Entries |
Document | Title | Date |
20080224211 | Monolithic MOSFET and Schottky diode device - A Schottky diode is integrated into a planar or trench topology MOSFET having parallel spaced source regions diffused into spaced base stripes. The diffusions forming the source and base stripes are interrupted to permit the drift region to extend to the top of the die and receive a Schottky barrier metal and the source contact. The MOSFET and Schottky share the same drift region, and the pitch between base and source stripes is not changed to receive the Schottky structure. | 09-18-2008 |
20080246084 | POWER SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THE SAME - A power semiconductor device includes: a first semiconductor substrate; a second semiconductor layer; a plurality of third semiconductor pillar regions and a plurality of fourth semiconductor pillar regions that are provided in an upper layer of the second semiconductor layer and alternatively arranged along a direction parallel to an upper surface of the first semiconductor substrate; a first main electrode; and a second main electrode. A concentration of first-conductivity-type impurity in a connective portion between the second semiconductor layer and the third semiconductor pillar regions is lower than concentrations of first-conductivity-type impurity in portions of both sides of the connective portion in a direction from the second semiconductor layer to the third semiconductor pillar regions. | 10-09-2008 |
20080265320 | COMPONENT ARRANGEMENT INCLUDING A POWER SEMICONDUCTOR COMPONENT HAVING A DRIFT CONTROL ZONE - A component arrangement including a MOS transistor having a field electrode is disclosed. One embodiment includes a gate electrode, a drift zone and a field electrode, arranged adjacent to the drift zone and dielectrically insulated from the drift zone by a dielectric layer a charging circuit, having a rectifier element connected between the gate electrode and the field electrode. | 10-30-2008 |
20080283912 | Semiconductor device having super junction structure and method of manufacturing the same - A semiconductor device includes a silicon substrate having a (110)-oriented surface, a PN column layer disposed on the (110)-oriented surface, a channel-forming layer disposed on the PN column layer, a plurality of source regions disposed at a surface portion of the channel-forming layer, and gate electrodes penetrate through the channel-forming layer. The PN column layer includes first columns having a first conductivity type and second columns having a second conductivity type which are alternately arranged in such a manner that the first columns contact the second columns on (111)-oriented surfaces, respectively. The gate electrodes are adjacent to the source regions, respectively, and each of the gate electrodes has side surfaces that cross the contact surfaces of the first columns and the second columns in a plane of the silicon substrate. | 11-20-2008 |
20080283913 | Semiconductor device - A semiconductor device includes a semiconductor substrate and a super junction structure on the substrate. The super junction structure is constructed with p-type and n-type column regions that are alternately arranged. A p-type channel layer is formed to a surface of the super junction structure. A trench gate structure is formed to the n-type column region. An n+-type source region is formed to a surface of the channel layer near the trench structure. A p+-type region is formed to the surface of the channel layer between adjacent n+-type source regions. A p-type body region is formed in the channel layer between adjacent trench gate structures and in contact with the p+-type region. Avalanche current is caused to flow from the body region to a source electrode via the p+-type region without passing through the n+-type source region. | 11-20-2008 |
20080283914 | Semiconductor device and method for manufacturing the same - An impurity buried layer constructed by two buried regions formed by impurities of identical type exist, a buried region formed by an impurity having a slow diffusion speed is provided on the entire surface of a transistor formation region, and a buried region formed by an impurity having a fast diffusion speed is provided inwardly from beneath the inside end of an isolation insulating film serving as a region on which an electric field concentrates partially. | 11-20-2008 |
20080296678 | METHOD FOR FABRICATING HIGH VOLTAGE DRIFT IN SEMICONDUCTOR DEVICE - A drift of a high voltage transistor formed using an STI (shallow trench isolation). The method for forming a high voltage drift of a semiconductor device can include forming a pad insulating film on a semiconductor substrate having a high voltage well; and then opening a region of the semiconductor substrate by patterning a portion of the pad insulating film; and then etching the opened region of the semiconductor substrate to form a trench; and then forming a first drift in the semiconductor substrate by performing a first ion implantation process using the patterned pad insulating film as a mask; and then forming a device isolation film by gap-filling a device isolation material in the trench; and then removing the patterned pad insulating film and then forming a gate electrode overlapping a portion of the device isolation film; and then forming a second drift connected to the first drift by performing a second ion implantation process in a region of the semiconductor substrate exposed by the gate electrode. | 12-04-2008 |
20080315307 | HIGH VOLTAGE DEVICE - A high voltage device includes a semiconductor substrate and a gate. The semiconductor substrate includes a first doped region having a first conductive type, a second doped region having a second conductive type, a third doped region having the second conductive type, a fourth doped region surrounding the third doped region and having the second conductive type, and a fifth doped region surrounding the third doped region and having the second conductive type. The gate is disposed between two spacers to separate the second doped region from the third doped region, so as to control the conduction of the second doped region and the third doped region. In the high voltage device, the fifth doped region surrounds the third doped region, so as to strengthen the coverage for the third doped region and improve the ion concentration uniformity on the bottom of the third doped region to reduce leakage current. | 12-25-2008 |
20090001459 | High power semiconductor device capable of preventing parasitical bipolar transistor from turning on - A high power semiconductor device capable of preventing parasitical bipolar transistor from turning on comprises a first conduction type drain region, a first conduction type epitaxial region formed on the first conduction type drain region, a plurality of second conduction type body regions formed on the surface of the epitaxial region, at least a first conduction type source region formed on the surface of the body regions, a source electrode contact region formed on the surface of the body regions and overlapping the source region and having at least one end longer than one end of the source region, and a plurality of gate electrodes staggered with the source electrode contact region and formed on the body regions and the epitaxial region. | 01-01-2009 |
20090001460 | PROCESS FOR MANUFACTURING A MULTI-DRAIN ELECTRONIC POWER DEVICE INTEGRATED IN SEMICONDUCTOR SUBSTRATE AND CORRESPONDING DEVICE - A process manufactures a multi-drain power electronic device on a semiconductor substrate of a first conductivity type and includes: forming a first semiconductor layer of the first conductivity type on the substrate, forming a second semiconductor layer of a second conductivity type on the first semiconductor layer, forming, in the second semiconductor layer, a first plurality of implanted regions of the first conductivity type using a first implant dose, forming, above the second semiconductor layer, a superficial semiconductor layer of the first conductivity type, forming in the surface semiconductor layer body regions of the second conductivity type, thermally diffusing the implanted regions to form a plurality of electrically continuous implanted column regions along the second semiconductor layer, the plurality of implanted column regions delimiting a plurality of column regions of the second conductivity type aligned with the body regions. | 01-01-2009 |
20090014792 | POWER SEMICONDUCTOR DEVICE - A power semiconductor device comprising an array of cells distributed over a surface of a substrate, the source regions of the individual cells of the array comprising a plurality of source region branches each extending laterally outwards towards at least one source region branch of an adjacent cell and presenting juxtaposed ends, the base regions of the individual cells of the array comprising a corresponding plurality of base region branches merging together adjacent and between the juxtaposed ends of the source region branches to form a single base region surrounding the source regions of the individual cells of the array in the substrate. The junctions between the merged base region and the drain region are solely concave laterally and define rounded current conduction path areas for the on-state of the device between adjacent cells that are depleted in the off-state of the device to block flow of current from the source regions to the drain electrode. Floating voltage regions of opposite conductivity type to the drain region are buried in the substrate beneath the merged base region and present features corresponding to and juxtaposed with features of the merged base region in each cell so that the voltage of the floating voltage regions tends to the voltage of the source regions when depletion layers blocking the current conduction paths reach the floating voltage regions, whereby to enhance the development of the depletion layers. The features of the floating voltage regions define rings of the opposite conductivity type to the drain region that surround the current conduction paths of respective cells. The floating voltage regions include respective islands situated within the current conduction paths. | 01-15-2009 |
20090032871 | INTEGRATED CIRCUIT WITH INTERCONNECTED FRONTSIDE CONTACT AND BACKSIDE CONTACT - An integrated circuit includes a substrate including an active area, a first metal contact contacting a frontside of the active area, a second metal contact contacting a backside of the active area, and a wafer-level deposited metal structure positioned adjacent to an edge of the active area and interconnecting the first and second contacts. | 02-05-2009 |
20090085111 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided is a semiconductor device and a method of manufacturing a semiconductor device. In the semiconductor device, high-concentration n type impurity regions are formed respectively below gate electrodes. By setting a gate length to be smaller than a depth of channel regions, pn junction interfaces formed of adjacent side faces of the n type impurity regions and the channel regions can be substantially vertical to a top surface of a base. With this configuration, even when reduction in size is achieved in a super junction structure, a distance between the channel regions (i.e. a current path below the gate electrode) is not reduced unnecessarily. Accordingly, an increase in resistance can be prevented. In addition, depletion layers uniformly expand in the n type semiconductor regions, and impurity concentration of the regions can be increased consequently. Accordingly, reduction in resistance can be achieved. | 04-02-2009 |
20090090968 | SEMICONDUCTOR APPARATUS - A semiconductor apparatus includes: a semiconductor layer of a first conductivity type; a first main electrode provided on a frontside of the semiconductor layer; a second main electrode provided on a backside of the semiconductor layer, the backside being opposite to the frontside; a plurality of semiconductor regions of a second conductivity type provided in a surface portion of the semiconductor layer in a edge termination region outside a device region in which a main current path is formed in a vertical direction between the first main electrode and the second main electrode; and a plurality of buried semiconductor regions of the second conductivity type provided in the semiconductor layer in the edge termination region, spaced from the semiconductor regions, and spaced from each other. The buried semiconductor regions provided substantially at the same depth from the frontside of the semiconductor layer are numbered as first, second, . . . , n-th, sequentially from the one nearer to the device region, the n-th buried semiconductor regions provided at different depths from the frontside of the semiconductor layer are displaced toward the device region relative to the corresponding n-th semiconductor region, and the buried semiconductor region located deeper from the frontside of the semiconductor layer is displaced more greatly toward the device region. | 04-09-2009 |
20090096021 | SEMICONDUCTOR DEVICE HAVING DEEP TRENCH CHARGE COMPENSATION REGIONS AND METHOD - In one embodiment, a semiconductor device is formed in a body of semiconductor material. The semiconductor device includes a charge compensating trench formed in proximity to active portions of the device. The charge compensating trench includes a trench filled with various layers of semiconductor material including opposite conductivity type layers. | 04-16-2009 |
20090134458 | Method of Manufacturing a Trench Transistor Having a Heavy Body Region - A trenched field effect transistor is provided that includes (a) a semiconductor substrate, (b) a trench extending a predetermined depth into the semiconductor substrate, (c) a pair of doped source junctions, positioned on opposite sides of the trench, (d) a doped heavy body positioned adjacent each source junction on the opposite side of the source junction from the trench, the deepest portion of the heavy body extending less deeply into said semiconductor substrate than the predetermined depth of the trench, and (e) a doped well surrounding the heavy body beneath the heavy body. | 05-28-2009 |
20090315108 | SEMICONDUCTOR DEVICE WITH FIELD ELECTRODE AND METHOD - A semiconductor device with a field electrode and method. One embodiment provides a controllable semiconductor device including a control electrode for controlling the semiconductor device and a field electrode. The field electrode includes a number of longish segments which extend in a first lateral direction and which run substantially parallel to one another. The control electrode includes a number of longish segments extending in a second lateral direction and running substantially parallel to one another, wherein the first lateral direction is different from the second lateral direction. | 12-24-2009 |
20090321826 | METHOD FOR MANUFACTURING A HIGH INTEGRATION DENSITY POWER MOS DEVICE - A process for the realization of a high integration density power MOS device includes the following steps of: providing a doped semiconductor substrate with a first type of conductivity; forming, on the substrate, a semiconductor layer with lower conductivity; forming, on the semiconductor layer, a dielectric layer of thickness comprised between 3000 and 13000 A (Angstroms); depositing, on the dielectric layer, a hard mask layer; masking the hard mask layer by means of a masking layer; etching the hard mask layers and the underlying dielectric layer for defining a plurality of hard mask portions to protect said dielectric layer; removing the masking layer; isotropically and laterally etching said dielectric layer forming lateral cavities in said dielectric layer below said hard mask portions; forming a gate oxide of thickness comprised between 150 and 1500 A (Angstroms) depositing a conductor material in said cavities and above the same to form a recess spacer, which is totally aligned with a gate structure comprising said thick dielectric layer and said gate oxide. | 12-31-2009 |
20100006934 | Gate Electrodes of HVMOS Devices Having Non-Uniform Doping Concentrations - A semiconductor structure includes a semiconductor substrate; a first high-voltage well (HVW) region of a first conductivity type overlying the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type overlying the semiconductor substrate and laterally adjoining the first well region; a gate dielectric extending from over the first well region to over the second well region; a drain region in the second well region; a source region on an opposite side of the gate dielectric than the drain region; and a gate electrode on the gate dielectric. The gate electrode includes a first portion directly over the second well region, and a second portion directly over the first well region. The first portion has a first impurity concentration lower than a second impurity concentration of the second portion. | 01-14-2010 |
20100006935 | Breakdown Voltages of Ultra-High Voltage Devices By Forming Tunnels - A semiconductor structure includes a semiconductor substrate of a first conductivity type; a pre-high-voltage well (pre-HVW) in the semiconductor substrate, wherein the pre-HVW is of a second conductivity type opposite the first conductivity type; a high-voltage well (HVW) over the pre-HVW, wherein the HVW is of the second conductivity type; a field ring of the first conductivity type occupying a top portion of the HVW, wherein at least one of the pre-HVW, the HVW, and the field ring comprises at least two tunnels; an insulation region over the field ring and a portion of the HVW; a drain region in the HVW and adjacent the insulation region; a gate electrode over a portion the insulation region; and a source region on an opposite side of the gate electrode than the drain region. | 01-14-2010 |
20100013011 | VERTICAL MOSFET WITH THROUGH-BODY VIA FOR GATE - In an embodiment, set forth by way of example and not limitation, a MOSFET power chip includes a first vertical MOSFET and a second vertical MOSFET. The first vertical MOSFET includes a semiconductor body having a first surface defining a source and a second surface defining a drain and a gate structure formed in the semiconductor body near the second surface. A via is formed within the semiconductor body and is substantially perpendicular to the first surface and the second surface. The via has a first end electrically coupled to the first surface and a second end electrically coupled to the gate structure. The second vertical MOSFET includes a semiconductor body having a first surface defining a source, a second surface defining a drain and a gate structure formed in the semiconductor body near the first surface. The first surface of the first vertical MOSFET and the second surface of the second vertical MOSFET are substantially co-planar and an electrically conductive can substantially surrounds the MOSFETS and shorts the first surface of the first vertical MOSFET to the second surface of the second vertical MOSFET. | 01-21-2010 |
20100038712 | POWER SEMICONDUCTOR DEVICE - A semiconductor device according to an embodiment of the present invention includes a device part and a terminal part. The device includes a first semiconductor layer, and second and third semiconductor layers formed on the first semiconductor layer, and alternately arranged along a direction parallel to a surface of the first semiconductor layer, wherein the device part is provided with a first region and a second region, each of which includes at least one of the second semiconductor layers and at least one of the third semiconductor layers, and with regard to a difference value ΔN (=N | 02-18-2010 |
20100044791 | Configurations and methods for manufacturing charge balanced devices - This invention discloses a semiconductor power device disposed in a semiconductor substrate and the semiconductor substrate has a plurality of deep trenches. The deep trenches are filled with an epitaxial layer thus forming a top epitaxial layer covering areas above a top surface of the deep trenches covering over the semiconductor substrate. The semiconductor power device further includes a plurality of transistor cells disposed in the top epitaxial layer whereby a device performance of the semiconductor power device is dependent on a depth of the deep trenches and not dependent on a thickness of the top epitaxial layer. Each of the plurality of transistor cells includes a trench DMOS transistor cell having a trench gate opened through the top epitaxial layer and filled with a gate dielectric material. | 02-25-2010 |
20100044792 | Charged balanced devices with shielded gate trench - This invention discloses a semiconductor power device disposed on a semiconductor substrate includes a plurality of deep trenches with an epitaxial layer filling said deep trenches and a simultaneously grown top epitaxial layer covering areas above a top surface of said deep trenches over the semiconductor substrate. A plurality of trench MOSFET cells disposed in said top epitaxial layer with the top epitaxial layer functioning as the body region and the semiconductor substrate acting as the drain region whereby a super-junction effect is achieved through charge balance between the epitaxial layer in the deep trenches and regions in the semiconductor substrate laterally adjacent to the deep trenches. Each of the trench MOSFET cells further includes a trench gate and a gate-shielding dopant region disposed below and substantially aligned with each of the trench gates for each of the trench MOSFET cells for shielding the trench gate during a voltage breakdown. | 02-25-2010 |
20100044793 | SEMICONDUCTOR DEVICE HAVING A PLURALITY OF MISFETS FORMED ON A MAIN SURFACE OF A SEMICONDUCTOR SUBSTRATE - In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs | 02-25-2010 |
20100072547 | TECHNIQUES FOR CURVATURE CONTROL IN POWER TRANSISTOR DEVICES - Techniques for processing power transistor devices are provided. In one aspect, the curvature of a power transistor device comprising a device film formed on a substrate is controlled by thinning the substrate, the device having an overall residual stress attributable at least in part to the thinning step, and applying a stress compensation layer to a surface of the device film, the stress compensation layer having a tensile stress sufficient to counterbalance at least a portion of the overall residual stress of the device. The resultant power transistor device may be part of an integrated circuit. | 03-25-2010 |
20100155840 | POWER MOSFET AND FABRICATING METHOD THEREOF - A power MOSFET is disclosed. In the power MOSFET, an epitaxial layer doped with dopants of a first conduction type is formed on a substrate. A first trench extends downward from a first region of the top surface of the epitaxial layer, and a second trench extends downward from the bottom of the first trench. The width of the second trench is smaller than that of the first trench. The first well is located adjacent to the bottom of the first trench and the bottom of the second trench, and is doped with dopants of a second conduction type. The second well extends downward from a second region of the top surface and is doped with dopants of the second conduction type. The first well and the second well are separated. A source region doped with dopants of the first conduction type is formed in the second well. | 06-24-2010 |
20100163987 | Semiconductor device - Semiconductor device including semiconductor layer, first impurity region on surface layer portion of semiconductor layer, body region at interval from first impurity region, second impurity region on surface layer portion of body region, field insulating film at interval from second impurity region, gate insulating film on surface of the semiconductor layer between second impurity region and field insulating film, gate electrode on gate insulating film, first floating plate as ring on field insulating film, and second floating plate as ring on same layer above first floating plate. First and second floating plates formed by at least three plates so that peripheral lengths at centers in width direction thereof are entirely different from one another, alternately arranged in plan view so that one having relatively smaller peripheral length is stored in inner region of one having relatively larger peripheral length, and formed to satisfy relational expression: L/d=constant. | 07-01-2010 |
20100181617 | Method for Forming a Patterned Thick Metallization atop a Power Semiconductor Chip - A method is disclosed for forming a patterned thick metallization atop a semiconductor chip wafer. The method includes fabricating a nearly complete semiconductor chip wafer ready for metallization; depositing a bottom metal layer of sub-thickness TK | 07-22-2010 |
20100230750 | POWER SEMICONDUCTOR DEVICE - A power semiconductor device includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of the first conductivity type and a third semiconductor layer of a second conductivity type formed on the first semiconductor layer and alternately arranged along at least one direction parallel to a surface of the first semiconductor layer; a first main electrode; a fourth semiconductor layer of the second conductivity type selectively formed in a surface of the second semiconductor layer and a surface of the third semiconductor layer; a fifth semiconductor layer of the first conductivity type selectively formed in a surface of the fourth semiconductor layer; a second main electrode; and a control electrode. At least one of the second and the third semiconductor layers has a dopant concentration profile along the one direction, the dopant concentration profile having a local minimum at a position except both ends thereof. | 09-16-2010 |
20100327350 | ELECTRONIC DEVICE INCLUDING AN INTEGRATED CIRCUIT WITH TRANSISTORS COUPLED TO EACH OTHER - An electronic device, including an integrated circuit, can include a buried conductive region and a semiconductor layer overlying the buried conductive region, wherein the semiconductor layer has a primary surface and an opposing surface lying closer to the buried conductive region. The electronic device can also include a first doped region and a second doped region spaced apart from each other, wherein each is within the semiconductor layer and lies closer to primary surface than to the opposing surface. The electronic device can include current-carrying electrodes of transistors. A current-carrying electrode of a particular transistor includes the first doped region and is a source or an emitter and is electrically connected to the buried conductive region. Another current-carrying electrode of a different transistor includes the second doped region and is a drain or a collector and is electrically connected to the buried conductive region. | 12-30-2010 |
20110001189 | Power Semiconductor Devices Having Termination Structures - A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material. The first termination trench can be lined with a layer of dielectric material that is thicker than the dielectric material lining the sidewalls of the active trench, and is substantially filled with conductive material. | 01-06-2011 |
20110068397 | POWER DEVICES AND ASSOCIATED METHODS OF MANUFACTURING - Power devices and associated methods of manufacturing are disclosed herein. In one embodiment, a power device includes a drain at a first end, a source and a gate at a second end, and a drift region between the drain at the first end and the source at the second end. The drift region includes a p-type dopant column juxtaposed with an n-type dopant column. The p-type dopant column and the n-type dopant column together have a width less than 12 microns. | 03-24-2011 |
20110089491 | POWER MOS ELECTRONIC DEVICE AND CORRESPONDING REALIZING METHOD - Power MOS device of the type comprising a plurality of elementary power MOS transistors having respective gate structures and comprising a gate oxide with double thickness having a thick central part and lateral portions of reduced thickness. Such device exhibiting gate structures comprising first gate conductive portions overlapped onto said lateral portions of reduced thickness to define, for the elementary MOS transistors, the gate electrodes, as well as a conductive structure or mesh. Such conductive structure comprising a plurality of second conductive portions overlapped onto the thick central part of gate oxide and interconnected to each other and to the first gate conductive portions by means of a plurality of conducive bridges. | 04-21-2011 |
20110108915 | SEMICONDUCTOR DEVICE - According to one embodiment, a semiconductor device includes a semiconductor substrate of a first conductivity type, an element isolation insulator, a source layer of a second conductivity type, a drain layer of the second conductivity type, a contact layer of the first conductivity type and a gate electrode. The element isolation insulator is formed on the semiconductor substrate. The source layer is formed on the semiconductor substrate and is in contact with a side surface of the element isolation insulator. The drain layer is formed on the semiconductor substrate, is in contact with the side surface, and is spaced from the source layer. The contact layer is formed between the source layer and the drain layer. The gate electrode is provided on the element isolation insulator along the side surface. | 05-12-2011 |
20110115017 | LDMOS transistor with asymmetric spacer as gate - The present invention provides a laterally diffused metal oxide semiconductor (LDMOS) transistor and a method for fabricating it. The LDMOS transistor includes an n-type epitaxial layer formed on a p-type substrate, and an asymmetric conductive spacer which acts as its gate. The LDMOS transistor also includes a source and a drain region on either side of the asymmetric conductive spacer, and a channel region formed by ion-implantation on the asymmetric conductive spacer. The height of the asymmetric conductive spacer increases from the source region to the drain region. The channel region is essentially completely under the asymmetric conductive spacer and has smaller length than that of the channel region of the prior art LDMOS transistors. The LDMOS transistor of the present invention also includes a field oxide layer surrounding the active region of the transistor, and a thin dielectric layer isolating the asymmetric conductive spacer from the n-type epitaxial layer. | 05-19-2011 |
20110115018 | MOS POWER TRANSISTOR - A split gate power transistor includes a laterally configured power MOSFET including a doped silicon substrate, a gate oxide layer formed on a surface of the substrate, and a split polysilicon layer formed over the gate oxide layer. The polysilicon layer is cut into two electrically isolated portions, a first portion forming a polysilicon gate positioned over a channel region of the substrate, and a second portion forming a polysilicon field plate formed over a portion of a transition region of the substrate. The field plate also extends over a drift region of the substrate, where the drift region is under a field oxide filled trench formed in the substrate. The field plate is electrically coupled to a source of the split gate power transistor. | 05-19-2011 |
20110115019 | CMOS COMPATIBLE LOW GATE CHARGE LATERAL MOSFET - A split gate power transistor includes a laterally configured power MOSFET including a doped silicon substrate, a gate oxide layer formed on a surface of the substrate, and a split polysilicon layer formed over the gate oxide layer. The polysilicon layer is cut into two electrically isolated portions, a first portion forming a switching gate positioned over a first portion of a channel region of the substrate, and a second portion forming a static gate formed over a second portion of the channel region and a transition region of the substrate. The static plate also extends over a drift region of the substrate, where the drift region is under a field oxide filled trench formed in the substrate. A switching voltage is applied to the switching gate and a constant voltage is applied to the static gate. | 05-19-2011 |
20110133278 | SEMICONDUCTOR DEVICE - A single crystal semiconductor layer of a first conduction type is disposed on a surface of a semiconductor substrate. A plurality of trenches are provided in the semiconductor layer to form a plurality of first semiconductor regions of the first conduction type at intervals in a direction parallel to the surface. An epitaxial layer is buried in the plurality of trenches to form a plurality of second semiconductor regions of a second conduction type. The plurality of second semiconductor regions each includes an outer portion with a high impurity concentration formed against an inner wall of the trench, and an inner portion with a low impurity concentration formed inner than the outer portion. | 06-09-2011 |
20110163378 | LAYOUT STRUCTURE OF POWER MOS TRANSISTOR - The present invention discloses a layout structure of a transistor unit of a power MOS transistor, wherein the layout structure comprises a drain area, a plurality of body areas, a plurality of source areas and a gate area. The plurality of body areas surround the drain area. The plurality of source areas extend from the perimeters of the plurality of body areas in an anisotropic manner. The gate area is disposed between the drain area and the plurality of source areas. The contacts of the drain area, the plurality of body areas and the plurality of source areas are all disposed on the same side of the layout structure. | 07-07-2011 |
20110169080 | CHARGE BALANCE POWER DEVICE AND MANUFACTURING METHOD THEREOF - A charge-balance power device and a method of manufacturing the charge-balance power device are provided. The charge-balance power device includes: a charge-balance body region in which one or more first conductive type pillars as a first conductive type impurity region and one or more second conductive type pillars as a second conductive type impurity region are arranged; a first conductive type epitaxial layer that is formed on the charge-balance body region; and a transistor region that is formed in the first conductive type epitaxial layer. With this invention, it is possible to form the same charge-balance body region regardless of the structure of the transistor region formed on the top side of wafer. | 07-14-2011 |
20110169081 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - According to one embodiment, a semiconductor device includes a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type. The first semiconductor layer is formed with a trench. The second semiconductor layer is buried in the trench, and includes a hollow portion. A length of the hollow portion along depth direction of the trench is 5 μm or less or 15 μm or more. | 07-14-2011 |
20110210392 | POWER SEMICONDUCTOR DEVICE - A structure of a power semiconductor device, in which a P-well region having a large area and a gate electrode are opposed to each other through a field oxide film having a larger thickness than that of a gate insulating film such that the P-well region having a large area and the gate electrode are not opposed to each other through the gate insulating film, or the gate electrode is not provided above the gate insulating film that includes the P-well region having a large area therebelow. | 09-01-2011 |
20110220999 | SEMICONDUCTOR DEVICE AND A METHOD OF MANUFACTURING THE SAME - In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs | 09-15-2011 |
20110227155 | INTEGRATION OF A SENSE FET INTO A DISCRETE POWER MOSFET - A main FET and one or more sense FETs are formed in a common substrate. The main FET and sense FET(s) include a source terminal, a gate terminal and a drain terminal. The common gate pad connects the gate terminals of the main FET and sense FET(s). An electrical isolation may be between the gate terminals of the main FET and the sense FET(s). A sense pad in electrical contact with the source of the one or more sense FETs does not overlap an area of the device containing the sense FET(s). It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. | 09-22-2011 |
20120086076 | SUPER-JUNCTION SEMICONDUCTOR DEVICE - Provision of a super-junction semiconductor device capable of reducing rises in transient on-resistance at the time of repeated switching operation. A super-junction structure is provided that has a striped parallel surface pattern, where a super-junction stripe and a MOS cell | 04-12-2012 |
20120098064 | SEMICONDUCTOR DEVICE - A semiconductor device is disclosed wherein a peripheral region with a high breakdown voltage and high robustness against induced surface charge is manufactured using a process with high mass productivity. The device has n-type drift region and p-type partition region of layer-shape deposited in a vertical direction to one main surface of n-type semiconductor substrate with high impurity concentration form as drift layer, alternately adjacent parallel pn layers in a direction along one main surface. Active region through which current flows and peripheral region enclosing the active region include parallel pn layers. P-type partition region has impurity concentration distribution where concentration decreases from surface toward substrate side, n-type surface region disposed on parallel pn layers in peripheral region, p-type guard rings disposed separately from each other on n-type surface region, and field plate disposed on inner and outer circumferential sides of p-type guard rings, and electrically connected. | 04-26-2012 |
20120248534 | STRUCTURES FOR POWER TRANSISTOR AND METHODS OF MANUFACTURE - The invention discloses a manufacture method and structure of a power transistor, which comprises a lower electrode, a substrate, a drift region, two first conductive regions, two second conductive regions, two gate units, an isolation structure and an upper electrode; wherein the two second conductive region are between the two first conductive regions and the drift region; the two gate units are on the two second conductive regions; the isolation structure covers the surface of the two gate units; the upper electrode covers; the surface of the isolation structure and connects to the two first conductive regions and the two second conductive regions electrically. When the substrate is of the first conductive type, the structure can be used as MOSFET. When the substrate is of the second conductive type, the structure can be used as IGBT. This structure has a small gate electrode area, which leads to less Qg, Qgd and Rdson and improves device performance. The manufacture process is simple and the cost is relatively low. | 10-04-2012 |
20120261752 | POWER LDMOS DEVICE AND HIGH VOLTAGE DEVICE - A power LDMOS device including a substrate, source and drain regions, gates and trench insulating structures is provided. The substrate has a finger tip area, a finger body area and a palm area. The source regions are in the substrate in the finger body area and further extend to the finger tip area. The neighboring source regions in the finger tip area are connected. The outmost two source regions further extend to the palm area and are connected. The drain regions are in the substrate in the finger body area and further extend to the palm area. The neighboring drain regions in the palm area are connected. The source and drain regions are disposed alternately. A gate is disposed between the neighboring source and drain regions. The trench insulating structures are in the substrate in the palm area and respectively surround ends of the drain regions. | 10-18-2012 |
20120273884 | Superjunction Structures for Power Devices and Methods of Manufacture - A power device includes a semiconductor region which in turn includes a plurality of alternately arranged pillars of first and second conductivity type. Each of the plurality of pillars of second conductivity type further includes a plurality of implant regions of the second conductivity type arranged on top of one another along the depth of pillars of second conductivity type, and a trench portion filled with semiconductor material of the second conductivity type directly above the plurality of implant regions of second conductivity type. | 11-01-2012 |
20120299094 | SEMICONDUCTOR DEVICE HAVING A SUPER JUNCTION STRUCTURE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device having a super junction and a method of manufacturing the semiconductor device capable of obtaining a high breakdown voltage are provided, whereby charge balance of the super junction is further accurately controlled in the semiconductor device that is implemented by an N-type pillar and a P-type pillar. The semiconductor device includes a semiconductor substrate; and a blocking layer including a first conductive type pillar and a second conductive type pillar that extend in a vertical direction on the semiconductor substrate and that are alternately arrayed in a horizontal direction, wherein, in the blocking layer, a density profile of a first conductive type dopant may be uniform in the horizontal direction, and the density profile of the first conductive type dopant may vary in the vertical direction. | 11-29-2012 |
20130140633 | EDGE TERMINATION FOR SUPER JUNCTION MOSFET DEVICES - In one embodiment, a Super Junction metal oxide semiconductor field effect transistor (MOSFET) device can include a substrate and a charge compensation region located above the substrate. The charge compensation region can include a plurality of columns of P type dopant within an N type dopant region. In addition, the Super Junction MOSFET can include a termination region located above the charge compensation region and the termination region can include an N− type dopant. Furthermore, the Super Junction MOSFET can include an edge termination structure. The termination region includes a portion of the edge termination structure. | 06-06-2013 |
20130161742 | SEMICONDUCTOR DEVICE AND FABRICATING METHOD THEREOF - A semiconductor device and a fabricating method thereof are provided. The semiconductor device includes a substrate, and a super junction area that is disposed above the substrate. The super junction area may include pillars of different doping types that are alternately disposed. One of the pillars of the super junction area may have a doping concentration that gradually decreases and then increases from bottom to top in a vertical direction of the semiconductor device. | 06-27-2013 |
20130181289 | SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor substrate having a diffusion region. A transistor is formed within the diffusion region. A power rail is disposed outside the diffusion region. A contact layer is disposed above the substrate and below the power rail. A via is disposed between the contact layer and the power rail to electrically connect the contact layer to the power rail. The contact layer includes a first length disposed outside the diffusion region and a second length extending from the first length into the diffusion region and electrically connected to the transistor. | 07-18-2013 |
20130249001 | Semiconductor Arrangement with a Superjunction Transistor and a Further Device Integrated in a Common Semiconductor Body - A semiconductor arrangement includes a semiconductor body and a power transistor arranged in a first device region of the semiconductor body. The power transistor includes at least one source region, a drain region, and at least one body region, at least one drift region of a first doping type and at least one compensation region of a second doping complementary to the first doping type, and a gate electrode arranged adjacent to the at least one body region and dielectrically insulated from the body region by a gate dielectric. The semiconductor arrangement also includes a further semiconductor device arranged in a second device region of the semiconductor body. The second device region includes a well-like structure of the second doping type surrounding a first semiconductor region of the first doping type. The further semiconductor device includes device regions arranged in the first semiconductor region. | 09-26-2013 |
20140097491 | Dielectrically Terminated Superjunction FET - A dielectrically-terminated superjunction field-effect transistor (FET) architecture for use in high voltage applications. The architecture adds a dielectric termination to general features of a high voltage superjunction process. The dielectrically-terminated FET (DFET) is more compact and more manufacturable than a conventional, semiconductor-terminated superjunction FET. | 04-10-2014 |
20140246722 | Power MOS Transistor with Improved Metal Contact - A power MOS field effect transistor (FET) has a plurality of transistor cells, each cell having a source region and a drain region to be contacted through a surface of a silicon wafer die. A first dielectric layer is disposed on the surface of the silicon wafer die and a plurality of grooves are formed in the first dielectric layer above the source regions and drain regions, respectively and filled with a conductive material. A second dielectric layer is disposed on a surface of the first dielectric layer and has openings to expose contact areas to said grooves. A metal layer is disposed on a surface of the second dielectric layer and filling the openings, wherein the metal layer is patterned and etched to form separate metal wires connecting each drain region and each source region of the plurality of transistor cells, respectively through the grooves. | 09-04-2014 |
20150008519 | POWER INTEGRATED DEVICE HAVING SURFACE CORRUGATIONS - According to a process for manufacturing an integrated power device, projections and depressions are formed in a semiconductor body that extend in a first direction and are arranged alternated in succession in a second direction, transversely to the first direction. Further provided are a first conduction region and a second conduction region. The first conduction region and the second conduction region define a current flow direction parallel to the first direction, along the projections and the depressions. To form the projections and the depressions, portions of the semiconductor body that extend in the first direction and correspond to the depressions, are selectively oxidized. | 01-08-2015 |
20150295026 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device includes: a plurality of stacked semiconductor layers; a plurality of composite doped regions separately and parallelly disposed in a portion of the semiconductor layers along a first direction; a gate structure disposed over a portion of the semiconductor layers along a second direction, wherein the gate structure covers a portion of the composite doped regions; a first doped region formed in the most top semiconductor layer along the second direction and being adjacent to a first side of the gate structure; and a second doped region formed in the most top semiconductor layer along the second direction and being adjacent to a second side of the gate structure opposite to the first side thereof. | 10-15-2015 |
20150357466 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device includes a semiconductor substrate and a semiconductor layer formed thereover. A gate structure is disposed over the semiconductor layer, and a first doped region is disposed in the semiconductor layer adjacent to a first side of the gate structure. A second doped region is disposed in the semiconductor layer adjacent to a second side of the gate structure opposite to the first side. A third doped region is disposed in the first doped region. A fourth doped region is disposed in the second doped region. A plurality of fifth doped regions is disposed in the second doped region. A sixth doped region is disposed in the semiconductor layer under the first doped region. A conductive contact is formed in the third doped region and the first doped region. | 12-10-2015 |
20160126349 | SEGMENTED POWER TRANSISTOR - A power transistor includes multiple substantially parallel transistor fingers, where each finger includes a conductive source stripe and a conductive drain stripe. The power transistor also includes multiple substantially parallel conductive connection lines, where each conductive connection line connects at least one source stripe to a common source connection or at least one drain stripe to a common drain connection. The conductive connection lines are disposed substantially perpendicular to the transistor fingers. At least one of the source or drain stripes is segmented into multiple portions, where adjacent portions are separated by a cut location having a higher electrical resistance than remaining portions of the at least one segmented source or drain stripe. | 05-05-2016 |
20160181361 | Semiconductor Devices with Cavities | 06-23-2016 |
20160204192 | Semiconductor Device and Manufacturing Method for the Semiconductor Device | 07-14-2016 |
20190148488 | SEMICONDUCTOR DEVICE | 05-16-2019 |