Class / Patent application number | Description | Number of patent applications / Date published |
257294000 | With shield, filter, or lens | 50 |
20080224192 | PACKAGING METHODS FOR IMAGER DEVICES - An imager device is disclosed which includes at least one photosensitive element positioned on a front surface of a substrate and a conductive structure extending at least partially through an opening defined in the substrate to conductively couple to an electrical contact or bond pad on the first surface. An insulating material of a conductive laminate film and/or a mold compound material is positioned within the opening between at least a portion of the conductive structure and the substrate. Also disclosed is a device that comprises a substrate and a plurality of openings in the substrate, wherein each of the openings is adapted to be positioned above an imager device when the substrate is positioned above and secured to an imager substrate. A method of forming an imager device is also disclosed. | 09-18-2008 |
20080224193 | CMOS image sensor and method for fabricating the same - A CMOS image sensor and method for fabricating the same improve image characteristics by eliminating the thickness of a planarization layer. The CMOS image sensor includes a semiconductor substrate; a plurality of active devices, provided in a predetermined surface of the semiconductor substrate, for generating electrical charges according to an amount of incident light; an insulating interlayer formed on an entire surface of the semiconductor substrate including the plurality of active devices; a color filter layer formed on the insulating interlayer, the color filter layer comprised of red, green, and blue color filter patterns for respectively filtering light according to wavelength, the color filter patterns arranged to correspond to the plurality of active devices; and a plurality of microlenses formed on the color filter layer, wherein the color filter layer is planarized so that each color filter pattern of the color filter layer is imparted with an equal height for receiving the plurality of microlenses. | 09-18-2008 |
20080246066 | Optic wafer with reliefs, wafer assembly including same and methods of dicing wafer assembly - An optic wafer for assembly with an imager wafer, the optic wafer comprising a plurality of reliefs in a surface thereof coincident with street locations separating mutually adjacent optic element locations. A wafer assembly that includes the optic wafer and an imager wafer and methods of dicing a wafer assembly are also disclosed. | 10-09-2008 |
20080296645 | Solid-state imaging device and manufacturing method thereof - A solid-state imaging device includes a photoelectric conversion unit, a transistor, and an element separation region separating the photoelectric conversion unit and the transistor. The photoelectric conversion unit and the transistor constitute a pixel. The element separation region is formed of a semiconductor region of a conductivity type opposite to that of a source region and a drain region of the transistor. A part of a gate electrode of the transistor protrudes toward the element separation region side beyond an active region of the transistor. An insulating film having a thickness substantially the same as that of a gate insulating film of the gate electrode of the transistor is formed on the element separation region continuing from a part thereof under the gate electrode of the transistor to a part thereof continuing from the part under the gate electrode of the transistor. | 12-04-2008 |
20090014764 | IMAGE SENSOR WITH AN IMPROVED SENSITIVITY - An embodiment of an image sensor comprising photosensitive cells, each photosensitive cell comprising at least one charge storage means formed at least partly in a substrate of a semiconductor material. The substrate comprises, for at least one first photosensitive cell, a portion of a first silicon and germanium alloy having a first germanium concentration, possibly zero, and for at least one second photosensitive cell, a portion of a second silicon and germanium alloy having a second germanium concentration, non-zero, greater than the first germanium concentration. | 01-15-2009 |
20090020796 | PHOTOELECTRIC CONVERSION DEVICE AND IMAGING SYSTEM USING PHOTOELECTRIC CONVERSION DEVICE - A photoelectric conversion device includes photoelectric conversion elements and element isolation regions, both of which are arranged on a semiconductor substrate. The photoelectric conversion device further includes a plurality of interlayer insulation layers including a first interlayer insulation layer arranged nearest to the semiconductor substrate, and a second interlayer insulation layer arranged to cover the first interlayer insulation layer. Gaps extending from at least the second interlayer insulation layer to the first interlayer insulation layer are arranged in first and second interlayer insulation layer regions corresponding to the element isolation regions. | 01-22-2009 |
20090050946 | CAMERA MODULE, ARRAY BASED THEREON, AND METHOD FOR THE PRODUCTION THEREOF - The invention relates to the development of economical camera modules having objectives contained therein with a minimal constructional length and excellent optical properties. It is made possible as a result that camera modules of this type can be used in mobile telephones or minicomputers, such as PDAs (personal digital assistant). | 02-26-2009 |
20090050947 | Apparatus, system, and method providing backside illuminated imaging device - Method, apparatus, and/or system providing a backside illuminated imaging device. A non-planar metallic or otherwise reflective layer is provided in an image pixel cell at the frontside of the device substrate to capture radiation passing through the device substrate. The non-planar surface is formed to be capable of reflecting substantially all such radiation back to a photosensor located in the same pixel cell. | 02-26-2009 |
20090065834 | IMAGERS HAVING ELECTRICALLY ACTIVE OPTICAL ELEMENTS - A CMOS image sensor comprising an array of active pixel cells. Each active pixel cell includes a substrate; a photosensing device formed at or below a substrate surface for collecting charge carriers in response to incident light; and, one or more light transmissive conductive wire structures formed above the photosensing device, the one or more conductive wire structures being located in an optical path above the photosensing device. The formed light transmissive conductive wire structures provide both an electrical and optical functions. An optical function is provided by tailoring the thickness of the conductive wire layer to filter light according to a pixel color scheme. Alternately, the light transmissive conductive wire structures may be formed as a microlens structure providing a light focusing function. Electrical functions for the conductive wire layer include use as a capacitor plate, as a resistor or as an interconnect. | 03-12-2009 |
20090072285 | CMOS IMAGE SENSOR AND METHOD FOR FABRICATING THE SAME - A CMOS image sensor and a method for fabricating the same for preventing contamination and peeling of an array of micro lenses. The CMOS image sensor includes a plurality of photodiodes formed on and/or over a substrate, an insulating film formed on and/or over an entire surface of the substrate including the photodiodes, color filter layers formed on and/or over the insulating film, a first oxide film formed on and/or over the color filter layers, an ion-rich oxide film formed by injecting silicon ions into the first oxide film, a second oxide film formed on and/or over the ion-rich oxide film, and a micro lens pattern formed corresponding to the photodiodes by patterning the second oxide film. | 03-19-2009 |
20090108311 | CMOS Detector with Reduced Sensitivity to X-Rays - An imaging array and method for operating the same is disclosed. The imaging array includes a semiconductor substrate having an epitaxial layer of semiconductor material deposited on a first surface thereof. A plurality of photodiodes is formed in a top surface of the epitaxial layer. The imaging array also includes a depletion layer underlying the photodiodes and disposed between the epitaxial layer and the semiconductor substrate. The depletion layer is connected to a power rail for removing electrons collected in the depletion layer. The depletion layer collects electrons generated by x-ray interactions in the substrate. The depletion layer can also be biased such that the depletion layer collects electrons collected by the photodiodes to provide a reset operation for the imaging array. The current flowing through the depletion layer can be used to generate a trigger signal indicating the start of an x-ray exposure. | 04-30-2009 |
20090108312 | IMAGE SENSOR AND METHOD OF STABILIZING A BLACK LEVEL IN AN IMAGE SENSOR - An image sensor includes a substrate, an anti-reflection board and a light shielding film. The substrate includes first pixels to receive a light, and second pixels to provide a black level compensation. The first pixels are formed in an active region and the second pixels are formed in a first region spaced apart from the active region in a row direction. The anti-reflection board is formed in a second region above the substrate, and the second region is between the active region and the first region. The light shielding film is formed above the anti-reflection board, and the light shielding film covers an optical black region including the first and second regions. Therefore, the image sensor may be used in a CCD type image sensor and a CMOS type image sensor to provide a stabilized black level, thereby improving a quality of a displayed image. | 04-30-2009 |
20090121265 | LIGHT MODULATING SENSING MOSFET TRANSISTOR AND PROCESS FOR MANUFACTURING THE SAME - A Light Modulating sensing MOSFET transistor includes: a substrate receiving light radiation, the substrate having two source and drain areas separated by a channel extending along a first direction; a gate conductive beam extending along a second direction being substantially perpendicular to the first direction, the beam being fixed at each of its two opposite ends on at least one supporting area and being located above the channel area, the gate beam being substantially opaque and flexible so as to perform progressive modulation of the light reaching the channel in accordance with its bending controlled by the difference of voltage between the gate and the bulk and causing the beam to bend and to come closer to the surface of the channel. A process for manufacturing a light Modulating sensing MOSFET transistor is also provided. | 05-14-2009 |
20090127601 | Image Sensor and Method for Manufacturing the Same - An image sensor may include a device isolating layer and a photodiode on a substrate; a first dielectric layer on the photodiode; a first micro lens on the first dielectric layer; a second dielectric layer on the first micro lens; a color filter on the second dielectric layer; and a second micro lens on the color filter. | 05-21-2009 |
20090134439 | CMOS IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME - A CMOS Image Sensor (CIS) that minimizes light loss and achieves maximized performance. The CIS includes a plurality of metal wirings provided on and/or over a semiconductor substrate and surrounded, respectively, by a dielectric layer, a silicon layer deposited on and/or over the plurality of metal wirings, a photodiode and a plurality of transistors provided at the silicon layer, a color filter formed on and/or over the transistors, and via-contacts penetrated through the silicon layer, the photodiode being connected to the plurality of metal wirings by the via-contacts and gap-fillers. The photodiodes and the transistors are formed after forming the metal line. | 05-28-2009 |
20090152604 | System and method for sensing image on CMOS - A system and method for sensing image on CMOS. According to an embodiment, the present invention provide a CMOS image sensing pixel. The pixel includes an n-type substrate, which includes a first width and a first thickness. The pixel also includes a p-type epitaxy layer overlying the n-type substrate. The p-type epitaxy layer includes a second width and a second thickness. The second width is associated with one or more characteristics of a colored light. The pixel additionally includes an n-type layer overlying the p-type epitaxy layer. The n-type layer is associated with a third width and a third thickness. Additionally, the pixel includes an pn junction formed between the p-type epitaxy layer and the n-type layer. Moreover, the pixel includes a control circuit being coupled to the CMOS image sensing pixel. | 06-18-2009 |
20090152605 | IMAGE SENSOR AND CMOS IMAGE SENSOR - An image sensor includes a carrier generating portion having a photoelectric conversion function, a voltage conversion portion for converting signal charges to a voltage, a charge increasing portion for increasing carriers generated by the carrier generating portion and a light shielding film formed to cover at least one part of the charge increasing portion. | 06-18-2009 |
20090283809 | Image sensor structure and integrated lens module thereof - An image sensor structure and an integrated lens module thereof are provided. In the image sensor structure with the integrated lens module, the image sensor structure comprises a chip and a lens module. The chip has light-sensing elements, first conducting pads, and a conducting channel. The light-sensing elements are electrically connected to the first conducting pads and the first conducting pads are electrically connected to one end of the conducting channel passing through the chip. The lens module comprises a holder and at least one lens. The holder has a through hole and the lens is embedded in the through hole and integrated with the holder. By using the integrated lens and holder, a manufacturing process of the image sensor structure is simplified and a manufacturing cost of the image sensor structure is reduced. | 11-19-2009 |
20100032736 | SOLID-STATE IMAGING DEVICE AND METHOD FOR MANUFACTURING SAME - In a CMOS image sensor, an N-type semiconductor layer is formed on a P-type semiconductor substrate. P-type semiconductor regions are formed in one part of the semiconductor layer over the entire length of the thickness direction of the semiconductor layer in a lattice-like shape as viewed from above to compartment the semiconductor layer into a plurality of regions. Furthermore, a red filter, a green filter and a blue filter are provided in a red picture element, a green picture element and a blue picture element, respectively. Moreover, an N-type buried semiconductor layer being in contact with the semiconductor layer is formed in an immediately lower region of the red filter in an upper layer part of the semiconductor substrate. | 02-11-2010 |
20100065897 | CMOS Image Sensor and Method for Fabricating the Same - A CMOS image sensor and a method for fabricating the same are disclosed. The method includes forming a plurality of color filters on a substrate, each color filter having a curvature, and forming microlenses on the color filters that each has a radius of curvature that varies with the wavelength of the color filter on which it is formed. | 03-18-2010 |
20100096677 | BACKSIDE-ILLUMINATED SOLID-STATE IMAGE PICKUP DEVICE - Provided is a backside-illuminated solid-state image pickup device capable of allowing peripheral circuits to produce stable waveforms and thereby achieving image characteristics with less noise, the device including: a first-conductivity-type semiconductor layer having a first principal surface and a second principal surface opposed to the first principal surface and also having a pixel area and an analog circuit area; a first P type area formed to lie between the second principal surface and the first principal surface in the analog circuit area; a metal layer formed at least partially on the second principal surface of the first P type area; a VSS electrode electrically connected to the metal layer; a photo-conversion area formed in the pixel area and used to accumulate electric charges generated by photoelectric conversion; and a microlens provided on the second principal surface in the pixel area so as to correspond to the photo-conversion area. | 04-22-2010 |
20100148231 | ELIMINATION OF GLOWING ARTIFACT IN DIGITAL IMAGES CAPTURED BY AN IMAGE SENSOR - A source/drain region of a transistor or amplifier is formed in a substrate layer and is connected to a voltage source. A glow blocking structure is formed at least partially around the source/drain region and is disposed between the source/drain region and an imaging array of an image sensor. A trench is formed in the substrate layer adjacent to and at least partially around the source/drain region. The glow blocking structure includes an opaque material formed in the trench and one or more layers of light absorbing material overlying the source/drain region and the opaque material. | 06-17-2010 |
20100193848 | IMAGE SENSOR OF STACKED LAYER STRUCTURE AND MANUFACTURING METHOD THEREOF - Provided is a stacked image sensor. Particularly, provided are a stacked image sensor including a photosensitive element portion having a photo-conductive thin film on an upper portion of a wafer where a peripheral circuit is formed and a method of manufacturing the stacked image sensor. In the stacked image sensor according to the present invention, since a wafer where a circuit is formed and a photosensitive element portion are formed in a stacked structure, a whole size of the image sensor can be reduced, and there is no optical crosstalk due to absorption of incident light to adjacent pixels. In addition, since a photo-conductive element having a high light absorbance is used, a high photo-electric conversion efficiency can be obtained. In addition, in the method of manufacturing a stacked image sensor according to the present invention, since the upper photosensitive element can be formed by using a simple low-temperature process, a production cost can be reduced. | 08-05-2010 |
20100200898 | IMAGE AND LIGHT SENSOR CHIP PACKAGES - An image or light sensor chip package includes an image or light sensor chip having a non-photosensitive area and a photosensitive area surrounded by the non-photosensitive area. In the photosensitive area, there are light sensors, a layer of optical or color filter array over the light sensors and microlenses over the layer of optical or color filter array. In the non-photosensitive area, there are an adhesive polymer layer and multiple metal structures having a portion in the adhesive polymer layer. A transparent substrate is formed on a top surface of the adhesive polymer layer and over the microlenses. The image or light sensor chip package also includes wirebonded wires or a flexible substrate bonded with the metal structures of the image or light sensor chip. | 08-12-2010 |
20100276738 | SOLID-STATE IMAGING DEVICE AND FABRICATION METHOD THEREOF - Provision of a solid-state imaging device of a planarized structure with reduced dark currents, allowing for high sensitivities over a wide wavelength band ranging from visible wavelengths to near-infrared wavelengths, and a fabrication method of the same. | 11-04-2010 |
20110006350 | INTEGRATED STRUCTURE OF MEMS DEVICE AND CMOS IMAGE SENSOR DEVICE - An integrated structure of MEMS device and CIS device and a fabricating method thereof includes providing a substrate having a CIS region and a MEMS region defined therein with a plurality of CIS devices positioned in the CIS region; performing a multilevel interconnect process to form a multilevel interconnect structure in the CIS region and the MEMS region and a micro-machined mesh metal in the MEMS region on a front side of the substrate; performing a first etching process to form a chamber in MEMS region in the front side of the substrate; forming a first mask pattern and a second mask pattern respectively in the CIS region and the MEMS region on a back side of the substrate; and performing a second etching process to form a plurality of vent holes connecting to the chamber on the back side of the substrate through the second mask pattern. | 01-13-2011 |
20110156114 | Image sensor using light-sensitive transparent oxide semiconductor material - An image sensor according to example embodiments may include a plurality of light-sensitive transparent oxide semiconductor layers as light-sensing layers. The light-sensing layers may be stacked in one unit pixel region. | 06-30-2011 |
20110163364 | IMAGE SENSOR, FABRICATING METHOD THEREOF, AND DEVICE COMPRISING THE IMAGE SENSOR - Image sensor, fabricating method thereof, and device comprising the image sensor are provided, which comprises a substrate in which a photoelectric transformation device is formed, an interconnection structure formed on the substrate and including multiple intermetal dielectric layers and multiple metal interconnections placed in the multiple intermetal dielectric layers, the interconnection structure defining a cavity aligned corresponding to the photoelectric transformation device, a moisture absorption barrier layer conformally formed on a top of the interconnection structure and in the cavity; and a light guide unit formed on the moisture absorption barrier layer and including light transmittance material filling the cavity, wherein the moisture absorption barrier layer is formed with a uniform thickness on both sides and a bottom of the cavity and on a top surface of the multiple intermetal dielectric layer. | 07-07-2011 |
20110298024 | SOLID-STATE IMAGING DEVICE AND METHOD FOR MANUFACTURING THEREOF AS WELL AS DRIVING METHOD OF SOLID-STATE IMAGING DEVICE - A solid-state imaging device with a structure such that an electrode for reading a signal charge is provided on one side of a light-receiving sensor portion constituting a pixel; a predetermined voltage signal V is applied to a light-shielding film formed to cover an image pickup area except the light-receiving sensor portion; a second-conductivity-type semiconductor area is formed in the center on the surface of a first-conductivity-type semiconductor area constituting a photo-electric conversion area of the light-receiving sensor portion; and areas containing a lower impurity concentration than that of the second-conductivity-type semiconductor area is formed on the surface of the first-conductivity-type semiconductor area at the end on the side of the electrode and at the opposite end on the side of a pixel-separation area. | 12-08-2011 |
20110303956 | IMAGE SENSORS HAVING LIGHT SHIELD PATTERNS BETWEEN AN OPTICAL BLACK REGION AND AN ACTIVE PIXEL REGION - An image sensor having a light receiving region and an optical black region includes a semiconductor substrate, an interconnection disposed on the semiconductor substrate and extending along an interface between the light receiving region and the optical black region, and via plugs disposed between the interconnection and the semiconductor substrate and serving as light shielding members at the interface. The via plugs are arranged in a zigzagging pattern along the interface. | 12-15-2011 |
20120235216 | DAMASCENE METAL GATE AND SHIELD STRUCTURE, METHODS OF MANUFACTURE AND DESIGN STRUCTURES - Semiconductor structures with damascene metal gates and pixel sensor cell shields, methods of manufacture and design structures are provided. The method includes forming a dielectric layer over a dummy gate structure. The method further includes forming one or more recesses in the dielectric layer. The method further includes removing the dummy gate structure in the dielectric layer to form a trench. The method further includes forming metal in the trench and the one more recesses in the dielectric layer to form a damascene metal gate structure in the trench and one or more metal components in the one or more recesses. | 09-20-2012 |
20130026548 | IMAGE SENSOR WITH CONTROLLABLE VERTICALLY INTEGRATED PHOTODETECTORS - An image sensor includes front-side and backside photodetectors of a first conductivity type disposed in a substrate layer of the first conductivity type. A front-side pinning layer of a second conductivity type is connected to a first contact. The first contact receives a predetermined potential. A backside pinning layer of the second conductivity type is connected to a second contact. The second contact receives an adjustable and programmable potential. | 01-31-2013 |
20130049084 | SEMICONDUCTOR DEVICE, MANUFACTURING METHOD THEREOF, SOLID-STATE IMAGING DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC UNIT - A solid-state imaging device includes an element forming region formed on the surface of a substrate, element isolating parts that isolate pixels formed on the substrate, each of which is formed with a trench and a buried film, an opto-electric conversion element, and a buried-channel MOS transistor. The buried-channel MOS transistor includes a source region and a drain region, formed in the element forming region, that have a conductivity type opposite to that of the element forming region, a channel region having first impurity diffusion regions and a second impurity diffusion region, which have a conductivity type opposite to that of the element forming region, and a gate electrode. Each first impurity diffusion region is formed between the source region and drain region on a side adjacent to one element isolating part. The second impurity diffusion region is formed across the region between the source region and drain region. | 02-28-2013 |
20130214337 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - Provided is a semiconductor device which allows an alignment mark used for the manufacturing of a solid-state image sensor (semiconductor device) having a back-side-illumination structure to be formed in a smaller number of steps. The semiconductor device includes a semiconductor layer having a first main surface and a second main surface opposing the first main surface, a plurality of photodiodes which are formed in the semiconductor layer and in each of which photoelectric conversion is performed, a light receiving lens disposed over the second main surface of the semiconductor layer to supply light to each of the photodiodes, and a mark for alignment formed inside the semiconductor layer. The mark for alignment is formed so as to extend from the first main surface toward the second main surface and have a protruding portion protruding from the second main surface in a direction toward where the light receiving lens is disposed. | 08-22-2013 |
20130248955 | PHOTOELECTRIC CONVERSION APPARATUS AND IMAGING SYSTEM USING THE PHOTOELECTRIC CONVERSION APPARATUS - In a photoelectric conversion apparatus including a charge holding portion, a part of an element isolation region contacting with a semiconductor region constituting the charge holding portion extends from a reference surface including the light receiving surface of a photoelectric conversion element into a semiconductor substrate at a level equal to or deeper than the depth of the semiconductor region in comparison with the semiconductor region. | 09-26-2013 |
20130341694 | PHOTOELECTRIC CONVERTER - A photoelectric converter according to the present invention includes a substrate, a lower electrode layer arranged on the substrate, a compound semiconductor layer of a chalcopyrite structure arranged on the lower electrode layer to cover the lower electrode layer and partitioned into a plurality of pixels, a transparent electrode layer arranged on the compound semiconductor layer, and a shielding layer arranged around each of the pixels on the compound semiconductor layer. | 12-26-2013 |
20140035013 | Novel CMOS Image Sensor Structure - Provided is a method of fabricating an image sensor device. The method includes providing a first substrate having a radiation-sensing region disposed therein. The method includes providing a second substrate having a hydrogen implant layer, the hydrogen implant layer dividing the second substrate into a first portion and a second portion. The method includes bonding the first portion of the second substrate to the first substrate. The method includes after the bonding, removing the second portion of the second substrate. The method includes after the removing, forming one or more microelectronic devices in the first portion of the second substrate. The method includes forming an interconnect structure over the first portion of the second substrate, the interconnect structure containing interconnect features that are electrically coupled to the microelectronic devices. | 02-06-2014 |
20140042507 | IMAGE PICKUP APPARATUS AND IMAGE PICKUP SYSTEM - An image pickup apparatus includes a pixel portion in which pixels are arranged, the pixels each including a first semiconductor region of first conductivity type having signal charges as majority carriers and a second semiconductor region of second conductivity type having signal charges as minority carriers, the second semiconductor region being contiguous to the first semiconductor region, the first semiconductor region being disposed between a surface of a semiconductor substrate. The pixel portion includes a class I pixel and a class II pixel located near a reference contact. A distance between the surface of the semiconductor substrate and the second semiconductor region of the class I pixel is smaller than a distance between the surface of the semiconductor substrate and the second semiconductor region of the class II pixel. | 02-13-2014 |
20140091378 | SOLID-STATE IMAGING DEVICE AND IMAGE CAPTURING SYSTEM - A solid-state imaging device includes a photoelectric converting portion including a first semiconductor region capable of accumulating a signal charge, a second semiconductor region of the same conductivity type as the first semiconductor region, a gate electrode provided between the first and second semiconductor regions, and an insulating layer provided on the first semiconductor region, the second semiconductor region, and the gate electrode. The solid-state imaging device further includes a first light-shielding portion including a metal portion provided in an opening or a trench of the insulating layer between the first and second semiconductor regions, and a second light-shielding portion including a metal portion provided on the insulating layer on the second semiconductor region. | 04-03-2014 |
20140091379 | FLUOROCARBON COATING HAVING LOW REFRACTIVE INDEX - A fluorocarbon coating comprises an amorphous structure with CF | 04-03-2014 |
20140217486 | SOLID-STATE IMAGE PICKUP UNIT, METHOD OF MANUFACTURING SOLID-STATE IMAGE PICKUP UNIT, AND ELECTRONIC APPARATUS - There is provided a back-illuminated type solid-state image pickup unit, in which a pad wiring line is provided on a light reception surface, capable of improving light reception characteristics in a photoelectric conversion section by thinning an insulating film in the back-illuminated type solid-state image pickup unit. A solid-state image pickup unit according to the present technology to accomplish such a purpose includes a sensor substrate having a pixel region in which photoelectric conversion sections are formed in an array, and a drive circuit is provided on a surface opposed to a light reception surface for the photoelectric conversion sections of the sensor substrate. Moreover, a through hole via reaching the drive circuit from the light reception surface of the sensor substrate is provided in a peripheral region located outside the pixel region. Further, a pad wiring line directly laminated on the through hole via is provided on the light reception surface in the peripheral region. | 08-07-2014 |
20140239362 | IMAGE SENSOR AND METHOD OF FORMING THE SAME - An image sensor includes a substrate having a first surface opposing a second surface and a plurality of pixel regions. A photoelectric converter is included in each of the pixel regions, and a gate electrode is formed on the photoelectric converter. Also, a pixel isolation region isolates adjacent pixel regions. The pixel isolation region includes a first isolation layer coupled to a channel stop region. The channel stop region may include an impurity-doped region. | 08-28-2014 |
20140246714 | IMAGE SENSOR HAVING THIN DARK SHIELD - An image sensor and method of manufacturing the same are provided. The image sensor can include a pixel array region having an active pixel area and a dark pixel area surrounding the active pixel area. A dark shield can be formed in the dark pixel area to inhibit light. Dark pixels can be provided under the dark shield. The dark shield can include a thin film including silicon chromium (SiCr). | 09-04-2014 |
20140339615 | BSI CMOS IMAGE SENSOR - A back surface illuminated image sensor is provided. The back surface illuminated image sensor includes: a first passivation layer disposed on the photodiode array; an oxide grid disposed on the first passivation layer and forming a plurality of holes exposing the first passivation layer; a color filter array including a plurality of color filters filled into the holes, wherein the oxide grid has a refractive index smaller than that of plurality of color filters; and a metal grid aligned to the oxide grid, wherein the metal grid has an extinction coefficient greater than zero. | 11-20-2014 |
20150028405 | SOLID-STATE IMAGING DEVICE AND METHOD OF MANUFACTURING THE SAME - A solid-state imaging device includes a semiconductor layer, a reflector, and a plurality of element separating regions. In the semiconductor layer, a plurality of photoelectric conversion elements is arranged in a two-dimensional array. The reflector covers a surface of the semiconductor layer on a side opposite to a surface of the semiconductor layer on which alight is incident, and reflects the light. The element separating regions are formed in the semiconductor layer to physically and electrically separate the plurality of photoelectric conversion elements. Each of the element separating regions extend from the surface of the semiconductor layer on which the light is incident to the reflector and has a reflection surface for reflecting light. | 01-29-2015 |
20160086993 | SOLID-STATE IMAGE PICKUP APPARATUS, AND IMAGE PICKUP SYSTEM USING SOLID-STATE IMAGE PICKUP APPARATUS - A solid-state image pickup apparatus includes a photoelectric conversion unit, a charge storage unit, and a floating diffusion unit, all disposed on a semiconductor substrate. The solid-state image pickup apparatus further includes a first gate electrode disposed on the semiconductor substrate and extending between the photoelectric conversion unit and charge storage unit, and a second gate electrode disposed on the semiconductor substrate and extending between the charge storage unit and the floating diffusion unit. The solid-state image pickup apparatus further includes a light shielding member including a first part and a second part, wherein the first part is disposed over the charge storage unit and at least over the first gate electrode or the second gate electrode, and the second part is disposed between the first gate electrode and the second gate electrode such that the second part extends from the first part toward a surface of the semiconductor substrate. | 03-24-2016 |
20160087002 | SOLID STATE IMAGING DEVICE AND METHOD OF FABRICATING THE SAME - According to one embodiment, a semiconductor substrate has a first region in which a photoelectric conversion device is provided, a second region which is provided around the first region, and in which a device is provided, and a third region which is provided between the first region and the second region, and in which the photoelectric conversion device is provided. A first interlayer insulating film is provided on the first region and the third region. A second interlayer insulating film is provided on the second region, and is thicker than the first interlayer insulating film. A resin material is provided on the first interlayer insulating film of the first region, and provided so as to cover a groove of a surface of the first interlayer insulating film of the third region. | 03-24-2016 |
20160099267 | CMOS IMAGE SENSOR FOR REDUCING DEAD ZONE - An image sensor such as a complementary metal-oxide-semiconductor (CMOS) image sensor and a method of manufacturing the same are provided. The CMOS image sensor includes: a semiconductor substrate including a first surface and a third surface formed by removing a part of the semiconductor substrate from a second surface opposite to the first surface; a plurality of active regions which are formed between the first surface and the third surface and each of which includes a photoelectric conversion element generating charges in response to light input through the third surface; and an isolation region vertically formed from either of the first and third surfaces to isolate the active regions from one another. When the CMOS image sensor is viewed from the above of the third surface, each of the active regions may have round corners and concave sides. | 04-07-2016 |
20160155772 | SOLID-STATE IMAGE SENSING DEVICE AND METHOD OF MANUFACTURING THE SAME | 06-02-2016 |
20160172527 | Photodetector with Interdigitated Nanoelectrode Grating Antenna | 06-16-2016 |