Entries |
Document | Title | Date |
20080206679 | Contrast Enhancing Exposure System and Method For Use In Semiconductor Fabrication - Contrast enhancing exposure apparatus and method for use in semiconductor fabrication are described. In one embodiment, a method for forming a pattern on a substrate, wherein the substrate includes a photoresist layer comprising photoacid generators (“PAGs”) and photobase generators (“PBGs”), is described. The method includes dividing the pattern into two component patterns; exposing the photoresist layer of the substrate to UV light through a first mask corresponding to a first one of the component patterns; subsequent to the exposing the photoresist layer of the substrate to UV light through the first mask, exposing the photoresist layer of the substrate to UV light through a second mask corresponding to a second one of the component patterns, wherein the PAGs and PBGs disposed in areas of the photoresist layer that have been exposed to UV light at least twice are activated and wherein the activated PAGs neutralize the activated PBGs in areas of the photoresist layer that have been exposed to UV light at least twice. | 08-28-2008 |
20080206680 | Composition for forming anti-reflective coating for use in lithography - There is provided a composition for forming anti-reflective coating for anti-reflective coating that has a good absorption of light at a wavelength utilized for manufacturing a semiconductor device, that exerts a high protection effect against light reflection, that has a high dry etching rate compared with the photoresist layer. Concretely, the composition for forming anti-reflective coating contains a triazine trione compound, oligomer compound or polymer compound having hydroxyalkyl structure as substituent on nitrogen atom. | 08-28-2008 |
20080206681 | METHOD FOR PRODUCING A STRUCTURE ON THE SURFACE OF A SUBSTRATE - The present invention relates to a method for producing a structure serving as an etching mask on the surface of a substrate. In this case, a first method involves forming a first partial structure on the surface of the substrate, which has structure elements that are arranged regularly and are spaced apart essentially identically. A second method involves forming spacers on the surface of the substrate, which adjoin sidewalls of the structure elements of the first partial structure, cutouts being provided between the spacers. A third method step involves introducing filling material into the cutouts between the spacers, a surface of the spacers being uncovered. A fourth method step involves removing the spacers in order to form a second partial structure having the filling material and having structure elements that are arranged regularly and are spaced apart essentially identically. The structure to be produced is composed of the first partial structure and the second partial structure. | 08-28-2008 |
20080227034 | METHOD OF FORMING PATTERN OF SEMICONDUCTOR DEVICE - The present invention relates to a method of forming a pattern of a semiconductor device. According to the method, patterns are formed on a substrate. First photoresist patterns are formed in regions where the patterns are opened. The first photoresist patterns are diffused to upper corners of the patterns, thus forming second photoresist patterns. The patterns are etched using the second photoresist patterns as an etch-stop layer. Accordingly, smaller photomask patterns can be formed. | 09-18-2008 |
20080241758 | Photoresist stripping solution and a method of stripping photoresists using the same - A photoresist stripping solution comprising (a) a carboxyl group-containing acidic compound, (b) at least one basic compound (for example, monoethanolamine, tetraalkylammonium) selected from among alkanolamines and specific quaternary ammonium hydroxides, (c) a sulfur-containing corrosion inhibitor and (d) water, and having a pH value of 3.5-5.5; and a method of stripping photoresists using the same are disclosed. The present invention provides a photoresist stripping solution which is excellent in the effect of protecting metal wirings (in particular, Cu wirings) from corrosion, never damages interlevel films, such as low dielectric layers or organic SOG layers, and shows excellent strippability of photoresist films and post-ashing residues. | 10-02-2008 |
20080280232 | METHOD OF FORMING PATTERN OF SEMICONDUCTOR DEVICE - The present invention relates to a method of forming a pattern of a semiconductor device. According to the method in accordance with an aspect of the present invention, a photoresist film is formed on a semiconductor substrate. An exposure process is performed on a plurality of light transparent patterns arranged in tandem and the photoresist film corresponding between the light transparent patterns using a photomask including the light transparent patterns. A photoresist pattern is formed by performing a development process so that an opening portion of a line form is formed in the light transparent patterns and the photoresist film between the light transparent patterns. Accordingly, a uniform line pattern can be formed. | 11-13-2008 |
20080299494 | DOUBLE PATTERNING WITH A DOUBLE LAYER CAP ON CARBONACEOUS HARDMASK - Methods to etch features in a substrate with a multi-layered double patterning mask. The multi-layered double patterning mask includes a carbonaceous mask layer, a first cap layer on the carbonaceous mask layer and a second cap layer on the first cap layer. After forming the multi-layered mask, a first lithographically defined pattern is etched into the second cap layer. A double pattern that is a composition of the first lithographically defined pattern etched in the second cap layer and a second lithographically defined pattern is then etched into the first cap layer and the carbonaceous mask layer. The double pattern formed in the carbonaceous mask layer is then transferred to a substrate layer and any portion of the multi-layered mask remaining is then removed. | 12-04-2008 |
20080311527 | Method of forming protection layer on photoresist pattern and method of forming fine pattern using the same - A method of forming a protection layer on a photoresist pattern and a method of forming a fine pattern using the same are provided. A photoresist layer may be formed on a substrate. Exposure regions and non-exposure regions may be defined in the photoresist layer by an exposure process. A reactive material layer may be formed on the photoresist layer having the exposure regions. A protection layer may be formed on the exposure regions by the reactive material layer reacting via a chemical attachment process. The non-exposure regions and the reactive material layer that remains after the reaction may be removed by a development process to form photoresist patterns. The substrate may be etched using the protection layer and the photoresist patterns as etching masks. | 12-18-2008 |
20080318165 | Composition For Forming Antireflective Film And Wiring Forming Method Using Same - A material for forming an antireflective film that enables a large difference in etching rates to be obtained between a resist pattern and an antireflective film. | 12-25-2008 |
20090111059 | Patterning Method of Semiconductor Device - The invention relates to a patterning method of a semiconductor device. In an aspect of the invention, the method may include forming a target etch layer on a semiconductor substrate, forming a photoresist film on the target etch layer, forming photoresist patterns using exposure and development processes employing an exposure mask wherein exposure patterns, each having inclined top corners, are formed, and patterning the target etch layer using an etch process employing the photoresist patterns. | 04-30-2009 |
20090117492 | METHOD FOR FORMING FINE PATTERN IN SEMICONDUCTOR DEVICE - A method is used in forming a fine pattern in a semiconductor device. The method includes forming an etch target layer; forming a photoresist pattern over the etch target layer; forming a polymer pattern including silicon-oxygen (Si—O) bonds on sidewalls of the photoresist pattern; removing the photoresist pattern; and etching the etch target layer using the polymer pattern as an etch mask. | 05-07-2009 |
20090170033 | METHOD OF FORMING PATTERN OF SEMICONDUCTOR DEVICE - The present invention relates to a method of forming patterns of a semiconductor device. In aspect of the present invention, a photoresist layer is formed on a semiconductor substrate. Exposure regions are formed in the photoresist layer to which light, which corresponds to an intermediate value of a maximum intensity and a minimum intensity of the light, is irradiated by performing an exposure process. Photoresist patterns are formed by removing the exposure regions. | 07-02-2009 |
20090170034 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method for manufacturing a semiconductor device comprises: forming a first photoresist pattern in a double patterning technology (DPT) for overcoming a resolution limit of an exposer; and forming a second photoresist pattern. The method further comprises forming a hard mask film and an anti-reflective film to prevent an intermixing phenomenon generated when the second photoresist pattern is formed. As a result, yield and reliability of the process can be improved. | 07-02-2009 |
20090191486 | PRODUCTION METHOD FOR ELECTROLUMINESCENT ELEMENT - The main object of the present invention is to provide a method for manufacturing an EL element, capable of preferably carrying out the peeling operation at the time of peeling off an unnecessary layer such as a photoresist layer. | 07-30-2009 |
20090197208 | METHOD FOR MANUFACTURING A PERPENDICULAR MAGNETIC WRITE POLE USING AN ELECTRICAL LAPPING GUIDE FOR TIGHT WRITE POLE FLARE POINT CONTROL - A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method provides for accurate definition of a device feature such as a write pole flare point. A functional lapping guide is formed to determine when a lapping operation should be terminated to define an air bearing surface of a slider. In order to provide accurate compensation for manufacturing variations in the functional lapping guide, a dummy lapping guide is provided. An amount of variation of a front edge of the dummy lapping guide, which is defined by the same process step as a writer pole flare point, can be calculated by measuring the width (stripe height) of the dummy lapping guide based on its electrical resistance. Since the back edges of the dummy lapping guide and functional lapping guide are defined by the same manufacturing steps, the back edge of the functional lapping guide can then be determined, and used for accurately control of the writer flare point through their correlation established from the dummy lapping guide. | 08-06-2009 |
20090246705 | DI Water Rinse of Photoresists with Insoluble Dye Content - A method of forming a pattern in a photoresist layer which contains a dye that is insoluble in the developer solution is disclosed. A rinse liquid, typically deionized water, is dispensed onto the substrate while it is rotated at less than 750 rpm. The dye in the exposed regions is carried off by the rinse liquid, and does not accumulate in corners of exposed regions at the edge of the substrate due to centrifugal action. | 10-01-2009 |
20090286186 | METHOD OF MANUFACTURING A COORDINATE DETECTOR - A method of manufacturing a coordinate detector having a resistive film and a common electrode for applying a voltage to the resistive film is disclosed that includes the steps of (a) applying a photoresist onto the resistive film formed on a substrate formed of an insulator; (b) forming a resist pattern on the resistive film by exposing the applied photoresist to light through a predetermined mask and subsequently developing the applied photoresist; (c) forming a resistive film removal region by removing a portion of the resistive film without the resist pattern; (d) removing the resist pattern after step (c); and (e) forming the common electrode over the resistive film removal region after step (d). | 11-19-2009 |
20100047721 | METHOD OF FORMING OPENINGS IN SELECTED MATERIAL - A method is provided for forming an opening in a layer of a selected material. The method comprises, forming a polymer resist layer over said selected material and plasticising areas of the resist where openings are to be formed. The plasticising is performed by depositing a first solution onto the surface of said polymer resist layer, where the first solution is a plasticiser selected to increase permeability of the polymer resist layer to a second solution, in an area which has absorbed the first solution. The second solution is selected to be an etchant or solvent for the selected material. After the resist layer has been selectively plasticised, it is contacted with the second solution, which permeates the polymer resist layer in the area of increased permeability and forms an opening in the selected material. | 02-25-2010 |
20100055616 | METHOD FOR FABRICATING SADDLE TYPE FIN TRANSISTOR - A method for fabricating a saddle type fin transistor includes: preparing a substrate where a device isolation structure is already formed; forming a hard mask pattern over the substrate, the hard mask pattern including a coating layer obtained through a coating method; and performing an etching process using the hard mask pattern as an etch mask to form a saddle type fin. The hard mask pattern may be formed in a stack structure including an amorphous carbon layer and the coating layer. | 03-04-2010 |
20100092890 | METHOD TO ALIGN MASK PATTERNS - Alignment tolerances between narrow mask lines, for forming interconnects in the array region of an integrated circuit, and wider mask lines, for forming interconnects in the periphery of the integrated circuit, are increased. The narrow mask lines are formed by pitch multiplication and the wider mask lines are formed by photolithography. The wider mask lines and are aligned so that one side of those lines is flush with or inset from a corresponding side of the narrow lines. Being wider, the opposite sides of the wider mask lines protrude beyond the corresponding opposite sides of the narrow mask lines. The wider mask lines are formed in negative photoresist having a height less than the height of the narrow mask lines. Advantageously, the narrow mask lines can prevent expansion of the mask lines in one direction, thus increasing alignment tolerances in that direction. In the other direction, use of photolithography and a shadowing effect caused by the relative heights of the photoresist and the narrow mask lines causes the wider mask lines to be formed with a rounded corner, thus increasing alignment tolerances in that direction by increasing the distance to a neighboring narrow mask line. | 04-15-2010 |
20100119979 | Antireflective Coating Composition Comprising Fused Aromatic Rings - The present invention relates to an organic spin coatable antireflective coating composition comprising with (i) at least one unit with fused aromatic rings in the backbone of the polymer of structure (1), (ii) at least one aromatic unit ring in the backbone of the polymer of structure (2) where the aromatic ring has a pendant alkylene(fusedaromatic) group and a pendant hydroxy group, and, (iii) at least one unit with an aliphatic moiety in the backbone of the polymer of structure (3). | 05-13-2010 |
20100119980 | Antireflective Coating Composition Comprising Fused Aromatic Rings - The present invention relates to an organic spin coatable antireflective coating composition comprising a polymer where the polymer comprises (i) at least one unit with fused aromatic rings in the backbone of the polymer of structure (1), (ii) at least one unit with of structure (2), and, (iii) at least one unit with a cyclic aliphatic moiety in the backbone of the polymer of structure (3). | 05-13-2010 |
20100119981 | Passivation of Multi-Layer Mirror for Extreme Ultraviolet Lithography - A reflector structure suitable for extreme ultraviolet lithography (EUVL) is provided. The structure comprises a substrate having a multi-layer reflector. A capping layer is formed over the multi-layer reflector to prevent oxidation. In an embodiment, the capping layer is formed of an inert oxide, such as Al | 05-13-2010 |
20100151392 | ANTIREFLECTIVE COATING COMPOSITIONS - The present invention relates to an organic spin coatable antireflective coating composition comprising a polymer, a linking component, a crosslinker, and an acid generator. The invention further relates to a process for imaging the present composition. | 06-17-2010 |
20100167211 | METHOD FOR FORMING FINE PATTERNS IN A SEMICONDUCTOR DEVICE - A method for forming fine patterns in a semiconductor device includes forming a first mask layer over an etch target layer, forming a first pattern over the first mask layer, reducing a size of the first pattern, forming a first spacer on a side face of the first pattern, removing the first pattern and patterning the first mask layer using the first spacer as a mask and removing the first spacer. The method also includes oxidating a surface of the patterned first mask layer, forming the first mask layer with reduced size by removing the oxidated portion over the surface of the first mask layer, forming a second spacer on a side wall of the first mask layer and removing the first mask layer, and patterning the etch target layer using the second spacer as a mask. | 07-01-2010 |
20100167212 | RESIST UNDERLAYER COMPOSITION AND METHOD OF MANUFACTURING INTEGRATED CIRCUIT DEVICE USING THE SAME - A resist underlayer composition and a method of manufacturing a semiconductor integrated circuit device, the resist underlayer composition including a solvent and an organosilane-based polymer, the organosilane-based polymer being a polymerization product of at least one first compound represented Chemical Formulae 1 to 3 and at least one second compound represented by Chemical Formulae 4 and 5. | 07-01-2010 |
20100190112 | Photoresist stripping solution and a method of stripping photoresists using the same - A photoresist stripping solution comprising (a) a specified quaternary ammonium hydroxide, such as tetrabutylammonium hydroxide, tetrapropylammonium hydroxide, methyltributylammonium hydroxide or methyltripropylammonium hydroxide, (b) a water-soluble amine, (c) water, (d) a corrosion inhibitor and (e) a water-soluble organic solvent, the compounding ratio of component (a) to component (b) being in the range of from 1:3 to 1:10 by mass, as well as a method of stripping photoresists using the solution. The stripping solution of the invention assures effective protection of Al, Cu and other wiring metal conductors against corroding as well as efficient stripping of the photoresist film, post-ashing residues such as modified photoresist film and metal depositions. It also assures efficient stripping of Si-based residues and effective protection of the substrate (particularly the reverse side of a Si substrate) from corroding. | 07-29-2010 |
20100221666 | SILSEQUIOXANE-TITANIA HYBRID POLYMERS - The invention relates to silsesquioxane-titania hybrid polymers, wherein the titania domain size is less than about five nanometers. Such polymers are useful, for example, to form anti-reflection coatings in the fabrication of microelectronic devices. | 09-02-2010 |
20100248154 | THIOPYRAN DERIVATIVE, POLYMER, RESIST COMPOSITION, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING SUCH RESIST COMPOSITION - To provide a thiopyran derivative, having a structure expressed by the following general formula 1: | 09-30-2010 |
20100291486 | Method of manufacturing carbon nanotube device array - Provided is a method of manufacturing carbon nanotube (CNT) device arrays. In the method of manufacturing CNT device arrays, catalyst patterns may be formed using a photolithography process, CNTs may be grown from the catalyst patterns, and electrodes may be formed on the grown CNTs. | 11-18-2010 |
20100291487 | SILICON-CONTAINING RESIST UNDERLAYER FILM FORMING COMPOSITION HAVING UREA GROUP - There is provided a resist underlayer film forming composition for lithography for forming a resist underlayer film capable of being used as a hardmask. A resist underlayer film forming composition for lithography comprising: a hydrolyzable organosilane having a urea group; a hydrolysis product thereof; or a hydrolysis-condensation product thereof. The hydrolyzable organosilane is for example a compound of Formula (1): | 11-18-2010 |
20100330504 | METHOD FOR ELECTROCONDUCTIVE PATTERN FORMATION - A method for forming a conductor pattern comprising the steps of (a) forming a photo-crosslinkable resin layer on a substrate provided with a conductive layer on its surface, (b) treating the photo-crosslinkable resin layer with an alkali aqueous solution to render it thinner, (c) carrying out exposure for a circuit pattern, (d) developing and (e) etching, the steps included in this order, said alkali aqueous solution being an aqueous solution containing 5 to 20 mass % of an inorganic alkaline compound, or method for forming a conductor pattern comprising the steps of (a′) forming a photo-crosslinkable resin layer on a substrate provide with a conductive layer on its surface and inside a hole thereof, (i) curing the photo-crosslinkable resin layer on the hole alone or on the hole and a surrounding area thereof, (b′) treating the photo-crosslinkable resin layer in an uncured portion with an alkali aqueous solution to render it thinner, (c) carrying out exposure for a circuit pattern, (d) developing and (e) etching, these steps included in this order, said alkali aqueous solution being an aqueous solution containing 5 to 20 mass % of an inorganic alkaline compound. | 12-30-2010 |
20100330505 | RESIST UNDERLAYER FILM FORMING COMPOSITION CONTAINING SILICONE HAVING CYCLIC AMINO GROUP - There is provided a resist underlayer film forming composition for lithography for forming a resist underlayer film capable of being used as a hardmask. A resist underlayer film forming composition for lithography comprising a hydrolyzable organosilane, a hydrolysis product thereof, or a hydrolysis-condensation product thereof as a silane, wherein a silane having a cyclic amino group is contained in an amount of less than 1% by mole, preferably 0.01 to 0.95% by mole. A film forming composition comprising a hydrolyzable organosilane having a cyclic amino group, a hydrolysis product thereof, or a hydrolysis-condensation product thereof. A resist underlayer film forming composition for lithography comprising a hydrolyzable organosilane having a cyclic amino group, a hydrolysis product thereof, or a hydrolysis-condensation product thereof. The cyclic amino group may be a secondary amino group or a tertiary amino group. The hydrolyzable organosilane is a compound of Formula (1): | 12-30-2010 |
20110020753 | Method for reversing tone of patterns on integrated circuit and patterning sub-lithography trenches - A method for reversing the tone of a lithographic image on a substrate comprises depositing a modifiable material on a substrate; applying a photolithographic material on the modifiable material: defining a removable patterned area in the photolithopgraphic material by photolithograpic means; removing the patterned area to produce an exposed region in the modifiable material that substantially conforms to the patterned area; producing a reacted modifiable material by increasing the etch resistance of the modifable material substantially throughout the exposed region so that the etch resistance of the exposed region comprises a region that substantially conforms to the exposed region; and removing the photoresist and the modifiable material to leave the reacted modifiable material and substrate. | 01-27-2011 |
20110065049 | PATTERN FORMING METHOD AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - A disclosed mask pattern forming method includes isotropically coating a surface of a resist pattern array having a predetermined line width with a silicon oxide film, embedding a gap in the resist pattern array coated by the silicon oxide film with a carbon film, removing the carbon film from the upper portion and etching back the carbon film while leaving the carbon film within the gap in any order, removing the remaining carbon film and etching back the upper portion of the resist pattern array to have a predetermined film thickness in any order, and forming a first mask pattern array which has a center portion having a predetermined width and film sidewall portions sandwiching the predetermined width, and arranged interposing a space width substantially the same as the predetermined line width with an asking process provided to the resist pattern array exposed from the removed silicon oxide film. | 03-17-2011 |
20110081615 | MATERIAL FOR FORMING RESIST SENSITIZATION FILM AND PRODUCTION METHOD OF SEMICONDUCTOR DEVICE - A material for forming a resist sensitization film contains a metal salt, a resin and, a solvent. A method for producing a semiconductor device contains applying such material (or a resist) onto a processing surface so as to form a resist sensitization film or a resist film, applying a resist (or the aforementioned material) onto the resist sensitization film so as to form a resist film (or a resist sensitization film); exposing the resist film (or the resist film and the resist sensitization film) to exposure light, and developing the exposed resist film (or the exposed resist film and resist sensitization film) so as to form a resist pattern; and etching the processing surface using the resist pattern as a mask so as to pattern the processing surface. | 04-07-2011 |
20110091815 | Pattern Improvement in Multiprocess Patterning - Improved fidelity to an integrated circuit pattern design in a semiconductor structure ultimately produced is achieved by modeling material removal and deposition processes in regard to materials, reactant, feature size, feature density, process parameters and the like as well as the effects of such parameters on etch and material deposition bias due to microloading and RIE lag (including inverse RIE lag) and using the models to work backward through the intended manufacturing method steps, including hard mask pattern decomposition, to morphologically develop feature patterns for use in most or all process steps which will result in the desired feature sizes and shapes at the completion of the overall process. Modeling of processes may be simplified through use of process assist features to locally adjust rates of material deposition and removal. | 04-21-2011 |
20110189615 | SEMICONDUCTOR PROCESSING METHOD OF MANUFACTURING MOS TRANSISTOR - A method of manufacturing MOS transistor includes providing a substrate having a gate formed thereon; forming a hard mask layer on the substrate, performing an acid treatment to a surface of the hard mask layer, forming a photoresist layer on the hard mask layer after performing the acid treatment, performing a photolithography process to pattern the photoresist layer and the hard mask layer, performing an etching process to form recesses in the substrate, and performing a SEG method to form epitaxial layers respectively in the recesses. | 08-04-2011 |
20110200947 | PATTERNING METHOD - A method of patterning a dielectric layer with a Zep 520 positive EB photoresist as a mask, comprising the steps of depositing an α-Si film on the dielectric layer; providing a layer of Zep 520 positive EB photoresist having high-resolution patterns therein by electron beam direct writing; etching the α-Si film by chlorine-based plasma with the layer of Zep 520 positive EB photoresist as a mask, so as to transfer the high-resolution patterns of the Zep 520 positive EB photoresist to the underlying α-Si film; removing the Zep 520 positive EB photoresist; etching the dielectric layer by fluorine-based plasma with the α-Si film having high-fidelity patterns as a hard mask, so as to provide patterns of recesses; and removing the α-Si film by wet etching or dry etching. The inventive method is completely compatible with and easily incorporated into the conventional CMOS processes, with high reliability and resolution for providing nanoscale fine patterns of recesses. It solves the above-mentioned problem in the fabrication of novel structure of CMOS device. | 08-18-2011 |
20110207055 | FABRICATING METHOD FOR TOUCH SCREEN PANEL - In a fabricating method of a touch screen panel, a conductive layer and an insulating layer are sequentially formed on a same surface of a transparent substrate. The conductive layer and the insulating layer are co-patterned using a halftone mask to form first connection patterns having separated patterns and the insulating layer being patterned on the first connection patterns to expose regions of the first connection patterns. A transparent electrode layer is formed on the transparent substrate having the first connection patterns and the insulating layer. The transparent electrode layer is patterned to form first sensing patterns connected to the first connection patterns through the exposed regions of the first connection patterns and connected along a first direction, and to form second sensing patterns disposed between the first sensing patterns, wherein the second sensing patterns are insulated from the first sensing patterns and connected along a second direction. | 08-25-2011 |
20110287368 | METHOD OF MANUFACTURING ELECTRONIC DEVICE - A method of manufacturing an electronic device, comprises forming a material layer, forming an anti-halation layer on the material layer, forming a resist layer on the anti-halation layer, forming a resist pattern including a plurality of island patterns by patterning the resist layer through an exposure step and a development step, forming a mask layer having a plurality of moderate convex shape portions by annealing the resist pattern to change shapes of the island patterns to moderate convex shapes, and plasma-processing the mask layer, the anti-halation layer, and the material layer so as to remove the mask layer and the anti-halation layer and change the material layer to a microlens array including a plurality of microlenses, wherein the anti-halation layer reduces halation in the exposure step. | 11-24-2011 |
20120003589 | POLYMER FOR FORMING RESIST PROTECTION FILM, COMPOSITION FOR FORMING RESIST PROTECTION FILM, AND METHOD OF FORMING PATTERNS OF SEMICONDUCTOR DEVICES USING THE COMPOSITION - A polymer for forming a resist protection film which is used in a liquid immersion lithography process to protect a photoresist layer, a composition for forming a resist protection film, and a method of forming a pattern of a semiconductor device using the composition are disclosed. The polymer for forming a resist protection film includes a repeating unit represented by Formula 1 below. | 01-05-2012 |
20120040291 | COMPOSITION FOR FORMING RESIST UNDERLAYER FILM FOR EUV LITHOGRAPHY - There is provided a compositions of resist underlayer films for EUV lithography that is used in a production process of devices employing EUV lithography, that reduces adverse effects caused by EUV, and that has a beneficial effect on the formation of a favorable resist pattern; and a method for forming resist patterns using the composition of resist underlayer films for EUV lithography. A composition for forming a resist underlayer film for an EUV lithography process used in production of a semiconductor device, comprising a novolac resin containing a halogen atom. The novolac resin may include a cross-linkable group composed of an epoxy group, a hydroxy group, or a combination thereof. The halogen atom may be a bromine atom or an iodine atom. The novolac resin may be a reaction product of a novolac resin or an epoxidized novolac resin and a halogenated benzoic acid; or a reaction product of a glycidyloxy novolac resin and diiodosalicylic acid. | 02-16-2012 |
20120214103 | METHOD FOR FABRICATING SEMICONDUCTOR DEVICES WITH FINE PATTERNS - A method for fabricating semiconductor devices with fine patterns includes the steps of providing a semiconductor substrate, forming a first photoresist layer on the semiconductor substrate, forming a second photoresist layer on the first photoresist layer, and performing an exposing process to change the state of at least one first portion of the first photoresist layer and the state of at least one second portion of the second photoresist layer. The conventional double patterning technique requires that the exposure processes be performed twice, which requires very precise alignment between the two exposure processes. In contrast, the embodiment of the present invention can perform the double patterning process with only one exposure process without requiring the precise alignment between the two exposure processes. | 08-23-2012 |
20120264063 | METHOD AND SYSTEM FOR FEED-FORWARD ADVANCED PROCESS CONTROL - A method including providing a present wafer to be processed by a photolithography tool, selecting a processed wafer having a past chip design from a plurality of processed wafers, the processed wafer being previously processed by the photolithography tool, selecting a plurality of critical dimension (CD) data points extracted from a plurality of fields on the processed wafer, modeling the plurality of CD data points with a function relating CD to position on the processed wafer, creating a field layout on the present wafer for a new chip design, creating an initial exposure dose map for the new chip design using the function and the field layout, and controlling the exposure of the photolithography tool according to the initial exposure dose map to form the new chip design on the present wafer. | 10-18-2012 |
20130034816 | Conductive Vias In A Substrate - A method of forming a conductive via in a substrate includes forming a via hole covered by a dielectric layer followed by an annealing process. The dielectric layer can getter the mobile ions from the substrate. After removing the dielectric layer, a conductive material is formed in the via hole, forming a conductive via in the substrate. | 02-07-2013 |
20130189627 | GAP EMBEDDING COMPOSITION, METHOD OF EMBEDDING GAP AND METHOD OF PRODUCING SEMICONDUCTOR DEVICE BY USING THE COMPOSITION - A gap embedding composition used for embedding a patterned gap formed between photosensitive resin film portions on a semiconductor substrate surface, the gap embedding composition, having a hydrolysis condensate having an average molecular weight of 3,000 to 50,000 derived from an alkoxysilane raw material including at least alkyltrialkoxysilane and an ether compound having a total carbon atom of from 7 to 9 and/or an alkyl alcohol compound having a total carbon atom of from 6 to 9, as a solvent. | 07-25-2013 |
20130280660 | METHOD OF PATTERING NONMETAL CONDUCTIVE LAYER - A method of patterning a nonmetal conductive layer on a circuit board is provided. A nonmetal conductive layer and a negative photoresist layer are sequentially formed on a substrate of a circuit board. Then, the negative photoresist layer is exposed through a patterned photomask and then developed by a developing solution. Next, the nonmetal conductive layer is etched. The remained photoresist layer is finally removed by a non-alkaline stripper solution to obtain a patterned nonmetal layer on the substrate. | 10-24-2013 |
20140234779 | Flexible Circuit Electrode Array and a Method for Backside Processing of a Flexible Circuit Electrode Device - The invention involves a flexible circuit electrode array device comprising: a polymer layer; wherein the polymer layer includes one or more metal traces, an electrode array; one or more bond pads; and the electrode array is located on the opposite side of the polymer layer. | 08-21-2014 |
20140272715 | Lithography Process on High Topology Features - A method includes forming a first photo resist layer over a base structure and a target feature over the base structure, performing an un-patterned exposure on the first photo resist layer, and developing the first photo resist layer. After the step of developing, a corner portion of the first photo resist layer remains at a corner between a top surface of the base structure and an edge of the target feature. A second photo resist layer is formed over the target feature, the base structure, and the corner portion of the first photo resist layer. The second photo resist layer is exposed using a patterned lithography mask. The second photo resist layer is patterned to form a patterned photo resist. | 09-18-2014 |
20140329179 | METHODS OF FORMING SEMICONDUCTOR DEVICE STRUCTURES, AND RELATED SEMICONDUCTOR DEVICE STRUCTURES - A method of forming a semiconductor device structure comprises forming a template material over a substrate, the template material exhibiting preferential wetting to a polymer block of a block copolymer. A positive tone photoresist material is formed over the template material. The positive tone photoresist material is exposed to radiation to form photoexposed regions and non-photoexposed regions of the positive tone photoresist material. The non-photoexposed regions of the positive tone photoresist material are removed with a negative tone developer to form a pattern of photoresist features. The pattern of photoresist features and unprotected portions of the template material are exposed to an oxidizing plasma to form trimmed photoresist features and a pattern of template features. The trimmed photoresist features are removed with a positive tone developer. Other methods of forming a semiconductor device structure, and a semiconductor device structure are also described. | 11-06-2014 |
20160016872 | RESINS FOR UNDERLAYERS - Polymeric reaction products of certain substituted tetraarylmethane monomers are useful as underlayers in semiconductor manufacturing processes. | 01-21-2016 |