Class / Patent application number | Description | Number of patent applications / Date published |
205135000 | Utilizing specified mask material | 10 |
20080283405 | Method for Producing Patterned Structures by Printing a Surfactant Resist on a Substrate for Electrodeposition - Methods for electrodeposition of conductive material on a conductive substrate that contains a pattern of a chemisorbed surfactant formed by a stamp having a patterned surface which is pressed onto the surface of the substrate for printing the substrate. Electrodeposition occurs by immersing the patterned substrate in a plating bath upon application of deposition potential or current to the conductive substrate. In embodiment, the chemisorbed surfactant on the surface of the substrate acts as a positive resist so that electrodeposition occurs on regions of the substrate not covered with surfactant. In another embodiment, electrodeposition occurs preferentially in regions of the substrate covered with the chemisorbed surfactant. | 11-20-2008 |
20090050487 | Direct Nanoscale Patterning of Metals Using Polymer Electrolytes - Disclosed herein are electrochemical fabrication platforms for making structures, arrays of structures and functional devices having selected nanosized and/or microsized physical dimensions, shapes and spatial orientations. Methods, systems and system components use an electrochemical stamping tool such as solid state polymeric electrolytes for generating patterns of relief and/or recessed features exhibiting excellent reproducibility, pattern fidelity and resolution on surfaces of solid state ionic conductors and in metal. Electrochemical stamping tools are capable high throughput patterning of large substrate areas, are compatible with commercially attractive manufacturing pathways to access a range of functional systems and devices including nano- and micro-electromechanical systems, sensors, energy storage devices, metal masks for printing, interconnects, and integrated electronic circuits. | 02-26-2009 |
20090145767 | Method for Electrochemically Fabricating Three-Dimensional Structures Including Pseudo-Rasterization of Data - Some embodiments of the invention are directed to techniques for electrochemically fabricating multi-layer three-dimensional structures where selective patterning of at least one or more layers occurs via a mask which is formed using data representing cross-sections of the three-dimensional structure which has been modified to place it in a polygonal form which defines only regions of positive area. The regions of positive area are regions where structural material is to be located or regions where structural material is not to be located depending on whether the mask will be used, for example, in selectively depositing a structural material or a sacrificial material. The modified data may take the form of adjacent or slightly overlapped relative narrow rectangular structures where the width of the structures is related to a desired formation resolution. The spacing between centers of adjacent rectangles may be uniform or may be a variable. The data modification may also include the formation of duplicate copies of an original structure, scaled copies, mirrored copies, rotated copies, complementary copies, and the like. | 06-11-2009 |
20120217165 | Metal deposition using seed layers - Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material. | 08-30-2012 |
20120222960 | Methods of Forming Three-Dimensional Structures Having Reduced Stress and/or Curvature - Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion. | 09-06-2012 |
20130313122 | Method For Fabricating Conductive Structures of Substrate - A method for fabricating a conductive structure of a substrate includes the steps of: providing an insulating substrate having opposite first and second surfaces and forming an insulating adhesive film on the second surface of the insulating substrate; forming at least a through hole penetrating the insulating substrate and the insulating adhesive film and forming a conductive foil on the insulating adhesive film so as to cover the through hole; and forming a shielding material on the conductive foil and the second surface of the insulating substrate and performing an electrochemical deposition process through the conductive foil so as to fill the through hole with a conductive material along a direction towards the first surface of the insulating substrate, thereby preventing the formation of voids in the through hole and hence reducing the overall resistance and preventing a blister effect from occurring. | 11-28-2013 |
20140014522 | PHOTORESIST-FREE METAL DEPOSITION - Selectively accelerated or selectively inhibited metal deposition is performed to form metal structures of an electronic device. A desired pattern of an accelerator or of an inhibitor is applied to the substrate; for example, by stamping the substrate with a patterned stamp or spraying a solution using an inkjet printer. In other embodiments, a global layer of accelerator or inhibitor is applied to a substrate and selectively modified in a desired pattern. Thereafter, selective metal deposition is performed. | 01-16-2014 |
20140174941 | DEPOSITING NANO-DOTS ON A SUBSTRATE - A method of depositing nano-dots on a substrate includes forming a template on the base, the template defining nano-pores, at least partially filling the nano-pores with a pillar material to define nano-pillars, depositing a dot material on the nano-pillars to define nano-dots on the nano-pillars, and contact printing the substrate with the array of nano-dots. | 06-26-2014 |
20140183050 | TIN OR TIN ALLOY PLATING LIQUID - Tin or tin alloy plating liquid with a sufficient plated deposit can be formed in the opening without causing burns on the plated film surface or abnormal deposits, and which has a good via filling effect. When a specific α,β-unsaturated carbonyl compound is added into the tin or tin alloy plating liquid, the plating liquid with good via filling performance can be obtained, and the deposit which is substantially free of voids and burns or abnormal deposits on the deposit surface are reduced. | 07-03-2014 |
20140238865 | Methods of Forming Three-Dimensional Structures Having Reduced Stress and/or Curvature - Electrochemical fabrication processes and apparatus for producing single layer or multi-layer structures where each layer includes the deposition of at least two materials and wherein the formation of at least some layers includes operations for reducing stress and/or curvature distortion when the structure is released from a sacrificial material which surrounded it during formation and possibly when released from a substrate on which it was formed. Six primary groups of embodiments are presented which are divide into eleven primary embodiments. Some embodiments attempt to remove stress to minimize distortion while others attempt to balance stress to minimize distortion. | 08-28-2014 |