Class / Patent application number | Description | Number of patent applications / Date published |
257463000 | With particular doping concentration | 32 |
20090008739 | Photo Diodes Having a Conductive Plug Contact to a Buried Layer and Methods of Manufacturing the Same - Methods of manufacturing a photo diode include sequentially forming a buried layer of a first conductivity type, a first epitaxial layer of the first conductivity type, and a second epitaxial layer of a second conductivity type on a substrate. The second and first epitaxial layers are etched to form a trench that exposes a portion of the buried layer. A conductive plug of the first conductivity type is formed in the trench. A first electrode is formed on an upper surface of the second epitaxial layer. A second electrode may be formed to contact an upper surface of the conductive plug. Photodiodes having a conductive plug contact to a buried layer are also provided. | 01-08-2009 |
20090085144 | PHOTOELECTRIC CONVERSION DEVICE, METHOD OF MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE, AND IMAGE PICKUP SYSTEM - A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C | 04-02-2009 |
20090115016 | OPTICAL SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An optical semiconductor device is provided with an n-type epitaxial layer (second epitaxial layer) | 05-07-2009 |
20090140368 | Method of producing photodiode and the photodiode - A photodiode includes a photosensitive element formed in a silicon semiconductor layer on an insulation layer. The photosensitive element includes a low concentration diffusion layer, a P-type high concentration diffusion layer, and an N-type high concentration diffusion layer. A method of producing the photodiode includes the steps of: forming an insulation material layer on the silicon semiconductor layer after the P-type impurity and the N-type impurity are implanted into the low concentration diffusion layer, the P-type high concentration diffusion layer, and the N-type high concentration diffusion layer; forming an opening portion in the insulation material layer in an area for forming the low concentration diffusion layer; and etching the silicon semiconductor layer in the area for forming the low concentration diffusion layer so that a thickness of the silicon semiconductor layer is reduced to a specific level. | 06-04-2009 |
20090146240 | SILICON-BASED VISIBLE AND NEAR-INFRARED OPTOELECTRIC DEVICES - In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns. | 06-11-2009 |
20090174025 | Image Sensor and Method for Manufacturing the Same - An image sensor can include a first substrate, an insulating layer, a photodiode, and a via plug. A circuitry including an interconnection can be formed on the first substrate. The insulating layer is formed over the first substrate so that the insulating layer covers the interconnection. The photodiode is formed in a crystalline semiconductor layer and then bonded to the first substrate while contacting the insulating layer. The via plug is provided by removing portions of the photodiode and the insulating layer to expose an upper portion of the interconnection to form a via hole, and filling the via hole with a conductive metal. The via plug electrically connects the photodiode to the interconnection. | 07-09-2009 |
20090174026 | SILICON-BASED VISIBLE AND NEAR-INFRARED OPTOELECTRIC DEVICES - In one aspect, the present invention provides a silicon photodetector having a surface layer that is doped with sulfur inclusions with an average concentration in a range of about 0.5 atom percent to about 1.5 atom percent. The surface layer forms a diode junction with an underlying portion of the substrate. A plurality of electrical contacts allow application of a reverse bias voltage to the junction in order to facilitate generation of an electrical signal, e.g., a photocurrent, in response to irradiation of the surface layer. The photodetector exhibits a responsivity greater than about 1 A/W for incident wavelengths in a range of about 250 nm to about 1050 nm, and a responsivity greater than about 0.1 A/W for longer wavelengths, e.g., up to about 3.5 microns. | 07-09-2009 |
20090184388 | Photodiode, ultraviolet sensor having the photodiode, and method of producing the photodiode - A photodiode includes a silicon semiconductor layer; a P-type high concentration diffusion layer with a P-type impurity diffused therein at a high concentration; an N-type high concentration diffusion layer with an N-type impurity diffused therein at a high concentration; and a low concentration diffusion layer with one of the P-type impurity and the N-type impurity diffused therein at a low concentration. The P-type high concentration diffusion layer and the N-type high concentration diffusion layer are formed in the silicon semiconductor layer, and are arranged to face each other with the low concentration diffusion layer in between. The photodiode further includes an interlayer insulation film formed on the silicon semiconductor layer, so that a covalent bond between silicon and hydrogen is formed in an atom row of the low concentration layer adjacent to an interface thereof with respect to the interlayer insulation film. The silicon semiconductor layer where the low concentration layer is formed may have a thickness between 3 nm and 36 nm. | 07-23-2009 |
20090261445 | INFRARED DETECTOR AND INFRARED SOLID-STATE IMAGING DEVICE - An infrared detector and an infrared solid state imaging device of low noise in which a mechanical distortion of an infrared sensor portion can be decreased are provided. | 10-22-2009 |
20100044824 | STRATIFIED PHOTODIODE FOR HIGH RESOLUTION CMOS IMAGE SENSOR IMPLEMENTED WITH STI TECHNOLOGY - A stratified photodiode for high resolution CMOS image sensors implemented with STI technology is provided. The photodiode includes a semi-conductive layer of a first conductivity type, multiple doping regions of a second conductivity type, multiple doping regions of the first conductivity type, and a pinning layer. The multiple doping regions of the second conductivity type are formed to different depths in the semi-conductive layer. The multiple doping regions of the first conductivity type are disposed between the multiple doping regions of the second conductivity type and form multiple junction capacitances without full depletion. In particular, the stratified doping arrangement allows the photodiode to have a small size, high charge storage capacity, low dark current, and low operation voltages. | 02-25-2010 |
20100148297 | SEMICONDUCTOR SUBSTRATE FOR SOLID-STATE IMAGE SENSING DEVICE AS WELL AS SOLID-STATE IMAGE SENSING DEVICE AND METHOD FOR PRODUCING THE SAME - There is provided a semiconductor substrate for solid-state image sensing device in which the production cost is lower than that of a gettering method through a carbon ion implantation and problems such as occurrence of particles at a device production step and the like are solved. | 06-17-2010 |
20100155875 | Semiconductor device provided with photodiode, manufacturing method thereof, and optical disc device - A semiconductor device includes: a P-type semiconductor substrate; a first P-type semiconductor layer formed on the P-type semiconductor substrate; a second P-type semiconductor layer formed on the first P-type semiconductor layer and having a lower P-type impurity concentration than the first P-type semiconductor layer; an N-type semiconductor layer, which will form a cathode region, formed on the second P-type semiconductor layer; a first P-type diffusion layer formed by diffusing a P-type impurity in a partial region of the second P-type semiconductor layer; a second P-type diffusion layer formed by diffusing a P-type impurity in the second P-type semiconductor layer so as to be present adjacently beneath the first P-type diffusion layer at a lower P-type impurity concentration than the first P-type diffusion layer; and a photodiode formed in such a manner that the N-type semiconductor layer and the first P-type diffusion layer are isolated from each other. | 06-24-2010 |
20100244177 | PHOTODIODE CELL STRUCTURE OF PHOTODIODE INTEGRATED CIRCUIT FOR OPTICAL PICKUP AND METHOD OF MANUFACTURING THE SAME - Disclosed herein is a photodiode cell, including: a first-type substrate; a second-type epitaxial layer disposed on the first-type substrate; heavily-doped second-type layers, each having a small depth, formed on the second-type epitaxial layer; and heavily-doped first-type layers, each having a narrow and shallow section, disposed on the second-type epitaxial layer and formed between the heavily-doped second-type layers, wherein the first-type and second-type have opposite doped states. | 09-30-2010 |
20100289107 | PHOTODIODE WITH INTERFACIAL CHARGE CONTROL BY IMPLANTATION AND ASSOCIATED PROCESS - A photodiode includes a first doped layer and a second doped layer adjacent to the first doped layer and sharing a common face. A deep isolation trench is provided adjacent the photodiode having a face contiguous with the first doped layer and the second doped layer. A free face of the second doped layer is in contact with a conducting layer. A protective layer capable of generating a layer of negative charge is provided at the interface between, on one side, the first doped layer and the second doped layer and, on the other side, the deep isolation trench. | 11-18-2010 |
20110018089 | STACK STRUCTURE AND INTEGRATED STRUCTURE OF CIS BASED SOLAR CELL - In a stack structure of a CIS based thin film solar cell obtained by stacking a p-type CIS light absorbing layer, a buffer layer, and an n-type transparent conductive film in that order, the buffer layer has a stack structure of two or more layers including first and second buffer layers, the first buffer layer adjoining the p-type light absorbing layer is made of a compound containing cadmium (Cd), zinc (Zn), or indium (In), the second buffer layer adjoining the first buffer layer is made of a zinc oxide-based thin film, the first buffer layer has a thickness equal to or smaller than 20 nm, and the second buffer layer has a thickness equal to or larger than 100 nm | 01-27-2011 |
20110024868 | METHOD FOR FABRICATING A SEMICONDUCTOR SUBSTRATE - The invention relates to a method for fabricating a semiconductor substrate by providing a silicon on insulator type substrate that includes a base, an insulating layer and a first semiconductor layer, doping the first semiconductor layer to thereby obtain a modified first semiconductor layer, and providing a second semiconductor layer with a different dopant concentration than the modified first semiconductor layer over or on the modified first semiconductor layer. With this method, an improved dopant concentration profile can be achieved through the various layers which makes the substrates in particular more suitable for various optoelectronic applications. | 02-03-2011 |
20110062544 | OPTICAL SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - An optical semiconductor device is provided with a low concentration p-type silicon substrate ( | 03-17-2011 |
20110147879 | WAFER STRUCTURE TO REDUCE DARK CURRENT - A wafer structure for an image sensor includes a substrate that has a given conductivity type, a given dopant concentration, and a given concentration of oxygen. An intermediate epitaxial layer is formed over the substrate. The intermediate epitaxial layer has the same conductivity type and the same, or substantially the same, dopant concentration as the substrate but a lower oxygen concentration than the substrate. A thickness of the intermediate epitaxial layer is greater than the diffusion length of a minority carrier in the intermediate layer. A device epitaxial layer is formed over the intermediate epitaxial layer. The device epitaxial layer has the same conductivity type but lower dopant and oxygen concentrations than the substrate. | 06-23-2011 |
20110163406 | PHOTODIODE - A photodiode includes a photosensitive element formed in a silicon semiconductor layer on an insulation layer. The photosensitive element includes a low concentration diffusion layer, a P-type high concentration diffusion layer, and an N-type high concentration diffusion layer. A method of producing the photodiode includes the steps of: forming an insulation material layer on the silicon semiconductor layer after the P-type impurity and the N-type impurity are implanted into the low concentration diffusion layer, the P-type high concentration diffusion layer, and the N-type high concentration diffusion layer; forming an opening portion in the insulation material layer in an area for forming the low concentration diffusion layer; and etching the silicon semiconductor layer in the area for forming the low concentration diffusion layer so that a thickness of the silicon semiconductor layer is reduced to a specific level. | 07-07-2011 |
20110163407 | PHOTOELECTRIC CONVERSION DEVICE, METHOD OF MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE, AND IMAGE PICKUP SYSTEM - A photoelectric conversion device comprising a semiconductor substrate of a first conduction type, and a photoelectric conversion element having an impurity region of the first conduction type and a plurality of impurity regions of a second conduction type opposite to the first conduction type. The plurality of second-conduction-type impurity regions include at least a first impurity region, a second impurity region provided between the first impurity region and a surface of the substrate, and a third impurity region provided between the second impurity region and the surface of the substrate. A concentration C | 07-07-2011 |
20110186955 | METHOD OF PRODUCING PHOTOELECTRIC CONVERSION DEVICE AND PHOTOELECTRIC CONVERSION DEVICE - A method of producing a photoelectric conversion device having a multilayer structure, which includes a lower electrode, a photoelectric conversion layer made of a compound semiconductor layer, a buffer layer made of a compound semiconductor layer, and a transparent conductive layer, formed on a substrate is disclosed. Prior to a buffer layer forming step of forming the buffer layer on the photoelectric conversion layer, Cd ions are diffused into the photoelectric conversion layer by immersing the substrate including the photoelectric conversion layer on the surface thereof in an aqueous solution, which is controlled to a predetermined temperature not less than 40° C. and less than 100° C., contains at least one Cd source and at least one alkaline agent and contains no S ion source, and has a Cd ion concentration of not less than 0.1 M and a pH value in the range from 9 to 13. | 08-04-2011 |
20130181318 | HIGHLY EFFICIENT CMOS TECHNOLOGY COMPATIBLE SILICON PHOTOELECTRIC MULTIPLIER - The present disclosure relates to photodetectors with high efficiency of light detection, and may be used in a wide field of applications, which employ the detection of very weak and fast optical signals, such as industrial and medical tomography, life science, nuclear, particle, and/or astroparticle physics etc. A highly efficient CMOS-technology compatible Silicon Photoelectric Multiplier may comprise a substrate and a buried layer applied within the substrate. The multiplier may comprise cells with silicon strip-like quenching resistors, made by CMOS-technology, located on top of the substrate and under an insulating layer for respective cells, and separating elements may be disposed between the cells. | 07-18-2013 |
20130207220 | Image Sensor Cross-Talk Reduction System and Method - A system and method for reducing cross-talk between photosensitive diodes is provided. In an embodiment an isolation region comprising a first concentration of dopants is located between the photosensitive diodes. The photosensitive diodes have a second concentration of dopants that is less than the first concentration of dopants, which helps to prevent diffusion from the photosensitive diodes to form a potential path for undesired cross-talk between the photosensitive diodes. | 08-15-2013 |
20130214377 | SOLID-STATE IMAGING DEVICE WITH CHANNEL STOP REGION WITH MULTIPLE IMPURITY REGIONS IN DEPTH DIRECTION AND METHOD FOR MANUFACTURING THE SAME - Channel stop sections formed by multiple times of impurity ion implanting processes. Four-layer impurity regions are formed across the depth of a semiconductor substrate (across the depth of the bulk), so that a P-type impurity region is formed deep in the semiconductor substrate; thus, incorrect movement of electric charges is prevented. Other four-layer impurity regions of another channel stop section are decreased in width step by step across the depth of the substrate, so that the reduction of a charge storage region of a light receiving section due to the dispersion of P-type impurity in the channel stop section is prevented in the depth of the substrate. | 08-22-2013 |
20140042584 | UNI-TRAVELLING-CARRIER PHOTODIODE - A uni-travelling carrier photodiode includes an absorption region of p-type doped material. The photodiode further includes a first collector layer and second collector layer wherein the absorption region is located between the first collector layer and the second collector layer. | 02-13-2014 |
20140061844 | OPTICAL DEVICE - An optical device includes a first region and an isolating layer which are each provided in a semiconductor substrate. The first region configures a photoelectric converter and includes at least an impurity of a first conductivity type. The isolating layer is configured to inhibit passage of electrons. The isolating layer includes a second region which is below the first region and which includes an impurity of a second conductivity type, a third region which surrounds the first region in plan-view thereof and which includes an impurity of the second conductivity type, and a fourth region which surrounds the second region in plan-view thereof and which is connected to the third region. The fourth region is greater in width than a connecting part of the third region which connects the third region to the fourth region. | 03-06-2014 |
20140110813 | Absorbers for High Efficiency Thin-Film PV - Methods are described for forming CIGS absorber layers in TFPV devices with graded compositions and graded band gaps. Methods are described for utilizing Ag to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing Al to increase the band gap at the front surface of the absorber layer. Methods are described for utilizing at least one of Na, Mg, K, or Ca to increase the band gap at the front surface of the absorber layer. | 04-24-2014 |
20140319641 | Radiation Conversion Device and Method of Manufacturing a Radiation Conversion Device - A radiation conversion device such as a photovoltaic cell, a photodiode or a semiconductor radiation detection device, includes a semiconductor portion with first compensation zones of a first conductivity type and a base portion that separates the first compensation zones from each other. The first compensations zones are arranged in pillar structures. Each pillar structure includes spatially separated first compensation zones and extends in a vertical direction with respect to a main surface of the semiconductor portion. Between neighboring ones of the pillar structures the base portion includes second compensation zones of a second conductivity type, which is complementary to the first conductivity type. The radiation conversion device combines high radiation hardness with cost effective manufacturing. | 10-30-2014 |
20140319642 | Wavelength Sensitive Sensor Photodiodes - The present invention is directed toward a dual junction photodiode semiconductor devices with improved wavelength sensitivity. The photodiode employs a high quality n-type layer with relatively lower doping concentration and enables high minority carrier lifetime and high quantum efficiency with improved responsivity at multiple wavelengths. In one embodiment, the photodiode comprises a semiconductor substrate of a first conductivity type, a first impurity region of a second conductivity type formed epitaxially in the semiconductor substrate, a second impurity region of the first conductivity type shallowly formed in the epitaxially formed first impurity region, a first PN junction formed between the epitaxially formed first impurity region and the second impurity region, a second PN junction formed between the semiconductor substrate and the epitaxially formed first impurity region, and at least one passivated V-groove etched into the epitaxially formed first impurity region and the semiconductor substrate. | 10-30-2014 |
20140319643 | SEMICONDUCTOR DEVICE PROVIDED WITH PHOTODIODE, MANUFACTURING METHOD THEREOF, AND OPTICAL DISC DEVICE - A semiconductor device includes: a P-type semiconductor substrate; a first P-type semiconductor layer formed on the P-type semiconductor substrate; a second P-type semiconductor layer formed on the first P-type semiconductor layer and having a lower P-type impurity concentration than the first P-type semiconductor layer; an N-type semiconductor layer, which will form a cathode region, formed on the second P-type semiconductor layer; a first P-type diffusion layer formed by diffusing a P-type impurity in a partial region of the second P-type semiconductor layer; a second P-type diffusion layer formed by diffusing a P-type impurity in the second P-type semiconductor layer so as to be present adjacently beneath the first P-type diffusion layer at a lower P-type impurity concentration than the first P-type diffusion layer; and a photodiode formed in such a manner that the N-type semiconductor layer and the first P-type diffusion layer are isolated from each other. | 10-30-2014 |
20150084152 | PHOTODIODE - A photodiode includes a first-type substrate. A second-type doped well and a second-type doped region are formed in the first-type substrate. An isolation region is formed to enclose the peripheral side of the second-type doped well, and separated from the second-type doped well. The second-type doped region is formed in the second-type doped well and extends from the surface of the second-type doped well. A protective layer covers the first-type substrate. A contact conductor including a contact layer and a conductive strip penetrates through the protective layer. The contact layer is formed on the bottom end of the conductive strip and in contact with the second-type doped region to make an electrical connection. | 03-26-2015 |
20150311377 | MULTI-JUNCTION PHOTODIODE IN APPLICATION OF MOLECULAR DETECTION AND DISCRIMINATION, AND METHOD FOR FABRICATING THE SAME - A multi junction photodiode for molecular detection and discrimination and fabrication methods thereof. The multi junction photodiode includes a substrate having first conductive type dopants, an epitaxial layer having the first conductive type dopants, a deep well having second conductive type dopants, a first well having the first conductive type dopants, a second well having the second conductive type dopants, a third well having the first conductive type dopants, and a first doped region having the second conductive type dopants. The epitaxial layer is disposed on the substrate. The deep well is disposed in the epitaxial layer. The first well having three sides connected to the epitaxial layer is disposed in the deep well. The second well is disposed in the first well. The third well having three sides connected to the epitaxial layer is disposed in the second well. The first doped region is disposed in the third well. | 10-29-2015 |