Patent application title: Recombinant microorganisms and uses therefor
Inventors:
Wendy Yiting Chen (Auckland, NZ)
Fungmin Liew (Auckland, NZ)
Fungmin Liew (Auckland, NZ)
Michael Koepke (Auckland, NZ)
Michael Koepke (Auckland, NZ)
Assignees:
Lanzatech New Zealand Limited
IPC8 Class: AC12N1574FI
USPC Class:
4352523
Class name: Micro-organism, per se (e.g., protozoa, etc.); compositions thereof; proces of propagating, maintaining or preserving micro-organisms or compositions thereof; process of preparing or isolating a composition containing a micro-organism; culture media therefor bacteria or actinomycetales; media therefor transformants (e.g., recombinant dna or vector or foreign or exogenous gene containing, fused bacteria, etc.)
Publication date: 2013-12-05
Patent application number: 20130323820
Abstract:
Terpenes are valuable commercial products used in a diverse number of
industries. Terpenes may be produced from petrochemical sources and from
terpene feed-stocks, such as turpentine. However, these production
methods are expensive, unsustainable and often cause environmental
problems including contributing to climate change. Microbial fermentation
provides an alternative option for the production of terpenes. One or
more terpenes and/or precursors can be produced by microbial fermentation
of a substrate comprising CO. Recombinant microorganisms may be used in
such methods. Carboxydotrophic, acetogenic, recombinant microorganisms
can be used in such methods. The recombinant microorgnsims may contain
exogenous mevalonate (MVA) pathway enzymes and/or DXS pathway enzymes,
for example.Claims:
1. Isolated, genetically engineered, carboxydotrophic, acetogenic
bacteria which comprise an exogenous nucleic acid encoding an enzyme in a
mevalonate pathway or in a DXS pathway or in a terpene biosynthesis
pathway, whereby the bacteria express the enzyme, said enzyme selected
from the group consisting of: a) thiolase (EC 2.3.1.9); b) HMG-CoA
synthase (EC 2.3.3.10); c) HMG-CoA reductase (EC 1.1.1.88); d) Mevalonate
kinase (EC 2.7.1.36); e) Phosphomevalonate kinase (EC 2.7.4.2); f)
Mevalonate Diphosphate decarboxylase (EC 4.1.1.33);
1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7); g)
1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267); h)
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD
(EC:2.7.7.60); i) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE
(EC:2.7.1.148); j) 2-C-methyl-D-erythritol 2;4-cyclodiphosphate synthase
IspF (EC:4.6.1.12); k) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate
synthase IspG (EC:1.17.7.1); l) 4-hydroxy-3-methylbut-2-enyl diphosphate
reductase (EC:1.17.1.2); geranyltranstransferase Fps (EC:2.5.1.10); m)
heptaprenyl diphosphate synthase (EC:2.5.1.10); n) octaprenyl-diphosphate
synthase (EC:2.5.1.90); o) isoprene synthase (EC 4.2.3.27); p)
isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2); and q) farnesene
synthase (EC 4.2.3.46/EC 4.2.3.47).
2. The bacteria of claim 1 wherein in the absence of said nucleic acid, the bacteria do not express the enzyme.
3. The bacteria of claim 1 which express the enzyme under anaerobic conditions.
4. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 1 where the bacteria express the isoprene synthase enzyme and the bacteria are able to convert dimethylallyldiphosphate to isoprene.
5. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 4 wherein the isoprene synthase is a Populus tremuloides enzyme.
6. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 4 wherein the nucleic acid is codon optimized.
7. The isolated, genetically engineered, carboxydrotrophic, acetogenic bacteria of claim 4 wherein expression of the isoprene synthase is under the transcriptional control of a promoter for a pyruvate: ferredoxin oxidoreductase gene from Clostridium autoethanogenum.
8. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 1 where the bacteria express the isopentyldiphosphate delta isomerase enzyme and the bacteria are able to convert dimethylallyldiphosphate to isopentyldiphosphate.
9. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 8 wherein the nucleic acid encodes a Clostridium beijerinckii isopentyldiphosphate delta isomerase.
10. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 8 wherein the nucleic acid is under the transcriptional control of a promoter for a pyruvate: ferredoxin oxidoreductase gene from Clostridium autoethanogenum.
11. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 8 wherein the nucleic acid is under the transcriptional control of a promoter for a pyruvate: ferredoxin oxidoreductase gene from Clostridium autoethanogenum and downstream of a second nucleic acid encoding an isoprene synthase.
12. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 1 where the bacteria has a copy number of greater than 1 per genome of a nucleic acid encoding a1-deoxy-D-xylulose 5-phosphate synthase (DXS) enzyme.
13. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 12 further comprising a nucleic acid encoding an isoprene synthase.
14. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 12 further comprising a nucleic acid encoding an isopentyldiphosphate delta isomerase.
15. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 12 further comprising a nucleic acid encoding an isopentyldiphosphate delta isomerase and a nucleic acid encoding an isoprene synthase.
16. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 1 where the bacteria encodes a phosphomevalonate kinase (PMK enzyme, wherein the enzyme is not native to the bacteria.
17. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 16 wherein the enzymes are Staphylococcus aureus enzymes.
18. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 16 wherein the enzyme is expressed under the control of one or more C. autoethanogenum promoters.
19. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 16 further comprising a nucleic acid encoding thiolase (thlA/vraB), a nucleic acid encoding a HMG-CoA synthase (HMGS), and a nucleic acid encoding an HMG-CoA reductase (HMGR).
20. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 19 wherein the thiolase is Clostridium acetobutylicum thiolase.
21. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 16 further comprising a nucleic acid encoding a mevalonate disphosphate decarboxylase (PMD).
22. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 1 where the bacteria encodes alpha-farnesene synthase.
23. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 22 wherein the nucleic acid is codon optimized for expression in C. autoethanogenum.
24. The bacteria of claim 22 wherein the alpha-farnesene synthase is a Malus×domestica alpha-farnesene synthase.
25. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 22 further comprising a nucleic acid segment encoding geranyltranstransferase.
26. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 25 wherein the gernayltranstransferase is an E. coli geranyltranstransferase.
27. The isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of claim 1, which is selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium carboxidivorans, Clostridium drakei, Clostridium scatologenes, Clostridium aceticum, Clostridium formicoaceticum, Clostridium magnum, Butyribacterium methylotrophicum, Acetobacterium woodii, Alkalibaculum bacchii, Blautia producta, Eubacterium limosum, Moorella thermoacetica, Moorella thermautotrophica, Sporomusa ovata, Sporomusa silvacetica, Sporomusa sphaeroides, Oxobacter pfennigii, and Thermoanaerobacter kiuvi.
28. A plasmid which can replicate in a carboxydotrophic, acetogenic bacteria which comprises a nucleic acid encoding an enzyme in a mevalonate pathway or in a DXS pathway or in a terpene biosynthesis pathway, whereby when the plasmid is in said bacteria the enzyme is expressed by said bacteria, said enzyme selected from the group consisting of: thiolase (EC 2.3.1.9); a) HMG-CoA synthase (EC 2.3.3.10); b) HMG-CoA reductase (EC 1.1.1.88); c) Mevalonate kinase (EC 2.7.1.36); d) Phosphomevalonate kinase (EC 2.7.4.2); e) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33); 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7); f) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267); g) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60); h) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148); i) 2-C-methyl-D-erythritol 2;4-cyclodiphosphate synthase IspF (EC:4.6.1.12); j) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1); k) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2); geranyltranstransferase Fps (EC:2.5.1.10); l) heptaprenyl diphosphate synthase (EC:2.5.1.10); m) octaprenyl-diphosphate synthase (EC:2.5.1.90); n) isoprene synthase (EC 4.2.3.27); o) isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2); and p) farnesene synthase (EC 4.2.3.46/EC 4.2.3.47).
Description:
FIELD OF THE INVENTION
[0001] The present invention relates to recombinant microorganisms and methods for the production of terpenes and/or precursors thereof by microbial fermentation of a substrate comprising CO.
BACKGROUND OF THE INVENTION
[0002] Terpenes are a diverse class of naturally occurring chemicals composed of five-carbon isoprene units. Terpene derivatives include terpenoids (also known as isoprenoids) which may be formed by oxidation or rearrangement of the carbon backbone or a number of functional group additions or rearrangements.
[0003] Examples of terpenes include: isoprene (C5 hemiterpene), farnesene (C15 Sesquiterpenes), artemisinin (C15 Sesquiterpenes), citral (C10 Monoterpenes), carotenoids (C40 Tetraterpenes), menthol (C10 Monoterpenes), Camphor (C10 Monoterpenes), and cannabinoids.
[0004] Terpenes are valuable commercial products used in a diverse number of industries. The highest tonnage uses of terpenes are as resins, solvents, fragrances and vitamins. For example, isoprene is used in the production of synthetic rubber (cis-1,4-polyisoprene) for example in the tyre industry; farnesene is used as an energy dense drop-in fuel used for transportation or as jet-fuel; artemisinin is used as a malaria drug; and citral, carotenoids, menthol, camphor, and cannabinoids are used in the manufacture of pharmaceuticals, butadiene, and as aromatic ingredients.
[0005] Terpenes may be produced from petrochemical sources and from terpene feed-stocks, such as turpentine. For example, isoprene is produced petrochemically as a by-product of naphtha or oil cracking in the production of ethylene. Many terpenes are also extracted in relatively small quantities from natural sources. However, these production methods are expensive, unsustainable and often cause environmental problems including contributing to climate change.
[0006] Due to the extremely flammable nature of isoprene, known methods of production require extensive safeguards to limit potential for fire and explosions.
[0007] It is an object of the invention to overcome one or more of the disadvantages of the prior art, or at least to provide the public with an alternative means for producing terpenes and other related products.
SUMMARY OF INVENTION
[0008] Microbial fermentation provides an alternative option for the production of terpenes. Terpenes are ubiquitous in nature, for example they are involved in bacterial cell wall biosynthesis, and they are produced by some trees (for example poplar) to protect leaves from UV light exposure. However, not all bacteria comprise the necessary cellular machinery to produce terpenes and/or their precursors as metabolic products. For example, carboxydotrophic acetogens, such as C. autoethanogenum or C. ljungdahlii, which are able to ferment substrates comprising carbon monoxide to produce products such as ethanol, are not known to produce and emit any terpenes and/or their precursors as metabolic products. In addition, most bacteria are not known to produce any terpenes which are of commercial value.
[0009] The invention generally provides, inter alia, methods for the production of one or more terpenes and/or precursors thereof by microbial fermentation of a substrate comprising CO, and recombinant microorganisms of use in such methods.
[0010] In a first aspect, the invention provides a carboxydotrophic acetogenic recombinant microorganism capable of producing one or more terpenes and/or precursors thereof and optionally one or more other products by fermentation of a substrate comprising CO.
[0011] In one particular embodiment, the microorganism is adapted to express one or more enzymes in the mevalonate (MVA) pathway not present in a parental microorganism from which the recombinant microorganism is derived (may be referred to herein as an exogenous enzyme). In another embodiment, the microorganism is adapted to over-express one or more enzymes in the mevalonate (MVA) pathway which are present in a parental microorganism from which the recombinant microorganism is derived (may be referred to herein as an endogenous enzyme).
[0012] In a further embodiment, the microorganism is adapted to:
a) express one or more exogenous enzymes in the mevalonate (MVA) pathway and/or overexpress one or more endogenous enzyme in the mevalonate (MVA) pathway; and b) express one or more exogenous enzymes in the DXS pathway and/or overexpress one or more endogenous enzymes in the DXS pathway.
[0013] In one embodiment, the one or more enzymes from the mevalonate (MVA) pathway is selected from the group consisting of:
a) thiolase (EC 2.3.1.9), b) HMG-CoA synthase (EC 2.3.3.10), c) HMG-CoA reductase (EC 1.1.1.88), d) Mevalonate kinase (EC 2.7.1.36), e) Phosphomevalonate kinase (EC 2.7.4.2), f) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33), and g) a functionally equivalent variant of any one thereof.
[0014] In a further embodiment, the one or more enzymes from the DXS pathway is selected from the group consisting of:
[0015] a) 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7),
[0016] b) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267),
[0017] c) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60),
[0018] d) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148),
[0019] e) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (EC:4.6.1.12),
[0020] f) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1),
[0021] g) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2), and
[0022] h) a functionally equivalent variant of any one thereof.
[0023] In a further embodiment, one or more further exogenous or endogenous enzymes are expressed or over-expressed to result in the production of a terpene compound or a precursor thereof wherein the exogenous enzyme that is expressed, or the endogenous enzyme that is overexpressed, is selected from the group consisting of:
a) geranyltranstransferase Fps (EC:2.5.1.10), b) heptaprenyl diphosphate synthase (EC:2.5.1.10), c) octaprenyl-diphosphate synthase (EC:2.5.1.90), d) isoprene synthase (EC 4.2.3.27), e) isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2), f) farnesene synthase (EC 4.2.3.46/EC 4.2.3.47), and g) a functionally equivalent variant of any one thereof.
[0024] In one embodiment, the parental microorganism is capable of fermenting a substrate comprising CO to produce Acetyl CoA, but not of converting Acetyl CoA to mevalonic acid or isopentenyl pyrophosphate (IPP) and the recombinant microorganism is adapted to express one or more enzymes involved in the mevalonate pathway.
[0025] In one embodiment, the one or more terpene and/or precursor thereof is chosen from mevalonic acid, IPP, dimethylallyl pyrophosphate (DMAPP), isoprene, geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP) and farnesene.
[0026] In one embodiment, the microorganism comprises one or more exogenous nucleic acids adapted to increase expression of one or more endogenous nucleic acids and which one or more endogenous nucleic acids encode one or more of the enzymes referred to herein before.
[0027] In one embodiment, the one or more exogenous nucleic acids adapted to increase expression is a regulatory element. In one embodiment, the regulatory element is a promoter.
[0028] In one embodiment, the promoter is a constitutive promoter. In one embodiment, the promoter is selected from the group comprising Wood-Ljungdahl gene cluster or Phosphotransacetylase/Acetate kinase operon promoters.
[0029] In one embodiment, the microorganism comprises one or more exogenous nucleic acids encoding and adapted to express one or more of the enzymes referred to hereinbefore. In one embodiment, the microorganisms comprise one or more exogenous nucleic acids encoding and adapted to express at least two of the enzymes. In other embodiments, the microorganism comprises one or more exogenous nucleic acids encoding and adapted to express at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine or more of the enzymes.
[0030] In one embodiment, the one or more exogenous nucleic acid is a nucleic acid construct or vector, in one particular embodiment a plasmid, encoding one or more of the enzymes referred to hereinbefore in any combination.
[0031] In one embodiment, the exogenous nucleic acid is an expression plasmid.
[0032] In one particular embodiment, the parental microorganism is selected from the group of carboxydotrophic acetogenic bacteria. In certain embodiments the microorganism is selected from the group comprising Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium carboxidivorans, Clostridium drakei, Clostridium scatologenes, Clostridium aceticum, Clostridium formicoaceticum, Clostridium magnum, Butyribacterium methylotrophicum, Acetobacterium woodii, Alkalibaculum bacchii, Blautia producta, Eubacterium limosum, Moorella thermoacetica, Moorella thermautotrophica, Sporomusa ovata, Sporomusa silvacetica, Sporomusa sphaeroides, Oxobacter pfennigii, and Thermoanaerobacter kiuvi.
[0033] In one embodiment the parental microorganism is Clostridium autoethanogenum or Clostridium ljungdahlii. In one particular embodiment, the microorganism is Clostridium autoethanogenum DSM23693. In another particular embodiment, the microorganism is Clostridium ljungdahlii DSM13528 (or ATCC55383).
[0034] In one embodiment, the parental microorganism lacks one or more genes in the DXS pathway and/or the mevalonate (MVA) pathway. In one embodiment, the parental microorganism lacks one or more genes encoding an enzyme selected from the group consisting of:
[0035] a) thiolase (EC 2.3.1.9),
[0036] b) HMG-CoA synthase (EC 2.3.3.10),
[0037] c) HMG-CoA reductase (EC 1.1.1.88),
[0038] d) Mevalonate kinase (EC 2.7.1.36),
[0039] e) Phosphomevalonate kinase (EC 2.7.4.2),
[0040] f) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33),
[0041] g) 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7),
[0042] h) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267),
[0043] i) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60),
[0044] j) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148),
[0045] k) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (EC:4.6.1.12),
[0046] l) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1),
[0047] m) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2), and
[0048] n) a functionally equivalent variant of any one thereof.
[0049] In a second aspect, the invention provides a nucleic acid encoding one or more enzymes which when expressed in a microorganism allows the microorganism to produce one or more terpenes and/or precursors thereof by fermentation of a substrate comprising CO.
[0050] In one embodiment, the nucleic acid encodes two or more enzymes which when expressed in a microorganism allows the microorganism to produce one or more terpenes and/or precursors thereof by fermentation of a substrate comprising CO. In one embodiment, a nucleic acid of the invention encodes at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine or more of such enzymes.
[0051] In one embodiment, the nucleic acid encodes one or more enzymes in the mevalonate
[0052] (MVA) pathway. In one embodiment, the one or more enzymes is chosen from the group consisting of:
a) thiolase (EC 2.3.1.9), b) HMG-CoA synthase (EC 2.3.3.10), c) HMG-CoA reductase (EC 1.1.1.88), d) Mevalonate kinase (EC 2.7.1.36), e) Phosphomevalonate kinase (EC 2.7.4.2), f) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33), and
[0053] g) a functionally equivalent variant of any one thereof.
[0054] In a particular embodiment, the nucleic acid encodes thiolase (which may be an acetyl CoA c-acetyltransferase), HMG-CoA synthase and HMG-CoA reductase,
[0055] In a further embodiment, the nucleic acid encodes one or more enzymes in the mevalonate (MVA) pathway and one or more further nucleic acids in the DXS pathway pathway. In one embodiment, the one or more enzymes from the DXS pathway is selected from the group consisting of:
[0056] a) 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7),
[0057] b) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267),
[0058] c) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60),
[0059] d) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148),
[0060] e) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (EC:4.6.1.12),
[0061] f) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1),
[0062] g) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2), and
[0063] h) a functionally equivalent variant of any one thereof.
[0064] In a further embodiment, the nucleic acid encodes one or more further exogenous or endogenous enzymes are expressed or over-expressed to result in the production of a terpene compound or a precursor thereof wherein the exogenous nucleic acid that is expressed, or the endogenous enzyme that is overexpressed, encodes and enzyme selected from the group consisting of:
[0065] a) geranyltranstransferase Fps (EC:2.5.1.10),
b) heptaprenyl diphosphate synthase (EC:2.5.1.10), c) octaprenyl-diphosphate synthase (EC:2.5.1.90), d) isoprene synthase (EC 4.2.3.27), e) isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2), f) farnesene synthase (EC 4.2.3.46/EC 4.2.3.47), and g) a functionally equivalent variant of any one thereof.
[0066] In one embodiment, the nucleic acid encoding thiolase (EC 2.3.1.9) has the sequence SEQ ID NO: 40 or is a functionally equivalent variant thereof.
[0067] In one embodiment, the nucleic acid encoding thiolase (EC 2.3.1.9) is acetyl CoA c-acetyl transferase that has the sequence SEQ ID NO: 41 or is a functionally equivalent variant thereof.
[0068] In one embodiment, the nucleic acid encoding HMG-CoA synthase (EC 2.3.3.10) has the sequence SEQ ID NO: 42 or is a functionally equivalent variant thereof.
[0069] In one embodiment, the nucleic acid encoding HMG-CoA reductase (EC 1.1.1.88) has the sequence SEQ ID NO: 43 or is a functionally equivalent variant thereof.
[0070] In one embodiment, the nucleic acid encoding Mevalonate kinase (EC 2.7.1.36) has the sequence SEQ ID NO: 51 or is a functionally equivalent variant thereof.
[0071] In one embodiment, the nucleic acid encoding Phosphomevalonate kinase (EC 2.7.4.2) has the sequence SEQ ID NO: 52 or is a functionally equivalent variant thereof.
[0072] In one embodiment, the nucleic acid encoding Mevalonate Diphosphate decarboxylase (EC 4.1.1.33) has the sequence SEQ ID NO: 53 or is a functionally equivalent variant thereof.
[0073] In one embodiment, the nucleic acid encoding 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7) has the sequence SEQ ID NO: 1 or is a functionally equivalent variant thereof.
[0074] In one embodiment, the nucleic acid encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267) has the sequence SEQ ID NO: 3 or is a functionally equivalent variant thereof.
[0075] In one embodiment, the nucleic acid encoding 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60) has the sequence SEQ ID NO: 5 or is a functionally equivalent variant thereof.
[0076] In one embodiment, the nucleic acid encoding 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148) has the sequence SEQ ID NO: 7 or is a functionally equivalent variant thereof.
[0077] In one embodiment, the nucleic acid encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (EC:4.6.1.12) has the sequence SEQ ID NO: 9 or is a functionally equivalent variant thereof.
[0078] In one embodiment, the nucleic acid encoding 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1) has the sequence SEQ ID NO: 11 or is a functionally equivalent variant thereof.
[0079] In one embodiment, the nucleic acid encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2) has the sequence SEQ ID NO: 13 or is a functionally equivalent variant thereof.
[0080] In one embodiment, the nucleic acid encoding geranyltranstransferase Fps has the sequence SEQ ID NO: 15, or it is a functionally equivalent variant thereof.
[0081] In one embodiment, the nucleic acid encoding heptaprenyl diphosphate synthase has the sequence SEQ ID NO: 17, or it is a functionally equivalent variant thereof.
[0082] In one embodiment, the nucleic acid encoding octaprenyl-diphosphate synthase (EC:2.5.1.90) wherein the octaprenyl-diphosphate synthase is polyprenyl synthetase is encoded by sequence SEQ ID NO: 19, or it is a functionally equivalent variant thereof.
[0083] In one embodiment, the nucleic acid encoding isoprene synthase (ispS) has the sequence SEQ ID NO: 21, or it is a functionally equivalent variant thereof.
[0084] In one embodiment, the nucleic acid encoding Isopentenyl-diphosphate delta-isomerase (idi) has the sequence SEQ ID NO: 54, or it is a functionally equivalent variant thereof.
[0085] In one embodiment, the nucleic acid encoding farnesene synthase has the sequence SEQ ID NO: 57, or it is a functionally equivalent variant thereof.
[0086] In one embodiment, the nucleic acid encodes the following enzymes:
a) isoprene synthase; b) Isopentenyl-diphosphate delta-isomerase (idi); and c) 1-deoxy-D-xylulose-5-phosphate synthase DXS; or functionally equivalent variants thereof.
[0087] In one embodiment, the nucleic acid encodes the following enzymes:
a) Thiolase;
[0088] b) HMG-CoA synthase; c) HMG-CoA reductase; d) Mevalonate kinase; e) Phosphomevalonate kinase; f) Mevalonate Diphosphate decarboxylase; g) Isopentenyl-diphosphate delta-isomerase (idi); and h) isoprene synthase; or functionally equivalent variants thereof.
[0089] In one embodiment, the nucleic acid encodes the following enzymes:
a) geranyltranstransferase Fps; and b) farnesene synthase or functionally equivalent variants thereof.
[0090] In one embodiment, the nucleic acids of the invention further comprise a promoter. In one embodiment, the promoter allows for constitutive expression of the genes under its control. In a particular embodiment a Wood-Ljungdahl cluster promoter is used. In another particular embodiment, a Phosphotransacetylase/Acetate kinase operon promoter is used. In one particular embodiment, the promoter is from C. autoethanogenum.
[0091] In a third aspect, the invention provides a nucleic acid construct or vector comprising one or more nucleic acid of the second aspect.
[0092] In one particular embodiment, the nucleic acid construct or vector is an expression construct or vector. In one particular embodiment, the expression construct or vector is a plasmid.
[0093] In a fourth aspect, the invention provides host organisms comprising any one or more of the nucleic acids of the second aspect or vectors or constructs of the third aspect.
[0094] In a fifth aspect, the invention provides a composition comprising an expression construct or vector as referred to in the third aspect of the invention and a methylation construct or vector.
[0095] Preferably, the composition is able to produce a recombinant microorganism according to the first aspect of the invention.
[0096] In one particular embodiment, the expression construct/vector and/or the methylation construct/vector is a plasmid.
[0097] In a sixth aspect, the invention provides a method for the production of one or more terpenes and/or precursors thereof and optionally one or more other products by microbial fermentation comprising fermenting a substrate comprising CO using a recombinant microorganism of the first aspect of the invention.
[0098] In one embodiment the method comprises the steps of:
(a) providing a substrate comprising CO to a bioreactor containing a culture of one or more microorganisms of the first aspect of the invention; and (b) anaerobically fermenting the culture in the bioreactor to produce at least one terpene and/or precursor thereof.
[0099] In one embodiment the method comprises the steps of:
(a) capturing CO-containing gas produced as a result of the industrial process; (b) anaerobic fermentation of the CO-containing gas to produce at least one terpene and/or precursor thereof by a culture containing one or more microorganism of the first aspect of the invention.
[0100] In particular embodiments of the method aspects, the microorganism is maintained in an aqueous culture medium.
[0101] In particular embodiments of the method aspects, the fermentation of the substrate takes place in a bioreactor.
[0102] In one embodiment, the one or more terpene and/or precursor thereof is chosen from mevalonic acid, IPP, dimethylallyl pyrophosphate (DMAPP), isoprene, geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP) and farnesene.
[0103] Preferably, the substrate comprising CO is a gaseous substrate comprising CO. In one embodiment, the substrate comprises an industrial waste gas. In certain embodiments, the gas is steel mill waste gas or syngas.
[0104] In one embodiment, the substrate will typically contain a major proportion of CO, such as at least about 20% to about 100% CO by volume, from 20% to 70% CO by volume, from 30% to 60% CO by volume, and from 40% to 55% CO by volume. In particular embodiments, the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or about 50% CO, or about 55% CO, or about 60% CO by volume.
[0105] In certain embodiments the methods further comprise the step of recovering a terpene and/or precursor thereof and optionally one or more other products from the fermentation broth.
[0106] In a seventh aspect, the invention provides one or more terpene and/or precursor thereof when produced by the method of the sixth aspect. In one embodiment, the one or more terpene and/or precursor thereof is chosen from the group consisting of mevalonic acid, IPP, dimethylallyl pyrophosphate (DMAPP), isoprene, geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP) and farnesene.
[0107] In another aspect, the invention provides a method for the production of a microorganism of the first aspect of the invention comprising transforming a carboxydotrophic acetogenic parental microorganism by introduction of one or more nucleic acids such that the microorganism is capable of producing, or increasing the production of, one or more terpenes and/or precursors thereof and optionally one or more other products by fermentation of a substrate comprising CO, wherein the parental microorganism is not capable of producing, or produces at a lower level, the one or more terpene and/or precursor thereof by fermentation of a substrate comprising CO.
[0108] In one particular embodiment, a parental microorganism is transformed by introducing one or more exogenous nucleic acids adapted to express one or more enzymes in the mevalonate (MVA) pathway and optionally the DXS pathway. In another embodiment, a parental microorganism is transformed with one or more nucleic acids adapted to over-express one or more enzymes in the mevalonate (MVA) pathway and optionally the DXS pathway which are naturally present in the parental microorganism.
[0109] In certain embodiments, the one or more enzymes are as herein before described.
[0110] In one embodiment an isolated, genetically engineered, carboxydotrophic, acetogenic bacteria are provided which comprise an exogenous nucleic acid encoding an enzyme in a mevalonate pathway or in a DXS pathway or in a terpene biosynthesis pathway, whereby the bacteria express the enzyme. The enzyme is selected from the group consisting of:
[0111] a) thiolase (EC 2.3.1.9);
[0112] b) HMG-CoA synthase (EC 2.3.3.10);
[0113] c) HMG-CoA reductase (EC 1.1.1.88);
[0114] d) Mevalonate kinase (EC 2.7.1.36);
[0115] e) Phosphomevalonate kinase (EC 2.7.4.2);
[0116] f) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33); 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7);
[0117] g) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267);
[0118] h) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60);
[0119] i) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148);
[0120] j) 2-C-methyl-D-erythritol 2;4-cyclodiphosphate synthase IspF (EC:4.6.1.12);
[0121] k) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1);
[0122] l) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2); geranyltranstransferase Fps (EC:2.5.1.10);
[0123] m) heptaprenyl diphosphate synthase (EC:2.5.1.10);
[0124] n) octaprenyl-diphosphate synthase (EC:2.5.1.90);
[0125] o) isoprene synthase (EC 4.2.3.27);
[0126] p) isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2); and
[0127] q) farnesene synthase (EC 4.2.3.46/EC 4.2.3.47).
[0128] In some aspects the bacteria do not express the enzyme in the absence of said nucleic acid. In some aspects the bacteria which express the enzyme under anaerobic conditions.
[0129] One embodiment provides a plasmid which can replicate in a carboxydotrophic, acetogenic bacteria. The plasmid comprises a nucleic acid encoding an enzyme in a mevalonate pathway or in a DXS pathway or in a terpene biosynthesis pathway, whereby when the plasmid is in the bacteria, the enzyme is expressed by said bacteria. The enzyme is selected from the group consisting of:
[0130] a) thiolase (EC 2.3.1.9);
[0131] b) HMG-CoA synthase (EC 2.3.3.10);
[0132] c) HMG-CoA reductase (EC 1.1.1.88);
[0133] d) Mevalonate kinase (EC 2.7.1.36);
[0134] e) Phosphomevalonate kinase (EC 2.7.4.2);
[0135] f) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33); 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7);
[0136] g) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267);
[0137] h) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60);
[0138] i) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148);
[0139] j) 2-C-methyl-D-erythritol 2;4-cyclodiphosphate synthase IspF (EC:4.6.1.12);
[0140] k) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1);
[0141] l) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2); geranyltranstransferase Fps (EC:2.5.1.10);
[0142] m) heptaprenyl diphosphate synthase (EC:2.5.1.10);
[0143] n) octaprenyl-diphosphate synthase (EC:2.5.1.90);
[0144] o) isoprene synthase (EC 4.2.3.27);
[0145] p) isopentenyl-diphosphate delta-isomerase (EC 5.3.3.2); and
[0146] q) farnesene synthase (EC 4.2.3.46/EC 4.2.3.47).
[0147] A process is provided in another embodiment for converting CO and/or CO2 into isoprene. The process comprises: passing a gaseous CO-containing and/or CO2-containing substrate to a bioreactor containing a culture of carboxydotrophic, acetogenic bacteria in a culture medium such that the bacteria convert the CO and/or CO2 to isoprene, and recovering the isoprene from the bioreactor. The carboxydotrophic acetogenic bacteria are genetically engineered to express a isoprene synthase.
[0148] Another embodiment provides an isolated, genetically engineered, carboxydotrophic, acetogenic bacteria which comprise a nucleic acid encoding an isoprene synthase. The bacteria express the isoprene synthase and the bacteria are able to convert imethylallyldiphosphate to isoprene. In one aspect the isoprene synthase is a Populus tremuloides enzyme. In another aspect the nucleic acid is codon optimized. In still another aspect, expression of the isoprene synthase is under the transcriptional control of a promoter for a pyruvate: ferredoxin oxidoreductase gene from Clostridium autoethanogenum.
[0149] Another embodiment provides a process for converting CO and/or CO2 into isopentyldiphosphate (IPP). The process comprises: passing a gaseous CO-containing and/or CO2-containing substrate to a bioreactor containing a culture of carboxydotrophic, acetogenic bacteria in a culture medium such that the bacteria convert the CO and/or CO2 to isopentyldiphosphate (IPP), and recovering the IPP from the bioreactor. The carboxydotrophic acetogenic bacteria are genetically engineered to express a isopentyldiphosphate delta isomerase.
[0150] Still another embodiment provides isolated, genetically engineered, carboxydotrophic, acetogenic bacteria which comprise a nucleic acid encoding an isopentyldiphosphate delta isomerase. The bacteria express the isopentyldiphosphate delta isomerase and the bacteria are able to convert dimethylallyldiphosphate to isopentyldiphosphate. In some aspects the nucleic acid encodes a Clostridium beijerinckii isopentyldiphosphate delta isomerase. In other aspects, the nucleic acid is under the transcriptional control of a promoter for a pyruvate: ferredoxin oxidoreductase gene from Clostridium autoethanogenum. In still other aspects, the nucleic acid is under the transcriptional control of a promoter for a pyruvate: ferredoxin oxidoreductase gene from Clostridium autoethanogenum and downstream of a second nucleic acid encoding an isoprene synthase.
[0151] Still another embodiment provides a process for converting CO and/or CO2 into isopentyldiphosphate (IPP) and/or isoprene. The process comprises: passing a gaseous CO-containing and/or CO2-containing substrate to a bioreactor containing a culture of carboxydotrophic, acetogenic bacteria in a culture medium such that the bacteria convert the CO and/or CO2 to isopentyldiphosphate (IPP) and/or isoprene, and recovering the IPP and/or isoprene from the bioreactor. The carboxydotrophic acetogenic bacteria are genetically engineered to have an increased copy number of a nucleic acid encoding a deoxyxylulose 5-phosphate synthase (DXS) enzyme, wherein the increased copy number is greater than 1 per genome.
[0152] Yet another embodiment provides isolated, genetically engineered, carboxydotrophic, acetogenic bacteria which comprise a copy number of greater than 1 per genome of a nucleic acid encoding a deoxyxylulose 5-phosphate synthase (DXS) enzyme. In some aspects, the isolated, genetically engineered, carboxydotrophic, acetogenic bacteria may further comprise a nucleic acid encoding an isoprene synthase. In other aspects, the isolated, genetically engineered, carboxydotrophic, acetogenic bacteria of may further comprise a nucleic acid encoding an isopentyldiphosphate delta isomerase. In still other aspects the isolated, genetically engineered, carboxydotrophic, acetogenic bacteria may further comprise a nucleic acid encoding an isopentyldiphosphate delta isomerase and a nucleic acid encoding an isoprene synthase.
[0153] Another embodiment provides isolated, genetically engineered, carboxydotrophic, acetogenic bacteria which comprise a nucleic acid encoding a phosphomevalonate kinase (PMK). The bacteria express the encoded enzyme and the enzyme is not native to the bacteria. In some aspects the enzymes are Staphylococcus aureus enzymes. In some aspects the enzyme is expressed under the control of one or more C. autoethanogenum promoters. In some aspects the bacteria further comprise a nucleic acid encoding thiolase (thlA/vraB), a nucleic acid encoding a HMG-CoA synthase (HMGS), and a nucleic acid encoding an HMG-CoA reductase (HMGR). In some aspects the thiolase is Clostridium acetobutylicum thiolase. In some aspects the bacteria further comprise a nucleic acid encoding a mevalonate disphosphate decarboxylase (PMD).
[0154] Still another embodiment provides isolated, genetically engineered, carboxydotrophic, acetogenic bacteria which comprise an exogenous nucleic acid encoding alpha-farnesene synthase. In some aspects the nucleic acid is codon optimized for expression in C. autoethanogenum. In some aspects the alpha-farnesene synthase is a Malus×domestica alpha-farnesene synthase. In some aspects the bacteria further comprise a nucleic acid segment encoding geranyltranstransferase. In some aspects the gernayltranstransferase is an E. coli geranyltranstransferase.
[0155] Suitable isolated, genetically engineered, carboxydotrophic, acetogenic bacteria for any of the aspects or embodiments of the invention may be selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium carboxidivorans, Clostridium drakei, Clostridium scatologenes, Clostridium aceticum, Clostridium formicoaceticum, Clostridium magnum, Butyribacterium methylotrophicum, Acetobacterium woodii, Alkalibaculum bacchii, Blautia producta, Eubacterium limosum, Moorella thermoacetica, Moorella thermautotrophica, Sporomusa ovata, Sporomusa silvacetica, Sporomusa sphaeroides, Oxobacter pfennigii, and Thermoanaerobacter kiuvi.
[0156] The invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, in any or all combinations of two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which the invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
BRIEF DESCRIPTION OF THE FIGURES
[0157] These and other aspects of the present invention, which should be considered in all its novel aspects, will become apparent from the following description, which is given by way of example only, with reference to the accompanying figures.
[0158] FIG. 1: Pathway diagram for production of terpenes, gene targets described in this application are highlighted with bold arrows.
[0159] FIG. 2: Genetic map of plasmid pMTL 85146-ispS
[0160] FIG. 3: Genetic map of plasmid pMTL 85246-ispS-idi
[0161] FIG. 4: Genetic map of plasmid pMTL 85246-ispS-idi-dxs
[0162] FIG. 5: Sequencing results for plasmid pMTL 85246-ispS-idi-dxs
[0163] FIG. 6: Comparison of energetics for production of terpenes from CO via DXS and mevalonate pathway
[0164] FIG. 7: Mevalonate pathway
[0165] FIG. 8: Agarose gel electrophoresis image confirming presence of isoprene expression plasmid pMTL 85246-ispS-idi in C. autoethanogenum transformants. Lanes 1, and 20 show 100 bp Plus DNA Ladder. Lane 3-6, 9-12, 15-18 show PCR with isolated plasmids from 4 different clones as template, each in the following order: colE1, ermB, and idi. Lanes 2, 8, and 14 show PCR without template as negative control, each in the following order: colE1, ermB, and idi. Lanes 7, 13, and 19 show PCR with pMTL 85246-ispS-idi from E. coli as positive control, each in the following order: colE1, ermB, and idi.
[0166] FIG. 9--Mevalonate expression plasmid pMTL8215-Pptaack-thlA-HMGS-Patp-HMGR
[0167] FIG. 10--Isoprene expression plasmid pMTL 8314-Pptaack-thlA-HMGS-Patp-HMGR-Pmf-MK-PMK-PMD-Pfor-idi-ispS
[0168] FIG. 11--Farnesene expression plasmid pMTL8314-Pptaack-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS
[0169] FIG. 12--Genetic map of plasmid pMTL 85246-ispS-idi-dxs
[0170] FIG. 13--Amplification chart for gene expression experiment with C. autoethanogenum carrying plasmid pMTL 85146-ispS
[0171] FIG. 14--Amplification chart for gene expression experiment with C. autoethanogenum carrying plasmid pMTL 85246-ispS-idi
[0172] FIG. 15--Amplification chart for gene expression experiment with C. autoethanogenum carrying plasmid pMTL 85246-ispS-idi-dxs
[0173] FIG. 16--PCR check for the presence of the plasmid pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS. Expected band size 1584 bp. The DNA marker Fermentas 1 kb DNA ladder.
[0174] FIG. 17--Growth curve for transformed C. autoethanogemun carrying plasmid pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS
[0175] FIG. 18--RT-PRC data showing the expression of the genes Mevalonate kinase (MK SEQ ID NO: 51), Phosphomevalonate Kinase (PMK SEQ ID NO: 52), Mevalonate Diphosphate Decarboxylase (PMD SEQ ID NO: 53), Isopentyl-diphosphate Delta-isomerase (idi SEQ ID NO: 54), Geranyltranstransferase (ispA SEQ ID NO: 56) and Farnesene synthase (FS SEQ ID NO: 57).
[0176] FIG. 19--GC-MS detection and conformation of the presence of farnesene in 1 mM mevalonate spiked cultures carrying pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS. GC-MS chromatogram scanned for peaks containing ions with a mass of 93. Chromatogram 1 and 2 are transformed C. autoethanogenum, 3 is beta-farnesene standard run at the same time as the C. autoethanogenum samples. 4 is E. coli carrying the plasmids pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS grown on M9 Glucose showing alpha-farnesene production and 5 is beta-farnesene standard run at the time of the E. coli samples. The difference in retention time between the E. coli and the C. autoethanogenum samples are due to minor changes to the instrument. However the difference in retention time between the beta-farnesene standard and the produced alpha-farnesene are the exact same in both cases, which together with the match in mass spectra's confirm the production of alpha-farnesene in C. autoethanogenum.
[0177] FIG. 20--MS spectrums for peaks labeled 1A and 2A in FIG. 19. The MS spectra's matches up with the NIST database spectra (FIG. 21) confirming the peak is alpha-farnesene.
[0178] FIG. 21--MS spectrum for alpha-farnesen from the NIST Mass Spectral Database.
DETAILED DESCRIPTION OF THE INVENTION
[0179] The following is a description of the present invention, including preferred embodiments thereof, given in general terms. The invention is further elucidated from the disclosure given under the heading "Examples" herein below, which provides experimental data supporting the invention, specific examples of various aspects of the invention, and means of performing the invention.
[0180] The inventors have surprisingly been able to engineer a carboxydotrophic acetogenic microorganism to produce terpene and precursors thereof including isoprene and farnesene by fermentation of a substrate comprising CO. This offers an alternative means for the production of these products which may have benefits over the current methods for their production. In addition, it offers a means of using carbon monoxide from industrial processes which would otherwise be released into the atmosphere and pollute the environment.
[0181] As referred to herein, a "fermentation broth" is a culture medium comprising at least a nutrient media and bacterial cells.
[0182] As referred to herein, a "shuttle microorganism" is a microorganism in which a methyltransferase enzyme is expressed and is distinct from the destination microorganism.
[0183] As referred to herein, a "destination microorganism" is a microorganism in which the genes included on an expression construct/vector are expressed and is distinct from the shuttle microorganism.
[0184] The term "main fermentation product" is intended to mean the one fermentation product which is produced in the highest concentration and/or yield.
[0185] The terms "increasing the efficiency", "increased efficiency" and the like, when used in relation to a fermentation process, include, but are not limited to, increasing one or more of the rate of growth of microorganisms catalysing the fermentation, the growth and/or product production rate at elevated product concentrations, the volume of desired product produced per volume of substrate consumed, the rate of production or level of production of the desired product, and the relative proportion of the desired product produced compared with other by-products of the fermentation.
[0186] The phrase "substrate comprising carbon monoxide" and like terms should be understood to include any substrate in which carbon monoxide is available to one or more strains of bacteria for growth and/or fermentation, for example.
[0187] The phrase "gaseous substrate comprising carbon monoxide" and like phrases and terms includes any gas which contains a level of carbon monoxide. In certain embodiments the substrate contains at least about 20% to about 100% CO by volume, from 20% to 70% CO by volume, from 30% to 60% CO by volume, and from 40% to 55% CO by volume. In particular embodiments, the substrate comprises about 25%, or about 30%, or about 35%, or about 40%, or about 45%, or about 50% CO, or about 55% CO, or about 60% CO by volume.
[0188] While it is not necessary for the substrate to contain any hydrogen, the presence of H2 should not be detrimental to product formation in accordance with methods of the invention. In particular embodiments, the presence of hydrogen results in an improved overall efficiency of alcohol production. For example, in particular embodiments, the substrate may comprise an approx 2:1, or 1:1, or 1:2 ratio of H2:CO. In one embodiment the substrate comprises about 30% or less H2 by volume, 20% or less H2 by volume, about 15% or less H2 by volume or about 10% or less H2 by volume. In other embodiments, the substrate stream comprises low concentrations of H2, for example, less than 5%, or less than 4%, or less than 3%, or less than 2%, or less than 1%, or is substantially hydrogen free. The substrate may also contain some CO2 for example, such as about 1% to about 80% CO2 by volume, or 1% to about 30% CO2 by volume. In one embodiment the substrate comprises less than or equal to about 20% CO2 by volume. In particular embodiments the substrate comprises less than or equal to about 15% CO2 by volume, less than or equal to about 10% CO2 by volume, less than or equal to about 5% CO2 by volume or substantially no CO2.
[0189] In the description which follows, embodiments of the invention are described in terms of delivering and fermenting a "gaseous substrate containing CO". However, it should be appreciated that the gaseous substrate may be provided in alternative forms. For example, the gaseous substrate containing CO may be provided dissolved in a liquid. Essentially, a liquid is saturated with a carbon monoxide containing gas and then that liquid is added to the bioreactor. This may be achieved using standard methodology. By way of example, a microbubble dispersion generator (Hensirisak et. al. Scale-up of microbubble dispersion generator for aerobic fermentation; Applied Biochemistry and Biotechnology Volume 101, Number 3/October, 2002) could be used. By way of further example, the gaseous substrate containing CO may be adsorbed onto a solid support. Such alternative methods are encompassed by use of the term "substrate containing CO" and the like.
[0190] In particular embodiments of the invention, the CO-containing gaseous substrate is an industrial off or waste gas. "Industrial waste or off gases" should be taken broadly to include any gases comprising CO produced by an industrial process and include gases produced as a result of ferrous metal products manufacturing, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, gasification of biomass, electric power production, carbon black production, and coke manufacturing. Further examples may be provided elsewhere herein.
[0191] Unless the context requires otherwise, the phrases "fermenting", "fermentation process" or "fermentation reaction" and the like, as used herein, are intended to encompass both the growth phase and product biosynthesis phase of the process. As will be described further herein, in some embodiments the bioreactor may comprise a first growth reactor and a second fermentation reactor. As such, the addition of metals or compositions to a fermentation reaction should be understood to include addition to either or both of these reactors.
[0192] The term "bioreactor" includes a fermentation device consisting of one or more vessels and/or towers or piping arrangement, which includes the Continuous Stirred Tank Reactor (CSTR), Immobilized Cell Reactor (ICR), Trickle Bed Reactor (TBR), Bubble Column, Gas Lift Fermenter, Static Mixer, or other vessel or other device suitable for gas-liquid contact. In some embodiments the bioreactor may comprise a first growth reactor and a second fermentation reactor. As such, when referring to the addition of substrate to the bioreactor or fermentation reaction it should be understood to include addition to either or both of these reactors where appropriate.
[0193] "Exogenous nucleic acids" are nucleic acids which originate outside of the microorganism to which they are introduced. Exogenous nucleic acids may be derived from any appropriate source, including, but not limited to, the microorganism to which they are to be introduced (for example in a parental microorganism from which the recombinant microorganism is derived), strains or species of microorganisms which differ from the organism to which they are to be introduced, or they may be artificially or recombinantly created. In one embodiment, the exogenous nucleic acids represent nucleic acid sequences naturally present within the microorganism to which they are to be introduced, and they are introduced to increase expression of or over-express a particular gene (for example, by increasing the copy number of the sequence (for example a gene), or introducing a strong or constitutive promoter to increase expression). In another embodiment, the exogenous nucleic acids represent nucleic acid sequences not naturally present within the microorganism to which they are to be introduced and allow for the expression of a product not naturally present within the microorganism or increased expression of a gene native to the microorganism (for example in the case of introduction of a regulatory element such as a promoter). The exogenous nucleic acid may be adapted to integrate into the genome of the microorganism to which it is to be introduced or to remain in an extra-chromosomal state.
[0194] "Exogenous" may also be used to refer to proteins. This refers to a protein that is not present in the parental microorganism from which the recombinant microorganism is derived.
[0195] The term "endogenous" as used herein in relation to a recombinant microorganism and a nucleic acid or protein refers to any nucleic acid or protein that is present in a parental microorganism from which the recombinant microorganism is derived.
[0196] It should be appreciated that the invention may be practised using nucleic acids whose sequence varies from the sequences specifically exemplified herein provided they perform substantially the same function. For nucleic acid sequences that encode a protein or peptide this means that the encoded protein or peptide has substantially the same function. For nucleic acid sequences that represent promoter sequences, the variant sequence will have the ability to promote expression of one or more genes. Such nucleic acids may be referred to herein as "functionally equivalent variants". By way of example, functionally equivalent variants of a nucleic acid include allelic variants, fragments of a gene, genes which include mutations (deletion, insertion, nucleotide substitutions and the like) and/or polymorphisms and the like. Homologous genes from other microorganisms may also be considered as examples of functionally equivalent variants of the sequences specifically exemplified herein. These include homologous genes in species such as Clostridium acetobutylicum, Clostridium beijerinckii, C. saccharobutylicum and C. saccharoperbutylacetonicum, details of which are publicly available on websites such as Genbank or NCBI. The phrase "functionally equivalent variants" should also be taken to include nucleic acids whose sequence varies as a result of codon optimisation for a particular organism. "Functionally equivalent variants" of a nucleic acid herein will preferably have at least approximately 70%, preferably approximately 80%, more preferably approximately 85%, preferably approximately 90%, preferably approximately 95% or greater nucleic acid sequence identity with the nucleic acid identified.
[0197] It should also be appreciated that the invention may be practised using polypeptides whose sequence varies from the amino acid sequences specifically exemplified herein. These variants may be referred to herein as "functionally equivalent variants". A functionally equivalent variant of a protein or a peptide includes those proteins or peptides that share at least 40%, preferably 50%, preferably 60%, preferably 70%, preferably 75%, preferably 80%, preferably 85%, preferably 90%, preferably 95% or greater amino acid identity with the protein or peptide identified and has substantially the same function as the peptide or protein of interest. Such variants include within their scope fragments of a protein or peptide wherein the fragment comprises a truncated form of the polypeptide wherein deletions may be from 1 to 5, to 10, to 15, to 20, to 25 amino acids, and may extend from residue 1 through 25 at either terminus of the polypeptide, and wherein deletions may be of any length within the region; or may be at an internal location. Functionally equivalent variants of the specific polypeptides herein should also be taken to include polypeptides expressed by homologous genes in other species of bacteria, for example as exemplified in the previous paragraph.
[0198] "Substantially the same function" as used herein is intended to mean that the nucleic acid or polypeptide is able to perform the function of the nucleic acid or polypeptide of which it is a variant. For example, a variant of an enzyme of the invention will be able to catalyse the same reaction as that enzyme. However, it should not be taken to mean that the variant has the same level of activity as the polypeptide or nucleic acid of which it is a variant.
[0199] One may assess whether a functionally equivalent variant has substantially the same function as the nucleic acid or polypeptide of which it is a variant using any number of known methods. However, by way of example, the methods described by Silver et al. (1991, Plant Physiol. 97: 1588-1591) or Zhao et al. (2011, Appl Microbiol Biotechnol, 90:1915-1922) for the isoprene synthase enzyme, by Green et al. (2007, Phytochemistry; 68:176-188) for the farnesene synthase enzyme, by Kuzuyama et al. (2000, J. Bacteriol. 182, 891-897) for the 1-deoxy-D-xylulose 5-phosphate synthase Dxs, by Berndt and Schlegel (1975, Arch. Microbiol. 103, 21-30) or by Stim-Herndon et al. (1995, Gene 154: 81-85) for the thiolase, by Cabano et al. (1997, Insect Biochem. Mol. Biol. 27: 499-505) for the HMG-CoA synthase, by Ma et al. (2011, Metab. Engin., 13:588-597) for the HMG-CoA reductase and mevalonate kinase enzyme, by Herdendorf and Miziorko (2007, Biochemistry, 46: 11780-8) for the phosphomevalonate kinase, and by Krepkiy et al. (2004, Protein Sci. 13: 1875-1881) for the mevalonate diphosphate decarboxylase. It is also possible to identify genes of DXS and mevalonate pathway using inhibitors like fosmidomycin or mevinoline as described by Trutko et al. (2005, Microbiology 74: 153-158).
[0200] "Over-express", "over expression" and like terms and phrases when used in relation to the invention should be taken broadly to include any increase in expression of one or more proteins (including expression of one or more nucleic acids encoding same) as compared to the expression level of the protein (including nucleic acids) of a parental microorganism under the same conditions. It should not be taken to mean that the protein (or nucleic acid) is expressed at any particular level.
[0201] A "parental microorganism" is a microorganism used to generate a recombinant microorganism of the invention. The parental microorganism may be one that occurs in nature (ie a wild type microorganism) or one that has been previously modified but which does not express or over-express one or more of the enzymes that are the subject of the present invention. Accordingly, the recombinant microorganisms of the invention may have been modified to express or over-express one or more enzymes that were not expressed or over-expressed in the parental microorganism.
[0202] The terms nucleic acid "constructs" or "vectors" and like terms should be taken broadly to include any nucleic acid (including DNA and RNA) suitable for use as a vehicle to transfer genetic material into a cell. The terms should be taken to include plasmids, viruses (including bacteriophage), cosmids and artificial chromosomes. Constructs or vectors may include one or more regulatory elements, an origin of replication, a multicloning site and/or a selectable marker. In one particular embodiment, the constructs or vectors are adapted to allow expression of one or more genes encoded by the construct or vector. Nucleic acid constructs or vectors include naked nucleic acids as well as nucleic acids formulated with one or more agents to facilitate delivery to a cell (for example, liposome-conjugated nucleic acid, an organism in which the nucleic acid is contained).
[0203] A "terpene" as referred to herein should be taken broadly to include any compound made up of C5 isoprene units joined together including simple and complex terpenes and oxygen-containing terpene compounds such as alcohols, aldehydes and ketones. Simple terpenes are found in the essential oils and resins of plants such as conifers. More complex terpenes include the terpenoids and vitamin A, carotenoid pigments (such as lycopene), squalene, and rubber. Examples of monoterpenes include, but are not limited to isoprene, pinene, nerol, citral, camphor, menthol, limonene. Examples of sesquiterpenes include but are not limited to nerolidol, farnesol. Examples of diterpenes include but are not limited to phytol, vitamin A1. Squalene is an example of a triterpene, and carotene (provitamin A1) is a tetraterpene.
[0204] A "terpene precursor" is a compound or intermediate produced during the reaction to form a terpene starting from Acetyl CoA and optionally pyruvate. The term refers to a precursor compound or intermediate found in the mevalonate (MVA) pathway and optionally the DXS pathway as well as downstream precursors of longer chain terpenes, such as FPP and GPP. In particular embodiments, it includes but is not limited to mevalonic acid, IPP, dimethylallyl pyrophosphate (DMAPP), geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP).
[0205] The "DXS pathway" is the enzymatic pathway from pyruvate and D-glyceraldehyde-3-phosphate to DMAPP or IPP. It is also known as the deoxyxylulose 5-phosphate (DXP/DXPS/DOXP or DXS)/methylerythritol phosphate (MEP) pathway.
[0206] The "mevalonate (MVA) pathway" is the enzymatic pathway from acetyl-CoA to IPP.
Microorganisms
[0207] Two pathways for production of terpenes are known, the deoxyxylulose 5-phosphate (DXP/DXPS/DOXP or DXS)/methylerythritol phosphate (MEP) pathway (Hunter et al., 2007, J. Biol. chem. 282: 21573-77) starting from pyruvate and D-glyceraldehyde-3-phosphate (G3P), the two key intermediates in the glycolysis, and the mevalonate (MVA) pathway (Miziorko, 2011, Arch Biochem Biophys, 505: 131-143) starting from acetyl-CoA. Many different classes of microorganisms have been investigated for presence of either of these pathways (Lange et al., 2000, PNAS, 97: 13172-77; Trutko et al., 2005, Microbiology, 74: 153-158; Julsing et al., 2007, Appl Microbiol Biotechnol, 75: 1377-84), but not carboxydotrophic acetogens. The DXS pathway for example was found to be present in E. coli, Bacillus, or Mycobacterium, while the mevalonate pathway is present in yeast Saccharomyces, Cloroflexus, or Myxococcus.
[0208] Genomes of carboxydotrophic acetogens C. autoethanogenum, C. ljungdahlii were analysed by the inventors for presence of either of the two pathways. All genes of the DXS pathway were identified in C. autoethanogenum and C. ljungdahlii (Table 1), while the mevalonate pathway is absent. Additionally, carboxydotrophic acetogens such as C. autoethanogenum or C. ljungdahlii are not known to produce any terpenes as metabolic end products.
TABLE-US-00001 TABLE 1 Terpene biosynthesis genes of the DXS pathway identified in C. autoethanogenum and C. ljungdahlii: C. Gene/Enzyme autoethanogenum C. ljungdahlii 1-deoxy-D-xylulose-5- SEQ ID NO: 1-2 YP_003779286.1; phosphate synthase DXS GI: 300854302, (EC: 2.2.1.7) CLJU_c11160 1-deoxy-D-xylulose 5- SEQ ID NO: 3-4 YP_003779478.1; phosphate reductoisomerase GI: 300854494, DXR (EC: 1.1.1.267) CLJU_c13080 2-C-methyl-D-erythritol 4- SEQ ID NO: 5-6 YP_003782252.1 phosphate GI: 300857268, cytidylyltransferase IspD CLJU_c41280 (EC: 2.7.7.60) 4-diphosphocytidyl-2-C- SEQ ID NO: 7-8 YP_003778403.1; methyl-D-erythritol kinase GI: 300853419, IspE (EC: 2.7.1.148) CLJU_c02110 2-C-methyl-D-erythritol 2,4- SEQ ID NO: 9-10 YP_003778349.1; cyclodiphosphate synthase GI: 300853365, IspF (EC: 4.6.1.12) CLJU_c01570 4-hydroxy-3-methylbut-2-en- SEQ ID NO: 11-12 YP_003779480.1; 1-yl diphosphate synthase GI: 300854496, IspG (EC: 1.17.7.1) CLJU_c13100 4-hydroxy-3-methylbut-2- SEQ ID NO: 13-14 YP_003780294.1; enyl diphosphate reductase GI: 300855310, (EC: 1.17.1.2) CLJU_c21320
[0209] Genes for downstream synthesis of terpenes from isoprene units were also identified in both organisms (Table 2).
TABLE-US-00002 Gene/Enzyme C. autoethanogenum C. ljungdahlii geranyltranstransferase Fps SEQ ID NO: 15-16 YP_003779285.1; (EC: 2.5.1.10) GI: 300854301, CLJU_c11150 heptaprenyl diphosphate SEQ ID NO: 17-18 YP_003779312.1; synthase (EC: 2.5.1.10) GI: 300854328, CLJU_c11420 octaprenyl-diphosphate SEQ ID NO: 19-20 YP_003782157.1; synthase [EC: 2.5.1.90] GI: 300857173, CLJU_c40310
[0210] Terpenes are energy dense compounds, and their synthesis requires the cell to invest energy in the form of nucleoside triposphates such as ATP. Using sugar as a substrate requires sufficient energy to be supplied from glycolysis to yield several molecules of ATP. The production of terpenes and/or their precursors via the DXS pathway using sugar as a substrate proceeds in a relatively straightforward manner due to the availability of pyruvate and D-glyceraldehyde-3-phosphate (G3P), G3P being derived from C5 pentose and C6 hexose sugars. These C5 and C6 molecules are thus relatively easily converted into C5 isoprene units from which terpenes are composed.
[0211] For anaerobic acetogens using a C1 substrate like CO or CO2, it is more difficult to synthesise long molecules such as hemiterpenoids from C1 units. This is especially true for longer chain terpenes like C10 monoterpenes, C15 sesquiterpenes, or C40 tetraterpenes. To date the product with most carbon atoms reported in acetogens (both native and recombinant organisms) are C4 compounds butanol (Kopke et al., 2011, Curr. Opin. Biotechnol. 22: 320-325; Schiel-Bengelsdorf and Durre, 2012, FEBS Letters: 10.1016/j.febslet.2012.04.043; Kopke et al., 2011, Proc. Nat. Sci. U.S.A. 107: 13087-92; US patent 2011/0236941) and 2,3-butanediol (Kopke et al., 2011, Appl. Environ. Microbiol. 77:5467-75). The inventors have shown that it is surprisingly possible to anaerobically produce these longer chain terpene molecules using the C1 feedstock CO via the acetyl CoA intermediate.
[0212] Energetics of the Wood-Ljungdahl pathway of anaerobic acetogens are just emerging, but unlike under aerobic growth conditions or glycolysis of sugar fermenting organisms no ATP is gained in the Wood-Ljungdahl pathway by substrate level phosphorylation, in fact activation of CO2 to formate actually requires one molecule of ATP and a membrane gradient is required. The inventors note that it is important that a pathway for product formation is energy efficient. The inventors note that in acetogens the substrate CO or CO2 is channeled directly into acetyl-CoA, which represents the most direct route to terpenes and/or their precursors, especially when compared to sugar based systems, with only six reactions required (FIG. 1). Though less ATP is available in carboxydotrophic acetogens, the inventors believe that this more direct pathway may sustain a higher metabolic flux (owing to higher chemical motive force of intermediate reactions). A highly effective metabolic flux is important as several intermediates in the terpene biosynthesis pathway, such as key intermediates Mevalonate and FPP, are toxic to most bacteria when not turned over efficiently.
[0213] Despite having a higher ATP availability, this problem of intermediate toxicity can be a a bottleneck in production of terpenes from sugar.
[0214] When comparing the energetics of terpene precursor IPP and DMAPP production from CO (FIG. 6) via the mevalonate pathway versus the DXS pathway, the inventors noted that the mevalonate pathway requires less nucleoside triposphates as ATP, less reducing equivalents, and is also more direct when compared to the DXS pathway with only six necessary reaction steps from acetyl-CoA. This provides advantages in the speed of the reactions and metabolic fluxes and increases overall energy efficiency. Additionally, the lower number of enzymes required simplifies the recombination method required to produce a recombinant microorganism.
[0215] No acetogens with a mevalonate pathway have been identified, but the inventors have shown that it is possible to introduce the mevalonate pathway and optionally the DXS pathway into a carboxydotrophic acetogen such as Clostridium autoethanogenum or C. ljungdahlii to efficiently produce terpenes and/or precursors thereof from the C1 carbon substrate CO. They contemplate that this is applicable to all carboxydotrophic acetogenic microorganisms.
[0216] Additionally, the production of terpenes and/or precursors thereof has never been shown to be possible using recombinant microorganisms under anaerobic conditions. Anaerobic production of isoprene has the advantage of providing a safer operating environment because isoprene is extremely flammable in the presence of oxygen and has a lower flammable limit (LFL) of 1.5-2.0% and an upper flammable (UFL) limit of 2.0-12% at room temperature and atmospheric pressure. As flames cannot occur in the absence of oxygen, the inventors believe that an anaerobic fermentation process is desirable as it would be safer across all product concentrations, gas compositions, temperature and pressure ranges.
[0217] As discussed hereinbefore, the invention provides a recombinant microorganism capable of producing one or more terpenes and/or precursors thereof, and optionally one or more other products, by fermentation of a substrate comprising CO.
[0218] In a further embodiment, the microorganism is adapted to: express one or more exogenous enzymes from the mevalonate (MVA) pathway and/or overexpress one or more endogenous enzyme from the mevalonate (MVA) pathway; and
a) express one or more exogenous enzymes from the DXS pathway and/or overexpress one or more endogenous enzymes from the DXS pathway.
[0219] In one embodiment, the parental microorganism from which the recombinant microorganism is derived is capable of fermenting a substrate comprising CO to produce Acetyl CoA, but not of converting Acetyl CoA to mevalonic acid or isopentenyl pyrophosphate (IPP) and the recombinant microorganism is adapted to express one or more enzymes involved in the mevalonate pathway.
[0220] The microorganism may be adapted to express or over-express the one or more enzymes by any number of recombinant methods including, for example, increasing expression of native genes within the microorganism (for example, by introducing a stronger or constitutive promoter to drive expression of a gene), increasing the copy number of a gene encoding a particular enzyme by introducing exogenous nucleic acids encoding and adapted to express the enzyme, introducing an exogenous nucleic acid encoding and adapted to express an enzyme not naturally present within the parental microorganism.
[0221] In one embodiment, the one or more enzymes are from the mevalonate (MVA) pathway and are selected from the group consisting of:
a) thiolase (EC 2.3.1.9), b) HMG-CoA synthase (EC 2.3.3.10), c) HMG-CoA reductase (EC 1.1.1.88), d) Mevalonate kinase (EC 2.7.1.36), e) Phosphomevalonate kinase (EC 2.7.4.2), f) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33), and g) a functionally equivalent variant of any one thereof.
[0222] In a further embodiment, the optional one or more enzymes are from the DXS pathway is selected from the group consisting of:
[0223] a) 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7),
[0224] b) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267),
[0225] c) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60),
[0226] d) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148),
[0227] e) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (EC:4.6.1.12),
[0228] f) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1),
[0229] g) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2), and
[0230] h) a functionally equivalent variant of any one thereof.
[0231] In a further embodiment, one or more exogenous or endogenous further enzymes are expressed or over-expressed to result in the production of a terpene compound and/or precursor thereof wherein the exogenous enzyme that is expressed, or the endogenous enzyme that is overexpressed is selected from the group consisting of:
a) geranyltranstransferase Fps (EC:2.5.1.10), b) heptaprenyl diphosphate synthase (EC:2.5.1.10), c) octaprenyl-diphosphate synthase (EC:2.5.1.90), d) isoprene synthase (EC 4.2.3.27), e) isopentenyl-diphosphate delta-isomerase (EC EC 5.3.3.2), f) farnesene synthase (EC 4.2.3.46/EC 4.2.3.47), and g) a functionally equivalent variant of any one thereof.
[0232] By way of example only, sequence information for each of the enzymes is listed in the figures herein.
[0233] The enzymes of use in the microorganisms of the invention may be derived from any appropriate source, including different genera and species of bacteria, or other organisms. However, in one embodiment, the enzymes are derived from Staphylococcus aureus.
[0234] In one embodiment, the enzyme isoprene synthase (ispS) is derived from Poplar tremuloides. In a further embodiment, it has the nucleic acid sequence exemplified in SEQ ID NO: 21 hereinafter, or it is a functionally equivalent variant thereof.
[0235] In one embodiment, the enzyme deoxyxylulose 5-phosphate synthase is derived from C. autoethanogenum, encoded by the nucleic acid sequence exemplified in SEQ ID NO: 1 and/or with the amino acid sequence exemplified in SEQ ID NO: 2 hereinafter, or it is a functionally equivalent variant thereof.
[0236] In one embodiment, the enzyme 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 3 or is a functionally equivalent variant thereof.
[0237] In one embodiment, the enzyme 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 5 or is a functionally equivalent variant thereof.
[0238] In one embodiment, the enzyme 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 7 or is a functionally equivalent variant thereof.
[0239] In one embodiment, the enzyme 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 9 or is a functionally equivalent variant thereof.
[0240] In one embodiment, the enzyme 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 11 or is a functionally equivalent variant thereof.
[0241] In one embodiment, the enzyme 4-hydroxy-3-methylbut-2-enyl diphosphate reductase is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 13 or is a functionally equivalent variant thereof.
[0242] In one embodiment, the enzyme mevalonate kinase (MK) is derived from Staphylococcus aureus subsp. aureus Mu50 and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 51 hereinafter, or it is a functionally equivalent variant thereof.
[0243] In one embodiment, the enzyme phosphomevalonate kinase (PMK) is derived from Staphylococcus aureus subsp. aureus Mu50 and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 52 hereinafter, or it is a functionally equivalent variant thereof.
[0244] In one embodiment, the enzyme mevalonate diphosphate decarboxylase (PMD) is derived from Staphylococcus aureus subsp. aureus Mu50 and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 53 hereinafter, or it is a functionally equivalent variant thereof.
[0245] In one embodiment, the enzyme Isopentenyl-diphosphate delta-isomerase (idi) is derived from Clostridium beijerinckii and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 54 hereinafter, or it is a functionally equivalent variant thereof.
[0246] In one embodiment, the enzyme thiolase (thIA) is derived from Clostridium acetobutylicum ATCC824 and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 40 hereinafter, or it is a functionally equivalent variant thereof.
[0247] In one embodiment, the enzyme is a thiolase enzyme, and is an acetyl-CoA c-acetyltransferase (vraB) derived from Staphylococcus aureus subsp. aureus Mu50 and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 41 hereinafter, or it is a functionally equivalent variant thereof.
[0248] In one embodiment, the enzyme 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) is derived from Staphylococcus aureus subsp. aureus Mu50 and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 42 hereinafter, or it is a functionally equivalent variant thereof.
[0249] In one embodiment, the enzyme Hydroxymethylglutaryl-CoA reductase (HMGR) is derived from Staphylococcus aureus subsp. aureus Mu50 and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 43 hereinafter, or it is a functionally equivalent variant thereof.
[0250] In one embodiment, the enzyme Geranyltranstransferase (ispA) is derived from Escherichia coli str. K-12 substr. MG1655 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 56 hereinafter, or it is a functionally equivalent variant thereof.
[0251] In one embodiment, the enzyme heptaprenyl diphosphate synthase is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 17 or is a functionally equivalent variant thereof.
[0252] In one embodiment, the enzyme polyprenyl synthetase is derived from C. autoethanogenum and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 19 or is a functionally equivalent variant thereof.
[0253] In one embodiment, the enzyme Alpha-farnesene synthase (FS) is derived from Malus×domestica and is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 57 hereinafter, or it is a functionally equivalent variant thereof.
[0254] The enzymes and functional variants of use in the microorganisms may be identified by assays known to one of skill in the art. In particular embodiments, the enzyme isoprene synthase may be identified by the method outlined Silver et al. (1991, Plant Physiol. 97: 1588-1591) or Zhao et al. (2011, Appl Microbiol Biotechnol, 90:1915-1922). In a further particular embodiment, the enzyme farnesene synthase may be identified by the method outlined in Green et al., 2007, Phytochemistry; 68:176-188. In further particular embodiments, enzymes from the mevalonate pathway may be identified by the method outlined in Cabano et al. (1997, Insect Biochem. Mol. Biol. 27: 499-505) for the HMG-CoA synthase, Ma et al. (2011, Metab. Engin., 13:588-597) for the HMG-CoA reductase and mevalonate kinase enzyme, Herdendorf and Miziorko (2007, Biochemistry, 46: 11780-8) for the phosphomevalonate kinase, and Krepkiy et al. (2004, Protein Sci. 13: 1875-1881) for the mevalonate diphosphate decarboxylase. Ma et al., 2011, Metab. Engin., 13:588-597. The 1-deoxy-D-xylulose 5-phosphate synthase of the DXS pathway can be assayed using the method outlined in Kuzuyama et al. (2000, J. Bacteriol. 182, 891-897). It is also possible to identify genes of DXS and mevalonate pathway using inhibitors like fosmidomycin or mevinoline as described by Trutko et al. (2005, Microbiology 74: 153-158).
[0255] In one embodiment, the microorganism comprises one or more exogenous nucleic acids adapted to increase expression of one or more endogenous nucleic acids and which one or more endogenous nucleic acids encode one or more of the enzymes referred to herein before. In one embodiment, the one or more exogenous nucleic acid adapted to increase expression is a regulatory element. In one embodiment, the regulatory element is a promoter. In one embodiment, the promoter is a constitutive promoter that is preferably highly active under appropriate fermentation conditions. Inducible promoters could also be used. In preferred embodiments, the promoter is selected from the group comprising Wood-Ljungdahl gene cluster or Phosphotransacetylase/Acetate kinase operon promoters. It will be appreciated by those of skill in the art that other promoters which can direct expression, preferably a high level of expression under appropriate fermentation conditions, would be effective as alternatives to the exemplified embodiments.
[0256] In one embodiment, the microorganism comprises one or more exogenous nucleic acids encoding and adapted to express one or more of the enzymes referred to herein before. In one embodiment, the microorganisms comprise one or more exogenous nucleic acid encoding and adapted to express at least two, at least of the enzymes. In other embodiments, the microorganism comprises one or more exogenous nucleic acid encoding and adapted to express at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine or more of the enzymes.
[0257] In one particular embodiment, the microorganism comprises one or more exogenous nucleic acid encoding an enzyme of the invention or a functionally equivalent variant thereof.
[0258] The microorganism may comprise one or more exogenous nucleic acids. Where it is desirable to transform the parental microorganism with two or more genetic elements (such as genes or regulatory elements (for example a promoter)) they may be contained on one or more exogenous nucleic acids.
[0259] In one embodiment, the one or more exogenous nucleic acid is a nucleic acid construct or vector, in one particular embodiment a plasmid, encoding one or more of the enzymes referred to hereinbefore in any combination.
[0260] The exogenous nucleic acids may remain extra-chromosomal upon transformation of the parental microorganism or may intergrate into the genome of the parental microorganism. Accordingly, they may include additional nucleotide sequences adapted to assist integration (for example, a region which allows for homologous recombination and targeted integration into the host genome) or expression and replication of an extrachromosomal construct (for example, origin of replication, promoter and other regulatory elements or sequences).
[0261] In one embodiment, the exogenous nucleic acids encoding one or enzymes as mentioned herein before will further comprise a promoter adapted to promote expression of the one or more enzymes encoded by the exogenous nucleic acids. In one embodiment, the promoter is a constitutive promoter that is preferably highly active under appropriate fermentation conditions. Inducible promoters could also be used. In preferred embodiments, the promoter is selected from the group comprising Wood-Ljungdahl gene cluster and Phosphotransacetylase/Acetate kinase promoters. It will be appreciated by those of skill in the art that other promoters which can direct expression, preferably a high level of expression under appropriate fermentation conditions, would be effective as alternatives to the exemplified embodiments.
[0262] In one embodiment, the exogenous nucleic acid is an expression plasmid.
[0263] In one particular embodiment, the parental microorganism is selected from the group of carboxydotrophic acetogenic bacteria. In certain embodiments the microorganism is selected from the group comprising Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium carboxidivorans, Clostridium drakei, Clostridium scatologenes, Clostridium aceticum, Clostridium formicoaceticum, Clostridium magnum, Butyribacterium methylotrophicum, Acetobacterium woodii, Alkalibaculum bacchii, Blautia producta, Eubacterium limosum, Moorella thermoacetica, Moorella thermautotrophica, Sporomusa ovata, Sporomusa silvacetica, Sporomusa sphaeroides, Oxobacter pfennigii, and Thermoanaerobacter kiuvi.
[0264] In one particular embodiment, the parental microorganism is selected from the cluster of ethanologenic, acetogenic Clostridia comprising the species C. autoethanogenum, C. ljungdahlii, and C. ragsdalei and related isolates. These include but are not limited to strains C. autoethanogenum JAI-1T (DSM10061) [Abrini J, Naveau H, Nyns E- J: Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 1994, 4: 345-351], C. autoethanogenum LBS1560 (DSM19630) [Simpson S D, Forster R L, Tran P T, Rowe M J, Warner I L: Novel bacteria and methods thereof. International patent 2009, WO/2009/064200], C. autoethanogenum LBS1561 (DSM23693), C. ljungdahlii PETCT (DSM13528=ATCC 55383) [Tanner R S, Miller L M, Yang D: Clostridium ljungdahlii sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I. Int J Syst Bacteriol 1993, 43: 232-236], C. ljungdahlii ERI-2 (ATCC 55380) [Gaddy J L: Clostridium stain which produces acetic acid from waste gases. US patent 1997, U.S. Pat. No. 5,593,886], C. ljungdahlii C-01 (ATCC 55988) [Gaddy J L, Clausen E C, Ko C- W: Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth. US patent, 2002, U.S. Pat. No. 6,368,819], C. ljungdahlii O-52 (ATCC 55989) [Gaddy J L, Clausen E C, Ko C- W: Microbial process for the preparation of acetic acid as well as solvent for its extraction from the fermentation broth. US patent, 2002, U.S. Pat. No. 6,368,819], C. ragsdalei P11T (ATCC BAA-622) [Huhnke R L, Lewis R S, Tanner R S: Isolation and Characterization of novel Clostridial Species. International patent 2008, WO 2008/028055], related isolates such as "C. coskatii" [Zahn et at--Novel ethanologenic species Clostridium coskatii (US Patent Application number US20110229947)] and "Clostridium sp." (Tyurin et al., 2012, J. Biotech Res. 4: 1-12), or mutated strains such as C. ljungdahlii OTA-1 (Tirado-Acevedo O. Production of Bioethanol from Synthesis Gas Using Clostridium ljungdahlii. PhD thesis, North Carolina State University, 2010). These strains form a subcluster within the Clostridial rRNA cluster I, and their 16S rRNA gene is more than 99% identical with a similar low GC content of around 30%. However, DNA-DNA reassociation and DNA fingerprinting experiments showed that these strains belong to distinct species [Huhnke R L, Lewis R S, Tanner R S: Isolation and Characterization of novel Clostridial Species. International patent 2008, WO 2008/028055].
[0265] All species of this cluster have a similar morphology and size (logarithmic growing cells are between 0.5-0.7×3-5 μm), are mesophilic (optimal growth temperature between 30-37° C.) and strictly anaerobe [Tanner R S, Miller L M, Yang D: Clostridium ljungdahlii sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I. Int J Syst Bacteriol 1993, 43: 232-236; Abrini J, Naveau H, Nyns E- J: Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 1994, 4: 345-351; Huhnke R L, Lewis R S, Tanner R S: Isolation and Characterization of novel Clostridial Species. International patent 2008, WO 2008/028055]. Moreover, they all share the same major phylogenetic traits, such as same pH range (pH 4-7.5, with an optimal initial pH of 5.5-6), strong autotrophic growth on CO containing gases with similar growth rates, and a similar metabolic profile with ethanol and acetic acid as main fermentation end product, and small amounts of 2,3-butanediol and lactic acid formed under certain conditions. [Tanner R S, Miller L M, Yang D: Clostridium ljungdahlii sp. nov., an Acetogenic Species in Clostridial rRNA Homology Group I. Int J Syst Bacteriol 1993, 43: 232-236; Abrini J, Naveau H, Nyns E- J: Clostridium autoethanogenum, sp. nov., an anaerobic bacterium that produces ethanol from carbon monoxide. Arch Microbiol 1994, 4: 345-351; Huhnke R L, Lewis R S, Tanner R S: Isolation and Characterization of novel Clostridial Species. International patent 2008, WO 2008/028055]. Indole production was observed with all three species as well. However, the species differentiate in substrate utilization of various sugars (e.g. rhamnose, arabinose), acids (e.g. gluconate, citrate), amino acids (e.g. arginine, histidine), or other substrates (e.g. betaine, butanol). Moreover some of the species were found to be auxotroph to certain vitamins (e.g. thiamine, biotin) while others were not.
[0266] In one embodiment, the parental carboxydotrophic acetogenic microorganism is selected from the group consisting of Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium carboxidivorans, Clostridium drakei, Clostridium scatologenes, Butyribacterium limosum, Butyribacterium methylotrophicum, Acetobacterium woodii, Alkalibaculum bacchii, Blautia producta, Eubacterium limosum, Moorella thermoacetica, Moorella thermautotrophica, Oxobacter pfennigii, and Thermoanaerobacter kiuvi.
[0267] In one particular embodiment of the first or second aspects, the parental microorganism is selected from the group of carboxydotrophic Clostridia comprising Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium ragsdalei, Clostridium carboxidivorans, Clostridium drakei, Clostridium scatologenes, Clostridium aceticum, Clostridium formicoaceticum, Clostridium magnum.
[0268] In a one embodiment, the microorganism is selected from a cluster of carboxydotrophic Clostridia comprising the species C. autoethanogenum, C. ljungdahlii, and "C. ragsdalei" and related isolates. These include but are not limited to strains C. autoethanogenum JAI-1T (DSM10061) (Abrini, Naveau, & Nyns, 1994), C. autoethanogenum LBS1560 (DSM19630) (WO/2009/064200), C. autoethanogenum LBS1561 (DSM23693), C. ljungdahlii PETCT (DSM13528=ATCC 55383) (Tanner, Miller, & Yang, 1993), C. ljungdahlii ERI-2 (ATCC 55380) (U.S. Pat. No. 5,593,886), C. ljungdahlii C-01 (ATCC 55988) (U.S. Pat. No. 6,368,819), C. ljungdahlii O-52 (ATCC 55989) (U.S. Pat. No. 6,368,819), or "C. ragsdalei P11T" (ATCC BAA-622) (WO 2008/028055), and related isolates such as "C. coskatii" (US patent 2011/0229947), "Clostridium sp. MT351" (Michael Tyurin & Kiriukhin, 2012) and mutant strains thereof such as C. ljungdahlii OTA-1 (Tirado-Acevedo O. Production of Bioethanol from Synthesis Gas Using Clostridium ljungdahlii. PhD thesis, North Carolina State University, 2010).
[0269] These strains form a subcluster within the Clostridial rRNA cluster I (Collins et al., 1994), having at least 99% identity on 16S rRNA gene level, although being distinct species as determined by DNA-DNA reassociation and DNA fingerprinting experiments (WO 2008/028055, US patent 2011/0229947).
[0270] The strains of this cluster are defined by common characteristics, having both a similar genotype and phenotype, and they all share the same mode of energy conservation and fermentative metabolism. The strains of this cluster lack cytochromes and conserve energy via an Rnf complex.
[0271] All strains of this cluster have a genome size of around 4.2 MBp (Kopke et al., 2010) and a GC composition of around 32% mol (Abrini et al., 1994; Kopke et al., 2010; Tanner et al., 1993) (WO 2008/028055; US patent 2011/0229947), and conserved essential key gene operons encoding for enzymes of Wood-Ljungdahl pathway (Carbon monoxide dehydrogenase, Formyl-tetrahydrofolate synthetase, Methylene-tetrahydrofolate dehydrogenase, Formyl-tetrahydrofolate cyclohydrolase, Methylene-tetrahydrofolate reductase, and Carbon monoxide dehydrogenase/Acetyl-CoA synthase), hydrogenase, formate dehydrogenase, Rnf complex (rnfCDGEAB), pyruvate:ferredoxin oxidoreductase, aldehyde:ferredoxin oxidoreductase (Kopke et al., 2010, 2011). The organization and number of Wood-Ljungdahl pathway genes, responsible for gas uptake, has been found to be the same in all species, despite differences in nucleic and amino acid sequences (Kopke et al., 2011).
[0272] The strains all have a similar morphology and size (logarithmic growing cells are between 0.5-0.7×3-5 μm), are mesophilic (optimal growth temperature between 30-37° C.) and strictly anaerobe (Abrini et al., 1994; Tanner et al., 1993) (WO 2008/028055). Moreover, they all share the same major phylogenetic traits, such as same pH range (pH 4-7.5, with an optimal initial pH of 5.5-6), strong autotrophic growth on CO containing gases with similar growth rates, and a metabolic profile with ethanol and acetic acid as main fermentation end product, with small amounts of 2,3-butanediol and lactic acid formed under certain conditions (Abrini et al., 1994; Kopke et al., 2011; Tanner et al., 1993) However, the species differentiate in substrate utilization of various sugars (e.g. rhamnose, arabinose), acids (e.g. gluconate, citrate), amino acids (e.g. arginine, histidine), or other substrates (e.g. betaine, butanol). Some of the species were found to be auxotroph to certain vitamins (e.g. thiamine, biotin) while others were not. Reduction of carboxylic acids into their corresponding alcohols has been shown in a range of these organisms (Perez, Richter, Loftus, & Angenent, 2012).
[0273] The traits described are therefore not specific to one organism like C. autoethanogenum or C. ljungdahlii, but rather general traits for carboxydotrophic, ethanol-synthesizing Clostridia. Thus, the invention can be anticipated to work across these strains, although there may be differences in performance.
[0274] The recombinant carboxydotrophic acetogenic microorganisms of the invention may be prepared from a parental carboxydotrophic acetogenic microorganism and one or more exogenous nucleic acids using any number of techniques known in the art for producing recombinant microorganisms. By way of example only, transformation (including transduction or transfection) may be achieved by electroporation, electrofusion, ultrasonication, polyethylene glycol-mediated transformation, conjugation, or chemical and natural competence. Suitable transformation techniques are described for example in Sambrook J, Fritsch E F, Maniatis T: Molecular Cloning: A laboratory Manual, Cold Spring Harbour Labrotary Press, Cold Spring Harbour, 1989.
[0275] Electroporation has been described for several carboxydotrophic acetogens as C. ljungdahlii (Kopke et al., 2010; Leang, Ueki, Nevin, & Lovley, 2012) (PCT/NZ2011/000203; WO2012/053905), C. autoethanogenum (PCT/NZ2011/000203; WO2012/053905), Acetobacterium woodii (Stratz, Sauer, Kuhn, & Dune, 1994) or Moorella thermoacetica (Kita et al., 2012) and is a standard method used in many Clostridia such as C. acetobutylicum (Mermelstein, Welker, Bennett, & Papoutsakis, 1992), C. cellulolyticum (Jennert, Tardif, Young, & Young, 2000) or C. thermocellum (MV Tyurin, Desai, & Lynd, 2004).
[0276] Electrofusion has been described for acetogenic Clostridium sp. MT351 (Tyurin and Kiriukhin, 2012).
[0277] Prophage induction has been described for carboxydotrophic acetogen as well in case of C. scatologenes (Prasanna Tamarapu Parthasarathy, 2010, Development of a Genetic Modification System in Clostridium scatologenes ATCC 25775 for Generation of Mutants, Masters Project Western Kentucky University).
[0278] Conjugation has been described as method of choice for acetogen Clostridium difficile (Herbert, O'Keeffe, Purdy, Elmore, & Minton, 2003) and many other Clostridia including C. acetobuylicum (Williams, Young, & Young, 1990).
[0279] In one embodiment, the parental strain uses CO as its sole carbon and energy source.
[0280] In one embodiment the parental microorganism is Clostridium autoethanogenum or Clostridium ljungdahlii. In one particular embodiment, the microorganism is Clostridium autoethanogenum DSM23693. In another particular embodiment, the microorganism is Clostridium ljungdahlii DSM13528 (or ATCC55383).
Nucleic Acids
[0281] The invention also provides one or more nucleic acids or nucleic acid constructs of use in generating a recombinant microorganism of the invention.
[0282] In one embodiment, the nucleic acid comprises sequences encoding one or more of the enzymes in the mevalonate (MVA) pathway and optionally the DXS pathway which when expressed in a microorganism allows the microorganism to produce one or more terpenes and/or precursors thereof by fermentation of a substrate comprising CO. In one particular embodiment, the invention provides a nucleic acid encoding two or more enzymes which when expressed in a microorganism allows the microorganism to produce one or more terpene and/or precursor thereof by fermentation of substrate comprising CO. In one embodiment, a nucleic acid of the invention encodes three, four, five or more of such enzymes.
[0283] In one embodiment, the one or more enzymes encoded by the nucleic acid are from the mevalonate (MVA) pathway and are selected from the group consisting of:
a) thiolase (EC 2.3.1.9), b) HMG-CoA synthase (EC 2.3.3.10), c) HMG-CoA reductase (EC 1.1.1.88), d) Mevalonate kinase (EC 2.7.1.36), e) Phosphomevalonate kinase (EC 2.7.4.2), f) Mevalonate Diphosphate decarboxylase (EC 4.1.1.33), and g) a functionally equivalent variant of any one thereof.
[0284] In a further embodiment, the one or more optional enzymes encoded by the nucleic acid are from the DXS pathway are selected from the group consisting of:
[0285] a) 1-deoxy-D-xylulose-5-phosphate synthase DXS (EC:2.2.1.7),
[0286] b) 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267),
[0287] c) 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60),
[0288] d) 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148),
[0289] e) 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (EC:4.6.1.12),
[0290] f) 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1),
[0291] g) 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2), and
[0292] h) a functionally equivalent variant of any one thereof.
[0293] In a further embodiment, the nucleic acid encodes one or more further enzymes that are expressed or over-expressed to result in the production of a terpene compound and/or precursor thereof wherein the exogenous enzyme that is expressed, or the endogenous enzyme that is overexpressed is selected from the group consisting of:
a) geranyltranstransferase Fps (EC:2.5.1.10), b) heptaprenyl diphosphate synthase (EC:2.5.1.10), c) octaprenyl-diphosphate synthase (EC:2.5.1.90), d) isoprene synthase (EC 4.2.3.27), e) isopentenyl-diphosphate delta-isomerase (EC EC 5.3.3.2), f) farnesene synthase (EC 4.2.3.46/EC 4.2.3.47), and g) a functionally equivalent variant of any one thereof.
[0294] Exemplary amino acid sequences and nucleic acid sequences encoding each of the above enzymes are provided herein or can be obtained from GenBank as mentioned hereinbefore. However, skilled persons will readily appreciate alternative nucleic acid sequences encoding the enzymes or functionally equivalent variants thereof, having regard to the information contained herein, in GenBank and other databases, and the genetic code.
[0295] In a further embodiment, the nucleic acid encoding thiolase (thIA) derived from Clostridium acetobutylicum ATCC824 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 40 hereinafter, or it is a functionally equivalent variant thereof.
[0296] In a further embodiment, the nucleic acid encoding thiolase wherein the thiolase is acetyl-CoA c-acetyltransferase (vraB) derived from Staphylococcus aureus subsp. aureus Mu50 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 41 hereinafter, or it is a functionally equivalent variant thereof.
[0297] In a further embodiment, the nucleic acid encoding 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) derived from Staphylococcus aureus subsp. aureus Mu50 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 42 hereinafter, or it is a functionally equivalent variant thereof.
[0298] In a further embodiment, the nucleic acid encoding Hydroxymethylglutaryl-CoA reductase (HMGR) derived from Staphylococcus aureus subsp. aureus Mu50 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 43 hereinafter, or it is a functionally equivalent variant thereof.
[0299] In a further embodiment, the nucleic acid encoding mevalonate kinase (MK) derived from Staphylococcus aureus subsp. aureus Mu50 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 51 hereinafter, or it is a functionally equivalent variant thereof.
[0300] In a further embodiment, the nucleic acid encoding phosphomevalonate kinase (PMK) derived from Staphylococcus aureus subsp. aureus Mu50 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 52 hereinafter, or it is a functionally equivalent variant thereof.
[0301] In a further embodiment, the nucleic acid encoding mevalonate diphosphate decarboxylase (PMD) derived from Staphylococcus aureus subsp. aureus Mu50 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 53 hereinafter, or it is a functionally equivalent variant thereof.
[0302] In a further embodiment, the nucleic acid encoding deoxyxylulose 5-phosphate synthase derived from C. autoethanogenum, is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 1 and/or with the amino acid sequence exemplified in SEQ ID NO: 2 hereinafter, or it is a functionally equivalent variant thereof.
[0303] In one embodiment, the nucleic acid encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase DXR (EC:1.1.1.267) has the sequence SEQ ID NO: 3 or is a functionally equivalent variant thereof.
[0304] In one embodiment, the nucleic acid encoding 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase IspD (EC:2.7.7.60) has the sequence SEQ ID NO: 5 or is a functionally equivalent variant thereof.
[0305] In one embodiment, the nucleic acid encoding 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase IspE (EC:2.7.1.148) has the sequence SEQ ID NO: 7 or is a functionally equivalent variant thereof.
[0306] In one embodiment, the nucleic acid encoding 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase IspF (EC:4.6.1.12) has the sequence SEQ ID NO: 9 or is a functionally equivalent variant thereof.
[0307] In one embodiment, the nucleic acid encoding 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase IspG (EC:1.17.7.1) has the sequence SEQ ID NO: 11 or is a functionally equivalent variant thereof.
[0308] In one embodiment, the nucleic acid encoding 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (EC:1.17.1.2) has the sequence SEQ ID NO: 13 or is a functionally equivalent variant thereof.
[0309] In a further embodiment, the nucleic acid encoding Geranyltranstransferase (ispA) derived from Escherichia coli str. K-12 substr. MG1655 is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 56 hereinafter, or it is a functionally equivalent variant thereof.
[0310] In one embodiment, the nucleic acid encoding heptaprenyl diphosphate synthase has the sequence SEQ ID NO: 17, or it is a functionally equivalent variant thereof.
[0311] In one embodiment, the nucleic acid encoding octaprenyl-diphosphate synthase (EC:2.5.1.90) wherein the octaprenyl-diphosphate synthase is polyprenyl synthetase is encoded by sequence SEQ ID NO: 19, or it is a functionally equivalent variant thereof.
[0312] In one embodiment, the nucleic acid encoding isoprene synthase (ispS) derived from Poplar tremuloides is exemplified in SEQ ID NO: 21 hereinafter, or it is a functionally equivalent variant thereof.
[0313] In a further embodiment, the nucleic acid encoding Isopentenyl-diphosphate delta-isomerase (idi) derived from Clostridium beijerinckii is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 54 hereinafter, or it is a functionally equivalent variant thereof.
[0314] In a further embodiment, the nucleic acid encoding Alpha-farnesene synthase (FS) derived from Malus×domestica is encoded by the nucleic acid sequence exemplified in SEQ ID NO: 57 hereinafter, or it is a functionally equivalent variant thereof.
[0315] In one embodiment, the nucleic acids of the invention will further comprise a promoter. In one embodiment, the promoter allows for constitutive expression of the genes under its control. However, inducible promoters may also be employed. Persons of skill in the art will readily appreciate promoters of use in the invention. Preferably, the promoter can direct a high level of expression under appropriate fermentation conditions. In a particular embodiment a Wood-Ljungdahl cluster promoter is used. In another embodiment, a Phosphotransacetylase/Acetate kindase promoter is used. In another embodiment a pyruvate:ferredoxin oxidoreductase promoter, an Rnf complex operon promoter or an ATP synthase operon promoter. In one particular embodiment, the promoter is from C. autoethanogenum.
[0316] The nucleic acids of the invention may remain extra-chromosomal upon transformation of a parental microorganism or may be adapted for intergration into the genome of the microorganism. Accordingly, nucleic acids of the invention may include additional nucleotide sequences adapted to assist integration (for example, a region which allows for homologous recombination and targeted integration into the host genome) or stable expression and replication of an extrachromosomal construct (for example, origin of replication, promoter and other regulatory sequences).
[0317] In one embodiment, the nucleic acid is nucleic acid construct or vector. In one particular embodiment, the nucleic acid construct or vector is an expression construct or vector, however other constructs and vectors, such as those used for cloning are encompassed by the invention. In one particular embodiment, the expression construct or vector is a plasmid.
[0318] It will be appreciated that an expression construct/vector of the present invention may contain any number of regulatory elements in addition to the promoter as well as additional genes suitable for expression of further proteins if desired. In one embodiment the expression construct/vector includes one promoter. In another embodiment, the expression construct/vector includes two or more promoters. In one particular embodiment, the expression construct/vector includes one promoter for each gene to be expressed. In one embodiment, the expression construct/vector includes one or more ribosomal binding sites, preferably a ribosomal binding site for each gene to be expressed.
[0319] It will be appreciated by those of skill in the art that the nucleic acid sequences and construct/vector sequences described herein may contain standard linker nucleotides such as those required for ribosome binding sites and/or restriction sites. Such linker sequences should not be interpreted as being required and do not provide a limitation on the sequences defined.
[0320] Nucleic acids and nucleic acid constructs, including expression constructs/vectors of the invention may be constructed using any number of techniques standard in the art. For example, chemical synthesis or recombinant techniques may be used. Such techniques are described, for example, in Sambrook et al (Molecular Cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989). Further exemplary techniques are described in the Examples section herein after. Essentially, the individual genes and regulatory elements will be operably linked to one another such that the genes can be expressed to form the desired proteins. Suitable vectors for use in the invention will be appreciated by those of ordinary skill in the art. However, by way of example, the following vectors may be suitable: pMTL80000 vectors, pIMP1, pJIR750, and the plasmids exemplified in the Examples section herein after.
[0321] It should be appreciated that nucleic acids of the invention may be in any appropriate form, including RNA, DNA, or cDNA.
[0322] The invention also provides host organisms, particularly microorganisms, and including viruses, bacteria, and yeast, comprising any one or more of the nucleic acids described herein.
Methods of Producing Organisms
[0323] The one or more exogenous nucleic acids may be delivered to a parental microorganism as naked nucleic acids or may be formulated with one or more agents to facilitate the transformation process (for example, liposome-conjugated nucleic acid, an organism in which the nucleic acid is contained). The one or more nucleic acids may be DNA, RNA, or combinations thereof, as is appropriate. Restriction inhibitors may be used in certain embodiments; see, for example Murray, N. E. et al. (2000) Microbial. Molec. Biol. Rev. 64, 412.)
[0324] The microorganisms of the invention may be prepared from a parental microorganism and one or more exogenous nucleic acids using any number of techniques known in the art for producing recombinant microorganisms. By way of example only, transformation (including transduction or transfection) may be achieved by electroporation, ultrasonication, polyethylene glycol-mediated transformation, chemical or natural competence, or conjugation. Suitable transformation techniques are described for example in, Sambrook J, Fritsch E F, Maniatis T: Molecular Cloning: A laboratory Manual, Cold Spring Harbour Labrotary Press, Cold Spring Harbour, 1989.
[0325] In certain embodiments, due to the restriction systems which are active in the microorganism to be transformed, it is necessary to methylate the nucleic acid to be introduced into the microorganism. This can be done using a variety of techniques, including those described below, and further exemplified in the Examples section herein after.
[0326] By way of example, in one embodiment, a recombinant microorganism of the invention is produced by a method comprises the following steps:
[0327] b) introduction into a shuttle microorganism of (i) of an expression construct/vector as described herein and (ii) a methylation construct/vector comprising a methyltransferase gene;
[0328] c) expression of the methyltransferase gene;
[0329] d) isolation of one or more constructs/vectors from the shuttle microorganism; and,
[0330] e) introduction of the one or more construct/vector into a destination microorganism.
[0331] In one embodiment, the methyltransferase gene of step B is expressed constitutively.
[0332] In another embodiment, expression of the methyltransferase gene of step B is induced.
[0333] The shuttle microorganism is a microorganism, preferably a restriction negative microorganism, that facilitates the methylation of the nucleic acid sequences that make up the expression construct/vector. In a particular embodiment, the shuttle microorganism is a restriction negative E. coli, Bacillus subtillis, or Lactococcus lactis.
[0334] The methylation construct/vector comprises a nucleic acid sequence encoding a methyltransferase.
[0335] Once the expression construct/vector and the methylation construct/vector are introduced into the shuttle microorganism, the methyltransferase gene present on the methylation construct/vector is induced. Induction may be by any suitable promoter system although in one particular embodiment of the invention, the methylation construct/vector comprises an inducible lac promoter and is induced by addition of lactose or an analogue thereof, more preferably isopropyl-β-D-thio-galactoside (IPTG). Other suitable promoters include the ara, tet, or T7 system. In a further embodiment of the invention, the methylation construct/vector promoter is a constitutive promoter.
[0336] In a particular embodiment, the methylation construct/vector has an origin of replication specific to the identity of the shuttle microorganism so that any genes present on the methylation construct/vector are expressed in the shuttle microorganism. Preferably, the expression construct/vector has an origin of replication specific to the identity of the destination microorganism so that any genes present on the expression construct/vector are expressed in the destination microorganism.
[0337] Expression of the methyltransferase enzyme results in methylation of the genes present on the expression construct/vector. The expression construct/vector may then be isolated from the shuttle microorganism according to any one of a number of known methods. By way of example only, the methodology described in the Examples section described hereinafter may be used to isolate the expression construct/vector.
[0338] In one particular embodiment, both construct/vector are concurrently isolated.
[0339] The expression construct/vector may be introduced into the destination microorganism using any number of known methods. However, by way of example, the methodology described in the Examples section hereinafter may be used. Since the expression construct/vector is methylated, the nucleic acid sequences present on the expression construct/vector are able to be incorporated into the destination microorganism and successfully expressed.
[0340] It is envisaged that a methyltransferase gene may be introduced into a shuttle microorganism and over-expressed. Thus, in one embodiment, the resulting methyltransferase enzyme may be collected using known methods and used in vitro to methylate an expression plasmid. The expression construct/vector may then be introduced into the destination microorganism for expression. In another embodiment, the methyltransferase gene is introduced into the genome of the shuttle microorganism followed by introduction of the expression construct/vector into the shuttle microorganism, isolation of one or more constructs/vectors from the shuttle microorganism and then introduction of the expression construct/vector into the destination microorganism.
[0341] It is envisaged that the expression construct/vector and the methylation construct/vector as defined above may be combined to provide a composition of matter. Such a composition has particular utility in circumventing restriction barrier mechanisms to produce the recombinant microorganisms of the invention.
[0342] In one particular embodiment, the expression construct/vector and/or the methylation construct/vector are plasmids.
[0343] Persons of ordinary skill in the art will appreciate a number of suitable methyltransferases of use in producing the microorganisms of the invention. However, by way of example the Bacillus subtilis phage ΦT1 methyltransferase and the methyltransferase described in the Examples herein after may be used. In one embodiment, the methyltransferase has the amino acid sequence of SEQ ID NO: 60 or is a functionally equivalent variant thereof. Nucleic acids encoding suitable methyltransferases will be readily appreciated having regard to the sequence of the desired methyltransferase and the genetic code. In one embodiment, the nucleic acid encoding a methyltransferase is as described in the Examples herein after (for example the nucleic acid of SEQ ID NO: 63, or it is a functionally equivalent variant thereof).
[0344] Any number of constructs/vectors adapted to allow expression of a methyltransferase gene may be used to generate the methylation construct/vector. However, by way of example, the plasmid described in the Examples section hereinafter may be used.
Methods of Production
[0345] The invention provides a method for the production of one or more terpenes and/or precursors thereof, and optionally one or more other products, by microbial fermentation comprising fermenting a substrate comprising CO using a recombinant microorganism of the invention. Preferably, the one or more terpene and/or precursor thereof is the main fermentation product. The methods of the invention may be used to reduce the total atmospheric carbon emissions from an industrial process.
[0346] Preferably, the fermentation comprises the steps of anaerobically fermenting a substrate in a bioreactor to produce at least one or more terpenes and/or a precursor thereof using a recombinant microorganism of the invention.
[0347] In one embodiment, the one or more terpene and/or precursor thereof is chosen from mevalonic acid, IPP, dimethylallyl pyrophosphate (DMAPP), isoprene, geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP) and farnesene.
[0348] Instead of producing isoprene directly from terpenoid key intermediates IPP and DMAPP then using this to synthesise longer chain terpenes, it is also possible to synthesise longer chain terpenes, such as C10 Monoterpenoids or C15 Sesquiterpenoids, directly via a geranyltransferase (see Table 6). From C15 Sesquiterpenoid building block farnesyl-PP it is possible to produce farnesene, which, similarly to ethanol, can be used as a transportation fuel.
[0349] In one embodiment the method comprises the steps of:
(a) providing a substrate comprising CO to a bioreactor containing a culture of one or more microorganism of the invention; and (b) anaerobically fermenting the culture in the bioreactor to produce at least one or more terpene and/or precursor thereof.
[0350] In one embodiment the method comprises the steps of:
[0351] a) capturing CO-containing gas produced as a result of the industrial process;
[0352] b) anaerobic fermentation of the CO-containing gas to produce the at least one or more terpene and/or precursor thereof by a culture containing one or more microorganism of the invention.
[0353] In an embodiment of the invention, the gaseous substrate fermented by the microorganism is a gaseous substrate containing CO. The gaseous substrate may be a CO-containing waste gas obtained as a by-product of an industrial process, or from some other source such as from automobile exhaust fumes. In certain embodiments, the industrial process is selected from the group consisting of ferrous metal products manufacturing, such as a steel mill, non-ferrous products manufacturing, petroleum refining processes, gasification of coal, electric power production, carbon black production, ammonia production, methanol production and coke manufacturing. In these embodiments, the CO-containing gas may be captured from the industrial process before it is emitted into the atmosphere, using any convenient method. The CO may be a component of syngas (gas comprising carbon monoxide and hydrogen). The CO produced from industrial processes is normally flared off to produce CO2 and therefore the invention has particular utility in reducing CO2 greenhouse gas emissions and producing a terpene for use as a biofuel. Depending on the composition of the gaseous CO-containing substrate, it may also be desirable to treat it to remove any undesired impurities, such as dust particles before introducing it to the fermentation. For example, the gaseous substrate may be filtered or scrubbed using known methods.
[0354] It will be appreciated that for growth of the bacteria and CO-to-at least one or more terpene and/or precursor thereof to occur, in addition to the CO-containing substrate gas, a suitable liquid nutrient medium will need to be fed to the bioreactor. The substrate and media may be fed to the bioreactor in a continuous, batch or batch fed fashion. A nutrient medium will contain vitamins and minerals sufficient to permit growth of the micro-organism used. Anaerobic media suitable for fermentation to produce a terpene and/or a prescursor thereof using CO are known in the art. For example, suitable media are described Biebel (2001). In one embodiment of the invention the media is as described in the Examples section herein after.
[0355] The fermentation should desirably be carried out under appropriate conditions for the CO-to-the at least one or more terpene and/or precursor thereof fermentation to occur. Reaction conditions that should be considered include pressure, temperature, gas flow rate, liquid flow rate, media pH, media redox potential, agitation rate (if using a continuous stirred tank reactor), inoculum level, maximum gas substrate concentrations to ensure that CO in the liquid phase does not become limiting, and maximum product concentrations to avoid product inhibition.
[0356] In addition, it is often desirable to increase the CO concentration of a substrate stream (or CO partial pressure in a gaseous substrate) and thus increase the efficiency of fermentation reactions where CO is a substrate. Operating at increased pressures allows a significant increase in the rate of CO transfer from the gas phase to the liquid phase where it can be taken up by the micro-organism as a carbon source for the production of at least one or more terpene and/or precursor thereof. This in turn means that the retention time (defined as the liquid volume in the bioreactor divided by the input gas flow rate) can be reduced when bioreactors are maintained at elevated pressure rather than atmospheric pressure. The optimum reaction conditions will depend partly on the particular micro-organism of the invention used. However, in general, it is preferred that the fermentation be performed at pressure higher than ambient pressure. Also, since a given CO-to-at least one or more terpene and/or precursor thereof conversion rate is in part a function of the substrate retention time, and achieving a desired retention time in turn dictates the required volume of a bioreactor, the use of pressurized systems can greatly reduce the volume of the bioreactor required, and consequently the capital cost of the fermentation equipment. According to examples given in U.S. Pat. No. 5,593,886, reactor volume can be reduced in linear proportion to increases in reactor operating pressure, i.e. bioreactors operated at 10 atmospheres of pressure need only be one tenth the volume of those operated at 1 atmosphere of pressure.
[0357] By way of example, the benefits of conducting a gas-to-ethanol fermentation at elevated pressures has been described. For example, WO 02/08438 describes gas-to-ethanol fermentations performed under pressures of 30 psig and 75 psig, giving ethanol productivities of 150 g/l/day and 369 g/l/day respectively. However, example fermentations performed using similar media and input gas compositions at atmospheric pressure were found to produce between 10 and 20 times less ethanol per litre per day.
[0358] It is also desirable that the rate of introduction of the CO-containing gaseous substrate is such as to ensure that the concentration of CO in the liquid phase does not become limiting. This is because a consequence of CO-limited conditions may be that one or more product is consumed by the culture.
[0359] The composition of gas streams used to feed a fermentation reaction can have a significant impact on the efficiency and/or costs of that reaction. For example, O2 may reduce the efficiency of an anaerobic fermentation process. Processing of unwanted or unnecessary gases in stages of a fermentation process before or after fermentation can increase the burden on such stages (e.g. where the gas stream is compressed before entering a bioreactor, unnecessary energy may be used to compress gases that are not needed in the fermentation). Accordingly, it may be desirable to treat substrate streams, particularly substrate streams derived from industrial sources, to remove unwanted components and increase the concentration of desirable components.
[0360] In certain embodiments a culture of a bacterium of the invention is maintained in an aqueous culture medium. Preferably the aqueous culture medium is a minimal anaerobic microbial growth medium. Suitable media are known in the art and described for example in U.S. Pat. Nos. 5,173,429 and 5,593,886 and WO 02/08438, and as described in the Examples section herein after.
[0361] Terpenes and/or precursors thereof, or a mixed stream containing one or more terpenes, precursors thereof and/or one or more other products, may be recovered from the fermentation broth by methods known in the art, such as fractional distillation or evaporation, pervaporation, gas stripping and extractive fermentation, including for example, liquid-liquid extraction.
[0362] In certain preferred embodiments of the invention, the one or more terpene and/or precursor thereof and one or more products are recovered from the fermentation broth by continuously removing a portion of the broth from the bioreactor, separating microbial cells from the broth (conveniently by filtration), and recovering one or more products from the broth. Alcohols may conveniently be recovered for example by distillation. Acetone may be recovered for example by distillation. Any acids produced may be recovered for example by adsorption on activated charcoal. The separated microbial cells are preferably returned to the fermentation bioreactor. The cell free permeate remaining after any alcohol(s) and acid(s) have been removed is also preferably returned to the fermentation bioreactor. Additional nutrients (such as B vitamins) may be added to the cell free permeate to replenish the nutrient medium before it is returned to the bioreactor.
[0363] Also, if the pH of the broth was adjusted as described above to enhance adsorption of acetic acid to the activated charcoal, the pH should be re-adjusted to a similar pH to that of the broth in the fermentation bioreactor, before being returned to the bioreactor.
EXAMPLES
[0364] The invention will now be described in more detail with reference to the following non-limiting examples.
Example 1
Expression of Isoprene Synthase in C. autoethanogenum for Production of Isoprene from CO
[0365] The inventors have identified terpene biosynthesis genes in carboxydotrophic acetogens such as C. autoethanogenum and C. ljungdahlii. A recombinant organism was engineered to produce isoprene. Isoprene is naturally emitted by some plant such as poplar to protect its leave from UV radiation. Isoprene synthase (EC 4.2.3.27) gene of Poplar was codon optimized and introduced into a carboxydotrophic acetogen C. autoethanogenum to produce isoprene from CO. The enzyme takes key intermediate DMAPP (Dimethylallyl diphosphate) of terpenoid biosynthesis to isoprene in an irreversible reaction (FIG. 1).
Strains and Growth Conditions:
[0366] All subcloning steps were performed in E. coli using standard strains and growth conditions as described earlier (Sambrook et al, Molecular Cloning: A laboratory Manual, Cold Spring Harbour Labrotary Press, Cold Spring Harbour, 1989; Ausubel et al, Current protocols in molecular biology, John Wiley & Sons, Ltd., Hoboken, 1987).
[0367] C. autoethanogenum DSM10061 and DSM23693 (a derivative of DSM10061) were obtained from DSMZ (The German Collection of Microorganisms and Cell Cultures, Inhoffenstraβe 7 B, 38124 Braunschweig, Germany). Growth was carried out at 37° C. using strictly anaerobic conditions and techniques (Hungate, 1969, Methods in Microbiology, vol. 3B. Academic Press, New York: 117-132; Wolfe, 1971, Adv. Microb. Physiol., 6: 107-146). Chemically defined PETC media without yeast extract (Table 1) and 30 psi carbon monoxide containing steel mill waste gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44% CO, 32% N2, 22% CO2, 2% H2) as sole carbon and energy source was used.
TABLE-US-00003 TABLE 1 Media component Concentration per 1.0 L of media NH4Cl 1 g KCl 0.1 g MgSO4•7H2O 0.2 g NaCl 0.8 g KH2PO4 0.1 g CaCl2 0.02 g Trace metal solution 10 ml Wolfe's vitamin solution 10 ml Resazurin (2 g/L stock) 0.5 ml NaHCO3 2 g Reducing agent 0.006-0.008% (v/v) Distilled water Up to 1 L, pH 5.5 (adjusted with HCl) Wolfe's vitamin solution per L of Stock Biotin 2 mg Folic acid 2 mg Pyridoxine hydrochloride 10 mg Riboflavin 5 mg Nicotinic acid 5 mg Calcium D-(+)-pantothenate 5 mg Vitamin B12 0.1 mg p-Aminobenzoic acid 5 mg Lipoic acid 5 mg Thiamine 5 mg Distilled water To 1 L Trace metal solution per L of stock Nitrilotriacetic Acid 2 g MnSO4•H2O 1 g Fe (SO4)2(NH4)2•6H2O 0.8 g CoCl2•6H2O 0.2 g ZnSO4•7H2O 0.2 mg CuCl2•2H2O 0.02 g NaMoO4•2H2O 0.02 g Na2SeO3 0.02 g NiCl2•6H2O 0.02 g Na2WO4•2H2O 0.02 g Distilled water To 1 L Reducing agent stock per 100 mL of stock NaOH 0.9 g Cystein•HCl 4 g Na2S 4 g Distilled water To 100 mL
Construction of Expression Plasmid:
[0368] Standard Recombinant DNA and molecular cloning techniques were used in this invention (Sambrook J, Fritsch E F, Maniatis T: Molecular Cloning: A laboratory Manual, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, 1989; Ausubel F M, Brent R, Kingston R E, Moore D D, Seidman J G, Smith J A, Struhl K: Current protocols in molecular biology. John Wiley & Sons, Ltd., Hoboken, 1987). The isoprene synthase of Poplar tremuloides (AAQ16588.1; GI:33358229) was codon-optimized (SEQ ID NO: 21) and synthesized. A promoter region of the Pyruvate:ferredoxin oxidoreductase of C. autoethanogenum (SEQ ID NO: 22) was used to express the gene.
[0369] Genomic DNA from Clostridium autoethanogenum DSM23693 was isolated using a modified method by Bertram and Dune (1989). A 100-ml overnight culture was harvested (6,000×g, 15 min, 4° C.), washed with potassium phosphate buffer (10 mM, pH 7.5) and suspended in 1.9 ml STE buffer (50 mM Tris-HCl, 1 mM EDTA, 200 mM sucrose; pH 8.0). 300 μl lysozyme (˜100,000 U) was added and the mixture was incubated at 37° C. for 30 min, followed by addition of 280 μl of a 10% (w/v) SDS solution and another incubation for 10 min. RNA was digested at room temperature by addition of 240 μl of an EDTA solution (0.5 M, pH 8), 20 μl Tris-HCl (1 M, pH 7.5), and 10 μl RNase A (Fermentas Life Sciences). Then, 100 μl Proteinase K (0.5 U) was added and proteolysis took place for 1-3 h at 37° C. Finally, 600 μl of sodium perchlorate (5 M) was added, followed by a phenol-chloroform extraction and an isopropanol precipitation. DNA quantity and quality was inspected spectrophotometrically. The Pyruvate:ferredoxin oxidoreductase promoter sequence was amplified by PCR using oligonucleotides Ppfor-NotI-F (SEQ ID NO: 23: AAGCGGCCGCAAAATAGTTGATAATAATGC) and Ppfor-NdeI-R (SEQ ID NO: 24: TACGCATATGAATTCCTCTCCTTTTCAAGC) using iProof High Fidelity DNA Polymerase (Bio-Rad Laboratories) and the following program: initial denaturation at 98° C. for 30 seconds, followed by 32 cycles of denaturation (98° C. for 10 seconds), annealing (50-62° C. for 30-120 seconds) and elongation (72° C. for 30-90 seconds), before a final extension step (72° C. for 10 minutes).
Construction of Isoprene Synthase Expression Plasmid:
[0370] Construction of an expression plasmid was performed in E. coli DH5α-T1R (Invitrogen) and XL 1-Blue MRF' Kan (Stratagene). In a first step, the amplified Ppfor promoter region was cloned into the E. coli-Clostridium shuttle vector pMTL85141 (FJ797651.1; Nigel Minton, University of Nottingham; Heap et al., 2009) using NotI and NdeI restriction sites, generating plasmid pMTL85146. As a second step, ispS was cloned into pMTL85146 using restriction sites NdeI and EcoRI, resulting in plasmid pMTL 85146-ispS (FIG. 2, SEQ ID NO: 25).
Transformation and Expression in C. autoethanogenum
[0371] Prior to transformation, DNA was methylated in vivo in E. coli using a synthesized hybrid Type II methyltransferase (SEQ ID NO: 63) co-expressed on a methylation plasmid (SEQ ID NO: 64) designed from methyltransferase genes from C. autoethanogenum, C. ragsdalei and C. ljungdahlii as described in US patent 2011/0236941.
[0372] Both expression plasmid and methylation plasmid were transformed into same cells of restriction negative E. coli XL1-Blue MRF' Kan (Stratagene), which is possible due to their compatible Gram-(-) origins of replication (high copy ColE1 in expression plasmid and low copy p15A in methylation plasmid). In vivo methylation was induced by addition of 1 mM IPTG, and methylated plasmids were isolated using QIAGEN Plasmid Midi Kit (QIAGEN). The resulting mixture was used for transformation experiments with C. autoethanogenum DSM23693, but only the abundant (high-copy) expression plasmid has a Gram-(+) replication origin (repL) allowing it to replicate in Clostridia.
Transformation into C. autoethanogenum:
[0373] During the complete transformation experiment, C. autoethanogenum DSM23693 was grown in PETC media (Table 1) supplemented with 1 g/L yeast extract and 10 g/l fructose as well as 30 psi steel mill waste gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44% CO, 32% N2, 22% CO2, 2% H2) as carbon source.
[0374] To make competent cells, a 50 ml culture of C. autoethanogenum DSM23693 was subcultured to fresh media for 3 consecutive days. These cells were used to inoculate 50 ml PETC media containing 40 mM DL-threonine at an OD.sub.600nm of 0.05. When the culture reached an OD.sub.600nm of 0.4, the cells were transferred into an anaerobic chamber and harvested at 4,700×g and 4° C. The culture was twice washed with ice-cold electroporation buffer (270 mM sucrose, 1 mM MgCl2, 7 mM sodium phosphate, pH 7.4) and finally suspended in a volume of 600 μl fresh electroporation buffer. This mixture was transferred into a pre-cooled electroporation cuvette with a 0.4 cm electrode gap containing 1 μg of the methylated plasmid mixture and immediately pulsed using the Gene pulser Xcell electroporation system (Bio-Rad) with the following settings: 2.5 kV, 600Ω, and 25 μF. Time constants of 3.7-4.0 ms were achieved. The culture was transferred into 5 ml fresh media. Regeneration of the cells was monitored at a wavelength of 600 nm using a Spectronic Helios Epsilon Spectrophotometer (Thermo) equipped with a tube holder. After an initial drop in biomass, the cells started growing again. Once the biomass has doubled from that point, the cells were harvested, suspended in 200 μl fresh media and plated on selective PETC plates (containing 1.2% Bacto® Agar (BD)) with appropriate antibiotics 4 μg/ml Clarithromycin or 15 μg/ml thiamphenicol. After 4-5 days of inoculation with 30 psi steel mill gas at 37° C., colonies were visible.
[0375] The colonies were used to inoculate 2 ml PETC media with antibiotics. When growth occurred, the culture was scaled up into a volume of 5 ml and later 50 ml with 30 psi steel mill gas as sole carbon source.
Confirmation of the Successful Transformation:
[0376] To verify the DNA transfer, a plasmid mini prep was performed from 10 ml culture volume using Zyppy plasmid miniprep kit (Zymo). Since the quality of the isolated plasmid was not sufficient for a restriction digest due to Clostridial exonuclease activity [Burchhardt and Dune, 1990], a PCR was performed with the isolated plasmid with oligonucleotide pairs colE1-F (SEQ ID NO: 65: CGTCAGACCCCGTAGAAA) plus colE1-R (SEQ ID NO: 66: CTCTCCTGTTCCGACCCT). PCR was carried out using iNtRON Maximise Premix PCR kit (Intron Bio Technologies) with the following conditions: initial denaturation at 94° C. for 2 minutes, followed by 35 cycles of denaturation (94° C. for 20 seconds), annealing (55° C. for 20 seconds) and elongation (72° C. for 60 seconds), before a final extension step (72° C. for 5 minutes).
[0377] To confirm the identity of the clones, genomic DNA was isolated (see above) from 50 ml cultures of C. autoethanogenum DSM23693. A PCR was performed against the 16s rRNA gene using oligonucleotides fD1 (SEQ ID NO: 67: CCGAATTCGTCGACAACAGAGTTTGATCCTGGCTCAG) and rP2 (SEQ ID NO: 68: CCCGGGATCCAAGCTTACGGCTACCTTGTTACGACTT) [Weisberg et al., 1991] and iNtRON Maximise Premix PCR kit (Intron Bio Technologies) with the following conditions: initial denaturation at 94° C. for 2 minutes, followed by 35 cycles of denaturation (94° C. for 20 seconds), annealing (55° C. for 20 seconds) and elongation (72° C. for 60 seconds), before a final extension step (72° C. for 5 minutes). Sequencing results were at least 99.9% identity against the 16s rRNA gene (rrsA) of C. autoethanogenum (Y18178, GI:7271109).
Expression of Isoprene Synthase Gene
[0378] qRT-PCR experiments were performed to confirm successful expression of introduced isoprene synthase gene in C. autoethanogenum.
[0379] A culture harboring isoprene synthase plasmid pMTL 85146-ispS and a control culture without plasmid was grown in 50 mL serum bottles and PETC media (Table 1) with 30 psi steel mill waste gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44% CO, 32% N2, 22% CO2, 2% H2) as sole energy and carbon source. 0.8 mL samples were taken during logarithmic growth phase at an OD.sub.600nm of around 0.5 and mixed with 1.6 mL RNA protect reagent (Qiagen). The mixture was centrifuged (6,000×g, 5 min, 4° C.), and the cell sediment snap frozen in liquid nitrogen and stored at -80° C. until RNA extraction. Total RNA was isolated using RNeasy Mini Kit (Qiagen) according to protocol 5 of the manual. Disruption of the cells was carried out by passing the mixture through a syringe 10 times, and eluted in 50 μL of RNase/DNase-free water. After DNase I treatment using DNA-free® Kit (Ambion), the reverse transcription step was then carried out using SuperScript III Reverse Transcriptase Kit (Invitrogen, Carlsbad, Calif., USA). RNA was checked using an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, Calif., USA), Qubit Fluorometer (Invitrogen, Carlsbad, Calif., USA) and by gel electrophoresis. A non-RT control was performed for every oligonucleotide pair. All qRT-PCR reactions were performed in duplicate using a MyiQ® Single Colour Detection System (Bio-Rad Labratories, Carlsbad, Calif., USA) in a total reaction volume of 15 μL with 25 ng of cDNA template, 67 nM of each oligonucleotide (Table 2), and 1×iQ® SYBR® Green Supermix (Bio-Rad Labratories, Carlsbad, Calif., USA). The reaction conditions were 95° C. for 3 min, followed by 40 cycles of 95° C. for 15 s, 55° C. for 15 s and 72° C. for 30 s. For detection of oligonucleotide dimerisation or other artifacts of amplification, a melting-curve analysis was performed immediately after completion of the qPCR (38 cycles of 58° C. to 95° C. at 1° C./s). Two housekeeping genes (guanylate kinase and formate tetrahydrofolate ligase) were included for each cDNA sample for normalization. Determination of relative gene expression was conducted using Relative Expression Software Tool (REST©) 2008 V2.0.7 (38). Dilution series of cDNA spanning 4 log units were used to generate standard curves and the resulting amplification efficiencies to calculate concentration of mRNA.
TABLE-US-00004 TABLE 2 Oligonucleotides for qRT-PCR Oligo- SEQ Target nucleotide DNA Sequence ID Name (5' to 3') NO: Guanylate kinase (gnk) GnK-F TCAGGACCTTCTGGAACTGG 108 GnK-R ACCTCCCCTTTTCTTGGAGA 109 Formate tetrahydrofolate FoT4L-F CAGGTTTCGGTGCTGACCTA 110 ligase (FoT4L) FoT4L-F AACTCCGCCGTTGTATTTCA 111 Isoprene Synthase ispS-F AGG CTG AAT TTC TTA CAC 69 TTC TTG A ispS-R GTA ACT CCA TCA AAT CCT 70 CCA CTA C
[0380] While no amplification was observed with the wild-type strain using oligonucleotide pair ispS, a signal with the ispS oligonucleotide pair was measured for the strain carrying plasmid pMTL 85146-ispS, confirming successful expression of the ispS gene.
Example 2
Expression of Isopentenyl-Diphosphate Delta-Isomerase to Convert Between Key Terpene Precursors DMAPP (Dimethylallyl Diphosphate) and IPP (Isopentenyl Diphosphate)
[0381] Availability and balance of precursors DMAPP (Dimethylallyl diphosphate) and IPP (Isopentenyl diphosphate) is crucial for production of terpenes. While the DXS pathway synthesizes both IPP and DMAPP equally, in the mevalonate pathway the only product is IPP. Production of isoprene requires only the precursor DMAPP to be present in conjunction with an isoprene synthase, while for production of higher terpenes and terpenoids, it is required to have equal amounts of IPP and DMAPP available to produce Geranyl-PP by a geranyltransferase.
Construction of Isopentenyl-Diphosphate Delta-Isomerase Expression Plasmid:
[0382] An Isopentenyl-diphosphate delta-isomerase gene idi from C. beijerinckii (Gene ID:5294264), encoding an Isopentenyl-diphosphate delta-isomerase (YP--001310174.1), was cloned downstream of ispS. The gene was amplified using oligonucleotide Idi-Cbei-SacI-F (SEQ ID NO: 26: GTGAGCTCGAAAGGGGAAATTAAATG) and Idi-Cbei-KpnI-R (SEQ ID NO: 27: ATGGTACCCCAAATCTTTATTTAGACG) from genomic DNA of C. beijerinckii NCIMB8052, obtained using the same method as described above for C. autoethanogenum. The PCR product was cloned into vector pMTL 85146-ispS using Sad and KpnI restriction sites to yield plasmid pMTL85146-ispS-idi (SEQ ID NO: 28). The antibiotic resistance marker was exchanged from catP to ermB (released from vector pMTL82254 (FJ797646.1; Nigel Minton, University of Nottingham; Heap et al., 2009) using restriction enzymes PmeI and FseI to form plasmid pMTL85246-ispS-idi (FIG. 3).
[0383] Transformation and expression in C. autoethanogenum was carried out as described for plasmid pMTL 85146-ispS. After successful transformation, growth experiment was carried out in 50 mL 50 mL serum bottles and PETC media (Table 1) with 30 psi steel mill waste gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44% CO, 32% N2, 22% CO2, 2% H2) as sole energy and carbon source. To confirm that the plasmid has been successfully introduced, plasmid mini prep DNA was carried out from transformants as described previously. PCR against the isolated plasmid using oligonucleotide pairs that target colE1 (colE1-F: SEQ ID NO: 65: CGTCAGACCCCGTAGAAA and colE1-R: SEQ ID NO: 66: CTCTCCTGTTCCGACCCT), ermB (ermB-F: SEQ ID NO: 106: TTTGTAATTAAGAAGGAG and ermB-R: SEQ ID NO: 107: GTAGAATCCTTCTTCAAC) and idi (Idi-Cbei-SacI-F: SEQ ID NO: 26: GTGAGCTCGAAAGGGGAAATTAAATG and Idi-Cbei-KpnI-R: SEQ ID NO: 27: ATGGTACCCCAAATCTTTATTTAGACG) confirmed transformation success (FIG. 8). Similarly, genomic DNA from these transformants were extracted, and the resulting 16s rRNA amplicon using oligonucleotides fD1 and rP2 (see above) confirmed 99.9% identity against the 16S rRNA gene of C. autoethanogenum (Y18178, GI:7271109).
[0384] Successful confirmation of gene expression was carried out as described above using a oligonucleotide pair against Isopentenyl-diphosphate delta-isomerase gene idi (idi-F, SEQ ID NO: 71: ATA CGT GCT GTA GTC ATC CAA GAT A and idiR, SEQ ID NO: 72: TCT TCA AGT TCA CAT GTA AAA CCC A) and a sample from a serum bottle growth experiment with C. autoethanogenum carrying plasmid pMTL 85146-ispS-idi. A signal for the isoprene synthase gene ispS was also observed (FIG. 14).
Example 3
Overexpression of DXS Pathway
[0385] To improve flow through the DXS pathway, genes of the pathway were overexpressed. The initial step of the pathway, converting pyruvate and D-glyceraldehyde-3-phosphate (G3P) into deoxyxylulose 5-phosphate (DXP/DXPS/DOXP), is catalyzed by an deoxyxylulose 5-phosphate synthase (DXS).
Construction of DXS Overexpression Expression Plasmid:
[0386] The dxs gene of C. autoethanogenum was amplified from genomic DNA with oligonucleotides Dxs-SalI-F (SEQ ID NO: 29: GCAGTCGACTTTATTAAAGGGATAGATAA) and Dxs-XhoI-R (SEQ ID NO: 30: TGCTCGAGTTAAAATATATGACTTACCTCTG) as described for other genes above. The amplified gene was then cloned into plasmid pMTL85246-ispS-idi with SalI and XhoI to produce plasmid pMTL85246-ispS-idi-dxs (SEQ ID NO: 31 and FIG. 4). DNA sequencing using oligonucleotides given in Table 3 confirmed successful cloning of ispS, idi, and dxs without mutations (FIG. 5). The ispS and idi genes are as described in example 1 and 2 respectively.
TABLE-US-00005 TABLE 3 Oligonucleotides for sequencing SEQ Oligonucleotide ID Name DNA Sequence (5' to 3') NO: M13R CAGGAAACAGCTATGAC 32 Isoprene-seq1 GTTATTCAAGCTACACCTTT 33 Isoprene-seq2 GATTGGTAAAGAATTAGCTG 34 Isoprene-seq3 TCAAGAAGCTAAGTGGCT 35 Isoprene-seq4 CTCACCGTAAAGGAACA 36 Isoprene-seq5 GCTAGCTAGAGAAATTAGAA 37 Isoprene-seq6 GGAATGGCAAAATATCTTGA 38 Isoprene-seq7 GAAACACATCAGGGAATATT 39
Transformation and Expression in C. autoethanogenum
[0387] Transformation and expression in C. autoethanogenum was carried out as described for plasmid pMTL 85146-ispS. After successful transformation, a growth experiment was carried out in 50 mL 50 mL serum bottles and PETC media (Table 1) with 30 psi steel mill waste gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44% CO, 32% N2, 22% CO2, 2% H2) as sole energy and carbon source. Confirmation of gene expression was carried out as described above from a sample collected at OD.sub.600nm=0.75. Oligonucleotide pair dxs-F (SEQ ID NO: 73: ACAAAGTATCTAAGACAGGAGGTCA) and dxs-R (SEQ ID NO: 74: GATGTCCCACATCCCATATAAGTTT) was used to measure expression of gene dxs in both wild-type strain and strain carrying plasmid pMTL 85146-ispS-idi-dxs. mRNA levels in the strain carrying the plasmid were found to be over 3 times increased compared to the wild-type (FIG. 15). Biomass was normalized before RNA extraction.
Example 4
Introduction and Expression of Mevalonate Pathway
[0388] The first step of the mevalonate pathway (FIG. 7) is catalyzed by a thiolase that converts two molecules of acetyl-CoA into acetoacetyl-CoA (and HS-CoA). This enzyme has been successfully expressed in carboxydotrophic acetogens Clostridium autoethanogenum and C. ljungdahlii by the same inventors (US patent 2011/0236941). Constructs for the remaining genes of the mevalonate pathway have been designed.
Construction of Mevalonate Expression Plasmid:
[0389] Standard recombinant DNA and molecular cloning techniques were used (Sambrook, J., and Russell, D., Molecular cloning: A Laboratory Manual 3rd Ed., Cold Spring Harbour Lab Press, Cold Spring Harbour, N.Y., 2001). The three genes required for mevalonate synthesis via the upper part of the mavalonate pathway, i.e., thiolase (thlA/vraB), HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR), were codon-optimised as an operon (P.sub.ptaack-thlA/vraB-HMGS-Patp-HMGR).
[0390] The Phosphotransacetylase/Acetate kinase operon promoter (P.sub.pta-ack) of C.
[0391] autoethanogenum (SEQ ID NO: 61) was used for expression of the thiolase and HMG-CoA synthase while a promoter region of the ATP synthase (Patp) of C. autoethanogenum was used for expression of the HMG-CoA reductase. Two variants of thiolase, thlA from Clostridium acetobutylicum and vraB from Staphylococcus aureus, were synthesised and flanked by NdeI and EcoRI restriction sites for further sub-cloning. Both HMG-CoA synthase (HMGS) and HMG-CoA reductase (HMGR) were synthesised from Staphylococcus aureus and flanked by EcoRI-SacI and KpnI-XbaI restriction sites respectively for further sub-cloning. All optimized DNA sequences used are given in Table 4.
TABLE-US-00006 TABLE 4 Sequences of mevalonate expression plasmid SEQ ID Description Source NO: Thiolase (thlA) Clostridium acetobutylicum ATCC 824; 40 NC_003030.1; GI: 1119056 Acetyl-CoA c- Staphylococcus aureus subsp. aureus 41 acetyltransferase Mu50; (vraB) NC_002758.2; region: 652965..654104; including GI: 15923566 3-hydroxy-3- Staphylococcus aureus subsp. aureus 42 methylglutaryl-CoA Mu50; NC_002758.2; region: synthase (HMGS) 2689180..2690346; including GI: 15925536 Hydroxymethyl- Staphylococcus aureus subsp. aureus 43 glutaryl-CoA Mu50; NC_002758.2; region: reductase (HMGR) complement(2687648..2688925); including GI: 15925535 Phospho- Clostridium autoethanogenum DSM10061 44 transacetylase- acetate kinase operon (P.sub.pta-ack) ATP synthase Clostridium autoethanogenum DSM10061 45 promoter (Patp)
[0392] The ATP synthase promoter (Patp) together with the hydroxymethylglutaryl-CoA reductase (HMGR) was amplified using oligonucleotides pUC57-F (SEQ ID NO: 46: AGCAGATTGTACTGAGAGTGC) and pUC57-R (SEQ ID NO: 47: ACAGCTATGACCATGATTACG) and pUC57-Patp-HMGR as a template. The 2033 bp amplified fragment was digested with Sad and XbaI and ligated into the E. coli-Clostridium shuttle vector pMTL 82151 (FJ7976; Nigel Minton, University of Nottingham, UK; Heap et al., 2009, J Microbiol Methods. 78: 79-85) resulting in plasmid pMTL 82151-Patp-HMGR (SEQ ID NO: 76).
[0393] 3-hydroxy-3-methylglutaryl-CoA synthase (HMGS) was amplified from the codon-synthesised plasmid pGH-seq3.2 using oligonucleotides EcoRI-HMGS_F (SEQ ID NO: 77: AGCCGTGAATTCGAGGCTTTTACTAAAAACA) and EcoRI-HMGS_R (SEQ ID NO: 78: AGGCGTCTAGATGTTCGTCTCTACAAATAATT). The 1391 bp amplified fragment was digested with Sad and EcoRI and ligated into the previously created plasmid pMTL 82151-Patp-HMGR to give pMTL 82151-HMGS-Patp-HMGR (SEQ ID NO: 79). The created plasmid pMTL 82151-HMGS-Patp-HMGR (SEQ ID NO: 79) and the 1768 bp codon-optimised operon of P.sub.ptaack-thlA/vraB were both cut with NotI and EcoRI. A ligation was performed and subsequently transformed into E. coli XL1-Blue MRF' Kan resulting in plasmid pMTL8215-P.sub.ptaack-thlA/vraB-HMGS-Patp-HMGR (SEQ ID NO: 50).
[0394] The five genes required for synthesis of terpenoid key intermediates from mevalonate via the bottom part of the mevalonate pathway, i.e., mevalonate kinase (MK), phosphomevalonate kinase (PMK), mevalonate diphosphate decarboxylase (PMD), isopentenyl-diphosphate delta-isomerase (idi) and isoprene synthase (ispS) were codon-optimised by ATG:Biosynthetics GmbH (Merzhausen, Germany). Mevalonate kinase (MK), phosphomevalonate kinase (PMK) and mevalonate diphosphate decarboxylase (PMD) were obtained from Staphylococcus aureus.
[0395] The promoter region of the RNF Complex (Prnf) of C. autoethanogenum (SEQ ID NO: 62) was used for expression of mevalonate kinase (MK), phosphomevalonate kinase (PMK) and mevalonate diphosphate decarboxylase (PMD), while the promoter region of the Pyruvate:ferredoxin oxidoreductase (Pfor) of C. autoethanogenum (SEQ ID NO: 22) was used for expression of isopentenyl-diphosphate delta-isomerase (idi) and isoprene synthase (ispS). All DNA sequences used are given in Table 5. The codon-optimised Prnf-MK was amplified from the synthesised plasmid pGH-Prnf-MK-PMK-PMD with oligonucleotides NotI-XbaI-Prnf-MK F (SEQ ID NO: 80: ATGCGCGGCCGCTAGGTCTAGAATATCGATACAGATAAAAAAATATATAATACA G) and SalI-Prnf-MK R (SEQ ID NO: 81: TGGTTCTGTAACAGCGTATTCACCTGC). The amplified gene was then cloned into plasmid pMTL83145 (SEQ ID NO: 49) with NotI and SalI to produce plasmid pMTL8314-Prnf-MK (SEQ ID NO: 82). This resulting plasmid and the 2165 bp codon optimised fragment PMK-PMD was subsequently digested with SalI and HindIII. A ligation was performed resulting in plasmid pMTL 8314-Prnf-MK-PMK-PMD (SEQ ID NO: 83).
[0396] The isoprene expression plasmid without the mevalonate pathway was created by ligating the isoprene synthase (ispS) flanked by restriction sites AgeI and NheI to the previously created farnesene plasmid, pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS (SEQ ID NO:91) to result in plasmid pMTL8314-Prnf-MK-PMK-PMD-Pfor-idi-ispS (SEQ ID NO:84). The final isoprene expression plasmid, pMTL 8314-Pptaack-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-ispS (SEQ ID NO.: 58, FIG. 10) is created by ligating the 4630 bp fragment of Pptaack-thlA-HMGS-Patp-HMGR from pMTL8215-Pptaack-thlA-HMGS-Patp-HMGR (SEQ ID NO: 50) with pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispS (SEQ ID NO: 84) using restriction sites NotI and XbaI.
TABLE-US-00007 TABLE 5 Sequences of isoprene expression plasmid from mevalonate pathway SEQ ID Description Source NO: Mevalonate kinase Staphylococcus aureus subsp. aureus 51 (MK) Mu50; NC_002758.2; region: 665080..665919; including GI: 15923580 Phosphomevalonate Staphylococcus aureus subsp. aureus 52 kinase (PMK) Mu50; NC_002758.2; region: 666920..667996; including GI: 15923582 Mevalonate Staphylococcus aureus subsp. aureus 53 diphosphate Mu50; NC_002758.2; region: decarboxylase 665924..666907; including GI: 15923581 (PMD) Isoprene synthase isoprene synthase of Poplar tremuloides 21 (isIS) (AAQ16588.1; GI: 33358229) Isopentenyl- Clostridium beijerinckii NCIMB 8052; 54 diphosphate YP_001310174.1; region: delta-isomerase (idi) complement(3597793..3598308); including GI: 150017920 RNF Complex Clostridium autoethanogenum DSM10061 55 promoter (Prnf)
Example 5
Introduction of Farnesene Synthase in C. autoethanogenum for Production of Farnesene from CO Via the Mevalonate Pathway
[0397] Instead of producing isoprene directly from terpenoid key intermediates IPP and DMAPP then using this to synthesise longer chain terpenes, it is also possible to synthesise longer chain terpenes, such as C10 Monoterpenoids or C15 Sesquiterpenoids, directly via a geranyltransferase (see Table 6). From C15 Sesquiterpenoid building block farnesyl-PP it is possible to produce farnesene, which, similarly to ethanol, can be used as a transportation fuel.
Construction of Farnesene Expression Plasmid
[0398] The two genes required for farnesene synthesis from IPP and DMAPP via the mevalonate pathway, i.e., geranyltranstransferase (ispA) and alpha-farnesene synthase (FS) were codon-optimised. Geranyltranstransferase (ispA) was obtained from Escherichia coli str. K-12 substr. MG1655 and alpha-farnesene synthase (FS) was obtained from Malus×domestica. All DNA sequences used are given in Table 6. The codon-optimised idi was amplified from the synthesised plasmid pMTL83245-Pfor-FS-idi (SEQ ID NO: 85) with via the mevalonate pathways idi_F (SEQ ID NO: 86: AGGCACTCGAGATGGCAGAGTATATAATAGCAGTAG) and idi R2 (SEQ ID NO:87: AGGCGCAAGCTTGGCGCACCGGTTTATTTAAATATCTTATTTTCAGC). The amplified gene was then cloned into plasmid pMTL83245-Pfor with XhoI and HindIII to produce plasmid pMTL83245-Pfor-idi (SEQ ID NO: 88). This resulting plasmid and the 1754 bp codon optimised fragment of farnesene synthase (FS) was subsequently digested with HindIII and NheI. A ligation was performed resulting in plasmid pMTL83245-Pfor-idi-FS (SEQ ID NO: 89). The 946 bp fragment of ispA and pMTL83245-Pfor-idi-FS was subsequently digested with AgeI and HindIII and ligated to create the resulting plasmid pMTL83245-Pfor-idi-ispA-FS (SEQ ID NO: 90). The farnesene expression plasmid without the upper mevalonate pathway was created by ligating the 2516 bp fragment of Pfor-idi-ispA-FS from pMTL83245-Pfor-idi-ispA-FS to pMTL 8314-Prnf-MK-PMK-PMD to result in plasmid pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS (SEQ ID NO: 91). The final farnesene expression plasmid pMTL83145-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS (SEQ ID NO: 59 and FIG. 18) is created by ligating the 4630 bp fragment of Pptaack-thlA-HMGS-Patp-HMGR from pMTL8215-Pptaack-thlA-HMGS-Patp-HMGR (SEQ ID NO: 50) with pMTL 8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS (SEQ ID NO: 91) using restriction sites NotI and XbaI.
TABLE-US-00008 TABLE 6 Sequences of farnesene expression plasmid from mevalonate pathway SEQ ID Description Source NO: Geranyltranstransferase Escherichia coli str. K-12 substr. 56 (ispA) MG1655; NC_000913.2; region: complement(439426..440325); including GI: 16128406 Alpha-farnesene synthase Malus x domestica; 57 (FS) AY787633.1; GI: 60418690
Transformation into C. autoethanogenum
[0399] Transformation and expression in C. autoethanogenum was carried out as described in example 1.
Confirmation of Successful Transformation
[0400] The presence of pMTL8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS (SEQ ID NO: 59) was confirmed by colony PCR using oligonucleotides repHF (SEQ ID NO: 92:AAGAAGGGCGTATATGAAAACTTGT) andcatR (SEQ ID NO: 93: TTCGTTTACAAAACGGCAAATGTGA) which selectively amplifies a portion of the garm+ve perplicon and most of the cat gene on the pMTL831xxx series palsmids. Yielding a band of 1584 bp (FIG. 16).
Expression of Lower Mevalonate Pathway in C. autoethanogenum
[0401] Confirmation of expression of the lower mevalonate pathway genes Mevalonate kinase (MK SEQ ID NO: 51), Phosphomevalonate Kinase (PMK SEQ ID NO: 52), Mevalonate Diphosphate Decarboxylase (PMD SEQ ID NO: 53), Isopentyl-diphosphate
[0402] Delta-isomerase (idi; SEQ ID NO: 54), Geranyltranstransferase (ispA; SEQ ID NO: 56) and Farnesene synthase (FS SEQ ID NO: 57) was done as described above in example 1. Using oligonucleotides listed in table 7.
TABLE-US-00009 TABLE 7 List of oligonucleotides used for the detection of expression of the genes in the lower mevalonate pathway carried on plasmid pMTL8314Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS (SEQ ID NO: 91) SEQ ID Oligonucleotide NO: Target Name DNA Sequence (5' to 3') NO. Mevalonate kinase MK-RTPCR-F GTGCTGGTAGAGGTGGTTCA 94 MK-RTPCR-R CCAAGTATGTGCTGCACCAG 95 Phosphomevalonate PMK-RTPCR-F ATATCAGACCCACACGCAGC 96 Kinase PMK-RTPCR-R AATGCTTCATTGCTATGTCACATG 97 Mevalonate PMD-RTPCR- GCAGAAGCAAAGGCAGCAAT 98 Diphosphate F Decarboxylase PMD-RTPCR- TTGATCCAAGATTTGTAGCATGC 99 R Isopentyl-diphosphate idi-RTPCR-F GGACAAACACTTGTTGTAGTCACC 100 Delta-isomerase idi-RTPCR-R TCAAGTTCGCAAGTAAATCCCA 101 Geranyltranstransferase ispA-RTPCR-F ACCAGCAATGGATGACGATG 102 ispA-RTPCR-R AGTTTGTAAAGCGTCACCTGC 103 Farnesene synthase FS-RTPCR-F AAGCTAGTAGATGGTGGGCT 104 FS-RTPCR-R AATGCTACACCTACTGCGCA 105
[0403] Rt-PCR data confirming expression of all genes in the lower mevalonate pathway is shown in FIG. 18, this data is also summarised in Table 8.
TABLE-US-00010 TABLE 8 Avarage CT values for the genes genes Mevalonate kinase (MK SEQ ID NO: 51), Phosphomevalonate Kinase (PMK SEQ ID NO: 52), Mevalonate Diphosphate Decarboxylase (PMD SEQ ID NO: 53), Isopentyl-diphosphate Delta-isomerase (idi SEQ ID NO: 54), Geranyltranstransferase (ispA SEQ ID NO: 56) and Farnesene synthase (FS SEQ ID NO: 57). for two independent samples taken from the two starter cultures for the mevalonate feeding experiment (see below). Gene Sample 1 (Ct Mean) Sample 2 (Ct Mean) MK 21.9 20.82 PMK 23.64 22.81 PMD 24 22.83 Idi 24.23 27.54 ispA 23.92 23.22 FS 21.28 (single Ct) 21.95 (single Ct) HK (rho) 31.5 28.88
Production of Alpha-Farnesene from Mevalonate
[0404] After conformation of successfully transformed of the plasmid pMTL8314-Prnf-MK-PMK-PMD-Pfor-idi-ispA-FS, a growth experiment was carried out in 50 ml PETC media (Table 1) in 250 ml serum bottles with 30 psi Real Mill Gas (collected from New Zealand Steel site in Glenbrook, NZ; composition: 44% CO, 32% N2, 22% CO2, 2% H2) as sole energy and carbon source. All cultures were incubated at 37° C. on an orbital shaker adapted to hold serum bottles. Transformants were first grown up to an OD600 of ˜0.4 before being subcultured into fresh media supplemented with 1 mM mevalonic acid. Controls without mevalonic acid were set up at the same time from the same culture. Samples for GC-MS (Gas Chromatography--Mass Spectroscopy) were taken at each time point. FIG. 17 shows a representative growth curve for 2 control cultures and two cultures fed 1 mM mevalonate. Farnesene was detected in the samples taken at 66 h and 90 h after start of experiment (FIG. 19-21).
Detection of Alpha-Farnesene by Gas Chromatography--Mass Spectroscopy
[0405] For GC-MS detection of alpha-farnesene hexane extraction was performed on 5 ml of culture by adding 2 ml hexane and shaking vigorously to mix in a sealed glass balch tube. The tubes were then incubated in a sonicating water bath for 5 min to encourage phase separation. 400 μl hexane extract were transferred to a GC vail and loaded on to the auto loader. The samples was analysed on a VARIAN GC3800 MS4000 iontrap GC/MS (Varian Inc, CA, USA. Now Agilent Technologies) with a EC-1000 column 0.25 μm film thickness (Grace Davidson, OR, USA) Varian MS workstation (Varian Inc, Ca. Now Agilent Technologies, CA, USA) and NIST MS Search 2.0 (Agilent Technologies, CA, USA). Injection volume of 1 μl with Helium carrier gas flow rate of 1 ml per min.
[0406] The invention has been described herein, with reference to certain preferred embodiments, in order to enable the reader to practice the invention without undue experimentation. However, a person having ordinary skill in the art will readily recognise that many of the components and parameters may be varied or modified to a certain extent or substituted for known equivalents without departing from the scope of the invention. It should be appreciated that such modifications and equivalents are herein incorporated as if individually set forth. Titles, headings, or the like are provided to enhance the reader's comprehension of this document, and should not be read as limiting the scope of the present invention.
[0407] The entire disclosures of all applications, patents and publications, cited above and below, if any, are hereby incorporated by reference. However, the reference to any applications, patents and publications in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that they constitute valid prior art or form part of the common general knowledge in any country in the world.
[0408] Throughout this specification and any claims which follow, unless the context requires otherwise, the words "comprise", "comprising" and the like, are to be construed in an inclusive sense as opposed to an exclusive sense, that is to say, in the sense of "including, but not limited to."
Sequence CWU
1
1
11111875DNAClostridium autoethanogenum 1atgagtaatt tattagataa ttataaagat
ataaatgacg taaagaagat gtcgttaaat 60gataaaaaaa agctagctag agaaattaga
aaatttttaa tagacaaagt atctaagaca 120ggaggtcatt tggcgtctaa cttaggggtt
gtggagctca ctttgagttt atttagtgta 180tttgatctaa attatgataa acttatatgg
gatgtgggac atcaggctta tgtgcataaa 240atcctcacgg gaagaaagga taaatttgat
actttaaggc aatttggagg attaagtgga 300tttcctaaaa ggtgcgaaag tatatatgat
tttttcgaaa cagggcatag tagtacttca 360atatctgcag cacttggaat ggctagggct
agagatttaa agcatgagaa atataatgtt 420gttgcagtta taggagatgg agcacttact
ggaggtatgg cactagaggc cctaaatgat 480gtaggttata gaaaaactaa gcttataata
atattaaatg ataatcaaat gtctatagga 540aaaaatgtag gtggagtatc taaatattta
aataaactta gagtggaccc taagtataat 600aaatttaaag cggatgtaga agctaaatta
aaaaagatac ctaatatagg aaaaggaatg 660gcaaaatatc ttgaaaaggt aaaaaatgga
ataaaacaaa tggtagttcc tggaatgttt 720tttgaagata tgggaattaa atatttagga
ccaatagatg gtcataatat aaaagaactt 780acagacgtac tcgcttctgc aaaagacata
caaggtccag ttattataca tataataact 840aagaaaggaa aaggatatga atttgcagaa
aaaaatccag gtaaattcca tggaataggg 900ccttttaatt gcgccaatgg tgaactggat
gctggatctt caaatactta ttccaaggcc 960tttggaaatg aaatggtaaa gctagcagaa
aaagacgata gaatagtggc tataactgca 1020gccatgaggg atggaacagg tcttaaaagt
ttttctcaaa agtttcctga aaggtttttt 1080gatgtgggaa tagcagaaca gcatgctgta
accctggcag ctggaatggc acaggcaaat 1140ttaaaacctg tatttgcagt ttactctact
tttcttcaaa gagcttatga tcaacttatt 1200catgatgtat gtatgcaaaa acttccagta
gtttttgctg tagatagggc cggcattgta 1260ggagaagatg gtgaaacaca tcagggaata
tttgatttat cttacttaac ggaaatgcca 1320catatgacgc ttatgtctcc taaatgtata
gatgaacttc catatatgtt aaaatgggca 1380ttaggccaga gttttcctgt agctataagg
tatccaaggg gaggagatag tgtatgtctc 1440aatcccgtag aaaattttaa acttggaaag
tgggactgta tttcaaatga aggcagtgta 1500gcaataattg ctcagggtaa aatggtacaa
aatgcagtgt tagcaggaaa aaaacttaaa 1560gaaaagggta tagatgtaag gattataagt
gcatgtttta ttaagccgct ggacaaggaa 1620atgttaaaca ggttagttga agaaagtgta
actatcgtta ctgttgaaga caatgtaata 1680agaggaggat taggatccta tatattagaa
tatgtaaata aattaaataa aaaagtaaaa 1740ataataaact tagggtttga tgataagttt
gtacagcatg gaaaatccga tattttgtat 1800aagctgtatg gtttggatcc taaaggtatc
gtaaatagtg tacttgaagc agcagaggta 1860agtcatatat tttaa
18752627PRTClostridium autoethanogenum
2Met Ser Asn Leu Leu Asp Asn Tyr Lys Asp Ile Asn Asp Val Lys Lys 1
5 10 15 Met Ser Leu Asn
Asp Lys Lys Lys Leu Ala Arg Glu Ile Arg Lys Phe 20
25 30 Leu Ile Asp Lys Val Ser Lys Thr Gly
Gly His Leu Ala Ser Asn Leu 35 40
45 Gly Val Val Glu Leu Thr Leu Ser Leu Phe Ser Val Phe Asp
Leu Asn 50 55 60
Tyr Asp Lys Leu Ile Trp Asp Val Gly His Gln Ala Tyr Val His Lys 65
70 75 80 Ile Leu Thr Gly Arg
Lys Asp Lys Phe Asp Thr Leu Arg Gln Phe Gly 85
90 95 Gly Leu Ser Gly Phe Pro Lys Arg Cys Glu
Ser Ile Tyr Asp Phe Phe 100 105
110 Glu Thr Gly His Ser Ser Thr Ser Ile Ser Ala Ala Leu Gly Met
Ala 115 120 125 Arg
Ala Arg Asp Leu Lys His Glu Lys Tyr Asn Val Val Ala Val Ile 130
135 140 Gly Asp Gly Ala Leu Thr
Gly Gly Met Ala Leu Glu Ala Leu Asn Asp 145 150
155 160 Val Gly Tyr Arg Lys Thr Lys Leu Ile Ile Ile
Leu Asn Asp Asn Gln 165 170
175 Met Ser Ile Gly Lys Asn Val Gly Gly Val Ser Lys Tyr Leu Asn Lys
180 185 190 Leu Arg
Val Asp Pro Lys Tyr Asn Lys Phe Lys Ala Asp Val Glu Ala 195
200 205 Lys Leu Lys Lys Ile Pro Asn
Ile Gly Lys Gly Met Ala Lys Tyr Leu 210 215
220 Glu Lys Val Lys Asn Gly Ile Lys Gln Met Val Val
Pro Gly Met Phe 225 230 235
240 Phe Glu Asp Met Gly Ile Lys Tyr Leu Gly Pro Ile Asp Gly His Asn
245 250 255 Ile Lys Glu
Leu Thr Asp Val Leu Ala Ser Ala Lys Asp Ile Gln Gly 260
265 270 Pro Val Ile Ile His Ile Ile Thr
Lys Lys Gly Lys Gly Tyr Glu Phe 275 280
285 Ala Glu Lys Asn Pro Gly Lys Phe His Gly Ile Gly Pro
Phe Asn Cys 290 295 300
Ala Asn Gly Glu Leu Asp Ala Gly Ser Ser Asn Thr Tyr Ser Lys Ala 305
310 315 320 Phe Gly Asn Glu
Met Val Lys Leu Ala Glu Lys Asp Asp Arg Ile Val 325
330 335 Ala Ile Thr Ala Ala Met Arg Asp Gly
Thr Gly Leu Lys Ser Phe Ser 340 345
350 Gln Lys Phe Pro Glu Arg Phe Phe Asp Val Gly Ile Ala Glu
Gln His 355 360 365
Ala Val Thr Leu Ala Ala Gly Met Ala Gln Ala Asn Leu Lys Pro Val 370
375 380 Phe Ala Val Tyr Ser
Thr Phe Leu Gln Arg Ala Tyr Asp Gln Leu Ile 385 390
395 400 His Asp Val Cys Met Gln Lys Leu Pro Val
Val Phe Ala Val Asp Arg 405 410
415 Ala Gly Ile Val Gly Glu Asp Gly Glu Thr His Gln Gly Ile Phe
Asp 420 425 430 Leu
Ser Tyr Leu Thr Glu Met Pro His Met Thr Leu Met Ser Pro Lys 435
440 445 Cys Ile Asp Glu Leu Pro
Tyr Met Leu Lys Trp Ala Leu Gly Gln Ser 450 455
460 Phe Pro Val Ala Ile Arg Tyr Pro Arg Gly Gly
Asp Ser Val Cys Leu 465 470 475
480 Asn Pro Val Glu Asn Phe Lys Leu Gly Lys Trp Asp Cys Ile Ser Asn
485 490 495 Glu Gly
Ser Val Ala Ile Ile Ala Gln Gly Lys Met Val Gln Asn Ala 500
505 510 Val Leu Ala Gly Lys Lys Leu
Lys Glu Lys Gly Ile Asp Val Arg Ile 515 520
525 Ile Ser Ala Cys Phe Ile Lys Pro Leu Asp Lys Glu
Met Leu Asn Arg 530 535 540
Leu Val Glu Glu Ser Val Thr Ile Val Thr Val Glu Asp Asn Val Ile 545
550 555 560 Arg Gly Gly
Leu Gly Ser Tyr Ile Leu Glu Tyr Val Asn Lys Leu Asn 565
570 575 Lys Lys Val Lys Ile Ile Asn Leu
Gly Phe Asp Asp Lys Phe Val Gln 580 585
590 His Gly Lys Ser Asp Ile Leu Tyr Lys Leu Tyr Gly Leu
Asp Pro Lys 595 600 605
Gly Ile Val Asn Ser Val Leu Glu Ala Ala Glu Val Ser His Ile Phe 610
615 620 Arg Glu Phe 625
31158DNAClostridium autoethanogenum 3atgaagagaa tttcaataat
tggagccaca ggttctatag gaacccaaac tcttgatgta 60cttagaaaac aaaaaggaga
ttttcagctt ataggtgtat ctgcaaatag tagtgtagat 120aaacttttac atataataga
tgaatttaac cccaaatatg cggtgctaac cgaaaaagaa 180tcttatttaa agataaaaga
tatttttagt aataaaaaat caaatacaaa aatattattt 240ggagtagatg gattaaatac
tatagctagt cttcctgaag ttgatatggt tgtaacatct 300gtagttggaa tgatagggct
tgtaccaact ataaaagcaa ttaaagcgaa gaaagacata 360gctttagcta ataaggagac
attagttgta ggaggagaac tggttacaaa attatcgaaa 420gaaaataata taaaaatatt
tcctgtagat tcagagcata gtgctgtttt tcaatgcctt 480cagggaaata attttgacga
agttgctaat ttgattttaa ccgcttcagg tggacctttt 540aggggaaaaa caaaagatca
actctcaaaa gtaactgtaa aagaggcgtt gaatcatcca 600aattggagta tgggaaaaaa
gctcacaata gattctgcta ctcttatgaa taagggactt 660gaagttatag aagctcactt
cttatttaac ttaccttatg aaaatataaa ggttgtagtt 720catccacaaa gtatagtaca
ttctatggtg gaatataggg atggaagtgt tatggcacag 780cttgccactg cagatatgag
attacctata caatatgcac tgaattatcc gaaaagaaag 840gaagctgtaa tagataaatt
ggacttctat agcgtaggaa atttaagttt tgaaaagcct 900gatacagata cattcagacc
acttaaatta gcttatgaag cagggaggat aggaggcaca 960atgccagcta tactaaattg
tgcaaatgag gaagcagtaa gtttattcct tgctaataaa 1020ataaattttt tggatatagg
caacatatta gaagagtgta tgaataaatt tacttcacaa 1080agtacgtata ctctggatga
tttacttgac ctagaaataa aagttaagaa atatgtaaaa 1140gataaattta tcaaataa
11584385PRTClostridium
autoethanogenum 4Met Lys Arg Ile Ser Ile Ile Gly Ala Thr Gly Ser Ile Gly
Thr Gln 1 5 10 15
Thr Leu Asp Val Leu Arg Lys Gln Lys Gly Asp Phe Gln Leu Ile Gly
20 25 30 Val Ser Ala Asn Ser
Ser Val Asp Lys Leu Leu His Ile Ile Asp Glu 35
40 45 Phe Asn Pro Lys Tyr Ala Val Leu Thr
Glu Lys Glu Ser Tyr Leu Lys 50 55
60 Ile Lys Asp Ile Phe Ser Asn Lys Lys Ser Asn Thr Lys
Ile Leu Phe 65 70 75
80 Gly Val Asp Gly Leu Asn Thr Ile Ala Ser Leu Pro Glu Val Asp Met
85 90 95 Val Val Thr Ser
Val Val Gly Met Ile Gly Leu Val Pro Thr Ile Lys 100
105 110 Ala Ile Lys Ala Lys Lys Asp Ile Ala
Leu Ala Asn Lys Glu Thr Leu 115 120
125 Val Val Gly Gly Glu Leu Val Thr Lys Leu Ser Lys Glu Asn
Asn Ile 130 135 140
Lys Ile Phe Pro Val Asp Ser Glu His Ser Ala Val Phe Gln Cys Leu 145
150 155 160 Gln Gly Asn Asn Phe
Asp Glu Val Ala Asn Leu Ile Leu Thr Ala Ser 165
170 175 Gly Gly Pro Phe Arg Gly Lys Thr Lys Asp
Gln Leu Ser Lys Val Thr 180 185
190 Val Lys Glu Ala Leu Asn His Pro Asn Trp Ser Met Gly Lys Lys
Leu 195 200 205 Thr
Ile Asp Ser Ala Thr Leu Met Asn Lys Gly Leu Glu Val Ile Glu 210
215 220 Ala His Phe Leu Phe Asn
Leu Pro Tyr Glu Asn Ile Lys Val Val Val 225 230
235 240 His Pro Gln Ser Ile Val His Ser Met Val Glu
Tyr Arg Asp Gly Ser 245 250
255 Val Met Ala Gln Leu Ala Thr Ala Asp Met Arg Leu Pro Ile Gln Tyr
260 265 270 Ala Leu
Asn Tyr Pro Lys Arg Lys Glu Ala Val Ile Asp Lys Leu Asp 275
280 285 Phe Tyr Ser Val Gly Asn Leu
Ser Phe Glu Lys Pro Asp Thr Asp Thr 290 295
300 Phe Arg Pro Leu Lys Leu Ala Tyr Glu Ala Gly Arg
Ile Gly Gly Thr 305 310 315
320 Met Pro Ala Ile Leu Asn Cys Ala Asn Glu Glu Ala Val Ser Leu Phe
325 330 335 Leu Ala Asn
Lys Ile Asn Phe Leu Asp Ile Gly Asn Ile Leu Glu Glu 340
345 350 Cys Met Asn Lys Phe Thr Ser Gln
Ser Thr Tyr Thr Leu Asp Asp Leu 355 360
365 Leu Asp Leu Glu Ile Lys Val Lys Lys Tyr Val Lys Asp
Lys Phe Ile 370 375 380
Lys 385 5693DNAClostridium autoethanogenum 5atgaatggta attatgctat
tattgtagct gccggcaagg gaaaaagaat gggaactact 60attaataagc aatttattaa
aattaagggt aagcctatat tatattattc cataagggca 120ttttccataa atcctcttat
agatggaatt atactggtat gtgcagaaac tgagatagaa 180tattgtaaaa gagaagtagt
agataaatat gggcttcaga aggtaattaa attagttgct 240gggggtaaag aacgtcagga
ttcggtattt aatggactag gagttttaga aaaagaaaac 300tgtagtgttg ttctaattca
cgatggggct agaccttttg tcactagtaa aattattgat 360gatggaataa aatattctaa
taggtatggg gcttgtgctt gtggagttag gcctaaggat 420acactaaaag ttagggaaga
aagtggattt tcttcttcta cattagagag aaaaagttta 480tttgcagttc aaactccgca
gtgttttaaa tatgatttaa tttatgactg tcataaaaaa 540ttaatgaatg aaaaaatgtg
tgttactgat gatactatgg tagtagagcg ttatggaaat 600aaggtttatt tgtatgaagg
taactatgaa aacataaaag tgaccacacc agaagattta 660aatatagctg aaagtatagt
tgaaaaatat taa 6936230PRTClostridium
autoethanogenum 6Met Asn Gly Asn Tyr Ala Ile Ile Val Ala Ala Gly Lys Gly
Lys Arg 1 5 10 15
Met Gly Thr Thr Ile Asn Lys Gln Phe Ile Lys Ile Lys Gly Lys Pro
20 25 30 Ile Leu Tyr Tyr Ser
Ile Arg Ala Phe Ser Ile Asn Pro Leu Ile Asp 35
40 45 Gly Ile Ile Leu Val Cys Ala Glu Thr
Glu Ile Glu Tyr Cys Lys Arg 50 55
60 Glu Val Val Asp Lys Tyr Gly Leu Gln Lys Val Ile Lys
Leu Val Ala 65 70 75
80 Gly Gly Lys Glu Arg Gln Asp Ser Val Phe Asn Gly Leu Gly Val Leu
85 90 95 Glu Lys Glu Asn
Cys Ser Val Val Leu Ile His Asp Gly Ala Arg Pro 100
105 110 Phe Val Thr Ser Lys Ile Ile Asp Asp
Gly Ile Lys Tyr Ser Asn Arg 115 120
125 Tyr Gly Ala Cys Ala Cys Gly Val Arg Pro Lys Asp Thr Leu
Lys Val 130 135 140
Arg Glu Glu Ser Gly Phe Ser Ser Ser Thr Leu Glu Arg Lys Ser Leu 145
150 155 160 Phe Ala Val Gln Thr
Pro Gln Cys Phe Lys Tyr Asp Leu Ile Tyr Asp 165
170 175 Cys His Lys Lys Leu Met Asn Glu Lys Met
Cys Val Thr Asp Asp Thr 180 185
190 Met Val Val Glu Arg Tyr Gly Asn Lys Val Tyr Leu Tyr Glu Gly
Asn 195 200 205 Tyr
Glu Asn Ile Lys Val Thr Thr Pro Glu Asp Leu Asn Ile Ala Glu 210
215 220 Ser Ile Val Glu Lys Tyr
225 230 7798DNAClostridium autoethanogenum 7gtgggaaaaa
gaaaagatgg gtatcatctt ttgaaaatga taatgcagaa tatagactta 60tatgatgttt
taaaaataga tgagatcaaa actggaatac agatatgctc taataataga 120tatattccct
gtgacaggag aaatttggtt tacagagcag caaaattatt tattgataaa 180tataatataa
agaatggaat tagtataaac ataggtaaaa atatacctgt atcagctgga 240cttgctggtg
gaagtgcgga tgctgcagct atactaaaga ctatgagaaa tatttatact 300cctgaagtaa
gtgataaaga attgagcgaa ttaggcttaa atataggggc agatgttcct 360tattgtataa
taggaggtac agccttgtgc gaggggatag gagagaaggt tacaccactc 420atgccgttta
gaaaccatat actcatatta attaaaccac cttttggagt gagcacagca 480gaggtatata
agagtttaga cataagtaaa ataaaaaggc atcctaatac agaaatttta 540atagatgcgg
ttaatgaatc aaaattggag atgctgagta aaaacatgaa aaatgttttg 600gaaaatgtaa
ctttaaaaaa atatcccgtg cttagaaaaa taaaaactga tttgatagat 660tttggagcag
ttggttcact tatgagtgga agcggtccaa gcatttttgc tttttttgat 720gatatgctaa
aagcacagaa atgttatgat aatatgaaaa ctaggtatag agaggtgttt 780attacaagaa
ccatttaa
7988265PRTClostridium autoethanogenum 8Met Gly Lys Arg Lys Asp Gly Tyr
His Leu Leu Lys Met Ile Met Gln 1 5 10
15 Asn Ile Asp Leu Tyr Asp Val Leu Lys Ile Asp Glu Ile
Lys Thr Gly 20 25 30
Ile Gln Ile Cys Ser Asn Asn Arg Tyr Ile Pro Cys Asp Arg Arg Asn
35 40 45 Leu Val Tyr Arg
Ala Ala Lys Leu Phe Ile Asp Lys Tyr Asn Ile Lys 50
55 60 Asn Gly Ile Ser Ile Asn Ile Gly
Lys Asn Ile Pro Val Ser Ala Gly 65 70
75 80 Leu Ala Gly Gly Ser Ala Asp Ala Ala Ala Ile Leu
Lys Thr Met Arg 85 90
95 Asn Ile Tyr Thr Pro Glu Val Ser Asp Lys Glu Leu Ser Glu Leu Gly
100 105 110 Leu Asn Ile
Gly Ala Asp Val Pro Tyr Cys Ile Ile Gly Gly Thr Ala 115
120 125 Leu Cys Glu Gly Ile Gly Glu Lys
Val Thr Pro Leu Met Pro Phe Arg 130 135
140 Asn His Ile Leu Ile Leu Ile Lys Pro Pro Phe Gly Val
Ser Thr Ala 145 150 155
160 Glu Val Tyr Lys Ser Leu Asp Ile Ser Lys Ile Lys Arg His Pro Asn
165 170 175 Thr Glu Ile Leu
Ile Asp Ala Val Asn Glu Ser Lys Leu Glu Met Leu 180
185 190 Ser Lys Asn Met Lys Asn Val Leu Glu
Asn Val Thr Leu Lys Lys Tyr 195 200
205 Pro Val Leu Arg Lys Ile Lys Thr Asp Leu Ile Asp Phe Gly
Ala Val 210 215 220
Gly Ser Leu Met Ser Gly Ser Gly Pro Ser Ile Phe Ala Phe Phe Asp 225
230 235 240 Asp Met Leu Lys Ala
Gln Lys Cys Tyr Asp Asn Met Lys Thr Arg Tyr 245
250 255 Arg Glu Val Phe Ile Thr Arg Thr Ile
260 265 9480DNAClostridium autoethanogenum
9gtgaaaatcg ggcttggtta tgatgtccat aaattagttt ataatagacc tcttatttta
60ggaggcgtaa atatcccttt tgaaaaaggt cttatgggac attcagatgc agatgtactt
120cttcatgcaa taatggatag tctccttgga gccttgtgtc taggtgatat cggcaagcat
180ttccctgata atgataataa atataagaac atatgtagtc ttaaattgct gtcacatgta
240tcagctttga ttaatgaaaa aggatatact atagggaaca tagattctat tataatagcc
300gaaaagccta aactttcttc atacatacaa gatatgaggg taaatatagc taaaactcta
360aatgtaacta cagccgtaat aagtgtaaaa gccactacag aggaaggtct tggctttacc
420ggcaaaggag aaggcatagc cgctcaaagc atctgtttgt taacagctaa ttcaaaataa
48010159PRTClostridium autoethanogenum 10Met Lys Ile Gly Leu Gly Tyr Asp
Val His Lys Leu Val Tyr Asn Arg 1 5 10
15 Pro Leu Ile Leu Gly Gly Val Asn Ile Pro Phe Glu Lys
Gly Leu Met 20 25 30
Gly His Ser Asp Ala Asp Val Leu Leu His Ala Ile Met Asp Ser Leu
35 40 45 Leu Gly Ala Leu
Cys Leu Gly Asp Ile Gly Lys His Phe Pro Asp Asn 50
55 60 Asp Asn Lys Tyr Lys Asn Ile Cys
Ser Leu Lys Leu Leu Ser His Val 65 70
75 80 Ser Ala Leu Ile Asn Glu Lys Gly Tyr Thr Ile Gly
Asn Ile Asp Ser 85 90
95 Ile Ile Ile Ala Glu Lys Pro Lys Leu Ser Ser Tyr Ile Gln Asp Met
100 105 110 Arg Val Asn
Ile Ala Lys Thr Leu Asn Val Thr Thr Ala Val Ile Ser 115
120 125 Val Lys Ala Thr Thr Glu Glu Gly
Leu Gly Phe Thr Gly Lys Gly Glu 130 135
140 Gly Ile Ala Ala Gln Ser Ile Cys Leu Leu Thr Ala Asn
Ser Lys 145 150 155
111051DNAClostridium autoethanogenum 11ttgaatagag taaaaaagaa aacagtaaag
gtaggcaata tatttttagg tggagatttt 60ccagtagccg tacaatctat gacaaatacg
gatactaggg atgtagaagc cactacagct 120cagatatttc agctaaaaga agcaggttgt
gatatcgtca gatgtgcggt gcctgatgat 180atagcttgca attccatgaa aaaaatcata
gaaagagtag atattccact tgtagcagat 240atacattttg attataagtt ggcgcttaaa
tctatagaaa atgggatatc tgcacttaga 300ataaatcctg gaaatattgg aagcatagaa
agagtacgag aagtggcaag agcagcaaaa 360gaagctaata ttccaattag aataggggta
aactctggat cattaaaaaa agatatttta 420aataaatatg gtagagtttg ttcggatgca
ctagtagaga gtgctctaga acatgtaaaa 480attttggaaa acgtaggatt ttatgatata
gttatatcca taaaatcttc aaatgtaaat 540cagatgatag aaagttatag aaaaatatct
gaaattgtag attatccact tcaccttgga 600gtaacagaag caggaactat ttggcgagga
actataaaat caagcatagg cataggtact 660cttttgatgg aaggtatagg agacactata
agagtatctc ttacaggaaa tccagtggaa 720gaagtaagag tgggaaaaga aatattaaaa
tcctgtggaa ttataaaaga aggtgtggaa 780tttatatcat gtcccacctg tggtagaact
gaaattgatt taattaaaat agctgagcaa 840gtggaaaaaa gacttttaaa tatgcataaa
aacataaagg ttgctgttat gggatgtgta 900gtaaatggac caggtgaggc tcgggaagca
gatattggta tagcaggcgg caaaggtgaa 960ggcattatat ttaaaaaagg aaaaatagta
aaaaaggtaa gtgaagaaag tttagtagaa 1020tcacttatag aagaaataga aaacatttga r
105112349PRTClostridium autoethanogenum
12Met Asn Arg Val Lys Lys Lys Thr Val Lys Val Gly Asn Ile Phe Leu 1
5 10 15 Gly Gly Asp Phe
Pro Val Ala Val Gln Ser Met Thr Asn Thr Asp Thr 20
25 30 Arg Asp Val Glu Ala Thr Thr Ala Gln
Ile Phe Gln Leu Lys Glu Ala 35 40
45 Gly Cys Asp Ile Val Arg Cys Ala Val Pro Asp Asp Ile Ala
Cys Asn 50 55 60
Ser Met Lys Lys Ile Ile Glu Arg Val Asp Ile Pro Leu Val Ala Asp 65
70 75 80 Ile His Phe Asp Tyr
Lys Leu Ala Leu Lys Ser Ile Glu Asn Gly Ile 85
90 95 Ser Ala Leu Arg Ile Asn Pro Gly Asn Ile
Gly Ser Ile Glu Arg Val 100 105
110 Arg Glu Val Ala Arg Ala Ala Lys Glu Ala Asn Ile Pro Ile Arg
Ile 115 120 125 Gly
Val Asn Ser Gly Ser Leu Lys Lys Asp Ile Leu Asn Lys Tyr Gly 130
135 140 Arg Val Cys Ser Asp Ala
Leu Val Glu Ser Ala Leu Glu His Val Lys 145 150
155 160 Ile Leu Glu Asn Val Gly Phe Tyr Asp Ile Val
Ile Ser Ile Lys Ser 165 170
175 Ser Asn Val Asn Gln Met Ile Glu Ser Tyr Arg Lys Ile Ser Glu Ile
180 185 190 Val Asp
Tyr Pro Leu His Leu Gly Val Thr Glu Ala Gly Thr Ile Trp 195
200 205 Arg Gly Thr Ile Lys Ser Ser
Ile Gly Ile Gly Thr Leu Leu Met Glu 210 215
220 Gly Ile Gly Asp Thr Ile Arg Val Ser Leu Thr Gly
Asn Pro Val Glu 225 230 235
240 Glu Val Arg Val Gly Lys Glu Ile Leu Lys Ser Cys Gly Ile Ile Lys
245 250 255 Glu Gly Val
Glu Phe Ile Ser Cys Pro Thr Cys Gly Arg Thr Glu Ile 260
265 270 Asp Leu Ile Lys Ile Ala Glu Gln
Val Glu Lys Arg Leu Leu Asn Met 275 280
285 His Lys Asn Ile Lys Val Ala Val Met Gly Cys Val Val
Asn Gly Pro 290 295 300
Gly Glu Ala Arg Glu Ala Asp Ile Gly Ile Ala Gly Gly Lys Gly Glu 305
310 315 320 Gly Ile Ile Phe
Lys Lys Gly Lys Ile Val Lys Lys Val Ser Glu Glu 325
330 335 Ser Leu Val Glu Ser Leu Ile Glu Glu
Ile Glu Asn Ile 340 345
131923DNAClostridium autoethanogenum 13gtgataaaat tgaacattat tttagcagac
aaatccggat tttgctttgg agtaaaaaga 60gctgtagacg aatctttaaa ggttcaaaaa
aaatttaata aaaaaatata tactttaggt 120cctttgattc ataatagtga tgtagtaaat
aaattaaagg aaaaaggtat atatcctata 180gaaatagata atatagataa tctaagggaa
gatgatgtgg ttataatacg ttctcatggt 240gttcccgaaa aaatattttt tactttaaaa
aataaaaaaa taaacatagt aaatgcaact 300tgcccatatg ttttaaatat acaaagaaaa
gtacaagaat attataaatt agggtattct 360atattaatag taggagataa aaatcatcct
gaagtaattg gaataaatgg atggtgtgaa 420aataaagctt taatatctaa agatggcacc
aatttagaaa agttaccatc aaaactgtgt 480atagtttctc aaactacaga aaaacaatct
aactgggaaa aagtgcttag tatagtggct 540aaaaattgta aagaatttat tgcttttaat
actatatgca gtgccacaga atttcgtcag 600aaggcagcag cagatatttc taaagaagta
gatatgatgg tagtaatagg tggtaaaaac 660agctctaata ctactaaact ttatgaaata
tgtaaagata actgcaataa tactatttat 720gttgaaaatt caggagaaat acctgatgat
ataagtaatt gtaataaaat taaaactata 780ggtgttacag caggagcttc aacaccagat
tggataataa aggaggcaat tttaaaaatg 840agtgatgaca aaaatttaga actaaatgag
caactatctt atatggacaa aaatgatacc 900caaataatat taggtgaaaa aattaagggt
acagtaatat ctgtaaatcc aaaagaggtt 960tttttaaata taggatataa atcagaaggt
gtacttccaa aacgtgaaat aacaaaaaat 1020gaaagtgaca acttagaaga attaattcat
tgtggagatg aattatatgt taaagtaata 1080agaagacaaa atgaagatgg atatgtggta
ttatctaaga tagaattaga aagagaaaat 1140gcttataaag aattaaagga agctaatgga
aatagtcagg tattaaaggt tattgtaaaa 1200gaagctgtaa atggaggtct tgttgccaat
tacaaaggtg ctagggtatt tatacctgct 1260tctcatgtag aattatatca tgtagatgat
ctttcacaat atgtagataa agagcttgat 1320gtaactataa ttgaatttaa agaagaaaag
aaaggtacca gaatagtagc ttcaagaaga 1380gaccttttga gaatggaaag agaaaaaatg
gaagaacaga cttggaatgt gcttgaaaaa 1440gatactgtag tagatggtga agttagaaga
ttgactgatt ttggcgcatt tgttgatgta 1500caaggagttg acgggcttct acatgtatct
gaactttcct ggggaagagt tggaaaacca 1560agtgatgttt taaaaatcgg agatacgatt
aaggtttata tcttagacat tgataaagaa 1620aaaaagaagt tatctttatc tttaaaaaag
ctcatggaag atccatggat caacgtagac 1680ataaaatatc ctgttggcaa tgtagttctt
ggtaaagtag ttaggtttgc aaattttggt 1740gcatttgttg aattagagcc aggtgtagat
gcattagttc atatatcaca aataagccat 1800aagagaatag ataaaccaga agatgtactt
aaaataggtc aggaaataaa ggctaagatc 1860cttgaagtaa acaaagatag cgaaaaaata
gctttaagta taaaagaagt agatgaaatc 1920taa
192314640PRTClostridium autoethanogenum
14Met Ile Lys Leu Asn Ile Ile Leu Ala Asp Lys Ser Gly Phe Cys Phe 1
5 10 15 Gly Val Lys Arg
Ala Val Asp Glu Ser Leu Lys Val Gln Lys Lys Phe 20
25 30 Asn Lys Lys Ile Tyr Thr Leu Gly Pro
Leu Ile His Asn Ser Asp Val 35 40
45 Val Asn Lys Leu Lys Glu Lys Gly Ile Tyr Pro Ile Glu Ile
Asp Asn 50 55 60
Ile Asp Asn Leu Arg Glu Asp Asp Val Val Ile Ile Arg Ser His Gly 65
70 75 80 Val Pro Glu Lys Ile
Phe Phe Thr Leu Lys Asn Lys Lys Ile Asn Ile 85
90 95 Val Asn Ala Thr Cys Pro Tyr Val Leu Asn
Ile Gln Arg Lys Val Gln 100 105
110 Glu Tyr Tyr Lys Leu Gly Tyr Ser Ile Leu Ile Val Gly Asp Lys
Asn 115 120 125 His
Pro Glu Val Ile Gly Ile Asn Gly Trp Cys Glu Asn Lys Ala Leu 130
135 140 Ile Ser Lys Asp Gly Thr
Asn Leu Glu Lys Leu Pro Ser Lys Leu Cys 145 150
155 160 Ile Val Ser Gln Thr Thr Glu Lys Gln Ser Asn
Trp Glu Lys Val Leu 165 170
175 Ser Ile Val Ala Lys Asn Cys Lys Glu Phe Ile Ala Phe Asn Thr Ile
180 185 190 Cys Ser
Ala Thr Glu Phe Arg Gln Lys Ala Ala Ala Asp Ile Ser Lys 195
200 205 Glu Val Asp Met Met Val Val
Ile Gly Gly Lys Asn Ser Ser Asn Thr 210 215
220 Thr Lys Leu Tyr Glu Ile Cys Lys Asp Asn Cys Asn
Asn Thr Ile Tyr 225 230 235
240 Val Glu Asn Ser Gly Glu Ile Pro Asp Asp Ile Ser Asn Cys Asn Lys
245 250 255 Ile Lys Thr
Ile Gly Val Thr Ala Gly Ala Ser Thr Pro Asp Trp Ile 260
265 270 Ile Lys Glu Ala Ile Leu Lys Met
Ser Asp Asp Lys Asn Leu Glu Leu 275 280
285 Asn Glu Gln Leu Ser Tyr Met Asp Lys Asn Asp Thr Gln
Ile Ile Leu 290 295 300
Gly Glu Lys Ile Lys Gly Thr Val Ile Ser Val Asn Pro Lys Glu Val 305
310 315 320 Phe Leu Asn Ile
Gly Tyr Lys Ser Glu Gly Val Leu Pro Lys Arg Glu 325
330 335 Ile Thr Lys Asn Glu Ser Asp Asn Leu
Glu Glu Leu Ile His Cys Gly 340 345
350 Asp Glu Leu Tyr Val Lys Val Ile Arg Arg Gln Asn Glu Asp
Gly Tyr 355 360 365
Val Val Leu Ser Lys Ile Glu Leu Glu Arg Glu Asn Ala Tyr Lys Glu 370
375 380 Leu Lys Glu Ala Asn
Gly Asn Ser Gln Val Leu Lys Val Ile Val Lys 385 390
395 400 Glu Ala Val Asn Gly Gly Leu Val Ala Asn
Tyr Lys Gly Ala Arg Val 405 410
415 Phe Ile Pro Ala Ser His Val Glu Leu Tyr His Val Asp Asp Leu
Ser 420 425 430 Gln
Tyr Val Asp Lys Glu Leu Asp Val Thr Ile Ile Glu Phe Lys Glu 435
440 445 Glu Lys Lys Gly Thr Arg
Ile Val Ala Ser Arg Arg Asp Leu Leu Arg 450 455
460 Met Glu Arg Glu Lys Met Glu Glu Gln Thr Trp
Asn Val Leu Glu Lys 465 470 475
480 Asp Thr Val Val Asp Gly Glu Val Arg Arg Leu Thr Asp Phe Gly Ala
485 490 495 Phe Val
Asp Val Gln Gly Val Asp Gly Leu Leu His Val Ser Glu Leu 500
505 510 Ser Trp Gly Arg Val Gly Lys
Pro Ser Asp Val Leu Lys Ile Gly Asp 515 520
525 Thr Ile Lys Val Tyr Ile Leu Asp Ile Asp Lys Glu
Lys Lys Lys Leu 530 535 540
Ser Leu Ser Leu Lys Lys Leu Met Glu Asp Pro Trp Ile Asn Val Asp 545
550 555 560 Ile Lys Tyr
Pro Val Gly Asn Val Val Leu Gly Lys Val Val Arg Phe 565
570 575 Ala Asn Phe Gly Ala Phe Val Glu
Leu Glu Pro Gly Val Asp Ala Leu 580 585
590 Val His Ile Ser Gln Ile Ser His Lys Arg Ile Asp Lys
Pro Glu Asp 595 600 605
Val Leu Lys Ile Gly Gln Glu Ile Lys Ala Lys Ile Leu Glu Val Asn 610
615 620 Lys Asp Ser Glu
Lys Ile Ala Leu Ser Ile Lys Glu Val Asp Glu Ile 625 630
635 640 15882DNAClostridium autoethanogenum
15atggaaatta aaggtgtaat tgaaacatta agagaggaat tgaataaata cctctatgac
60tatatggagg gaaaaggatc ttataataag agagtatatg aagctatgca gtatagctta
120gatgcaggag gaaagagaat aagacctcta ctatttcttt tgacatataa actttataag
180acagattgca atgaggttat ggatatagca gcagctatag aaatgataca cacttattcc
240ttaattcatg atgatttacc tgctatggac aatgatgatt taagaagggg caaacctaca
300aatcataagg tatttggaga agctattgct gtacttgcgg gagatggact tttaaatgaa
360gcaatgagtc tgatgtttag acactgtatt gggaaaaagg ataacgctat aagggcttgt
420agcattattt ctgaaagtgc aggagctgat gggatggttg gcggacagac agtggatatt
480ttaagtgaaa acactaagat acctatagat cagctctatt acatgcacag taaaaaaacg
540ggagcgctca taaaaggatc tataatatct gcagcagtat atgcgggagc aagtaaagct
600gaaatagata aattaagcta ttatggagaa aagttaggat tggcatttca aataaaggat
660gatatattgg atttaacagg agatactgct cttttaggta aaaagataaa aagtgatcta
720aataataaca aaactacatt tataagtact tatggaataa ataaatgcaa agaaatgtgc
780aattcaatta caagtgaatg tataggagta ctgaatggga tgagtgtaga tacttcttat
840ctaaaagatt taacatcatt tttattaaat agagaaaagt ga
88216293PRTClostridium autoethanogenum 16Met Glu Ile Lys Gly Val Ile Glu
Thr Leu Arg Glu Glu Leu Asn Lys 1 5 10
15 Tyr Leu Tyr Asp Tyr Met Glu Gly Lys Gly Ser Tyr Asn
Lys Arg Val 20 25 30
Tyr Glu Ala Met Gln Tyr Ser Leu Asp Ala Gly Gly Lys Arg Ile Arg
35 40 45 Pro Leu Leu Phe
Leu Leu Thr Tyr Lys Leu Tyr Lys Thr Asp Cys Asn 50
55 60 Glu Val Met Asp Ile Ala Ala Ala
Ile Glu Met Ile His Thr Tyr Ser 65 70
75 80 Leu Ile His Asp Asp Leu Pro Ala Met Asp Asn Asp
Asp Leu Arg Arg 85 90
95 Gly Lys Pro Thr Asn His Lys Val Phe Gly Glu Ala Ile Ala Val Leu
100 105 110 Ala Gly Asp
Gly Leu Leu Asn Glu Ala Met Ser Leu Met Phe Arg His 115
120 125 Cys Ile Gly Lys Lys Asp Asn Ala
Ile Arg Ala Cys Ser Ile Ile Ser 130 135
140 Glu Ser Ala Gly Ala Asp Gly Met Val Gly Gly Gln Thr
Val Asp Ile 145 150 155
160 Leu Ser Glu Asn Thr Lys Ile Pro Ile Asp Gln Leu Tyr Tyr Met His
165 170 175 Ser Lys Lys Thr
Gly Ala Leu Ile Lys Gly Ser Ile Ile Ser Ala Ala 180
185 190 Val Tyr Ala Gly Ala Ser Lys Ala Glu
Ile Asp Lys Leu Ser Tyr Tyr 195 200
205 Gly Glu Lys Leu Gly Leu Ala Phe Gln Ile Lys Asp Asp Ile
Leu Asp 210 215 220
Leu Thr Gly Asp Thr Ala Leu Leu Gly Lys Lys Ile Lys Ser Asp Leu 225
230 235 240 Asn Asn Asn Lys Thr
Thr Phe Ile Ser Thr Tyr Gly Ile Asn Lys Cys 245
250 255 Lys Glu Met Cys Asn Ser Ile Thr Ser Glu
Cys Ile Gly Val Leu Asn 260 265
270 Gly Met Ser Val Asp Thr Ser Tyr Leu Lys Asp Leu Thr Ser Phe
Leu 275 280 285 Leu
Asn Arg Glu Lys 290 17519DNAClostridium autoethanogenum
17atgaataaaa caaggaaaat ggttttttta agctttctaa caagtatggc tttagtcata
60tacataatag aaactcaagt tccggtttta tttcccggaa taaaattagg acttgcaaat
120acaatttccc tagctgcact tatacttata ggatggaaag aagccttact aattatgttt
180ttaaggacgc ttctaggatc tatgtttggt gggacaatgt ctacctttat gttcagcata
240gccggaggaa ttttaagtaa cattgttatg atccttctat acaaatattt taaaaattcc
300ttaagtctat ggactataag catatgcggg gcaatatttc acaacatagg ccaactttta
360gtagcttcta tagtaattca agattttagg atatacatat atctaccggt gcttttaatc
420tctgctataa tcacaggata ctttataggt tggtgcgtga aattcctaac taataactta
480tataaaattc ctatgtttaa agaattaaaa aataagtaa
51918172PRTClostridium autoethanogenum 18Met Asn Lys Thr Arg Lys Met Val
Phe Leu Ser Phe Leu Thr Ser Met 1 5 10
15 Ala Leu Val Ile Tyr Ile Ile Glu Thr Gln Val Pro Val
Leu Phe Pro 20 25 30
Gly Ile Lys Leu Gly Leu Ala Asn Thr Ile Ser Leu Ala Ala Leu Ile
35 40 45 Leu Ile Gly Trp
Lys Glu Ala Leu Leu Ile Met Phe Leu Arg Thr Leu 50
55 60 Leu Gly Ser Met Phe Gly Gly Thr
Met Ser Thr Phe Met Phe Ser Ile 65 70
75 80 Ala Gly Gly Ile Leu Ser Asn Ile Val Met Ile Leu
Leu Tyr Lys Tyr 85 90
95 Phe Lys Asn Ser Leu Ser Leu Trp Thr Ile Ser Ile Cys Gly Ala Ile
100 105 110 Phe His Asn
Ile Gly Gln Leu Leu Val Ala Ser Ile Val Ile Gln Asp 115
120 125 Phe Arg Ile Tyr Ile Tyr Leu Pro
Val Leu Leu Ile Ser Ala Ile Ile 130 135
140 Thr Gly Tyr Phe Ile Gly Trp Cys Val Lys Phe Leu Thr
Asn Asn Leu 145 150 155
160 Tyr Lys Ile Pro Met Phe Lys Glu Leu Lys Asn Lys 165
170 19825DNAClostridium autoethanogenum
19atgaacttcg atggaatttc aattccaata ataaaagaac ttaatcaact tgagttagag
60ttaaaaaata ttgcatcaaa attagattct actgttacac aagatatttt tacctacttt
120ttttcaattc caggtaaaag actaagacct acattaacat ttttatctgc aggtgctatt
180agtagcgagc ttacttcatc tgcaaaacac aacttaattc agttgtcaat aagcttagag
240cttattcaca gcgctagtct aattcatgat gatatcatag atggtgactt actaagacgt
300ggtcagaaaa ccttaaataa gacctttgga aataaaatag cagtacttgc cggtgatgct
360ttgtactcaa gggcctttac tattttctca gatactctgc caagagaatt tgcgcaggta
420atgggcagag ttactgaatc aatgtctgta gctgaaatat taaatgctaa caatccctct
480cccgatcgtg aaacctattt taaaatcatc ttaggaaaaa cagcatcttt catgagcgct
540tgttgtaggc ttggtggcag catagcttat gccccttacg aagagtctaa tatgctttct
600aaatacggtg aaaaccttgg tatggcatat caaatactgg atgattatat cgatgaggat
660cccgttgcaa tgaaaaatgt aactattgaa gagggatttg aatttgcata taatgccaaa
720gcttctattg aaaatttaaa agactcagca tacaaacaaa gcttaataat gttagtagac
780tatgttttag atttttatag tcctaaggta gagaatacat tatag
82520274PRTClostridium autoethanogenum 20Met Asn Phe Asp Gly Ile Ser Ile
Pro Ile Ile Lys Glu Leu Asn Gln 1 5 10
15 Leu Glu Leu Glu Leu Lys Asn Ile Ala Ser Lys Leu Asp
Ser Thr Val 20 25 30
Thr Gln Asp Ile Phe Thr Tyr Phe Phe Ser Ile Pro Gly Lys Arg Leu
35 40 45 Arg Pro Thr Leu
Thr Phe Leu Ser Ala Gly Ala Ile Ser Ser Glu Leu 50
55 60 Thr Ser Ser Ala Lys His Asn Leu
Ile Gln Leu Ser Ile Ser Leu Glu 65 70
75 80 Leu Ile His Ser Ala Ser Leu Ile His Asp Asp Ile
Ile Asp Gly Asp 85 90
95 Leu Leu Arg Arg Gly Gln Lys Thr Leu Asn Lys Thr Phe Gly Asn Lys
100 105 110 Ile Ala Val
Leu Ala Gly Asp Ala Leu Tyr Ser Arg Ala Phe Thr Ile 115
120 125 Phe Ser Asp Thr Leu Pro Arg Glu
Phe Ala Gln Val Met Gly Arg Val 130 135
140 Thr Glu Ser Met Ser Val Ala Glu Ile Leu Asn Ala Asn
Asn Pro Ser 145 150 155
160 Pro Asp Arg Glu Thr Tyr Phe Lys Ile Ile Leu Gly Lys Thr Ala Ser
165 170 175 Phe Met Ser Ala
Cys Cys Arg Leu Gly Gly Ser Ile Ala Tyr Ala Pro 180
185 190 Tyr Glu Glu Ser Asn Met Leu Ser Lys
Tyr Gly Glu Asn Leu Gly Met 195 200
205 Ala Tyr Gln Ile Leu Asp Asp Tyr Ile Asp Glu Asp Pro Val
Ala Met 210 215 220
Lys Asn Val Thr Ile Glu Glu Gly Phe Glu Phe Ala Tyr Asn Ala Lys 225
230 235 240 Ala Ser Ile Glu Asn
Leu Lys Asp Ser Ala Tyr Lys Gln Ser Leu Ile 245
250 255 Met Leu Val Asp Tyr Val Leu Asp Phe Tyr
Ser Pro Lys Val Glu Asn 260 265
270 Thr Leu 211797DNAPopulus tremuloides 21catatggcaa
cagaattatt atgtttacac agacctatat cacttactca caaacttttt 60aggaatccat
tacctaaagt tattcaagct acacctttaa cattaaaact taggtgtagt 120gtttctacag
aaaatgtatc atttagtgag acagaaactg aaacaagaag atcagcaaat 180tatgaaccaa
attcttggga ttatgattat cttctttctt ctgatactga tgagtcaata 240gaagtacata
aagataaggc taagaaatta gaagctgaag ttaggagaga aataaataat 300gagaaggctg
aatttcttac acttcttgaa cttattgata atgtacaaag acttggatta 360ggatatagat
ttgagtctga tataagaaga gcattagata gatttgtaag tagtggagga 420tttgatggag
ttactaaaac ttcattacat ggaacagcat tatcatttag gttattaagg 480caacatggtt
ttgaagtatc tcaagaagct tttagtggat ttaaagatca gaatggaaac 540tttcttgaga
atttaaagga agacataaaa gcaattcttt ctctttatga agcatcattt 600ttagcattag
aaggtgagaa tatattagat gaggctaaag tatttgcaat atctcatctt 660aaagaactta
gtgaagaaaa gattggtaaa gaattagctg aacaagtttc acatgcttta 720gaattaccat
tacatagaag aacacaaaga ttagaagcag tttggtcaat agaagcatat 780agaaagaaag
aagacgcaaa tcaagtactt ttagaacttg caatacttga ctacaatatg 840attcaaagtg
tatatcagag ggatttaaga gaaacatcaa gatggtggag aagagtagga 900ttagcaacta
aattacattt tgctagagat aggcttattg aaagttttta ttgggctgtt 960ggagttgctt
ttgaaccaca atattctgat tgcagaaata gtgtagcaaa gatgttttca 1020tttgttacta
taattgacga tatttacgat gtatatggaa ctttagatga acttgaactt 1080tttactgatg
cagttgaaag atgggatgta aatgctatta atgatcttcc tgattatatg 1140aagttatgtt
ttcttgcact ttacaatact attaacgaga tagcttacga taacttaaaa 1200gataaaggtg
agaacatact tccttattta acaaaagcat gggcagattt atgtaatgca 1260tttcttcaag
aagctaagtg gctttataat aaatcaacac ctacatttga tgattatttt 1320ggaaatgcat
ggaaaagttc tagtggacct ttacagctta tttttgctta ttttgctgta 1380gtacagaaca
ttaaaaagga agagattgag aatcttcaga aatatcatga cataatatca 1440agacctagtc
acatttttag gctttgtaat gatttagcat ctgcttcagc agaaatagca 1500agaggtgaaa
ctgctaattc tgtaagttgt tatatgagaa caaaaggtat atctgaagaa 1560ttagctactg
aaagtgttat gaatcttata gacgaaactt ggaagaaaat gaacaaagaa 1620aaacttggtg
gatctttatt tgcaaaacct tttgttgaga ctgctataaa tttagctaga 1680cagtctcatt
gcacatatca taatggtgat gcacatacta gtccagatga attaactagg 1740aaaagagtac
ttagtgtaat aactgaacca atattaccat ttgaaagata agaattc
179722617DNAClostridium autoethanogenum 22ggttaatgtt aaaaatttat
agtataactt taaaaaactg tcttaaaaag ttgttatata 60aaaaatgttg acaattaaac
agctatttag tgcaaaacaa ccataaaaat ttaaaaaata 120ccataaatta cttgaaaaat
agttgataat aatgtagagt tataaacaaa ggtgaaaagc 180attacttgta ttctttttta
tatattatta taaattaaaa tgaagctgta ttagaaaaaa 240tacacacctg taatataaaa
ttttaaatta atttttaatt ttttcaaaat gtattttaca 300tgtttagaat tttgatgtat
attaaaatag tagaatacat aagatactta atttaattaa 360agatagttaa gtacttttca
atgtgctttt ttagatgttt aatacaaatc tttaattgta 420aaagaaatgc tgtactattt
actgtactag tgacgggatt aaactgtatt aattataaat 480aaaaaataag tacagttgtt
taaaattata ttttgtatta aatctaatag tacgatgtaa 540gttattttat actattgcta
gtttaataaa aagatttaat tatatacttg aaaaggagag 600gaatttttat gcgtaaa
6172330DNAArtificial
Sequenceoligonucleotide Ppfor-NotI-F 23aagcggccgc aaaatagttg ataataatgc
302430DNAArtificial
Sequenceoligonucleotide Ppfor-NdeI-R 24tacgcatatg aattcctctc cttttcaagc
30255345DNAArtificial Sequenceplasmid
pMTL 85146-ispS 25aattcgagct cggtacccgg ggatcctcta gagtcgacgt cacgcgtcca
tggagatctc 60gaggcctgca gacatgcaag cttggcactg gccgtcgttt tacaacgtcg
tgactgggaa 120aaccctggcg ttacccaact taatcgcctt gcagcacatc cccctttcgc
cagctggcgt 180aatagcgaag aggcccgcac cgatcgccct tcccaacagt tgcgcagcct
gaatggcgaa 240tggcgctagc ataaaaataa gaagcctgca tttgcaggct tcttattttt
atggcgcgcc 300gcattcactt cttttctata taaatatgag cgaagcgaat aagcgtcgga
aaagcagcaa 360aaagtttcct ttttgctgtt ggagcatggg ggttcagggg gtgcagtatc
tgacgtcaat 420gccgagcgaa agcgagccga agggtagcat ttacgttaga taaccccctg
atatgctccg 480acgctttata tagaaaagaa gattcaacta ggtaaaatct taatataggt
tgagatgata 540aggtttataa ggaatttgtt tgttctaatt tttcactcat tttgttctaa
tttcttttaa 600caaatgttct ttttttttta gaacagttat gatatagtta gaatagttta
aaataaggag 660tgagaaaaag atgaaagaaa gatatggaac agtctataaa ggctctcaga
ggctcataga 720cgaagaaagt ggagaagtca tagaggtaga caagttatac cgtaaacaaa
cgtctggtaa 780cttcgtaaag gcatatatag tgcaattaat aagtatgtta gatatgattg
gcggaaaaaa 840acttaaaatc gttaactata tcctagataa tgtccactta agtaacaata
caatgatagc 900tacaacaaga gaaatagcaa aagctacagg aacaagtcta caaacagtaa
taacaacact 960taaaatctta gaagaaggaa atattataaa aagaaaaact ggagtattaa
tgttaaaccc 1020tgaactacta atgagaggcg acgaccaaaa acaaaaatac ctcttactcg
aatttgggaa 1080ctttgagcaa gaggcaaatg aaatagattg acctcccaat aacaccacgt
agttattggg 1140aggtcaatct atgaaatgcg attaagggcc ggccagtggg caagttgaaa
aattcacaaa 1200aatgtggtat aatatctttg ttcattagag cgataaactt gaatttgaga
gggaacttag 1260atggtatttg aaaaaattga taaaaatagt tggaacagaa aagagtattt
tgaccactac 1320tttgcaagtg taccttgtac ctacagcatg accgttaaag tggatatcac
acaaataaag 1380gaaaagggaa tgaaactata tcctgcaatg ctttattata ttgcaatgat
tgtaaaccgc 1440cattcagagt ttaggacggc aatcaatcaa gatggtgaat tggggatata
tgatgagatg 1500ataccaagct atacaatatt tcacaatgat actgaaacat tttccagcct
ttggactgag 1560tgtaagtctg actttaaatc atttttagca gattatgaaa gtgatacgca
acggtatgga 1620aacaatcata gaatggaagg aaagccaaat gctccggaaa acatttttaa
tgtatctatg 1680ataccgtggt caaccttcga tggctttaat ctgaatttgc agaaaggata
tgattatttg 1740attcctattt ttactatggg gaaatattat aaagaagata acaaaattat
acttcctttg 1800gcaattcaag ttcatcacgc agtatgtgac ggatttcaca tttgccgttt
tgtaaacgaa 1860ttgcaggaat tgataaatag ttaacttcag gtttgtctgt aactaaaaac
aagtatttaa 1920gcaaaaacat cgtagaaata cggtgttttt tgttacccta agtttaaact
cctttttgat 1980aatctcatga ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc
agaccccgta 2040gaaaagatca aaggatcttc ttgagatcct ttttttctgc gcgtaatctg
ctgcttgcaa 2100acaaaaaaac caccgctacc agcggtggtt tgtttgccgg atcaagagct
accaactctt 2160tttccgaagg taactggctt cagcagagcg cagataccaa atactgttct
tctagtgtag 2220ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct
cgctctgcta 2280atcctgttac cagtggctgc tgccagtggc gataagtcgt gtcttaccgg
gttggactca 2340agacgatagt taccggataa ggcgcagcgg tcgggctgaa cggggggttc
gtgcacacag 2400cccagcttgg agcgaacgac ctacaccgaa ctgagatacc tacagcgtga
gctatgagaa 2460agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg
cagggtcgga 2520acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta
tagtcctgtc 2580gggtttcgcc acctctgact tgagcgtcga tttttgtgat gctcgtcagg
ggggcggagc 2640ctatggaaaa acgccagcaa cgcggccttt ttacggttcc tggccttttg
ctggcctttt 2700gctcacatgt tctttcctgc gttatcccct gattctgtgg ataaccgtat
taccgccttt 2760gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc
agtgagcgag 2820gaagcggaag agcgcccaat acgcagggcc ccctgcagga taaaaaaatt
gtagataaat 2880tttataaaat agttttatct acaatttttt tatcaggaaa cagctatgac
cgcggccgcg 2940gttaatgtta aaaatttata gtataacttt aaaaaactgt cttaaaaagt
tgttatataa 3000aaaatgttga caattaaaca gctatttagt gcaaaacaac cataaaaatt
taaaaaatac 3060cataaattac ttgaaaaata gttgataata atgtagagtt ataaacaaag
gtgaaaagca 3120ttacttgtat tcttttttat atattattat aaattaaaat gaagctgtat
tagaaaaaat 3180acacacctgt aatataaaat tttaaattaa tttttaattt tttcaaaatg
tattttacat 3240gtttagaatt ttgatgtata ttaaaatagt agaatacata agatacttaa
tttaattaaa 3300gatagttaag tacttttcaa tgtgcttttt tagatgttta atacaaatct
ttaattgtaa 3360aagaaatgct gtactattta ctgtactagt gacgggatta aactgtatta
attataaata 3420aaaaataagt acagttgttt aaaattatat tttgtattaa atctaatagt
acgatgtaag 3480ttattttata ctattgctag tttaataaaa agatttaatt atatacttga
aaaggagagg 3540aatttttatg cgtcatatgg caacagaatt attatgttta cacagaccta
tatcacttac 3600tcacaaactt tttaggaatc cattacctaa agttattcaa gctacacctt
taacattaaa 3660acttaggtgt agtgtttcta cagaaaatgt atcatttagt gagacagaaa
ctgaaacaag 3720aagatcagca aattatgaac caaattcttg ggattatgat tatcttcttt
cttctgatac 3780tgatgagtca atagaagtac ataaagataa ggctaagaaa ttagaagctg
aagttaggag 3840agaaataaat aatgagaagg ctgaatttct tacacttctt gaacttattg
ataatgtaca 3900aagacttgga ttaggatata gatttgagtc tgatataaga agagcattag
atagatttgt 3960aagtagtgga ggatttgatg gagttactaa aacttcatta catggaacag
cattatcatt 4020taggttatta aggcaacatg gttttgaagt atctcaagaa gcttttagtg
gatttaaaga 4080tcagaatgga aactttcttg agaatttaaa ggaagacata aaagcaattc
tttctcttta 4140tgaagcatca tttttagcat tagaaggtga gaatatatta gatgaggcta
aagtatttgc 4200aatatctcat cttaaagaac ttagtgaaga aaagattggt aaagaattag
ctgaacaagt 4260ttcacatgct ttagaattac cattacatag aagaacacaa agattagaag
cagtttggtc 4320aatagaagca tatagaaaga aagaagacgc aaatcaagta cttttagaac
ttgcaatact 4380tgactacaat atgattcaaa gtgtatatca gagggattta agagaaacat
caagatggtg 4440gagaagagta ggattagcaa ctaaattaca ttttgctaga gataggctta
ttgaaagttt 4500ttattgggct gttggagttg cttttgaacc acaatattct gattgcagaa
atagtgtagc 4560aaagatgttt tcatttgtta ctataattga cgatatttac gatgtatatg
gaactttaga 4620tgaacttgaa ctttttactg atgcagttga aagatgggat gtaaatgcta
ttaatgatct 4680tcctgattat atgaagttat gttttcttgc actttacaat actattaacg
agatagctta 4740cgataactta aaagataaag gtgagaacat acttccttat ttaacaaaag
catgggcaga 4800tttatgtaat gcatttcttc aagaagctaa gtggctttat aataaatcaa
cacctacatt 4860tgatgattat tttggaaatg catggaaaag ttctagtgga cctttacagc
ttatttttgc 4920ttattttgct gtagtacaga acattaaaaa ggaagagatt gagaatcttc
agaaatatca 4980tgacataata tcaagaccta gtcacatttt taggctttgt aatgatttag
catctgcttc 5040agcagaaata gcaagaggtg aaactgctaa ttctgtaagt tgttatatga
gaacaaaagg 5100tatatctgaa gaattagcta ctgaaagtgt tatgaatctt atagacgaaa
cttggaagaa 5160aatgaacaaa gaaaaacttg gtggatcttt atttgcaaaa ccttttgttg
agactgctat 5220aaatttagct agacagtctc attgcacata tcataatggt gatgcacata
ctagtccaga 5280tgaattaact aggaaaagag tacttagtgt aataactgaa ccaatattac
catttgaaag 5340ataag
53452626DNAArtificial SequenceOligonucleotide Idi-Cbei-SacI-F
26gtgagctcga aaggggaaat taaatg
262727DNAArtificial SequenceOligonucleotide Idi-Cbei-KpnI-R 27atggtacccc
aaatctttat ttagacg
27285905DNAArtificial Sequenceplasmid pMTL85246-ispS-idi 28ccggggatcc
tctagagtcg acgtcacgcg tccatggaga tctcgaggcc tgcagacatg 60caagcttggc
actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc 120aacttaatcg
ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc 180gcaccgatcg
cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc tagcataaaa 240ataagaagcc
tgcatttgca ggcttcttat ttttatggcg cgccgcattc acttcttttc 300tatataaata
tgagcgaagc gaataagcgt cggaaaagca gcaaaaagtt tcctttttgc 360tgttggagca
tgggggttca gggggtgcag tatctgacgt caatgccgag cgaaagcgag 420ccgaagggta
gcatttacgt tagataaccc cctgatatgc tccgacgctt tatatagaaa 480agaagattca
actaggtaaa atcttaatat aggttgagat gataaggttt ataaggaatt 540tgtttgttct
aatttttcac tcattttgtt ctaatttctt ttaacaaatg ttcttttttt 600tttagaacag
ttatgatata gttagaatag tttaaaataa ggagtgagaa aaagatgaaa 660gaaagatatg
gaacagtcta taaaggctct cagaggctca tagacgaaga aagtggagaa 720gtcatagagg
tagacaagtt ataccgtaaa caaacgtctg gtaacttcgt aaaggcatat 780atagtgcaat
taataagtat gttagatatg attggcggaa aaaaacttaa aatcgttaac 840tatatcctag
ataatgtcca cttaagtaac aatacaatga tagctacaac aagagaaata 900gcaaaagcta
caggaacaag tctacaaaca gtaataacaa cacttaaaat cttagaagaa 960ggaaatatta
taaaaagaaa aactggagta ttaatgttaa accctgaact actaatgaga 1020ggcgacgacc
aaaaacaaaa atacctctta ctcgaatttg ggaactttga gcaagaggca 1080aatgaaatag
attgacctcc caataacacc acgtagttat tgggaggtca atctatgaaa 1140tgcgattaag
ggccggccag tgggcaagtt gaaaaattca caaaaatgtg gtataatatc 1200tttgttcatt
agagcgataa acttgaattt gagagggaac ttagatggta tttgaaaaaa 1260ttgataaaaa
tagttggaac agaaaagagt attttgacca ctactttgca agtgtacctt 1320gtacctacag
catgaccgtt aaagtggata tcacacaaat aaaggaaaag ggaatgaaac 1380tatatcctgc
aatgctttat tatattgcaa tgattgtaaa ccgccattca gagtttagga 1440cggcaatcaa
tcaagatggt gaattgggga tatatgatga gatgatacca agctatacaa 1500tatttcacaa
tgatactgaa acattttcca gcctttggac tgagtgtaag tctgacttta 1560aatcattttt
agcagattat gaaagtgata cgcaacggta tggaaacaat catagaatgg 1620aaggaaagcc
aaatgctccg gaaaacattt ttaatgtatc tatgataccg tggtcaacct 1680tcgatggctt
taatctgaat ttgcagaaag gatatgatta tttgattcct atttttacta 1740tggggaaata
ttataaagaa gataacaaaa ttatacttcc tttggcaatt caagttcatc 1800acgcagtatg
tgacggattt cacatttgcc gttttgtaaa cgaattgcag gaattgataa 1860atagttaact
tcaggtttgt ctgtaactaa aaacaagtat ttaagcaaaa acatcgtaga 1920aatacggtgt
tttttgttac cctaagttta aactcctttt tgataatctc atgaccaaaa 1980tcccttaacg
tgagttttcg ttccactgag cgtcagaccc cgtagaaaag atcaaaggat 2040cttcttgaga
tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc 2100taccagcggt
ggtttgtttg ccggatcaag agctaccaac tctttttccg aaggtaactg 2160gcttcagcag
agcgcagata ccaaatactg ttcttctagt gtagccgtag ttaggccacc 2220acttcaagaa
ctctgtagca ccgcctacat acctcgctct gctaatcctg ttaccagtgg 2280ctgctgccag
tggcgataag tcgtgtctta ccgggttgga ctcaagacga tagttaccgg 2340ataaggcgca
gcggtcgggc tgaacggggg gttcgtgcac acagcccagc ttggagcgaa 2400cgacctacac
cgaactgaga tacctacagc gtgagctatg agaaagcgcc acgcttcccg 2460aagggagaaa
ggcggacagg tatccggtaa gcggcagggt cggaacagga gagcgcacga 2520gggagcttcc
agggggaaac gcctggtatc tttatagtcc tgtcgggttt cgccacctct 2580gacttgagcg
tcgatttttg tgatgctcgt caggggggcg gagcctatgg aaaaacgcca 2640gcaacgcggc
ctttttacgg ttcctggcct tttgctggcc ttttgctcac atgttctttc 2700ctgcgttatc
ccctgattct gtggataacc gtattaccgc ctttgagtga gctgataccg 2760ctcgccgcag
ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg gaagagcgcc 2820caatacgcag
ggccccctgc aggataaaaa aattgtagat aaattttata aaatagtttt 2880atctacaatt
tttttatcag gaaacagcta tgaccgcggc cgcggttaat gttaaaaatt 2940tatagtataa
ctttaaaaaa ctgtcttaaa aagttgttat ataaaaaatg ttgacaatta 3000aacagctatt
tagtgcaaaa caaccataaa aatttaaaaa ataccataaa ttacttgaaa 3060aatagttgat
aataatgtag agttataaac aaaggtgaaa agcattactt gtattctttt 3120ttatatatta
ttataaatta aaatgaagct gtattagaaa aaatacacac ctgtaatata 3180aaattttaaa
ttaattttta attttttcaa aatgtatttt acatgtttag aattttgatg 3240tatattaaaa
tagtagaata cataagatac ttaatttaat taaagatagt taagtacttt 3300tcaatgtgct
tttttagatg tttaatacaa atctttaatt gtaaaagaaa tgctgtacta 3360tttactgtac
tagtgacggg attaaactgt attaattata aataaaaaat aagtacagtt 3420gtttaaaatt
atattttgta ttaaatctaa tagtacgatg taagttattt tatactattg 3480ctagtttaat
aaaaagattt aattatatac ttgaaaagga gaggaatttt tatgcgtcat 3540atggcaacag
aattattatg tttacacaga cctatatcac ttactcacaa actttttagg 3600aatccattac
ctaaagttat tcaagctaca cctttaacat taaaacttag gtgtagtgtt 3660tctacagaaa
atgtatcatt tagtgagaca gaaactgaaa caagaagatc agcaaattat 3720gaaccaaatt
cttgggatta tgattatctt ctttcttctg atactgatga gtcaatagaa 3780gtacataaag
ataaggctaa gaaattagaa gctgaagtta ggagagaaat aaataatgag 3840aaggctgaat
ttcttacact tcttgaactt attgataatg tacaaagact tggattagga 3900tatagatttg
agtctgatat aagaagagca ttagatagat ttgtaagtag tggaggattt 3960gatggagtta
ctaaaacttc attacatgga acagcattat catttaggtt attaaggcaa 4020catggttttg
aagtatctca agaagctttt agtggattta aagatcagaa tggaaacttt 4080cttgagaatt
taaaggaaga cataaaagca attctttctc tttatgaagc atcattttta 4140gcattagaag
gtgagaatat attagatgag gctaaagtat ttgcaatatc tcatcttaaa 4200gaacttagtg
aagaaaagat tggtaaagaa ttagctgaac aagtttcaca tgctttagaa 4260ttaccattac
atagaagaac acaaagatta gaagcagttt ggtcaataga agcatataga 4320aagaaagaag
acgcaaatca agtactttta gaacttgcaa tacttgacta caatatgatt 4380caaagtgtat
atcagaggga tttaagagaa acatcaagat ggtggagaag agtaggatta 4440gcaactaaat
tacattttgc tagagatagg cttattgaaa gtttttattg ggctgttgga 4500gttgcttttg
aaccacaata ttctgattgc agaaatagtg tagcaaagat gttttcattt 4560gttactataa
ttgacgatat ttacgatgta tatggaactt tagatgaact tgaacttttt 4620actgatgcag
ttgaaagatg ggatgtaaat gctattaatg atcttcctga ttatatgaag 4680ttatgttttc
ttgcacttta caatactatt aacgagatag cttacgataa cttaaaagat 4740aaaggtgaga
acatacttcc ttatttaaca aaagcatggg cagatttatg taatgcattt 4800cttcaagaag
ctaagtggct ttataataaa tcaacaccta catttgatga ttattttgga 4860aatgcatgga
aaagttctag tggaccttta cagcttattt ttgcttattt tgctgtagta 4920cagaacatta
aaaaggaaga gattgagaat cttcagaaat atcatgacat aatatcaaga 4980cctagtcaca
tttttaggct ttgtaatgat ttagcatctg cttcagcaga aatagcaaga 5040ggtgaaactg
ctaattctgt aagttgttat atgagaacaa aaggtatatc tgaagaatta 5100gctactgaaa
gtgttatgaa tcttatagac gaaacttgga agaaaatgaa caaagaaaaa 5160cttggtggat
ctttatttgc aaaacctttt gttgagactg ctataaattt agctagacag 5220tctcattgca
catatcataa tggtgatgca catactagtc cagatgaatt aactaggaaa 5280agagtactta
gtgtaataac tgaaccaata ttaccatttg aaagataaga attcgagctc 5340gaaaggggaa
attaaatggc agaatatata atagctgtag atgaatttga taacgaaata 5400ggttcaattg
aaaaaatgga ggctcaccgt aaaggaacat tacatagagc tttttctata 5460ttagtattta
attctaaaaa tcaattgtta ttacagaaaa gaaatgtaaa aaaatatcat 5520tcgcctggtc
tctggacaaa tacgtgctgt agtcatccaa gatacggtga aagtttacat 5580gatgcgattt
atagaaggct taaggaagaa atgggtttta catgtgaact tgaagaagta 5640tttagtttta
tttataaagt aaaacttgaa gataatcttt ttgaaaatga atatgatcat 5700gtattcattg
ggaaatatga tggagaaata attgtaaaca aagatgaagt agatgatttt 5760aagtgggttg
atattaatga ggttaagaag gatattatag aaaggccaga agcatacact 5820tattggttca
agtatttagt taataaggca gaaaacaaaa tatttaaata agtaagaatt 5880tcgtctaaat
aaagatttgg ggtac
59052929DNAArtificial SequenceOligonucleotide Dxs-SalI-F 29gcagtcgact
ttattaaagg gatagataa
293031DNAArtificial SequenceOligonucleotide Dxs-XhoI-R 30tgctcgagtt
aaaatatatg acttacctct g
31317784DNAArtificial Sequenceplasmid pMTL85246-ispS-idi-dxs 31tcgaggcctg
cagacatgca agcttggcac tggccgtcgt tttacaacgt cgtgactggg 60aaaaccctgg
cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc 120gtaatagcga
agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg 180aatggcgcta
gcataaaaat aagaagcctg catttgcagg cttcttattt ttatggcgcg 240ccgcattcac
ttcttttcta tataaatatg agcgaagcga ataagcgtcg gaaaagcagc 300aaaaagtttc
ctttttgctg ttggagcatg ggggttcagg gggtgcagta tctgacgtca 360atgccgagcg
aaagcgagcc gaagggtagc atttacgtta gataaccccc tgatatgctc 420cgacgcttta
tatagaaaag aagattcaac taggtaaaat cttaatatag gttgagatga 480taaggtttat
aaggaatttg tttgttctaa tttttcactc attttgttct aatttctttt 540aacaaatgtt
cttttttttt tagaacagtt atgatatagt tagaatagtt taaaataagg 600agtgagaaaa
agatgaaaga aagatatgga acagtctata aaggctctca gaggctcata 660gacgaagaaa
gtggagaagt catagaggta gacaagttat accgtaaaca aacgtctggt 720aacttcgtaa
aggcatatat agtgcaatta ataagtatgt tagatatgat tggcggaaaa 780aaacttaaaa
tcgttaacta tatcctagat aatgtccact taagtaacaa tacaatgata 840gctacaacaa
gagaaatagc aaaagctaca ggaacaagtc tacaaacagt aataacaaca 900cttaaaatct
tagaagaagg aaatattata aaaagaaaaa ctggagtatt aatgttaaac 960cctgaactac
taatgagagg cgacgaccaa aaacaaaaat acctcttact cgaatttggg 1020aactttgagc
aagaggcaaa tgaaatagat tgacctccca ataacaccac gtagttattg 1080ggaggtcaat
ctatgaaatg cgattaaggg ccggccagtg ggcaagttga aaaattcaca 1140aaaatgtggt
ataatatctt tgttcattag agcgataaac ttgaatttga gagggaactt 1200agatggtatt
tgaaaaaatt gataaaaata gttggaacag aaaagagtat tttgaccact 1260actttgcaag
tgtaccttgt acctacagca tgaccgttaa agtggatatc acacaaataa 1320aggaaaaggg
aatgaaacta tatcctgcaa tgctttatta tattgcaatg attgtaaacc 1380gccattcaga
gtttaggacg gcaatcaatc aagatggtga attggggata tatgatgaga 1440tgataccaag
ctatacaata tttcacaatg atactgaaac attttccagc ctttggactg 1500agtgtaagtc
tgactttaaa tcatttttag cagattatga aagtgatacg caacggtatg 1560gaaacaatca
tagaatggaa ggaaagccaa atgctccgga aaacattttt aatgtatcta 1620tgataccgtg
gtcaaccttc gatggcttta atctgaattt gcagaaagga tatgattatt 1680tgattcctat
ttttactatg gggaaatatt ataaagaaga taacaaaatt atacttcctt 1740tggcaattca
agttcatcac gcagtatgtg acggatttca catttgccgt tttgtaaacg 1800aattgcagga
attgataaat agttaacttc aggtttgtct gtaactaaaa acaagtattt 1860aagcaaaaac
atcgtagaaa tacggtgttt tttgttaccc taagtttaaa ctcctttttg 1920ataatctcat
gaccaaaatc ccttaacgtg agttttcgtt ccactgagcg tcagaccccg 1980tagaaaagat
caaaggatct tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc 2040aaacaaaaaa
accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc 2100tttttccgaa
ggtaactggc ttcagcagag cgcagatacc aaatactgtt cttctagtgt 2160agccgtagtt
aggccaccac ttcaagaact ctgtagcacc gcctacatac ctcgctctgc 2220taatcctgtt
accagtggct gctgccagtg gcgataagtc gtgtcttacc gggttggact 2280caagacgata
gttaccggat aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac 2340agcccagctt
ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag 2400aaagcgccac
gcttcccgaa gggagaaagg cggacaggta tccggtaagc ggcagggtcg 2460gaacaggaga
gcgcacgagg gagcttccag ggggaaacgc ctggtatctt tatagtcctg 2520tcgggtttcg
ccacctctga cttgagcgtc gatttttgtg atgctcgtca ggggggcgga 2580gcctatggaa
aaacgccagc aacgcggcct ttttacggtt cctggccttt tgctggcctt 2640ttgctcacat
gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct 2700ttgagtgagc
tgataccgct cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg 2760aggaagcgga
agagcgccca atacgcaggg ccccctgcag gataaaaaaa ttgtagataa 2820attttataaa
atagttttat ctacaatttt tttatcagga aacagctatg accgcggccg 2880cggttaatgt
taaaaattta tagtataact ttaaaaaact gtcttaaaaa gttgttatat 2940aaaaaatgtt
gacaattaaa cagctattta gtgcaaaaca accataaaaa tttaaaaaat 3000accataaatt
acttgaaaaa tagttgataa taatgtagag ttataaacaa aggtgaaaag 3060cattacttgt
attctttttt atatattatt ataaattaaa atgaagctgt attagaaaaa 3120atacacacct
gtaatataaa attttaaatt aatttttaat tttttcaaaa tgtattttac 3180atgtttagaa
ttttgatgta tattaaaata gtagaataca taagatactt aatttaatta 3240aagatagtta
agtacttttc aatgtgcttt tttagatgtt taatacaaat ctttaattgt 3300aaaagaaatg
ctgtactatt tactgtacta gtgacgggat taaactgtat taattataaa 3360taaaaaataa
gtacagttgt ttaaaattat attttgtatt aaatctaata gtacgatgta 3420agttatttta
tactattgct agtttaataa aaagatttaa ttatatactt gaaaaggaga 3480ggaattttta
tgcgtcatat ggcaacagaa ttattatgtt tacacagacc tatatcactt 3540actcacaaac
tttttaggaa tccattacct aaagttattc aagctacacc tttaacatta 3600aaacttaggt
gtagtgtttc tacagaaaat gtatcattta gtgagacaga aactgaaaca 3660agaagatcag
caaattatga accaaattct tgggattatg attatcttct ttcttctgat 3720actgatgagt
caatagaagt acataaagat aaggctaaga aattagaagc tgaagttagg 3780agagaaataa
ataatgagaa ggctgaattt cttacacttc ttgaacttat tgataatgta 3840caaagacttg
gattaggata tagatttgag tctgatataa gaagagcatt agatagattt 3900gtaagtagtg
gaggatttga tggagttact aaaacttcat tacatggaac agcattatca 3960tttaggttat
taaggcaaca tggttttgaa gtatctcaag aagcttttag tggatttaaa 4020gatcagaatg
gaaactttct tgagaattta aaggaagaca taaaagcaat tctttctctt 4080tatgaagcat
catttttagc attagaaggt gagaatatat tagatgaggc taaagtattt 4140gcaatatctc
atcttaaaga acttagtgaa gaaaagattg gtaaagaatt agctgaacaa 4200gtttcacatg
ctttagaatt accattacat agaagaacac aaagattaga agcagtttgg 4260tcaatagaag
catatagaaa gaaagaagac gcaaatcaag tacttttaga acttgcaata 4320cttgactaca
atatgattca aagtgtatat cagagggatt taagagaaac atcaagatgg 4380tggagaagag
taggattagc aactaaatta cattttgcta gagataggct tattgaaagt 4440ttttattggg
ctgttggagt tgcttttgaa ccacaatatt ctgattgcag aaatagtgta 4500gcaaagatgt
tttcatttgt tactataatt gacgatattt acgatgtata tggaacttta 4560gatgaacttg
aactttttac tgatgcagtt gaaagatggg atgtaaatgc tattaatgat 4620cttcctgatt
atatgaagtt atgttttctt gcactttaca atactattaa cgagatagct 4680tacgataact
taaaagataa aggtgagaac atacttcctt atttaacaaa agcatgggca 4740gatttatgta
atgcatttct tcaagaagct aagtggcttt ataataaatc aacacctaca 4800tttgatgatt
attttggaaa tgcatggaaa agttctagtg gacctttaca gcttattttt 4860gcttattttg
ctgtagtaca gaacattaaa aaggaagaga ttgagaatct tcagaaatat 4920catgacataa
tatcaagacc tagtcacatt tttaggcttt gtaatgattt agcatctgct 4980tcagcagaaa
tagcaagagg tgaaactgct aattctgtaa gttgttatat gagaacaaaa 5040ggtatatctg
aagaattagc tactgaaagt gttatgaatc ttatagacga aacttggaag 5100aaaatgaaca
aagaaaaact tggtggatct ttatttgcaa aaccttttgt tgagactgct 5160ataaatttag
ctagacagtc tcattgcaca tatcataatg gtgatgcaca tactagtcca 5220gatgaattaa
ctaggaaaag agtacttagt gtaataactg aaccaatatt accatttgaa 5280agataagaat
tcgagctcga aaggggaaat taaatggcag aatatataat agctgtagat 5340gaatttgata
acgaaatagg ttcaattgaa aaaatggagg ctcaccgtaa aggaacatta 5400catagagctt
tttctatatt agtatttaat tctaaaaatc aattgttatt acagaaaaga 5460aatgtaaaaa
aatatcattc gcctggtctc tggacaaata cgtgctgtag tcatccaaga 5520tacggtgaaa
gtttacatga tgcgatttat agaaggctta aggaagaaat gggttttaca 5580tgtgaacttg
aagaagtatt tagttttatt tataaagtaa aacttgaaga taatcttttt 5640gaaaatgaat
atgatcatgt attcattggg aaatatgatg gagaaataat tgtaaacaaa 5700gatgaagtag
atgattttaa gtgggttgat attaatgagg ttaagaagga tattatagaa 5760aggccagaag
catacactta ttggttcaag tatttagtta ataaggcaga aaacaaaata 5820tttaaataag
taagaatttc gtctaaataa agatttgggg tacccgggga tcctctagag 5880tcgactttat
taaagggata gataaggatg agtaatttat tagataatta taaagatata 5940aatgacgtaa
agaagatgtc gttaaatgat aaaaaaaagc tagctagaga aattagaaaa 6000tttttaatag
acaaagtatc taagacagga ggtcatttgg cgtctaactt aggggttgtg 6060gagctcactt
tgagtttatt tagtgtattt gatctaaatt atgataaact tatatgggat 6120gtgggacatc
aggcttatgt gcataaaatc ctcacgggaa gaaaggataa atttgatact 6180ttaaggcaat
ttggaggatt aagtggattt cctaaaaggt gcgaaagtat atatgatttt 6240ttcgaaacag
ggcatagtag tacttcaata tctgcagcac ttggaatggc tagggctaga 6300gatttaaagc
atgagaaata taatgttgtt gcagttatag gagatggagc acttactgga 6360ggtatggcac
tagaggccct aaatgatgta ggttatagaa aaactaagct tataataata 6420ttaaatgata
atcaaatgtc tataggaaaa aatgtaggtg gagtatctaa atatttaaat 6480aaacttagag
tggaccctaa gtataataaa tttaaagcgg atgtagaagc taaattaaaa 6540aagataccta
atataggaaa aggaatggca aaatatcttg aaaaggtaaa aaatggaata 6600aaacaaatgg
tagttcctgg aatgtttttt gaagatatgg gaattaaata tttaggacca 6660atagatggtc
ataatataaa agaacttaca gacgtactcg cttctgcaaa agacatacaa 6720ggtccagtta
ttatacatat aataactaag aaaggaaaag gatatgaatt tgcaagaaaa 6780aaatccaggt
aaattccatg gaatagggcc ttttaattgc gccaatggtg aactggatgc 6840tggatcttca
aatacttatt ccaaggcctt tggaaatgaa atggtaaagc tagcagaaaa 6900agacgataga
atagtggcta taactgcagc catgagggat ggaacaggtc ttaaaagttt 6960ttctcaaaag
tttcctgaaa ggttttttga tgtgggaata gcagaacagc atgctgtaac 7020cctggcagct
ggaatggcac aggcaaattt aaaacctgta tttgcagttt actctacttt 7080tcttcaaaga
gcttatgatc aacttattca tgatgtatgt atgcaaaaac ttccagtagt 7140ttttgctgta
gatagggccg gcattgtagg agaagatggt gaaacacatc agggaatatt 7200tgatttatct
tacttaacgg aaatgccaca tatgacgctt atgtctccta aatgtataga 7260tgaacttcca
tatatgttaa aatgggcatt aggccagagt tttcctgtag ctataaggta 7320tccaagggga
ggagatagtg tatgtctcaa tcccgtagaa aattttaaac ttggaaagtg 7380ggactgtatt
tcaaatgaag gcagtgtagc aataattgct cagggtaaaa tggtacaaaa 7440tgcagtgtta
gcaggaaaaa aacttaaaga aaagggtata gatgtaagga ttataagtgc 7500atgttttatt
aagccgctgg acaaggaaat gttaaacagg ttagttgaag aaagtgtaac 7560tatcgttact
gttgaagaca atgtaataag aggaggatta ggatcctata tattagaata 7620tgtaaataaa
ttaaataaaa aagtaaaaat aataaactta gggtttgatg ataagtttgt 7680acagcatgga
aaatccgata ttttgtataa gctgtatggt ttggatccta aaggtatcgt 7740aaatagtgta
cttgaagcag cagaggtaag tcatatattt taac
77843217DNAArtificial SequenceOligonucleotide M13R 32caggaaacag ctatgac
173320DNAArtificial
SequenceOligonucleotides Isoprene-seq1 33gttattcaag ctacaccttt
203420DNAArtificial
SequenceOligonucleotide Isoprene-seq2 34gattggtaaa gaattagctg
203518DNAArtificial
SequenceOligonucleotide Isoprene-seq3 35tcaagaagct aagtggct
183617DNAArtificial
SequenceOligonucleotide Isoprene-seq4 36ctcaccgtaa aggaaca
173720DNAArtificial
SequenceOligonucleotide Isoprene-seq5 37gctagctaga gaaattagaa
203820DNAArtificial
SequenceOligonucleotide Isoprene-seq6 38ggaatggcaa aatatcttga
203920DNAArtificial
SequenceOligonucleotide Isoprene-seq7 39gaaacacatc agggaatatt
20401179DNAClostridium acetobutylicum
40atgaaagagg ttgttattgc atcagctgtt agaactgcaa taggatctta tggaaaaagt
60cttaaagatg taccagcagt agacttaggt gcaactgcaa taaaggaagc agtaaagaaa
120gcaggtataa aacctgaaga tgttaatgaa gttattttag gaaacgtatt acaagctgga
180cttggacaga atccagctag acaggcatca ttcaaagcag gattaccagt agagatacct
240gctatgacta ttaataaagt ttgtggttca ggattaagaa cagtttcttt agctgctcaa
300attataaaag ctggtgacgc agatgtaata atagcaggtg gtatggaaaa tatgtcaaga
360gcaccatacc ttgctaataa tgctagatgg ggttatagaa tgggaaacgc taaatttgta
420gacgaaatga taactgatgg actttgggat gcatttaacg attatcacat gggaattact
480gctgaaaata tagctgagag atggaatata agtagagaag aacaagatga gtttgcactt
540gcatctcaga aaaaggcaga agaagctatt aaatcaggac aatttaaaga tgaaattgtt
600ccagtagtaa ttaaaggtag aaaaggtgaa acagttgtag acactgatga acatcctaga
660tttggatcta caatagaagg tttagctaaa ttaaagcctg cttttaagaa agacggaaca
720gtaactgctg gaaacgcatc aggtttaaat gattgtgcag ctgttttagt tattatgtct
780gctgaaaagg caaaggaatt aggtgttaaa ccacttgcta agatagttag ttatggttca
840gcaggtgtag atcctgctat tatgggatat ggaccttttt atgctacaaa ggcagctatt
900gaaaaggctg gttggacagt tgatgaactt gatcttatag agtcaaatga ggcatttgca
960gcacaaagtc ttgctgttgc taaggatctt aaattcgata tgaataaagt aaatgtaaac
1020ggtggtgcta tagcacttgg tcatccaata ggtgctagtg gtgctagaat tttagttaca
1080ttagttcatg caatgcaaaa gagagacgct aaaaagggac ttgcaacttt atgcataggt
1140ggtggtcaag gaacagcaat acttcttgaa aaatgttaa
1179411140DNAStaphylococcus aureus subsp. aureus 41atgaatcagg ctgttatagt
tgctgcaaag agaactgcat ttggaaaata tggtggtact 60ttaaaacacc ttgaaccaga
acaattactt aagccattat ttcagcactt taaagaaaaa 120tatcctgaag ttatatctaa
aatagatgat gtagttttag gaaacgtagt tggaaatggt 180ggtaatattg ctagaaaagc
acttcttgaa gcaggattaa aagatagtat accaggtgta 240actatagaca gacaatgcgg
atctggatta gaatcagtac aatacgcatg tagaatgata 300caagcaggtg ctggaaaagt
ttatattgca ggtggtgttg aatctacatc aagagcacct 360tggaaaataa agagaccaca
ttctgtttat gaaactgcat taccagagtt ctatgaaaga 420gcatcattcg cacctgaaat
gtcagatcca agtatgatac aaggtgctga gaatgtagct 480aaaatgtatg atgttagtag
agaacttcaa gatgagtttg catacagatc acatcaactt 540acagctgaaa atgtaaagaa
tggaaatatt tcacaagaaa ttcttccaat aacagtaaag 600ggtgaaatat tcaatactga
tgaaagttta aaatctcata ttccaaaaga taatttcggt 660agatttaaac ctgtaataaa
aggtggtact gtaacagctg ctaatagttg tatgaagaac 720gatggtgcag tattattact
tattatggaa aaggatatgg cttatgaact tggatttgag 780catggattat tatttaaaga
cggtgtaact gtaggtgtag atagtaactt tccaggaata 840ggacctgttc ctgctatatc
aaatctttta aagagaaacc aacttacaat agaaaatatt 900gaagtaattg agataaatga
agcattttct gctcaggtag ttgcttgtca gcaagctctt 960aatataagta atactcagtt
aaacatttgg ggtggtgcat tagcaagtgg tcatccttat 1020ggtgcatcag gtgcacagtt
agttacaaga ttattttata tgttcgataa agagacaatg 1080attgcttcta tgggaatagg
tggtggttta ggaaatgcag ctctttttac tagattttaa 1140421167DNAStaphylococcus
aureus subsp. aureus 42atgactatag gaattgacaa aataaacttt tacgtaccaa
aatattatgt agatatggca 60aaattagcag aagcaagaca agtagaccca aataaatttc
ttattggaat aggacagact 120gaaatggcag ttagtccagt aaaccaagat atagtatcaa
tgggtgctaa tgctgctaaa 180gatataataa ctgatgaaga caaaaagaaa ataggaatgg
taatagtagc aactgagtca 240gcagtagatg cagcaaaggc agcagcagta cagattcata
atttattagg tattcaacca 300tttgcaagat gtttcgaaat gaaagaagca tgttatgctg
ctactcctgc aattcagtta 360gctaaggatt atttagctac aagaccaaat gagaaagttt
tagttatagc tacagataca 420gctagatatg gacttaattc aggtggtgaa cctactcaag
gtgctggtgc tgttgctatg 480gttatagctc ataatcctag tatacttgca ttaaatgaag
acgctgttgc ttatacagaa 540gatgtttatg atttctggag accaacagga cataagtatc
cattagtaga tggtgcttta 600tcaaaagacg catatattag atcttttcaa caatcttgga
atgaatatgc taagagacaa 660ggaaagagtt tagctgattt tgctagtctt tgctttcatg
ttccttttac taaaatgggt 720aaaaaggctt tagaatctat aatagataac gcagatgaaa
caactcaaga gagattaaga 780tctggatatg aagatgcagt tgattacaat agatatgttg
gaaatatata cacaggaagt 840ctttatcttt ctcttataag tcttcttgaa aatagagatt
tacaggctgg tgaaactatt 900ggattatttt catacggatc aggttctgtt ggtgaatttt
attcagctac acttgtagaa 960ggatataaag atcaccttga tcaggcagca cacaaagcac
ttttaaacaa tagaactgaa 1020gtatcagtag atgcatacga aacatttttc aagagatttg
atgatgtaga atttgatgaa 1080gagcaggatg cagttcatga agatagacat atattctatc
tttcaaacat agagaataat 1140gtaagagaat atcatagacc tgaataa
1167431278DNAStaphylococcus aureus subsp. aureus
43atgcaatcat tagacaaaaa tttcagacat ttatcaagac aacaaaagtt acaacaatta
60gttgataaac agtggctttc agaagatcag tttgatattt tacttaatca tcctcttata
120gatgaagaag ttgctaatag tcttatagaa aatgtaattg cacagggtgc attaccagtt
180ggacttcttc ctaatataat agttgatgat aaggcttatg ttgtaccaat gatggttgaa
240gaacctagtg ttgttgcagc tgcatcttat ggtgctaaat tagtaaatca gacaggtgga
300tttaaaactg tatcatcaga aagaataatg attggacaga tagtatttga tggtgtagat
360gacactgaaa aattaagtgc agatattaaa gcattagaaa aacaaataca taagattgca
420gatgaagcat atcctagtat aaaagcaaga ggtggtggtt atcaaagaat agcaatagat
480acatttccag agcaacaact tttaagtctt aaggtatttg tagatacaaa agatgctatg
540ggtgctaata tgcttaatac tatacttgag gcaataactg cattccttaa aaatgaatct
600cctcaatcag atatattaat gtctatactt tcaaaccatg caactgctag tgtagtaaaa
660gtacaaggtg agatagatgt aaaagatctt gctagaggtg aaagaacagg tgaagaagta
720gctaagagaa tggaaagagc ttctgtatta gctcaggttg atattcatag agctgcaaca
780cataacaaag gtgttatgaa tggaatacat gctgttgttt tagctacagg aaatgatact
840agaggtgctg aagcatctgc acatgcatac gcatcaagag acggacaata tagaggtata
900gcaacttgga gatatgatca gaagagacaa agacttattg gaactattga agttccaatg
960acacttgcta tagtaggtgg tggtactaaa gtattaccaa tagctaaggc atcattagag
1020ttattaaatg ttgattctgc acaagaactt ggacacgtag ttgctgctgt tggattagca
1080caaaactttg ctgcttgtag agcacttgtt tctgaaggta ttcaacaagg acacatgtca
1140ttacaatata aaagtttagc aatagtagta ggtgcaaaag gtgacgagat agcacaagta
1200gcagaagctc ttaaacagga accaagagct aatacacagg ttgctgaaag aattttacag
1260gaaattagac agcaataa
127844552DNAClostridium autoethanogenum 44agatagtcat aatagttcca
gaatagttca atttagaaat tagactaaac ttcaaaatgt 60ttgttaaata tataccaatc
tagtatagat attttttaaa tactggactt aaacagtagt 120aatttgccta aaaaattttt
tcaatttttt ttaaaaaatc cttttcaagt tgtacattgt 180tatggtaata tgtaattgaa
gaagttatgt agtaatattg taaacgtttc ttgatttttt 240tacatccatg tagtgcttaa
aaaaccaaaa tatgtcacat gcacttgtat atttcaaata 300acaatattta ttttctcgtt
aaattcacaa ataatttatt aataatatca ataaccaaga 360ttatacttaa atggatgttt
attttttaac acttttatag taaatatatt tattttatgt 420agtaaaaagg ttataattat
aattgtattt attacaatta attaaaataa aaaatagggt 480tttaggtaaa attaagttat
tttaagaagt aattacaata aaaattgaag ttatttcttt 540aaggaggaaa tt
55245386DNAClostridium
autoethanogenum 45gttataattt tcaattttca ttctttttaa aggagattag catacatttt
atcataatta 60tacagacaat atagtaatat atgatgttaa aatatcaata tatggttaaa
aatctgtata 120ttttttccca ttttaattat ttgtactata atattacact gagtgtattg
catatttaaa 180aaatatttgg tacaattagt tagttaaata aattctaaat tgtaaattat
cagaatcctt 240attaaggaaa tacatagatt taaggagaaa tcataaaaag gtgtaatata
aactggctaa 300aattgagcaa aaattgagca attaagactt tttgattgta tctttttata
tatttaaggt 360atataatctt atttatattg ggggaa
3864621DNAArtificial Sequenceoligonucleotide pUC57-F
46agcagattgt actgagagtg c
214721DNAArtificial Sequenceoligonucleotide pUC57-R 47acagctatga
ccatgattac g
21483552DNAArtificial Sequenceplasmid pMTL 85245 48aaactccttt ttgataatct
catgaccaaa atcccttaac gtgagttttc gttccactga 60gcgtcagacc ccgtagaaaa
gatcaaagga tcttcttgag atcctttttt tctgcgcgta 120atctgctgct tgcaaacaaa
aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa 180gagctaccaa ctctttttcc
gaaggtaact ggcttcagca gagcgcagat accaaatact 240gttcttctag tgtagccgta
gttaggccac cacttcaaga actctgtagc accgcctaca 300tacctcgctc tgctaatcct
gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt 360accgggttgg actcaagacg
atagttaccg gataaggcgc agcggtcggg ctgaacgggg 420ggttcgtgca cacagcccag
cttggagcga acgacctaca ccgaactgag atacctacag 480cgtgagctat gagaaagcgc
cacgcttccc gaagggagaa aggcggacag gtatccggta 540agcggcaggg tcggaacagg
agagcgcacg agggagcttc cagggggaaa cgcctggtat 600ctttatagtc ctgtcgggtt
tcgccacctc tgacttgagc gtcgattttt gtgatgctcg 660tcaggggggc ggagcctatg
gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc 720ttttgctggc cttttgctca
catgttcttt cctgcgttat cccctgattc tgtggataac 780cgtattaccg cctttgagtg
agctgatacc gctcgccgca gccgaacgac cgagcgcagc 840gagtcagtga gcgaggaagc
ggaagagcgc ccaatacgca gggccccctg caggataaaa 900aaattgtaga taaattttat
aaaatagttt tatctacaat ttttttatca ggaaacagct 960atgaccgcgg ccgcaatatg
atatttatgt ccattgtgaa agggattata ttcaactatt 1020attccagtta cgttcataga
aattttcctt tctaaaatat tttattccat gtcaagaact 1080ctgtttattt cattaaagaa
ctataagtac aaagtataag gcatttgaaa aaataggcta 1140gtatattgat tgattattta
ttttaaaatg cctaagtgaa atatatacat attataacaa 1200taaaataagt attagtgtag
gatttttaaa tagagtatct attttcagat taaatttttg 1260attatttgat ttacattata
taatattgag taaagtattg actagcaaaa ttttttgata 1320ctttaatttg tgaaatttct
tatcaaaagt tatatttttg aataattttt attgaaaaat 1380acaactaaaa aggattatag
tataagtgtg tgtaattttg tgttaaattt aaagggagga 1440aatgaacatg aaacatatgg
tgaccatgat tacgaattcg agctcggtac ccggggatcc 1500tctagagtcg acgtcacgcg
tccatggaga tctcgaggcc tgcagacatg caagcttggc 1560actggccgtc gttttacaac
gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg 1620ccttgcagca catccccctt
tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg 1680cccttcccaa cagttgcgca
gcctgaatgg cgaatggcgc tagcataaaa ataagaagcc 1740tgcatttgca ggcttcttat
ttttatggcg cgccgcattc acttcttttc tatataaata 1800tgagcgaagc gaataagcgt
cggaaaagca gcaaaaagtt tcctttttgc tgttggagca 1860tgggggttca gggggtgcag
tatctgacgt caatgccgag cgaaagcgag ccgaagggta 1920gcatttacgt tagataaccc
cctgatatgc tccgacgctt tatatagaaa agaagattca 1980actaggtaaa atcttaatat
aggttgagat gataaggttt ataaggaatt tgtttgttct 2040aatttttcac tcattttgtt
ctaatttctt ttaacaaatg ttcttttttt tttagaacag 2100ttatgatata gttagaatag
tttaaaataa ggagtgagaa aaagatgaaa gaaagatatg 2160gaacagtcta taaaggctct
cagaggctca tagacgaaga aagtggagaa gtcatagagg 2220tagacaagtt ataccgtaaa
caaacgtctg gtaacttcgt aaaggcatat atagtgcaat 2280taataagtat gttagatatg
attggcggaa aaaaacttaa aatcgttaac tatatcctag 2340ataatgtcca cttaagtaac
aatacaatga tagctacaac aagagaaata gcaaaagcta 2400caggaacaag tctacaaaca
gtaataacaa cacttaaaat cttagaagaa ggaaatatta 2460taaaaagaaa aactggagta
ttaatgttaa accctgaact actaatgaga ggcgacgacc 2520aaaaacaaaa atacctctta
ctcgaatttg ggaactttga gcaagaggca aatgaaatag 2580attgacctcc caataacacc
acgtagttat tgggaggtca atctatgaaa tgcgattaag 2640ggccggccga agcaaactta
agagtgtgtt gatagtgcag tatcttaaaa ttttgtataa 2700taggaattga agttaaatta
gatgctaaaa atttgtaatt aagaaggagt gattacatga 2760acaaaaatat aaaatattct
caaaactttt taacgagtga aaaagtactc aaccaaataa 2820taaaacaatt gaatttaaaa
gaaaccgata ccgtttacga aattggaaca ggtaaagggc 2880atttaacgac gaaactggct
aaaataagta aacaggtaac gtctattgaa ttagacagtc 2940atctattcaa cttatcgtca
gaaaaattaa aactgaatac tcgtgtcact ttaattcacc 3000aagatattct acagtttcaa
ttccctaaca aacagaggta taaaattgtt gggagtattc 3060cttaccattt aagcacacaa
attattaaaa aagtggtttt tgaaagccat gcgtctgaca 3120tctatctgat tgttgaagaa
ggattctaca agcgtacctt ggatattcac cgaacactag 3180ggttgctctt gcacactcaa
gtctcgattc agcaattgct taagctgcca gcggaatgct 3240ttcatcctaa accaaaagta
aacagtgtct taataaaact tacccgccat accacagatg 3300ttccagataa atattggaag
ctatatacgt actttgtttc aaaatgggtc aatcgagaat 3360atcgtcaact gtttactaaa
aatcagtttc atcaagcaat gaaacacgcc aaagtaaaca 3420atttaagtac cgttacttat
gagcaagtat tgtctatttt taatagttat ctattattta 3480acgggaggaa ataattctat
gagtcgcttt tgtaaatttg gaaagttaca cgttactaaa 3540gggaatgtgt tt
3552494186DNAArtificial
Sequenceplasmid pMTL 83145 49aaactccttt ttgataatct catgaccaaa atcccttaac
gtgagttttc gttccactga 60gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag
atcctttttt tctgcgcgta 120atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg
tggtttgttt gccggatcaa 180gagctaccaa ctctttttcc gaaggtaact ggcttcagca
gagcgcagat accaaatact 240gttcttctag tgtagccgta gttaggccac cacttcaaga
actctgtagc accgcctaca 300tacctcgctc tgctaatcct gttaccagtg gctgctgcca
gtggcgataa gtcgtgtctt 360accgggttgg actcaagacg atagttaccg gataaggcgc
agcggtcggg ctgaacgggg 420ggttcgtgca cacagcccag cttggagcga acgacctaca
ccgaactgag atacctacag 480cgtgagctat gagaaagcgc cacgcttccc gaagggagaa
aggcggacag gtatccggta 540agcggcaggg tcggaacagg agagcgcacg agggagcttc
cagggggaaa cgcctggtat 600ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc
gtcgattttt gtgatgctcg 660tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg
cctttttacg gttcctggcc 720ttttgctggc cttttgctca catgttcttt cctgcgttat
cccctgattc tgtggataac 780cgtattaccg cctttgagtg agctgatacc gctcgccgca
gccgaacgac cgagcgcagc 840gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca
gggccccctg caggataaaa 900aaattgtaga taaattttat aaaatagttt tatctacaat
ttttttatca ggaaacagct 960atgaccgcgg ccgcaatatg atatttatgt ccattgtgaa
agggattata ttcaactatt 1020attccagtta cgttcataga aattttcctt tctaaaatat
tttattccat gtcaagaact 1080ctgtttattt cattaaagaa ctataagtac aaagtataag
gcatttgaaa aaataggcta 1140gtatattgat tgattattta ttttaaaatg cctaagtgaa
atatatacat attataacaa 1200taaaataagt attagtgtag gatttttaaa tagagtatct
attttcagat taaatttttg 1260attatttgat ttacattata taatattgag taaagtattg
actagcaaaa ttttttgata 1320ctttaatttg tgaaatttct tatcaaaagt tatatttttg
aataattttt attgaaaaat 1380acaactaaaa aggattatag tataagtgtg tgtaattttg
tgttaaattt aaagggagga 1440aatgaacatg aaacatatgg tgaccatgat tacgaattcg
agctcggtac ccggggatcc 1500tctagagtcg acgtcacgcg tccatggaga tctcgaggcc
tgcagacatg caagcttggc 1560actggccgtc gttttacaac gtcgtgactg ggaaaaccct
ggcgttaccc aacttaatcg 1620ccttgcagca catccccctt tcgccagctg gcgtaatagc
gaagaggccc gcaccgatcg 1680cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc
tagcataaaa ataagaagcc 1740tgcatttgca ggcttcttat ttttatggcg cgccgccatt
atttttttga acaattgaca 1800attcatttct tattttttat taagtgatag tcaaaaggca
taacagtgct gaatagaaag 1860aaatttacag aaaagaaaat tatagaattt agtatgatta
attatactca tttatgaatg 1920tttaattgaa tacaaaaaaa aatacttgtt atgtattcaa
ttacgggtta aaatatagac 1980aagttgaaaa atttaataaa aaaataagtc ctcagctctt
atatattaag ctaccaactt 2040agtatataag ccaaaactta aatgtgctac caacacatca
agccgttaga gaactctatc 2100tatagcaata tttcaaatgt accgacatac aagagaaaca
ttaactatat atattcaatt 2160tatgagatta tcttaacaga tataaatgta aattgcaata
agtaagattt agaagtttat 2220agcctttgtg tattggaagc agtacgcaaa ggctttttta
tttgataaaa attagaagta 2280tatttatttt ttcataatta atttatgaaa atgaaagggg
gtgagcaaag tgacagagga 2340aagcagtatc ttatcaaata acaaggtatt agcaatatca
ttattgactt tagcagtaaa 2400cattatgact tttatagtgc ttgtagctaa gtagtacgaa
agggggagct ttaaaaagct 2460ccttggaata catagaattc ataaattaat ttatgaaaag
aagggcgtat atgaaaactt 2520gtaaaaattg caaagagttt attaaagata ctgaaatatg
caaaatacat tcgttgatga 2580ttcatgataa aacagtagca acctattgca gtaaatacaa
tgagtcaaga tgtttacata 2640aagggaaagt ccaatgtatt aattgttcaa agatgaaccg
atatggatgg tgtgccataa 2700aaatgagatg ttttacagag gaagaacaga aaaaagaacg
tacatgcatt aaatattatg 2760caaggagctt taaaaaagct catgtaaaga agagtaaaaa
gaaaaaataa tttatttatt 2820aatttaatat tgagagtgcc gacacagtat gcactaaaaa
atatatctgt ggtgtagtga 2880gccgatacaa aaggatagtc actcgcattt tcataataca
tcttatgtta tgattatgtg 2940tcggtgggac ttcacgacga aaacccacaa taaaaaaaga
gttcggggta gggttaagca 3000tagttgaggc aactaaacaa tcaagctagg atatgcagta
gcagaccgta aggtcgttgt 3060ttaggtgtgt tgtaatacat acgctattaa gatgtaaaaa
tacggatacc aatgaaggga 3120aaagtataat ttttggatgt agtttgtttg ttcatctatg
ggcaaactac gtccaaagcc 3180gtttccaaat ctgctaaaaa gtatatcctt tctaaaatca
aagtcaagta tgaaatcata 3240aataaagttt aattttgaag ttattatgat attatgtttt
tctattaaaa taaattaagt 3300atatagaata gtttaataat agtatatact taatgtgata
agtgtctgac agtgtcacag 3360aaaggatgat tgttatggat tataagcggc cggccagtgg
gcaagttgaa aaattcacaa 3420aaatgtggta taatatcttt gttcattaga gcgataaact
tgaatttgag agggaactta 3480gatggtattt gaaaaaattg ataaaaatag ttggaacaga
aaagagtatt ttgaccacta 3540ctttgcaagt gtaccttgta cctacagcat gaccgttaaa
gtggatatca cacaaataaa 3600ggaaaaggga atgaaactat atcctgcaat gctttattat
attgcaatga ttgtaaaccg 3660ccattcagag tttaggacgg caatcaatca agatggtgaa
ttggggatat atgatgagat 3720gataccaagc tatacaatat ttcacaatga tactgaaaca
ttttccagcc tttggactga 3780gtgtaagtct gactttaaat catttttagc agattatgaa
agtgatacgc aacggtatgg 3840aaacaatcat agaatggaag gaaagccaaa tgctccggaa
aacattttta atgtatctat 3900gataccgtgg tcaaccttcg atggctttaa tctgaatttg
cagaaaggat atgattattt 3960gattcctatt tttactatgg ggaaatatta taaagaagat
aacaaaatta tacttccttt 4020ggcaattcaa gttcatcacg cagtatgtga cggatttcac
atttgccgtt ttgtaaacga 4080attgcaggaa ttgataaata gttaacttca ggtttgtctg
taactaaaaa caagtattta 4140agcaaaaaca tcgtagaaat acggtgtttt ttgttaccct
aagttt 4186509827DNAArtificial Sequenceplasmid
pMTL8215-Pptaack-thlA-HMGS-Patp-HMGR 50cctgcaggat aaaaaaattg tagataaatt
ttataaaata gttttatcta caattttttt 60atcaggaaac agctatgacc gcggccgcag
atagtcataa tagttccaga atagttcaat 120ttagaaatta gactaaactt caaaatgttt
gttaaatata taccaatcta gtatagatat 180tttttaaata ctggacttaa acagtagtaa
tttgcctaaa aaattttttc aatttttttt 240aaaaaatcct tttcaagttg tacattgtta
tggtaatatg taattgaaga agttatgtag 300taatattgta aacgtttctt gattttttta
catccatgta gtgcttaaaa aaccaaaata 360tgtcacatgc acttgtatat ttcaaataac
aatatttatt ttctcgttaa attcacaaat 420aatttattaa taatatcaat aaccaagatt
atacttaaat ggatgtttat tttttaacac 480ttttatagta aatatattta ttttatgtag
taaaaaggtt ataattataa ttgtatttat 540tacaattaat taaaataaaa aatagggttt
taggtaaaat taagttattt taagaagtaa 600ttacaataaa aattgaagtt atttctttaa
ggaggaaatt catatgaaag aggttgttat 660tgcatcagct gttagaactg caataggatc
ttatggaaaa agtcttaaag atgtaccagc 720agtagactta ggtgcaactg caataaagga
agcagtaaag aaagcaggta taaaacctga 780agatgttaat gaagttattt taggaaacgt
attacaagct ggacttggac agaatccagc 840tagacaggca tcattcaaag caggattacc
agtagagata cctgctatga ctattaataa 900agtttgtggt tcaggattaa gaacagtttc
tttagctgct caaattataa aagctggtga 960cgcagatgta ataatagcag gtggtatgga
aaatatgtca agagcaccat accttgctaa 1020taatgctaga tggggttata gaatgggaaa
cgctaaattt gtagacgaaa tgataactga 1080tggactttgg gatgcattta acgattatca
catgggaatt actgctgaaa atatagctga 1140gagatggaat ataagtagag aagaacaaga
tgagtttgca cttgcatctc agaaaaaggc 1200agaagaagct attaaatcag gacaatttaa
agatgaaatt gttccagtag taattaaagg 1260tagaaaaggt gaaacagttg tagacactga
tgaacatcct agatttggat ctacaataga 1320aggtttagct aaattaaagc ctgcttttaa
gaaagacgga acagtaactg ctggaaacgc 1380atcaggttta aatgattgtg cagctgtttt
agttattatg tctgctgaaa aggcaaagga 1440attaggtgtt aaaccacttg ctaagatagt
tagttatggt tcagcaggtg tagatcctgc 1500tattatggga tatggacctt tttatgctac
aaaggcagct attgaaaagg ctggttggac 1560agttgatgaa cttgatctta tagagtcaaa
tgaggcattt gcagcacaaa gtcttgctgt 1620tgctaaggat cttaaattcg atatgaataa
agtaaatgta aacggtggtg ctatagcact 1680tggtcatcca ataggtgcta gtggtgctag
aattttagtt acattagttc atgcaatgca 1740aaagagagac gctaaaaagg gacttgcaac
tttatgcata ggtggtggtc aaggaacagc 1800aatacttctt gaaaaatgtt aagaattcga
ggcttttact aaaaacaata aaaacaggag 1860gaaataatat gactatagga attgacaaaa
taaactttta cgtaccaaaa tattatgtag 1920atatggcaaa attagcagaa gcaagacaag
tagacccaaa taaatttctt attggaatag 1980gacagactga aatggcagtt agtccagtaa
accaagatat agtatcaatg ggtgctaatg 2040ctgctaaaga tataataact gatgaagaca
aaaagaaaat aggaatggta atagtagcaa 2100ctgagtcagc agtagatgca gcaaaggcag
cagcagtaca gattcataat ttattaggta 2160ttcaaccatt tgcaagatgt ttcgaaatga
aagaagcatg ttatgctgct actcctgcaa 2220ttcagttagc taaggattat ttagctacaa
gaccaaatga gaaagtttta gttatagcta 2280cagatacagc tagatatgga cttaattcag
gtggtgaacc tactcaaggt gctggtgctg 2340ttgctatggt tatagctcat aatcctagta
tacttgcatt aaatgaagac gctgttgctt 2400atacagaaga tgtttatgat ttctggagac
caacaggaca taagtatcca ttagtagatg 2460gtgctttatc aaaagacgca tatattagat
cttttcaaca atcttggaat gaatatgcta 2520agagacaagg aaagagttta gctgattttg
ctagtctttg ctttcatgtt ccttttacta 2580aaatgggtaa aaaggcttta gaatctataa
tagataacgc agatgaaaca actcaagaga 2640gattaagatc tggatatgaa gatgcagttg
attacaatag atatgttgga aatatataca 2700caggaagtct ttatctttct cttataagtc
ttcttgaaaa tagagattta caggctggtg 2760aaactattgg attattttca tacggatcag
gttctgttgg tgaattttat tcagctacac 2820ttgtagaagg atataaagat caccttgatc
aggcagcaca caaagcactt ttaaacaata 2880gaactgaagt atcagtagat gcatacgaaa
catttttcaa gagatttgat gatgtagaat 2940ttgatgaaga gcaggatgca gttcatgaag
atagacatat attctatctt tcaaacatag 3000agaataatgt aagagaatat catagacctg
aataagagct cgttataatt ttcaattttc 3060attcttttta aaggagatta gcatacattt
tatcataatt atacagacaa tatagtaata 3120tatgatgtta aaatatcaat atatggttaa
aaatctgtat attttttccc attttaatta 3180tttgtactat aatattacac tgagtgtatt
gcatatttaa aaaatatttg gtacaattag 3240ttagttaaat aaattctaaa ttgtaaatta
tcagaatcct tattaaggaa atacatagat 3300ttaaggagaa atcataaaaa ggtgtaatat
aaactggcta aaattgagca aaaattgagc 3360aattaagact ttttgattgt atctttttat
atatttaagg tatataatct tatttatatt 3420gggggaaggt accatgcaat cattagacaa
aaatttcaga catttatcaa gacaacaaaa 3480gttacaacaa ttagttgata aacagtggct
ttcagaagat cagtttgata ttttacttaa 3540tcatcctctt atagatgaag aagttgctaa
tagtcttata gaaaatgtaa ttgcacaggg 3600tgcattacca gttggacttc ttcctaatat
aatagttgat gataaggctt atgttgtacc 3660aatgatggtt gaagaaccta gtgttgttgc
agctgcatct tatggtgcta aattagtaaa 3720tcagacaggt ggatttaaaa ctgtatcatc
agaaagaata atgattggac agatagtatt 3780tgatggtgta gatgacactg aaaaattaag
tgcagatatt aaagcattag aaaaacaaat 3840acataagatt gcagatgaag catatcctag
tataaaagca agaggtggtg gttatcaaag 3900aatagcaata gatacatttc cagagcaaca
acttttaagt cttaaggtat ttgtagatac 3960aaaagatgct atgggtgcta atatgcttaa
tactatactt gaggcaataa ctgcattcct 4020taaaaatgaa tctcctcaat cagatatatt
aatgtctata ctttcaaacc atgcaactgc 4080tagtgtagta aaagtacaag gtgagataga
tgtaaaagat cttgctagag gtgaaagaac 4140aggtgaagaa gtagctaaga gaatggaaag
agcttctgta ttagctcagg ttgatattca 4200tagagctgca acacataaca aaggtgttat
gaatggaata catgctgttg ttttagctac 4260aggaaatgat actagaggtg ctgaagcatc
tgcacatgca tacgcatcaa gagacggaca 4320atatagaggt atagcaactt ggagatatga
tcagaagaga caaagactta ttggaactat 4380tgaagttcca atgacacttg ctatagtagg
tggtggtact aaagtattac caatagctaa 4440ggcatcatta gagttattaa atgttgattc
tgcacaagaa cttggacacg tagttgctgc 4500tgttggatta gcacaaaact ttgctgcttg
tagagcactt gtttctgaag gtattcaaca 4560aggacacatg tcattacaat ataaaagttt
agcaatagta gtaggtgcaa aaggtgacga 4620gatagcacaa gtagcagaag ctcttaaaca
ggaaccaaga gctaatacac aggttgctga 4680aagaatttta caggaaatta gacagcaata
atctagagtc gacgtcacgc gtccatggag 4740atctcgaggc ctgcagacat gcaagcttgg
cactggccgt cgttttacaa cgtcgtgact 4800gggaaaaccc tggcgttacc caacttaatc
gccttgcagc acatccccct ttcgccagct 4860ggcgtaatag cgaagaggcc cgcaccgatc
gcccttccca acagttgcgc agcctgaatg 4920gcgaatggcg ctagcataaa aataagaagc
ctgcatttgc aggcttctta tttttatggc 4980gcgccgttct gaatccttag ctaatggttc
aacaggtaac tatgacgaag atagcaccct 5040ggataagtct gtaatggatt ctaaggcatt
taatgaagac gtgtatataa aatgtgctaa 5100tgaaaaagaa aatgcgttaa aagagcctaa
aatgagttca aatggttttg aaattgattg 5160gtagtttaat ttaatatatt ttttctattg
gctatctcga tacctataga atcttctgtt 5220cacttttgtt tttgaaatat aaaaaggggc
tttttagccc ctttttttta aaactccgga 5280ggagtttctt cattcttgat actatacgta
actattttcg atttgacttc attgtcaatt 5340aagctagtaa aatcaatggt taaaaaacaa
aaaacttgca tttttctacc tagtaattta 5400taattttaag tgtcgagttt aaaagtataa
tttaccagga aaggagcaag ttttttaata 5460aggaaaaatt tttcctttta aaattctatt
tcgttatatg actaattata atcaaaaaaa 5520tgaaaataaa caagaggtaa aaactgcttt
agagaaatgt actgataaaa aaagaaaaaa 5580tcctagattt acgtcataca tagcaccttt
aactactaag aaaaatattg aaaggacttc 5640cacttgtgga gattatttgt ttatgttgag
tgatgcagac ttagaacatt ttaaattaca 5700taaaggtaat ttttgcggta atagattttg
tccaatgtgt agttggcgac ttgcttgtaa 5760ggatagttta gaaatatcta ttcttatgga
gcatttaaga aaagaagaaa ataaagagtt 5820tatattttta actcttacaa ctccaaatgt
aaaaagttat gatcttaatt attctattaa 5880acaatataat aaatctttta aaaaattaat
ggagcgtaag gaagttaagg atataactaa 5940aggttatata agaaaattag aagtaactta
ccaaaaggaa aaatacataa caaaggattt 6000atggaaaata aaaaaagatt attatcaaaa
aaaaggactt gaaattggtg atttagaacc 6060taattttgat acttataatc ctcattttca
tgtagttatt gcagttaata aaagttattt 6120tacagataaa aattattata taaatcgaga
aagatggttg gaattatgga agtttgctac 6180taaggatgat tctataactc aagttgatgt
tagaaaagca aaaattaatg attataaaga 6240ggtttacgaa cttgcgaaat attcagctaa
agacactgat tatttaatat cgaggccagt 6300atttgaaatt ttttataaag cattaaaagg
caagcaggta ttagttttta gtggattttt 6360taaagatgca cacaaattgt acaagcaagg
aaaacttgat gtttataaaa agaaagatga 6420aattaaatat gtctatatag tttattataa
ttggtgcaaa aaacaatatg aaaaaactag 6480aataagggaa cttacggaag atgaaaaaga
agaattaaat caagatttaa tagatgaaat 6540agaaatagat taaagtgtaa ctatacttta
tatatatatg attaaaaaaa taaaaaacaa 6600cagcctatta ggttgttgtt ttttattttc
tttattaatt tttttaattt ttagttttta 6660gttctttttt aaaataagtt tcagcctctt
tttcaatatt ttttaaagaa ggagtatttg 6720catgaattgc cttttttcta acagacttag
gaaatatttt aacagtatct tcttgcgccg 6780gtgattttgg aacttcataa cttactaatt
tataattatt attttctttt ttaattgtaa 6840cagttgcaaa agaagctgaa cctgttcctt
caactagttt atcatcttca atataatatt 6900cttgacctat atagtataaa tatattttta
ttatattttt acttttttct gaatctatta 6960ttttataatc ataaaaagtt ttaccaccaa
aagaaggttg tactccttct ggtccaacat 7020atttttttac tatattatct aaataatttt
tgggaactgg tgttgtaatt tgattaatcg 7080aacaaccagt tatacttaaa ggaattataa
ctataaaaat atataggatt atctttttaa 7140atttcattat tggcctcctt tttattaaat
ttatgttacc ataaaaagga cataacggga 7200atatgtagaa tatttttaat gtagacaaaa
ttttacataa atataaagaa aggaagtgtt 7260tgtttaaatt ttatagcaaa ctatcaaaaa
ttagggggat aaaaatttat gaaaaaaagg 7320ttttcgatgt tatttttatg tttaacttta
atagtttgtg gtttatttac aaattcggcc 7380ggccagtggg caagttgaaa aattcacaaa
aatgtggtat aatatctttg ttcattagag 7440cgataaactt gaatttgaga gggaacttag
atggtatttg aaaaaattga taaaaatagt 7500tggaacagaa aagagtattt tgaccactac
tttgcaagtg taccttgtac ctacagcatg 7560accgttaaag tggatatcac acaaataaag
gaaaagggaa tgaaactata tcctgcaatg 7620ctttattata ttgcaatgat tgtaaaccgc
cattcagagt ttaggacggc aatcaatcaa 7680gatggtgaat tggggatata tgatgagatg
ataccaagct atacaatatt tcacaatgat 7740actgaaacat tttccagcct ttggactgag
tgtaagtctg actttaaatc atttttagca 7800gattatgaaa gtgatacgca acggtatgga
aacaatcata gaatggaagg aaagccaaat 7860gctccggaaa acatttttaa tgtatctatg
ataccgtggt caaccttcga tggctttaat 7920ctgaatttgc agaaaggata tgattatttg
attcctattt ttactatggg gaaatattat 7980aaagaagata acaaaattat acttcctttg
gcaattcaag ttcatcacgc agtatgtgac 8040ggatttcaca tttgccgttt tgtaaacgaa
ttgcaggaat tgataaatag ttaacttcag 8100gtttgtctgt aactaaaaac aagtatttaa
gcaaaaacat cgtagaaata cggtgttttt 8160tgttacccta agtttaaact cctttttgat
aatctcatga ccaaaatccc ttaacgtgag 8220ttttcgttcc actgagcgtc agaccccgta
gaaaagatca aaggatcttc ttgagatcct 8280ttttttctgc gcgtaatctg ctgcttgcaa
acaaaaaaac caccgctacc agcggtggtt 8340tgtttgccgg atcaagagct accaactctt
tttccgaagg taactggctt cagcagagcg 8400cagataccaa atactgttct tctagtgtag
ccgtagttag gccaccactt caagaactct 8460gtagcaccgc ctacatacct cgctctgcta
atcctgttac cagtggctgc tgccagtggc 8520gataagtcgt gtcttaccgg gttggactca
agacgatagt taccggataa ggcgcagcgg 8580tcgggctgaa cggggggttc gtgcacacag
cccagcttgg agcgaacgac ctacaccgaa 8640ctgagatacc tacagcgtga gctatgagaa
agcgccacgc ttcccgaagg gagaaaggcg 8700gacaggtatc cggtaagcgg cagggtcgga
acaggagagc gcacgaggga gcttccaggg 8760ggaaacgcct ggtatcttta tagtcctgtc
gggtttcgcc acctctgact tgagcgtcga 8820tttttgtgat gctcgtcagg ggggcggagc
ctatggaaaa acgccagcaa cgcggccttt 8880ttacggttcc tggccttttg ctggcctttt
gctcacatgt tctttcctgc gttatcccct 8940gattctgtgg ataaccgtat taccgccttt
gagtgagctg ataccgctcg ccgcagccga 9000acgaccgagc gcagcgagtc agtgagcgag
gaagcggaag agcgcccaat acgcagggcc 9060ccctgcttcg gggtcattat agcgattttt
tcggtatatc catccttttt cgcacgatat 9120acaggatttt gccaaagggt tcgtgtagac
tttccttggt gtatccaacg gcgtcagccg 9180ggcaggatag gtgaagtagg cccacccgcg
agcgggtgtt ccttcttcac tgtcccttat 9240tcgcacctgg cggtgctcaa cgggaatcct
gctctgcgag gctggccggc taccgccggc 9300gtaacagatg agggcaagcg gatggctgat
gaaaccaagc caaccaggaa gggcagccca 9360cctatcaagg tgtactgcct tccagacgaa
cgaagagcga ttgaggaaaa ggcggcggcg 9420gccggcatga gcctgtcggc ctacctgctg
gccgtcggcc agggctacaa aatcacgggc 9480gtcgtggact atgagcacgt ccgcgagctg
gcccgcatca atggcgacct gggccgcctg 9540ggcggcctgc tgaaactctg gctcaccgac
gacccgcgca cggcgcggtt cggtgatgcc 9600acgatcctcg ccctgctggc gaagatcgaa
gagaagcagg acgagcttgg caaggtcatg 9660atgggcgtgg tccgcccgag ggcagagcca
tgactttttt agccgctaaa acggccgggg 9720ggtgcgcgtg attgccaagc acgtccccat
gcgctccatc aagaagagcg acttcgcgga 9780gctggtgaag tacatcaccg acgagcaagg
caagaccgat cgggccc 982751843DNAStaphylococcus aureus
subsp. aureus 51atgatagctg ttccatttaa cgctggaaaa ataaaagttt taattgaggc
attagaatct 60ggaaattatt catcaataaa atcagatgta tatgacggaa tgttatatga
tgcaccagat 120caccttaaat cattagtaaa cagatttgta gaacttaata atataactga
gccattagca 180gtaactatac agacaaatct tcctccttca agaggtcttg gatctagtgc
agctgttgct 240gttgcttttg taagagcaag ttatgatttc ttaggaaaaa gtttaactaa
agaagagctt 300atagaaaagg ctaattgggc tgaacaaata gctcatggaa agccatctgg
aatagataca 360caaacaatag tatctggaaa gcctgtttgg tttcaaaagg gacatgcaga
aacacttaaa 420actctttcac ttgatggata catggtagta attgatacag gtgttaaagg
aagtacaaga 480caggctgtag aagatgttca taaactttgc gaagatcctc aatatatgag
tcacgtaaaa 540cacataggaa aacttgtact tagagcatct gatgttattg aacatcataa
ctttgaagca 600cttgctgata tattcaatga atgtcatgct gatttaaagg ctcttacagt
aagtcatgac 660aaaatagaac agttaatgaa gataggaaaa gaaaatggtg ctatagctgg
taaattaact 720ggtgctggta gaggtggttc aatgttatta cttgcaaaag acttaccaac
tgcaaagaat 780atagttaaag cagtagagaa agctggtgca gcacatactt ggattgaaaa
tttaggtggt 840taa
843521077DNAStaphylococcus aureus subsp. aureus 52atgatacaag
taaaggcacc aggaaaatta tatatagcag gtgaatacgc tgttacagaa 60ccaggatata
aatctgttct tatagctctt gatagatttg ttacagctac tattgaggaa 120gctgatcaat
acaaaggaac aatacattca aaggcattac atcacaatcc agtaactttt 180agtagagatg
aagattctat tgttatatca gacccacacg cagcaaaaca acttaattat 240gtagtaactg
ctatagaaat atttgagcaa tatgcaaaat catgtgacat agcaatgaag 300cattttcatt
taactataga ttctaactta gatgatagta atggacataa gtatggactt 360ggatcttctg
ctgctgtttt agtttcagta attaaagtac ttaacgaatt ttatgatatg 420aaactttcaa
acctttatat atataagtta gcagtaattg ctaatatgaa attacagagt 480ttatcttcat
gcggtgatat agcagtaagt gtttattcag gttggttagc ttattctaca 540tttgaccatg
aatgggtaaa acaccagata gaagatacaa cagttgaaga agtacttatt 600aaaaattggc
ctggattaca catagagcca cttcaagctc ctgaaaatat ggaagttctt 660ataggttgga
caggtagtcc agctagtagt cctcattttg tttctgaagt taaaagactt 720aagtcagatc
cttcatttta cggtgatttc ttagaagatt cacatagatg tgtagaaaaa 780ttaattcatg
cattcaaaac taataatatt aagggtgttc agaaaatggt aagacagaat 840agaactatta
tacaaagaat ggataaggaa gcaacagttg atatagagac tgagaagtta 900aaatatttat
gtgatattgc tgaaaaatat catggtgcaa gtaaaacttc aggtgctggt 960ggtggtgatt
gcggaataac tataataaat aaggatgtag acaaagagaa aatatatgat 1020gaatggacta
aacatggaat aaagcctctt aagtttaata tttatcatgg acaataa
107753984DNAStaphylococcus aureus subsp. aureus 53atgataaaat ctggaaaagc
aagagcacac actaatatag cacttataaa atattggggt 60aagaaagatg aggcattaat
aataccaatg aataactcaa tatcagtaac tttagaaaag 120ttttatactg aaacaaaagt
tacatttaac gatcagctta ctcaagatca attttggctt 180aatggtgaaa aagtttctgg
aaaagaatta gaaaagattt caaagtatat ggatattgtt 240agaaatagag ctggaataga
ttggtatgct gagatagaat ctgataattt tgttcctaca 300gctgctggtc ttgctagttc
tgctagtgct tatgcagcat tagctgctgc atgtaaccaa 360gcacttgatt tacagttaag
tgataaagac ttaagtagat tagctagaat tggatcagga 420tcagcatcaa gatcaatata
cggtggtttt gcagaatggg aaaaaggata taatgacgaa 480acttcttatg ctgttccatt
agaaagtaat cactttgaag atgatcttgc tatgattttt 540gtagtaataa accaacattc
taaaaaggtt ccttcaagat atggaatgtc tcttacaaga 600aatacaagta gattctatca
atattggtta gaccatattg atgaagatct tgcagaagca 660aaggcagcaa tacaagataa
ggattttaag agattaggtg aagttattga agagaatgga 720cttagaatgc atgctacaaa
tcttggatca actccacctt ttacttactt agtacaagag 780tcatacgatg taatggcatt
agtacatgag tgtagagaag caggatatcc atgctatttc 840actatggatg ctggacctaa
tgtaaaaata cttgtagaga agaaaaacaa acaacagata 900atagataaac ttttaactca
gttcgataat aatcagataa tagatagtga tattatagct 960acaggtattg aaattataga
ataa 98454516DNAClostridium
beijerinckii 54atggcagagt atataatagc agtagatgag ttcgataacg aaataggatc
aatagaaaag 60atggaagctc atagaaaagg aacacttcat agagcattca gtattttagt
ttttaactca 120aagaatcaac ttttattaca gaaaagaaat gtaaagaaat atcactctcc
aggattatgg 180acaaacactt gttgtagtca cccaagatat ggtgaatctc ttcatgatgc
tatatacaga 240agattaaaag aagagatggg atttacttgc gaacttgaag aagtattctc
attcatatat 300aaggtaaaac ttgaagataa tttatttgag aatgaatatg accatgtatt
tattggtaaa 360tatgatggtg agataattgt taataaagat gaagttgatg attttaaatg
ggtagacatt 420aatgaagtta aaaaggacat aatagaaaga cctgaggcat atacttactg
gtttaagtat 480cttgtaaata aagctgaaaa taagatattt aaataa
51655120DNAClostridium autoethanogenum 55atatcgatac
agataaaaaa atatataata cagaagaaaa aattataaat ttgtggtata 60atataaagta
tagtaattta agtttaaacc tcgtgaaaac gctaacaaat aataggaggt
12056900DNAEscherichia coli 56atggatttcc cacaacaatt agaagcatgt gtaaaacagg
ctaatcaggc acttagtaga 60tttattgctc ctcttccttt tcaaaataca ccagtagtag
aaactatgca atacggtgca 120cttttaggtg gtaaaagatt aagaccattc ttagtatatg
ctacaggaca tatgtttggt 180gtatcaacta atactttaga cgctccagct gctgctgttg
aatgtattca tgcatattct 240ttaatacatg atgacttacc agcaatggat gacgatgatt
taagaagagg tttacctaca 300tgtcatgtta aatttggtga agctaatgca attttagcag
gtgacgcttt acaaacttta 360gctttttcta tactttcaga tgcagacatg cctgaagttt
cagatagaga tagaatttct 420atgatatcag agcttgcatc tgcatcagga atagctggaa
tgtgcggtgg tcaagcactt 480gatttagatg cagaaggtaa acacgtacca cttgatgcat
tagagagaat tcatagacat 540aaaacaggtg ctcttataag agcagcagta agattaggtg
ctttaagtgc tggtgacaag 600ggtagaagag cacttccagt acttgataag tatgcagaaa
gtataggatt agcttttcaa 660gttcaagatg acatacttga cgttgttggt gatactgcta
ctttaggaaa aagacagggt 720gcagatcagc aattaggaaa atctacatac cctgctttac
ttggattaga acaggctaga 780aagaaagcaa gagacttaat agatgacgca agacaaagtc
ttaaacagtt agctgaacaa 840tcacttgaca caagtgcact tgaagcactt gcagattata
ttatacagag aaacaagtaa 90057975DNAMalus x domestica 57atggaattta
gagtacattt acaggcagac aacgaacaga aaatatttca aaatcaaatg 60aaaccagagc
cagaagcatc atatcttata aatcaaagaa gaagtgctaa ttataaacca 120aacatttgga
aaaacgattt tcttgatcag tctttaatat caaaatatga tggtgatgaa 180tatagaaaac
tttcagaaaa gttaatagaa gaagtaaaga tatacatatc agcagagact 240atggatttag
ttgctaaatt agaacttata gattctgtta gaaaacttgg acttgctaat 300ctttttgaga
aagaaataaa ggaagcatta gacagtatag cagcaataga atcagataat 360ttaggaacta
gagacgatct ttatggaaca gctcttcatt ttaagattct tagacagcat 420ggatataagg
taagtcaaga tatatttggt agatttatgg atgagaaagg aacattagaa 480aatcatcact
ttgcacactt aaaaggaatg ttagaattat ttgaggcaag taatcttgga 540tttgaaggtg
aagacatatt agatgaagct aaagcatctc ttacacttgc tcttagagat 600tcaggacata
tttgttatcc agactcaaac ttaagtagag atgtagttca tagtttagaa 660ttacctagtc
atagaagagt tcaatggttc gatgtaaaat ggcagattaa tgcatacgaa 720aaagatattt
gtagagtaaa tgcaacttta ttagagttag caaagttaaa ttttaatgtt 780gttcaagctc
agcttcagaa gaatcttaga gaagctagta gatggtgggc taatcttggt 840ttcgcagata
atttaaagtt tgctagagat agacttgtag agtgtttttc atgcgcagta 900ggtgtagcat
ttgaaccaga gcattcatct tttagaatat gtttaactaa ggtaattaat 960cttgttctta
ttata
9755813817DNAArtificial
SequencepMTL8314-Pptaack-thlA-HMGS-Patp-HMGR-Prnf-MK-
PMK-PMD-Pfor-idi-isp S 58aaactccttt ttgataatct catgaccaaa atcccttaac
gtgagttttc gttccactga 60gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag
atcctttttt tctgcgcgta 120atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg
tggtttgttt gccggatcaa 180gagctaccaa ctctttttcc gaaggtaact ggcttcagca
gagcgcagat accaaatact 240gttcttctag tgtagccgta gttaggccac cacttcaaga
actctgtagc accgcctaca 300tacctcgctc tgctaatcct gttaccagtg gctgctgcca
gtggcgataa gtcgtgtctt 360accgggttgg actcaagacg atagttaccg gataaggcgc
agcggtcggg ctgaacgggg 420ggttcgtgca cacagcccag cttggagcga acgacctaca
ccgaactgag atacctacag 480cgtgagctat gagaaagcgc cacgcttccc gaagggagaa
aggcggacag gtatccggta 540agcggcaggg tcggaacagg agagcgcacg agggagcttc
cagggggaaa cgcctggtat 600ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc
gtcgattttt gtgatgctcg 660tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg
cctttttacg gttcctggcc 720ttttgctggc cttttgctca catgttcttt cctgcgttat
cccctgattc tgtggataac 780cgtattaccg cctttgagtg agctgatacc gctcgccgca
gccgaacgac cgagcgcagc 840gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca
gggccccctg caggataaaa 900aaattgtaga taaattttat aaaatagttt tatctacaat
ttttttatca ggaaacagct 960atgaccgcgg ccgcagatag tcataatagt tccagaatag
ttcaatttag aaattagact 1020aaacttcaaa atgtttgtta aatatatacc aatctagtat
agatattttt taaatactgg 1080acttaaacag tagtaatttg cctaaaaaat tttttcaatt
ttttttaaaa aatccttttc 1140aagttgtaca ttgttatggt aatatgtaat tgaagaagtt
atgtagtaat attgtaaacg 1200tttcttgatt tttttacatc catgtagtgc ttaaaaaacc
aaaatatgtc acatgcactt 1260gtatatttca aataacaata tttattttct cgttaaattc
acaaataatt tattaataat 1320atcaataacc aagattatac ttaaatggat gtttattttt
taacactttt atagtaaata 1380tatttatttt atgtagtaaa aaggttataa ttataattgt
atttattaca attaattaaa 1440ataaaaaata gggttttagg taaaattaag ttattttaag
aagtaattac aataaaaatt 1500gaagttattt ctttaaggag gaaattcata tgaaagaggt
tgttattgca tcagctgtta 1560gaactgcaat aggatcttat ggaaaaagtc ttaaagatgt
accagcagta gacttaggtg 1620caactgcaat aaaggaagca gtaaagaaag caggtataaa
acctgaagat gttaatgaag 1680ttattttagg aaacgtatta caagctggac ttggacagaa
tccagctaga caggcatcat 1740tcaaagcagg attaccagta gagatacctg ctatgactat
taataaagtt tgtggttcag 1800gattaagaac agtttcttta gctgctcaaa ttataaaagc
tggtgacgca gatgtaataa 1860tagcaggtgg tatggaaaat atgtcaagag caccatacct
tgctaataat gctagatggg 1920gttatagaat gggaaacgct aaatttgtag acgaaatgat
aactgatgga ctttgggatg 1980catttaacga ttatcacatg ggaattactg ctgaaaatat
agctgagaga tggaatataa 2040gtagagaaga acaagatgag tttgcacttg catctcagaa
aaaggcagaa gaagctatta 2100aatcaggaca atttaaagat gaaattgttc cagtagtaat
taaaggtaga aaaggtgaaa 2160cagttgtaga cactgatgaa catcctagat ttggatctac
aatagaaggt ttagctaaat 2220taaagcctgc ttttaagaaa gacggaacag taactgctgg
aaacgcatca ggtttaaatg 2280attgtgcagc tgttttagtt attatgtctg ctgaaaaggc
aaaggaatta ggtgttaaac 2340cacttgctaa gatagttagt tatggttcag caggtgtaga
tcctgctatt atgggatatg 2400gaccttttta tgctacaaag gcagctattg aaaaggctgg
ttggacagtt gatgaacttg 2460atcttataga gtcaaatgag gcatttgcag cacaaagtct
tgctgttgct aaggatctta 2520aattcgatat gaataaagta aatgtaaacg gtggtgctat
agcacttggt catccaatag 2580gtgctagtgg tgctagaatt ttagttacat tagttcatgc
aatgcaaaag agagacgcta 2640aaaagggact tgcaacttta tgcataggtg gtggtcaagg
aacagcaata cttcttgaaa 2700aatgttaaga attcgaggct tttactaaaa acaataaaaa
caggaggaaa taatatgact 2760ataggaattg acaaaataaa cttttacgta ccaaaatatt
atgtagatat ggcaaaatta 2820gcagaagcaa gacaagtaga cccaaataaa tttcttattg
gaataggaca gactgaaatg 2880gcagttagtc cagtaaacca agatatagta tcaatgggtg
ctaatgctgc taaagatata 2940ataactgatg aagacaaaaa gaaaatagga atggtaatag
tagcaactga gtcagcagta 3000gatgcagcaa aggcagcagc agtacagatt cataatttat
taggtattca accatttgca 3060agatgtttcg aaatgaaaga agcatgttat gctgctactc
ctgcaattca gttagctaag 3120gattatttag ctacaagacc aaatgagaaa gttttagtta
tagctacaga tacagctaga 3180tatggactta attcaggtgg tgaacctact caaggtgctg
gtgctgttgc tatggttata 3240gctcataatc ctagtatact tgcattaaat gaagacgctg
ttgcttatac agaagatgtt 3300tatgatttct ggagaccaac aggacataag tatccattag
tagatggtgc tttatcaaaa 3360gacgcatata ttagatcttt tcaacaatct tggaatgaat
atgctaagag acaaggaaag 3420agtttagctg attttgctag tctttgcttt catgttcctt
ttactaaaat gggtaaaaag 3480gctttagaat ctataataga taacgcagat gaaacaactc
aagagagatt aagatctgga 3540tatgaagatg cagttgatta caatagatat gttggaaata
tatacacagg aagtctttat 3600ctttctctta taagtcttct tgaaaataga gatttacagg
ctggtgaaac tattggatta 3660ttttcatacg gatcaggttc tgttggtgaa ttttattcag
ctacacttgt agaaggatat 3720aaagatcacc ttgatcaggc agcacacaaa gcacttttaa
acaatagaac tgaagtatca 3780gtagatgcat acgaaacatt tttcaagaga tttgatgatg
tagaatttga tgaagagcag 3840gatgcagttc atgaagatag acatatattc tatctttcaa
acatagagaa taatgtaaga 3900gaatatcata gacctgaata agagctcgtt ataattttca
attttcattc tttttaaagg 3960agattagcat acattttatc ataattatac agacaatata
gtaatatatg atgttaaaat 4020atcaatatat ggttaaaaat ctgtatattt tttcccattt
taattatttg tactataata 4080ttacactgag tgtattgcat atttaaaaaa tatttggtac
aattagttag ttaaataaat 4140tctaaattgt aaattatcag aatccttatt aaggaaatac
atagatttaa ggagaaatca 4200taaaaaggtg taatataaac tggctaaaat tgagcaaaaa
ttgagcaatt aagacttttt 4260gattgtatct ttttatatat ttaaggtata taatcttatt
tatattgggg gaaggtacca 4320tgcaatcatt agacaaaaat ttcagacatt tatcaagaca
acaaaagtta caacaattag 4380ttgataaaca gtggctttca gaagatcagt ttgatatttt
acttaatcat cctcttatag 4440atgaagaagt tgctaatagt cttatagaaa atgtaattgc
acagggtgca ttaccagttg 4500gacttcttcc taatataata gttgatgata aggcttatgt
tgtaccaatg atggttgaag 4560aacctagtgt tgttgcagct gcatcttatg gtgctaaatt
agtaaatcag acaggtggat 4620ttaaaactgt atcatcagaa agaataatga ttggacagat
agtatttgat ggtgtagatg 4680acactgaaaa attaagtgca gatattaaag cattagaaaa
acaaatacat aagattgcag 4740atgaagcata tcctagtata aaagcaagag gtggtggtta
tcaaagaata gcaatagata 4800catttccaga gcaacaactt ttaagtctta aggtatttgt
agatacaaaa gatgctatgg 4860gtgctaatat gcttaatact atacttgagg caataactgc
attccttaaa aatgaatctc 4920ctcaatcaga tatattaatg tctatacttt caaaccatgc
aactgctagt gtagtaaaag 4980tacaaggtga gatagatgta aaagatcttg ctagaggtga
aagaacaggt gaagaagtag 5040ctaagagaat ggaaagagct tctgtattag ctcaggttga
tattcataga gctgcaacac 5100ataacaaagg tgttatgaat ggaatacatg ctgttgtttt
agctacagga aatgatacta 5160gaggtgctga agcatctgca catgcatacg catcaagaga
cggacaatat agaggtatag 5220caacttggag atatgatcag aagagacaaa gacttattgg
aactattgaa gttccaatga 5280cacttgctat agtaggtggt ggtactaaag tattaccaat
agctaaggca tcattagagt 5340tattaaatgt tgattctgca caagaacttg gacacgtagt
tgctgctgtt ggattagcac 5400aaaactttgc tgcttgtaga gcacttgttt ctgaaggtat
tcaacaagga cacatgtcat 5460tacaatataa aagtttagca atagtagtag gtgcaaaagg
tgacgagata gcacaagtag 5520cagaagctct taaacaggaa ccaagagcta atacacaggt
tgctgaaaga attttacagg 5580aaattagaca gcaataatct agaatatcga tacagataaa
aaaatatata atacagaaga 5640aaaaattata aatttgtggt ataatataaa gtatagtaat
ttaagtttaa acctcgtgaa 5700aacgctaaca aataatagga ggtcaattga tgatagctgt
tccatttaac gctggaaaaa 5760taaaagtttt aattgaggca ttagaatctg gaaattattc
atcaataaaa tcagatgtat 5820atgacggaat gttatatgat gcaccagatc accttaaatc
attagtaaac agatttgtag 5880aacttaataa tataactgag ccattagcag taactataca
gacaaatctt cctccttcaa 5940gaggtcttgg atctagtgca gctgttgctg ttgcttttgt
aagagcaagt tatgatttct 6000taggaaaaag tttaactaaa gaagagctta tagaaaaggc
taattgggct gaacaaatag 6060ctcatggaaa gccatctgga atagatacac aaacaatagt
atctggaaag cctgtttggt 6120ttcaaaaggg acatgcagaa acacttaaaa ctctttcact
tgatggatac atggtagtaa 6180ttgatacagg tgttaaagga agtacaagac aggctgtaga
agatgttcat aaactttgcg 6240aagatcctca atatatgagt cacgtaaaac acataggaaa
acttgtactt agagcatctg 6300atgttattga acatcataac tttgaagcac ttgctgatat
attcaatgaa tgtcatgctg 6360atttaaaggc tcttacagta agtcatgaca aaatagaaca
gttaatgaag ataggaaaag 6420aaaatggtgc tatagctggt aaattaactg gtgctggtag
aggtggttca atgttattac 6480ttgcaaaaga cttaccaact gcaaagaata tagttaaagc
agtagagaaa gctggtgcag 6540cacatacttg gattgaaaat ttaggtggtt aagtcgacaa
agacactaaa aaattataaa 6600agtaaaggag gacattaaat gatacaagta aaggcaccag
gaaaattata tatagcaggt 6660gaatacgctg ttacagaacc aggatataaa tctgttctta
tagctcttga tagatttgtt 6720acagctacta ttgaggaagc tgatcaatac aaaggaacaa
tacattcaaa ggcattacat 6780cacaatccag taacttttag tagagatgaa gattctattg
ttatatcaga cccacacgca 6840gcaaaacaac ttaattatgt agtaactgct atagaaatat
ttgagcaata tgcaaaatca 6900tgtgacatag caatgaagca ttttcattta actatagatt
ctaacttaga tgatagtaat 6960ggacataagt atggacttgg atcttctgct gctgttttag
tttcagtaat taaagtactt 7020aacgaatttt atgatatgaa actttcaaac ctttatatat
ataagttagc agtaattgct 7080aatatgaaat tacagagttt atcttcatgc ggtgatatag
cagtaagtgt ttattcaggt 7140tggttagctt attctacatt tgaccatgaa tgggtaaaac
accagataga agatacaaca 7200gttgaagaag tacttattaa aaattggcct ggattacaca
tagagccact tcaagctcct 7260gaaaatatgg aagttcttat aggttggaca ggtagtccag
ctagtagtcc tcattttgtt 7320tctgaagtta aaagacttaa gtcagatcct tcattttacg
gtgatttctt agaagattca 7380catagatgtg tagaaaaatt aattcatgca ttcaaaacta
ataatattaa gggtgttcag 7440aaaatggtaa gacagaatag aactattata caaagaatgg
ataaggaagc aacagttgat 7500atagagactg agaagttaaa atatttatgt gatattgctg
aaaaatatca tggtgcaagt 7560aaaacttcag gtgctggtgg tggtgattgc ggaataacta
taataaataa ggatgtagac 7620aaagagaaaa tatatgatga atggactaaa catggaataa
agcctcttaa gtttaatatt 7680tatcatggac aataaccatg gtcaataatc ttacaataaa
taaaagaaag gaggcaaaaa 7740tatgataaaa tctggaaaag caagagcaca cactaatata
gcacttataa aatattgggg 7800taagaaagat gaggcattaa taataccaat gaataactca
atatcagtaa ctttagaaaa 7860gttttatact gaaacaaaag ttacatttaa cgatcagctt
actcaagatc aattttggct 7920taatggtgaa aaagtttctg gaaaagaatt agaaaagatt
tcaaagtata tggatattgt 7980tagaaataga gctggaatag attggtatgc tgagatagaa
tctgataatt ttgttcctac 8040agctgctggt cttgctagtt ctgctagtgc ttatgcagca
ttagctgctg catgtaacca 8100agcacttgat ttacagttaa gtgataaaga cttaagtaga
ttagctagaa ttggatcagg 8160atcagcatca agatcaatat acggtggttt tgcagaatgg
gaaaaaggat ataatgacga 8220aacttcttat gctgttccat tagaaagtaa tcactttgaa
gatgatcttg ctatgatttt 8280tgtagtaata aaccaacatt ctaaaaaggt tccttcaaga
tatggaatgt ctcttacaag 8340aaatacaagt agattctatc aatattggtt agaccatatt
gatgaagatc ttgcagaagc 8400aaaggcagca atacaagata aggattttaa gagattaggt
gaagttattg aagagaatgg 8460acttagaatg catgctacaa atcttggatc aactccacct
tttacttact tagtacaaga 8520gtcatacgat gtaatggcat tagtacatga gtgtagagaa
gcaggatatc catgctattt 8580cactatggat gctggaccta atgtaaaaat acttgtagag
aagaaaaaca aacaacagat 8640aatagataaa cttttaactc agttcgataa taatcagata
atagatagtg atattatagc 8700tacaggtatt gaaattatag aataaactag ttgtatatta
aaatagtaga atacataaga 8760tacttaattt aattaaagat agttaagtac ttttcaatgt
gcttttttag atgtttaata 8820caaatcttta attgtaaaag aaatgctgta ctatttactg
ttctagtgac gggattaaac 8880tgtattaatt ataaataaaa aataagtaca gttgtttaaa
attatatttt gtattaaatc 8940taatagtacg atgtaagtta ttttatacta ttgctagttt
aataaaaaga tttaattata 9000tacttgaaaa ggagaggaac tcgagatggc agagtatata
atagcagtag atgagttcga 9060taacgaaata ggatcaatag aaaagatgga agctcataga
aaaggaacac ttcatagagc 9120attcagtatt ttagttttta actcaaagaa tcaactttta
ttacagaaaa gaaatgtaaa 9180gaaatatcac tctccaggat tatggacaaa cacttgttgt
agtcacccaa gatatggtga 9240atctcttcat gatgctatat acagaagatt aaaagaagag
atgggattta cttgcgaact 9300tgaagaagta ttctcattca tatataaggt aaaacttgaa
gataatttat ttgagaatga 9360atatgaccat gtatttattg gtaaatatga tggtgagata
attgttaata aagatgaagt 9420tgatgatttt aaatgggtag acattaatga agttaaaaag
gacataatag aaagacctga 9480ggcatatact tactggttta agtatcttgt aaataaagct
gaaaataaga tatttaaata 9540aaccggtggg aggaaatgaa catggcaaca gaattattat
gtttacacag acctatatca 9600cttactcaca aactttttag gaatccatta cctaaagtta
ttcaagctac acctttaaca 9660ttaaaactta ggtgtagtgt ttctacagaa aatgtatcat
ttagtgagac agaaactgaa 9720acaagaagat cagcaaatta tgaaccaaat tcttgggatt
atgattatct tctttcttct 9780gatactgatg agtcaataga agtacataaa gataaggcta
agaaattaga agctgaagtt 9840aggagagaaa taaataatga gaaggctgaa tttcttacac
ttcttgaact tattgataat 9900gtacaaagac ttggattagg atatagattt gagtctgata
taagaagagc attagataga 9960tttgtaagta gtggaggatt tgatggagtt actaaaactt
cattacatgg aacagcatta 10020tcatttaggt tattaaggca acatggtttt gaagtatctc
aagaagcttt tagtggattt 10080aaagatcaga atggaaactt tcttgagaat ttaaaggaag
acataaaagc aattctttct 10140ctttatgaag catcattttt agcattagaa ggtgagaata
tattagatga ggctaaagta 10200tttgcaatat ctcatcttaa agaacttagt gaagaaaaga
ttggtaaaga attagctgaa 10260caagtttcac atgctttaga attaccatta catagaagaa
cacaaagatt agaagcagtt 10320tggtcaatag aagcatatag aaagaaagaa gacgcaaatc
aagtactttt agaacttgca 10380atacttgact acaatatgat tcaaagtgta tatcagaggg
atttaagaga aacatcaaga 10440tggtggagaa gagtaggatt agcaactaaa ttacattttg
ctagagatag gcttattgaa 10500agtttttatt gggctgttgg agttgctttt gaaccacaat
attctgattg cagaaatagt 10560gtagcaaaga tgttttcatt tgttactata attgacgata
tttacgatgt atatggaact 10620ttagatgaac ttgaactttt tactgatgca gttgaaagat
gggatgtaaa tgctattaat 10680gatcttcctg attatatgaa gttatgtttt cttgcacttt
acaatactat taacgagata 10740gcttacgata acttaaaaga taaaggtgag aacatacttc
cttatttaac aaaagcatgg 10800gcagatttat gtaatgcatt tcttcaagaa gctaagtggc
tttataataa atcaacacct 10860acatttgatg attattttgg aaatgcatgg aaaagttcta
gtggaccttt acagcttatt 10920tttgcttatt ttgctgtagt acagaacatt aaaaaggaag
agattgagaa tcttcagaaa 10980tatcatgaca taatatcaag acctagtcac atttttaggc
tttgtaatga tttagcatct 11040gcttcagcag aaatagcaag aggtgaaact gctaattctg
taagttgtta tatgagaaca 11100aaaggtatat ctgaagaatt agctactgaa agtgttatga
atcttataga cgaaacttgg 11160aagaaaatga acaaagaaaa acttggtgga tctttatttg
caaaaccttt tgttgagact 11220gctataaatt tagctagaca gtctcattgc acatatcata
atggtgatgc acatactagt 11280ccagatgaat taactaggaa aagagtactt agtgtaataa
ctgaaccaat attaccattt 11340gaaagataag ctagcataaa aataagaagc ctgcatttgc
aggcttctta tttttatggc 11400gcgccgccat tatttttttg aacaattgac aattcatttc
ttatttttta ttaagtgata 11460gtcaaaaggc ataacagtgc tgaatagaaa gaaatttaca
gaaaagaaaa ttatagaatt 11520tagtatgatt aattatactc atttatgaat gtttaattga
atacaaaaaa aaatacttgt 11580tatgtattca attacgggtt aaaatataga caagttgaaa
aatttaataa aaaaataagt 11640cctcagctct tatatattaa gctaccaact tagtatataa
gccaaaactt aaatgtgcta 11700ccaacacatc aagccgttag agaactctat ctatagcaat
atttcaaatg taccgacata 11760caagagaaac attaactata tatattcaat ttatgagatt
atcttaacag atataaatgt 11820aaattgcaat aagtaagatt tagaagttta tagcctttgt
gtattggaag cagtacgcaa 11880aggctttttt atttgataaa aattagaagt atatttattt
tttcataatt aatttatgaa 11940aatgaaaggg ggtgagcaaa gtgacagagg aaagcagtat
cttatcaaat aacaaggtat 12000tagcaatatc attattgact ttagcagtaa acattatgac
ttttatagtg cttgtagcta 12060agtagtacga aagggggagc tttaaaaagc tccttggaat
acatagaatt cataaattaa 12120tttatgaaaa gaagggcgta tatgaaaact tgtaaaaatt
gcaaagagtt tattaaagat 12180actgaaatat gcaaaataca ttcgttgatg attcatgata
aaacagtagc aacctattgc 12240agtaaataca atgagtcaag atgtttacat aaagggaaag
tccaatgtat taattgttca 12300aagatgaacc gatatggatg gtgtgccata aaaatgagat
gttttacaga ggaagaacag 12360aaaaaagaac gtacatgcat taaatattat gcaaggagct
ttaaaaaagc tcatgtaaag 12420aagagtaaaa agaaaaaata atttatttat taatttaata
ttgagagtgc cgacacagta 12480tgcactaaaa aatatatctg tggtgtagtg agccgataca
aaaggatagt cactcgcatt 12540ttcataatac atcttatgtt atgattatgt gtcggtggga
cttcacgacg aaaacccaca 12600ataaaaaaag agttcggggt agggttaagc atagttgagg
caactaaaca atcaagctag 12660gatatgcagt agcagaccgt aaggtcgttg tttaggtgtg
ttgtaataca tacgctatta 12720agatgtaaaa atacggatac caatgaaggg aaaagtataa
tttttggatg tagtttgttt 12780gttcatctat gggcaaacta cgtccaaagc cgtttccaaa
tctgctaaaa agtatatcct 12840ttctaaaatc aaagtcaagt atgaaatcat aaataaagtt
taattttgaa gttattatga 12900tattatgttt ttctattaaa ataaattaag tatatagaat
agtttaataa tagtatatac 12960ttaatgtgat aagtgtctga cagtgtcaca gaaaggatga
ttgttatgga ttataagcgg 13020ccggccagtg ggcaagttga aaaattcaca aaaatgtggt
ataatatctt tgttcattag 13080agcgataaac ttgaatttga gagggaactt agatggtatt
tgaaaaaatt gataaaaata 13140gttggaacag aaaagagtat tttgaccact actttgcaag
tgtaccttgt acctacagca 13200tgaccgttaa agtggatatc acacaaataa aggaaaaggg
aatgaaacta tatcctgcaa 13260tgctttatta tattgcaatg attgtaaacc gccattcaga
gtttaggacg gcaatcaatc 13320aagatggtga attggggata tatgatgaga tgataccaag
ctatacaata tttcacaatg 13380atactgaaac attttccagc ctttggactg agtgtaagtc
tgactttaaa tcatttttag 13440cagattatga aagtgatacg caacggtatg gaaacaatca
tagaatggaa ggaaagccaa 13500atgctccgga aaacattttt aatgtatcta tgataccgtg
gtcaaccttc gatggcttta 13560atctgaattt gcagaaagga tatgattatt tgattcctat
ttttactatg gggaaatatt 13620ataaagaaga taacaaaatt atacttcctt tggcaattca
agttcatcac gcagtatgtg 13680acggatttca catttgccgt tttgtaaacg aattgcagga
attgataaat agttaacttc 13740aggtttgtct gtaactaaaa acaagtattt aagcaaaaac
atcgtagaaa tacggtgttt 13800tttgttaccc taagttt
138175914709DNAArtificial Sequenceplasmid
pMTL8314-Pptaack-thlA-HMGS-Patp-HMGR-Prnf-MK-PMK-PMD-Pfor-idi-isp
A-FS 59aaactccttt ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga
60gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta
120atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa
180gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact
240gttcttctag tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca
300tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt
360accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg
420ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag
480cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta
540agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat
600ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg
660tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc
720ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac
780cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc
840gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca gggccccctg caggataaaa
900aaattgtaga taaattttat aaaatagttt tatctacaat ttttttatca ggaaacagct
960atgaccgcgg ccgcagatag tcataatagt tccagaatag ttcaatttag aaattagact
1020aaacttcaaa atgtttgtta aatatatacc aatctagtat agatattttt taaatactgg
1080acttaaacag tagtaatttg cctaaaaaat tttttcaatt ttttttaaaa aatccttttc
1140aagttgtaca ttgttatggt aatatgtaat tgaagaagtt atgtagtaat attgtaaacg
1200tttcttgatt tttttacatc catgtagtgc ttaaaaaacc aaaatatgtc acatgcactt
1260gtatatttca aataacaata tttattttct cgttaaattc acaaataatt tattaataat
1320atcaataacc aagattatac ttaaatggat gtttattttt taacactttt atagtaaata
1380tatttatttt atgtagtaaa aaggttataa ttataattgt atttattaca attaattaaa
1440ataaaaaata gggttttagg taaaattaag ttattttaag aagtaattac aataaaaatt
1500gaagttattt ctttaaggag gaaattcata tgaaagaggt tgttattgca tcagctgtta
1560gaactgcaat aggatcttat ggaaaaagtc ttaaagatgt accagcagta gacttaggtg
1620caactgcaat aaaggaagca gtaaagaaag caggtataaa acctgaagat gttaatgaag
1680ttattttagg aaacgtatta caagctggac ttggacagaa tccagctaga caggcatcat
1740tcaaagcagg attaccagta gagatacctg ctatgactat taataaagtt tgtggttcag
1800gattaagaac agtttcttta gctgctcaaa ttataaaagc tggtgacgca gatgtaataa
1860tagcaggtgg tatggaaaat atgtcaagag caccatacct tgctaataat gctagatggg
1920gttatagaat gggaaacgct aaatttgtag acgaaatgat aactgatgga ctttgggatg
1980catttaacga ttatcacatg ggaattactg ctgaaaatat agctgagaga tggaatataa
2040gtagagaaga acaagatgag tttgcacttg catctcagaa aaaggcagaa gaagctatta
2100aatcaggaca atttaaagat gaaattgttc cagtagtaat taaaggtaga aaaggtgaaa
2160cagttgtaga cactgatgaa catcctagat ttggatctac aatagaaggt ttagctaaat
2220taaagcctgc ttttaagaaa gacggaacag taactgctgg aaacgcatca ggtttaaatg
2280attgtgcagc tgttttagtt attatgtctg ctgaaaaggc aaaggaatta ggtgttaaac
2340cacttgctaa gatagttagt tatggttcag caggtgtaga tcctgctatt atgggatatg
2400gaccttttta tgctacaaag gcagctattg aaaaggctgg ttggacagtt gatgaacttg
2460atcttataga gtcaaatgag gcatttgcag cacaaagtct tgctgttgct aaggatctta
2520aattcgatat gaataaagta aatgtaaacg gtggtgctat agcacttggt catccaatag
2580gtgctagtgg tgctagaatt ttagttacat tagttcatgc aatgcaaaag agagacgcta
2640aaaagggact tgcaacttta tgcataggtg gtggtcaagg aacagcaata cttcttgaaa
2700aatgttaaga attcgaggct tttactaaaa acaataaaaa caggaggaaa taatatgact
2760ataggaattg acaaaataaa cttttacgta ccaaaatatt atgtagatat ggcaaaatta
2820gcagaagcaa gacaagtaga cccaaataaa tttcttattg gaataggaca gactgaaatg
2880gcagttagtc cagtaaacca agatatagta tcaatgggtg ctaatgctgc taaagatata
2940ataactgatg aagacaaaaa gaaaatagga atggtaatag tagcaactga gtcagcagta
3000gatgcagcaa aggcagcagc agtacagatt cataatttat taggtattca accatttgca
3060agatgtttcg aaatgaaaga agcatgttat gctgctactc ctgcaattca gttagctaag
3120gattatttag ctacaagacc aaatgagaaa gttttagtta tagctacaga tacagctaga
3180tatggactta attcaggtgg tgaacctact caaggtgctg gtgctgttgc tatggttata
3240gctcataatc ctagtatact tgcattaaat gaagacgctg ttgcttatac agaagatgtt
3300tatgatttct ggagaccaac aggacataag tatccattag tagatggtgc tttatcaaaa
3360gacgcatata ttagatcttt tcaacaatct tggaatgaat atgctaagag acaaggaaag
3420agtttagctg attttgctag tctttgcttt catgttcctt ttactaaaat gggtaaaaag
3480gctttagaat ctataataga taacgcagat gaaacaactc aagagagatt aagatctgga
3540tatgaagatg cagttgatta caatagatat gttggaaata tatacacagg aagtctttat
3600ctttctctta taagtcttct tgaaaataga gatttacagg ctggtgaaac tattggatta
3660ttttcatacg gatcaggttc tgttggtgaa ttttattcag ctacacttgt agaaggatat
3720aaagatcacc ttgatcaggc agcacacaaa gcacttttaa acaatagaac tgaagtatca
3780gtagatgcat acgaaacatt tttcaagaga tttgatgatg tagaatttga tgaagagcag
3840gatgcagttc atgaagatag acatatattc tatctttcaa acatagagaa taatgtaaga
3900gaatatcata gacctgaata agagctcgtt ataattttca attttcattc tttttaaagg
3960agattagcat acattttatc ataattatac agacaatata gtaatatatg atgttaaaat
4020atcaatatat ggttaaaaat ctgtatattt tttcccattt taattatttg tactataata
4080ttacactgag tgtattgcat atttaaaaaa tatttggtac aattagttag ttaaataaat
4140tctaaattgt aaattatcag aatccttatt aaggaaatac atagatttaa ggagaaatca
4200taaaaaggtg taatataaac tggctaaaat tgagcaaaaa ttgagcaatt aagacttttt
4260gattgtatct ttttatatat ttaaggtata taatcttatt tatattgggg gaaggtacca
4320tgcaatcatt agacaaaaat ttcagacatt tatcaagaca acaaaagtta caacaattag
4380ttgataaaca gtggctttca gaagatcagt ttgatatttt acttaatcat cctcttatag
4440atgaagaagt tgctaatagt cttatagaaa atgtaattgc acagggtgca ttaccagttg
4500gacttcttcc taatataata gttgatgata aggcttatgt tgtaccaatg atggttgaag
4560aacctagtgt tgttgcagct gcatcttatg gtgctaaatt agtaaatcag acaggtggat
4620ttaaaactgt atcatcagaa agaataatga ttggacagat agtatttgat ggtgtagatg
4680acactgaaaa attaagtgca gatattaaag cattagaaaa acaaatacat aagattgcag
4740atgaagcata tcctagtata aaagcaagag gtggtggtta tcaaagaata gcaatagata
4800catttccaga gcaacaactt ttaagtctta aggtatttgt agatacaaaa gatgctatgg
4860gtgctaatat gcttaatact atacttgagg caataactgc attccttaaa aatgaatctc
4920ctcaatcaga tatattaatg tctatacttt caaaccatgc aactgctagt gtagtaaaag
4980tacaaggtga gatagatgta aaagatcttg ctagaggtga aagaacaggt gaagaagtag
5040ctaagagaat ggaaagagct tctgtattag ctcaggttga tattcataga gctgcaacac
5100ataacaaagg tgttatgaat ggaatacatg ctgttgtttt agctacagga aatgatacta
5160gaggtgctga agcatctgca catgcatacg catcaagaga cggacaatat agaggtatag
5220caacttggag atatgatcag aagagacaaa gacttattgg aactattgaa gttccaatga
5280cacttgctat agtaggtggt ggtactaaag tattaccaat agctaaggca tcattagagt
5340tattaaatgt tgattctgca caagaacttg gacacgtagt tgctgctgtt ggattagcac
5400aaaactttgc tgcttgtaga gcacttgttt ctgaaggtat tcaacaagga cacatgtcat
5460tacaatataa aagtttagca atagtagtag gtgcaaaagg tgacgagata gcacaagtag
5520cagaagctct taaacaggaa ccaagagcta atacacaggt tgctgaaaga attttacagg
5580aaattagaca gcaataatct agaatatcga tacagataaa aaaatatata atacagaaga
5640aaaaattata aatttgtggt ataatataaa gtatagtaat ttaagtttaa acctcgtgaa
5700aacgctaaca aataatagga ggtcaattga tgatagctgt tccatttaac gctggaaaaa
5760taaaagtttt aattgaggca ttagaatctg gaaattattc atcaataaaa tcagatgtat
5820atgacggaat gttatatgat gcaccagatc accttaaatc attagtaaac agatttgtag
5880aacttaataa tataactgag ccattagcag taactataca gacaaatctt cctccttcaa
5940gaggtcttgg atctagtgca gctgttgctg ttgcttttgt aagagcaagt tatgatttct
6000taggaaaaag tttaactaaa gaagagctta tagaaaaggc taattgggct gaacaaatag
6060ctcatggaaa gccatctgga atagatacac aaacaatagt atctggaaag cctgtttggt
6120ttcaaaaggg acatgcagaa acacttaaaa ctctttcact tgatggatac atggtagtaa
6180ttgatacagg tgttaaagga agtacaagac aggctgtaga agatgttcat aaactttgcg
6240aagatcctca atatatgagt cacgtaaaac acataggaaa acttgtactt agagcatctg
6300atgttattga acatcataac tttgaagcac ttgctgatat attcaatgaa tgtcatgctg
6360atttaaaggc tcttacagta agtcatgaca aaatagaaca gttaatgaag ataggaaaag
6420aaaatggtgc tatagctggt aaattaactg gtgctggtag aggtggttca atgttattac
6480ttgcaaaaga cttaccaact gcaaagaata tagttaaagc agtagagaaa gctggtgcag
6540cacatacttg gattgaaaat ttaggtggtt aagtcgacaa agacactaaa aaattataaa
6600agtaaaggag gacattaaat gatacaagta aaggcaccag gaaaattata tatagcaggt
6660gaatacgctg ttacagaacc aggatataaa tctgttctta tagctcttga tagatttgtt
6720acagctacta ttgaggaagc tgatcaatac aaaggaacaa tacattcaaa ggcattacat
6780cacaatccag taacttttag tagagatgaa gattctattg ttatatcaga cccacacgca
6840gcaaaacaac ttaattatgt agtaactgct atagaaatat ttgagcaata tgcaaaatca
6900tgtgacatag caatgaagca ttttcattta actatagatt ctaacttaga tgatagtaat
6960ggacataagt atggacttgg atcttctgct gctgttttag tttcagtaat taaagtactt
7020aacgaatttt atgatatgaa actttcaaac ctttatatat ataagttagc agtaattgct
7080aatatgaaat tacagagttt atcttcatgc ggtgatatag cagtaagtgt ttattcaggt
7140tggttagctt attctacatt tgaccatgaa tgggtaaaac accagataga agatacaaca
7200gttgaagaag tacttattaa aaattggcct ggattacaca tagagccact tcaagctcct
7260gaaaatatgg aagttcttat aggttggaca ggtagtccag ctagtagtcc tcattttgtt
7320tctgaagtta aaagacttaa gtcagatcct tcattttacg gtgatttctt agaagattca
7380catagatgtg tagaaaaatt aattcatgca ttcaaaacta ataatattaa gggtgttcag
7440aaaatggtaa gacagaatag aactattata caaagaatgg ataaggaagc aacagttgat
7500atagagactg agaagttaaa atatttatgt gatattgctg aaaaatatca tggtgcaagt
7560aaaacttcag gtgctggtgg tggtgattgc ggaataacta taataaataa ggatgtagac
7620aaagagaaaa tatatgatga atggactaaa catggaataa agcctcttaa gtttaatatt
7680tatcatggac aataaccatg gtcaataatc ttacaataaa taaaagaaag gaggcaaaaa
7740tatgataaaa tctggaaaag caagagcaca cactaatata gcacttataa aatattgggg
7800taagaaagat gaggcattaa taataccaat gaataactca atatcagtaa ctttagaaaa
7860gttttatact gaaacaaaag ttacatttaa cgatcagctt actcaagatc aattttggct
7920taatggtgaa aaagtttctg gaaaagaatt agaaaagatt tcaaagtata tggatattgt
7980tagaaataga gctggaatag attggtatgc tgagatagaa tctgataatt ttgttcctac
8040agctgctggt cttgctagtt ctgctagtgc ttatgcagca ttagctgctg catgtaacca
8100agcacttgat ttacagttaa gtgataaaga cttaagtaga ttagctagaa ttggatcagg
8160atcagcatca agatcaatat acggtggttt tgcagaatgg gaaaaaggat ataatgacga
8220aacttcttat gctgttccat tagaaagtaa tcactttgaa gatgatcttg ctatgatttt
8280tgtagtaata aaccaacatt ctaaaaaggt tccttcaaga tatggaatgt ctcttacaag
8340aaatacaagt agattctatc aatattggtt agaccatatt gatgaagatc ttgcagaagc
8400aaaggcagca atacaagata aggattttaa gagattaggt gaagttattg aagagaatgg
8460acttagaatg catgctacaa atcttggatc aactccacct tttacttact tagtacaaga
8520gtcatacgat gtaatggcat tagtacatga gtgtagagaa gcaggatatc catgctattt
8580cactatggat gctggaccta atgtaaaaat acttgtagag aagaaaaaca aacaacagat
8640aatagataaa cttttaactc agttcgataa taatcagata atagatagtg atattatagc
8700tacaggtatt gaaattatag aataaactag ttgtatatta aaatagtaga atacataaga
8760tacttaattt aattaaagat agttaagtac ttttcaatgt gcttttttag atgtttaata
8820caaatcttta attgtaaaag aaatgctgta ctatttactg ttctagtgac gggattaaac
8880tgtattaatt ataaataaaa aataagtaca gttgtttaaa attatatttt gtattaaatc
8940taatagtacg atgtaagtta ttttatacta ttgctagttt aataaaaaga tttaattata
9000tacttgaaaa ggagaggaac tcgagatggc agagtatata atagcagtag atgagttcga
9060taacgaaata ggatcaatag aaaagatgga agctcataga aaaggaacac ttcatagagc
9120attcagtatt ttagttttta actcaaagaa tcaactttta ttacagaaaa gaaatgtaaa
9180gaaatatcac tctccaggat tatggacaaa cacttgttgt agtcacccaa gatatggtga
9240atctcttcat gatgctatat acagaagatt aaaagaagag atgggattta cttgcgaact
9300tgaagaagta ttctcattca tatataaggt aaaacttgaa gataatttat ttgagaatga
9360atatgaccat gtatttattg gtaaatatga tggtgagata attgttaata aagatgaagt
9420tgatgatttt aaatgggtag acattaatga agttaaaaag gacataatag aaagacctga
9480ggcatatact tactggttta agtatcttgt aaataaagct gaaaataaga tatttaaata
9540aaccggtcag taacgaatag aattagaaaa acaaaggagg caagacaatg gatttcccac
9600aacaattaga agcatgtgta aaacaggcta atcaggcact tagtagattt attgctcctc
9660ttccttttca aaatacacca gtagtagaaa ctatgcaata cggtgcactt ttaggtggta
9720aaagattaag accattctta gtatatgcta caggacacat gtttggtgta tcaactaata
9780ctttagacgc tccagctgct gctgttgaat gtattcatgc ttattcttta atacatgatg
9840acttaccagc aatggatgac gatgatttaa gaagaggttt acctacatgt catgttaaat
9900ttggtgaagc taatgcaatt ttagcaggtg acgctttaca aactttagct ttttctatac
9960tttcagatgc agacatgcct gaagtttcag atagagatag aatttctatg atatcagagc
10020ttgcatctgc atcaggaata gctggaatgt gcggtggtca agcacttgat ttagatgcag
10080aaggtaaaca cgtaccactt gatgctttag agagaataca tagacataaa acaggtgctc
10140ttataagagc agcagtaaga ttaggtgctt taagtgctgg tgacaagggt agaagagcac
10200ttccagtact tgataagtat gcagaaagta taggattagc ttttcaagtt caagatgaca
10260tacttgacgt tgttggtgat actgctactt taggaaaaag acagggtgca gatcagcaat
10320taggaaaatc tacataccct gctttacttg gattagaaca ggctagaaag aaagcaagag
10380acttaataga tgacgcaaga caaagtctta aacagttagc tgaacaatca cttgacacaa
10440gtgcacttga agcacttgca gattatatta tacagagaaa caagtaaaag cttttaaagg
10500aggggaaaaa atggaattta gagtacattt acaggcagac aacgaacaga aaatatttca
10560aaatcaaatg aaaccagagc cagaagcatc atatcttata aatcaaagaa gaagtgctaa
10620ttataaacca aacatttgga aaaacgattt tcttgatcag tctttaatat caaaatatga
10680tggtgatgaa tatagaaaac tttcagaaaa gttaatagaa gaagtaaaga tatacatatc
10740agcagagact atggatttag ttgctaaatt agaacttata gattctgtta gaaaacttgg
10800acttgctaat ctttttgaga aagaaataaa ggaagcatta gacagtatag cagcaataga
10860atcagataat ttaggaacta gagacgatct ttatggaaca gctcttcatt ttaagattct
10920tagacagcat ggatataagg taagtcaaga tatatttggt agatttatgg atgagaaagg
10980aacattagaa aatcatcact ttgcacactt aaaaggaatg ttagaattat ttgaggcaag
11040taatcttgga tttgaaggtg aagacatatt agatgaagct aaagcatctc ttacacttgc
11100tcttagagat tcaggacata tttgttatcc agactcaaac ttaagtagag atgtagttca
11160tagtttagaa ttacctagtc atagaagagt tcaatggttc gatgtaaaat ggcagattaa
11220tgcatacgaa aaagatattt gtagagtaaa tgcaacttta ttagagttag caaagttaaa
11280ttttaatgtt gttcaagctc agcttcagaa gaatcttaga gaagctagta gatggtgggc
11340taatcttggt ttcgcagata atttaaagtt tgctagagat agacttgtag agtgtttttc
11400atgcgcagta ggtgtagcat ttgaaccaga gcattcatct tttagaatat gtttaactaa
11460ggtaattaat cttgttctta ttatagatga tgtatacgat atatatggat ctgaagaaga
11520gttaaaacat tttacaaatg ctgttgatag atgggacagt agagaaacag aacagcttcc
11580tgaatgcatg aaaatgtgtt ttcaagtatt atataacact acttgcgaaa tagcaagaga
11640gatagaagaa gaaaacggtt ggaatcaagt attacctcaa cttactaagg tttgggctga
11700tttttgtaag gctcttttag ttgaagcaga gtggtacaat aaatcacata ttccaacatt
11760agaagaatat cttagaaacg gatgtatatc aagtagtgta tctgtacttt tagttcactc
11820tttcttttca ataactcatg aaggtacaaa agaaatggct gatttcttac ataaaaatga
11880agatctttta tacaacataa gtcttatagt aagattaaac aatgatttag gtacatcagc
11940tgctgaacag gaaagaggtg attctccttc ttctatagtt tgctatatga gagaagttaa
12000tgcttctgaa gagactgcaa gaaagaatat aaagggaatg attgataatg cttggaaaaa
12060ggttaatgga aaatgtttca caactaacca agttccattt ctttcatcat tcatgaataa
12120tgcaactaac atggcaagag tagcacactc attatataaa gacggtgatg gttttggtga
12180tcaagaaaaa ggacctagaa cacatattct tagtttatta ttccaacctt tagtaaatta
12240agctagcata aaaataagaa gcctgcattt gcaggcttct tatttttatg gcgcgccgcc
12300attatttttt tgaacaattg acaattcatt tcttattttt tattaagtga tagtcaaaag
12360gcataacagt gctgaataga aagaaattta cagaaaagaa aattatagaa tttagtatga
12420ttaattatac tcatttatga atgtttaatt gaatacaaaa aaaaatactt gttatgtatt
12480caattacggg ttaaaatata gacaagttga aaaatttaat aaaaaaataa gtcctcagct
12540cttatatatt aagctaccaa cttagtatat aagccaaaac ttaaatgtgc taccaacaca
12600tcaagccgtt agagaactct atctatagca atatttcaaa tgtaccgaca tacaagagaa
12660acattaacta tatatattca atttatgaga ttatcttaac agatataaat gtaaattgca
12720ataagtaaga tttagaagtt tatagccttt gtgtattgga agcagtacgc aaaggctttt
12780ttatttgata aaaattagaa gtatatttat tttttcataa ttaatttatg aaaatgaaag
12840ggggtgagca aagtgacaga ggaaagcagt atcttatcaa ataacaaggt attagcaata
12900tcattattga ctttagcagt aaacattatg acttttatag tgcttgtagc taagtagtac
12960gaaaggggga gctttaaaaa gctccttgga atacatagaa ttcataaatt aatttatgaa
13020aagaagggcg tatatgaaaa cttgtaaaaa ttgcaaagag tttattaaag atactgaaat
13080atgcaaaata cattcgttga tgattcatga taaaacagta gcaacctatt gcagtaaata
13140caatgagtca agatgtttac ataaagggaa agtccaatgt attaattgtt caaagatgaa
13200ccgatatgga tggtgtgcca taaaaatgag atgttttaca gaggaagaac agaaaaaaga
13260acgtacatgc attaaatatt atgcaaggag ctttaaaaaa gctcatgtaa agaagagtaa
13320aaagaaaaaa taatttattt attaatttaa tattgagagt gccgacacag tatgcactaa
13380aaaatatatc tgtggtgtag tgagccgata caaaaggata gtcactcgca ttttcataat
13440acatcttatg ttatgattat gtgtcggtgg gacttcacga cgaaaaccca caataaaaaa
13500agagttcggg gtagggttaa gcatagttga ggcaactaaa caatcaagct aggatatgca
13560gtagcagacc gtaaggtcgt tgtttaggtg tgttgtaata catacgctat taagatgtaa
13620aaatacggat accaatgaag ggaaaagtat aatttttgga tgtagtttgt ttgttcatct
13680atgggcaaac tacgtccaaa gccgtttcca aatctgctaa aaagtatatc ctttctaaaa
13740tcaaagtcaa gtatgaaatc ataaataaag tttaattttg aagttattat gatattatgt
13800ttttctatta aaataaatta agtatataga atagtttaat aatagtatat acttaatgtg
13860ataagtgtct gacagtgtca cagaaaggat gattgttatg gattataagc ggccggccag
13920tgggcaagtt gaaaaattca caaaaatgtg gtataatatc tttgttcatt agagcgataa
13980acttgaattt gagagggaac ttagatggta tttgaaaaaa ttgataaaaa tagttggaac
14040agaaaagagt attttgacca ctactttgca agtgtacctt gtacctacag catgaccgtt
14100aaagtggata tcacacaaat aaaggaaaag ggaatgaaac tatatcctgc aatgctttat
14160tatattgcaa tgattgtaaa ccgccattca gagtttagga cggcaatcaa tcaagatggt
14220gaattgggga tatatgatga gatgatacca agctatacaa tatttcacaa tgatactgaa
14280acattttcca gcctttggac tgagtgtaag tctgacttta aatcattttt agcagattat
14340gaaagtgata cgcaacggta tggaaacaat catagaatgg aaggaaagcc aaatgctccg
14400gaaaacattt ttaatgtatc tatgataccg tggtcaacct tcgatggctt taatctgaat
14460ttgcagaaag gatatgatta tttgattcct atttttacta tggggaaata ttataaagaa
14520gataacaaaa ttatacttcc tttggcaatt caagttcatc acgcagtatg tgacggattt
14580cacatttgcc gttttgtaaa cgaattgcag gaattgataa atagttaact tcaggtttgt
14640ctgtaactaa aaacaagtat ttaagcaaaa acatcgtaga aatacggtgt tttttgttac
14700cctaagttt
1470960601PRTArtificial Sequencehybrid Type II methyltransferase 60Met
Phe Pro Cys Asn Ala Tyr Ile Glu Tyr Gly Asp Lys Asn Met Asn 1
5 10 15 Ser Phe Ile Glu Asp Val
Glu Gln Ile Tyr Asn Phe Ile Lys Lys Asn 20
25 30 Ile Asp Val Glu Glu Lys Met His Phe Ile
Glu Thr Tyr Lys Gln Lys 35 40
45 Ser Asn Met Lys Lys Glu Ile Ser Phe Ser Glu Glu Tyr Tyr
Lys Gln 50 55 60
Lys Ile Met Asn Gly Lys Asn Gly Val Val Tyr Thr Pro Pro Glu Met 65
70 75 80 Ala Ala Phe Met Val
Lys Asn Leu Ile Asn Val Asn Asp Val Ile Gly 85
90 95 Asn Pro Phe Ile Lys Ile Ile Asp Pro Ser
Cys Gly Ser Gly Asn Leu 100 105
110 Ile Cys Lys Cys Phe Leu Tyr Leu Asn Arg Ile Phe Ile Lys Asn
Ile 115 120 125 Glu
Val Ile Asn Ser Lys Asn Asn Leu Asn Leu Lys Leu Glu Asp Ile 130
135 140 Ser Tyr His Ile Val Arg
Asn Asn Leu Phe Gly Phe Asp Ile Asp Glu 145 150
155 160 Thr Ala Ile Lys Val Leu Lys Ile Asp Leu Phe
Leu Ile Ser Asn Gln 165 170
175 Phe Ser Glu Lys Asn Phe Gln Val Lys Asp Phe Leu Val Glu Asn Ile
180 185 190 Asp Arg
Lys Tyr Asp Val Phe Ile Gly Asn Pro Pro Tyr Ile Gly His 195
200 205 Lys Ser Val Asp Ser Ser Tyr
Ser Tyr Val Leu Arg Lys Ile Tyr Gly 210 215
220 Ser Ile Tyr Arg Asp Lys Gly Asp Ile Ser Tyr Cys
Phe Phe Gln Lys 225 230 235
240 Ser Leu Lys Cys Leu Lys Glu Gly Gly Lys Leu Val Phe Val Thr Ser
245 250 255 Arg Tyr Phe
Cys Glu Ser Cys Ser Gly Lys Glu Leu Arg Lys Phe Leu 260
265 270 Ile Glu Asn Thr Ser Ile Tyr Lys
Ile Ile Asp Phe Tyr Gly Ile Arg 275 280
285 Pro Phe Lys Arg Val Gly Ile Asp Pro Met Ile Ile Phe
Leu Val Arg 290 295 300
Thr Lys Asn Trp Asn Asn Asn Ile Glu Ile Ile Arg Pro Asn Lys Ile 305
310 315 320 Glu Lys Asn Glu
Lys Asn Lys Phe Leu Asp Ser Leu Phe Leu Asp Lys 325
330 335 Ser Glu Lys Cys Lys Lys Phe Ser Ile
Ser Gln Lys Ser Ile Asn Asn 340 345
350 Asp Gly Trp Val Phe Val Asp Glu Val Glu Lys Asn Ile Ile
Asp Lys 355 360 365
Ile Lys Glu Lys Ser Lys Phe Ile Leu Lys Asp Ile Cys His Ser Cys 370
375 380 Gln Gly Ile Ile Thr
Gly Cys Asp Arg Ala Phe Ile Val Asp Arg Asp 385 390
395 400 Ile Ile Asn Ser Arg Lys Ile Glu Leu Arg
Leu Ile Lys Pro Trp Ile 405 410
415 Lys Ser Ser His Ile Arg Lys Asn Glu Val Ile Lys Gly Glu Lys
Phe 420 425 430 Ile
Ile Tyr Ser Asn Leu Ile Glu Asn Glu Thr Glu Cys Pro Asn Ala 435
440 445 Ile Lys Tyr Ile Glu Gln
Tyr Lys Lys Arg Leu Met Glu Arg Arg Glu 450 455
460 Cys Lys Lys Gly Thr Arg Lys Trp Tyr Glu Leu
Gln Trp Gly Arg Lys 465 470 475
480 Pro Glu Ile Phe Glu Glu Lys Lys Ile Val Phe Pro Tyr Lys Ser Cys
485 490 495 Asp Asn
Arg Phe Ala Leu Asp Lys Gly Ser Tyr Phe Ser Ala Asp Ile 500
505 510 Tyr Ser Leu Val Leu Lys Lys
Asn Val Pro Phe Thr Tyr Glu Ile Leu 515 520
525 Leu Asn Ile Leu Asn Ser Pro Leu Tyr Glu Phe Tyr
Phe Lys Thr Phe 530 535 540
Ala Lys Lys Leu Gly Glu Asn Leu Tyr Glu Tyr Tyr Pro Asn Asn Leu 545
550 555 560 Met Lys Leu
Cys Ile Pro Ser Ile Asp Phe Gly Gly Glu Asn Asn Ile 565
570 575 Glu Lys Lys Leu Tyr Asp Phe Phe
Gly Leu Thr Asp Lys Glu Ile Glu 580 585
590 Ile Val Glu Lys Ile Lys Asp Asn Cys 595
600 61419DNAClostridium autoethanogenum 61agaaattttc
ctttctaaaa tattttattc catgtcaaga actctgttta tttcattaaa 60gaactataag
tacaaagtat aaggcatttg aaaaaatagg ctagtatatt gattgattat 120ttattttaaa
atgcctaagt gaaatatata catattataa caataaaata agtattagtg 180taggattttt
aaatagagta tctattttca gattaaattt ttgattattt gatttacatt 240atataatatt
gagtaaagta ttgactagca aaattttttg atactttaat ttgtgaaatt 300tcttatcaaa
agttatattt ttgaataatt tttattgaaa aatacaacta aaaaggatta 360tagtataagt
gtgtgtaatt ttgtgttaaa tttaaaggga ggaaatgaac atgaaattg
41962567DNAClostridium autoethanogenum 62ctcctaattt tgaaatctaa tatatctatt
aaatcatatt ttcatatgta aataaataag 60tttttatgca attttgaaaa aggtatttgc
ataaaacggc ttgaaatcaa tagttaacgc 120aatagttatt cttttagcat acattaagtc
aacaaaatta gcatgtaata attatgaata 180attattacat atattcaata ttatattaaa
aaaaatactt tgttttaagt ataaagtaaa 240aaaataggca taaatgtaac aaaaactgtt
aattttttgt gtcaataatt tttgttatat 300tattttaatt aaatttttca catgtataat
taaaagtaag atagatattc taatgtactt 360acttaggtag aaaaacatgt atacaaaatt
aaaaaactat tataacacat agtatcaata 420ttgaaggtaa tactgttcaa tatcgataca
gataaaaaaa atatataata cagaagaaaa 480aattataaat ttgtggtata atataaagta
tagtaattta agtttaaacc tcgtgaaaac 540gctaacaaat aataggaggt gtattat
567631806DNAArtificial Sequencehybrid
Type II methyltransferase 63atgtttccgt gcaatgccta tatcgaatat ggtgataaaa
atatgaacag ctttatcgaa 60gatgtggaac agatctacaa cttcattaaa aagaacattg
atgtggaaga aaagatgcat 120ttcattgaaa cctataaaca gaaaagcaac atgaagaaag
agattagctt tagcgaagaa 180tactataaac agaagattat gaacggcaaa aatggcgttg
tgtacacccc gccggaaatg 240gcggccttta tggttaaaaa tctgatcaac gttaacgatg
ttattggcaa tccgtttatt 300aaaatcattg acccgagctg cggtagcggc aatctgattt
gcaaatgttt tctgtatctg 360aatcgcatct ttattaagaa cattgaggtg attaacagca
aaaataacct gaatctgaaa 420ctggaagaca tcagctacca catcgttcgc aacaatctgt
ttggcttcga tattgacgaa 480accgcgatca aagtgctgaa aattgatctg tttctgatca
gcaaccaatt tagcgagaaa 540aatttccagg ttaaagactt tctggtggaa aatattgatc
gcaaatatga cgtgttcatt 600ggtaatccgc cgtatatcgg tcacaaaagc gtggacagca
gctacagcta cgtgctgcgc 660aaaatctacg gcagcatcta ccgcgacaaa ggcgatatca
gctattgttt ctttcagaag 720agcctgaaat gtctgaagga aggtggcaaa ctggtgtttg
tgaccagccg ctacttctgc 780gagagctgca gcggtaaaga actgcgtaaa ttcctgatcg
aaaacacgag catttacaag 840atcattgatt tttacggcat ccgcccgttc aaacgcgtgg
gtatcgatcc gatgattatt 900tttctggttc gtacgaagaa ctggaacaat aacattgaaa
ttattcgccc gaacaagatt 960gaaaagaacg aaaagaacaa attcctggat agcctgttcc
tggacaaaag cgaaaagtgt 1020aaaaagttta gcattagcca gaaaagcatt aataacgatg
gctgggtttt cgtggacgaa 1080gtggagaaaa acattatcga caaaatcaaa gagaaaagca
agttcattct gaaagatatt 1140tgccatagct gtcaaggcat tatcaccggt tgtgatcgcg
cctttattgt ggaccgtgat 1200atcatcaata gccgtaagat cgaactgcgt ctgattaaac
cgtggattaa aagcagccat 1260atccgtaaga atgaagttat taagggcgaa aaattcatca
tctatagcaa cctgattgag 1320aatgaaaccg agtgtccgaa tgcgattaaa tatatcgaac
agtacaagaa acgtctgatg 1380gagcgccgcg aatgcaaaaa gggcacgcgt aagtggtatg
aactgcaatg gggccgtaaa 1440ccggaaatct tcgaagaaaa gaaaattgtt ttcccgtata
aaagctgtga caatcgtttt 1500gcactggata agggtagcta ttttagcgca gacatttata
gcctggttct gaagaaaaat 1560gtgccgttca cctatgagat cctgctgaat atcctgaata
gcccgctgta cgagttttac 1620tttaagacct tcgcgaaaaa gctgggcgag aatctgtacg
agtactatcc gaacaacctg 1680atgaagctgt gcatcccgag catcgatttc ggcggtgaga
acaatattga gaaaaagctg 1740tatgatttct ttggtctgac ggataaagaa attgagattg
tggagaagat caaagataac 1800tgctaa
1806644709DNAArtificial Sequencedesigned
methylation plasmid 64gtttgccacc tgacgtctaa gaaaaggaat attcagcaat
ttgcccgtgc cgaagaaagg 60cccacccgtg aaggtgagcc agtgagttga ttgctacgta
attagttagt tagcccttag 120tgactcgtaa tacgactcac tatagggctc gaggcggccg
cgcaacgcaa ttaatgtgag 180ttagctcact cattaggcac cccaggcttt acactttatg
cttccggctc gtatgttgtg 240tggaattgtg agcggataac aatttcacac aggaaacaca
tatgtttccg tgcaatgcct 300atatcgaata tggtgataaa aatatgaaca gctttatcga
agatgtggaa cagatctaca 360acttcattaa aaagaacatt gatgtggaag aaaagatgca
tttcattgaa acctataaac 420agaaaagcaa catgaagaaa gagattagct ttagcgaaga
atactataaa cagaagatta 480tgaacggcaa aaatggcgtt gtgtacaccc cgccggaaat
ggcggccttt atggttaaaa 540atctgatcaa cgttaacgat gttattggca atccgtttat
taaaatcatt gacccgagct 600gcggtagcgg caatctgatt tgcaaatgtt ttctgtatct
gaatcgcatc tttattaaga 660acattgaggt gattaacagc aaaaataacc tgaatctgaa
actggaagac atcagctacc 720acatcgttcg caacaatctg tttggcttcg atattgacga
aaccgcgatc aaagtgctga 780aaattgatct gtttctgatc agcaaccaat ttagcgagaa
aaatttccag gttaaagact 840ttctggtgga aaatattgat cgcaaatatg acgtgttcat
tggtaatccg ccgtatatcg 900gtcacaaaag cgtggacagc agctacagct acgtgctgcg
caaaatctac ggcagcatct 960accgcgacaa aggcgatatc agctattgtt tctttcagaa
gagcctgaaa tgtctgaagg 1020aaggtggcaa actggtgttt gtgaccagcc gctacttctg
cgagagctgc agcggtaaag 1080aactgcgtaa attcctgatc gaaaacacga gcatttacaa
gatcattgat ttttacggca 1140tccgcccgtt caaacgcgtg ggtatcgatc cgatgattat
ttttctggtt cgtacgaaga 1200actggaacaa taacattgaa attattcgcc cgaacaagat
tgaaaagaac gaaaagaaca 1260aattcctgga tagcctgttc ctggacaaaa gcgaaaagtg
taaaaagttt agcattagcc 1320agaaaagcat taataacgat ggctgggttt tcgtggacga
agtggagaaa aacattatcg 1380acaaaatcaa agagaaaagc aagttcattc tgaaagatat
ttgccatagc tgtcaaggca 1440ttatcaccgg ttgtgatcgc gcctttattg tggaccgtga
tatcatcaat agccgtaaga 1500tcgaactgcg tctgattaaa ccgtggatta aaagcagcca
tatccgtaag aatgaagtta 1560ttaagggcga aaaattcatc atctatagca acctgattga
gaatgaaacc gagtgtccga 1620atgcgattaa atatatcgaa cagtacaaga aacgtctgat
ggagcgccgc gaatgcaaaa 1680agggcacgcg taagtggtat gaactgcaat ggggccgtaa
accggaaatc ttcgaagaaa 1740agaaaattgt tttcccgtat aaaagctgtg acaatcgttt
tgcactggat aagggtagct 1800attttagcgc agacatttat agcctggttc tgaagaaaaa
tgtgccgttc acctatgaga 1860tcctgctgaa tatcctgaat agcccgctgt acgagtttta
ctttaagacc ttcgcgaaaa 1920agctgggcga gaatctgtac gagtactatc cgaacaacct
gatgaagctg tgcatcccga 1980gcatcgattt cggcggtgag aacaatattg agaaaaagct
gtatgatttc tttggtctga 2040cggataaaga aattgagatt gtggagaaga tcaaagataa
ctgctaagaa ttcgatatca 2100cccgggaact agtctgcagc cctttagtga gggttaattg
gagtcactaa gggttagtta 2160gttagattag cagaaagtca aaagcctccg accggaggct
tttgactaaa acttcccttg 2220gggttatcat tggggctcac tcaaaggcgg taatcagata
aaaaaaatcc ttagctttcg 2280ctaaggatga tttctgctag agatggaata gactggatgg
aggcggataa agttgcagga 2340ccacttctgc gctcggccct tccggctggc tggtttattg
ctgataaatc tggagccggt 2400gagcgtgggt ctcgcggtat cattgcagca ctggggccag
atggtaagcc ctcccgtatc 2460gtagttatct acacgacggg gagtcaggca actatggatg
aacgaaatag acagatcgct 2520gagataggtg cctcactgat taagcattgg taactgtcag
accaagttta ctcatatata 2580ctttagattg atttaaaact tcatttttaa tttaaaagga
tctaggtgaa gatccttttt 2640gataatctca tgaccaaaat cccttaacgt gagttttcgt
tccactgagc gtcagacccc 2700ttaataagat gatcttcttg agatcgtttt ggtctgcgcg
taatctcttg ctctgaaaac 2760gaaaaaaccg ccttgcaggg cggtttttcg aaggttctct
gagctaccaa ctctttgaac 2820cgaggtaact ggcttggagg agcgcagtca ccaaaacttg
tcctttcagt ttagccttaa 2880ccggcgcatg acttcaagac taactcctct aaatcaatta
ccagtggctg ctgccagtgg 2940tgcttttgca tgtctttccg ggttggactc aagacgatag
ttaccggata aggcgcagcg 3000gtcggactga acggggggtt cgtgcataca gtccagcttg
gagcgaactg cctacccgga 3060actgagtgtc aggcgtggaa tgagacaaac gcggccataa
cagcggaatg acaccggtaa 3120accgaaaggc aggaacagga gagcgcacga gggagccgcc
aggggaaacg cctggtatct 3180ttatagtcct gtcgggtttc gccaccactg atttgagcgt
cagatttcgt gatgcttgtc 3240aggggggcgg agcctatgga aaaacggctt tgccgcggcc
ctctcacttc cctgttaagt 3300atcttcctgg catcttccag gaaatctccg ccccgttcgt
aagccatttc cgctcgccgc 3360agtcgaacga ccgagcgtag cgagtcagtg agcgaggaag
cggaatatat cctgtatcac 3420atattctgct gacgcaccgg tgcagccttt tttctcctgc
cacatgaagc acttcactga 3480caccctcatc agtgccaaca tagtaagcca gtatacactc
cgctagcgct gaggtctgcc 3540tcgtgaagaa ggtgttgctg actcatacca ggcctgaatc
gccccatcat ccagccagaa 3600agtgagggag ccacggttga tgagagcttt gttgtaggtg
gaccagttgg tgattttgaa 3660cttttgcttt gccacggaac ggtctgcgtt gtcgggaaga
tgcgtgatct gatccttcaa 3720ctcagcaaaa gttcgattta ttcaacaaag ccacgttgtg
tctcaaaatc tctgatgtta 3780cattgcacaa gataaaaata tatcatcatg aacaataaaa
ctgtctgctt acataaacag 3840taatacaagg ggtgtttact agaggttgat cgggcacgta
agaggttcca actttcacca 3900taatgaaata agatcactac cgggcgtatt ttttgagtta
tcgagatttt caggagctaa 3960ggaagctaaa atggagaaaa aaatcacggg atataccacc
gttgatatat cccaatggca 4020tcgtaaagaa cattttgagg catttcagtc agttgctcaa
tgtacctata accagaccgt 4080tcagctggat attacggcct ttttaaagac cgtaaagaaa
aataagcaca agttttatcc 4140ggcctttatt cacattcttg cccgcctgat gaacgctcac
ccggagtttc gtatggccat 4200gaaagacggt gagctggtga tctgggatag tgttcaccct
tgttacaccg ttttccatga 4260gcaaactgaa acgttttcgt ccctctggag tgaataccac
gacgatttcc ggcagtttct 4320ccacatatat tcgcaagatg tggcgtgtta cggtgaaaac
ctggcctatt tccctaaagg 4380gtttattgag aatatgtttt ttgtctcagc caatccctgg
gtgagtttca ccagttttga 4440tttaaacgtg gccaatatgg acaacttctt cgcccccgtt
ttcacgatgg gcaaatatta 4500tacgcaaggc gacaaggtgc tgatgccgct ggcgatccag
gttcatcatg ccgtttgtga 4560tggcttccat gtcggccgca tgcttaatga attacaacag
tactgtgatg agtggcaggg 4620cggggcgtaa taatactagc tccggcaaaa aaacgggcaa
ggtgtcacca ccctgccctt 4680tttctttaaa accgaaaaga ttacttcgc
47096518DNAArtificial SequenceOligonucleotide
colE1-F 65cgtcagaccc cgtagaaa
186618DNAArtificial SequenceOligonucleotide colE1-R 66ctctcctgtt
ccgaccct
186737DNAArtificial SequenceOligonucleotide fD1 67ccgaattcgt cgacaacaga
gtttgatcct ggctcag 376837DNAArtificial
SequenceOligonucleotide Rp2 68cccgggatcc aagcttacgg ctaccttgtt acgactt
376925DNAArtificial SequenceOligonucleotide
ispS-F 69aggctgaatt tcttacactt cttga
257025DNAArtificial SequenceOligonucleotide ispS-R 70gtaactccat
caaatcctcc actac
257125DNAArtificial SequenceOligonucleotide idi-F 71atacgtgctg tagtcatcca
agata 257225DNAArtificial
SequenceOligonucleotide idiR 72tcttcaagtt cacatgtaaa accca
257325DNAArtificial Sequenceoligonucleotide
dxs-F 73acaaagtatc taagacagga ggtca
257425DNAArtificial Sequenceoligonucleotide dxs-R 74gatgtcccac
atcccatata agttt
25756018DNAArtificial Sequenceplasmid pMTL85246-IspS-Idi 75ccggggatcc
tctagagtcg acgtcacgcg tccatggaga tctcgaggcc tgcagacatg 60caagcttggc
actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc 120aacttaatcg
ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc 180gcaccgatcg
cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc tagcataaaa 240ataagaagcc
tgcatttgca ggcttcttat ttttatggcg cgccgcattc acttcttttc 300tatataaata
tgagcgaagc gaataagcgt cggaaaagca gcaaaaagtt tcctttttgc 360tgttggagca
tgggggttca gggggtgcag tatctgacgt caatgccgag cgaaagcgag 420ccgaagggta
gcatttacgt tagataaccc cctgatatgc tccgacgctt tatatagaaa 480agaagattca
actaggtaaa atcttaatat aggttgagat gataaggttt ataaggaatt 540tgtttgttct
aatttttcac tcattttgtt ctaatttctt ttaacaaatg ttcttttttt 600tttagaacag
ttatgatata gttagaatag tttaaaataa ggagtgagaa aaagatgaaa 660gaaagatatg
gaacagtcta taaaggctct cagaggctca tagacgaaga aagtggagaa 720gtcatagagg
tagacaagtt ataccgtaaa caaacgtctg gtaacttcgt aaaggcatat 780atagtgcaat
taataagtat gttagatatg attggcggaa aaaaacttaa aatcgttaac 840tatatcctag
ataatgtcca cttaagtaac aatacaatga tagctacaac aagagaaata 900gcaaaagcta
caggaacaag tctacaaaca gtaataacaa cacttaaaat cttagaagaa 960ggaaatatta
taaaaagaaa aactggagta ttaatgttaa accctgaact actaatgaga 1020ggcgacgacc
aaaaacaaaa atacctctta ctcgaatttg ggaactttga gcaagaggca 1080aatgaaatag
attgacctcc caataacacc acgtagttat tgggaggtca atctatgaaa 1140tgcgattaag
ggccggccga agcaaactta agagtgtgtt gatagtgcag tatcttaaaa 1200ttttgtataa
taggaattga agttaaatta gatgctaaaa atttgtaatt aagaaggagt 1260gattacatga
acaaaaatat aaaatattct caaaactttt taacgagtga aaaagtactc 1320aaccaaataa
taaaacaatt gaatttaaaa gaaaccgata ccgtttacga aattggaaca 1380ggtaaagggc
atttaacgac gaaactggct aaaataagta aacaggtaac gtctattgaa 1440ttagacagtc
atctattcaa cttatcgtca gaaaaattaa aactgaatac tcgtgtcact 1500ttaattcacc
aagatattct acagtttcaa ttccctaaca aacagaggta taaaattgtt 1560gggagtattc
cttaccattt aagcacacaa attattaaaa aagtggtttt tgaaagccat 1620gcgtctgaca
tctatctgat tgttgaagaa ggattctaca agcgtacctt ggatattcac 1680cgaacactag
ggttgctctt gcacactcaa gtctcgattc agcaattgct taagctgcca 1740gcggaatgct
ttcatcctaa accaaaagta aacagtgtct taataaaact tacccgccat 1800accacagatg
ttccagataa atattggaag ctatatacgt actttgtttc aaaatgggtc 1860aatcgagaat
atcgtcaact gtttactaaa aatcagtttc atcaagcaat gaaacacgcc 1920aaagtaaaca
atttaagtac cgttacttat gagcaagtat tgtctatttt taatagttat 1980ctattattta
acgggaggaa ataattctat gagtcgcttt tgtaaatttg gaaagttaca 2040cgttactaaa
gggaatgtgt ttaaactcct ttttgataat ctcatgacca aaatccctta 2100acgtgagttt
tcgttccact gagcgtcaga ccccgtagaa aagatcaaag gatcttcttg 2160agatcctttt
tttctgcgcg taatctgctg cttgcaaaca aaaaaaccac cgctaccagc 2220ggtggtttgt
ttgccggatc aagagctacc aactcttttt ccgaaggtaa ctggcttcag 2280cagagcgcag
ataccaaata ctgttcttct agtgtagccg tagttaggcc accacttcaa 2340gaactctgta
gcaccgccta catacctcgc tctgctaatc ctgttaccag tggctgctgc 2400cagtggcgat
aagtcgtgtc ttaccgggtt ggactcaaga cgatagttac cggataaggc 2460gcagcggtcg
ggctgaacgg ggggttcgtg cacacagccc agcttggagc gaacgaccta 2520caccgaactg
agatacctac agcgtgagct atgagaaagc gccacgcttc ccgaagggag 2580aaaggcggac
aggtatccgg taagcggcag ggtcggaaca ggagagcgca cgagggagct 2640tccaggggga
aacgcctggt atctttatag tcctgtcggg tttcgccacc tctgacttga 2700gcgtcgattt
ttgtgatgct cgtcaggggg gcggagccta tggaaaaacg ccagcaacgc 2760ggccttttta
cggttcctgg ccttttgctg gccttttgct cacatgttct ttcctgcgtt 2820atcccctgat
tctgtggata accgtattac cgcctttgag tgagctgata ccgctcgccg 2880cagccgaacg
accgagcgca gcgagtcagt gagcgaggaa gcggaagagc gcccaatacg 2940cagggccccc
tgcaggataa aaaaattgta gataaatttt ataaaatagt tttatctaca 3000atttttttat
caggaaacag ctatgaccgc ggccgcggtt aatgttaaaa atttatagta 3060taactttaaa
aaactgtctt aaaaagttgt tatataaaaa atgttgacaa ttaaacagct 3120atttagtgca
aaacaaccat aaaaatttaa aaaataccat aaattacttg aaaaatagtt 3180gataataatg
tagagttata aacaaaggtg aaaagcatta cttgtattct tttttatata 3240ttattataaa
ttaaaatgaa gctgtattag aaaaaataca cacctgtaat ataaaatttt 3300aaattaattt
ttaatttttt caaaatgtat tttacatgtt tagaattttg atgtatatta 3360aaatagtaga
atacataaga tacttaattt aattaaagat agttaagtac ttttcaatgt 3420gcttttttag
atgtttaata caaatcttta attgtaaaag aaatgctgta ctatttactg 3480tactagtgac
gggattaaac tgtattaatt ataaataaaa aataagtaca gttgtttaaa 3540attatatttt
gtattaaatc taatagtacg atgtaagtta ttttatacta ttgctagttt 3600aataaaaaga
tttaattata tacttgaaaa ggagaggaat ttttatgcgt catatggcaa 3660cagaattatt
atgtttacac agacctatat cacttactca caaacttttt aggaatccat 3720tacctaaagt
tattcaagct acacctttaa cattaaaact taggtgtagt gtttctacag 3780aaaatgtatc
atttagtgag acagaaactg aaacaagaag atcagcaaat tatgaaccaa 3840attcttggga
ttatgattat cttctttctt ctgatactga tgagtcaata gaagtacata 3900aagataaggc
taagaaatta gaagctgaag ttaggagaga aataaataat gagaaggctg 3960aatttcttac
acttcttgaa cttattgata atgtacaaag acttggatta ggatatagat 4020ttgagtctga
tataagaaga gcattagata gatttgtaag tagtggagga tttgatggag 4080ttactaaaac
ttcattacat ggaacagcat tatcatttag gttattaagg caacatggtt 4140ttgaagtatc
tcaagaagct tttagtggat ttaaagatca gaatggaaac tttcttgaga 4200atttaaagga
agacataaaa gcaattcttt ctctttatga agcatcattt ttagcattag 4260aaggtgagaa
tatattagat gaggctaaag tatttgcaat atctcatctt aaagaactta 4320gtgaagaaaa
gattggtaaa gaattagctg aacaagtttc acatgcttta gaattaccat 4380tacatagaag
aacacaaaga ttagaagcag tttggtcaat agaagcatat agaaagaaag 4440aagacgcaaa
tcaagtactt ttagaacttg caatacttga ctacaatatg attcaaagtg 4500tatatcagag
ggatttaaga gaaacatcaa gatggtggag aagagtagga ttagcaacta 4560aattacattt
tgctagagat aggcttattg aaagttttta ttgggctgtt ggagttgctt 4620ttgaaccaca
atattctgat tgcagaaata gtgtagcaaa gatgttttca tttgttacta 4680taattgacga
tatttacgat gtatatggaa ctttagatga acttgaactt tttactgatg 4740cagttgaaag
atgggatgta aatgctatta atgatcttcc tgattatatg aagttatgtt 4800ttcttgcact
ttacaatact attaacgaga tagcttacga taacttaaaa gataaaggtg 4860agaacatact
tccttattta acaaaagcat gggcagattt atgtaatgca tttcttcaag 4920aagctaagtg
gctttataat aaatcaacac ctacatttga tgattatttt ggaaatgcat 4980ggaaaagttc
tagtggacct ttacagctta tttttgctta ttttgctgta gtacagaaca 5040ttaaaaagga
agagattgag aatcttcaga aatatcatga cataatatca agacctagtc 5100acatttttag
gctttgtaat gatttagcat ctgcttcagc agaaatagca agaggtgaaa 5160ctgctaattc
tgtaagttgt tatatgagaa caaaaggtat atctgaagaa ttagctactg 5220aaagtgttat
gaatcttata gacgaaactt ggaagaaaat gaacaaagaa aaacttggtg 5280gatctttatt
tgcaaaacct tttgttgaga ctgctataaa tttagctaga cagtctcatt 5340gcacatatca
taatggtgat gcacatacta gtccagatga attaactagg aaaagagtac 5400ttagtgtaat
aactgaacca atattaccat ttgaaagata agaattcgag ctcgaaaggg 5460gaaattaaat
ggcagaatat ataatagctg tagatgaatt tgataacgaa ataggttcaa 5520ttgaaaaaat
ggaggctcac cgtaaaggaa cattacatag agctttttct atattagtat 5580ttaattctaa
aaatcaattg ttattacaga aaagaaatgt aaaaaaatat cattcgcctg 5640gtctctggac
aaatacgtgc tgtagtcatc caagatacgg tgaaagttta catgatgcga 5700tttatagaag
gcttaaggaa gaaatgggtt ttacatgtga acttgaagaa gtatttagtt 5760ttatttataa
agtaaaactt gaagataatc tttttgaaaa tgaatatgat catgtattca 5820ttgggaaata
tgatggagaa ataattgtaa acaaagatga agtagatgat tttaagtggg 5880ttgatattaa
tgaggttaag aaggatatta tagaaaggcc agaagcatac acttattggt 5940tcaagtattt
agttaataag gcagaaaaca aaatatttaa ataagtaaga atttcgtcta 6000aataaagatt
tggggtac
6018766909DNAArtificial Sequenceplasmid pMTL 82151-Patp-HMGR 76cctgcaggat
aaaaaaattg tagataaatt ttataaaata gttttatcta caattttttt 60atcaggaaac
agctatgacc gcggccgctg tatccatatg accatgatta cgaattcgag 120ctcgttataa
ttttcaattt tcattctttt taaaggagat tagcatacat tttatcataa 180ttatacagac
aatatagtaa tatatgatgt taaaatatca atatatggtt aaaaatctgt 240atattttttc
ccattttaat tatttgtact ataatattac actgagtgta ttgcatattt 300aaaaaatatt
tggtacaatt agttagttaa ataaattcta aattgtaaat tatcagaatc 360cttattaagg
aaatacatag atttaaggag aaatcataaa aaggtgtaat ataaactggc 420taaaattgag
caaaaattga gcaattaaga ctttttgatt gtatcttttt atatatttaa 480ggtatataat
cttatttata ttgggggaag gtaccatgca atcattagac aaaaatttca 540gacatttatc
aagacaacaa aagttacaac aattagttga taaacagtgg ctttcagaag 600atcagtttga
tattttactt aatcatcctc ttatagatga agaagttgct aatagtctta 660tagaaaatgt
aattgcacag ggtgcattac cagttggact tcttcctaat ataatagttg 720atgataaggc
ttatgttgta ccaatgatgg ttgaagaacc tagtgttgtt gcagctgcat 780cttatggtgc
taaattagta aatcagacag gtggatttaa aactgtatca tcagaaagaa 840taatgattgg
acagatagta tttgatggtg tagatgacac tgaaaaatta agtgcagata 900ttaaagcatt
agaaaaacaa atacataaga ttgcagatga agcatatcct agtataaaag 960caagaggtgg
tggttatcaa agaatagcaa tagatacatt tccagagcaa caacttttaa 1020gtcttaaggt
atttgtagat acaaaagatg ctatgggtgc taatatgctt aatactatac 1080ttgaggcaat
aactgcattc cttaaaaatg aatctcctca atcagatata ttaatgtcta 1140tactttcaaa
ccatgcaact gctagtgtag taaaagtaca aggtgagata gatgtaaaag 1200atcttgctag
aggtgaaaga acaggtgaag aagtagctaa gagaatggaa agagcttctg 1260tattagctca
ggttgatatt catagagctg caacacataa caaaggtgtt atgaatggaa 1320tacatgctgt
tgttttagct acaggaaatg atactagagg tgctgaagca tctgcacatg 1380catacgcatc
aagagacgga caatatagag gtatagcaac ttggagatat gatcagaaga 1440gacaaagact
tattggaact attgaagttc caatgacact tgctatagta ggtggtggta 1500ctaaagtatt
accaatagct aaggcatcat tagagttatt aaatgttgat tctgcacaag 1560aacttggaca
cgtagttgct gctgttggat tagcacaaaa ctttgctgct tgtagagcac 1620ttgtttctga
aggtattcaa caaggacaca tgtcattaca atataaaagt ttagcaatag 1680tagtaggtgc
aaaaggtgac gagatagcac aagtagcaga agctcttaaa caggaaccaa 1740gagctaatac
acaggttgct gaaagaattt tacaggaaat tagacagcaa taatctagag 1800tcgacgtcac
gcgtccatgg agatctcgag gcctgcagac atgcaagctt ggcactggcc 1860gtcgttttac
aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa tcgccttgca 1920gcacatcccc
ctttcgccag ctggcgtaat agcgaagagg cccgcaccga tcgcccttcc 1980caacagttgc
gcagcctgaa tggcgaatgg cgctagcata aaaataagaa gcctgcattt 2040gcaggcttct
tatttttatg gcgcgccgtt ctgaatcctt agctaatggt tcaacaggta 2100actatgacga
agatagcacc ctggataagt ctgtaatgga ttctaaggca tttaatgaag 2160acgtgtatat
aaaatgtgct aatgaaaaag aaaatgcgtt aaaagagcct aaaatgagtt 2220caaatggttt
tgaaattgat tggtagttta atttaatata ttttttctat tggctatctc 2280gatacctata
gaatcttctg ttcacttttg tttttgaaat ataaaaaggg gctttttagc 2340cccttttttt
taaaactccg gaggagtttc ttcattcttg atactatacg taactatttt 2400cgatttgact
tcattgtcaa ttaagctagt aaaatcaatg gttaaaaaac aaaaaacttg 2460catttttcta
cctagtaatt tataatttta agtgtcgagt ttaaaagtat aatttaccag 2520gaaaggagca
agttttttaa taaggaaaaa tttttccttt taaaattcta tttcgttata 2580tgactaatta
taatcaaaaa aatgaaaata aacaagaggt aaaaactgct ttagagaaat 2640gtactgataa
aaaaagaaaa aatcctagat ttacgtcata catagcacct ttaactacta 2700agaaaaatat
tgaaaggact tccacttgtg gagattattt gtttatgttg agtgatgcag 2760acttagaaca
ttttaaatta cataaaggta atttttgcgg taatagattt tgtccaatgt 2820gtagttggcg
acttgcttgt aaggatagtt tagaaatatc tattcttatg gagcatttaa 2880gaaaagaaga
aaataaagag tttatatttt taactcttac aactccaaat gtaaaaagtt 2940atgatcttaa
ttattctatt aaacaatata ataaatcttt taaaaaatta atggagcgta 3000aggaagttaa
ggatataact aaaggttata taagaaaatt agaagtaact taccaaaagg 3060aaaaatacat
aacaaaggat ttatggaaaa taaaaaaaga ttattatcaa aaaaaaggac 3120ttgaaattgg
tgatttagaa cctaattttg atacttataa tcctcatttt catgtagtta 3180ttgcagttaa
taaaagttat tttacagata aaaattatta tataaatcga gaaagatggt 3240tggaattatg
gaagtttgct actaaggatg attctataac tcaagttgat gttagaaaag 3300caaaaattaa
tgattataaa gaggtttacg aacttgcgaa atattcagct aaagacactg 3360attatttaat
atcgaggcca gtatttgaaa ttttttataa agcattaaaa ggcaagcagg 3420tattagtttt
tagtggattt tttaaagatg cacacaaatt gtacaagcaa ggaaaacttg 3480atgtttataa
aaagaaagat gaaattaaat atgtctatat agtttattat aattggtgca 3540aaaaacaata
tgaaaaaact agaataaggg aacttacgga agatgaaaaa gaagaattaa 3600atcaagattt
aatagatgaa atagaaatag attaaagtgt aactatactt tatatatata 3660tgattaaaaa
aataaaaaac aacagcctat taggttgttg ttttttattt tctttattaa 3720tttttttaat
ttttagtttt tagttctttt ttaaaataag tttcagcctc tttttcaata 3780ttttttaaag
aaggagtatt tgcatgaatt gccttttttc taacagactt aggaaatatt 3840ttaacagtat
cttcttgcgc cggtgatttt ggaacttcat aacttactaa tttataatta 3900ttattttctt
ttttaattgt aacagttgca aaagaagctg aacctgttcc ttcaactagt 3960ttatcatctt
caatataata ttcttgacct atatagtata aatatatttt tattatattt 4020ttactttttt
ctgaatctat tattttataa tcataaaaag ttttaccacc aaaagaaggt 4080tgtactcctt
ctggtccaac atattttttt actatattat ctaaataatt tttgggaact 4140ggtgttgtaa
tttgattaat cgaacaacca gttatactta aaggaattat aactataaaa 4200atatatagga
ttatcttttt aaatttcatt attggcctcc tttttattaa atttatgtta 4260ccataaaaag
gacataacgg gaatatgtag aatattttta atgtagacaa aattttacat 4320aaatataaag
aaaggaagtg tttgtttaaa ttttatagca aactatcaaa aattaggggg 4380ataaaaattt
atgaaaaaaa ggttttcgat gttattttta tgtttaactt taatagtttg 4440tggtttattt
acaaattcgg ccggccagtg ggcaagttga aaaattcaca aaaatgtggt 4500ataatatctt
tgttcattag agcgataaac ttgaatttga gagggaactt agatggtatt 4560tgaaaaaatt
gataaaaata gttggaacag aaaagagtat tttgaccact actttgcaag 4620tgtaccttgt
acctacagca tgaccgttaa agtggatatc acacaaataa aggaaaaggg 4680aatgaaacta
tatcctgcaa tgctttatta tattgcaatg attgtaaacc gccattcaga 4740gtttaggacg
gcaatcaatc aagatggtga attggggata tatgatgaga tgataccaag 4800ctatacaata
tttcacaatg atactgaaac attttccagc ctttggactg agtgtaagtc 4860tgactttaaa
tcatttttag cagattatga aagtgatacg caacggtatg gaaacaatca 4920tagaatggaa
ggaaagccaa atgctccgga aaacattttt aatgtatcta tgataccgtg 4980gtcaaccttc
gatggcttta atctgaattt gcagaaagga tatgattatt tgattcctat 5040ttttactatg
gggaaatatt ataaagaaga taacaaaatt atacttcctt tggcaattca 5100agttcatcac
gcagtatgtg acggatttca catttgccgt tttgtaaacg aattgcagga 5160attgataaat
agttaacttc aggtttgtct gtaactaaaa acaagtattt aagcaaaaac 5220atcgtagaaa
tacggtgttt tttgttaccc taagtttaaa ctcctttttg ataatctcat 5280gaccaaaatc
ccttaacgtg agttttcgtt ccactgagcg tcagaccccg tagaaaagat 5340caaaggatct
tcttgagatc ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 5400accaccgcta
ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 5460ggtaactggc
ttcagcagag cgcagatacc aaatactgtt cttctagtgt agccgtagtt 5520aggccaccac
ttcaagaact ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 5580accagtggct
gctgccagtg gcgataagtc gtgtcttacc gggttggact caagacgata 5640gttaccggat
aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt 5700ggagcgaacg
acctacaccg aactgagata cctacagcgt gagctatgag aaagcgccac 5760gcttcccgaa
gggagaaagg cggacaggta tccggtaagc ggcagggtcg gaacaggaga 5820gcgcacgagg
gagcttccag ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 5880ccacctctga
cttgagcgtc gatttttgtg atgctcgtca ggggggcgga gcctatggaa 5940aaacgccagc
aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat 6000gttctttcct
gcgttatccc ctgattctgt ggataaccgt attaccgcct ttgagtgagc 6060tgataccgct
cgccgcagcc gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga 6120agagcgccca
atacgcaggg ccccctgctt cggggtcatt atagcgattt tttcggtata 6180tccatccttt
ttcgcacgat atacaggatt ttgccaaagg gttcgtgtag actttccttg 6240gtgtatccaa
cggcgtcagc cgggcaggat aggtgaagta ggcccacccg cgagcgggtg 6300ttccttcttc
actgtccctt attcgcacct ggcggtgctc aacgggaatc ctgctctgcg 6360aggctggccg
gctaccgccg gcgtaacaga tgagggcaag cggatggctg atgaaaccaa 6420gccaaccagg
aagggcagcc cacctatcaa ggtgtactgc cttccagacg aacgaagagc 6480gattgaggaa
aaggcggcgg cggccggcat gagcctgtcg gcctacctgc tggccgtcgg 6540ccagggctac
aaaatcacgg gcgtcgtgga ctatgagcac gtccgcgagc tggcccgcat 6600caatggcgac
ctgggccgcc tgggcggcct gctgaaactc tggctcaccg acgacccgcg 6660cacggcgcgg
ttcggtgatg ccacgatcct cgccctgctg gcgaagatcg aagagaagca 6720ggacgagctt
ggcaaggtca tgatgggcgt ggtccgcccg agggcagagc catgactttt 6780ttagccgcta
aaacggccgg ggggtgcgcg tgattgccaa gcacgtcccc atgcgctcca 6840tcaagaagag
cgacttcgcg gagctggtga agtacatcac cgacgagcaa ggcaagaccg 6900atcgggccc
69097731DNAArtificial Sequenceoligonucleotide EcoRI-HMGS_F 77agccgtgaat
tcgaggcttt tactaaaaac a
317832DNAArtificial Sequenceoligonucleotide EcoRI-HMGS_R 78aggcgtctag
atgttcgtct ctacaaataa tt
32798116DNAArtificial Sequenceplasmid pMTL 82151-HMGS-Patp-HMGR
79cctgcaggat aaaaaaattg tagataaatt ttataaaata gttttatcta caattttttt
60atcaggaaac agctatgacc gcggccgctg tatccatatg accatgatta cgaattcgag
120gcttttacta aaaacaataa aaacaggagg aaataatatg actataggaa ttgacaaaat
180aaacttttac gtaccaaaat attatgtaga tatggcaaaa ttagcagaag caagacaagt
240agacccaaat aaatttctta ttggaatagg acagactgaa atggcagtta gtccagtaaa
300ccaagatata gtatcaatgg gtgctaatgc tgctaaagat ataataactg atgaagacaa
360aaagaaaata ggaatggtaa tagtagcaac tgagtcagca gtagatgcag caaaggcagc
420agcagtacag attcataatt tattaggtat tcaaccattt gcaagatgtt tcgaaatgaa
480agaagcatgt tatgctgcta ctcctgcaat tcagttagct aaggattatt tagctacaag
540accaaatgag aaagttttag ttatagctac agatacagct agatatggac ttaattcagg
600tggtgaacct actcaaggtg ctggtgctgt tgctatggtt atagctcata atcctagtat
660acttgcatta aatgaagacg ctgttgctta tacagaagat gtttatgatt tctggagacc
720aacaggacat aagtatccat tagtagatgg tgctttatca aaagacgcat atattagatc
780ttttcaacaa tcttggaatg aatatgctaa gagacaagga aagagtttag ctgattttgc
840tagtctttgc tttcatgttc cttttactaa aatgggtaaa aaggctttag aatctataat
900agataacgca gatgaaacaa ctcaagagag attaagatct ggatatgaag atgcagttga
960ttacaataga tatgttggaa atatatacac aggaagtctt tatctttctc ttataagtct
1020tcttgaaaat agagatttac aggctggtga aactattgga ttattttcat acggatcagg
1080ttctgttggt gaattttatt cagctacact tgtagaagga tataaagatc accttgatca
1140ggcagcacac aaagcacttt taaacaatag aactgaagta tcagtagatg catacgaaac
1200atttttcaag agatttgatg atgtagaatt tgatgaagag caggatgcag ttcatgaaga
1260tagacatata ttctatcttt caaacataga gaataatgta agagaatatc atagacctga
1320ataagagctc gttataattt tcaattttca ttctttttaa aggagattag catacatttt
1380atcataatta tacagacaat atagtaatat atgatgttaa aatatcaata tatggttaaa
1440aatctgtata ttttttccca ttttaattat ttgtactata atattacact gagtgtattg
1500catatttaaa aaatatttgg tacaattagt tagttaaata aattctaaat tgtaaattat
1560cagaatcctt attaaggaaa tacatagatt taaggagaaa tcataaaaag gtgtaatata
1620aactggctaa aattgagcaa aaattgagca attaagactt tttgattgta tctttttata
1680tatttaaggt atataatctt atttatattg ggggaaggta ccatgcaatc attagacaaa
1740aatttcagac atttatcaag acaacaaaag ttacaacaat tagttgataa acagtggctt
1800tcagaagatc agtttgatat tttacttaat catcctctta tagatgaaga agttgctaat
1860agtcttatag aaaatgtaat tgcacagggt gcattaccag ttggacttct tcctaatata
1920atagttgatg ataaggctta tgttgtacca atgatggttg aagaacctag tgttgttgca
1980gctgcatctt atggtgctaa attagtaaat cagacaggtg gatttaaaac tgtatcatca
2040gaaagaataa tgattggaca gatagtattt gatggtgtag atgacactga aaaattaagt
2100gcagatatta aagcattaga aaaacaaata cataagattg cagatgaagc atatcctagt
2160ataaaagcaa gaggtggtgg ttatcaaaga atagcaatag atacatttcc agagcaacaa
2220cttttaagtc ttaaggtatt tgtagataca aaagatgcta tgggtgctaa tatgcttaat
2280actatacttg aggcaataac tgcattcctt aaaaatgaat ctcctcaatc agatatatta
2340atgtctatac tttcaaacca tgcaactgct agtgtagtaa aagtacaagg tgagatagat
2400gtaaaagatc ttgctagagg tgaaagaaca ggtgaagaag tagctaagag aatggaaaga
2460gcttctgtat tagctcaggt tgatattcat agagctgcaa cacataacaa aggtgttatg
2520aatggaatac atgctgttgt tttagctaca ggaaatgata ctagaggtgc tgaagcatct
2580gcacatgcat acgcatcaag agacggacaa tatagaggta tagcaacttg gagatatgat
2640cagaagagac aaagacttat tggaactatt gaagttccaa tgacacttgc tatagtaggt
2700ggtggtacta aagtattacc aatagctaag gcatcattag agttattaaa tgttgattct
2760gcacaagaac ttggacacgt agttgctgct gttggattag cacaaaactt tgctgcttgt
2820agagcacttg tttctgaagg tattcaacaa ggacacatgt cattacaata taaaagttta
2880gcaatagtag taggtgcaaa aggtgacgag atagcacaag tagcagaagc tcttaaacag
2940gaaccaagag ctaatacaca ggttgctgaa agaattttac aggaaattag acagcaataa
3000tctagagtcg acgtcacgcg tccatggaga tctcgaggcc tgcagacatg caagcttggc
3060actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg
3120ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg
3180cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc tagcataaaa ataagaagcc
3240tgcatttgca ggcttcttat ttttatggcg cgccgttctg aatccttagc taatggttca
3300acaggtaact atgacgaaga tagcaccctg gataagtctg taatggattc taaggcattt
3360aatgaagacg tgtatataaa atgtgctaat gaaaaagaaa atgcgttaaa agagcctaaa
3420atgagttcaa atggttttga aattgattgg tagtttaatt taatatattt tttctattgg
3480ctatctcgat acctatagaa tcttctgttc acttttgttt ttgaaatata aaaaggggct
3540ttttagcccc ttttttttaa aactccggag gagtttcttc attcttgata ctatacgtaa
3600ctattttcga tttgacttca ttgtcaatta agctagtaaa atcaatggtt aaaaaacaaa
3660aaacttgcat ttttctacct agtaatttat aattttaagt gtcgagttta aaagtataat
3720ttaccaggaa aggagcaagt tttttaataa ggaaaaattt ttccttttaa aattctattt
3780cgttatatga ctaattataa tcaaaaaaat gaaaataaac aagaggtaaa aactgcttta
3840gagaaatgta ctgataaaaa aagaaaaaat cctagattta cgtcatacat agcaccttta
3900actactaaga aaaatattga aaggacttcc acttgtggag attatttgtt tatgttgagt
3960gatgcagact tagaacattt taaattacat aaaggtaatt tttgcggtaa tagattttgt
4020ccaatgtgta gttggcgact tgcttgtaag gatagtttag aaatatctat tcttatggag
4080catttaagaa aagaagaaaa taaagagttt atatttttaa ctcttacaac tccaaatgta
4140aaaagttatg atcttaatta ttctattaaa caatataata aatcttttaa aaaattaatg
4200gagcgtaagg aagttaagga tataactaaa ggttatataa gaaaattaga agtaacttac
4260caaaaggaaa aatacataac aaaggattta tggaaaataa aaaaagatta ttatcaaaaa
4320aaaggacttg aaattggtga tttagaacct aattttgata cttataatcc tcattttcat
4380gtagttattg cagttaataa aagttatttt acagataaaa attattatat aaatcgagaa
4440agatggttgg aattatggaa gtttgctact aaggatgatt ctataactca agttgatgtt
4500agaaaagcaa aaattaatga ttataaagag gtttacgaac ttgcgaaata ttcagctaaa
4560gacactgatt atttaatatc gaggccagta tttgaaattt tttataaagc attaaaaggc
4620aagcaggtat tagtttttag tggatttttt aaagatgcac acaaattgta caagcaagga
4680aaacttgatg tttataaaaa gaaagatgaa attaaatatg tctatatagt ttattataat
4740tggtgcaaaa aacaatatga aaaaactaga ataagggaac ttacggaaga tgaaaaagaa
4800gaattaaatc aagatttaat agatgaaata gaaatagatt aaagtgtaac tatactttat
4860atatatatga ttaaaaaaat aaaaaacaac agcctattag gttgttgttt tttattttct
4920ttattaattt ttttaatttt tagtttttag ttctttttta aaataagttt cagcctcttt
4980ttcaatattt tttaaagaag gagtatttgc atgaattgcc ttttttctaa cagacttagg
5040aaatatttta acagtatctt cttgcgccgg tgattttgga acttcataac ttactaattt
5100ataattatta ttttcttttt taattgtaac agttgcaaaa gaagctgaac ctgttccttc
5160aactagttta tcatcttcaa tataatattc ttgacctata tagtataaat atatttttat
5220tatattttta cttttttctg aatctattat tttataatca taaaaagttt taccaccaaa
5280agaaggttgt actccttctg gtccaacata tttttttact atattatcta aataattttt
5340gggaactggt gttgtaattt gattaatcga acaaccagtt atacttaaag gaattataac
5400tataaaaata tataggatta tctttttaaa tttcattatt ggcctccttt ttattaaatt
5460tatgttacca taaaaaggac ataacgggaa tatgtagaat atttttaatg tagacaaaat
5520tttacataaa tataaagaaa ggaagtgttt gtttaaattt tatagcaaac tatcaaaaat
5580tagggggata aaaatttatg aaaaaaaggt tttcgatgtt atttttatgt ttaactttaa
5640tagtttgtgg tttatttaca aattcggccg gccagtgggc aagttgaaaa attcacaaaa
5700atgtggtata atatctttgt tcattagagc gataaacttg aatttgagag ggaacttaga
5760tggtatttga aaaaattgat aaaaatagtt ggaacagaaa agagtatttt gaccactact
5820ttgcaagtgt accttgtacc tacagcatga ccgttaaagt ggatatcaca caaataaagg
5880aaaagggaat gaaactatat cctgcaatgc tttattatat tgcaatgatt gtaaaccgcc
5940attcagagtt taggacggca atcaatcaag atggtgaatt ggggatatat gatgagatga
6000taccaagcta tacaatattt cacaatgata ctgaaacatt ttccagcctt tggactgagt
6060gtaagtctga ctttaaatca tttttagcag attatgaaag tgatacgcaa cggtatggaa
6120acaatcatag aatggaagga aagccaaatg ctccggaaaa catttttaat gtatctatga
6180taccgtggtc aaccttcgat ggctttaatc tgaatttgca gaaaggatat gattatttga
6240ttcctatttt tactatgggg aaatattata aagaagataa caaaattata cttcctttgg
6300caattcaagt tcatcacgca gtatgtgacg gatttcacat ttgccgtttt gtaaacgaat
6360tgcaggaatt gataaatagt taacttcagg tttgtctgta actaaaaaca agtatttaag
6420caaaaacatc gtagaaatac ggtgtttttt gttaccctaa gtttaaactc ctttttgata
6480atctcatgac caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag
6540aaaagatcaa aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa
6600caaaaaaacc accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt
6660ttccgaaggt aactggcttc agcagagcgc agataccaaa tactgttctt ctagtgtagc
6720cgtagttagg ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa
6780tcctgttacc agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa
6840gacgatagtt accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc
6900ccagcttgga gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa
6960gcgccacgct tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa
7020caggagagcg cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg
7080ggtttcgcca cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc
7140tatggaaaaa cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg
7200ctcacatgtt ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg
7260agtgagctga taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg
7320aagcggaaga gcgcccaata cgcagggccc cctgcttcgg ggtcattata gcgatttttt
7380cggtatatcc atcctttttc gcacgatata caggattttg ccaaagggtt cgtgtagact
7440ttccttggtg tatccaacgg cgtcagccgg gcaggatagg tgaagtaggc ccacccgcga
7500gcgggtgttc cttcttcact gtcccttatt cgcacctggc ggtgctcaac gggaatcctg
7560ctctgcgagg ctggccggct accgccggcg taacagatga gggcaagcgg atggctgatg
7620aaaccaagcc aaccaggaag ggcagcccac ctatcaaggt gtactgcctt ccagacgaac
7680gaagagcgat tgaggaaaag gcggcggcgg ccggcatgag cctgtcggcc tacctgctgg
7740ccgtcggcca gggctacaaa atcacgggcg tcgtggacta tgagcacgtc cgcgagctgg
7800cccgcatcaa tggcgacctg ggccgcctgg gcggcctgct gaaactctgg ctcaccgacg
7860acccgcgcac ggcgcggttc ggtgatgcca cgatcctcgc cctgctggcg aagatcgaag
7920agaagcagga cgagcttggc aaggtcatga tgggcgtggt ccgcccgagg gcagagccat
7980gactttttta gccgctaaaa cggccggggg gtgcgcgtga ttgccaagca cgtccccatg
8040cgctccatca agaagagcga cttcgcggag ctggtgaagt acatcaccga cgagcaaggc
8100aagaccgatc gggccc
81168055DNAArtificial SequenceOligonucleotide NotI-XbaI-Prnf-MK_F
80atgcgcggcc gctaggtcta gaatatcgat acagataaaa aaatatataa tacag
558127DNAArtificial SequenceOligonucleotide SalI-Prnf-MK_R 81tggttctgta
acagcgtatt cacctgc
27824633DNAArtificial Sequenceplasmid pMTL8314-Prnf-MK 82aaactccttt
ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga 60gcgtcagacc
ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta 120atctgctgct
tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa 180gagctaccaa
ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact 240gttcttctag
tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca 300tacctcgctc
tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt 360accgggttgg
actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg 420ggttcgtgca
cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag 480cgtgagctat
gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta 540agcggcaggg
tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat 600ctttatagtc
ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg 660tcaggggggc
ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc 720ttttgctggc
cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac 780cgtattaccg
cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc 840gagtcagtga
gcgaggaagc ggaagagcgc ccaatacgca gggccccctg caggataaaa 900aaattgtaga
taaattttat aaaatagttt tatctacaat ttttttatca ggaaacagct 960atgaccgcgg
ccgctaggtc tagaatatcg atacagataa aaaaatatat aatacagaag 1020aaaaaattat
aaatttgtgg tataatataa agtatagtaa tttaagttta aacctcgtga 1080aaacgctaac
aaataatagg aggtcaattg atgatagctg ttccatttaa cgctggaaaa 1140ataaaagttt
taattgaggc attagaatct ggaaattatt catcaataaa atcagatgta 1200tatgacggaa
tgttatatga tgcaccagat caccttaaat cattagtaaa cagatttgta 1260gaacttaata
atataactga gccattagca gtaactatac agacaaatct tcctccttca 1320agaggtcttg
gatctagtgc agctgttgct gttgcttttg taagagcaag ttatgatttc 1380ttaggaaaaa
gtttaactaa agaagagctt atagaaaagg ctaattgggc tgaacaaata 1440gctcatggaa
agccatctgg aatagataca caaacaatag tatctggaaa gcctgtttgg 1500tttcaaaagg
gacatgcaga aacacttaaa actctttcac ttgatggata catggtagta 1560attgatacag
gtgttaaagg aagtacaaga caggctgtag aagatgttca taaactttgc 1620gaagatcctc
aatatatgag tcacgtaaaa cacataggaa aacttgtact tagagcatct 1680gatgttattg
aacatcataa ctttgaagca cttgctgata tattcaatga atgtcatgct 1740gatttaaagg
ctcttacagt aagtcatgac aaaatagaac agttaatgaa gataggaaaa 1800gaaaatggtg
ctatagctgg taaattaact ggtgctggta gaggtggttc aatgttatta 1860cttgcaaaag
acttaccaac tgcaaagaat atagttaaag cagtagagaa agctggtgca 1920gcacatactt
ggattgaaaa tttaggtggt taagtcgacg tcacgcgtcc atggagatct 1980cgaggcctgc
agacatgcaa gcttggcact ggccgtcgtt ttacaacgtc gtgactggga 2040aaaccctggc
gttacccaac ttaatcgcct tgcagcacat ccccctttcg ccagctggcg 2100taatagcgaa
gaggcccgca ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga 2160atggcgctag
cataaaaata agaagcctgc atttgcaggc ttcttatttt tatggcgcgc 2220cgccattatt
tttttgaaca attgacaatt catttcttat tttttattaa gtgatagtca 2280aaaggcataa
cagtgctgaa tagaaagaaa tttacagaaa agaaaattat agaatttagt 2340atgattaatt
atactcattt atgaatgttt aattgaatac aaaaaaaaat acttgttatg 2400tattcaatta
cgggttaaaa tatagacaag ttgaaaaatt taataaaaaa ataagtcctc 2460agctcttata
tattaagcta ccaacttagt atataagcca aaacttaaat gtgctaccaa 2520cacatcaagc
cgttagagaa ctctatctat agcaatattt caaatgtacc gacatacaag 2580agaaacatta
actatatata ttcaatttat gagattatct taacagatat aaatgtaaat 2640tgcaataagt
aagatttaga agtttatagc ctttgtgtat tggaagcagt acgcaaaggc 2700ttttttattt
gataaaaatt agaagtatat ttattttttc ataattaatt tatgaaaatg 2760aaagggggtg
agcaaagtga cagaggaaag cagtatctta tcaaataaca aggtattagc 2820aatatcatta
ttgactttag cagtaaacat tatgactttt atagtgcttg tagctaagta 2880gtacgaaagg
gggagcttta aaaagctcct tggaatacat agaattcata aattaattta 2940tgaaaagaag
ggcgtatatg aaaacttgta aaaattgcaa agagtttatt aaagatactg 3000aaatatgcaa
aatacattcg ttgatgattc atgataaaac agtagcaacc tattgcagta 3060aatacaatga
gtcaagatgt ttacataaag ggaaagtcca atgtattaat tgttcaaaga 3120tgaaccgata
tggatggtgt gccataaaaa tgagatgttt tacagaggaa gaacagaaaa 3180aagaacgtac
atgcattaaa tattatgcaa ggagctttaa aaaagctcat gtaaagaaga 3240gtaaaaagaa
aaaataattt atttattaat ttaatattga gagtgccgac acagtatgca 3300ctaaaaaata
tatctgtggt gtagtgagcc gatacaaaag gatagtcact cgcattttca 3360taatacatct
tatgttatga ttatgtgtcg gtgggacttc acgacgaaaa cccacaataa 3420aaaaagagtt
cggggtaggg ttaagcatag ttgaggcaac taaacaatca agctaggata 3480tgcagtagca
gaccgtaagg tcgttgttta ggtgtgttgt aatacatacg ctattaagat 3540gtaaaaatac
ggataccaat gaagggaaaa gtataatttt tggatgtagt ttgtttgttc 3600atctatgggc
aaactacgtc caaagccgtt tccaaatctg ctaaaaagta tatcctttct 3660aaaatcaaag
tcaagtatga aatcataaat aaagtttaat tttgaagtta ttatgatatt 3720atgtttttct
attaaaataa attaagtata tagaatagtt taataatagt atatacttaa 3780tgtgataagt
gtctgacagt gtcacagaaa ggatgattgt tatggattat aagcggccgg 3840ccagtgggca
agttgaaaaa ttcacaaaaa tgtggtataa tatctttgtt cattagagcg 3900ataaacttga
atttgagagg gaacttagat ggtatttgaa aaaattgata aaaatagttg 3960gaacagaaaa
gagtattttg accactactt tgcaagtgta ccttgtacct acagcatgac 4020cgttaaagtg
gatatcacac aaataaagga aaagggaatg aaactatatc ctgcaatgct 4080ttattatatt
gcaatgattg taaaccgcca ttcagagttt aggacggcaa tcaatcaaga 4140tggtgaattg
gggatatatg atgagatgat accaagctat acaatatttc acaatgatac 4200tgaaacattt
tccagccttt ggactgagtg taagtctgac tttaaatcat ttttagcaga 4260ttatgaaagt
gatacgcaac ggtatggaaa caatcataga atggaaggaa agccaaatgc 4320tccggaaaac
atttttaatg tatctatgat accgtggtca accttcgatg gctttaatct 4380gaatttgcag
aaaggatatg attatttgat tcctattttt actatgggga aatattataa 4440agaagataac
aaaattatac ttcctttggc aattcaagtt catcacgcag tatgtgacgg 4500atttcacatt
tgccgttttg taaacgaatt gcaggaattg ataaatagtt aacttcaggt 4560ttgtctgtaa
ctaaaaacaa gtatttaagc aaaaacatcg tagaaatacg gtgttttttg 4620ttaccctaag
ttt
4633836753DNAArtificial Sequenceplasmid pMTL 8314-Prnf-MK-PMK-PMD
83aaactccttt ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga
60gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta
120atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa
180gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact
240gttcttctag tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca
300tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt
360accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg
420ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag
480cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta
540agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat
600ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg
660tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc
720ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac
780cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc
840gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca gggccccctg caggataaaa
900aaattgtaga taaattttat aaaatagttt tatctacaat ttttttatca ggaaacagct
960atgaccgcgg ccgctaggtc tagaatatcg atacagataa aaaaatatat aatacagaag
1020aaaaaattat aaatttgtgg tataatataa agtatagtaa tttaagttta aacctcgtga
1080aaacgctaac aaataatagg aggtcaattg atgatagctg ttccatttaa cgctggaaaa
1140ataaaagttt taattgaggc attagaatct ggaaattatt catcaataaa atcagatgta
1200tatgacggaa tgttatatga tgcaccagat caccttaaat cattagtaaa cagatttgta
1260gaacttaata atataactga gccattagca gtaactatac agacaaatct tcctccttca
1320agaggtcttg gatctagtgc agctgttgct gttgcttttg taagagcaag ttatgatttc
1380ttaggaaaaa gtttaactaa agaagagctt atagaaaagg ctaattgggc tgaacaaata
1440gctcatggaa agccatctgg aatagataca caaacaatag tatctggaaa gcctgtttgg
1500tttcaaaagg gacatgcaga aacacttaaa actctttcac ttgatggata catggtagta
1560attgatacag gtgttaaagg aagtacaaga caggctgtag aagatgttca taaactttgc
1620gaagatcctc aatatatgag tcacgtaaaa cacataggaa aacttgtact tagagcatct
1680gatgttattg aacatcataa ctttgaagca cttgctgata tattcaatga atgtcatgct
1740gatttaaagg ctcttacagt aagtcatgac aaaatagaac agttaatgaa gataggaaaa
1800gaaaatggtg ctatagctgg taaattaact ggtgctggta gaggtggttc aatgttatta
1860cttgcaaaag acttaccaac tgcaaagaat atagttaaag cagtagagaa agctggtgca
1920gcacatactt ggattgaaaa tttaggtggt taagtcgaca aagacactaa aaaattataa
1980aagtaaagga ggacattaaa tgatacaagt aaaggcacca ggaaaattat atatagcagg
2040tgaatacgct gttacagaac caggatataa atctgttctt atagctcttg atagatttgt
2100tacagctact attgaggaag ctgatcaata caaaggaaca atacattcaa aggcattaca
2160tcacaatcca gtaactttta gtagagatga agattctatt gttatatcag acccacacgc
2220agcaaaacaa cttaattatg tagtaactgc tatagaaata tttgagcaat atgcaaaatc
2280atgtgacata gcaatgaagc attttcattt aactatagat tctaacttag atgatagtaa
2340tggacataag tatggacttg gatcttctgc tgctgtttta gtttcagtaa ttaaagtact
2400taacgaattt tatgatatga aactttcaaa cctttatata tataagttag cagtaattgc
2460taatatgaaa ttacagagtt tatcttcatg cggtgatata gcagtaagtg tttattcagg
2520ttggttagct tattctacat ttgaccatga atgggtaaaa caccagatag aagatacaac
2580agttgaagaa gtacttatta aaaattggcc tggattacac atagagccac ttcaagctcc
2640tgaaaatatg gaagttctta taggttggac aggtagtcca gctagtagtc ctcattttgt
2700ttctgaagtt aaaagactta agtcagatcc ttcattttac ggtgatttct tagaagattc
2760acatagatgt gtagaaaaat taattcatgc attcaaaact aataatatta agggtgttca
2820gaaaatggta agacagaata gaactattat acaaagaatg gataaggaag caacagttga
2880tatagagact gagaagttaa aatatttatg tgatattgct gaaaaatatc atggtgcaag
2940taaaacttca ggtgctggtg gtggtgattg cggaataact ataataaata aggatgtaga
3000caaagagaaa atatatgatg aatggactaa acatggaata aagcctctta agtttaatat
3060ttatcatgga caataaccat ggtcaataat cttacaataa ataaaagaaa ggaggcaaaa
3120atatgataaa atctggaaaa gcaagagcac acactaatat agcacttata aaatattggg
3180gtaagaaaga tgaggcatta ataataccaa tgaataactc aatatcagta actttagaaa
3240agttttatac tgaaacaaaa gttacattta acgatcagct tactcaagat caattttggc
3300ttaatggtga aaaagtttct ggaaaagaat tagaaaagat ttcaaagtat atggatattg
3360ttagaaatag agctggaata gattggtatg ctgagataga atctgataat tttgttccta
3420cagctgctgg tcttgctagt tctgctagtg cttatgcagc attagctgct gcatgtaacc
3480aagcacttga tttacagtta agtgataaag acttaagtag attagctaga attggatcag
3540gatcagcatc aagatcaata tacggtggtt ttgcagaatg ggaaaaagga tataatgacg
3600aaacttctta tgctgttcca ttagaaagta atcactttga agatgatctt gctatgattt
3660ttgtagtaat aaaccaacat tctaaaaagg ttccttcaag atatggaatg tctcttacaa
3720gaaatacaag tagattctat caatattggt tagaccatat tgatgaagat cttgcagaag
3780caaaggcagc aatacaagat aaggatttta agagattagg tgaagttatt gaagagaatg
3840gacttagaat gcatgctaca aatcttggat caactccacc ttttacttac ttagtacaag
3900agtcatacga tgtaatggca ttagtacatg agtgtagaga agcaggatat ccatgctatt
3960tcactatgga tgctggacct aatgtaaaaa tacttgtaga gaagaaaaac aaacaacaga
4020taatagataa acttttaact cagttcgata ataatcagat aatagatagt gatattatag
4080ctacaggtat tgaaattata gaataaacta gttccgctaa gcttggcact ggccgtcgtt
4140ttacaacgtc gtgactggga aaaccctggc gttacccaac ttaatcgcct tgcagcacat
4200ccccctttcg ccagctggcg taatagcgaa gaggcccgca ccgatcgccc ttcccaacag
4260ttgcgcagcc tgaatggcga atggcgctag cataaaaata agaagcctgc atttgcaggc
4320ttcttatttt tatggcgcgc cgccattatt tttttgaaca attgacaatt catttcttat
4380tttttattaa gtgatagtca aaaggcataa cagtgctgaa tagaaagaaa tttacagaaa
4440agaaaattat agaatttagt atgattaatt atactcattt atgaatgttt aattgaatac
4500aaaaaaaaat acttgttatg tattcaatta cgggttaaaa tatagacaag ttgaaaaatt
4560taataaaaaa ataagtcctc agctcttata tattaagcta ccaacttagt atataagcca
4620aaacttaaat gtgctaccaa cacatcaagc cgttagagaa ctctatctat agcaatattt
4680caaatgtacc gacatacaag agaaacatta actatatata ttcaatttat gagattatct
4740taacagatat aaatgtaaat tgcaataagt aagatttaga agtttatagc ctttgtgtat
4800tggaagcagt acgcaaaggc ttttttattt gataaaaatt agaagtatat ttattttttc
4860ataattaatt tatgaaaatg aaagggggtg agcaaagtga cagaggaaag cagtatctta
4920tcaaataaca aggtattagc aatatcatta ttgactttag cagtaaacat tatgactttt
4980atagtgcttg tagctaagta gtacgaaagg gggagcttta aaaagctcct tggaatacat
5040agaattcata aattaattta tgaaaagaag ggcgtatatg aaaacttgta aaaattgcaa
5100agagtttatt aaagatactg aaatatgcaa aatacattcg ttgatgattc atgataaaac
5160agtagcaacc tattgcagta aatacaatga gtcaagatgt ttacataaag ggaaagtcca
5220atgtattaat tgttcaaaga tgaaccgata tggatggtgt gccataaaaa tgagatgttt
5280tacagaggaa gaacagaaaa aagaacgtac atgcattaaa tattatgcaa ggagctttaa
5340aaaagctcat gtaaagaaga gtaaaaagaa aaaataattt atttattaat ttaatattga
5400gagtgccgac acagtatgca ctaaaaaata tatctgtggt gtagtgagcc gatacaaaag
5460gatagtcact cgcattttca taatacatct tatgttatga ttatgtgtcg gtgggacttc
5520acgacgaaaa cccacaataa aaaaagagtt cggggtaggg ttaagcatag ttgaggcaac
5580taaacaatca agctaggata tgcagtagca gaccgtaagg tcgttgttta ggtgtgttgt
5640aatacatacg ctattaagat gtaaaaatac ggataccaat gaagggaaaa gtataatttt
5700tggatgtagt ttgtttgttc atctatgggc aaactacgtc caaagccgtt tccaaatctg
5760ctaaaaagta tatcctttct aaaatcaaag tcaagtatga aatcataaat aaagtttaat
5820tttgaagtta ttatgatatt atgtttttct attaaaataa attaagtata tagaatagtt
5880taataatagt atatacttaa tgtgataagt gtctgacagt gtcacagaaa ggatgattgt
5940tatggattat aagcggccgg ccagtgggca agttgaaaaa ttcacaaaaa tgtggtataa
6000tatctttgtt cattagagcg ataaacttga atttgagagg gaacttagat ggtatttgaa
6060aaaattgata aaaatagttg gaacagaaaa gagtattttg accactactt tgcaagtgta
6120ccttgtacct acagcatgac cgttaaagtg gatatcacac aaataaagga aaagggaatg
6180aaactatatc ctgcaatgct ttattatatt gcaatgattg taaaccgcca ttcagagttt
6240aggacggcaa tcaatcaaga tggtgaattg gggatatatg atgagatgat accaagctat
6300acaatatttc acaatgatac tgaaacattt tccagccttt ggactgagtg taagtctgac
6360tttaaatcat ttttagcaga ttatgaaagt gatacgcaac ggtatggaaa caatcataga
6420atggaaggaa agccaaatgc tccggaaaac atttttaatg tatctatgat accgtggtca
6480accttcgatg gctttaatct gaatttgcag aaaggatatg attatttgat tcctattttt
6540actatgggga aatattataa agaagataac aaaattatac ttcctttggc aattcaagtt
6600catcacgcag tatgtgacgg atttcacatt tgccgttttg taaacgaatt gcaggaattg
6660ataaatagtt aacttcaggt ttgtctgtaa ctaaaaacaa gtatttaagc aaaaacatcg
6720tagaaatacg gtgttttttg ttaccctaag ttt
6753849198DNAArtificial Sequenceplasmid
pMTL8314-Prnf-MK-PMK-PMD-Pfor-idi-ispS 84aaactccttt ttgataatct catgaccaaa
atcccttaac gtgagttttc gttccactga 60gcgtcagacc ccgtagaaaa gatcaaagga
tcttcttgag atcctttttt tctgcgcgta 120atctgctgct tgcaaacaaa aaaaccaccg
ctaccagcgg tggtttgttt gccggatcaa 180gagctaccaa ctctttttcc gaaggtaact
ggcttcagca gagcgcagat accaaatact 240gttcttctag tgtagccgta gttaggccac
cacttcaaga actctgtagc accgcctaca 300tacctcgctc tgctaatcct gttaccagtg
gctgctgcca gtggcgataa gtcgtgtctt 360accgggttgg actcaagacg atagttaccg
gataaggcgc agcggtcggg ctgaacgggg 420ggttcgtgca cacagcccag cttggagcga
acgacctaca ccgaactgag atacctacag 480cgtgagctat gagaaagcgc cacgcttccc
gaagggagaa aggcggacag gtatccggta 540agcggcaggg tcggaacagg agagcgcacg
agggagcttc cagggggaaa cgcctggtat 600ctttatagtc ctgtcgggtt tcgccacctc
tgacttgagc gtcgattttt gtgatgctcg 660tcaggggggc ggagcctatg gaaaaacgcc
agcaacgcgg cctttttacg gttcctggcc 720ttttgctggc cttttgctca catgttcttt
cctgcgttat cccctgattc tgtggataac 780cgtattaccg cctttgagtg agctgatacc
gctcgccgca gccgaacgac cgagcgcagc 840gagtcagtga gcgaggaagc ggaagagcgc
ccaatacgca gggccccctg caggataaaa 900aaattgtaga taaattttat aaaatagttt
tatctacaat ttttttatca ggaaacagct 960atgaccgcgg ccgctaggtc tagaatatcg
atacagataa aaaaatatat aatacagaag 1020aaaaaattat aaatttgtgg tataatataa
agtatagtaa tttaagttta aacctcgtga 1080aaacgctaac aaataatagg aggtcaattg
atgatagctg ttccatttaa cgctggaaaa 1140ataaaagttt taattgaggc attagaatct
ggaaattatt catcaataaa atcagatgta 1200tatgacggaa tgttatatga tgcaccagat
caccttaaat cattagtaaa cagatttgta 1260gaacttaata atataactga gccattagca
gtaactatac agacaaatct tcctccttca 1320agaggtcttg gatctagtgc agctgttgct
gttgcttttg taagagcaag ttatgatttc 1380ttaggaaaaa gtttaactaa agaagagctt
atagaaaagg ctaattgggc tgaacaaata 1440gctcatggaa agccatctgg aatagataca
caaacaatag tatctggaaa gcctgtttgg 1500tttcaaaagg gacatgcaga aacacttaaa
actctttcac ttgatggata catggtagta 1560attgatacag gtgttaaagg aagtacaaga
caggctgtag aagatgttca taaactttgc 1620gaagatcctc aatatatgag tcacgtaaaa
cacataggaa aacttgtact tagagcatct 1680gatgttattg aacatcataa ctttgaagca
cttgctgata tattcaatga atgtcatgct 1740gatttaaagg ctcttacagt aagtcatgac
aaaatagaac agttaatgaa gataggaaaa 1800gaaaatggtg ctatagctgg taaattaact
ggtgctggta gaggtggttc aatgttatta 1860cttgcaaaag acttaccaac tgcaaagaat
atagttaaag cagtagagaa agctggtgca 1920gcacatactt ggattgaaaa tttaggtggt
taagtcgaca aagacactaa aaaattataa 1980aagtaaagga ggacattaaa tgatacaagt
aaaggcacca ggaaaattat atatagcagg 2040tgaatacgct gttacagaac caggatataa
atctgttctt atagctcttg atagatttgt 2100tacagctact attgaggaag ctgatcaata
caaaggaaca atacattcaa aggcattaca 2160tcacaatcca gtaactttta gtagagatga
agattctatt gttatatcag acccacacgc 2220agcaaaacaa cttaattatg tagtaactgc
tatagaaata tttgagcaat atgcaaaatc 2280atgtgacata gcaatgaagc attttcattt
aactatagat tctaacttag atgatagtaa 2340tggacataag tatggacttg gatcttctgc
tgctgtttta gtttcagtaa ttaaagtact 2400taacgaattt tatgatatga aactttcaaa
cctttatata tataagttag cagtaattgc 2460taatatgaaa ttacagagtt tatcttcatg
cggtgatata gcagtaagtg tttattcagg 2520ttggttagct tattctacat ttgaccatga
atgggtaaaa caccagatag aagatacaac 2580agttgaagaa gtacttatta aaaattggcc
tggattacac atagagccac ttcaagctcc 2640tgaaaatatg gaagttctta taggttggac
aggtagtcca gctagtagtc ctcattttgt 2700ttctgaagtt aaaagactta agtcagatcc
ttcattttac ggtgatttct tagaagattc 2760acatagatgt gtagaaaaat taattcatgc
attcaaaact aataatatta agggtgttca 2820gaaaatggta agacagaata gaactattat
acaaagaatg gataaggaag caacagttga 2880tatagagact gagaagttaa aatatttatg
tgatattgct gaaaaatatc atggtgcaag 2940taaaacttca ggtgctggtg gtggtgattg
cggaataact ataataaata aggatgtaga 3000caaagagaaa atatatgatg aatggactaa
acatggaata aagcctctta agtttaatat 3060ttatcatgga caataaccat ggtcaataat
cttacaataa ataaaagaaa ggaggcaaaa 3120atatgataaa atctggaaaa gcaagagcac
acactaatat agcacttata aaatattggg 3180gtaagaaaga tgaggcatta ataataccaa
tgaataactc aatatcagta actttagaaa 3240agttttatac tgaaacaaaa gttacattta
acgatcagct tactcaagat caattttggc 3300ttaatggtga aaaagtttct ggaaaagaat
tagaaaagat ttcaaagtat atggatattg 3360ttagaaatag agctggaata gattggtatg
ctgagataga atctgataat tttgttccta 3420cagctgctgg tcttgctagt tctgctagtg
cttatgcagc attagctgct gcatgtaacc 3480aagcacttga tttacagtta agtgataaag
acttaagtag attagctaga attggatcag 3540gatcagcatc aagatcaata tacggtggtt
ttgcagaatg ggaaaaagga tataatgacg 3600aaacttctta tgctgttcca ttagaaagta
atcactttga agatgatctt gctatgattt 3660ttgtagtaat aaaccaacat tctaaaaagg
ttccttcaag atatggaatg tctcttacaa 3720gaaatacaag tagattctat caatattggt
tagaccatat tgatgaagat cttgcagaag 3780caaaggcagc aatacaagat aaggatttta
agagattagg tgaagttatt gaagagaatg 3840gacttagaat gcatgctaca aatcttggat
caactccacc ttttacttac ttagtacaag 3900agtcatacga tgtaatggca ttagtacatg
agtgtagaga agcaggatat ccatgctatt 3960tcactatgga tgctggacct aatgtaaaaa
tacttgtaga gaagaaaaac aaacaacaga 4020taatagataa acttttaact cagttcgata
ataatcagat aatagatagt gatattatag 4080ctacaggtat tgaaattata gaataaacta
gttgtatatt aaaatagtag aatacataag 4140atacttaatt taattaaaga tagttaagta
cttttcaatg tgctttttta gatgtttaat 4200acaaatcttt aattgtaaaa gaaatgctgt
actatttact gttctagtga cgggattaaa 4260ctgtattaat tataaataaa aaataagtac
agttgtttaa aattatattt tgtattaaat 4320ctaatagtac gatgtaagtt attttatact
attgctagtt taataaaaag atttaattat 4380atacttgaaa aggagaggaa ctcgagatgg
cagagtatat aatagcagta gatgagttcg 4440ataacgaaat aggatcaata gaaaagatgg
aagctcatag aaaaggaaca cttcatagag 4500cattcagtat tttagttttt aactcaaaga
atcaactttt attacagaaa agaaatgtaa 4560agaaatatca ctctccagga ttatggacaa
acacttgttg tagtcaccca agatatggtg 4620aatctcttca tgatgctata tacagaagat
taaaagaaga gatgggattt acttgcgaac 4680ttgaagaagt attctcattc atatataagg
taaaacttga agataattta tttgagaatg 4740aatatgacca tgtatttatt ggtaaatatg
atggtgagat aattgttaat aaagatgaag 4800ttgatgattt taaatgggta gacattaatg
aagttaaaaa ggacataata gaaagacctg 4860aggcatatac ttactggttt aagtatcttg
taaataaagc tgaaaataag atatttaaat 4920aaaccggtgg gaggaaatga acatggcaac
agaattatta tgtttacaca gacctatatc 4980acttactcac aaacttttta ggaatccatt
acctaaagtt attcaagcta cacctttaac 5040attaaaactt aggtgtagtg tttctacaga
aaatgtatca tttagtgaga cagaaactga 5100aacaagaaga tcagcaaatt atgaaccaaa
ttcttgggat tatgattatc ttctttcttc 5160tgatactgat gagtcaatag aagtacataa
agataaggct aagaaattag aagctgaagt 5220taggagagaa ataaataatg agaaggctga
atttcttaca cttcttgaac ttattgataa 5280tgtacaaaga cttggattag gatatagatt
tgagtctgat ataagaagag cattagatag 5340atttgtaagt agtggaggat ttgatggagt
tactaaaact tcattacatg gaacagcatt 5400atcatttagg ttattaaggc aacatggttt
tgaagtatct caagaagctt ttagtggatt 5460taaagatcag aatggaaact ttcttgagaa
tttaaaggaa gacataaaag caattctttc 5520tctttatgaa gcatcatttt tagcattaga
aggtgagaat atattagatg aggctaaagt 5580atttgcaata tctcatctta aagaacttag
tgaagaaaag attggtaaag aattagctga 5640acaagtttca catgctttag aattaccatt
acatagaaga acacaaagat tagaagcagt 5700ttggtcaata gaagcatata gaaagaaaga
agacgcaaat caagtacttt tagaacttgc 5760aatacttgac tacaatatga ttcaaagtgt
atatcagagg gatttaagag aaacatcaag 5820atggtggaga agagtaggat tagcaactaa
attacatttt gctagagata ggcttattga 5880aagtttttat tgggctgttg gagttgcttt
tgaaccacaa tattctgatt gcagaaatag 5940tgtagcaaag atgttttcat ttgttactat
aattgacgat atttacgatg tatatggaac 6000tttagatgaa cttgaacttt ttactgatgc
agttgaaaga tgggatgtaa atgctattaa 6060tgatcttcct gattatatga agttatgttt
tcttgcactt tacaatacta ttaacgagat 6120agcttacgat aacttaaaag ataaaggtga
gaacatactt ccttatttaa caaaagcatg 6180ggcagattta tgtaatgcat ttcttcaaga
agctaagtgg ctttataata aatcaacacc 6240tacatttgat gattattttg gaaatgcatg
gaaaagttct agtggacctt tacagcttat 6300ttttgcttat tttgctgtag tacagaacat
taaaaaggaa gagattgaga atcttcagaa 6360atatcatgac ataatatcaa gacctagtca
catttttagg ctttgtaatg atttagcatc 6420tgcttcagca gaaatagcaa gaggtgaaac
tgctaattct gtaagttgtt atatgagaac 6480aaaaggtata tctgaagaat tagctactga
aagtgttatg aatcttatag acgaaacttg 6540gaagaaaatg aacaaagaaa aacttggtgg
atctttattt gcaaaacctt ttgttgagac 6600tgctataaat ttagctagac agtctcattg
cacatatcat aatggtgatg cacatactag 6660tccagatgaa ttaactagga aaagagtact
tagtgtaata actgaaccaa tattaccatt 6720tgaaagataa gctagcataa aaataagaag
cctgcatttg caggcttctt atttttatgg 6780cgcgccgcca ttattttttt gaacaattga
caattcattt cttatttttt attaagtgat 6840agtcaaaagg cataacagtg ctgaatagaa
agaaatttac agaaaagaaa attatagaat 6900ttagtatgat taattatact catttatgaa
tgtttaattg aatacaaaaa aaaatacttg 6960ttatgtattc aattacgggt taaaatatag
acaagttgaa aaatttaata aaaaaataag 7020tcctcagctc ttatatatta agctaccaac
ttagtatata agccaaaact taaatgtgct 7080accaacacat caagccgtta gagaactcta
tctatagcaa tatttcaaat gtaccgacat 7140acaagagaaa cattaactat atatattcaa
tttatgagat tatcttaaca gatataaatg 7200taaattgcaa taagtaagat ttagaagttt
atagcctttg tgtattggaa gcagtacgca 7260aaggcttttt tatttgataa aaattagaag
tatatttatt ttttcataat taatttatga 7320aaatgaaagg gggtgagcaa agtgacagag
gaaagcagta tcttatcaaa taacaaggta 7380ttagcaatat cattattgac tttagcagta
aacattatga cttttatagt gcttgtagct 7440aagtagtacg aaagggggag ctttaaaaag
ctccttggaa tacatagaat tcataaatta 7500atttatgaaa agaagggcgt atatgaaaac
ttgtaaaaat tgcaaagagt ttattaaaga 7560tactgaaata tgcaaaatac attcgttgat
gattcatgat aaaacagtag caacctattg 7620cagtaaatac aatgagtcaa gatgtttaca
taaagggaaa gtccaatgta ttaattgttc 7680aaagatgaac cgatatggat ggtgtgccat
aaaaatgaga tgttttacag aggaagaaca 7740gaaaaaagaa cgtacatgca ttaaatatta
tgcaaggagc tttaaaaaag ctcatgtaaa 7800gaagagtaaa aagaaaaaat aatttattta
ttaatttaat attgagagtg ccgacacagt 7860atgcactaaa aaatatatct gtggtgtagt
gagccgatac aaaaggatag tcactcgcat 7920tttcataata catcttatgt tatgattatg
tgtcggtggg acttcacgac gaaaacccac 7980aataaaaaaa gagttcgggg tagggttaag
catagttgag gcaactaaac aatcaagcta 8040ggatatgcag tagcagaccg taaggtcgtt
gtttaggtgt gttgtaatac atacgctatt 8100aagatgtaaa aatacggata ccaatgaagg
gaaaagtata atttttggat gtagtttgtt 8160tgttcatcta tgggcaaact acgtccaaag
ccgtttccaa atctgctaaa aagtatatcc 8220tttctaaaat caaagtcaag tatgaaatca
taaataaagt ttaattttga agttattatg 8280atattatgtt tttctattaa aataaattaa
gtatatagaa tagtttaata atagtatata 8340cttaatgtga taagtgtctg acagtgtcac
agaaaggatg attgttatgg attataagcg 8400gccggccagt gggcaagttg aaaaattcac
aaaaatgtgg tataatatct ttgttcatta 8460gagcgataaa cttgaatttg agagggaact
tagatggtat ttgaaaaaat tgataaaaat 8520agttggaaca gaaaagagta ttttgaccac
tactttgcaa gtgtaccttg tacctacagc 8580atgaccgtta aagtggatat cacacaaata
aaggaaaagg gaatgaaact atatcctgca 8640atgctttatt atattgcaat gattgtaaac
cgccattcag agtttaggac ggcaatcaat 8700caagatggtg aattggggat atatgatgag
atgataccaa gctatacaat atttcacaat 8760gatactgaaa cattttccag cctttggact
gagtgtaagt ctgactttaa atcattttta 8820gcagattatg aaagtgatac gcaacggtat
ggaaacaatc atagaatgga aggaaagcca 8880aatgctccgg aaaacatttt taatgtatct
atgataccgt ggtcaacctt cgatggcttt 8940aatctgaatt tgcagaaagg atatgattat
ttgattccta tttttactat ggggaaatat 9000tataaagaag ataacaaaat tatacttcct
ttggcaattc aagttcatca cgcagtatgt 9060gacggatttc acatttgccg ttttgtaaac
gaattgcagg aattgataaa tagttaactt 9120caggtttgtc tgtaactaaa aacaagtatt
taagcaaaaa catcgtagaa atacggtgtt 9180ttttgttacc ctaagttt
9198856841DNAArtificial Sequenceplasmid
pMTL83245-Pfor-FS-idi 85aaactccttt ttgataatct catgaccaaa atcccttaac
gtgagttttc gttccactga 60gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag
atcctttttt tctgcgcgta 120atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg
tggtttgttt gccggatcaa 180gagctaccaa ctctttttcc gaaggtaact ggcttcagca
gagcgcagat accaaatact 240gttcttctag tgtagccgta gttaggccac cacttcaaga
actctgtagc accgcctaca 300tacctcgctc tgctaatcct gttaccagtg gctgctgcca
gtggcgataa gtcgtgtctt 360accgggttgg actcaagacg atagttaccg gataaggcgc
agcggtcggg ctgaacgggg 420ggttcgtgca cacagcccag cttggagcga acgacctaca
ccgaactgag atacctacag 480cgtgagctat gagaaagcgc cacgcttccc gaagggagaa
aggcggacag gtatccggta 540agcggcaggg tcggaacagg agagcgcacg agggagcttc
cagggggaaa cgcctggtat 600ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc
gtcgattttt gtgatgctcg 660tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg
cctttttacg gttcctggcc 720ttttgctggc cttttgctca catgttcttt cctgcgttat
cccctgattc tgtggataac 780cgtattaccg cctttgagtg agctgatacc gctcgccgca
gccgaacgac cgagcgcagc 840gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca
gggccccctg caggataaaa 900aaattgtaga taaattttat aaaatagttt tatctacaat
ttttttatca ggaaacagct 960atgaccgcgg ccgcaatatg atatttatgt ccattgtgaa
agggattata ttcaactatt 1020attccagtta cgttcataga aattttcctt tctaaaatat
tttattccat gtcaagaact 1080ctgtttattt cattaaagaa ctataagtac aaagtataag
gcatttgaaa aaataggcta 1140gtatattgat tgattattta ttttaaaatg cctaagtgaa
atatatacat attataacaa 1200taaaataagt attagtgtag gatttttaaa tagagtatct
attttcagat taaatttttg 1260attatttgat ttacattata taatattgag taaagtattg
actagcaaaa ttttttgata 1320ctttaatttg tgaaatttct tatcaaaagt tatatttttg
aataattttt attgaaaaat 1380acaactaaaa aggattatag tataagtgtg tgtaattttg
tgttaaattt aaagggagga 1440aatgaacatg aaacatatgg tgaccatgat tacgaattcg
agctcggtac ccggggatcc 1500tctagttgta tattaaaata gtagaataca taagatactt
aatttaatta aagatagtta 1560agtacttttc aatgtgcttt tttagatgtt taatacaaat
ctttaattgt aaaagaaatg 1620ctgtactatt tactgttcta gtgacgggat taaactgtat
taattataaa taaaaaataa 1680gtacagttgt ttaaaattat attttgtatt aaatctaata
gtacgatgta agttatttta 1740tactattgct agtttaataa aaagatttaa ttatatactt
gaaaaggaga ggaactcgag 1800atggaattta gagtacattt acaggcagac aacgaacaga
aaatatttca aaatcaaatg 1860aaaccagagc cagaagcatc atatcttata aatcaaagaa
gaagtgctaa ttataaacca 1920aacatttgga aaaacgattt tcttgatcag tctttaatat
caaaatatga tggtgatgaa 1980tatagaaaac tttcagaaaa gttaatagaa gaagtaaaga
tatacatatc agcagagact 2040atggatttag ttgctaaatt agaacttata gattctgtta
gaaaacttgg acttgctaat 2100ctttttgaga aagaaataaa ggaagcatta gacagtatag
cagcaataga atcagataat 2160ttaggaacta gagacgatct ttatggaaca gctcttcatt
ttaagattct tagacagcat 2220ggatataagg taagtcaaga tatatttggt agatttatgg
atgagaaagg aacattagaa 2280aatcatcact ttgcacactt aaaaggaatg ttagaattat
ttgaggcaag taatcttgga 2340tttgaaggtg aagacatatt agatgaagct aaagcatctc
ttacacttgc tcttagagat 2400tcaggacata tttgttatcc agactcaaac ttaagtagag
atgtagttca tagtttagaa 2460ttacctagtc atagaagagt tcaatggttc gatgtaaaat
ggcagattaa tgcatacgaa 2520aaagatattt gtagagtaaa tgcaacttta ttagagttag
caaagttaaa ttttaatgtt 2580gttcaagctc agcttcagaa gaatcttaga gaagctagta
gatggtgggc taatcttggt 2640ttcgcagata atttaaagtt tgctagagat agacttgtag
agtgtttttc atgcgcagta 2700ggtgtagcat ttgaaccaga gcattcatct tttagaatat
gtttaactaa ggtaattaat 2760cttgttctta ttatagatga tgtatacgat atatatggat
ctgaagaaga gttaaaacat 2820tttacaaatg ctgttgatag atgggacagt agagaaacag
aacagcttcc tgaatgcatg 2880aaaatgtgtt ttcaagtatt atataacact acttgcgaaa
tagcaagaga gatagaagaa 2940gaaaacggtt ggaatcaagt attacctcaa cttactaagg
tttgggctga tttttgtaag 3000gctcttttag ttgaagcaga gtggtacaat aaatcacata
ttccaacatt agaagaatat 3060cttagaaacg gatgtatatc aagtagtgta tctgtacttt
tagttcactc tttcttttca 3120ataactcatg aaggtacaaa agaaatggct gatttcttac
ataaaaatga agatctttta 3180tacaacataa gtcttatagt aagattaaac aatgatttag
gtacatcagc tgctgaacag 3240gaaagaggtg attctccttc ttctatagtt tgctatatga
gagaagttaa tgcttctgaa 3300gagactgcaa gaaagaatat aaagggaatg attgataatg
cttggaaaaa ggttaatgga 3360aaatgtttca caactaacca agttccattt ctttcatcat
tcatgaataa tgcaactaac 3420atggcaagag tagcacactc attatataaa gacggtgatg
gttttggtga tcaagaaaaa 3480ggacctagaa cacatattct tagtttatta ttccaacctt
tagtaaatta actgcagggt 3540tcaaaacata gattaaaaaa ttaaaggagg ggaaaaaatg
gcagagtata taatagcagt 3600agatgagttc gataacgaaa taggatcaat agaaaagatg
gaagctcata gaaaaggaac 3660acttcataga gcattcagta ttttagtttt taactcaaag
aatcaacttt tattacagaa 3720aagaaatgta aagaaatatc actctccagg attatggaca
aacacttgtt gtagtcaccc 3780aagatatggt gaatctcttc atgatgctat atacagaaga
ttaaaagaag agatgggatt 3840tacttgcgaa cttgaagaag tattctcatt catatataag
gtaaaacttg aagataattt 3900atttgagaat gaatatgacc atgtatttat tggtaaatat
gatggtgaga taattgttaa 3960taaagatgaa gttgatgatt ttaaatgggt agacattaat
gaagttaaaa aggacataat 4020agaaagacct gaggcatata cttactggtt taagtatctt
gtaaataaag ctgaaaataa 4080gatatttaaa taaaagcttg gcactggccg tcgttttaca
acgtcgtgac tgggaaaacc 4140ctggcgttac ccaacttaat cgccttgcag cacatccccc
tttcgccagc tggcgtaata 4200gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg
cagcctgaat ggcgaatggc 4260gctagcataa aaataagaag cctgcatttg caggcttctt
atttttatgg cgcgccgcca 4320ttattttttt gaacaattga caattcattt cttatttttt
attaagtgat agtcaaaagg 4380cataacagtg ctgaatagaa agaaatttac agaaaagaaa
attatagaat ttagtatgat 4440taattatact catttatgaa tgtttaattg aatacaaaaa
aaaatacttg ttatgtattc 4500aattacgggt taaaatatag acaagttgaa aaatttaata
aaaaaataag tcctcagctc 4560ttatatatta agctaccaac ttagtatata agccaaaact
taaatgtgct accaacacat 4620caagccgtta gagaactcta tctatagcaa tatttcaaat
gtaccgacat acaagagaaa 4680cattaactat atatattcaa tttatgagat tatcttaaca
gatataaatg taaattgcaa 4740taagtaagat ttagaagttt atagcctttg tgtattggaa
gcagtacgca aaggcttttt 4800tatttgataa aaattagaag tatatttatt ttttcataat
taatttatga aaatgaaagg 4860gggtgagcaa agtgacagag gaaagcagta tcttatcaaa
taacaaggta ttagcaatat 4920cattattgac tttagcagta aacattatga cttttatagt
gcttgtagct aagtagtacg 4980aaagggggag ctttaaaaag ctccttggaa tacatagaat
tcataaatta atttatgaaa 5040agaagggcgt atatgaaaac ttgtaaaaat tgcaaagagt
ttattaaaga tactgaaata 5100tgcaaaatac attcgttgat gattcatgat aaaacagtag
caacctattg cagtaaatac 5160aatgagtcaa gatgtttaca taaagggaaa gtccaatgta
ttaattgttc aaagatgaac 5220cgatatggat ggtgtgccat aaaaatgaga tgttttacag
aggaagaaca gaaaaaagaa 5280cgtacatgca ttaaatatta tgcaaggagc tttaaaaaag
ctcatgtaaa gaagagtaaa 5340aagaaaaaat aatttattta ttaatttaat attgagagtg
ccgacacagt atgcactaaa 5400aaatatatct gtggtgtagt gagccgatac aaaaggatag
tcactcgcat tttcataata 5460catcttatgt tatgattatg tgtcggtggg acttcacgac
gaaaacccac aataaaaaaa 5520gagttcgggg tagggttaag catagttgag gcaactaaac
aatcaagcta ggatatgcag 5580tagcagaccg taaggtcgtt gtttaggtgt gttgtaatac
atacgctatt aagatgtaaa 5640aatacggata ccaatgaagg gaaaagtata atttttggat
gtagtttgtt tgttcatcta 5700tgggcaaact acgtccaaag ccgtttccaa atctgctaaa
aagtatatcc tttctaaaat 5760caaagtcaag tatgaaatca taaataaagt ttaattttga
agttattatg atattatgtt 5820tttctattaa aataaattaa gtatatagaa tagtttaata
atagtatata cttaatgtga 5880taagtgtctg acagtgtcac agaaaggatg attgttatgg
attataagcg gccggccgaa 5940gcaaacttaa gagtgtgttg atagtgcagt atcttaaaat
tttgtataat aggaattgaa 6000gttaaattag atgctaaaaa tttgtaatta agaaggagtg
attacatgaa caaaaatata 6060aaatattctc aaaacttttt aacgagtgaa aaagtactca
accaaataat aaaacaattg 6120aatttaaaag aaaccgatac cgtttacgaa attggaacag
gtaaagggca tttaacgacg 6180aaactggcta aaataagtaa acaggtaacg tctattgaat
tagacagtca tctattcaac 6240ttatcgtcag aaaaattaaa actgaatact cgtgtcactt
taattcacca agatattcta 6300cagtttcaat tccctaacaa acagaggtat aaaattgttg
ggagtattcc ttaccattta 6360agcacacaaa ttattaaaaa agtggttttt gaaagccatg
cgtctgacat ctatctgatt 6420gttgaagaag gattctacaa gcgtaccttg gatattcacc
gaacactagg gttgctcttg 6480cacactcaag tctcgattca gcaattgctt aagctgccag
cggaatgctt tcatcctaaa 6540ccaaaagtaa acagtgtctt aataaaactt acccgccata
ccacagatgt tccagataaa 6600tattggaagc tatatacgta ctttgtttca aaatgggtca
atcgagaata tcgtcaactg 6660tttactaaaa atcagtttca tcaagcaatg aaacacgcca
aagtaaacaa tttaagtacc 6720gttacttatg agcaagtatt gtctattttt aatagttatc
tattatttaa cgggaggaaa 6780taattctatg agtcgctttt gtaaatttgg aaagttacac
gttactaaag ggaatgtgtt 6840t
68418636DNAArtificial SequenceOligonucleotide
idi_F2 86aggcactcga gatggcagag tatataatag cagtag
368747DNAArtificial SequenceOligonucleotide idi_R2 87aggcgcaagc
ttggcgcacc ggtttattta aatatcttat tttcagc
47885075DNAArtificial Sequenceplasmid pMTL83245-Pfor-idi 88aaactccttt
ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga 60gcgtcagacc
ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta 120atctgctgct
tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa 180gagctaccaa
ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact 240gttcttctag
tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca 300tacctcgctc
tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt 360accgggttgg
actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg 420ggttcgtgca
cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag 480cgtgagctat
gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta 540agcggcaggg
tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat 600ctttatagtc
ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg 660tcaggggggc
ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc 720ttttgctggc
cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac 780cgtattaccg
cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc 840gagtcagtga
gcgaggaagc ggaagagcgc ccaatacgca gggccccctg caggataaaa 900aaattgtaga
taaattttat aaaatagttt tatctacaat ttttttatca ggaaacagct 960atgaccgcgg
ccgcaatatg atatttatgt ccattgtgaa agggattata ttcaactatt 1020attccagtta
cgttcataga aattttcctt tctaaaatat tttattccat gtcaagaact 1080ctgtttattt
cattaaagaa ctataagtac aaagtataag gcatttgaaa aaataggcta 1140gtatattgat
tgattattta ttttaaaatg cctaagtgaa atatatacat attataacaa 1200taaaataagt
attagtgtag gatttttaaa tagagtatct attttcagat taaatttttg 1260attatttgat
ttacattata taatattgag taaagtattg actagcaaaa ttttttgata 1320ctttaatttg
tgaaatttct tatcaaaagt tatatttttg aataattttt attgaaaaat 1380acaactaaaa
aggattatag tataagtgtg tgtaattttg tgttaaattt aaagggagga 1440aatgaacatg
aaacatatgg tgaccatgat tacgaattcg agctcggtac ccggggatcc 1500tctagttgta
tattaaaata gtagaataca taagatactt aatttaatta aagatagtta 1560agtacttttc
aatgtgcttt tttagatgtt taatacaaat ctttaattgt aaaagaaatg 1620ctgtactatt
tactgttcta gtgacgggat taaactgtat taattataaa taaaaaataa 1680gtacagttgt
ttaaaattat attttgtatt aaatctaata gtacgatgta agttatttta 1740tactattgct
agtttaataa aaagatttaa ttatatactt gaaaaggaga ggaactcgag 1800atggcagagt
atataatagc agtagatgag ttcgataacg aaataggatc aatagaaaag 1860atggaagctc
atagaaaagg aacacttcat agagcattca gtattttagt ttttaactca 1920aagaatcaac
ttttattaca gaaaagaaat gtaaagaaat atcactctcc aggattatgg 1980acaaacactt
gttgtagtca cccaagatat ggtgaatctc ttcatgatgc tatatacaga 2040agattaaaag
aagagatggg atttacttgc gaacttgaag aagtattctc attcatatat 2100aaggtaaaac
ttgaagataa tttatttgag aatgaatatg accatgtatt tattggtaaa 2160tatgatggtg
agataattgt taataaagat gaagttgatg attttaaatg ggtagacatt 2220aatgaagtta
aaaaggacat aatagaaaga cctgaggcat atacttactg gtttaagtat 2280cttgtaaata
aagctgaaaa taagatattt aaataaaccg gtgcgccaag cttggcactg 2340gccgtcgttt
tacaacgtcg tgactgggaa aaccctggcg ttacccaact taatcgcctt 2400gcagcacatc
cccctttcgc cagctggcgt aatagcgaag aggcccgcac cgatcgccct 2460tcccaacagt
tgcgcagcct gaatggcgaa tggcgctagc ataaaaataa gaagcctgca 2520tttgcaggct
tcttattttt atggcgcgcc gccattattt ttttgaacaa ttgacaattc 2580atttcttatt
ttttattaag tgatagtcaa aaggcataac agtgctgaat agaaagaaat 2640ttacagaaaa
gaaaattata gaatttagta tgattaatta tactcattta tgaatgttta 2700attgaataca
aaaaaaaata cttgttatgt attcaattac gggttaaaat atagacaagt 2760tgaaaaattt
aataaaaaaa taagtcctca gctcttatat attaagctac caacttagta 2820tataagccaa
aacttaaatg tgctaccaac acatcaagcc gttagagaac tctatctata 2880gcaatatttc
aaatgtaccg acatacaaga gaaacattaa ctatatatat tcaatttatg 2940agattatctt
aacagatata aatgtaaatt gcaataagta agatttagaa gtttatagcc 3000tttgtgtatt
ggaagcagta cgcaaaggct tttttatttg ataaaaatta gaagtatatt 3060tattttttca
taattaattt atgaaaatga aagggggtga gcaaagtgac agaggaaagc 3120agtatcttat
caaataacaa ggtattagca atatcattat tgactttagc agtaaacatt 3180atgactttta
tagtgcttgt agctaagtag tacgaaaggg ggagctttaa aaagctcctt 3240ggaatacata
gaattcataa attaatttat gaaaagaagg gcgtatatga aaacttgtaa 3300aaattgcaaa
gagtttatta aagatactga aatatgcaaa atacattcgt tgatgattca 3360tgataaaaca
gtagcaacct attgcagtaa atacaatgag tcaagatgtt tacataaagg 3420gaaagtccaa
tgtattaatt gttcaaagat gaaccgatat ggatggtgtg ccataaaaat 3480gagatgtttt
acagaggaag aacagaaaaa agaacgtaca tgcattaaat attatgcaag 3540gagctttaaa
aaagctcatg taaagaagag taaaaagaaa aaataattta tttattaatt 3600taatattgag
agtgccgaca cagtatgcac taaaaaatat atctgtggtg tagtgagccg 3660atacaaaagg
atagtcactc gcattttcat aatacatctt atgttatgat tatgtgtcgg 3720tgggacttca
cgacgaaaac ccacaataaa aaaagagttc ggggtagggt taagcatagt 3780tgaggcaact
aaacaatcaa gctaggatat gcagtagcag accgtaaggt cgttgtttag 3840gtgtgttgta
atacatacgc tattaagatg taaaaatacg gataccaatg aagggaaaag 3900tataattttt
ggatgtagtt tgtttgttca tctatgggca aactacgtcc aaagccgttt 3960ccaaatctgc
taaaaagtat atcctttcta aaatcaaagt caagtatgaa atcataaata 4020aagtttaatt
ttgaagttat tatgatatta tgtttttcta ttaaaataaa ttaagtatat 4080agaatagttt
aataatagta tatacttaat gtgataagtg tctgacagtg tcacagaaag 4140gatgattgtt
atggattata agcggccggc cgaagcaaac ttaagagtgt gttgatagtg 4200cagtatctta
aaattttgta taataggaat tgaagttaaa ttagatgcta aaaatttgta 4260attaagaagg
agtgattaca tgaacaaaaa tataaaatat tctcaaaact ttttaacgag 4320tgaaaaagta
ctcaaccaaa taataaaaca attgaattta aaagaaaccg ataccgttta 4380cgaaattgga
acaggtaaag ggcatttaac gacgaaactg gctaaaataa gtaaacaggt 4440aacgtctatt
gaattagaca gtcatctatt caacttatcg tcagaaaaat taaaactgaa 4500tactcgtgtc
actttaattc accaagatat tctacagttt caattcccta acaaacagag 4560gtataaaatt
gttgggagta ttccttacca tttaagcaca caaattatta aaaaagtggt 4620ttttgaaagc
catgcgtctg acatctatct gattgttgaa gaaggattct acaagcgtac 4680cttggatatt
caccgaacac tagggttgct cttgcacact caagtctcga ttcagcaatt 4740gcttaagctg
ccagcggaat gctttcatcc taaaccaaaa gtaaacagtg tcttaataaa 4800acttacccgc
cataccacag atgttccaga taaatattgg aagctatata cgtactttgt 4860ttcaaaatgg
gtcaatcgag aatatcgtca actgtttact aaaaatcagt ttcatcaagc 4920aatgaaacac
gccaaagtaa acaatttaag taccgttact tatgagcaag tattgtctat 4980ttttaatagt
tatctattat ttaacgggag gaaataattc tatgagtcgc ttttgtaaat 5040ttggaaagtt
acacgttact aaagggaatg tgttt
5075896662DNAArtificial Sequenceplasmid pMTL83245-Pfor-idi-FS
89aaactccttt ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga
60gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta
120atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa
180gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact
240gttcttctag tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca
300tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt
360accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg
420ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag
480cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta
540agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat
600ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg
660tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc
720ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac
780cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc
840gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca gggccccctg caggataaaa
900aaattgtaga taaattttat aaaatagttt tatctacaat ttttttatca ggaaacagct
960atgaccgcgg ccgcaatatg atatttatgt ccattgtgaa agggattata ttcaactatt
1020attccagtta cgttcataga aattttcctt tctaaaatat tttattccat gtcaagaact
1080ctgtttattt cattaaagaa ctataagtac aaagtataag gcatttgaaa aaataggcta
1140gtatattgat tgattattta ttttaaaatg cctaagtgaa atatatacat attataacaa
1200taaaataagt attagtgtag gatttttaaa tagagtatct attttcagat taaatttttg
1260attatttgat ttacattata taatattgag taaagtattg actagcaaaa ttttttgata
1320ctttaatttg tgaaatttct tatcaaaagt tatatttttg aataattttt attgaaaaat
1380acaactaaaa aggattatag tataagtgtg tgtaattttg tgttaaattt aaagggagga
1440aatgaacatg aaacatatgg tgaccatgat tacgaattcg agctcggtac ccggggatcc
1500tctagttgta tattaaaata gtagaataca taagatactt aatttaatta aagatagtta
1560agtacttttc aatgtgcttt tttagatgtt taatacaaat ctttaattgt aaaagaaatg
1620ctgtactatt tactgttcta gtgacgggat taaactgtat taattataaa taaaaaataa
1680gtacagttgt ttaaaattat attttgtatt aaatctaata gtacgatgta agttatttta
1740tactattgct agtttaataa aaagatttaa ttatatactt gaaaaggaga ggaactcgag
1800atggcagagt atataatagc agtagatgag ttcgataacg aaataggatc aatagaaaag
1860atggaagctc atagaaaagg aacacttcat agagcattca gtattttagt ttttaactca
1920aagaatcaac ttttattaca gaaaagaaat gtaaagaaat atcactctcc aggattatgg
1980acaaacactt gttgtagtca cccaagatat ggtgaatctc ttcatgatgc tatatacaga
2040agattaaaag aagagatggg atttacttgc gaacttgaag aagtattctc attcatatat
2100aaggtaaaac ttgaagataa tttatttgag aatgaatatg accatgtatt tattggtaaa
2160tatgatggtg agataattgt taataaagat gaagttgatg attttaaatg ggtagacatt
2220aatgaagtta aaaaggacat aatagaaaga cctgaggcat atacttactg gtttaagtat
2280cttgtaaata aagctgaaaa taagatattt aaataaaccg gtgcgccaag cttttaaagg
2340aggggaaaaa atggaattta gagtacattt acaggcagac aacgaacaga aaatatttca
2400aaatcaaatg aaaccagagc cagaagcatc atatcttata aatcaaagaa gaagtgctaa
2460ttataaacca aacatttgga aaaacgattt tcttgatcag tctttaatat caaaatatga
2520tggtgatgaa tatagaaaac tttcagaaaa gttaatagaa gaagtaaaga tatacatatc
2580agcagagact atggatttag ttgctaaatt agaacttata gattctgtta gaaaacttgg
2640acttgctaat ctttttgaga aagaaataaa ggaagcatta gacagtatag cagcaataga
2700atcagataat ttaggaacta gagacgatct ttatggaaca gctcttcatt ttaagattct
2760tagacagcat ggatataagg taagtcaaga tatatttggt agatttatgg atgagaaagg
2820aacattagaa aatcatcact ttgcacactt aaaaggaatg ttagaattat ttgaggcaag
2880taatcttgga tttgaaggtg aagacatatt agatgaagct aaagcatctc ttacacttgc
2940tcttagagat tcaggacata tttgttatcc agactcaaac ttaagtagag atgtagttca
3000tagtttagaa ttacctagtc atagaagagt tcaatggttc gatgtaaaat ggcagattaa
3060tgcatacgaa aaagatattt gtagagtaaa tgcaacttta ttagagttag caaagttaaa
3120ttttaatgtt gttcaagctc agcttcagaa gaatcttaga gaagctagta gatggtgggc
3180taatcttggt ttcgcagata atttaaagtt tgctagagat agacttgtag agtgtttttc
3240atgcgcagta ggtgtagcat ttgaaccaga gcattcatct tttagaatat gtttaactaa
3300ggtaattaat cttgttctta ttatagatga tgtatacgat atatatggat ctgaagaaga
3360gttaaaacat tttacaaatg ctgttgatag atgggacagt agagaaacag aacagcttcc
3420tgaatgcatg aaaatgtgtt ttcaagtatt atataacact acttgcgaaa tagcaagaga
3480gatagaagaa gaaaacggtt ggaatcaagt attacctcaa cttactaagg tttgggctga
3540tttttgtaag gctcttttag ttgaagcaga gtggtacaat aaatcacata ttccaacatt
3600agaagaatat cttagaaacg gatgtatatc aagtagtgta tctgtacttt tagttcactc
3660tttcttttca ataactcatg aaggtacaaa agaaatggct gatttcttac ataaaaatga
3720agatctttta tacaacataa gtcttatagt aagattaaac aatgatttag gtacatcagc
3780tgctgaacag gaaagaggtg attctccttc ttctatagtt tgctatatga gagaagttaa
3840tgcttctgaa gagactgcaa gaaagaatat aaagggaatg attgataatg cttggaaaaa
3900ggttaatgga aaatgtttca caactaacca agttccattt ctttcatcat tcatgaataa
3960tgcaactaac atggcaagag tagcacactc attatataaa gacggtgatg gttttggtga
4020tcaagaaaaa ggacctagaa cacatattct tagtttatta ttccaacctt tagtaaatta
4080agctagcata aaaataagaa gcctgcattt gcaggcttct tatttttatg gcgcgccgcc
4140attatttttt tgaacaattg acaattcatt tcttattttt tattaagtga tagtcaaaag
4200gcataacagt gctgaataga aagaaattta cagaaaagaa aattatagaa tttagtatga
4260ttaattatac tcatttatga atgtttaatt gaatacaaaa aaaaatactt gttatgtatt
4320caattacggg ttaaaatata gacaagttga aaaatttaat aaaaaaataa gtcctcagct
4380cttatatatt aagctaccaa cttagtatat aagccaaaac ttaaatgtgc taccaacaca
4440tcaagccgtt agagaactct atctatagca atatttcaaa tgtaccgaca tacaagagaa
4500acattaacta tatatattca atttatgaga ttatcttaac agatataaat gtaaattgca
4560ataagtaaga tttagaagtt tatagccttt gtgtattgga agcagtacgc aaaggctttt
4620ttatttgata aaaattagaa gtatatttat tttttcataa ttaatttatg aaaatgaaag
4680ggggtgagca aagtgacaga ggaaagcagt atcttatcaa ataacaaggt attagcaata
4740tcattattga ctttagcagt aaacattatg acttttatag tgcttgtagc taagtagtac
4800gaaaggggga gctttaaaaa gctccttgga atacatagaa ttcataaatt aatttatgaa
4860aagaagggcg tatatgaaaa cttgtaaaaa ttgcaaagag tttattaaag atactgaaat
4920atgcaaaata cattcgttga tgattcatga taaaacagta gcaacctatt gcagtaaata
4980caatgagtca agatgtttac ataaagggaa agtccaatgt attaattgtt caaagatgaa
5040ccgatatgga tggtgtgcca taaaaatgag atgttttaca gaggaagaac agaaaaaaga
5100acgtacatgc attaaatatt atgcaaggag ctttaaaaaa gctcatgtaa agaagagtaa
5160aaagaaaaaa taatttattt attaatttaa tattgagagt gccgacacag tatgcactaa
5220aaaatatatc tgtggtgtag tgagccgata caaaaggata gtcactcgca ttttcataat
5280acatcttatg ttatgattat gtgtcggtgg gacttcacga cgaaaaccca caataaaaaa
5340agagttcggg gtagggttaa gcatagttga ggcaactaaa caatcaagct aggatatgca
5400gtagcagacc gtaaggtcgt tgtttaggtg tgttgtaata catacgctat taagatgtaa
5460aaatacggat accaatgaag ggaaaagtat aatttttgga tgtagtttgt ttgttcatct
5520atgggcaaac tacgtccaaa gccgtttcca aatctgctaa aaagtatatc ctttctaaaa
5580tcaaagtcaa gtatgaaatc ataaataaag tttaattttg aagttattat gatattatgt
5640ttttctatta aaataaatta agtatataga atagtttaat aatagtatat acttaatgtg
5700ataagtgtct gacagtgtca cagaaaggat gattgttatg gattataagc ggccggccga
5760agcaaactta agagtgtgtt gatagtgcag tatcttaaaa ttttgtataa taggaattga
5820agttaaatta gatgctaaaa atttgtaatt aagaaggagt gattacatga acaaaaatat
5880aaaatattct caaaactttt taacgagtga aaaagtactc aaccaaataa taaaacaatt
5940gaatttaaaa gaaaccgata ccgtttacga aattggaaca ggtaaagggc atttaacgac
6000gaaactggct aaaataagta aacaggtaac gtctattgaa ttagacagtc atctattcaa
6060cttatcgtca gaaaaattaa aactgaatac tcgtgtcact ttaattcacc aagatattct
6120acagtttcaa ttccctaaca aacagaggta taaaattgtt gggagtattc cttaccattt
6180aagcacacaa attattaaaa aagtggtttt tgaaagccat gcgtctgaca tctatctgat
6240tgttgaagaa ggattctaca agcgtacctt ggatattcac cgaacactag ggttgctctt
6300gcacactcaa gtctcgattc agcaattgct taagctgcca gcggaatgct ttcatcctaa
6360accaaaagta aacagtgtct taataaaact tacccgccat accacagatg ttccagataa
6420atattggaag ctatatacgt actttgtttc aaaatgggtc aatcgagaat atcgtcaact
6480gtttactaaa aatcagtttc atcaagcaat gaaacacgcc aaagtaaaca atttaagtac
6540cgttacttat gagcaagtat tgtctatttt taatagttat ctattattta acgggaggaa
6600ataattctat gagtcgcttt tgtaaatttg gaaagttaca cgttactaaa gggaatgtgt
6660tt
6662907077DNAArtificial Sequenceplasmid pMTL83245-Pfor-idi-ispA-FS
90aaactccttt ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga
60gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta
120atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa
180gagctaccaa ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact
240gttcttctag tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca
300tacctcgctc tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt
360accgggttgg actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg
420ggttcgtgca cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag
480cgtgagctat gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta
540agcggcaggg tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat
600ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg
660tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc
720ttttgctggc cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac
780cgtattaccg cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc
840gagtcagtga gcgaggaagc ggaagagcgc ccaatacgca gggccccctg caggataaaa
900aaattgtaga taaattttat aaaatagttt tatctacaat ttttttatca ggaaacagct
960atgaccgcgg ccgcaccgag actagttgta tattaaaata gtagaataca taagatactt
1020aatttaatta aagatagtta agtacttttc aatgtgcttt tttagatgtt taatacaaat
1080ctttaattgt aaaagaaatg ctgtactatt tactgttcta gtgacgggat taaactgtat
1140taattataaa taaaaaataa gtacagttgt ttaaaattat attttgtatt aaatctaata
1200gtacgatgta agttatttta tactattgct agtttaataa aaagatttaa ttatatactt
1260gaaaaggaga ggaactcgag atggcagagt atataatagc agtagatgag ttcgataacg
1320aaataggatc aatagaaaag atggaagctc atagaaaagg aacacttcat agagcattca
1380gtattttagt ttttaactca aagaatcaac ttttattaca gaaaagaaat gtaaagaaat
1440atcactctcc aggattatgg acaaacactt gttgtagtca cccaagatat ggtgaatctc
1500ttcatgatgc tatatacaga agattaaaag aagagatggg atttacttgc gaacttgaag
1560aagtattctc attcatatat aaggtaaaac ttgaagataa tttatttgag aatgaatatg
1620accatgtatt tattggtaaa tatgatggtg agataattgt taataaagat gaagttgatg
1680attttaaatg ggtagacatt aatgaagtta aaaaggacat aatagaaaga cctgaggcat
1740atacttactg gtttaagtat cttgtaaata aagctgaaaa taagatattt aaataaaccg
1800gtcagtaacg aatagaatta gaaaaacaaa ggaggcaaga caatggattt cccacaacaa
1860ttagaagcat gtgtaaaaca ggctaatcag gcacttagta gatttattgc tcctcttcct
1920tttcaaaata caccagtagt agaaactatg caatacggtg cacttttagg tggtaaaaga
1980ttaagaccat tcttagtata tgctacagga cacatgtttg gtgtatcaac taatacttta
2040gacgctccag ctgctgctgt tgaatgtatt catgcttatt ctttaataca tgatgactta
2100ccagcaatgg atgacgatga tttaagaaga ggtttaccta catgtcatgt taaatttggt
2160gaagctaatg caattttagc aggtgacgct ttacaaactt tagctttttc tatactttca
2220gatgcagaca tgcctgaagt ttcagataga gatagaattt ctatgatatc agagcttgca
2280tctgcatcag gaatagctgg aatgtgcggt ggtcaagcac ttgatttaga tgcagaaggt
2340aaacacgtac cacttgatgc tttagagaga atacatagac ataaaacagg tgctcttata
2400agagcagcag taagattagg tgctttaagt gctggtgaca agggtagaag agcacttcca
2460gtacttgata agtatgcaga aagtatagga ttagcttttc aagttcaaga tgacatactt
2520gacgttgttg gtgatactgc tactttagga aaaagacagg gtgcagatca gcaattagga
2580aaatctacat accctgcttt acttggatta gaacaggcta gaaagaaagc aagagactta
2640atagatgacg caagacaaag tcttaaacag ttagctgaac aatcacttga cacaagtgca
2700cttgaagcac ttgcagatta tattatacag agaaacaagt aaaagctttt aaaggagggg
2760aaaaaatgga atttagagta catttacagg cagacaacga acagaaaata tttcaaaatc
2820aaatgaaacc agagccagaa gcatcatatc ttataaatca aagaagaagt gctaattata
2880aaccaaacat ttggaaaaac gattttcttg atcagtcttt aatatcaaaa tatgatggtg
2940atgaatatag aaaactttca gaaaagttaa tagaagaagt aaagatatac atatcagcag
3000agactatgga tttagttgct aaattagaac ttatagattc tgttagaaaa cttggacttg
3060ctaatctttt tgagaaagaa ataaaggaag cattagacag tatagcagca atagaatcag
3120ataatttagg aactagagac gatctttatg gaacagctct tcattttaag attcttagac
3180agcatggata taaggtaagt caagatatat ttggtagatt tatggatgag aaaggaacat
3240tagaaaatca tcactttgca cacttaaaag gaatgttaga attatttgag gcaagtaatc
3300ttggatttga aggtgaagac atattagatg aagctaaagc atctcttaca cttgctctta
3360gagattcagg acatatttgt tatccagact caaacttaag tagagatgta gttcatagtt
3420tagaattacc tagtcataga agagttcaat ggttcgatgt aaaatggcag attaatgcat
3480acgaaaaaga tatttgtaga gtaaatgcaa ctttattaga gttagcaaag ttaaatttta
3540atgttgttca agctcagctt cagaagaatc ttagagaagc tagtagatgg tgggctaatc
3600ttggtttcgc agataattta aagtttgcta gagatagact tgtagagtgt ttttcatgcg
3660cagtaggtgt agcatttgaa ccagagcatt catcttttag aatatgttta actaaggtaa
3720ttaatcttgt tcttattata gatgatgtat acgatatata tggatctgaa gaagagttaa
3780aacattttac aaatgctgtt gatagatggg acagtagaga aacagaacag cttcctgaat
3840gcatgaaaat gtgttttcaa gtattatata acactacttg cgaaatagca agagagatag
3900aagaagaaaa cggttggaat caagtattac ctcaacttac taaggtttgg gctgattttt
3960gtaaggctct tttagttgaa gcagagtggt acaataaatc acatattcca acattagaag
4020aatatcttag aaacggatgt atatcaagta gtgtatctgt acttttagtt cactctttct
4080tttcaataac tcatgaaggt acaaaagaaa tggctgattt cttacataaa aatgaagatc
4140ttttatacaa cataagtctt atagtaagat taaacaatga tttaggtaca tcagctgctg
4200aacaggaaag aggtgattct ccttcttcta tagtttgcta tatgagagaa gttaatgctt
4260ctgaagagac tgcaagaaag aatataaagg gaatgattga taatgcttgg aaaaaggtta
4320atggaaaatg tttcacaact aaccaagttc catttctttc atcattcatg aataatgcaa
4380ctaacatggc aagagtagca cactcattat ataaagacgg tgatggtttt ggtgatcaag
4440aaaaaggacc tagaacacat attcttagtt tattattcca acctttagta aattaagcta
4500gcataaaaat aagaagcctg catttgcagg cttcttattt ttatggcgcg ccgccattat
4560ttttttgaac aattgacaat tcatttctta ttttttatta agtgatagtc aaaaggcata
4620acagtgctga atagaaagaa atttacagaa aagaaaatta tagaatttag tatgattaat
4680tatactcatt tatgaatgtt taattgaata caaaaaaaaa tacttgttat gtattcaatt
4740acgggttaaa atatagacaa gttgaaaaat ttaataaaaa aataagtcct cagctcttat
4800atattaagct accaacttag tatataagcc aaaacttaaa tgtgctacca acacatcaag
4860ccgttagaga actctatcta tagcaatatt tcaaatgtac cgacatacaa gagaaacatt
4920aactatatat attcaattta tgagattatc ttaacagata taaatgtaaa ttgcaataag
4980taagatttag aagtttatag cctttgtgta ttggaagcag tacgcaaagg cttttttatt
5040tgataaaaat tagaagtata tttatttttt cataattaat ttatgaaaat gaaagggggt
5100gagcaaagtg acagaggaaa gcagtatctt atcaaataac aaggtattag caatatcatt
5160attgacttta gcagtaaaca ttatgacttt tatagtgctt gtagctaagt agtacgaaag
5220ggggagcttt aaaaagctcc ttggaataca tagaattcat aaattaattt atgaaaagaa
5280gggcgtatat gaaaacttgt aaaaattgca aagagtttat taaagatact gaaatatgca
5340aaatacattc gttgatgatt catgataaaa cagtagcaac ctattgcagt aaatacaatg
5400agtcaagatg tttacataaa gggaaagtcc aatgtattaa ttgttcaaag atgaaccgat
5460atggatggtg tgccataaaa atgagatgtt ttacagagga agaacagaaa aaagaacgta
5520catgcattaa atattatgca aggagcttta aaaaagctca tgtaaagaag agtaaaaaga
5580aaaaataatt tatttattaa tttaatattg agagtgccga cacagtatgc actaaaaaat
5640atatctgtgg tgtagtgagc cgatacaaaa ggatagtcac tcgcattttc ataatacatc
5700ttatgttatg attatgtgtc ggtgggactt cacgacgaaa acccacaata aaaaaagagt
5760tcggggtagg gttaagcata gttgaggcaa ctaaacaatc aagctaggat atgcagtagc
5820agaccgtaag gtcgttgttt aggtgtgttg taatacatac gctattaaga tgtaaaaata
5880cggataccaa tgaagggaaa agtataattt ttggatgtag tttgtttgtt catctatggg
5940caaactacgt ccaaagccgt ttccaaatct gctaaaaagt atatcctttc taaaatcaaa
6000gtcaagtatg aaatcataaa taaagtttaa ttttgaagtt attatgatat tatgtttttc
6060tattaaaata aattaagtat atagaatagt ttaataatag tatatactta atgtgataag
6120tgtctgacag tgtcacagaa aggatgattg ttatggatta taagcggccg gccgaagcaa
6180acttaagagt gtgttgatag tgcagtatct taaaattttg tataatagga attgaagtta
6240aattagatgc taaaaatttg taattaagaa ggagtgatta catgaacaaa aatataaaat
6300attctcaaaa ctttttaacg agtgaaaaag tactcaacca aataataaaa caattgaatt
6360taaaagaaac cgataccgtt tacgaaattg gaacaggtaa agggcattta acgacgaaac
6420tggctaaaat aagtaaacag gtaacgtcta ttgaattaga cagtcatcta ttcaacttat
6480cgtcagaaaa attaaaactg aatactcgtg tcactttaat tcaccaagat attctacagt
6540ttcaattccc taacaaacag aggtataaaa ttgttgggag tattccttac catttaagca
6600cacaaattat taaaaaagtg gtttttgaaa gccatgcgtc tgacatctat ctgattgttg
6660aagaaggatt ctacaagcgt accttggata ttcaccgaac actagggttg ctcttgcaca
6720ctcaagtctc gattcagcaa ttgcttaagc tgccagcgga atgctttcat cctaaaccaa
6780aagtaaacag tgtcttaata aaacttaccc gccataccac agatgttcca gataaatatt
6840ggaagctata tacgtacttt gtttcaaaat gggtcaatcg agaatatcgt caactgttta
6900ctaaaaatca gtttcatcaa gcaatgaaac acgccaaagt aaacaattta agtaccgtta
6960cttatgagca agtattgtct atttttaata gttatctatt atttaacggg aggaaataat
7020tctatgagtc gcttttgtaa atttggaaag ttacacgtta ctaaagggaa tgtgttt
70779110090DNAArtificial Sequenceplasmid pMTL
8314-Prnf-MK-PMK-PMD-Pfor-idi- ispA-FS 91aaactccttt ttgataatct
catgaccaaa atcccttaac gtgagttttc gttccactga 60gcgtcagacc ccgtagaaaa
gatcaaagga tcttcttgag atcctttttt tctgcgcgta 120atctgctgct tgcaaacaaa
aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa 180gagctaccaa ctctttttcc
gaaggtaact ggcttcagca gagcgcagat accaaatact 240gttcttctag tgtagccgta
gttaggccac cacttcaaga actctgtagc accgcctaca 300tacctcgctc tgctaatcct
gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt 360accgggttgg actcaagacg
atagttaccg gataaggcgc agcggtcggg ctgaacgggg 420ggttcgtgca cacagcccag
cttggagcga acgacctaca ccgaactgag atacctacag 480cgtgagctat gagaaagcgc
cacgcttccc gaagggagaa aggcggacag gtatccggta 540agcggcaggg tcggaacagg
agagcgcacg agggagcttc cagggggaaa cgcctggtat 600ctttatagtc ctgtcgggtt
tcgccacctc tgacttgagc gtcgattttt gtgatgctcg 660tcaggggggc ggagcctatg
gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc 720ttttgctggc cttttgctca
catgttcttt cctgcgttat cccctgattc tgtggataac 780cgtattaccg cctttgagtg
agctgatacc gctcgccgca gccgaacgac cgagcgcagc 840gagtcagtga gcgaggaagc
ggaagagcgc ccaatacgca gggccccctg caggataaaa 900aaattgtaga taaattttat
aaaatagttt tatctacaat ttttttatca ggaaacagct 960atgaccgcgg ccgctaggtc
tagaatatcg atacagataa aaaaatatat aatacagaag 1020aaaaaattat aaatttgtgg
tataatataa agtatagtaa tttaagttta aacctcgtga 1080aaacgctaac aaataatagg
aggtcaattg atgatagctg ttccatttaa cgctggaaaa 1140ataaaagttt taattgaggc
attagaatct ggaaattatt catcaataaa atcagatgta 1200tatgacggaa tgttatatga
tgcaccagat caccttaaat cattagtaaa cagatttgta 1260gaacttaata atataactga
gccattagca gtaactatac agacaaatct tcctccttca 1320agaggtcttg gatctagtgc
agctgttgct gttgcttttg taagagcaag ttatgatttc 1380ttaggaaaaa gtttaactaa
agaagagctt atagaaaagg ctaattgggc tgaacaaata 1440gctcatggaa agccatctgg
aatagataca caaacaatag tatctggaaa gcctgtttgg 1500tttcaaaagg gacatgcaga
aacacttaaa actctttcac ttgatggata catggtagta 1560attgatacag gtgttaaagg
aagtacaaga caggctgtag aagatgttca taaactttgc 1620gaagatcctc aatatatgag
tcacgtaaaa cacataggaa aacttgtact tagagcatct 1680gatgttattg aacatcataa
ctttgaagca cttgctgata tattcaatga atgtcatgct 1740gatttaaagg ctcttacagt
aagtcatgac aaaatagaac agttaatgaa gataggaaaa 1800gaaaatggtg ctatagctgg
taaattaact ggtgctggta gaggtggttc aatgttatta 1860cttgcaaaag acttaccaac
tgcaaagaat atagttaaag cagtagagaa agctggtgca 1920gcacatactt ggattgaaaa
tttaggtggt taagtcgaca aagacactaa aaaattataa 1980aagtaaagga ggacattaaa
tgatacaagt aaaggcacca ggaaaattat atatagcagg 2040tgaatacgct gttacagaac
caggatataa atctgttctt atagctcttg atagatttgt 2100tacagctact attgaggaag
ctgatcaata caaaggaaca atacattcaa aggcattaca 2160tcacaatcca gtaactttta
gtagagatga agattctatt gttatatcag acccacacgc 2220agcaaaacaa cttaattatg
tagtaactgc tatagaaata tttgagcaat atgcaaaatc 2280atgtgacata gcaatgaagc
attttcattt aactatagat tctaacttag atgatagtaa 2340tggacataag tatggacttg
gatcttctgc tgctgtttta gtttcagtaa ttaaagtact 2400taacgaattt tatgatatga
aactttcaaa cctttatata tataagttag cagtaattgc 2460taatatgaaa ttacagagtt
tatcttcatg cggtgatata gcagtaagtg tttattcagg 2520ttggttagct tattctacat
ttgaccatga atgggtaaaa caccagatag aagatacaac 2580agttgaagaa gtacttatta
aaaattggcc tggattacac atagagccac ttcaagctcc 2640tgaaaatatg gaagttctta
taggttggac aggtagtcca gctagtagtc ctcattttgt 2700ttctgaagtt aaaagactta
agtcagatcc ttcattttac ggtgatttct tagaagattc 2760acatagatgt gtagaaaaat
taattcatgc attcaaaact aataatatta agggtgttca 2820gaaaatggta agacagaata
gaactattat acaaagaatg gataaggaag caacagttga 2880tatagagact gagaagttaa
aatatttatg tgatattgct gaaaaatatc atggtgcaag 2940taaaacttca ggtgctggtg
gtggtgattg cggaataact ataataaata aggatgtaga 3000caaagagaaa atatatgatg
aatggactaa acatggaata aagcctctta agtttaatat 3060ttatcatgga caataaccat
ggtcaataat cttacaataa ataaaagaaa ggaggcaaaa 3120atatgataaa atctggaaaa
gcaagagcac acactaatat agcacttata aaatattggg 3180gtaagaaaga tgaggcatta
ataataccaa tgaataactc aatatcagta actttagaaa 3240agttttatac tgaaacaaaa
gttacattta acgatcagct tactcaagat caattttggc 3300ttaatggtga aaaagtttct
ggaaaagaat tagaaaagat ttcaaagtat atggatattg 3360ttagaaatag agctggaata
gattggtatg ctgagataga atctgataat tttgttccta 3420cagctgctgg tcttgctagt
tctgctagtg cttatgcagc attagctgct gcatgtaacc 3480aagcacttga tttacagtta
agtgataaag acttaagtag attagctaga attggatcag 3540gatcagcatc aagatcaata
tacggtggtt ttgcagaatg ggaaaaagga tataatgacg 3600aaacttctta tgctgttcca
ttagaaagta atcactttga agatgatctt gctatgattt 3660ttgtagtaat aaaccaacat
tctaaaaagg ttccttcaag atatggaatg tctcttacaa 3720gaaatacaag tagattctat
caatattggt tagaccatat tgatgaagat cttgcagaag 3780caaaggcagc aatacaagat
aaggatttta agagattagg tgaagttatt gaagagaatg 3840gacttagaat gcatgctaca
aatcttggat caactccacc ttttacttac ttagtacaag 3900agtcatacga tgtaatggca
ttagtacatg agtgtagaga agcaggatat ccatgctatt 3960tcactatgga tgctggacct
aatgtaaaaa tacttgtaga gaagaaaaac aaacaacaga 4020taatagataa acttttaact
cagttcgata ataatcagat aatagatagt gatattatag 4080ctacaggtat tgaaattata
gaataaacta gttgtatatt aaaatagtag aatacataag 4140atacttaatt taattaaaga
tagttaagta cttttcaatg tgctttttta gatgtttaat 4200acaaatcttt aattgtaaaa
gaaatgctgt actatttact gttctagtga cgggattaaa 4260ctgtattaat tataaataaa
aaataagtac agttgtttaa aattatattt tgtattaaat 4320ctaatagtac gatgtaagtt
attttatact attgctagtt taataaaaag atttaattat 4380atacttgaaa aggagaggaa
ctcgagatgg cagagtatat aatagcagta gatgagttcg 4440ataacgaaat aggatcaata
gaaaagatgg aagctcatag aaaaggaaca cttcatagag 4500cattcagtat tttagttttt
aactcaaaga atcaactttt attacagaaa agaaatgtaa 4560agaaatatca ctctccagga
ttatggacaa acacttgttg tagtcaccca agatatggtg 4620aatctcttca tgatgctata
tacagaagat taaaagaaga gatgggattt acttgcgaac 4680ttgaagaagt attctcattc
atatataagg taaaacttga agataattta tttgagaatg 4740aatatgacca tgtatttatt
ggtaaatatg atggtgagat aattgttaat aaagatgaag 4800ttgatgattt taaatgggta
gacattaatg aagttaaaaa ggacataata gaaagacctg 4860aggcatatac ttactggttt
aagtatcttg taaataaagc tgaaaataag atatttaaat 4920aaaccggtca gtaacgaata
gaattagaaa aacaaaggag gcaagacaat ggatttccca 4980caacaattag aagcatgtgt
aaaacaggct aatcaggcac ttagtagatt tattgctcct 5040cttccttttc aaaatacacc
agtagtagaa actatgcaat acggtgcact tttaggtggt 5100aaaagattaa gaccattctt
agtatatgct acaggacaca tgtttggtgt atcaactaat 5160actttagacg ctccagctgc
tgctgttgaa tgtattcatg cttattcttt aatacatgat 5220gacttaccag caatggatga
cgatgattta agaagaggtt tacctacatg tcatgttaaa 5280tttggtgaag ctaatgcaat
tttagcaggt gacgctttac aaactttagc tttttctata 5340ctttcagatg cagacatgcc
tgaagtttca gatagagata gaatttctat gatatcagag 5400cttgcatctg catcaggaat
agctggaatg tgcggtggtc aagcacttga tttagatgca 5460gaaggtaaac acgtaccact
tgatgcttta gagagaatac atagacataa aacaggtgct 5520cttataagag cagcagtaag
attaggtgct ttaagtgctg gtgacaaggg tagaagagca 5580cttccagtac ttgataagta
tgcagaaagt ataggattag cttttcaagt tcaagatgac 5640atacttgacg ttgttggtga
tactgctact ttaggaaaaa gacagggtgc agatcagcaa 5700ttaggaaaat ctacataccc
tgctttactt ggattagaac aggctagaaa gaaagcaaga 5760gacttaatag atgacgcaag
acaaagtctt aaacagttag ctgaacaatc acttgacaca 5820agtgcacttg aagcacttgc
agattatatt atacagagaa acaagtaaaa gcttttaaag 5880gaggggaaaa aatggaattt
agagtacatt tacaggcaga caacgaacag aaaatatttc 5940aaaatcaaat gaaaccagag
ccagaagcat catatcttat aaatcaaaga agaagtgcta 6000attataaacc aaacatttgg
aaaaacgatt ttcttgatca gtctttaata tcaaaatatg 6060atggtgatga atatagaaaa
ctttcagaaa agttaataga agaagtaaag atatacatat 6120cagcagagac tatggattta
gttgctaaat tagaacttat agattctgtt agaaaacttg 6180gacttgctaa tctttttgag
aaagaaataa aggaagcatt agacagtata gcagcaatag 6240aatcagataa tttaggaact
agagacgatc tttatggaac agctcttcat tttaagattc 6300ttagacagca tggatataag
gtaagtcaag atatatttgg tagatttatg gatgagaaag 6360gaacattaga aaatcatcac
tttgcacact taaaaggaat gttagaatta tttgaggcaa 6420gtaatcttgg atttgaaggt
gaagacatat tagatgaagc taaagcatct cttacacttg 6480ctcttagaga ttcaggacat
atttgttatc cagactcaaa cttaagtaga gatgtagttc 6540atagtttaga attacctagt
catagaagag ttcaatggtt cgatgtaaaa tggcagatta 6600atgcatacga aaaagatatt
tgtagagtaa atgcaacttt attagagtta gcaaagttaa 6660attttaatgt tgttcaagct
cagcttcaga agaatcttag agaagctagt agatggtggg 6720ctaatcttgg tttcgcagat
aatttaaagt ttgctagaga tagacttgta gagtgttttt 6780catgcgcagt aggtgtagca
tttgaaccag agcattcatc ttttagaata tgtttaacta 6840aggtaattaa tcttgttctt
attatagatg atgtatacga tatatatgga tctgaagaag 6900agttaaaaca ttttacaaat
gctgttgata gatgggacag tagagaaaca gaacagcttc 6960ctgaatgcat gaaaatgtgt
tttcaagtat tatataacac tacttgcgaa atagcaagag 7020agatagaaga agaaaacggt
tggaatcaag tattacctca acttactaag gtttgggctg 7080atttttgtaa ggctctttta
gttgaagcag agtggtacaa taaatcacat attccaacat 7140tagaagaata tcttagaaac
ggatgtatat caagtagtgt atctgtactt ttagttcact 7200ctttcttttc aataactcat
gaaggtacaa aagaaatggc tgatttctta cataaaaatg 7260aagatctttt atacaacata
agtcttatag taagattaaa caatgattta ggtacatcag 7320ctgctgaaca ggaaagaggt
gattctcctt cttctatagt ttgctatatg agagaagtta 7380atgcttctga agagactgca
agaaagaata taaagggaat gattgataat gcttggaaaa 7440aggttaatgg aaaatgtttc
acaactaacc aagttccatt tctttcatca ttcatgaata 7500atgcaactaa catggcaaga
gtagcacact cattatataa agacggtgat ggttttggtg 7560atcaagaaaa aggacctaga
acacatattc ttagtttatt attccaacct ttagtaaatt 7620aagctagcat aaaaataaga
agcctgcatt tgcaggcttc ttatttttat ggcgcgccgc 7680cattattttt ttgaacaatt
gacaattcat ttcttatttt ttattaagtg atagtcaaaa 7740ggcataacag tgctgaatag
aaagaaattt acagaaaaga aaattataga atttagtatg 7800attaattata ctcatttatg
aatgtttaat tgaatacaaa aaaaaatact tgttatgtat 7860tcaattacgg gttaaaatat
agacaagttg aaaaatttaa taaaaaaata agtcctcagc 7920tcttatatat taagctacca
acttagtata taagccaaaa cttaaatgtg ctaccaacac 7980atcaagccgt tagagaactc
tatctatagc aatatttcaa atgtaccgac atacaagaga 8040aacattaact atatatattc
aatttatgag attatcttaa cagatataaa tgtaaattgc 8100aataagtaag atttagaagt
ttatagcctt tgtgtattgg aagcagtacg caaaggcttt 8160tttatttgat aaaaattaga
agtatattta ttttttcata attaatttat gaaaatgaaa 8220gggggtgagc aaagtgacag
aggaaagcag tatcttatca aataacaagg tattagcaat 8280atcattattg actttagcag
taaacattat gacttttata gtgcttgtag ctaagtagta 8340cgaaaggggg agctttaaaa
agctccttgg aatacataga attcataaat taatttatga 8400aaagaagggc gtatatgaaa
acttgtaaaa attgcaaaga gtttattaaa gatactgaaa 8460tatgcaaaat acattcgttg
atgattcatg ataaaacagt agcaacctat tgcagtaaat 8520acaatgagtc aagatgttta
cataaaggga aagtccaatg tattaattgt tcaaagatga 8580accgatatgg atggtgtgcc
ataaaaatga gatgttttac agaggaagaa cagaaaaaag 8640aacgtacatg cattaaatat
tatgcaagga gctttaaaaa agctcatgta aagaagagta 8700aaaagaaaaa ataatttatt
tattaattta atattgagag tgccgacaca gtatgcacta 8760aaaaatatat ctgtggtgta
gtgagccgat acaaaaggat agtcactcgc attttcataa 8820tacatcttat gttatgatta
tgtgtcggtg ggacttcacg acgaaaaccc acaataaaaa 8880aagagttcgg ggtagggtta
agcatagttg aggcaactaa acaatcaagc taggatatgc 8940agtagcagac cgtaaggtcg
ttgtttaggt gtgttgtaat acatacgcta ttaagatgta 9000aaaatacgga taccaatgaa
gggaaaagta taatttttgg atgtagtttg tttgttcatc 9060tatgggcaaa ctacgtccaa
agccgtttcc aaatctgcta aaaagtatat cctttctaaa 9120atcaaagtca agtatgaaat
cataaataaa gtttaatttt gaagttatta tgatattatg 9180tttttctatt aaaataaatt
aagtatatag aatagtttaa taatagtata tacttaatgt 9240gataagtgtc tgacagtgtc
acagaaagga tgattgttat ggattataag cggccggcca 9300gtgggcaagt tgaaaaattc
acaaaaatgt ggtataatat ctttgttcat tagagcgata 9360aacttgaatt tgagagggaa
cttagatggt atttgaaaaa attgataaaa atagttggaa 9420cagaaaagag tattttgacc
actactttgc aagtgtacct tgtacctaca gcatgaccgt 9480taaagtggat atcacacaaa
taaaggaaaa gggaatgaaa ctatatcctg caatgcttta 9540ttatattgca atgattgtaa
accgccattc agagtttagg acggcaatca atcaagatgg 9600tgaattgggg atatatgatg
agatgatacc aagctataca atatttcaca atgatactga 9660aacattttcc agcctttgga
ctgagtgtaa gtctgacttt aaatcatttt tagcagatta 9720tgaaagtgat acgcaacggt
atggaaacaa tcatagaatg gaaggaaagc caaatgctcc 9780ggaaaacatt tttaatgtat
ctatgatacc gtggtcaacc ttcgatggct ttaatctgaa 9840tttgcagaaa ggatatgatt
atttgattcc tatttttact atggggaaat attataaaga 9900agataacaaa attatacttc
ctttggcaat tcaagttcat cacgcagtat gtgacggatt 9960tcacatttgc cgttttgtaa
acgaattgca ggaattgata aatagttaac ttcaggtttg 10020tctgtaacta aaaacaagta
tttaagcaaa aacatcgtag aaatacggtg ttttttgtta 10080ccctaagttt
100909225DNAArtificial
Sequenceoligonucleotide repHF 92aagaagggcg tatatgaaaa cttgt
259325DNAArtificial Sequenceoligonucleotide
catR 93ttcgtttaca aaacggcaaa tgtga
259420DNAArtificial Sequenceoligonucleotide MK-RTPCR-F 94gtgctggtag
aggtggttca
209520DNAArtificial Sequenceoligonucleotide MK-RTPCR-R 95ccaagtatgt
gctgcaccag
209620DNAArtificial Sequenceoligonucleotide PMK-RTPCR-F 96atatcagacc
cacacgcagc
209724DNAArtificial Sequenceoligonucleotide PMK-RTPCR-R 97aatgcttcat
tgctatgtca catg
249820DNAArtificial Sequenceoligonucleotide PMD-RTPCR-F 98gcagaagcaa
aggcagcaat
209923DNAArtificial Sequenceoligonucleotide PMD-RTPCR-R 99ttgatccaag
atttgtagca tgc
2310024DNAArtificial Sequenceoligonucleotide idi-RTPCR-F 100ggacaaacac
ttgttgtagt cacc
2410122DNAArtificial Sequenceoligonucleotide idi-RTPCR-R 101tcaagttcgc
aagtaaatcc ca
2210220DNAArtificial Sequenceoligonucleotide ispA-RTPCR-F 102accagcaatg
gatgacgatg
2010321DNAArtificial Sequenceoligonucleotide ispA-RTPCR-R 103agtttgtaaa
gcgtcacctg c
2110420DNAArtificial Sequenceoligonucleotide FS-RTPCR-F 104aagctagtag
atggtgggct
2010520DNAArtificial Sequenceoligonucleotide FS-RTPCR-R 105aatgctacac
ctactgcgca
2010618DNAArtificial Sequenceoligonucleotide ermB-F 106tttgtaatta
agaaggag
1810718DNAArtificial Sequenceoligonucleotide ermB-R 107gtagaatcct
tcttcaac
1810820DNAArtificial Sequenceoligonucleotide GnK-F 108tcaggacctt
ctggaactgg
2010920DNAArtificial Sequenceoligonucleotide GnK-R 109acctcccctt
ttcttggaga
2011020DNAArtificial Sequenceoligonucleotide FoT4L-F 110caggtttcgg
tgctgaccta
2011120DNAArtificial Sequenceoligonucleotide FoT4L-F 111aactccgccg
ttgtatttca 20
User Contributions:
Comment about this patent or add new information about this topic: