deposition occurs but such that surface activation of at least a portion of the substrate can occur. After making electrical contact between an anode, that comprises the at least one material, and the substrate via a plating solution, applying a voltage or current to activate the surface without any significant deposition occurring, and thereafter without breaking the electrical contact, causing deposition to occur.09-04-2008
20080230390Method for Electrochemical Fabrication - An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.09-25-2008
20080230391Methods for Electrochemically Fabricating Structures Using Adhered Masks, Incorporating Dielectric Sheets, and/or Seed layers That Are Partially Removed Via Planarization - Embodiments of the present invention provide mesoscale or microscale three-dimensional structures (e.g. components, device, and the like). Embodiments relate to one or more of (1) the formation of such structures which incorporate sheets of dielectric material and/or wherein seed layer material used to allow electrodeposition over dielectric material is removed via planarization operations; (2) the formation of such structures wherein masks used for at least some selective patterning operations are obtained through transfer plating of masking material to a surface of a substrate or previously formed layer, and/or (3) the formation of such structures wherein masks used for forming at least portions of some layers are patterned on the build surface directly from data representing the mask configuration, e.g. in some embodiments mask patterning is achieved by selectively dispensing material via a computer controlled inkjet nozzle or array or via a computer controlled extrusion device.09-25-2008
20080230392Non-Conformable Masks and Methods and Apparatus for Forming Three-Dimensional Structures - Electrochemical Fabrication techniques are used to modify substrates or to form multilayer structures (e.g. components or devices) from a plurality of overlaying and adhered layers. Masks are used to selectively etch or deposit material. Some masks may be of the contact type and may be formed of multiple materials some of which may be support materials, some of which may be mating materials for contacting a substrate and some may be intermediate materials. In some embodiments the contact masks may have conformable contact surfaces (i.e. surfaces with sufficient flexibility or deformability that they can substantially conform to surface of the substrate to form a seal with it) or they may have semi-rigid or even rigid surfaces. In embodiments where masks are used for selective deposition operations, etching operations may be performed after deposition to remove flash deposits (thin undesired deposits from areas that were intended to be masked).09-25-2008
20080257741Metal hand tool and method for manufacturing the same - A metal hand tool is fabricated by a method to manufacture the metal hand tool, and the metal hand tool has a body with an outer surface and a preparing region, a printing layer with a mark and an electroplate layer. The method has a forming step, a printing step and an electroplating step. In the preparing step, the body is made of metal. In the printing step, the printing layer is printed on the preparing region in the outer surface of the body and the mark is enchased on the printing layer with an external surface. In the electroplating step, the electroplate layer is electroplated on the external surface of the mark and the outer surface of the body except the preparing region with the printing layer to complete the metal hand tool.10-23-2008
20080272004Method for the production of an aluminum diffusion coating for oxidation protection - For the production of an aluminum diffusion coating for oxidation protection of metallic components, components are masked in areas not to be coated, and unmasked areas are electrically-plated with aluminum in an aprotic solution at low temperature. Upon removal of the masking material, the components are heat-treated according to a certain high-temperature-time graph such that aluminum elements diffuse into the component alloy and alloy elements of the component diffuse into the aluminum coating. The method involves low manufacturing and material costs and guarantees a defined formation of the aluminum diffusion coating on the component portions to be protected.11-06-2008
20090038948Electrochemically Fabricated Structures Having Dielectric or Active Bases and Methods of and Apparatus for Producing Such Structures - Multilayer structures are electrochemically fabricated on a temporary (e.g. conductive) substrate and are thereafter bonded to a permanent (e.g. dielectric, patterned, multi-material, or otherwise functional) substrate and removed from the temporary substrate. In some embodiments, the structures are formed from top layer to bottom layer, such that the bottom layer of the structure becomes adhered to the permanent substrate, while in other embodiments the structures are formed from bottom layer to top layer and then a double substrate swap occurs. The permanent substrate may be a solid that is bonded (e.g. by an adhesive) to the layered structure or it may start out as a flowable material that is solidified adjacent to or partially surrounding a portion of the structure with bonding occurring during solidification. The multilayer structure may be released from a sacrificial material prior to attaching the permanent substrate or it may be released after attachment.02-12-2009
20090045066Electrochemical Fabrication Methods with Enhanced Post Deposition Processing - An electrochemical fabrication process for producing three-dimensional structures from a plurality of adhered layers is provided where each layer comprises at least one structural material (e.g. nickel or nickel alloy) and at least one sacrificial material (e.g. copper) that will be etched away from the structural material after the formation of all layers have been completed. An etchant containing chlorite (e.g. Enthone C-38) is combined with a corrosion inhibitor (e.g. sodium nitrate) to prevent pitting of the structural material during removal of the sacrificial material. A simple process for drying the etched structure without the drying process causing surfaces to stick together includes immersion of the structure in water after etching and then immersion in alcohol and then placing the structure in an oven for drying.02-19-2009
20090045067Apparatus and method for processing a substrate - A method and apparatus are set forth capable of processing a substrate with a high uniformity within the surface area even for a thin feeding layer. The method comprises arranging a counter electrode and the substrate to confront each other; providing a membrane between the counter electrode and the substrate to define a substrate side region and a counter electrode side region. The substrate side region and the counter electrode side region are capable of accommodating respective electrolytes. The substrate side region and the counter electrode side region are supplied with respective electrolytes having different specific resistances. A processing current is also supplied between the substrate and the counter electrode.02-19-2009
20090057156PRODUCTION METHOD FOR WIRING AND VIAS - It is an object of the present invention to alleviate a work for removing an unnecessary metal layer when wiring and vias are formed on a substrate by electroplating.03-05-2009
20090057157EFAB Methods Including Controlled Mask to Substrate Mating - Embodiments include treatment of substrates, formation of structures, and formation of multilayer structures using contact masks where a controlled mating of the contact masks and substrates is used. Some embodiments involve controlled mating at speeds equal to or less than 10 microns/second, more preferably equal to or less than 5 microns/second, and even more preferably equal to or less than 1 micron/second. Some embodiments involve controlled mating that uses a higher speed of approach when further away followed by a slower speed of approach to cause mating. Some embodiments involve controlled mating that uses a higher speed of approach when making preliminary contact, then backing away a desired distance, and then making a mating approach that causes mating while using a slower mating speed.03-05-2009
20090095632Electrochemical Fabrication Method and Apparatus for Producing Three-Dimensional Structures Having Improved Surface Finish - An electrochemical fabrication process produces three-dimensional structures (e.g. components or devices) from a plurality of layers of deposited materials wherein the formation of at least some portions of some layers are produced by operations that remove material or condition selected surfaces of a deposited material. In some embodiments, removal or conditioning operations are varied between layers or between different portions of a layer such that different surface qualities are obtained. In other embodiments varying surface quality may be obtained without varying removal or conditioning operations but instead by relying on differential interaction between removal or conditioning operations and different materials encountered by these operations.04-16-2009
20090101508Method for Electrochemically Realizing a Hydrophilic Area on a Hydrophobic Substrate - The invention relates to a method for producing at least one hydrophilic area on a hydrophobic substrate. The method consists in performing an electrochemical reduction of the surface under the following conditions: 04-23-2009
20090139868Method of Forming Conductive Lines and Similar Features - A print-patterned structure may be used as a self-aligned etch and deposition mask. A method of forming conductive lines and other similar features over a plurality of layers comprises forming a print-patterned structure over a first layer. The print-patterned structure is used as an etch mask to expose a portion of a second layer. A seed layer is formed over the exposed portion of the second layer, using the print-patterned structure as a deposition mask. Conductive lines or other features may be formed, for example, by electroplating using the seed layer as a contact pad and the print-patterned structure as deposition mask. The present invention is particularly useful in the formation of features for solar cells and the like where the print-patterned structure may be used to form high aspect ratio features.06-04-2009
20090139869EFAB Methods and Apparatus Including Spray Metal or Powder Coating Processes - Various embodiments of the invention present techniques for forming structures via a combined electrochemical fabrication process and a thermal spraying process or powder deposition processes. In a first set of embodiments, selective deposition occurs via masking processes (e.g. a contact masking process or adhered mask process) and thermal spraying or powder deposition is used in blanket deposition processes to fill in voids left by selective deposition processes. In a second set of embodiments, after selective deposition of a first material, a second material is blanket deposited to fill in the voids, the two depositions are planarized to a common level and then a portion of the first or second materials is removed (e.g. by etching) and a third material is sprayed into the voids left by the etching operation. In both embodiments the resulting depositions are planarized to a desired layer thickness in preparation for adding additional layers.06-04-2009
20090205967METHOD OF FORMING A MULTILAYER STRUCTURE - Method of forming a multilayer structure by electroetching or electroplating on a substrate. A seed layer is arranged on the substrate and a master electrode is applied thereto. The master electrode has a pattern layer forming multiple electrochemical cells with the substrate. A voltage is applied for etching the seed layer or applying a plating material to the seed layer. A dielectric material (08-20-2009
20090242410METHOD FOR ELECTROCHEMICAL PLATING AND MARKING OF METALS - A method for the electrochemical plating or marking of metals includes providing a metal surface, providing an electroplating solution at the metal surface, and electroplating the metal surface with the electroplating solution. A top layer of the metal surface comprises an oxide scale. The method can also include masking a portion of the metal surface with a masking material. The electroplating solution can be provided at the metal surface by an electroplating brush, the oxide scale of the metal surface can be comprised primarily of magnetite and hematite, and the material comprising the metal surface can be steel.10-01-2009
20090260992Wafer Support Apparatus for Electroplating Process and Method for Using the Same - A multi-layered wafer support apparatus is provided for performing an electroplating process on a semiconductor wafer (“wafer”). The multi-layered wafer support apparatus includes a bottom film layer and a top film layer. The bottom film layer includes a wafer placement area and a sacrificial anode surrounding the wafer placement area. The top film layer is defined to be placed over the bottom film layer. The top film layer includes an open region to be positioned over a surface of the wafer to be processed, i.e., electroplated. The top film layer provides a liquid seal between the top film layer and the wafer, about a periphery of the open region. The top film layer further includes first and second electrical circuits that are each defined to electrically contact a peripheral top surface of the wafer at diametrically opposed locations about the wafer.10-22-2009
20090294292METHOD OF SURFACE PRINTING AND PLATING - A method of surface printing and electric plating, it is to perform pre-plating to form a pre-plated layer firstly on a surface of a metallic or non-metallic article to be plated, thereby the metallic or non-metallic surface will not be oxidized, and to perform printing and then electric plating to make the plated layer higher than the electric printed layer, thus an effect of 3 dimensions can be resulted; and the printing oil ink is protected in the plated layer, thereby it is not subjected to being stripped off by abrasion.12-03-2009
20100038253Method and Apparatus for Maintaining Parallelism of Layers and/or Achieving Desired Thicknesses of Layers During the Electrochemical Fabrication of Structures - Some embodiments of the present invention provide processes and apparatus for electrochemically fabricating multilayer structures (e.g. mesoscale or microscale structures) with improved endpoint detection and parallelism maintenance for materials (e.g. layers) that are planarized during the electrochemical fabrication process. Some methods involve the use of a fixture during planarization that ensures that planarized planes of material are parallel to other deposited planes within a given tolerance. Some methods involve the use of an endpoint detection fixture that ensures precise heights of deposited materials relative to an initial surface of a substrate, relative to a first deposited layer, or relative to some other layer formed during the fabrication process. In some embodiments planarization may occur via lapping while other embodiments may use a diamond fly cutting machine.02-18-2010
20100051467PROCESS FOR SURFACE TREATING ALUMINUM AND ALUMINUM ALLOY ARTICLES - A process for surface treating aluminum and aluminum alloy articles is provided. The method includes the steps of providing a substrate of aluminum or aluminum alloy material, the substrate having an internal surface and an external surface; machining the external surface of substrate, thereby forming a first surface appearance on the external surface; forming a first oxide coating with a first color on the substrate surface by a first anodizing process; removing at least a portion of the first oxide coating on the internal surface of the substrate to make the substrate electricity conductive; machining the external surface of the substrate, thereby removing at least a portion of the first oxide coating on the external surface and forming a second surface appearance thereon; forming a second oxide coating with a second color on the area of the external surface excluding the first oxide coating by a second anodizing process.03-04-2010
20100065432Electrochemical Fabrication Process Including Process Monitoring, Making Corrective Action Decisions, and Taking Appropriate Actions - Electrochemical fabrication processes and apparatus for producing multi-layer structures include operations or means for providing enhanced monitoring of build operations or detection of the results of build operations, operations or means for build problem recognition, operations or means for evaluation of corrective action options, operations or means for making corrective action decisions, and operations or means for executing actions based on those decisions.03-18-2010
20100072072METHOD FOR THE RESTORATION OF A METALLIC COATING - A method for restoration of a metallic coating (03-25-2010
20100133109Electrochemically Fabricated Hermetically Sealed Microstructures and Methods of and Apparatus for Producing Such Structures - In some embodiments, multilayer structures are electrochemically fabricated from at least one structural material (e.g. nickel), at least one sacrificial material (e.g. copper), and at least one sealing material (e.g. solder). In some embodiments, the layered structure is made to have a desired configuration which is at least partially and immediately surrounded by sacrificial material which is in turn surrounded almost entirely by structural material. The surrounding structural material includes openings in the surface through which etchant can attack and remove trapped sacrificial material found within. Sealing material is located near the openings. After removal of the sacrificial material, the box is evacuated or filled with a desired gas or liquid. Thereafter, the sealing material is made to flow, seal the openings, and resolidify. In other embodiments, a post-layer formation lid or other enclosure completing structure is added.06-03-2010
20100155252MEMBRANE STRUCTURE AND METHOD OF MAKING - A membrane structure is provided. The membrane structure includes a first layer having a plurality of interconnected pores; and a second layer disposed on the first layer. The second layer has a plurality of unconnected pores. Each of the unconnected pores is in fluid communication with at least one of the interconnected pores of the first layer. A method of making a membrane structure is provided. The method includes the steps of providing a first layer having a plurality of interconnected pores; and disposing a second layer on the first layer. Disposing a second layer includes depositing a conducting layer on the first layer; and anodizing the conducting layer to convert the conducting layer into a porous layer.06-24-2010
20100193366Method For Electrochemical Fabrication - An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.08-05-2010
20100270165Electrochemical Fabrication Methods Incorporating Dielectric Materials and/or Using Dielectric Substrates - Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.10-28-2010
20100314257Methods of Reducing Interlayer Discontinuities in Electrochemically Fabricated Three-Dimensional Structures - Disclosed methods reduce the discontinuities that between individual layers of a structure that is formed at least in part using electrochemical fabrication techniques. Discontinuities may exist between layers of a structure as a result of up-facing or down-facing regions defined in data descriptive of the structure or they may exist as a result of building limitations, e.g., those that result in non-parallel orientation between a building axis and sidewall surfaces of layers. Methods for reducing discontinuities may be applied to all regions or only to selected regions of the structure. Methods may be tailored to improve the accuracy between an original design of the structure and the structure as fabricated or they may simply be used to smooth the discontinuities between layers. Methods may include deposition operations that selectively favor filling of the discontinuities and/or etching operations that selectively favor removal of material from protrusions that define discontinuities.12-16-2010
20110073479Multi-Step Release Method for Electrochemically Fabricated Structures - Multi-layer structures are electrochemically fabricated from at least one structural material (e.g. nickel), that is configured to define a desired structure and which may be attached to a substrate, and from at least one sacrificial material (e.g. copper) that surrounds the desired structure. After structure formation, the sacrificial material is removed by a multi-stage etching operation. In some embodiments sacrificial material to be removed may be located within passages or the like on a substrate or within an add-on component. The multi-stage etching operations may be separated by intermediate post processing activities, they may be separated by cleaning operations, or barrier material removal operations, or the like. Barriers may be fixed in position by contact with structural material or with a substrate or they may be solely fixed in position by sacrificial material and are thus free to be removed after all retaining sacrificial material is etched.03-31-2011
20110108427SUBSTRATE PACKAGE WITH THROUGH HOLES FOR HIGH SPEED I/O FLEX CABLE - An assembly of substrate packages interconnected with flex cables and a method of fabrication of the substrate package. The assembly allows input/output (I/O) signals to be speedily transmitted between substrate packages via flex cable and without being routed through the motherboard. Embodiments relate to a substrate package providing separable inter-package flex cable connection. Hermetically-sealed guiding through holes are provided on the substrate package as a mechanical alignment feature to guide connection between flex cables and high speed I/O contact pads on the substrate package. Embodiments of the method of fabrication relate to simultaneously forming hermetically-sealed guiding through holes and I/O contact pads.05-12-2011
20110132767Multi-Layer, Multi-Material Fabrication Methods for Producing Micro-Scale and Millimeter-Scale Devices with Enhanced Electrical and/or Mechanical Properties - Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that partially coats the surface of the structure. Other embodiments are directed to electrochemical fabrication methods for producing structures or devices (e.g. microprobes) from a core material and a shell or coating material that completely coats the surface of each layer from which the probe is formed including interlayer regions. Additional embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes) from a core material and a shell or coating material wherein the coating material is located around each layer of the structure without locating the coating material in inter-layer regions. Each of these groups of embodiments incorporate both the core material and the coating material during the formation of each layer and each layer is also formed with a sacrificial material that is removed after formation of all layers of the structure. In some embodiments the core material may be a genuine structural material while in others it may be only a functional structural material (i.e. a material that would be removed with sacrificial material if it were accessible by an etchant during removal of sacrificial material.06-09-2011
20110155580Method of Electrochemically Fabricating Multilayer Structures Having Improved Interlayer Adhesion - Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.06-30-2011
20110180412PLATING METHOD AND PLATING APPARATUS - A plating method can fill a plated metal into interconnect recesses at a higher rate without forming voids in the plated metal embedded in the interconnect recesses. The plating method includes: preparing a substrate having interconnect recesses in a surface; carrying out first pretreatment of the substrate by immersing the substrate in a first pretreatment solution containing an accelerator, a metal ion and an acid; carrying out second pretreatment of the substrate by immersing the substrate in a second pretreatment solution containing an additive which inhibits the effect of the accelerator contained in the first pretreatment solution, and not containing an accelerator; and then carrying out electroplating of the substrate surface by using a plating solution containing at least a metal ion, an acid and a suppressor, and not containing an accelerator, thereby filling the plated metal into the interconnect recesses.07-28-2011
20110259750METHOD OF DIRECT PLATING OF COPPER ON A RUTHENIUM ALLOY - A method is disclosed for depositing a copper seed layer onto a substrate surface. In one embodiment, the method includes providing a substrate having a barrier layer disposed on a substrate surface, wherein the barrier layer has a barrier surface comprising a material selected from the group consisting of cobalt, ruthenium, tungsten, titanium, and a compound of two or more thereof, and exposing the substrate to a non-complexed, acid electrochemical plating solution with a plating bias applied across the substrate surface to deposit a copper-containing seed layer directly on the barrier surface without intervening layer disposed therebetween.10-27-2011
20110315555PLATING METHOD - Disclosed is a plating method including: performing plating on a plating surface of a plating substrate with a cathode electrode contacting an area in an outer circumferential section of the plating substrate where the cathode electrode is to be contacted, the plating substrate being provided with a dummy plating area between the area where the cathode electrode is to be contacted and a product area on the plating surface of the plating substrate, by supplying a plating solution to the plating surface of the plating substrate and applying electric current between the cathode electrode and an anode electrode via the plating solution.12-29-2011
20110315556Methods and Apparatus for Forming Multi-Layer Structures Using Adhered Masks - Numerous electrochemical fabrication methods and apparatus are provided for producing multi-layer structures (e.g. having meso-scale or micro-scale features) from a plurality of layers of deposited materials using adhered masks (e.g. formed from liquid photoresist or dry film), where two or more materials may be provided per layer where at least one of the materials is a structural material and one or more of any other materials may be a sacrificial material which will be removed after formation of the structure. Materials may comprise conductive materials that are electrodeposited or deposited in an electroless manner. In some embodiments special care is undertaken to ensure alignment between patterns formed on successive layers.12-29-2011
20120018310COMPOSITION FOR METAL PLATING COMPRISING SUPPRESSING AGENT FOR VOID FREE SUBMICRON FEATURE FILLING - Composition comprising a source of metal ions and at least one suppressing agent obtainable by reacting a) an amine compound comprising at least three active amino functional groups with b) a mixture of ethylene oxide and at least one compound selected from C3 and C4 alkylene oxides.01-26-2012
20120118750COMPOSITION FOR METAL PLATING COMPRISING SUPPRESSING AGENT FOR VOID FREE SUBMICRON FEATURE FILLING - A composition comprising at least one source of metal ions and at least one additive obtainable by reacting a poly-hydric alcohol comprising at least 5 hydroxyl functional groups with at least a first alkylene oxide and a second alkylene oxide from a mixture of the first alkylene oxide and the second alkylene oxide or a third alkylene oxide, a second alkylene oxide, and a first alkylene oxide in aforesaid sequence, the third alkylene oxide having a longer alkyl chain than the second alkylene oxide and the second alkylene oxide having a longer alkyl chain than the first alkylene oxide.05-17-2012
20120152752SEED LAYER DEPOSITION IN MICROSCALE FEATURES - A method of forming a metal feature on a workpiece with deposition is provided. The method includes providing an under bump metal layer for solder of an electronic device on the workpiece, depositing a substantially pure tin layer directly to the under bump metal layer, and depositing a tin silver alloy layer onto the substantially pure tin layer.06-21-2012
20120186984STENCIL WITH PATTERN AND METHOD FOR FORMING PATTERN ON WORKPIECE - A stencil with pattern includes a porous material and a masking pattern layer disposed on the porous material. The masking pattern layer includes a patterned mask area covering a portion of the porous material. When electroplating or etching is performed, the stencil with pattern is laminated with a workpiece so that the patterned mask area covers a portion of a working surface of the workpiece, and is placed into an electroplating tank or etch tank. The portion of the working surface not covered by the patterned mask area undergoes electroplating or etching reaction, resulting in electroplated or etched pattern on the workpiece. There may also be a screen structure interposed between the porous material and the masking pattern layer. The method of forming a pattern on a workpiece using the stencil with pattern has advantages of simplified process, significant time-to-product reduction, and product yield enhancement.07-26-2012
20120193238Compositions For Plating Copper And Methods Of Forming A Copper Bump Using The Same - A composition for plating copper includes an electrolyte solution, an accelerator, a suppressor and a leveler. The electrolyte solution includes a soluble copper salt, sulfuric acid and hydrochloric acid. The accelerator includes about 20 to about 60 ppm of a disulfide compound. The suppressor includes about 40 to about 100 ppm of a polyethyleneoxide (PEO)-polypropyleneoxide (PPO)-polyethyleneoxide (PEO) triblock copolymer. The PEO-PPO-PEO triblock copolymer has a weight average molecular weight of about 300 to about 10,000. The leveler includes about 0.01 to about 100 ppm of arylated polyethyleneimine.08-02-2012
20120211369COPPER ELECTROPLATING METHOD - A copper electroplating method including dipping a substrate in a copper electroplating solution, the substrate including a seed layer; and forming a copper electroplating layer on the seed layer, wherein the copper electroplating solution includes water, a copper supply source, an electrolytic material, and a first additive, the first additive includes a compound represented by Formula 1, below:08-23-2012
20120228143Method for Electrochemical Fabrication - An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.09-13-2012
20120234688Method for Electrochemical Fabrication - An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.09-20-2012
20120261267Methods of and Apparatus for Electrochemically Fabricating Structures Via Interlaced Layers or Via Selective Etching and Filling of Voids - Multi-layer structures are electrochemically fabricated by depositing a first material, selectively etching the first material (e.g. via a mask), depositing a second material to fill in the voids created by the etching, and then planarizing the depositions so as to bound the layer being created and thereafter adding additional layers to previously formed layers. The first and second depositions may be of the blanket or selective type. The repetition of the formation process for forming successive layers may be repeated with or without variations (e.g. variations in: patterns; numbers or existence of or parameters associated with depositions, etchings, and or planarization operations; the order of operations, or the materials deposited). Other embodiments form multi-layer structures using operations that interlace material deposited in association with some layers with material deposited in association with other layers.10-18-2012
20120292193COMPOSITION FOR METAL ELECTROPLATING COMPRISING LEVELING AGENT - A composition comprising a source of metal ions and at least one additive comprising at least one polyaminoamide represented by formula (I) or derivatives of a polyaminoamide of formula (I) obtainable by complete or partial protonation, N-quarternisation or acylation.11-22-2012
20120292194ELECTROLYTIC PROCESS USING CATION PERMEABLE BARRIER - Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and an anode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, an anode, a second processing fluid, and a cation permeable barrier layer. The cation permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain cationic species to transfer between the two fluids. The described processes produce deposits over repeated plating cycles that exhibit deposit properties (e.g., resistivity) within desired ranges.11-22-2012
20130001090POLYMER FILM BIOELECTRODES AND METHODS OF MAKING AND USING THE SAME - Bioelectrodes, methods of making bioelectrodes and methods of using bioelectrodes are provided. The bioelectrodes have an electrically-conductive substrate coated with an electroconductive polymer. The bioelectrode exhibits ohmic behavior over a range of about 1 Hz to about 100 KHz, where ohmic behavior means that the value of the impedance is independent of the signal frequency over the range of interest. The bioelectrode can transmit or receive an electrical signal between the electrically conductive substrate and the biological component through the conductive polymer.01-03-2013
20130015075PLATING APPARATUS AND PLATING METHOD - A plating apparatus has an ashing unit (01-17-2013
20130062213METHOD OF MANUFACTURING AN ELECTROCHROMIC ARTICLE - The present invention relates to a process for manufacturing an electrochromic article comprising the following successive steps: (a) the deposition of a layer of an electrochromic compound on the surface of a transparent or translucent electrically conductive substrate, said layer of electrochromic compound covering only one portion of the surface of said electrically conductive substrate and leaving free at least one other portion thereof, (b) the deposition of a redox agent which is a reducing agent or an oxidizing agent for the electrochromic compound, on the portion of the surface of the electrically conductive substrate not covered by the layer of electrochromic compound, (c) the contacting of the layer of electrochromic compound, deposited in step (a), and of the layer of redox agent, deposited in step (b), with a liquid electrolyte for a sufficient time to enable the reduction or the oxidation of the electrochromic compound by the redox agent, and (d) the removal of the electrolyte by rinsing and/or drying.03-14-2013
20130068626COMPOSITION FOR METAL ELECTROPLATING COMPRISING LEVELING AGENT - A composition comprising a source of metal ions and at least one leveling agent comprising a linear or branched, polymeric imidazolium compound comprising the structural unit of formula L1 (L1) wherein R03-21-2013
20130233719MASKING PROCESS - Methods and systems for masking interior surfaces of a part from exposure to a subsequent process. In some embodiments the interior surfaces are threaded. Methods include forming a plugged insert by overmolding a masking plug material into an opening in the insert, the plug being substantially impervious to exposure to a subsequent process. The plugged insert can then be assembled in the part and the part is exposed to the process. Processes can include anodizing, cleaning, machining and laser etch processes. After the process is complete, the plug is removed from the insert, leaving the insert in the part without the plug. The described embodiments describe methods for optimizing masking methods in a production setting. More specifically, embodiments describe methods for automatic insertion and removal of plugs in a part before and after exposure of the part to a process such as anodization.09-12-2013
20130240366PLATED TERMINATIONS - Improved termination features for multilayer electronic components are disclosed. Monolithic components are provided with plated terminations whereby the need for typical thick-film termination stripes is eliminated or greatly simplified. Such termination technology eliminates many typical termination problems and enables a higher number of terminations with finer pitch, which may be especially beneficial on smaller electronic components. The subject plated terminations are guided and anchored by exposed internal electrode tabs and additional anchor tab portions which may optionally extend to the cover layers of a multilayer component. Such anchor tabs may be positioned internally or externally relative to a chip structure to nucleate additional metallized plating material. External anchor tabs positioned on top and bottom sides of a monolithic structure can facilitate the formation of wrap-around plated terminations.09-19-2013
20130264213COMPOSITION FOR METAL ELECTROPLATING COMPRISING LEVELING AGENT - Disclosed is a composition comprising a source of metal ions, one or more suppressing agents and at least one additive comprising a linear or branched, polymeric biguanide compound comprising the structural unit of formula L1 or the corresponding salt thereof, wherein R10-10-2013
20140001051Method of Electroplating and Depositing Metal01-02-2014
20140042032ELECTROPLATING METHOD AND ELECTROPLATING APPARATUS FOR THROUGH-HOLE - There is provided an electroplating method for a through-hole. The method includes: a first plating process, a second plating process, and a third plating process. The first plating process is a plating process of forming a metal film with a uniform thickness in the through-hole to reduce a diameter of the through-hole, the second plating process is a plating process of blocking up a central portion of the through-hole with the metal film using a PR pulsed current, and the third plating process is a plating process of completely filling the through-hole with the metal film using the plating current whose value is equal to or larger than a forward-current value of the PR pulsed current used in the second plating process.02-13-2014
20140054176PATTERN FORMING DEVICE AND PATTERN FORMING METHOD - A pattern forming device includes a plurality of tanks, and a power supply device. Each of the tanks has an open end having the same shape as a profile shape of a corresponding one of regions of a surface of a workpiece, in which different types of films are to be formed, and stores a corresponding one of electrodeposition solutions used to form the different types of films in a state where the open end is in contact with the surface. The power supply device applies a predetermined voltage to between the workpiece that serves as a first electrode, and each one of second electrodes in the tanks.02-27-2014
20140054177TRANSPARENT PLASTIC FILM THAT CAN BE ELECTROPLATED FOR PARTIAL ELECTROPLATING - The present invention relates to an electroplatable plastics film having a light transmission greater than 50%, particularly preferably greater than 80%, for the production of metallised components, in particular partially metallised components.02-27-2014
20140076731COMPOUND PARTS - A method for manufacturing a compound part comprises preparing a cavity in a receiving part, selecting a resin for application in the receiving part, applying the resin into the cavity, curing the applied resin, and simultaneously finishing the receiving part and the cured resin.03-20-2014
20140124375CATIONIC ELECTRODEPOSITION PAINT COMPOSITION PAINTABLE EVEN ON NARROW-CLEARANCE PORTION, AND ELECTRODEPOSITION COATING FILM USING THE SAME - An object of the present invention is to provide an electrodeposition paint composition and a method of forming an electrodeposited coating, which exhibit quality of coating deposition even in the interior of narrow spaces of objects subjected to painting. A solution of the object is cationic electrodeposition paint composition in which in an aqueous medium contained are a cationic epoxy resin, a blocked isocyanate curing agent, a hydrophobic agent wherein an SP value of the hydrophobic agent (C) is 10.2 or more and less than 10.6 and is lower by 0.6 to 1.0 than an SP value of the cationic epoxy resin, a viscosity modifier, and a neutralizing acid, and in which coulombic efficiency of the cationic electrodeposition paint composition is 2.0 to 2.5 mg/(μm·C). A voltage boost rate of the voltage in painting is 30 to 70V/10 seconds.05-08-2014
20140209473Electrochemical Fabrication Methods Incorporating Dielectric Materials and/or Using Dielectric Substrates - Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations. Other embodiments are directed to the electrochemical fabrication of multilayer mesoscale or microscale structures which are formed using at least one conductive structural material, at least one conductive sacrificial material, and at least one dielectric material. In some embodiments the dielectric material is a UV-curable photopolymer.07-31-2014
20140216941Method of Electrochemically Fabricating Multilayer Structures Having Improved Interlayer Adhesion - Multi-layer microscale or mesoscale structures are fabricated with adhered layers (e.g. layers that are bonded together upon deposition of successive layers to previous layers) and are then subjected to a heat treatment operation that enhances the interlayer adhesion significantly. The heat treatment operation is believed to result in diffusion of material across the layer boundaries and associated enhancement in adhesion (i.e. diffusion bonding). Interlayer adhesion and maybe intra-layer cohesion may be enhanced by heat treating in the presence of a reducing atmosphere that may help remove weaker oxides from surfaces or even from internal portions of layers.08-07-2014
20140262799METHOD OF FILLING THROUGH-HOLES - The methods inhibit or reduce dimpling and voids during copper electroplating of through-holes with flash copper layers in substrates such as printed circuit boards. An acid solution containing reaction products of aromatic heterocyclic nitrogen compounds and epoxy-containing compounds is applied to the through-holes of the substrate followed by filling the through-holes with copper using a copper electroplating bath which includes additives such as brighteners and levelers.09-18-2014
20140262800Electroplating Chemical Leveler - Presented herein is a method of processing a device, comprising providing an electroplating bath having a leveler, the leveler having a total nitrogen-to-total carbon (TN/TOC) ratio of about 15% or less, bringing a substrate into contact with the electroplating bath, the substrate having a recess formed therein and electroplating the substrate to create a feature substantially free of voids in the substrate recess. Electroplating the substrate is performed for a time period about as long as an electrical response peak of the leveler, and optionally for at least 30 seconds. The leveler may optionally have at least one ingredient free of nitrogen and having a leveling functionality. One ingredient may be a benzene ring free of nitrogen. The leveler TN/TOC ratio is between about 3% and about 15%.09-18-2014
20140374268METHOD FOR FORMING A COMPOSITE FILM - According to embodiments of the present invention, a method for forming a composite film is provided. The method includes providing a nanowire forming template, forming a plurality of nanowires through the nanowire forming template, removing material from a partial portion of the nanowire forming template to expose a portion of the plurality of nanowires, and forming a polymeric film between the plurality of nanowires to form a composite film.12-25-2014
20150083600ELECTROLYTIC COPPER PROCESS USING ANION PERMEABLE BARRIER - Processes and systems for electrolytically processing a microfeature workpiece with a first processing fluid and a counter electrode are described. Microfeature workpieces are electrolytically processed using a first processing fluid, a counter electrode, a second processing fluid, and an anion permeable barrier layer. The anion permeable barrier layer separates the first processing fluid from the second processing fluid while allowing certain anionic species to transfer between the two fluids.03-26-2015
20150299883COPPER PLATING BATH COMPOSITION - The present invention relates to aqueous acidic plating baths for copper and copper alloy deposition in the manufacture of printed circuit boards, IC substrates, semiconducting and glass devices for electronic applications. The plating bath according to the present invention comprises copper ions, at least one acid and an ureylene polymer comprising amino residues on both termini and which is free of organically bound halogen. The plating bath is particularly useful for filling recessed structures with copper and build-up of pillar bump structures.10-22-2015
20150345043Method for Electrodeposition of an Electrode on a Dielectric Substrate - A method for the electrodeposition of an electrode including a metallic electrode material (12-03-2015
20150368820Electrochemical Fabrication Process for Forming Multilayer Multimaterial Microprobe Structures - Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.12-24-2015
20160160378SURFACE TREATMENT METHOD AND SURFACE TREATMENT DEVICE - A surface treatment method includes: roughening a surface region of a substrate corresponding to a through hole provided to a masking plate by supplying a solvent to a solid electrolyte film from a second surface of a masking plate through the through hole, in a state where: a first surface of the solid electrolyte film is arranged directly on the surface of the substrate; and a first surface of the masking plate is arranged directly on a second surface of the solid electrolyte film, wherein the supplied solvent penetrates the solid electrolyte film, and dissolves the surface of the substrate.06-09-2016
20160177022CROSSLINKING COMPONENTS FOR ELECTROCOAT COMPOSITIONS, ELECTROCOAT COMPOSITIONS, AND PROCESSES FOR FORMING A LAYER OF AN ELECTROCOAT COMPOSITION ON A SURFACE OF A SUBSTRATE06-23-2016
20160186354METAL-FILM FORMING APPARATUS AND METAL-FILM FORMING METHOD - A metal-film forming apparatus includes: an anode; a resin substrate having a surface on which a conductor pattern layer that serves as a cathode is formed; a solid electrolyte membrane that contains metal ions and is between the anode and the resin substrate, the solid electrolyte membrane contacting a surface of the conductor pattern layer when a metal film is formed; a power supply; and a conductive member that is arranged contacting the conductor pattern layer when the metal film is formed, such that a negative electrode of the power supply is electrically connected to the conductor pattern layer, the conductive member being detachable from the conductor pattern layer, wherein the metal ions are reduced to deposit metal that forms the metal film on the surface of the conductor pattern layer when the voltage is applied.06-30-2016

Patent applications in class Coating selected area

Patent applications in all subclasses Coating selected area

Website © 2025 Advameg, Inc.