Entries |
Document | Title | Date |
20080230859 | SAW DEVICES, PROCESSES FOR MAKING THEM, AND METHODS OF USE - The design, fabrication, post-processing and characterization of a novel SAW (Surface Acoustic Wave) based bio/chemical sensor in CMOS technology is introduced. The sensors are designed in AMI 1.5 μm 2 metal, 2 poly process. A unique maskless post processing sequence is designed and completed. The three post-processing steps are fully compatible with any CMOS technology. This allows any signal control/processing circuitry to be easily integrated on the same chip. ZnO is used as the piezoelectric material for the SAW generation. A thorough characterization and patterning optimization of the sputtered ZnO was carried out. The major novelties that are introduced in the SAW delay line features are: The embedded heater elements for temperature control, compensation and acoustic absorbers that are designed to eliminate edge reflections and minimize triple transit interference. Both of these attributes are designed by using the CMOS layers without disturbing the SAW performance. | 09-25-2008 |
20080283947 | RADIATION IMAGE DETECTOR - A thermal deformation preventing layer is located between a recording photoconductive layer, which contains a-Se as a principal constituent, and a crystallization preventing layer, which is constituted of an a-Se layer containing at least one kind of element selected from the group consisting of As, Sb, and Bi. The thermal deformation preventing layer is constituted of an a-Se layer containing at least one kind of specific substance selected from the group consisting of a metal fluoride, a metal oxide, SiO | 11-20-2008 |
20090001488 | Cantilever with integral probe tip - In one embodiment, a metallic micro-cantilever, comprises a silicon substrate, at least one via plug extending from a surface of the silicon substrate, a metallic layer cantilevered from the at least one via plug, and a metallic probe tip extending from a surface of the metallic layer. | 01-01-2009 |
20090014821 | Method for producing conductor structures and applications thereof - This publication discloses a method for forming electrically conducting structures on a substrate. According to the method nanoparticles containing conducting or semiconducting material are applied on the substrate in a dense formation and a voltage is applied over the nanoparticles so as to at least locally increase the conductivity of the formation. According to the invention, the voltage is high enough to cause melting of the nanoparticles in a breakthrough-like manner. With the aid of the invention, small-linewidth structures can be created without high-precision lithography. | 01-15-2009 |
20090085133 | On Chip Antenna And Method Of Manufacturing The Same - An antenna with air-filled trench is integrated with a radio frequency (RF) circuit. The trench locates directly under the metal lines that made up the antenna and is formed by etching from the back side of the semiconductor substrate until all the substrate material in the trench is removed. The air-filled trench greatly reduces the losses due to the semiconductor substrate; therefore the performance of the antenna improves greatly. When the antenna is a large planar spiral inductor, the air-filled trench means the semiconductor substrate inside the spiral inductor is untouched; hence integrated circuit can be built inside the antenna and on that substrate. Therefore the RF integrated circuit has a smaller size. Air-filled trench can also be used to reduce the semiconductor substrate noise coupling between digital circuit block and analog/RF circuit block. This air-filled trench and the air-filled trench under the antenna are formed at the same time. | 04-02-2009 |
20090096046 | SEMICONDUCTOR DEVICE FOR RADIATION DETECTION - The invention provides a semiconductor device ( | 04-16-2009 |
20090127641 | SEMICONDUCTOR DEVICE - The invention provides a semiconductor device that power is stabilized by suppressing power consumption as much as possible. The semiconductor device of the invention includes a logic portion and a memory portion each including a plurality of transistors, a detecting portion for detecting one or both of operation frequencies of the logic portion and the memory portion, a Vth control for supplying a Vth control signal to one or both of the logic portion and the memory portion, and an antenna. Each of the plurality of transistors has a first gate electrode which is input with a logic signal, a second gate electrode which is input with the Vth control signal, and a semiconductor film such that the second gate electrode, the semiconductor film, and the first gate electrode are provided in this order from the bottom. | 05-21-2009 |
20090140359 | Semiconductor device, method of manufacturing the same, and signal transmitting/receiving method using the semiconductor device - A semiconductor device ( | 06-04-2009 |
20090159998 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object of the present invention to provide a method for manufacturing a semiconductor device, which is flexible and superiority in physical strength. As a method for manufacturing a semiconductor device, an element layer including a plurality of integrated circuits is formed over one surface of a substrate; a hole having curvature is formed in part of one surface side of the substrate; the substrate is thinned (for example, the other surface of the substrate is ground and polished); and the substrate is cut off so that a cross section of the substrate has curvature corresponding to a portion where the hole is formed; whereby a laminated body including an integrated circuit is formed. Further, a thickness of the substrate, which is polished, is 2 μm or more and 50 μm or less. | 06-25-2009 |
20090189231 | Electromagnectic wave detecting element - The present invention is to provide an electromagnetic wave detecting element that can prevent a decrease in light utilization efficiency at sensor portions. The sensor portions are provided so as to correspond to respective intersection portions of scan lines and signal lines, and have semiconductor layer that generate charges due to electromagnetic waves being irradiated, and at whose electromagnetic wave irradiation surface sides upper electrodes are formed, and at whose electromagnetic wave non-irradiation surface sides lower electrodes are formed. Bias voltage is supplied to the respective upper electrodes via respective contact holes by a common electrode line that is formed further toward an electromagnetic wave downstream side than the semiconductor layer. | 07-30-2009 |
20090218646 | ELECTROMAGNETIC WAVE DETECTING ELEMENT - The present invention is to provide an electromagnetic wave detecting element that can suppress a decrease in utilization efficiency of electromagnetic waves at sensor portions. An upper electrode of each of plural sensor portions, that are provided in correspondence with intersection portions of plural scan lines and plural signal lines disposed to intersect one another, is electrically connected to any other adjacent upper electrode. At each group of sensor portions whose upper electrodes are electrically connected, a common electrode line and the upper electrode of any sensor portion belonging to that group of sensor portions are connected by a contact pad via a contact hole formed in an insulating film and at a connection place of a number that is less than a number of sensor portions belonging to that group of sensor portions. | 09-03-2009 |
20100090302 | RESONATOR - A method of making a resonator, preferably a nano-resonator, includes starting with a FINFET structure with a central bar, first and second electrodes connected to the central bar, and third and fourth electrodes on either side of the central bar and separated from the central bar by gate dielectric. The structure is formed on a buried oxide layer. The gate dielectric and buried oxide layer are then selectively etched away to provide a nano-resonator structure with a resonator element | 04-15-2010 |
20100171190 | Electromagnetic Radiation Sensor and Metod of Manufacture - A method of forming a semiconductor sensor in one embodiment includes providing a substrate, forming a reflective layer on the substrate, forming a sacrificial layer on the reflective layer, forming an absorber layer with a thickness of less than about 50 nm on the sacrificial layer, forming an absorber in the absorber layer integrally with at least one suspension leg, and removing the sacrificial layer. | 07-08-2010 |
20110024853 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - The present invention provides a semiconductor device which is not easily damaged by external local pressure. The present invention further provides a manufacturing method of a highly-reliable semiconductor device, which is not destroyed by external local pressure, with a high yield. A structure body, in which high-strength fiber of an organic compound or an inorganic compound is impregnated with an organic resin, is provided over an element substrate having a semiconductor element formed using a single crystal semiconductor region, and heating and pressure bonding are performed, whereby a semiconductor device is manufactured, to which the element substrate and the structure body in which the high-strength fiber of an organic compound or an inorganic compound is impregnated with the organic resin are fixed together. | 02-03-2011 |
20110031571 | WIRELESS COMMUNICATION UNIT AND SEMICONDUCTOR DEVICE HAVING A POWER AMPLIFIER THEREFOR - A semiconductor package device comprises a radio frequency power transistor having an output port operably coupled to a single de-coupling capacitance located within the semiconductor package device. The single de-coupling capacitance is arranged to provide both high frequency decoupling and low frequency decoupling of signals output from the radio frequency power transistor. | 02-10-2011 |
20110095385 | SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THE SAME, AND WIRELESS TRANSMISSION SYSTEM UTILIZING THE SAME - A device, and method for manufacturing the same, including a semiconductor package which allows transmission therethrough of a radio signal, a chip which generates the radio signal and a coupler adjacent the chip and effective to radiate the radio signal to outside of the semiconductor package. | 04-28-2011 |
20110147868 | SEMICONDUCTOR DEVICE - In a multi-core semiconductor device, a data bus between CPUs or the like consumes a larger amount of power. By provision of a plurality of CPUs which transmit data by a backscattering method of a wireless signal, a router circuit which mediates data transmission and reception between the CPUs or the like, and a thread control circuit which has a thread scheduling function, a semiconductor device which consumes less power and has high arithmetic performance can be provided at low cost. | 06-23-2011 |
20110169115 | Wireless Communication Device for Remote Authenticity Verification of Semiconductor Chips, Multi-Chip Modules and Derivative Products - A semiconductor package includes a package body with a cavity housing a first integrated circuit die. A wireless tag including a wireless element and an antenna is embedded in the semiconductor package. In one embodiment, the antenna is embedded in the package body of the semiconductor package. In another embodiment, the antenna is formed on or in the first integrated circuit die housed in the semiconductor package. According to another aspect of the present invention, the semiconductor package may be mounted on a printed circuit board and a second antenna is formed on the printed circuit board in electrical connection to the antenna embedded in the semiconductor package. | 07-14-2011 |
20110180889 | X-RAY DETECTOR - An X-ray detector includes a substrate; a gate line that is extended in a first direction on the substrate; a gate electrode that is extended from the gate line; a semiconductor layer that is positioned on the gate electrode; a source electrode and drain electrode that are positioned on the semiconductor layer; a lower electrode that is extended from the drain electrode; a photodiode that is positioned on the lower electrode; a first insulation layer that is positioned on the source electrode and the drain electrode and that includes a first opening that exposes the source electrode; and a data line that is extended in a second direction intersecting a first direction on the first insulation layer to intersect the gate line with the first insulation layer interposed between the data line and the gate line, and the data line being electrically connected to the source electrode through the first opening. | 07-28-2011 |
20110186949 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 10 | 08-04-2011 |
20110210412 | MEMORY ELEMENT, MEMORY DEVICE, AND SEMICONDUCTOR DEVICE - On object of the invention is to provide a nonvolatile memory device, in which data can be added to the memory device after a manufacturing process and forgery and the like by rewriting can be prevented, and a semiconductor device including the memory device. Another object of the invention is to provide a highly-reliable, inexpensive, and nonvolatile memory device and a semiconductor device including the memory device. A memory element includes a first conductive layer, a second conductive layer, a first insulating layer with a thickness of 0.1 nm or more and 4 nm or less being in contact with the first conductive layer, and an organic compound layer interposed between the first conductive layer, the first insulating layer, and the second conductive layer. | 09-01-2011 |
20110241143 | X-ray pixels including double photoconductors and x-ray detectors including the x-ray pixels - Example embodiments are directed to X-ray detectors including double photoconductors. According to example embodiments, the X-ray detector includes a first photoconductor on which X-rays are incident, and a second photoconductor on which X-rays transmitted through the first photoconductor are incident. The first photoconductor and the second photoconductor include a tandem structure. The first photoconductor is formed of silicon and absorbs X-rays in a low energy band, and the second photoconductor is formed of a material that absorbs X-rays in an energy band higher than the low energy band of the X-rays absorbed by silicon. | 10-06-2011 |
20110284978 | RADIATION CONVERTER COMPRISING A DIRECTLY CONVERTING SEMICONDUCTOR LAYER AND METHOD FOR PRODUCING SUCH A RADIATION CONVERTER - A radiation converter includes a directly converting semiconductor layer, wherein the semiconductor layer includes grains whose interfaces at least predominantly run parallel to a drift direction—constrained by an electric field—of electrons liberated in the semiconductor layer. in at least one embodiment, the charge carriers liberated by incident radiation quanta are accelerated in the electric field in the direction of the radiation incidence direction and on account of the columnar or pillar-like texture of the semiconductor layer, in comparison with the known radiation detectors, cross significantly fewer interfaces of the grains that are occupied by defect sites. This increases the charge carrier lifetime/mobility product in the direction of charge carrier transport. Consequently, it is possible to realize significantly thicker semiconductor layers for the counting and/or energy-selective detection of radiation quanta. This increases the absorptivity of the radiation converter which in turn makes it possible to reduce a radiation dose applied to the patient. at least one embodiment of the invention additionally relates to a method for producing such a radiation converter. | 11-24-2011 |
20110316105 | Monolithic Nuclear Event Detector and Method of Manufacture - A PIN diode-based monolithic Nuclear Event Detector and method of manufacturing same for use in detecting a desired level of gamma radiation, in which a PIN diode is integrated with signal processing circuitry, for example CMOS circuitry, in a single thin-film Silicon On Insulator (SOI) chip. The PIN diode is implemented in either a p-, intrinsic, or n-substrate layer. The signal processing circuitry is located in a thin semiconductor layer and is in electrical communication with the PIN diode. The PIN diode may be integrated with the signal processing circuitry onto a single chip, or may be fabricated stand alone using SOI methods according to the method of the invention. | 12-29-2011 |
20120074512 | COMMUNICATION DEVICE - A communication device according to an embodiment includes an antenna transmitting/receiving a high frequency signal, a semiconductor chip having four corners and four sides processing the high frequency signal, and a substrate on which a first wiring connected to ground, a second wiring supplying power to the semiconductor chip, a third wiring connected to a protection element or circuit of the semiconductor chip, and fourth wirings transmitting a signal from the semiconductor chip are formed by plating, and the semiconductor chip is mounted. | 03-29-2012 |
20120187511 | INTEGRATED CIRCUIT PACKAGE ASSEMBLY INCLUDING WAVE GUIDE - Some embodiments herein relate to a transmitter. The transmitter includes an integrated circuit (IC) package including a first antenna configured to radiate a first electromagnetic signal therefrom. A printed circuit board (PCB) substrate includes a waveguide configured to receive the first electromagnetic signal and to generate a waveguide signal based thereon. A second antenna can be electrically coupled to the waveguide and can radiate a second electromagnetic signal that corresponds to the waveguide signal. Other devices and methods are also disclosed. | 07-26-2012 |
20120193739 | Direct Radiation Converter, Radiation Detector, Medical Apparatus And Method For Producing A Direct Radiation Converter - A direct radiation converter is disclosed which includes a radiation detection material having an anode side and a cathode side in which the radiation detection material has a doping profile running in the anode-side to cathode-side direction. A radiation detector is further disclosed having such a direct radiation converter and having an anode array and a cathode array, and optionally having evaluation electronics for reading out a detector signal, as well as a medical apparatus having such a radiation detector. Also described is a method for producing a direct radiation converter which includes incorporating into a radiation detection material a doping profile running in the anode-side to cathode-side direction. | 08-02-2012 |
20120223403 | INTEGRATED CIRCUIT WITH ELECTROMAGNETIC ENERGY ANOMALY DETECTION AND PROCESSING - An integrated circuit includes an antenna, a die manufactured from a semiconducting material, an RF energy collection and processing means disposed on or within said die and including at least a receiver and a processing means, an input configured to supply power to said RF energy collection and processing means and an output for operative communication by said RF energy collection and processing means. The integrated circuit is configurable and operable to provide at least one of electromagnetic emission anomaly detection, tamper detection, anti-tamper monitoring, degradation monitoring, health monitoring, counterfeit detection, software changes monitoring, firmware changes monitoring and monitoring of other RF energy anomalies. | 09-06-2012 |
20120235259 | SEMICONDUCTOR PACKAGE AND METHOD OF FABRICATING THE SAME - A semiconductor package and a method of fabricating the same. The semiconductor package includes: a substrate having a plurality of semiconductor components disposed thereon; an encapsulant covering the substrate and the semiconductor components; and a metal layer formed on the exposed surfaces of the encapsulant, wherein the encapsulant is formed with a trench for dividing into a plurality of package units on the substrate to allow each of the package units to have at least one of the semiconductor components, and the metal layer is formed in the trench to encompass the encapsulant on the periphery of the semiconductor components, thereby preventing interference of electromagnetic waves between the semiconductor components. | 09-20-2012 |
20120241888 | SEMICONDUCTOR DEVICE USING CLOSE PROXIMITY WIRELESS COMMUNICATION - The present invention provides a semiconductor device capable of changing the setting of the internal operation mode without increasing the number of terminals of the semiconductor device. The semiconductor device | 09-27-2012 |
20120313194 | SEMICONDUCTOR SWITCHING DEVICE AND METHOD OF MAKING THE SAME - A switching device including a first dielectric layer having a first top surface, two conductive features embedded in the first dielectric layer, each conductive feature having a second top surface that is substantially coplanar with the first top surface of the first dielectric layer, and a set of discrete islands of a low diffusion mobility metal between the two conductive features. The discrete islands of the low diffusion mobility metal may be either on the first top surface or embedded in the first dielectric layer. The electric conductivity across the two conductive features of the switching device increases when a prescribed voltage is applied to the two conductive features. A method of forming such a switching device is also provided. | 12-13-2012 |
20120313195 | SEMICONDUCTOR MOS ENTRANCE WINDOW FOR RADIATION DETECTORS - A semiconductor detector device, such as a PIN diode or silicon drift detector, including a substrate with an entrance window. The entrance window comprises a conductive layer, and an insulating layer disposed between the conductive layer and the substrate. The insulating layer and conductive layer cover a center portion of the surface of the substrate. | 12-13-2012 |
20130009262 | NEUTRON DETECTION USING GD-LOADED OXIDE AND NITRIDE HETEROJUNCTION DIODES - Solid state neutron detection utilizing gadolinium as a neutron absorber is described. The new class of narrow-gap neutron-absorbing semiconducting materials, including Gd-doped HfO | 01-10-2013 |
20130015544 | SEMICONDUCTOR PACKAGE AND METHOD OF MANUFACTURING THE SAMEAANM HAN; Myeong WooAACI HwaseongAACO KRAAGP HAN; Myeong Woo Hwaseong KRAANM Yoo; Do JaeAACI SuwonAACO KRAAGP Yoo; Do Jae Suwon KRAANM Lee; Jung AunAACI SuwonAACO KRAAGP Lee; Jung Aun Suwon KRAANM Yoon; Jung HoAACI AnyangAACO KRAAGP Yoon; Jung Ho Anyang KRAANM Park; Chul GyunAACI YonginAACO KRAAGP Park; Chul Gyun Yongin KR - There is provided a semiconductor package including: a substrate including a semiconductor chip mounted thereon; a protective layer covering the semiconductor chip; a metal pattern mounted on the protective layer; and a first connective member connecting the semiconductor chip and the metal pattern. | 01-17-2013 |
20130026586 | CROSS-LOOP ANTENNA - An antenna is provided. This antenna is contained within a package that is secured to an IC (which allows radiation to propagated away for a printed circuit board so as to reduce interference), and this antenna includes two loop antennas that are shorted to ground and that “overlap” and includes a “via wall.” With this configuration, circular polarization can be achieved by varying the relative phases of the input signals, and the “via wall” improves efficiency by reducing surface waves. | 01-31-2013 |
20130049145 | RADIATION DETECTOR AND A METHOD FOR PRODUCING A METALCARBON JUNCTION FOR A RADIATION DETECTOR - A radiation detector comprising a metal-carbon junction wherein a layer of carbon ( | 02-28-2013 |
20130049146 | DETECTOR ELEMENT, RADIATION DETECTOR AND MEDICAL DEVICE CONTAINING THE DETECTOR ELEMENTS, AND METHOD FOR PRODUCING A DETECTOR ELEMENT - A detector element is disclosed with a semi-conductive converter element and metal contacts arranged thereon for at least one anode and at least one cathode, wherein at least one of the metal contacts comprises a contact layer made from a contact material based on precious metal and ruthenium as its mixed component. Moreover, an embodiment of the invention concerns a radiation detector with the detector element with a ruthenium-containing contact layer and, optionally, with an evaluation unit to read out a detector signal, as well as a medical device with the radiation detector. Furthermore, a method for the production of a detector element is described which includes the installation step of a contact material of at least one of the metal contacts on the converter element, wherein the contact material includes a precious metal base with ruthenium as its mixed component. | 02-28-2013 |
20130099340 | SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THEREOF, SIGNAL TRANSMISSION/RECEPTION METHOD USING SUCH SEMICONDUCTOR DEVICE, AND TESTER APPARATUS - A semiconductor device includes a substrate, a bonding pad provided above the substrate, a first signal transmitting/receiving portion provided above the substrate and below the bonding pad, and a transistor provided over the substrate. The transistor is connected to the first signal transmitting/receiving portion. | 04-25-2013 |
20130126998 | RADIATION DETECTORS AND METHODS OF FABRICATING RADIATION DETECTORS - Radiation detectors and methods of fabricating radiation detectors are provided. One method includes mechanically polishing at least a first surface of a semiconductor wafer using a polishing sequence including a plurality of polishing steps, wherein a last polishing step of the polishing sequence includes polishing with a slurry having a grain size smaller than about 0.1 μm to create a polished first surface. The method also includes applying (i) an encapsulation layer on a top of the polished first surface to seal the polished first surface and (ii) a photoresist layer on top of the encapsulation layer on the polished first surface. The method further includes creating undercuts of the encapsulation layer under the photoresist layer. The method additionally includes partially etching the polished first surface of the semiconductor via the openings in the photoresist layer and in the encapsulation layer to partially etch the semiconductor creating etched regions. | 05-23-2013 |
20130126999 | RADIATION DETECTORS AND METHODS OF FABRICATING RADIATION DETECTORS - Radiation detectors and methods of fabricating radiation detectors are provided. One method includes mechanically polishing at least a first surface of a semiconductor wafer using a polishing sequence including a plurality of polishing steps. The method also includes growing a passivation oxide layer on a top of the polished first surface and depositing patterned metal contacts on a top of the passivation oxide layer. The method further includes applying a protecting layer on the patterned deposited metal contacts, etching a second surface of the semiconductor and applying a monolithic cathode electrode on the etched second surface of the semiconductor. The method additionally includes removing the protecting layer from the patterned metal contacts on the first surface, wherein the patterned metal contacts are formed from one of (i) reactive metals and (ii) stiff-rigid metals for producing inter-band energy-levels in the passivation oxide layer. | 05-23-2013 |
20130154039 | PRODUCTION METHOD OF RADIATION IMAGE DETECTOR AND RADIATION IMAGE DETECTOR - The present invention provides a production method of a radiation image detector, comprising a scintillator panel preparation step, a composite rigid plate preparation step of bonding a flexible polymer film to a rigid plate with an adhesive to prepare the composite rigid plate, a preparation step of a scintillator panel provided with a composite rigid plate of bonding the composite rigid plate to a scintillator panel to prepare the scintillator panel provided with a composite rigid plate, and a preparation step of a radiation image detection member of opposing the surface of the photoelectric conversion base plate in which the photoelectric conversion elements are disposed to the surface of the side of the scintillator layer of the scintillator panel provided with the composite rigid plate and bonding the photoelectric conversion base plate to the scintillator panel to prepare a radiation image detection member; whereby there arc provided a production method of a radiation image detector which can he easily produced and results in superior image uniformity, and a radiation image detector obtained by the method. | 06-20-2013 |
20130161772 | FLEXIBLE RADIATION DETECTORS - Disclosed is a flexible radiation detector including a substrate, a switching device on the substrate, an energy conversion layer on the switching device, a top electrode layer on the energy conversion layer, a first phosphor layer on the top electrode layer, and a second phosphor layer under the substrate. | 06-27-2013 |
20130161773 | DETECTOR ELEMENT, RADIATION DETECTOR, MEDICAL DEVICE, AND METHOD FOR PRODUCING SUCH A DETECTOR ELEMENT - A detector element is disclosed, including a semiconducting converter element and a number of pixilated contacts arranged thereon. A radiation detector is also disclosed including such a detector element, along with a medical device having one or more such radiation detectors. Finally, a method for producing a detector element is disclosed, which includes forming pixelated contacts by way of a photolithographic process on the semiconducting converter element using a lithographic mask arranged on a converter element protective layer. | 06-27-2013 |
20130228885 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - The present invention provides a thin and bendable semiconductor device utilizing an advantage of a flexible substrate used in the semiconductor device, and a method of manufacturing the semiconductor device. The semiconductor device has at least one surface covered by an insulating layer which serves as a substrate for protection. In the semiconductor device, the insulating layer is formed over a conductive layer serving as an antenna such that the value in the thickness ratio of the insulating layer in a portion not covering the conductive layer to the conductive layer is at least 1.2, and the value in the thickness ratio of the insulating layer formed over the conductive layer to the conductive layer is at least 0.2. Further, not the conductive layer but the insulating layer is exposed in the side face of the semiconductor device, and the insulating layer covers a TFT and the conductive layer. | 09-05-2013 |
20130241016 | RADIOACTIVE RAY DETECTING APPARATUS - A radioactive ray detecting apparatus for enabling to reduce the dead area or region where the radioactive rays cannot be detected, even if disposing the radioactive ray detectors to be dense or crowded, is provided. The radioactive ray detecting apparatus satisfies the following relationships, when assuming that distance between semiconductor elements, being provided with putting a substrate therebetween, is “XG1”, while distance from the semiconductor element of one of the radioactive ray detectors up to the semiconductor element of other radioactive ray detectors, facing to the semiconductor element and neighboring with one radioactive ray detector, is “XG2”, and distance between the semiconductor elements alighted in a Y-direction is “YG1”, and further assuming that a horizontal pitch of a predetermined pixel pitch to be used as the radioactive ray detector is “a” and a vertical pitch thereof is “b”, width of a surface of each of plural numbers of semiconductor elements, upon which radioactive rays are incident, is “c” and length thereof is “d”, and among plural numbers of intra-element pixel regions of respective one of the plural numbers of semiconductor elements, and that length of the intra-element pixel regions, which are positioned at both end portions of respective one of the plural numbers of semiconductor elements, is “e”, and length of each one of the plural numbers of intra-element pixel regions, being put between the intra-element pixel regions, which are positioned at both end portions of each of the plural numbers of semiconductor elements, is “f”, respectively: | 09-19-2013 |
20130313666 | RADIATION IMAGE CAPTURING DEVICE - A radiation image capturing device includes scan lines, signal lines, radiation detection elements and switch elements. With respect to each of the radiation detection elements, a first distance between an edge of the radiation detection element and an edge of a scan line and/or a second distance between an edge of the radiation detection element and an edge of a signal line is set within a range acceptable as a manufacturing error. The center of the range is a value which maximizes a ratio obtained by dividing the area of the radiation detection element by a first parasitic capacitance between the radiation detection element and the scan line and/or a second parasitic capacitance between the radiation detection element and the signal line. | 11-28-2013 |
20130313667 | Radiation Detector - According to one embodiment, a radiation detector includes a substrate, a scintillator layer, a moisture-proof body and an adhesive layer. The substrate is partitioned into at least an active area and a bonding area. The substrate includes a photoelectric conversion element located in the active area and configured to convert fluorescence to an electrical signal, an organic resin protective layer located at an outermost layer in the active area, and an inorganic protective film located at an outermost layer of the bonding area. The scintillator layer is formed on the organic resin protective layer so as to cover the photoelectric conversion element and configured to convert radiation to the fluorescence. The moisture-proof body is formed so as to cover the scintillator layer. The adhesive layer is formed on the inorganic protective film and bonds the moisture-proof body to the substrate. | 11-28-2013 |
20140015081 | SPECTRAL IMAGING DETECTOR - A method includes obtaining a photosensor substrate ( | 01-16-2014 |
20140042575 | MICROELECTRONIC DEVICES AND METHODS FOR MANUFACTURING MICROELECTRONIC DEVICES - Microelectronic devices and methods for manufacturing microelectronic devices are disclosed herein. In one embodiment, a method includes constructing a radiation sensitive component in and/or on a microelectronic device, placing a curable component in and/or on the microelectronic device, and forming a barrier in and/or on the microelectronic device to at least partially inhibit irradiation of the radiation sensitive component. The radiation sensitive component can be doped silicon, chalcogenide, polymeric random access memory, or any other component that is altered when irradiated with one or more specific frequencies of radiation. The curable component can be an adhesive, an underfill layer, an encapsulant, a stand-off, or any other feature constructed of a material that requires curing by irradiation. | 02-13-2014 |
20140054734 | METHOD FOR PRODUCING A SEMICONDUCTOR ELEMENT OF A DIRECT-CONVERTING X-RAY DETECTOR - A production method of a semiconductor element of a direct-converting x-ray detector is disclosed, wherein at least one intermediate layer is applied to a semiconductor layer and at least one contact layer is applied to an exposed intermediate layer by chemically currentless deposition of a contact material from a solution in each instance. The materials for the individual layers are selected such that the electrochemical potential of the materials of the at least one intermediate layer is greater than the electrochemical potential of at least one element of the semiconductor layer and the electrochemical potential of the contact material of the contract layer is greater than the electrochemical potential of the materials of the intermediate layers. Semiconductor elements produced in accordance with the method, an x-ray detector with semiconductor elements, an x-ray system with an x-ray detector and also a CT system with an x-ray detector are also disclosed. | 02-27-2014 |
20140070346 | RADIO-FREQUENCY DEVICE PACKAGE AND METHOD FOR FABRICATING THE SAME - The invention provides a radio-frequency (RF) device package and a method for fabricating the same. An exemplary embodiment of a radio-frequency (RF) device package includes a base, wherein a radio-frequency (RF) device chip is mounted on the base. The RF device chip includes a semiconductor substrate having a front side and a back side. A radio-frequency (RF) component is disposed on the front side of the semiconductor substrate. An interconnect structure is disposed on the RF component, wherein the interconnect structure is electrically connected to the RF component, and a thickness of the semiconductor substrate is less than that of the interconnect structure. A through hole is formed through the semiconductor substrate from the back side of the semiconductor substrate, and is connected to the interconnect structure. A TSV structure is disposed in the through hole. | 03-13-2014 |
20140124885 | DIODE ELEMENT AND DETECTING DEVICE - Provided is a diode element, a detecting device, and the like which solve problems of a conventional lateral diode element. In the conventional element, a semiconductor interface appears in current path between two electrodes on a surface thereof, and thus noise caused by the interface is large. The diode element includes: a first-conductive-type low carrier concentration layer; a first-conductive-type high carrier concentration layer; and a Schottky electrode and an ohmic electrode which are formed on a semiconductor surface. The low carrier layer has a carrier concentration that is lower than that of the high carrier layer. The diode element includes a first-conductive-type impurity introducing region formed below the ohmic electrode, and includes a second-conductive-type impurity introducing region so as not to be in electrical contact with the Schottky electrode on the semiconductor surface between the Schottky and the ohmic. The second-conductive-type region is in contact with the first-conductive-type region. | 05-08-2014 |
20140145280 | SEMICONDUCTOR DEVICE AND PRODUCTION METHOD THEREFOR - Provided is a semiconductor device including: a semiconductor element arranged on a substrate and having two electrodes; a conductive strip in contact with one of the two electrodes; and a dielectric arranged between another one of the two electrodes and the conductive strip, in which the conductive strip has an opening formed therein, the dielectric has a void formed therein, and the opening and the void are connected to each other. | 05-29-2014 |
20140167194 | RADIATION DETECTOR - Provision is a radiation detector that allows eliminating short between electric wires crossing over each other via an interlayer insulating layer and thus suppression of defective detecting elements. A construction of this embodiment has a design idea that eliminates short between electric wires of an amorphous selenium layer and an active matrix substrate. Specifically, the electric wires are in a position covered with a thick center portion of the amorphous selenium layer. This ensures to separate the electric wires away from an electrode layer, achieving provision of a radiation detector capable of being used for a long period of time. | 06-19-2014 |
20140183675 | X-ray Detector Having Improved Noise Performance - Exemplary embodiments are directed to imagining detectors and methods of fabricating the imagining detectors for use in medical imagining systems. In exemplary embodiments, a detector for an imaging device include a continuous unpatterned photoelectric material that forms a portion of a photosensor and an electrode disposed with respect to the photoelectric material to form an anode or cathode of the photosensor. Data readout lines connected to the outputs of transistors of the detector can be susceptible electronic noise from capacitive coupling between the electrode of the photosensor. In exemplary embodiments of the present disclosure, a lateral offset and/or vertical offset between the electrode and the data readout lines can be formed to control the capacitive coupling between the electrode and the data readout line. | 07-03-2014 |
20140183676 | High Yield Complementary Metal-Oxide Semiconductor X-ray Detector - A digital X-ray detector includes a scintillator that is configured to absorb radiation emitted from an X-ray radiation source and to emit light photons in response to the absorbed radiation. The detector also includes a complementary metal-oxide-semiconductor (CMOS) light imager that is configured to absorb the light photons emitted by the scintillator. The CMOS light imager includes a first surface and a second surface. The first surface is disposed opposite the second surface. The scintillator contacts the first surface of the CMOS light imager. The CMOS light imager further includes a CMOS pixel array with an array of CMOS pixels. Each individual CMOS pixel includes at least two row select transistors. | 07-03-2014 |
20140239427 | Integrated Antenna on Interposer Substrate - Some embodiments relate to a semiconductor module comprising a low-cost integrated antenna that uses a conductive backside structure in conjunction with a ground metal layer to form a large ground plane with a small silicon area. In some embodiments, the integrated antenna structure has an excitable element that radiates electromagnetic radiation. An on-chip ground plane, located on a first side of an interposer substrate, is positioned below the excitable element. A compensation ground plane, located on an opposing side of the interposer substrate, is connected to the ground plane by one or more through-silicon vias (TSVs) that extend through the interposer substrate. The on-chip ground plane and the compensation ground collectively act to reflect the electromagnetic radiation generated by the excitable element, so that the compensation ground improves the performance of the on-chip ground plane. | 08-28-2014 |
20140239428 | CHIP ARRANGEMENT AND A METHOD FOR MANUFACTURING A CHIP ARRANGEMENT - According to various embodiments, a chip arrangement may be provided, the chip arrangement including: a chip; an antenna structure disposed over a first side of the chip, wherein the antenna structure may include an antenna being electrically conductively coupled to the chip; and a reinforcement structure, wherein the reinforcement structure supports the chip to increase the stability of the chip arrangement. | 08-28-2014 |
20140239429 | RADIATION DETECTOR - A radiation detector has a semiconductor substrate of a first conductivity type, a plurality of semiconductor regions of a second conductivity type making junctions with the semiconductor substrate, and a plurality of electrodes joined to the corresponding semiconductor regions. The electrodes cover the corresponding semiconductor regions, when viewed from a direction perpendicular to a first principal face. The semiconductor regions include a plurality of first and second semiconductor regions in a two-dimensionally array. The first semiconductor regions arrayed in a first direction in the two dimensional array out of the plurality of first semiconductor regions are electrically connected to each other, and the second semiconductor regions arrayed in a second direction intersecting with the first direction out of the plurality of second semiconductor regions are electrically connected to each other. | 08-28-2014 |
20140246743 | SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THEREOF, SIGNAL TRANSMISSION/RECEPTION METHOD USING SUCH SEMICONDUCTOR DEVICE, AND TESTER APPARATUS - A semiconductor device includes a substrate, an internal circuit including a plurality of transistors provided over the substrate, an insulating film provided over the substrate, a bonding pad provided over the insulating film, an inductor being formed in the insulating film, the inductor carrying out a signal transmission/reception to/from an external device in a non-contact manner by an electromagnetic induction and being electrically coupled to the internal circuit. The inductor includes a first conducting layer, and the bonding pad includes a second conducting layer. The first conducting layer includes a lower level layer than the second conducting layer in a thickness direction of the substrate. Ina plan view, the inductor includes a first portion overlapping the bonding pad and a second portion not overlapping the bonding pad. | 09-04-2014 |
20140327098 | METHOD OF PRODUCING A RADIATION IMAGER EXHIBITING IMPROVED DETECTION EFFICIENCY - A radiation imager including: a reading block; a first substrate; a plurality of portions made from a first material with a first optical index between the first substrate and the reading block; a second material at a periphery of at least one of the portions, the second material having a second optical index lower than the first optical index; and areas made from a third material surrounding at least ends of the portions oriented on a same side as the reading block, the areas made from a third material obtained by applying a layer made from a third material to the reading block and penetration of the end of the at least one portion made from a first material in the layer made from a third material. | 11-06-2014 |
20140353786 | SEMICONDUCTOR DETECTOR WITH RADIATION SHIELD - A semiconductor radiation detector includes a bulk layer of semiconductor material. On a first side of said bulk layer is an arrangement of field electrodes and a collection electrode for collecting radiation-induced signal charges from said bulk layer. A radiation shield exists on a second side of said bulk layer, opposite to said first side, which radiation shield selectively overlaps the location of said collection electrode. | 12-04-2014 |
20140361393 | SEMICONDUCTOR ELEMENT HAVING GROOVES WHICH DIVIDE AN ELECTRODE LAYER, AND METHOD OF FORMING THE GROOVES - A semiconductor element is disclosed including a construction with electrode-dividing grooves, in which a dark current is smaller than in existing examples. A method of forming such grooves is also disclosed. In an embodiment, grooves, which electrically divide an electrode layer formed on the surface of a substrate, are formed with a V-shaped cross-sectional shape, groove side walls in the electrode layer, constituting the grooves, being sloping surfaces. An embodiment of the method of forming the grooves includes using a dicing blade having a blade distal end portion which is sharpened into a V-shape to cut a semiconductor wafer in which multiple patterns of semiconductor elements including an electrode layer on the surface of a substrate are formed, forming the grooves having a V-shaped cross-sectional shape which divide the electrode layer in each semiconductor element. | 12-11-2014 |
20150091113 | X-RAY SENSOR AND METHOD OF MANUFACTURING THE SAME - This invention relates to a direct conversion X-ray sensor and to a method of manufacturing the same. This X-ray sensor includes an array substrate including a pixel electrode formed so as to protrude from a surface thereof at a pixel region; a photoconductive substrate including an upper electrode, and a photoconductive layer formed on a surface of the upper electrode so as to be in contact with the pixel electrode and having a PIN diode structure; and a bonding material filling a space around a contact region of the pixel electrode and the photoconductive layer so as to bond the array substrate and the photoconductive substrate. | 04-02-2015 |
20150115381 | MECHANISMS FOR FORMING RADIO FREQUENCY (RF) AREA OF INTEGRATED CIRCUIT STRUCTURE - Embodiments of mechanisms of forming a radio frequency area of an integrated circuit are provided. The radio frequency area of an integrated circuit structure includes a substrate, a buried oxide layer formed over the substrate, and an interface layer formed between the substrate and the buried oxide layer. The radio frequency area of an integrated circuit structure also includes a silicon layer formed over the buried oxide layer and an interlayer dielectric layer formed in a deep trench. The radio frequency area of an integrated circuit structure further includes the interlayer dielectric layer extending through the silicon layer, the buried oxide layer and the interface layer. The radio frequency area of an integrated circuit structure includes an implant region formed below the interlayer dielectric layer in the deep trench and a polysilicon layer formed below the implant region. | 04-30-2015 |
20150129999 | METHOD OF WAFER-SCALE INTEGRATION OF SEMICONDUCTOR DEVICES AND SEMICONDUCTOR DEVICE - The method of wafer-scale integration of semiconductor devices comprises the steps of providing a semiconductor wafer ( | 05-14-2015 |
20150295008 | RADIATION DETECTORS, AND METHODS OF MANUFACTURE OF RADIATION DETECTORS - Radiation detectors are disclosed. The radiation detectors comprise a substrate and at least one radiation sensitive region on the substrate, the at least one radiation sensitive region comprising an array of elongate nanostructures projecting from the substrate. Methods of manufacture of such radiation detectors are also disclosed. | 10-15-2015 |
20150340402 | PHOTODIODE ARRAY - A photodiode array includes a plurality of photodiodes formed in a semiconductor substrate. Each of the photodiodes includes a first semiconductor region of a first conductivity type, and provided in the semiconductor substrate, a second semiconductor region of a second conductivity type, provided with respect to the first semiconductor region on one surface side of the semiconductor substrate so as to surround a predetermined region, and constituting a light detection region together with the first semiconductor region, and a through-electrode provided within a through-hole passing through the one surface and the other surface of the semiconductor substrate so as to pass through the first semiconductor region and the predetermined region, and electrically connected to the second semiconductor region. The through-hole includes a portion expanded from the one surface toward the other surface. | 11-26-2015 |
20160071997 | PIN DIODE WITH NANOCLUSTERS - A diode for detecting the presence of radiation includes a P region, an N region, an intrinsic region located between the P region and the N region, and a layer of nanoclusters located adjacent to the intrinsic region. | 03-10-2016 |
20160097864 | 3D HIGH RESOLUTION X-RAY SENSOR WITH INTEGRATED SCINTILLATOR GRID - Various embodiments of a 3D high resolution X-ray sensor are described. In one aspect, an indirect X-ray sensor includes a silicon wafer that includes an array of photodiodes thereon with each of the photodiodes having a contact on a front side of the silicon wafer and self-aligned with a respective grid hole of an array of grid holes that are on a back side of the silicon wafer. Each of the grid holes is filled with a scintillator configured to convert beams of X-ray into light. The indirect X-ray sensor also includes one or more silicon dies with an array of photo-sensing circuits each of which including a contact at a top surface of the one or more silicon dies. Contact on each of the photodiodes is aligned and bonded to contact of a respective photo-sensing circuit of the array of photo-sensing circuits of the one or more silicon dies. | 04-07-2016 |
20160099277 | 3D HIGH RESOLUTION X-RAY SENSOR WITH INTEGRATED SCINTILLATOR GRID - Various embodiments of a 3D high resolution X-ray sensor are described. In one aspect, an indirect X-ray sensor includes a silicon wafer that includes an array of photodiodes thereon with each of the photodiodes having a contact on a front side of the silicon wafer and self-aligned with a respective grid hole of an array of grid holes that are on a back side of the silicon wafer. Each of the grid holes is filled with a scintillator configured to convert beams of X-ray into light. The indirect X-ray sensor also includes one or more silicon dies with an array of photo-sensing circuits each of which including a contact at a top surface of the one or more silicon dies. Contact on each of the photodiodes is aligned and bonded to contact of a respective photo-sensing circuit of the array of photo-sensing circuits of the one or more silicon dies. | 04-07-2016 |
20160099281 | 3D HIGH RESOLUTION X-RAY SENSOR WITH INTEGRATED SCINTILLATOR GRID - Various embodiments of a 3D high resolution X-ray sensor are described. In one aspect, an indirect X-ray sensor includes a silicon wafer that includes an array of photodiodes thereon with each of the photodiodes having a contact on a front side of the silicon wafer and self-aligned with a respective grid hole of an array of grid holes that are on a back side of the silicon wafer. Each of the grid holes is filled with a scintillator configured to convert beams of X-ray into light. The indirect X-ray sensor also includes one or more silicon dies with an array of photo-sensing circuits each of which including a contact at a top surface of the one or more silicon dies. Contact on each of the photodiodes is aligned and bonded to contact of a respective photo-sensing circuit of the array of photo-sensing circuits of the one or more silicon dies. | 04-07-2016 |
20160099282 | 3D HIGH RESOLUTION X-RAY SENSOR WITH INTEGRATED SCINTILLATOR GRID - Various embodiments of a 3D high resolution X-ray sensor are described. In one aspect, an indirect X-ray sensor includes a silicon wafer that includes an array of photodiodes thereon with each of the photodiodes having a contact on a front side of the silicon wafer and self-aligned with a respective grid hole of an array of grid holes that are on a back side of the silicon wafer. Each of the grid holes is filled with a scintillator configured to convert beams of X-ray into light. The indirect X-ray sensor also includes one or more silicon dies with an array of photo-sensing circuits each of which including a contact at a top surface of the one or more silicon dies. Contact on each of the photodiodes is aligned and bonded to contact of a respective photo-sensing circuit of the array of photo-sensing circuits of the one or more silicon dies. | 04-07-2016 |
20160126402 | SYSTEMS AND METHODS FOR DETECTORS HAVING IMPROVED INTERNAL ELECTRICAL FIELDS - A radiation detector is provided including a cathode, an anode, and a semiconductor wafer. The semiconductor wafer has opposed first and second surfaces. The cathode is mounted to the first surface, and the anode is mounted to the second surface. The semiconductor wafer is configured to be biased by a voltage between the cathode and the anode to generate an electrical field in the semiconductor wafer and to generate electrical signals responsive to absorbed radiation. The electrical field has an intensity having at least one local maximum disposed proximate to a corresponding at least one of the first surface or second surface. | 05-05-2016 |
20160133776 | RADIATION DETECTOR MANUFACTURED BY DICING A SEMICONDUCTOR WAFER AND DICING METHOD THEREFOR - An embodiment relates to a group II-VI semiconductor radiation detector, and an embodiment relates to a method for producing same. An embodiment of the present invention provides a radiation detector enabling reduction or restriction of the edge effect (or the end surface effect) and a method for producing same. An embodiment of the present invention provides a radiation detector obtained by half-cutting or full-cutting a group II-VI semiconductor wafer having a zinc blende structure in which the wafer has a {001} plane main surface, and cut planes according to the half-cutting or full-cutting have an angle θ (≠°) relative to the slip direction of the wafer. | 05-12-2016 |
20160163661 | RADIO FREQUENCY ISOLATION STRUCTURE WITH RACETRACK - Aspects of the present disclosure relate to a racetrack that forms part of an RF isolation structure of a packaged module and wireless devices that include such a packaged module. The racetrack can be disposed in a substrate and around an RF component that is on the substrate. The racetrack can include at least one break and/or at least one narrowed section without significantly degrading the EMI performance of the RF isolation structure. | 06-09-2016 |
20160163763 | RADIATION IMAGE PICKUP UNIT AND RADIATION IMAGE PICKUP DISPLAY SYSTEM - There is provided a radiation image pickup unit including: a plurality of pixels each configured to generate a signal charge based on a radiation; a device substrate including a photoelectric conversion element for each pixel; a wavelength conversion layer provided on a light incident side of the device substrate, and configured to convert a wavelength of the radiation into other wavelength; and a partition wall separating the wavelength conversion layer for each pixel. The radiation image pickup unit is configured to allow a gap between the wavelength conversion layer and the device substrate to be equal to or larger than a threshold or equal to or smaller than the threshold, the threshold being preset based on a spatial frequency of an image pickup target. | 06-09-2016 |
20160172317 | INTEGRATED MILLIMETER-WAVE CHIP PACKAGE | 06-16-2016 |
20160181306 | SEMICONDUCTOR BUMP-BONDED X-RAY IMAGING DEVICE | 06-23-2016 |
20160181308 | RADIATION DETECTION APPARATUS, MANUFACTURING METHOD THEREFOR, AND RADIATION DETECTION SYSTEM | 06-23-2016 |
20160187494 | LOW-NOISE SURFACE LEVEL MOS CAPACITOR FOR IMPROVED SENSOR QUALITY FACTOR - A low-power wireless ionizing radiation measurement system is provided that is intended to be used in a wearable dosimeter for occupational radiation monitoring. | 06-30-2016 |
20160380020 | PHOTODETECTOR AND METHOD FOR MANUFACTURING PHOTODETECTOR - According to an embodiment, a photodetector includes a photo detection layer, light conversion members, and a first member. The photo detection layer includes, on a light incident surface, plural pixel regions and a surrounding region. The pixel region holds a photo detection element to detect the light. The surrounding region is a region other than the pixel regions on the light incident surface. The light conversion members are arranged to oppose the pixel regions in the photo detection layer and convert radiation to the light. Each light conversion member includes a bottom surface opposing the pixel region in the photo detection layer, a top surface opposing the bottom surface, and a lateral surface connecting the bottom and top surfaces. The first member is disposed on a portion of the surrounding region on the light incident surface and covers a portion of the lateral surface of the light conversion member. | 12-29-2016 |
20160380021 | RADIATION DETECTING DEVICE AND METHOD FOR MANUFACTURING RADIATION DETECTING DEVICE - In a radiation detecting device, a groove portion is provided in a sealing region on a photoelectric conversion substrate. The groove portion is provided in the vicinity of a phosphor layer formed on the photoelectric conversion substrate or along an outer peripheral side thereof. A moisture-proof protective layer is provided to cover the phosphor layer and the sealing region through an adhesive layer. The adhesive layer is cured when in a flowable state to function as an adhesive. In a case where the moisture-proof protective layer is adhered, the adhesive layer enters a flowable state, and thus, the adhesive layer flows into the groove portion and fills at least a part of the inside of the groove portion. | 12-29-2016 |
20170236776 | SEMICONDUCTOR DEVICE INCLUDING AN ANTENNA | 08-17-2017 |
20180025999 | INFO PACKAGE WITH INTEGRATED ANTENNAS OR INDUCTORS | 01-25-2018 |
20190148580 | IONIZING RADIATION SENSOR BASED ON FLOAT-ZONE SILICON WITH P-TYPE CONDUCTIVITY | 05-16-2019 |