Patent application title: IDENTIFICATION OF TUMOUR-ASSOCIATED CELL SURFACE ANTIGENS FOR DIAGNOSIS AND THERAPY
Inventors:
Özlem Türeci (Mainz, DE)
Özlem Türeci (Mainz, DE)
Ugur Sahin (Mainz, DE)
Gerd Helftenbein (Gemunden (felda), DE)
Volker SchlÜter (Neuried, DE)
Assignees:
GANYMED PHARMACEUTICALS, AG
IPC8 Class: AA61K39395FI
USPC Class:
4241331
Class name: Drug, bio-affecting and body treating compositions immunoglobulin, antiserum, antibody, or antibody fragment, except conjugate or complex of the same with nonimmunoglobulin material structurally-modified antibody, immunoglobulin, or fragment thereof (e.g., chimeric, humanized, cdr-grafted, mutated, etc.)
Publication date: 2011-06-09
Patent application number: 20110135640
Abstract:
The present invention provides agents with tumor-inhibiting activity, and
which are selective for cells expressing or abnormally expressing a
tumor-associated antigen. Said tumor-associated antigen has a nucleotide
sequence selected from the group consisting of: (a) a nucleotide sequence
selected from the specific sequences set forth herein, or a 6-50
contiguous nucleotide residue portion thereof; (b) a nucleotide sequence
of a nucleic acid which hybridizes with a nucleic acid having the
nucleotide sequence of (a) under stringent conditions; (c) a nucleotide
sequence which is degenerate with respect to the nucleotide sequence of
(a) or (b); and (d) a nucleotide sequence which is complementary to the
nucleotide sequence of (a), (b) or (c). Pharmaceutical compositions and
kits comprising the agents are also provided, as well as methods
treating, diagnosing or monitoring a disease characterized by expression
or abnormal expression of the tumor-associated antigen.Claims:
1. (canceled)
2. A pharmaceutical composition, comprising an agent with tumor-inhibiting activity, which is selective for cells expressing or abnormally expressing a tumor-associated antigen, said tumor-associated antigen having a sequence encoded by a nucleic acid which is selected from the group consisting of: (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOS.: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c).
3. The pharmaceutical composition as claimed in claim 2, in which the agent causes induction of cell death, reduction in cell growth, damage to the cell membrane or secretion of cytokines
4. The pharmaceutical composition as claimed in claim 2, in which the agent is an antisense nucleic acid which hybridizes selectively with the nucleic acid coding for the tumor-associated antigen.
5. The pharmaceutical composition as claimed in claim 2, in which the agent is an antibody which binds selectively to the tumor-associated antigen.
6. The pharmaceutical composition as claimed in claim 2, in which the agent is a complement-activating antibody which binds selectively to the tumor-associated antigen.
7-9. (canceled)
10. A pharmaceutical composition, comprising one or more components selected from the group consisting of: (i) a tumor-associated antigen or a part thereof, (ii) a nucleic acid which codes for a tumor-associated antigen or a part thereof, (iii) an antibody which binds to a tumor-associated antigen or a part thereof, (iv) an antisense nucleic acid which hybridizes specifically with a nucleic acid coding for a tumor-associated antigen, (v) a host cell which expresses a tumor-associated antigen or a part thereof, and (vi) isolated complexes between a tumor-associated antigen or a part thereof and an HLA molecule, said tumor-associated antigen having a sequence encoded by a nucleic acid which is selected from the group consisting of: (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c).
11-19. (canceled)
20. The pharmaceutical composition as claimed in claim 10, in which the antibody is a monoclonal antibody.
21. The pharmaceutical composition as claimed in claim 10, in which the antibody is a chimeric or humanized antibody.
22. The pharmaceutical composition as claimed in claim 10, in which the antibody is a fragment of a natural antibody.
23. The pharmaceutical composition as claimed in claim 10, in which the antibody is coupled to a therapeutic or diagnostic agent.
24. The pharmaceutical composition as claimed in claim 10, in which the antisense nucleic acid comprises a sequence of 6-50 contiguous nucleotides of the nucleic acid coding for the tumor-associated antigen.
25-26. (canceled)
27. The pharmaceutical composition as claimed in claim 10, further comprising a pharmaceutically acceptable carrier and/or an adjuvant.
28-56. (canceled)
57. A method of treating, diagnosing or monitoring a disease characterized by expression or abnormal expression of a tumor-associated antigen, which method comprises administering an antibody binding to said tumor-associated antigen or to a part thereof and coupled to a therapeutic or diagnostic agent, said tumor-associated antigen having a sequence encoded by a nucleic acid which is selected from the group consisting of: (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c).
58. The method as claimed in claim 57, in which the antibody is a monoclonal antibody.
59. The method as claimed in claim 57, in which the antibody is a chimeric or humanized antibody.
60. The method as claimed in claim 57, in which the antibody is a fragment of a natural antibody.
61-73. (canceled)
74. A nucleic acid, which codes for a protein or polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOS.: 2,6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 to 308, 310 of the sequence listing, a part or derivative thereof.
75-82. (canceled)
83. A protein or polypeptide, which comprises an amino acid sequence selected from the group consisting of SEQ ID NOS.: 2,6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 to 308, 310 of the sequence listing, a part or derivative thereof.
84-94. (canceled)
95. A kit for detecting expression or abnormal expression of a tumor-associated antigen, which kit comprises agents for detection (I) of the nucleic acid which codes for the tumor-associated antigen or of a part thereof, (ii) of the tumor-associated antigen or of a part thereof, (iii) of antibodies which bind to the tumor-associated antigen or to a part thereof, and/or (iv) of T cells which are specific for a complex between the tumor-associated antigen or a part thereof and an MHC molecule, said tumor-associated antigen having a sequence encoded by a nucleic acid which is selected from the group consisting of: (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOS.: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c).
96. The kit as claimed in claim 95, in which the agents for detection of the nucleic acid which codes for the tumor-associated antigen or of a part thereof are nucleic acid molecules for selective amplification of said nucleic acid.
97-114. (canceled)
Description:
CROSS-REFERENCE To RELATED APPLICATIONS
[0001] This application is a division of U.S. Ser. No. 10/573,229, filed on Jan. 16, 2007, which is the National Stage of International Application No. PCT/EP2004/010697, filed on Sep. 23, 2004, each of which is incorporated herein by reference in its entirety.
BACKGROUND
[0002] Despite interdisciplinary approaches and exhaustive use of classical therapeutic procedures, cancers are still among the leading causes of death. More recent therapeutic concepts aim at incorporating the patient's immune system into the overall therapeutic concept by using recombinant tumor vaccines and other specific measures such as antibody therapy. A prerequisite for the success of such a strategy is the recognition of tumor-specific or tumor-associated antigens or epitopes by the patient's immune system whose effector functions are to be interventionally enhanced. Tumor cells biologically differ substantially from their nonmalignant cells of origin. These differences are due to genetic alterations acquired during tumor development and result, inter alia, also in the formation of qualitatively or quantitatively altered molecular structures in the cancer cells. Tumor-associated structures of this kind which are recognized by the specific immune system of the tumor-harboring host are referred to as tumor-associated antigens. The specific recognition of tumor-associated antigens involves cellular and humoral mechanisms which are two functionally interconnected units: CD4.sup.+ and CD8.sup.+ T lymphocytes recognize the processed antigens presented on the molecules of the MHC (major histocompatibility complex) classes II and I, respectively, while B lymphocytes produce circulating antibody molecules which bind directly to unprocessed antigens. The potential clinical-therapeutical importance of tumor-associated antigens results from the fact that the recognition of antigens on neoplastic cells by the immune system leads to the initiation of cytotoxic effector mechanisms and, in the presence of T helper cells, can cause elimination of the cancer cells (Pardoll, Nat. Med. 4:525-31, 1998). Accordingly, a central aim of tumor immunology is to molecularly define these structures. The molecular nature of these antigens has been enigmatic for a long time. Only after development of appropriate cloning techniques has it been possible to screen cDNA expression libraries of tumors systematically for tumor-associated antigens by analyzing the target structures of cytotoxic T lymphocytes (CTL) (van der Bruggen et al., Science 254:1643-7, 1991) or by using circulating autoantibodies (Sahin et al., Curr. Opin. Immunol. 9:709-16, 1997) as probes. To this end, cDNA expression libraries were prepared from fresh tumor tissue and recombinantly expressed as proteins in suitable systems. Immunoeffectors isolated from patients, namely CTL clones with tumor-specific lysis patterns, or circulating autoantibodies were utilized for cloning the respective antigens.
[0003] In recent years a multiplicity of antigens have been defined in various neoplasias by these approaches. The class of cancer/testis antigens (CTA) is of great interest here. CTA and genes encoding them (cancer/testis genes or CTG) are defined by their characteristic expression pattern [Tureci et al, Mol Med Today. 3:342-9, 1997]. They are not found in normal tissues, except testis and germ cells, but are expressed in a number of human malignomas, not tumor type-specifically but with different frequency in tumor entities of very different origins (Chen & Old, Cancer J. Sci. Am. 5:16-7, 1999). Serum reactivities against CTA are also not found in healthy controls but only in tumor patients. This class of antigens, in particular owing to its tissue distribution, is particularly valuable for immunotherapeutic projects and is tested in current clinical patient studies (Marchand et al., Int. J. Cancer 80:219-30, 1999; Knuth et al., Cancer Chemother. Pharmacol. 46:p46-51, 2000). However, the probes utilized for antigen identification in the classical methods illustrated above are immunoeffectors (circulating autoantibodies or CTL clones) from patients usually having already advanced cancer. A number of data indicate that tumors can lead, for example, to tolerization and anergization of T cells and that, during the course of the disease, especially those specificities which could cause effective immune recognition are lost from the immunoeffector repertoire. Current patient studies have not yet produced any solid evidence of a real action of the previously found and utilized tumor-associated antigens. Accordingly, it cannot be ruled out that proteins evoking spontaneous immune responses are the wrong target structures.
SUMMARY OF THE INVENTION
[0004] It was the object of the present invention to provide target structures for a diagnosis and therapy of cancers.
[0005] According to the invention, this object is achieved by the subject matter of the claims.
[0006] According to the invention, a strategy for identifying and providing antigens expressed in association with a tumor and the nucleic acids coding therefor was pursued. This strategy is based on the evaluation of human protein and nucleic acid data bases with respect to potential cancer-specific antigens which are accessible on the cell surface. The definition of the filter criteria which are necessary for this together with a high throughput methodology for analysing all proteins, if possible, form the central part of the invention.
[0007] Data mining first produces a list which is as complete as possible of all known genes which according to the basic principle "gene to mRNA to protein" are examined for the presence of one or more transmembrane domains. This is followed by a homology search, a classification of the hits in tissue specific groups (among others tumor tissue) and an inspection of the real existence of the mRNA. Finally, the proteins which are identified in this manner are evaluated for their aberrant activation in tumors, e.g. by expression analyses and protein chemical procedures.
[0008] Data mining is a known method of identifying tumor-associated genes. In the conventional strategies, however, transcriptoms of normal tissue libraries are usually subtracted electronically from tumor tissue libraries, with the assumption that the remaining genes are tumor-specific (Schmitt et al., Nucleic Acids Res. 27:4251-60, 1999; Vasmatzis et al., Proc. Natl. Acad. Sci. USA. 95:300-4, 1998; Scheurle et al., Cancer Res. 60:4037-43, 2000).
[0009] The concept of the invention, however, is based on utilizing data mining for electronically extracting all genes coding for cancer specific antigens which are accessible on the cell surfaces and then evaluating said genes for ectopic expression in tumors.
[0010] The invention thus relates in one aspect to a strategy for identifying genes differentially expressed in tumors. Said strategy combines data mining of public sequence libraries ("in silico") with subsequent evaluating laboratory-experimental ("wet bench") studies.
[0011] According to the invention, a combined strategy based on different bioinformatic scripts enabled new genes coding for cancer specific antigens which are accessible on the cell surfaces to be identified. According to the invention, these tumor-associated genes and the genetic products encoded thereby were identified and provided independently of an immunogenic action.
[0012] The tumor-associated antigens identified according to the invention have an amino acid sequence encoded by a nucleic acid which is selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). In a preferred embodiment, a tumor-associated antigen identified according to the invention has an amino acid sequence encoded by a nucleic acid which is selected from the group consisting of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing. In a further preferred embodiment, a tumor-associated antigen identified according to the invention comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 to 308, 310 of the sequence listing, a part or derivative thereof.
[0013] The present invention generally relates to the use of tumor-associated antigens identified according to the invention or of parts thereof, of nucleic acids coding therefor or of nucleic acids directed against said coding nucleic acids or of antibodies directed against the tumor-associated antigens identified according to the invention or parts thereof for therapy and diagnosis. This utilization may relate to individual but also to combinations of two or more of these antigens, functional fragments, nucleic acids, antibodies, etc., in one embodiment also in combination with other tumor-associated genes and antigens for diagnosis, therapy and progress control.
[0014] The property of the tumor-associated antigens identified according to the invention that they are localized on or at the cell surface qualifies them as suitable targets or means for therapy and diagnosis. Especially suitable for this is a part of the tumor-associated antigens identified according to the invention which corresponds to the non-transmembrane portion, in particular the extracellular portion of the antigens, or is comprised thereof. Therefore, according to the invention, a part of the tumor-associated antigens identified according to the invention which corresponds to the non-transmembrane portion of the antigens or is comprised thereof, or a corresponding part of the nucleic acids coding for the tumor-associated antigens identified according to the invention is preferred for therapy or diagnosis. Similarly, the use of antibodies is preferred which are directed against a part of the tumor-associated antigens identified according to the invention which corresponds to the non-transmembrane portion of the antigens or is comprised thereof.
[0015] Preferred diseases for a therapy and/or diagnosis are those in which one or more of the tumor-associated antigens identified according to the invention are selectively expressed or abnormally expressed.
[0016] The invention also relates to nucleic acids and genetic products which are expressed in association with a tumor cell and which are produced by altered splicing (splice variants) of genes or by altered translation with utilization of alternative open reading frames. Said nucleic acids comprise the sequences according to SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing. Furthermore, the genetic products comprise all sequences according to SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 to 308, 310 of the sequence listing. The splice variants of the invention can be used according to the invention as targets for diagnosis and therapy of tumor diseases.
[0017] Very different mechanisms may cause splice variants to be produced, for example [0018] utilization of variable transcription initiation sites [0019] utilization of additional exons [0020] complete or incomplete splicing out of single or two or more exons, [0021] splice regulator sequences altered via mutation (deletion or generation of new donor/acceptor sequences), [0022] incomplete elimination of intron sequences.
[0023] Altered splicing of a gene results in an altered transcript sequence (splice variant).
[0024] Translation of a splice variant in the region of its altered sequence results in an altered protein which may be distinctly different in the structure and function from the original protein. Tumor-associated splice variants may produce tumor-associated transcripts and tumor-associated proteins/antigens. These may be utilized as molecular markers both for detecting tumor cells and for therapeutic targeting of tumors. Detection of tumor cells, for example in blood, serum, bone marrow, sputum, bronchial lavage, bodily secretions and tissue biopsies, may be carried out according to the invention, for example, after extraction of nucleic acids by PCR amplification with splice variant-specific oligonucleotides. According to the invention, all sequence-dependent detection systems are suitable for detection. These are, apart from PCR, for example gene chip/microarray systems, Northern blot, RNAse protection assays (RDA) and others. All detection systems have in common that detection is based on a specific hybridization with at least one splice variant-specific nucleic acid sequence. However, tumor cells may also be detected according to the invention by antibodies which recognize a specific epitope encoded by the splice variant. Said antibodies may be prepared by using for immunization peptides which are specific for said splice variant. Suitable for immunization are particularly the amino acids whose epitopes are distinctly different from the variant(s) of the genetic product, which is (are) preferably produced in healthy cells. Detection of the tumor cells with antibodies may be carried out here on a sample isolated from the patient or as imaging with intravenously administered antibodies.
[0025] In addition to diagnostic usability, splice variants having new or altered epitopes are attractive targets for immunotherapy. The epitopes of the invention may be utilized for targeting therapeutically active monoclonal antibodies or T lymphocytes. In passive immunotherapy, antibodies or T lymphocytes which recognize splice variant-specific epitopes are adoptively transferred here. As in the case of other antigens, antibodies may be generated also by using standard technologies (immunization of animals, panning strategies for isolation of recombinant antibodies) with utilization of polypeptides which include these epitopes. Alternatively, it is possible to utilize for immunization nucleic acids coding for oligo- or polypeptides which contain said epitopes. Various techniques for in vitro or in vivo generation of epitope-specific T lymphocytes are known and have been described in detail (for example Kessler J H, et al. 2001, Sahin et al., 1997) and are likewise based on utilizing oligo- or polypeptides which contain the splice variant-specific epitopes or nucleic acids coding for said oligo- or polypeptides. Oligo- or polypeptides which contain the splice variant-specific epitopes or nucleic acids coding for said polypeptides may also be used for utilization as pharmaceutically active substances in active immunotherapy (vaccination, vaccine therapy).
[0026] The aberrant expression of genes in tumor cells also can be due to an altered methylation pattern of their promoters (De Smet C et al., Mol. Cell Biol. 24(11):4781-90, 2004; De Smet C et al., Mol. Cell Biol. 19(11):7327-35, 1999; De Smet C et al., Proc. Natl. Acad. Sci. U S A. 93(14):7149-53, 1996). These differences in methylation can be used as indirect markers for the condition of the respective gene changed in the tumor. Accordingly, the increase or decrease of base methylations within the promoter region can be used for diagnostic purposes.
[0027] In one aspect, the invention relates to a pharmaceutical composition comprising an agent which recognizes the tumor-associated antigen identified according to the invention and which is preferably selective for cells which have expression or abnormal expression of a tumor-associated antigen identified according to the invention. In particular embodiments, said agent may cause induction of cell death, reduction in cell growth, damage to the cell membrane or secretion of cytokines and preferably have a tumor-inhibiting activity. In one embodiment, the agent is an antisense nucleic acid which hybridizes selectively with the nucleic acid coding for the tumor-associated antigen. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen, in particular a complement-activated antibody which binds selectively to the tumor-associated antigen. In a further embodiment, the agent comprises two or more agents which each selectively recognize different tumor-associated antigens, at least one of which is a tumor-associated antigen identified according to the invention. Recognition needs not be accompanied directly with inhibition of activity or expression of the antigen. In this aspect of the invention, the antigen selectively limited to tumors preferably serves as a label for recruiting effector mechanisms to this specific location. In a preferred embodiment, the agent is a cytotoxic T lymphocyte which recognizes the antigen on an HLA molecule and lyses the cell labeled in this way. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen and thus recruits natural or artificial effector mechanisms to said cell. In a further embodiment, the agent is a T helper lymphocyte which enhances effector functions of other cells specifically recognizing said antigen.
[0028] In one aspect, the invention relates to a pharmaceutical composition comprising an agent which inhibits expression or activity of a tumor-associated antigen identified according to the invention. In a preferred embodiment, the agent is an antisense nucleic acid which hybridizes selectively with the nucleic acid coding for the tumor-associated antigen. In a further embodiment, the agent is an antibody which binds selectively to the tumor-associated antigen. In a further embodiment, the agent comprises two or more agents which each selectively inhibit expression or activity of different tumor-associated antigens, at least one of which is a tumor-associated antigen identified according to the invention.
[0029] The activity of a tumor-associated antigen identified according to the invention can be any activity of a protein or a peptide. Thus, the therapeutic and diagnostic methods according to the invention can also aim at inhibiting or reducing this activity or testing this activity.
[0030] The invention furthermore relates to a pharmaceutical composition which comprises an agent which, when administered, selectively increases the amount of complexes between an HLA molecule and a peptide epitope from the tumor-associated antigen identified according to the invention. In one embodiment, the agent comprises one or more components selected from the group consisting of (i) the tumor-associated antigen or a part thereof, (ii) a nucleic acid which codes for said tumor-associated antigen or a part thereof, (iii) a host cell which expresses said tumor-associated antigen or a part thereof, and (iv) isolated complexes between peptide epitopes from said tumor-associated antigen and an MHC molecule. In one embodiment, the agent comprises two or more agents which each selectively increase the amount of complexes between MHC molecules and peptide epitopes of different tumor-associated antigens, at least one of which is a tumor-associated antigen identified according to the invention.
[0031] The invention furthermore relates to a pharmaceutical composition which comprises one or more components selected from the group consisting of (i) a tumor-associated antigen identified according to the invention or a part thereof, (ii) a nucleic acid which codes for a tumor-associated antigen identified according to the invention or for a part thereof, (iii) an antibody which binds to a tumor-associated antigen identified according to the invention or to a part thereof, (iv) an antisense nucleic acid which hybridizes specifically with a nucleic acid coding for a tumor-associated antigen identified according to the invention, (v) a host cell which expresses a tumor-associated antigen identified according to the invention or a part thereof, and (vi) isolated complexes between a tumor-associated antigen identified according to the invention or a part thereof and an HLA molecule.
[0032] A nucleic acid coding for a tumor-associated antigen identified according to the invention or for a part thereof may be present in the pharmaceutical composition in an expression vector and functionally linked to a promoter.
[0033] A host cell present in a pharmaceutical composition of the invention may secrete the tumor-associated antigen or the part thereof, express it on the surface or may additionally express an HLA molecule which binds to said tumor-associated antigen or said part thereof In one embodiment, the host cell expresses the HLA molecule endogenously. In a further embodiment, the host cell expresses the HLA molecule and/or the tumor-associated antigen or the part thereof in a recombinant manner. The host cell is preferably nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.
[0034] An antibody present in a pharmaceutical composition of the invention may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody, a fragment of a natural antibody or a synthetic antibody, all of which may be produced by combinatory techniques. The antibody may be coupled to a therapeutically or diagnostically useful agent.
[0035] An antisense nucleic acid present in a pharmaceutical composition of the invention may comprise a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of the nucleic acid coding for the tumor-associated antigen identified according to the invention.
[0036] In further embodiments, a tumor-associated antigen, provided by a pharmaceutical composition of the invention either directly or via expression of a nucleic acid, or a part thereof binds to MHC molecules on the surface of cells, said binding preferably causing a cytolytic response and/or inducing cytokine release.
[0037] A pharmaceutical composition of the invention may comprise a pharmaceutically compatible carrier and/or an adjuvant. The adjuvant may be selected from saponin, GM-CSF, CpG oligonucleotides, RNA, a cytokine or a chemokine A pharmaceutical composition of the invention is preferably used for the treatment of a disease characterized by selective expression or abnormal expression of a tumor-associated antigen. In a preferred embodiment, the disease is cancer.
[0038] The invention furthermore relates to methods of treating, diagnosing or monitoring, i.e. determining the regression, progression and/or onset of, a disease characterized by expression or abnormal expression of one of more tumor-associated antigens.
[0039] In one embodiment, the methods of treatment according to the invention comprise administering a pharmaceutical composition of the invention.
[0040] The methods of diagnosing and/or methods of monitoring according to the invention generally concern the use of means for the detection and/or the determination and/or the monitoring of the quantity of (i) a nucleic acid, which codes for the tumor-associated antigen, or a part thereof and/or (ii) the tumor-associated antigen or a part thereof and/or (iii) an antibody against the tumor-associated antigen or a part thereof and/or (iv) cytotoxic or T helper lymphocytes, which are specific for the tumor-associated antigen or a part thereof, in a biologic sample isolated from a patient.
[0041] In one aspect, the invention relates to a method of diagnosing a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention. The method comprises (i) detection of a nucleic acid which codes for the tumor-associated antigen or of a part thereof and/or (ii) detection of the tumor-associated antigen or of a part thereof, and/or (iii) detection of an antibody to the tumor-associated antigen or to a part thereof and/or (iv) detection of cytotoxic or T helper lymphocytes which are specific for the tumor-associated antigen or for a part thereof in a biological sample isolated from a patient. In particular embodiments, detection comprises (i) contacting the biological sample with an agent which binds specifically to the nucleic acid coding for the tumor-associated antigen or to the part thereof, to said tumor-associated antigen or said part thereof, to the antibody or to cytotoxic or T helper lymphocytes specific for the tumor-associated antigen or parts thereof, and (ii) detecting the formation of a complex between the agent and the nucleic acid or the part thereof, the tumor-associated antigen or the part thereof, the antibody or the cytotoxic or T helper lymphocytes. In one embodiment, the disease is characterized by expression or abnormal expression of two or more different tumor-associated antigens and detection comprises detection of two or more nucleic acids coding for said two or more different tumor-associated antigens or of parts thereof, detection of two or more different tumor-associated antigens or of parts thereof, detection of two or more antibodies binding to said two or more different tumor-associated antigens or to parts thereof or detection of two or more cytotoxic or T helper lymphocytes specific for said two or more different tumor-associated antigens. In a further embodiment, the biological sample isolated from the patient is compared to a comparable normal biological sample.
[0042] The methods of diagnosing according to the invention may also utilize altered methylation patterns of the promoter region of the respective tumor-associated gene product. The detection of such methylation patterns can be performed by using methods on the basis of PCR, with the aid of restriction enzymes or by sequencing. A test suitable for this can be as follows: (1) extraction of DNA from tissue samples of patients, for example using paraffin embedded material, (2) treatment of the DNA with bisulfite containing reagents (i.e. as described in Clark S. J. et al., Nucleic Acids Res. 22(15):2990-7, 1994), (3) amplification of DNA by means of PCR and (4) analysis by determining the amount of sequence specific amplification products (e.g. by means of quantitative PCR, hybridization techniques such as microarray methods).
[0043] The methods of diagnosing according to the invention can concern also the use of the tumor-associated antigens identified according to the invention as prognostic markers, in order to predict metastasis, e.g. through testing the migration behavior of cells, and therefore a worsened course of the disease, whereby among other things planning of a more aggressive therapy is made possible.
[0044] In a further aspect, the invention relates to a method for determining regression, course or onset of a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises monitoring a sample from a patient who has said disease or is suspected of falling ill with said disease, with respect to one or more parameters selected from the group consisting of (i) the amount of nucleic acid which codes for the tumor-associated antigen or of a part thereof, (ii) the amount of the tumor-associated antigen or a part thereof, (iii) the amount of antibodies which bind to the tumor-associated antigen or to a part thereof, and (iv) the amount of cytolytic T cells or T helper cells which are specific for a complex between the tumor-associated antigen or a part thereof and an MHC molecule. The method preferably comprises determining the parameter(s) in a first sample at a first point in time and in a further sample at a second point in time and in which the course of the disease is determined by comparing the two samples. In particular embodiments, the disease is characterized by expression or abnormal expression of two or more different tumor-associated antigens and monitoring comprises monitoring (i) the amount of two or more nucleic acids which code for said two or more different tumor-associated antigens or of parts thereof, and/or (ii) the amount of said two or more different tumor-associated antigens or of parts thereof, and/or (iii) the amount of two or more antibodies which bind to said two or more different tumor-associated antigens or to parts thereof, and/or (iv) the amount of two or more cytolytic T cells or of T helper cells which are specific for complexes between said two or more different tumor-associated antigens or of parts thereof and MHC molecules.
[0045] According to the invention, detection of a nucleic acid or of a part thereof or determining or monitoring the amount of a nucleic acid or of a part thereof may be carried out using a polynucleotide probe which hybridizes specifically to said nucleic acid or said part thereof or may be carried out by selective amplification of said nucleic acid or said part thereof. In one embodiment, the polynucleotide probe comprises a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of said nucleic acid.
[0046] In certain embodiments of the methods of diagnosing of the invention, the promoter region or part thereof of a nucleic acid coding for a tumor-associated antigen identified according to the invention and being present in the form of genomic DNA is selectively amplified following treatment with a bisulfite containing reagent. The nucleic acid is preferably isolated from a sample of a patient to be examined before treatment with the bisulfite containing reagent. The oligonucleotides used in such amplification preferably have a sequence binding to the nucleic acid treated with a bisulfite containing reagent and preferably are completely complementary thereto. Preferably, the oligonucleotides are adapted to a different degree of methylation of the nucleic acid and bring about amplification products which can be differentiated.
[0047] According to the invention, detection of a tumor-associated antigen or of a part thereof or determining or monitoring the amount of a tumor-associated antigen or of a part thereof may be carried out using an antibody binding specifically to said tumor-associated antigen or said part thereof.
[0048] In certain embodiments, the tumor-associated antigen to be detected or the part thereof is present in a complex with an MHC molecule, in particular an HLA molecule.
[0049] According to the invention, detection of an antibody or determining or monitoring the amount of antibodies may be carried out using a protein or peptide binding specifically to said antibody.
[0050] According to the invention, detection of cytolytic T cells or of T helper cells or determining or monitoring the amount of cytolytic T cells or of T helper cells which are specific for complexes between an antigen or a part thereof and MHC molecules may be carried out using a cell presenting the complex between said antigen or said part thereof and an MHC molecule.
[0051] The polynucleotide probe, the antibody, the protein or peptide or the cell, which is used for detection or determining or monitoring, is preferably labeled in a detectable manner. In particular embodiments, the detectable marker is a radioactive marker or an enzymic marker. T lymphocytes may additionally be detected by detecting their proliferation, their cytokine production, and their cytotoxic activity triggered by specific stimulation with the complex of MHC and tumor-associated antigen or parts thereof. T lymphocytes may also be detected via a recombinant MHC molecule or else a complex of two or more MHC molecules which are loaded with the particular immunogenic fragment of one or more of the tumor-associated antigens and which can identify the specific T lymphocytes by contacting the specific T cell receptor.
[0052] In a further aspect, the invention relates to a method of treating, diagnosing or monitoring a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises administering an antibody which binds to said tumor-associated antigen or to a part thereof and which is coupled to a therapeutic or diagnostic agent. The antibody may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody or a fragment of a natural antibody.
[0053] The invention also relates to a method of treating a patient having a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises (i) removing a sample containing immunoreactive cells from said patient, (ii) contacting said sample with a host cell expressing said tumor-associated antigen or a part thereof, under conditions which favor production of cytolytic T cells against said tumor-associated antigen or a part thereof, and (iii) introducing the cytolytic T cells into the patient in an amount suitable for lysing cells expressing the tumor-associated antigen or a part thereof. The invention likewise relates to cloning the T cell receptor of cytolytic T cells against the tumor-associated antigen. Said receptor may be transferred to other T cells which thus receive the desired specificity and, as under (iii), may be introduced into the patient.
[0054] In one embodiment, the host cell endogenously expresses an HLA molecule. In a further embodiment, the host cell recombinantly expresses an HLA molecule and/or the tumor-associated antigen or the part thereof. The host cell is preferably nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.
[0055] In a further aspect, the invention relates to a method of treating a patient having a disease characterized by expression or abnormal expression of a tumor-associated antigen, which method comprises (i) identifying a nucleic acid which codes for a tumor-associated antigen identified according to the invention and which is expressed by cells associated with said disease, (ii) transfecting a host cell with said nucleic acid or a part thereof, (iii) culturing the transfected host cell for expression of said nucleic acid (this is not obligatory when a high rate of transfection is obtained), and (iv) introducing the host cells or an extract thereof into the patient in an amount suitable for increasing the immune response to the patient's cells associated with the disease. The method may further comprise identifying an MHC molecule presenting the tumor-associated antigen or a part thereof, with the host cell expressing the identified MHC molecule and presenting said tumor-associated antigen or a part thereof. The immune response may comprise a B cell response or a T cell response. Furthermore, a T cell response may comprise production of cytolytic T cells and/or T helper cells which are specific for the host cells presenting the tumor-associated antigen or a part thereof or specific for cells of the patient which express said tumor-associated antigen or a part thereof.
[0056] The invention also relates to a method of treating a disease characterized by expression or abnormal expression of a tumor-associated antigen identified according to the invention, which method comprises (i) identifying cells from the patient which express abnormal amounts of the tumor-associated antigen, (ii) isolating a sample of said cells, (iii) culturing said cells, and (iv) introducing said cells into the patient in an amount suitable for triggering an immune response to the cells.
[0057] Preferably, the host cells used according to the invention are nonproliferative or are rendered nonproliferative. A disease characterized by expression or abnormal expression of a tumor-associated antigen is in particular cancer.
[0058] The present invention furthermore relates to a nucleic acid selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). The invention furthermore relates to a nucleic acid, which codes for a protein or polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 to 308, 310 of the sequence listing, a part or derivative thereof.
[0059] In a further aspect, the invention relates to promoter sequences of nucleic acids of the invention. These sequences may be functionally linked to another gene, preferably in an expression vector, and thus ensure selective expression of said gene in appropriate cells.
[0060] In a further aspect, the invention relates to a recombinant nucleic acid molecule, in particular DNA or RNA molecule, which comprises a nucleic acid of the invention.
[0061] The invention also relates to host cells which contain a nucleic acid of the invention or a recombinant nucleic acid molecule comprising a nucleic acid of the invention.
[0062] The host cell may also comprise a nucleic acid coding for a HLA molecule. In one embodiment, the host cell endogenously expresses the HLA molecule. In a further embodiment, the host cell recombinantly expresses the HLA molecule and/or the nucleic acid of the invention or a part thereof. Preferably, the host cell is nonproliferative. In a preferred embodiment, the host cell is an antigen-presenting cell, in particular a dendritic cell, a monocyte or a macrophage.
[0063] In a further embodiment, the invention relates to oligonucleotides which hybridize with a nucleic acid identified according to the invention and which may be used as genetic probes or as "antisense" molecules. Nucleic acid molecules in the form of oligonucleotide primers or competent samples, which hybridize with a nucleic acid identified according to the invention or parts thereof, may be used for finding nucleic acids which are homologous to said nucleic acid identified according to the invention. PCR amplification, Southern and Northern hybridization may be employed for finding homologous nucleic acids. Hybridization may be carried out under low stringency, more preferably under medium stringency and most preferably under high stringency conditions. The term "stringent conditions" according to the invention refers to conditions which allow specific hybridization between polynucleotides.
[0064] In a further aspect, the invention relates to a protein or polypeptide which is encoded by a nucleic acid selected from the group consisting of (a) a nucleic acid which comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 of the sequence listing, a part or derivative thereof, (b) a nucleic acid which hybridizes with the nucleic acid of (a) under stringent conditions, (c) a nucleic acid which is degenerate with respect to the nucleic acid of (a) or (b), and (d) a nucleic acid which is complementary to the nucleic acid of (a), (b) or (c). In a preferred embodiment, the invention relates to a protein or polypeptide which comprises an amino acid sequence selected from the group consisting of SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 to 308, 310 of the sequence listing, a part or derivative thereof.
[0065] In a further aspect, the invention relates to an immunogenic fragment of a tumor-associated antigen identified according to the invention. Said fragment preferably binds to a human HLA receptor or to a human antibody. A fragment of the invention preferably comprises a sequence of at least 6, in particular at least 8, at least 10, at least 12, at least 15, at least 20, at least 30 or at least 50, amino acids.
[0066] In a further aspect, the invention relates to an agent which binds to a tumor-associated antigen identified according to the invention or to a part thereof. In a preferred embodiment, the agent is an antibody. In further embodiments, the antibody is a chimeric, a humanized antibody or an antibody produced by combinatory techniques or is a fragment of an antibody. Furthermore, the invention relates to an antibody which binds selectively to a complex of (i) a tumor-associated antigen identified according to the invention or a part thereof and (ii) an MHC molecule to which said tumor-associated antigen identified according to the invention or said part thereof binds, with said antibody not binding to (i) or (ii) alone. An antibody of the invention may be a monoclonal antibody. In further embodiments, the antibody is a chimeric or humanized antibody or a fragment of a natural antibody.
[0067] The invention furthermore relates to a conjugate between an agent of the invention which binds to a tumor-associated antigen identified according to the invention or to a part thereof or an antibody of the invention and a therapeutic or diagnostic agent. In one embodiment, the therapeutic or diagnostic agent is a toxin.
[0068] In a further aspect, the invention relates to a kit for detecting expression or abnormal expression of a tumor-associated antigen identified according to the invention, which kit comprises agents for detection (i) of the nucleic acid which codes for the tumor-associated antigen or of a part thereof, (ii) of the tumor-associated antigen or of a part thereof, (iii) of antibodies which bind to the tumor-associated antigen or to a part thereof, and/or (iv) of T cells which are specific for a complex between the tumor-associated antigen or a part thereof and an MHC molecule. In one embodiment, the agents for detection of the nucleic acid or the part thereof are nucleic acid molecules for selective amplification of said nucleic acid, which comprise, in particular a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of said nucleic acid.
BRIEF DESCRIPTION OF THE DRAWINGS
[0069] FIG. 1: qPCR analysis of SEQ ID NO: 1 in melanomas. Quantitative expression analysis of SEQ ID NO: 1 in healthy skin tissue, in testis and in melanomas. Logarithmic representation of relative expression (-fold activation).
[0070] FIG. 2: Conventional RT-PCR analysis of SEQ ID NO: 1 in melanomas. RT-PCR expression analysis of SEQ ID NO: 1 in melanomas (n=14) and melanoma cell lines (n=4) in comparison with healthy skin (n=4) and with testis (n=3).
[0071] FIG. 3: qPCR analysis of SEQ ID NO: 5 in healthy tissue and in tumor samples. Quantitative expression analysis of SEQ ID NO: 5 in normal tissues (left-hand side) and in various tumors (pools consisting of in each case 3-5 individual samples, right-hand side). A Logarithmic representation of relative expression (-fold activation). B Image after gel-electrophoretic fractionation of the amplified fragments.
[0072] FIG. 4: Detailed analysis of SEQ ID NO: 5-specific expression. A Quantitative expression analysis of SEQ ID NO: 5 in various ENT, renal and uterine tumors in comparison with expression in the corresponding normal tissues. Logarithmic representation. B Image after gel-electrophoretic fractionation of the amplified fragments.
[0073] FIG. 5: Northern blot analysis with a SEQ ID NO: 5-specific sequence. Hybridization of a DIG-labeled DNA probe, prepared by PCR amplification using the primers according to SEQ ID NO: 7 and 8, with testis-specific RNA. Lane 1: 2 μg of testis-specific RNA; lane 2: 1 μg of testis-specific RNA.
[0074] FIG. 6: qPCR analysis of LOC203413. Quantitative expression analysis of LOC203413 in healthy tissues (left) and in tumor samples (pools consisting of in each case 3-5 individual samples, right). A Logarithmic representation of expression (-fold activation). B Result after gel-electrophoretic fractionation.
[0075] FIG. 7: Detailed analysis of LOC203413-specific expression in gastric carcinomas. Quantitative expression analysis of LOC203413 in various gastric tumor samples (n=10) in comparison with expression in healthy stomach (n=6). A Linear representation of relative expression. B Image after gel-electrophoretic fractionation of the amplicons.
[0076] FIG. 8: qPCR analysis of LOC90625-specific expression. Quantitative expression analysis of LOC90625 in normal tissues (left) and tumor tissues (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0077] FIG. 9: Detailed analysis of LOC90652-specific expression in various types of tumors. Quantitative expression analysis of LOC90625 in samples of carcinomas of the esophagus (n=8), pancreas (n=5) and prostate (n=10) in comparison with the respective healthy tissue (n=3/4); logarithmic representation of relative expression (-fold activation).
[0078] FIG. 10: qRT-PCR analysis of FAM26A in various types of tumors. Quantitative RT-PCR expression analysis of FAM26A in carcinomas of the A ovary, B stomach, esophagus, pancreas and liver, in comparison with the respective healthy tissue. Linear representation of relative expression (-fold activation).
[0079] FIG. 11: Characterization of FAM26A-specific antibodies. Western blot analysis of the antisera generated by immunization with a peptide of SEQ ID NO: 291 (A) and SEQ ID NO: 292 (B). Extracts of CHO cells were analyzed after transfection with in each case epitope-specific (A 1, 3; B 2, 4) or in each case epitope-unspecific (A 2, 4; B 1, 3) plasmids. The arrow indicates the specific fragments.
[0080] FIG. 12: Analysis of the FAM26A protein in tumors. Detection of FAM26A in cervical, ovarian and pancreatic tumors by means of FAM26A-specific antibodies (SEQ ID NO: 292).
[0081] FIG. 13: Analysis of the FAM26A protein in cell lines. Analysis of the FAM26A protein in cell lines with the aid of SEQ ID NO: 291-specific antibodies. A Western blot analysis with preimmune serum as specificity control (lanes 1-5) and FAM26A-specific antibodies. B Immunofluorescence analysis of SW480 cells.
[0082] FIG. 14: Immunohistochemical detection of FAM26A in testis. Immunohistochemical analysis of the FAM26A protein in healthy testis with the aid of SEQ ID NO: 292-specific antiserum in different dilutions (A-C).
[0083] FIG. 15: Immunohistochemical analysis of FAM26A in tumors. Immunohistochemical analysis of the FAM26A protein in carcinoma samples (40-fold magnification, 1:300 dilution) with the aid of the SEQ ID NO: 292-specific antiserum. A Ovarian papillary cystadenocarcinoma. B Plate epithelial carcinoma of the cervix.
[0084] FIG. 16: qRT-PCR analysis of SEMA5B-specific expression. Quantitative expression analysis of SEMA5B in normal tissues (left) and tumor samples (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0085] FIG. 17: Detailed analysis of SEMA5B-specific expression in renal cell carcinoma samples. Quantitative expression analysis of SEMA5B in A renal cell carcinoma samples (n=12) in comparison with healthy renal tissue (N=3) and in B mammary carcinomas (N=12) in comparison with healthy breast tissue (N=3); logarithmic representation of relative expression (-fold activation).
[0086] FIG. 18: qRT-PCR analysis of GJB5-specific expression. Quantitative expression analysis of GJB5 in healthy tissue samples (left) and carcinomas (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0087] FIG. 19: Detailed analysis of GJB5-specific expression in various types of tumors. Quantitative expression analysis of GJB5 in A colon carcinoma samples (n=12), B esophageal tumors (n=8), C gastric carcinomas (n=10) and D pancreatic tumors (n=5) in comparison with in each case healthy tissue samples; logarithmic (A, C) or linear (B, D) representation of relative expression (-fold activation).
[0088] FIG. 20: qRT-PCR analysis of KLK5-specific expression. Quantitative expression analysis of KLK5 in healthy tissue samples (left) and tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0089] FIG. 21: Detailed analysis of KLK5-specific expression in various types of tumors. Quantitative expression analysis of KLK5 in esophageal tumors (n=8), in ENT carcinomas (n=5) and in cervical tumors (n=4) in comparison with the respective healthy tissue samples; logarithmic representation of relative expression (-fold activation).
[0090] FIG. 22: qRT-PCR analysis of LOC352765-specific expression. Quantitative expression analysis of LOC352765 in healthy tissue samples (left) and tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0091] FIG. 23: Detailed analysis of LOC352765-specific expression in various types of tumors. Quantitative expression analysis of LOC352765 in colon carcinomas (n=8), in mammary carcinomas (n=5) and in ENT tumors (n=4) in comparison with respective healthy tissue samples; logarithmic representation of relative expression (-fold activation).
[0092] FIG. 24: qRT-PCR analysis of SVCT1-specific expression. Quantitative expression analysis of SVCT1 in healthy tissue samples (left) and tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0093] FIG. 25: Detailed analysis of SVCT1-specific expression in various types of tumors. Quantitative expression analysis of SVCT1 in A kidney carcinomas (n=8), B esophageal tumors (n=5) and ENT tumors (n=4) in comparison with in each case healthy tissue samples; logarithmic representation of relative expression (-fold activation).
[0094] FIG. 26: qRT-PCR analysis of LOC 199953-specific expression in renal cell carcinomas and in ENT tumors. Quantitative expression analysis of LOC199953 in renal cell carcinomas (n=12) and ENT tumors (n=5) in comparison with healthy kidney- and skin-specific tissue samples; linear representation of relative expression (-fold activation).
[0095] FIG. 27: qRT-PCR analysis of TMEM31-specific expression. Quantitative expression analysis of TMEM31 in healthy tissue samples (left) and tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0096] FIG. 28: Detailed analysis of TMEM31-specific expression in various types of tumors. Quantitative expression analysis of TMEM31 in A gastric carcinomas (n=10) and B mammary carcinomas (n=12) in comparison with in each case healthy tissue samples; logarithmic representation of relative expression (-fold activation).
[0097] FIG. 29: qRT-PCR analysis of FLJ25132-specific expression in ovarian tumors and in prostate carcinomas. Quantitative expression analysis of F1125132 in ovarian tumors (n=8) and in prostate carcinomas (n=10) in comparison with in each case healthy tissue samples; linear representation of relative expression (-fold activation).
[0098] FIG. 30: qRT-PCR analysis of SEQ ID NO: 57-specific expression. Quantitative expression analysis of SEQ ID NO: 57 in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0099] FIG. 31: Detailed analysis of SEQ ID NO: 57-specific expression in various types of tumors. Quantitative expression analysis of SEQ ID NO: 57 in A esophageal tumors (n=8), B liver carcinomas (n=8), C kidney carcinomas and D cervical and ENT tumors in comparison with in each case healthy tissue samples; linear (A, C, D) or logarithmic (B) representation of relative expression (-fold activation).
[0100] FIG. 32: qRT-PCR analysis of LOC119395-specific expression. Quantitative expression analysis of LOC119395 in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0101] FIG. 33: Detailed analysis of LOC119395-specific expression in various types of tumors. Quantitative expression analysis of LOC119395 in A breast tumors (n=12), B esophageal carcinomas (n=8) and C colon and gastric carcinomas, in comparison with in each case healthy tissue samples; logarithmic representation of relative expression (-fold activation).
[0102] FIG. 34: qRT-PCR analysis of LOC121838-specific expression. A Quantitative analysis of LOC121838-specific expression in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation). B Detailed analysis of LOC121838-specific RNA in ovarian tissues, logarithmic representation.
[0103] FIG. 35: qRT-PCR analysis of LOC221103-specific expression. Quantitative expression analysis of LOC22l 103-RNA in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0104] FIG. 36: Detailed qRT-PCR analysis of LOC221103-specific expression in liver samples. Quantitative expression analysis of LOC221103-RNA in liver tumors (n=8) and in a healthy liver sample. Linear representation of relative expression (-fold activation).
[0105] FIG. 37: qRT-PCR analysis of LOC338579-specific expression. Quantitative expression analysis of LOC338579-specific RNA in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0106] FIG. 38: qRT-PCR analysis of LOC90342-specific expression. Quantitative expression analysis of LOC90342-specific RNA in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0107] FIG. 39: qRT-PCR analysis of LRFN1-specific expression. Quantitative expression analysis of LRFN1-specific RNA in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0108] FIG. 40: qRT-PCR analysis of LOC285916-specific expression. A Quantitative analysis of LOC285916-specific expression in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation). B Detailed analysis of LOC285916-specific RNA in kidney tissues and in ENT tumors, logarithmic representation.
[0109] FIG. 41: qRT-PCR analysis of MGC71744-specific expression. A Quantitative analysis of MGC71744-specific expression in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation). B Detailed analysis of MGC71744-specific RNA in various kidney tissues, logarithmic representation.
[0110] FIG. 42: qRT-PCR analysis of LOC342982-specific expression. Quantitative expression analysis of LOC342982-specific RNA in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0111] FIG. 43: qRT-PCR analysis of LOC343169-specific expression. A Quantitative analysis of LOC343169-specific expression in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation). B Detailed analysis of LOC343169-specific RNA in various ovarian tissues, logarithmic representation.
[0112] FIG. 44: qRT-PCR analysis of LOC340204-specific expression. A Quantitative analysis of LOC340204-specific expression in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation). B Gel image of selected tissue samples after gel-electrophoretic fractionation.
[0113] FIG. 45: qRT-PCR analysis of LOC340067-specific expression. Quantitative expression analysis of LOC340067-specific RNA in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0114] FIG. 46: qRT-PCR analysis of LOC342780-specific expression. Quantitative expression analysis of LOC342780-specific RNA in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Logarithmic representation of relative expression (-fold activation).
[0115] FIG. 47: qRT-PCR analysis of LOC339511-specific expression. A Quantitative analysis of LOC339511-specific expression in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation). B Detailed analysis of LOC339511-specific RNA in various liver-specific tissues; linear representation.
[0116] FIG. 48: qRT-PCR analysis of C14 or f37-specific expression. Quantitative expression analysis of C14 or f37 in healthy tissue samples (left) and in tumors (pools consisting of in each case 3-5 individual samples; right). Linear representation of relative expression (-fold activation).
[0117] FIG. 49: qRT-PCR analysis of ATP1A4-specific expression. A Quantitative expression analysis of ATP1A4 in healthy tissue samples and in tumors (pools consisting of in each case 3-5 individual samples). Logarithmic representation of relative expression (-fold activation). B Detailed analysis of ATP1A4-specific RNA in various breast-specific tissues; logarithmic representation.
DETAILED DESCRIPTION OF THE INVENTION
[0118] According to the invention, genes are described which are expressed in tumor cells selectively or aberrantly and which are tumor-associated antigens.
[0119] According to the invention, these genes or their derivatives are preferred target structures for therapeutic approaches. Conceptionally, said therapeutic approaches may aim at inhibiting the activity of the selectively expressed tumor-associated genetic product. This is useful, if said aberrant respective selective expression is functionally important in tumor pathogenecity and if its ligation is accompanied by selective damage of the corresponding cells. Other therapeutic concepts contemplate tumor-associated antigens as labels which recruit effector mechanisms having cell-damaging potential selectively to tumor cells. Here, the function of the target molecule itself and its role in tumor development are totally irrelevant.
[0120] "Derivative" of a nucleic acid means according to the invention that single or multiple nucleotide substitutions, deletions and/or additions are present in said nucleic acid. Furthermore, the term "derivative" also comprises chemical derivatization of a nucleic acid on a base, on a sugar or on a phosphate of a nucleotide. The term "derivative" also comprises nucleic acids which contain nucleotides and nucleotide analogs not occurring naturally.
[0121] According to the invention, a nucleic acid is preferably deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). Nucleic acids comprise according to the invention genomic DNA, cDNA, mRNA, recombinantly produced and chemically synthesized molecules. According to the invention, a nucleic acid may be present as a single-stranded or double-stranded and linear or covalently circularly closed molecule.
[0122] The nucleic acids described according to the invention have preferably been isolated. The term "isolated nucleic acid" means according to the invention that the nucleic acid was (i) amplified in vitro, for example by polymerase chain reaction (PCR), (ii) recombinantly produced by cloning, (iii) purified, for example by cleavage and gel-electrophoretic fractionation, or (iv) synthesized, for example by chemical synthesis. An isolated nucleic acid is a nucleic acid which is available for manipulation by recombinant DNA techniques.
[0123] A nucleic acid is "complementary" to another nucleic acid if the two sequences are capable of hybridizing and forming a stable duplex with one another, with hybridization preferably being carried out under conditions which allow specific hybridization between polynucleotides (stringent conditions). Stringent conditions are described, for example, in Molecular Cloning: A Laboratory Manual, J. Sambrook et al., Editors, 2nd Edition, Cold Spring Harbor Laboratory press, Cold Spring Harbor, N.Y., 1989 or Current Protocols in Molecular Biology, F. M. Ausubel et al., Editors, John Wiley & Sons, Inc., New York and refer, for example, to hybridization at 65° C. in hybridization buffer (3.5×SSC, 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin, 2.5 mM NaH2PO4 (pH 7), 0.5% SDS, 2 mM EDTA). SSC is 0.15 M sodium chloride/0.15 M sodium citrate, pH 7. After hybridization, the membrane to which the DNA has been transferred is washed, for example, in 2×SSC at room temperature and then in 0.1-0.5×SSC/0.1×SDS at temperatures of up to 68° C.
[0124] According to the invention, complementary nucleic acids have at least 40%, in particular at least 50%, at least 60%, at least 70%, at least 80%, at least 90% and preferably at least 95%, at least 98% or at least 99%, identical nucleotides.
[0125] Nucleic acids coding for tumor-associated antigens may, according to the invention, be present alone or in combination with other nucleic acids, in particular heterologous nucleic acids. In preferred embodiments, a nucleic acid is functionally linked to expression control sequences or regulatory sequences which may be homologous or heterologous with respect to said nucleic acid. A coding sequence and a regulatory sequence are "functionally" linked to one another, if they are covalently linked to one another in such a way that expression or transcription of said coding sequence is under the control or under the influence of said regulatory sequence. If the coding sequence is to be translated into a functional protein, then, with a regulatory sequence functionally linked to said coding sequence, induction of said regulatory sequence results in transcription of said coding sequence, without causing a frame shift in the coding sequence or said coding sequence not being capable of being translated into the desired protein or peptide.
[0126] The term "expression control sequence" or "regulatory sequence" comprises according to the invention promoters, enhancers and other control elements which regulate expression of a gene. In particular embodiments of the invention, the expression control sequences can be regulated. The exact structure of regulatory sequences may vary as a function of the species or cell type, but generally comprises 5'untranscribed and 5'untranslated sequences which are involved in initiation of transcription and translation, respectively, such as TATA box, capping sequence, CAAT sequence, and the like. More specifically, 5'untranscribed regulatory sequences comprise a promoter region which includes a promoter sequence for transcriptional control of the functionally linked gene. Regulatory sequences may also comprise enhancer sequences or upstream activator sequences.
[0127] Thus, on the one hand, the tumor-associated antigens illustrated herein may be combined with any expression control sequences and promoters. On the other hand, however, the promoters of the tumor-associated genetic products illustrated herein may, according to the invention, be combined with any other genes. This allows the selective activity of these promoters to be utilized.
[0128] According to the invention, a nucleic acid may furthermore be present in combination with another nucleic acid which codes for a polypeptide controlling secretion of the protein or polypeptide encoded by said nucleic acid from a host cell. According to the invention, a nucleic acid may also be present in combination with another nucleic acid which codes for a polypeptide causing the encoded protein or polypeptide to be anchored on the cell membrane of the host cell or compartmentalized into particular organelles of said cell.
[0129] In a preferred embodiment, a recombinant DNA molecule is according to the invention a vector, where appropriate with a promoter, which controls expression of a nucleic acid, for example a nucleic acid coding for a tumor-associated antigen of the invention. The term "vector" is used here in its most general meaning and comprises any intermediary vehicle for a nucleic acid which enables said nucleic acid, for example, to be introduced into prokaryotic and/or eukaryotic cells and, where appropriate, to be integrated into a genome. Vectors of this kind are preferably replicated and/or expressed in the cells. An intermediary vehicle may be adapted, for example, to the use in electroporation, in bombardment with microprojectiles, in liposomal administration, in the transfer with the aid of agrobacteria or in insertion via DNA or RNA viruses. Vectors comprise plasmids, phagemids, bacteriophages or viral genomes.
[0130] The nucleic acids coding for a tumor-associated antigen identified according to the invention may be used for transfection of host cells. Nucleic acids here mean both recombinant DNA and RNA. Recombinant RNA may be prepared by in-vitro transcription of a DNA template. Furthermore, it may be modified by stabilizing sequences, capping and polyadenylation prior to application. According to the invention, the term "host cell" relates to any cell which can be transformed or transfected with an exogenous nucleic acid. The term "host cells" comprises according to the invention prokaryotic (e.g. E. coli) or eukaryotic cells (e.g. dendritic cells, B cells, CHO cells, COS cells, K562 cells, yeast cells and insect cells). Particular preference is given to mammalian cells such as cells from humans, mice, hamsters, pigs, goats, primates. The cells may be derived from a multiplicity of tissue types and comprise primary cells and cell lines. Specific examples comprise keratinocytes, peripheral blood leukocytes, stem cells of the bone marrow and embryonic stem cells. In further embodiments, the host cell is an antigen-presenting cell, in particular a dendritic cell, monocyte or a macrophage. A nucleic acid may be present in the host cell in the form of a single copy or of two or more copies and, in one embodiment, is expressed in the host cell.
[0131] According to the invention, the term "expression" is used in its most general meaning and comprises the production of RNA or of RNA and protein. It also comprises partial expression of nucleic acids. Furthermore, expression may be carried out transiently or stably. Preferred expression systems in mammalian cells comprise pcDNA3.1 and pRc/CMV (Invitrogen, Carlsbad, Calif.), which contain a selective marker such as a gene imparting resistance to G418 (and thus enabling stably transfected cell lines to be selected) and the enhancer-promoter sequences of cytomegalovirus (CMV).
[0132] In those cases of the invention in which an HLA molecule presents a tumor-associated antigen or a part thereof, an expression vector may also comprise a nucleic acid sequence coding for said HLA molecule. The nucleic acid sequence coding for the HLA molecule may be present on the same expression vector as the nucleic acid coding for the tumor-associated antigen or the part thereof, or both nucleic acids may be present on different expression vectors. In the latter case, the two expression vectors may be cotransfected into a cell. If a host cell expresses neither the tumor-associated antigen or the part thereof nor the HLA molecule, both nucleic acids coding therefor are transfected into the cell either on the same expression vector or on different expression vectors. If the cell already expresses the HLA molecule, only the nucleic acid sequence coding for the tumor-associated antigen or the part thereof can be transfected into the cell.
[0133] The invention also comprises kits for amplification of a nucleic acid coding for a tumor-associated antigen. Such kits comprise, for example, a pair of amplification primers which hybridize to the nucleic acid coding for the tumor-associated antigen. The primers preferably comprise a sequence of 6-50, in particular 10-30, 15-30 and 20-30 contiguous nucleotides of the nucleic acid and are nonoverlapping, in order to avoid the formation of primer dimers. One of the primers will hybridize to one strand of the nucleic acid coding for the tumor-associated antigen, and the other primer will hybridize to the complementary strand in an arrangement which allows amplification of the nucleic acid coding for the tumor-associated antigen.
[0134] "Antisense" molecules or "antisense" nucleic acids may be used for regulating, in particular reducing, expression of a nucleic acid. The term "antisense molecule" or "antisense nucleic acid" refers according to the invention to an oligonucleotide which is an oligoribonucleotide, oligodeoxyribonucleotide, modified oligoribonucleotide or modified oligodeoxyribonucleotide and which hybridizes under physiological conditions to DNA comprising a particular gene or to mRNA of said gene, thereby inhibiting transcription of said gene and/or translation of said mRNA. According to the invention, the "antisense molecule" also comprises a construct which contains a nucleic acid or a part thereof in reverse orientation with respect to its natural promoter. An antisense transcript of a nucleic acid or of a part thereof may form a duplex with the naturally occurring mRNA specifying the enzyme and thus prevent accumulation of or translation of the mRNA into the active enzyme. Another possibility is the use of ribozymes for inactivating a nucleic acid. Antisense oligonucleotides preferred according to the invention have a sequence of 6-50, in particular 10-30, 15-30 and 20-30, contiguous nucleotides of the target nucleic acid and preferably are fully complementary to the target nucleic acid or to a part thereof.
[0135] In preferred embodiments, the antisense oligonucleotide hybridizes with an N-terminal or 5' upstream site such as a translation initiation site, transcription initiation site or promoter site. In further embodiments, the antisense oligonucleotide hybridizes with a 3'untranslated region or mRNA splicing site.
[0136] In one embodiment, an oligonucleotide of the invention consists of ribonucleotides, deoxyribonucleotides or a combination thereof, with the 5' end of one nucleotide and the 3' end of another nucleotide being linked to one another by a phosphodiester bond. These oligonucleotides may be synthesized in the conventional manner or produced recombinantly.
[0137] In preferred embodiments, an oligonucleotide of the invention is a "modified" oligonucleotide. Here, the oligonucleotide may be modified in very different ways, without impairing its ability to bind its target, in order to increase, for example, its stability or therapeutic efficacy. According to the invention, the term "modified oligonucleotide" means an oligonucleotide in which (i) at least two of its nucleotides are linked to one another by a synthetic internucleoside bond (i.e. an internucleoside bond which is not a phosphodiester bond) and/or (ii) a chemical group which is usually not found in nucleic acids is covalently linked to the oligonucleotide. Preferred synthetic internucleoside bonds are phosphorothioates, alkyl phosphonates, phosphorodithioates, phosphate esters, alkyl phosphonothioates, phosphoramidates, carbamates, carbonates, phosphate triesters, acetamidates, carboxymethyl esters and peptides.
[0138] The term "modified oligonucleotide" also comprises oligonucleotides having a covalently modified base and/or sugar. "Modified oligonucleotides" comprise, for example, oligonucleotides with sugar residues which are covalently bound to low molecular weight organic groups other than a hydroxyl group at the 3' position and a phosphate group at the 5' position. Modified oligonucleotides may comprise, for example, a 2'-O-alkylated ribose residue or another sugar instead of ribose, such as arabinose.
[0139] Preferably, the proteins and polypeptides described according to the invention have been isolated. The terms "isolated protein" or "isolated polypeptide" mean that the protein or polypeptide has been separated from its natural environment. An isolated protein or polypeptide may be in an essentially purified state. The term "essentially purified" means that the protein or polypeptide is essentially free of other substances with which it is associated in nature or in vivo.
[0140] Such proteins and polypeptides may be used, for example, in producing antibodies and in an immunological or diagnostic assay or as therapeutics. Proteins and polypeptides described according to the invention may be isolated from biological samples such as tissue or cell homogenates and may also be expressed recombinantly in a multiplicity of pro- or eukaryotic expression systems.
[0141] For the purposes of the present invention, "derivatives" of a protein or polypeptide or of an amino acid sequence comprise amino acid insertion variants, amino acid deletion variants and/or amino acid substitution variants.
[0142] Amino acid insertion variants comprise amino- and/or carboxy-terminal fusions and also insertions of single or two or more amino acids in a particular amino acid sequence. In the case of amino acid sequence variants having an insertion, one or more amino acid residues are inserted into a particular site in an amino acid sequence, although random insertion with appropriate screening of the resulting product is also possible. Amino acid deletion variants are characterized by the removal of one or more amino acids from the sequence. Amino acid substitution variants are characterized by at least one residue in the sequence being removed and another residue being inserted in its place. Preference is given to the modifications being in positions in the amino acid sequence which are not conserved between homologous proteins or polypeptides. Preference is given to replacing amino acids with other ones having similar properties such as hydrophobicity, hydrophilicity, electronegativity, volume of the side chain and the like (conservative substitution). Conservative substitutions, for example, relate to the exchange of one amino acid with another amino acid listed below in the same group as the amino acid to be substituted:
[0143] 1. small aliphatic, nonpolar or slightly polar residues: Ala, Ser, Thr (Pro, Gly)
[0144] 2. negatively charged residues and their amides: Asn, Asp, Glu, Gln
[0145] 3. positively charged residues: His, Arg, Lys
[0146] 4. large aliphatic, nonpolar residues: Met, Leu, Ile, Val (Cys)
[0147] 5. large aromatic residues: Phe, Tyr, Trp.
[0148] Owing to their particular part in protein architecture, three residues are shown in brackets. Gly is the only residue without a side chain and thus imparts flexibility to the chain. Pro has an unusual geometry which greatly restricts the chain. Cys can form a disulfide bridge.
[0149] The amino acid variants described above may be readily prepared with the aid of known peptide synthesis techniques such as, for example, by solid phase synthesis (Merrifield, 1964) and similar methods or by recombinant DNA manipulation. Techniques for introducing substitution mutations at predetermined sites into DNA which has a known or partially known sequence are well known and comprise M13 mutagenesis, for example. The manipulation of DNA sequences for preparing proteins having substitutions, insertions or deletions, is described in detail in Sambrook et al. (1989), for example.
[0150] According to the invention, "derivatives" of proteins or polypeptides also comprise single or multiple substitutions, deletions and/or additions of any molecules associated with the enzyme, such as carbohydrates, lipids and/or proteins or polypeptides. The term "derivative" also extends to all functional chemical equivalents of said proteins or polypeptides.
[0151] According to the invention, a part or fragment of a tumor-associated antigen has a functional property of the polypeptide from which it has been derived. Such functional properties comprise the interaction with antibodies, the interaction with other polypeptides or proteins, the selective binding of nucleic acids and an enzymatic activity. A particular property is the ability to form a complex with HLA and, where appropriate, generate an immune response. This immune response may be based on stimulating cytotoxic or T helper cells. A part or fragment of a tumor-associated antigen of the invention preferably comprises a sequence of at least 6, in particular at least 8, at least 10, at least 12, at least 15, at least 20, at least 30 or at least 50, consecutive amino acids of the tumor-associated antigen. A part or fragment of a tumor-associated antigen is preferably a part of the tumor-associated antigen which corresponds to the non-membrane portion, in particular the extracellular portion of the antigen or is comprised thereof.
[0152] A part or a fragment of a nucleic acid coding for a tumor-associated antigen relates according to the invention to the part of the nucleic acid, which codes at least for the tumor-associated antigen and/or for a part or a fragment of said tumor-associated antigen, as defined above. Preferably, a part or fragment of a nucleic acid coding for a tumor-associated antigen is that part which corresponds to the open reading frame, in particular as indicated in the sequence listing.
[0153] The isolation and identification of genes coding for tumor-associated antigens also make possible the diagnosis of a disease characterized by expression of one or more tumor-associated antigens. These methods comprise determining one or more nucleic acids which code for a tumor-associated antigen and/or determining the encoded tumor-associated antigens and/or peptides derived therefrom. The nucleic acids may be determined in the conventional manner, including by polymerase chain reaction or hybridization with a labeled probe. Tumor-associated antigens or peptides derived therefrom may be determined by screening patient antisera with respect to recognizing the antigen and/or the peptides. They may also be determined by screening T cells of the patient for specificities for the corresponding tumor-associated antigen.
[0154] The present invention also enables proteins binding to tumor-associated antigens described herein to be isolated, including antibodies and cellular binding partners of said tumor-associated antigens.
[0155] According to the invention, particular embodiments ought to involve providing "dominant negative" polypeptides derived from tumor-associated antigens. A dominant negative polypeptide is an inactive protein variant which, by way of interacting with the cellular machinery, displaces an active protein from its interaction with the cellular machinery or which competes with the active protein, thereby reducing the effect of said active protein. For example, a dominant negative receptor which binds to a ligand but does not generate any signal as response to binding to the ligand can reduce the biological effect of said ligand. Similarly, a dominant negative catalytically inactive kinase which usually interacts with target proteins but does not phosphorylate said target proteins may reduce phosphorylation of said target proteins as response to a cellular signal. Similarly, a dominant negative transcription factor which binds to a promoter site in the control region of a gene but does not increase transcription of said gene may reduce the effect of a normal transcription factor by occupying promoter binding sites, without increasing transcription.
[0156] The result of expression of a dominant negative polypeptide in a cell is a reduction in the function of active proteins. The skilled worker may prepare dominant negative variants of a protein, for example, by conventional mutagenesis methods and by evaluating the dominant negative effect of the variant polypeptide.
[0157] The invention also comprises substances such as polypeptides which bind to tumor-associated antigens. Such binding substances may be used, for example, in screening assays for detecting tumor-associated antigens and complexes of tumor-associated antigens with their binding partners and in a purification of said tumor-associated antigens and of complexes thereof with their binding partners. Such substances may also be used for inhibiting the activity of tumor-associated antigens, for example by binding to such antigens.
[0158] The invention therefore comprises binding substances such as, for example, antibodies or antibody fragments, which are capable of selectively binding to tumor-associated antigens. Antibodies comprise polyclonal and monoclonal antibodies which are produced in the conventional manner.
[0159] It is known that only a small part of an antibody molecule, the paratope, is involved in binding of the antibody to its epitope (cf. Clark, W. R. (1986), The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., New York; Roitt, I. (1991), Essential Immunology, 7th Edition, Blackwell Scientific Publications, Oxford). The pFc' and Fc regions are, for example, effectors of the complement cascade but are not involved in antigen binding. An antibody from which the pFc' region has been enzymatically removed or which has been produced without the pFc' region, referred to as F(ab')2 fragment, carries both antigen binding sites of a complete antibody. Similarly, an antibody from which the Fc region has been enzymatically removed or which has been produced without said Fc region, referred to Fab fragment, carries one antigen binding site of an intact antibody molecule. Furthermore, Fab fragments consist of a covalently bound light chain of an antibody and part of the heavy chain of said antibody, referred to as Fd. The Fd fragments are the main determinants of antibody specificity (a single Fd fragment can be associated with up to ten different light chains, without altering the specificity of the antibody) and Fd fragments, when isolated, retain the ability to bind to an epitope.
[0160] Located within the antigen-binding part of an antibody are complementary-determining regions (CDRs) which interact directly with the antigen epitope and framework regions (FRs) which maintain the tertiary structure of the paratope. Both the Fd fragment of the heavy chain and the light chain of IgG immunoglobulins contain four framework regions (FR1 to FR4) which are separated in each case by three complementary-determining regions (CDR1 to CDR3). The CDRs and, in particular, the CDR3 regions and, still more particularly, the CDR3 region of the heavy chain are responsible to a large extent for antibody specificity.
[0161] Non-CDR regions of a mammalian antibody are known to be able to be replaced by similar regions of antibodies with the same or a different specificity, with the specificity for the epitope of the original antibody being retained. This made possible the development of "humanized" antibodies in which nonhuman CDRs are covalently linked to human FR and/or Fc/pFc' regions to produce a functional antibody.
[0162] WO 92/04381 for example, describes production and use of humanized murine RSV antibodies in which at least part of the murine FR regions have been replaced with FR regions of a human origin. Antibodies of this kind, including fragments of intact antibodies with antigen-binding capability, are often referred to as "chimeric" antibodies.
[0163] The invention also provides F(ab')2, Fab, Fv, and Fd fragments of antibodies, chimeric antibodies, in which the Fc and/or FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, chimeric F(ab')2-fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, chimeric Fab-fragment antibodies in which the FR and/or CDR1 and/or CDR2 and/or light chain-CDR3 regions have been replaced with homologous human or nonhuman sequences, and chimeric Fd-fragment antibodies in which the FR and/or CDR1 and/or CDR2 regions have been replaced with homologous human or nonhuman sequences. The invention also comprises "single-chain" antibodies.
[0164] Preferably, an antibody used according to the invention is directed against one of the sequences according to SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 to 308, 310 of the sequence listing, a part or derivative thereof, in particular a sequence according to SEQ ID NOs: 281 to 308 of the sequence listing and/or may be obtained by immunization using these peptides.
[0165] The invention also comprises polypeptides which bind specifically to tumor-associated antigens. Polypeptide binding substances of this kind may be provided, for example, by degenerate peptide libraries which may be prepared simply in solution in an immobilized form or as phage-display libraries. It is likewise possible to prepare combinatorial libraries of peptides with one or more amino acids. Libraries of peptoids and nonpeptidic synthetic residues may also be prepared.
[0166] Phage display may be particularly effective in identifying binding peptides of the invention. In this connection, for example, a phage library is prepared (using, for example, the M13, fd or lambda phages) which presents inserts of from 4 to about 80 amino acid residues in length. Phages are then selected which carry inserts which bind to the tumor-associated antigen. This process may be repeated via two or more cycles of a reselection of phages binding to the tumor-associated antigen. Repeated rounds result in a concentration of phages carrying particular sequences. An analysis of DNA sequences may be carried out in order to identify the sequences of the expressed polypeptides. The smallest linear portion of the sequence binding to the tumor-associated antigen may be determined. The "two-hybrid system" of yeast may also be used for identifying polypeptides which bind to a tumor-associated antigen. Tumor-associated antigens described according to the invention or fragments thereof may be used for screening peptide libraries, including phage-display libraries, in order to identify and select peptide binding partners of the tumor-associated antigens. Such molecules may be used, for example, for screening assays, purification protocols, for interference with the function of the tumor-associated antigen and for other purposes known to the skilled worker.
[0167] The antibodies described above and other binding molecules may be used, for example, for identifying tissue which expresses a tumor-associated antigen. Antibodies may also be coupled to specific diagnostic substances for displaying cells and tissues expressing tumor-associated antigens. They may also be coupled to therapeutically useful substances. Diagnostic substances comprise, in a nonlimiting manner, barium sulfate, iocetamic acid, iopanoic acid, calcium ipodate, sodium diatrizoate, meglumine diatrizoate, metrizamide, sodium tyropanoate and radio diagnostic, including positron emitters such as fluorine-18 and carbon-11, gamma emitters such as iodine-123, technetium-99, iodine-131 and indium-111, nuclides for nuclear magnetic resonance, such as fluorine and gadolinium. According to the invention, the term "therapeutically useful substance" means any therapeutic molecule which, as desired, is selectively guided to a cell which expresses one or more tumor-associated antigens, including anticancer agents, radioactive iodine-labeled compounds, toxins, cytostatic or cytolytic drugs, etc. Anticancer agents comprise, for example, aminoglutethimide, azathioprine, bleomycin sulfate, busulfan, carmustine, chlorambucil, cisplatin, cyclophosphamide, cyclosporine, cytarabidine, dacarbazine, dactinomycin, daunorubin, doxorubicin, taxol, etoposide, fluorouracil, interferon-α, lomustine, mercaptopurine, methotrexate, mitotane, procarbazine HCl, thioguanine, vinblastine sulfate and vincristine sulfate. Other anticancer agents are described, for example, in Goodman and Gilman, "The Pharmacological Basis of Therapeutics", 8th Edition, 1990, McGraw-Hill, Inc., in particular Chapter 52 (Antineoplastic Agents (Paul Calabresi and Bruce A. Chabner). Toxins may be proteins such as pokeweed antiviral protein, cholera toxin, pertussis toxin, ricin, gelonin, abrin, diphtheria exotoxin or Pseudomonas exotoxin. Toxin residues may also be high energy-emitting radionuclides such as cobalt-60.
[0168] The term "patient" means according to the invention a human being, a nonhuman primate or another animal, in particular a mammal such as a cow, horse, pig, sheep, goat, dog, cat or a rodent such as a mouse and rat. In a particularly preferred embodiment, the patient is a human being.
[0169] According to the invention, the term "disease" refers to any pathological state in which tumor-associated antigens are expressed or abnormally expressed. "Abnormal expression" means according to the invention that expression is altered, preferably increased, compared to the state in a healthy individual. An increase in expression refers to an increase by at least 10%, in particular at least 20%, at least 50% or at least 100%. In one embodiment, the tumor-associated antigen is expressed only in tissue of a diseased individual, while expression in a healthy individual is repressed. One example of such a disease is cancer, in particular seminomas, melanomas, teratomas, gliomas, colon cancer, rectal cancer, kidney cancer, breast cancer, prostate cancer, cancer of the uterus, ovarian cancer, endometrial cancer, cancer of the esophagus, blood cancer, liver cancer, pancreatic cancer, skin cancer, brain cancer and lung cancer, lymphomas, and neuroblastomas.
[0170] Examples for this are lung tumor, breast tumor, prostate tumor, colon tumor, renal cell carcinoma, cervical carcinoma, colon carcinoma and mamma carcinoma or metastases of the above cancer types or tumors.
[0171] According to the invention, a biological sample may be a tissue sample and/or a cellular sample and may be obtained in the conventional manner such as by tissue biopsy, including punch biopsy, and by taking blood, bronchial aspirate, urine, feces or other body fluids, for use in the various methods described herein.
[0172] According to the invention, the term "immunoreactive cell" means a cell which can mature into an immune cell (such as B cell, T helper cell, or cytolytic T cell) with suitable stimulation. Immunoreactive cells comprise CD34.sup.+ hematopoietic stem cells, immature and mature T cells and immature and mature B cells. If production of cytolytic or T helper cells recognizing a tumor-associated antigen is desired, the immunoreactive cell is contacted with a cell expressing a tumor-associated antigen under conditions which favor production, differentiation and/or selection of cytolytic T cells and of T helper cells. The differentiation of T cell precursors into a cytolytic T cell, when exposed to an antigen, is similar to clonal selection of the immune system.
[0173] Some therapeutic methods are based on a reaction of the immune system of a patient, which results in a lysis of antigen-presenting cells such as cancer cells which present one or more tumor-associated antigens. In this connection, for example autologous cytotoxic T lymphocytes specific for a complex of a tumor-associated antigen and an MHC molecule are administered to a patient having a cellular abnormality. The production of such cytotoxic T lymphocytes in vitro is known. An example of a method of differentiating T cells can be found in WO-A-96/33265. Generally, a sample containing cells such as blood cells is taken from the patient and the cells are contacted with a cell which presents the complex and which can cause propagation of cytotoxic T lymphocytes (e.g. dendritic cells). The target cell may be a transfected cell such as a COS cell. These transfected cells present the desired complex on their surface and, when contacted with cytotoxic T lymphocytes, stimulate propagation of the latter. The clonally expanded autologous cytotoxic T lymphocytes are then administered to the patient.
[0174] In another method of selecting antigen-specific cytotoxic T lymphocytes, fluorogenic tetramers of MHC class I molecule/peptide complexes are used for detecting specific clones of cytotoxic T lymphocytes (Altman et al., Science 274:94-96, 1996; Dunbar et al., Curr. Biol. 8:413-416, 1998). Soluble MHC class I molecules are folded in vitro in the presence of β2 microglobulin and a peptide antigen binding to said class I molecule. The MHC/peptide complexes are purified and then labeled with biotin. Tetramers are formed by mixing the biotinylated peptide-MHC complexes with labeled avidin (e.g. phycoerythrin) in a molar ratio of 4:1. Tetramers are then contacted with cytotoxic T lymphocytes such as peripheral blood or lymph nodes. The tetramers bind to cytotoxic T lymphocytes which recognize the peptide antigen/MHC class I complex. Cells which are bound to the tetramers may be sorted by fluorescence-controlled cell sorting to isolate reactive cytotoxic T lymphocytes. The isolated cytotoxic T lymphocytes may then be propagated in vitro.
[0175] In a therapeutic method referred to as adoptive transfer (Greenberg, J. Immunol. 136(5):1917, 1986; Riddel et al., Science 257:238, 1992; Lynch et al., Eur. J. Immunol. 21:1403-1410, 1991; Kast et al., Cell 59:603-614, 1989), cells presenting the desired complex (e.g. dendritic cells) are combined with cytotoxic T lymphocytes of the patient to be treated, resulting in a propagation of specific cytotoxic T lymphocytes. The propagated cytotoxic T lymphocytes are then administered to a patient having a cellular anomaly characterized by particular abnormal cells presenting the specific complex. The cytotoxic T lymphocytes then lyse the abnormal cells, thereby achieving a desired therapeutic effect.
[0176] Often, of the T cell repertoire of a patient, only T cells with low affinity for a specific complex of this kind can be propagated, since those with high affinity have been extinguished due to development of tolerance. An alternative here may be a transfer of the T cell receptor itself For this too, cells presenting the desired complex (e.g. dendritic cells) are combined with cytotoxic T lymphocytes of healthy individuals. This results in propagation of specific cytotoxic T lymphocytes with high affinity if the donor had no previous contact with the specific complex. The high affinity T cell receptor of these propagated specific T lymphocytes is cloned and can be transduced via gene transfer, for example using retroviral vectors, into T cells of other patients, as desired. Adoptive transfer is then carried out using these genetically altered T lymphocytes (Stanislawski et al., Nat Immunol. 2:962-70, 2001; Kessels et al., Nat Immunol. 2:957-61, 2001).
[0177] The therapeutic aspects above start out from the fact that at least some of the abnormal cells of the patient present a complex of a tumor-associated antigen and an HLA molecule. Such cells may be identified in a manner known per se. As soon as cells presenting the complex have been identified, they may be combined with a sample from the patient, which contains cytotoxic T lymphocytes. If the cytotoxic T lymphocytes lyse the cells presenting the complex, it can be assumed that a tumor-associated antigen is presented.
[0178] Adoptive transfer is not the only form of therapy which can be applied according to the invention. Cytotoxic T lymphocytes may also be generated in vivo in a manner known per se. One method uses nonproliferative cells expressing the complex. The cells used here will be those which usually express the complex, such as irradiated tumor cells or cells transfected with one or both genes necessary for presentation of the complex (i.e. the antigenic peptide and the presenting HLA molecule). Various cell types may be used. Furthermore, it is possible to use vectors which carry one or both of the genes of interest. Particular preference is given to viral or bacterial vectors. For example, nucleic acids coding for a tumor-associated antigen or for a part thereof may be functionally linked to promoter and enhancer sequences which control expression of said tumor-associated antigen or a fragment thereof in particular tissues or cell types. The nucleic acid may be incorporated into an expression vector. Expression vectors may be nonmodified extrachromosomal nucleic acids, plasmids or viral genomes into which exogenous nucleic acids may be inserted. Nucleic acids coding for a tumor-associated antigen may also be inserted into a retroviral genome, thereby enabling the nucleic acid to be integrated into the genome of the target tissue or target cell. In these systems, a microorganism such as vaccinia virus, pox virus, Herpes simplex virus, retrovirus or adenovirus carries the gene of interest and de facto "infects" host cells. Another preferred form is the introduction of the tumor-associated antigen in the form of recombinant RNA which may be introduced into cells by liposomal transfer or by electroporation, for example. The resulting cells present the complex of interest and are recognized by autologous cytotoxic T lymphocytes which then propagate.
[0179] A similar effect can be achieved by combining the tumor-associated antigen or a fragment thereof with an adjuvant in order to make incorporation into antigen-presenting cells in vivo possible. The tumor-associated antigen or a fragment thereof may be represented as protein, as DNA (e.g. within a vector) or as RNA. The tumor-associated antigen is processed to produce a peptide partner for the HLA molecule, while a fragment thereof may be presented without the need for further processing. The latter is the case in particular, if these can bind to HLA molecules. Preference is given to administration forms in which the complete antigen is processed in vivo by a dendritic cell, since this may also produce T helper cell responses which are needed for an effective immune response (Ossendorp et al., Immunol Lett. 74:75-9, 2000; Ossendorp et al., J. Exp. Med. 187:693-702, 1998). In general, it is possible to administer an effective amount of the tumor-associated antigen to a patient by intradermal injection, for example. However, injection may also be carried out intranodally into a lymph node (Maloy et al., Proc Natl Acad Sci USA 98:3299-303, 2001). It may also be carried out in combination with reagents which facilitate uptake into dendritic cells. Preferred tumor-associated antigens comprise those which react with allogenic cancer antisera or with T cells of many cancer patients. Of particular interest, however, are those against which no spontaneous immune responses pre-exist. Evidently, it is possible to induce against these immune responses which can lyse tumors (Keogh et al., J. Immunol. 167:787-96, 2001; Appella et al., Biomed Pept Proteins Nucleic Acids 1:177-84, 1995; Wentworth et al., Mol Immunol. 32:603-12, 1995).
[0180] The pharmaceutical compositions described according to the invention may also be used as vaccines for immunization. According to the invention, the terms "immunization" or "vaccination" mean an increase in or activation of an immune response to an antigen. It is possible to use animal models for testing an immunizing effect on cancer by using a tumor-associated antigen or a nucleic acid coding therefor. For example, human cancer cells may be introduced into a mouse to generate a tumor, and one or more nucleic acids coding for tumor-associated antigens may be administered. The effect on the cancer cells (for example reduction in tumor size) may be measured as a measure for the effectiveness of an immunization by the nucleic acid.
[0181] As part of the composition for an immunization, one or more tumor-associated antigens or stimulating fragments thereof are administered together with one or more adjuvants for inducing an immune response or for increasing an immune response. An adjuvant is a substance which is incorporated into the antigen or administered together with the latter and which enhances the immune response. Adjuvants may enhance the immune response by providing an antigen reservoir (extracellularly or in macrophages), activating macrophages and stimulating particular lymphocytes. Adjuvants are known and comprise in a nonlimiting way monophosphoryl lipid A (MPL, SmithKline Beecham), saponin such as QS21 (SmithKline Beecham), DQS21 (SmithKline Beecham; WO 96/33739), QS7, QS17, QS18 and QS-L1 (So et al., Mol. Cells 7:178-186, 1997), incomplete Freund's adjuvant, complete Freund's adjuvant, vitamin E, montanide, alum, CpG oligonucleotides (cf. Krieg et al., Nature 374:546-9, 1995) and various water-in-oil emulsions prepared from biologically degradable oils such as squalene and/or tocopherol. Preferably, the peptides are administered in a mixture with DQS21/MPL. The ratio of DQS21 to MPL is typically about 1:10 to 10:1, preferably about 1:5 to 5:1 and in particular about 1:1. For administration to humans, a vaccine formulation typically contains DQS21 and MPL in a range from about 1 μg to about 100 μg.
[0182] Other substances which stimulate an immune response of the patient may also be administered. It is possible, for example, to use cytokines in a vaccination, owing to their regulatory properties on lymphocytes. Such cytokines comprise, for example, interleukin-12 (IL-12) which was shown to increase the protective actions of vaccines (cf. Science 268:1432-1434, 1995), GM-CSF and IL-18.
[0183] There are a number of compounds which enhance an immune response and which therefore may be used in a vaccination. Said compounds comprise costimulating molecules provided in the form of proteins or nucleic acids. Examples of such costimulating molecules are B7-1 and B7-2 (CD80 and CD86, respectively) which are expressed on dendritic cells (DC) and interact with the CD28 molecule expressed on the T cells. This interaction provides a costimulation (signal 2) for an antigen/MHC/TCR-stimulated (signal 1) T cell, thereby enhancing propagation of said T cell and the effector function. B7 also interacts with CTLA4 (CD 152) on T cells, and studies involving CTLA4 and B7 ligands demonstrate that B7-CTLA4 interaction can enhance antitumor immunity and CTL propagation (Zheng, P. et al., Proc. Natl. Acad. Sci. USA 95(11):6284-6289 (1998)).
[0184] B7 is typically not expressed on tumor cells so that these are no effective antigen-presenting cells (APCs) for T cells. Induction of B7 expression would enable tumor cells to stimulate more effectively propagation of cytotoxic T lymphocytes and an effector function. Costimulation by a combination of B7/IL-6/IL-12 revealed induction of IFN-gamma and Thl-cytokine profile in a T cell population, resulting in further enhanced T cell activity (Gajewski et al., J. Immunol. 154:5637-5648 (1995)).
[0185] A complete activation of cytotoxic T lymphocytes and a complete effector function require an involvement of T helper cells via interaction between the CD40 ligand on said T helper cells and the CD40 molecule expressed by dendritic cells (Ridge et al., Nature 393:474 (1998), Bennett et al., Nature 393:478 (1998), Schonberger et al., Nature 393:480 (1998)). The mechanism of this costimulating signal probably relates to the increase in B7 production and associated IL-6/IL-12 production by said dendritic cells (antigen-presenting cells). CD40-CD40L interaction thus complements the interaction of signal 1 (antigen/MHC-TCR) and signal 2 (B7-CD28).
[0186] The use of anti-CD40 antibodies for stimulating dendritic cells would be expected to directly enhance a response to tumor antigens which are usually outside the range of an inflammatory response or which are presented by nonprofessional antigen-presenting cells (tumor cells). In these situations, T helper and B7-costimulating signals are not provided. This mechanism could be used in connection with therapies based on antigen-pulsed dendritic cells or in situations in which T helper epitopes have not been defined in known TRA precursors.
[0187] The invention also provides for administration of nucleic acids, polypeptides or peptides. Polypeptides and peptides may be administered in a manner known per se. In one embodiment, nucleic acids are administered by ex vivo methods, i.e. by removing cells from a patient, genetic modification of said cells in order to incorporate a tumor-associated antigen and reintroduction of the altered cells into the patient. This generally comprises introducing a functional copy of a gene into the cells of a patient in vitro and reintroducing the genetically altered cells into the patient. The functional copy of the gene is under the functional control of regulatory elements which allow the gene to be expressed in the genetically altered cells. Transfection and transduction methods are known to the skilled worker. The invention also provides for administering nucleic acids in vivo by using vectors such as viruses and target-controlled liposomes.
[0188] In a preferred embodiment, a viral vector for administering a nucleic acid coding for a tumor-associated antigen is selected from the group consisting of adenoviruses, adeno-associated viruses, pox viruses, including vaccinia virus and attenuated pox viruses, Semliki Forest virus, retroviruses, Sindbis virus and Ty virus-like particles. Particular preference is given to adenoviruses and retroviruses. The retroviruses are typically replication-deficient (i.e. they are incapable of generating infectious particles).
[0189] Various methods may be used in order to introduce according to the invention nucleic acids into cells in vitro or in vivo. Methods of this kind comprise transfection of nucleic acid CaPO4 precipitates, transfection of nucleic acids associated with DEAE, transfection or infection with the above viruses carrying the nucleic acids of interest, liposome-mediated transfection, and the like. In particular embodiments, preference is given to directing the nucleic acid to particular cells. In such embodiments, a carrier used for administering a nucleic acid to a cell (e.g. a retrovirus or a liposome) may have a bound target control molecule. For example, a molecule such as an antibody specific for a surface membrane protein on the target cell or a ligand for a receptor on the target cell may be incorporated into or attached to the nucleic acid carrier. Preferred antibodies comprise antibodies which bind selectively a tumor-associated antigen. If administration of a nucleic acid via liposomes is desired, proteins binding to a surface membrane protein associated with endocytosis may be incorporated into the liposome formulation in order to make target control and/or uptake possible. Such proteins comprise capsid proteins or fragments thereof which are specific for a particular cell type, antibodies to proteins which are internalized, proteins addressing an intracellular site, and the like.
[0190] The therapeutic compositions of the invention may be administered in pharmaceutically compatible preparations. Such preparations may usually contain pharmaceutically compatible concentrations of salts, buffer substances, preservatives, carriers, supplementing immunity-enhancing substances such as adjuvants (e.g. CpG oligonucleotides) and cytokines and, where appropriate, other therapeutically active compounds.
[0191] The therapeutically active compounds of the invention may be administered via any conventional route, including by injection or infusion. The administration may be carried out, for example, orally, intravenously, intraperitonealy, intramuscularly, subcutaneously or transdermally. Preferably, antibodies are therapeutically administered by way of a lung aerosol. Antisense nucleic acids are preferably administered by slow intravenous administration.
[0192] The compositions of the invention are administered in effective amounts. An "effective amount" refers to the amount which achieves a desired reaction or a desired effect alone or together with further doses. In the case of treatment of a particular disease or of a particular condition characterized by expression of one or more tumor-associated antigens, the desired reaction relates to inhibition of the course of the disease. This comprises slowing down the progress of the disease and, in particular, interrupting the progress of the disease. The desired reaction in a treatment of a disease or of a condition may also be delay of the onset or a prevention of the onset of said disease or said condition.
[0193] An effective amount of a composition of the invention will depend on the condition to be treated, the severeness of the disease, the individual parameters of the patient, including age, physiological condition, size and weight, the duration of treatment, the type of an accompanying therapy (if present), the specific route of administration and similar factors.
[0194] The pharmaceutical compositions of the invention are preferably sterile and contain an effective amount of the therapeutically active substance to generate the desired reaction or the desired effect.
[0195] The doses administered of the compositions of the invention may depend on various parameters such as the type of administration, the condition of the patient, the desired period of administration, etc. In the case that a reaction in a patient is insufficient with an initial dose, higher doses (or effectively higher doses achieved by a different, more localized route of administration) may be used.
[0196] Generally, doses of the tumor-associated antigen of from 1 ng to 1 mg, preferably from 10 ng to 100 μg, are formulated and administered for a treatment or for generating or increasing an immune response. If the administration of nucleic acids (DNA and RNA) coding for tumor-associated antigens is desired, doses of from 1 ng to 0.1 mg are formulated and administered.
[0197] The pharmaceutical compositions of the invention are generally administered in pharmaceutically compatible amounts and in pharmaceutically compatible compositions. The term "pharmaceutically compatible" refers to a nontoxic material which does not interact with the action of the active component of the pharmaceutical composition. Preparations of this kind may usually contain salts, buffer substances, preservatives, carriers and, where appropriate, other therapeutically active compounds. When used in medicine, the salts should be pharmaceutically compatible. However, salts which are not pharmaceutically compatible may used for preparing pharmaceutically compatible salts and are included in the invention. Pharmacologically and pharmaceutically compatible salts of this kind comprise in a nonlimiting way those prepared from the following acids: hydrochloric, hydrobromic, sulfuric, nitric, phosphoric, maleic, acetic, salicylic, citric, formic, malonic, succinic acids, and the like. Pharmaceutically compatible salts may also be prepared as alkali metal salts or alkaline earth metal salts, such as sodium salts, potassium salts or calcium salts.
[0198] A pharmaceutical composition of the invention may comprise a pharmaceutically compatible carrier. According to the invention, the term "pharmaceutically compatible carrier" refers to one or more compatible solid or liquid fillers, diluents or encapsulating substances, which are suitable for administration to humans. The term "carrier" refers to an organic or inorganic component, of a natural or synthetic nature, in which the active component is combined in order to facilitate application. The components of the pharmaceutical composition of the invention are usually such that no interaction occurs which substantially impairs the desired pharmaceutical efficacy.
[0199] The pharmaceutical compositions of the invention may contain suitable buffer substances such as acetic acid in a salt, citric acid in a salt, boric acid in a salt and phosphoric acid in a salt.
[0200] The pharmaceutical compositions may, where appropriate, also contain suitable preservatives such as benzalkonium chloride, chlorobutanol, paraben and thimerosal.
[0201] The pharmaceutical compositions are usually provided in a uniform dosage form and may be prepared in a manner known per se. Pharmaceutical compositions of the invention may be in the form of capsules, tablets, lozenges, solutions, suspensions, syrups, elixir or in the form of an emulsion, for example.
[0202] Compositions suitable for parenteral administration usually comprise a sterile aqueous or nonaqueous preparation of the active compound, which is preferably isotonic to the blood of the recipient. Examples of compatible carriers and solvents are Ringer solution and isotonic sodium chloride solution. In addition, usually sterile, fixed oils are used as solution or suspension medium.
[0203] The present invention is described in detail by the figures and examples below, which are used only for illustration purposes and are not meant to be limiting. Owing to the description and the examples, further embodiments which are likewise included in the invention are accessible to the skilled worker.
EXAMPLES
[0204] Materials and methods
[0205] The terms "in silico" and "electronic" refer solely to the utilization of methods based on databases, which may also be used to simulate laboratory experimental processes.
[0206] Unless expressly defined otherwise, all other terms and expressions are used so as to be understood by the skilled worker. The techniques and methods mentioned are carried out in a manner known per se and are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd edition (1989), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. All methods including the use of kits and reagents are carried out according to the manufacturers' information.
Example 1
Data Mining-Based Strategy for Identifying Tumor-Associated Antigens
[0207] According to the invention, public human protein and nucleic acid databases were screened with regard to cancer-specific antigens accessible on the cell surface. The definition of the screening criteria required therefor, together with high throughput methods for analyzing, if possible, all proteins, formed the central component of this strategy.
[0208] The starting point consisted of the potential genes, predicted mainly by the human genome project, which have been deposited as solely exemplary protein (XP) or mRNA (XM) entries in the RefSeq database (Pruitt et al., Trends Genet. January; 16(1):44-47, 2000) of the National Center for Biotechnology Information (NCBI). In another approach, the validated protein entries (NP) and, respectively, the corresponding mRNAs (NM) of the same database were also analyzed in the same manner. Following the fundamental principle of (hypothetical) gene→mRNA→protein, the proteins were first studied for the presence of transmembrane domains by combining a plurality of prediction programs for protein analysis. A total of 19 544 entries of the human XP fraction of the RefSeq database were analyzed, with 2025 hypothetical proteins satisfying said screening criteria. The human NP fraction provided a total of 19 110 entries with a proportion of 4634 filtered proteins.
[0209] The corresponding mRNA of each of these 2025 and 4634 proteins, respectively, was then subjected to a homology search in the EST database (Boguski et al., Nat. Genet. 4(4):332-333, 1993) of the NCBI with the aid of the BLAST algorithm (Altschul et al., Nucleic Acids Res. 25:3389-3402, 1997). The screening criteria in this search were set to stringent. A total of 1270 hypothetic mRNAs scored at least one hit in the EST database, with the number of hits exceeding 1000 in some cases.
[0210] Subsequently, the tissue-specific origin of the underlying cDNA library as well as the name of the library were determined for each of these valid hits. The tissues resulting therefrom were divided into 4 different groups ranging from dispensable organs (group 3) to absolutely essential organs (group 0). Another group, group 4, consisted of any samples obtained from cancer tissue. The distribution of hits to the five groups was recorded in a table which was sorted according to the best ratio of the sum of groups 3 and 4 to the sum of groups 0-2. Those mRNAs whose EST hits originated exclusively from cancer tissue reached a top position, followed by those which can additionally be found also in tissues of dispensable organs of group 3.
[0211] Since the transcripts determined in the first approach and the corresponding proteins are firstly hypothetic constructs, further screening criteria were used with the intention to prove the real existence of the mRNAs and consequently also of the proteins. For this purpose, each mRNA was compared to the predicted gene locus. Only those transcripts which have at least one splicing process, i.e. which spread over at least 2 exons, were used for more detailed analyses.
[0212] Sequential application of all the filters mentioned led to the tumor-associated antigens of the invention which can be considered extracellularly accessible, owing to a predicted transmembrane domain and the topology related thereto. The expression profile derived from the EST data indicates, in all cases, cancer-specific expression which may at most extend only to dispensable organs.
Example 2
Strategy of Validating the Tumor-Associated Antigens Identified by in Silico Analysis
[0213] In order to utilize the targets for immunotherapeutic purposes (antibody therapy by means of monoclonal antibodies, vaccination, T-cell receptor-mediated therapeutic approaches; cf. EP-B-0 879 282) or other targeted approaches (small compounds, siRNA etc.) in cancer therapy as well as for diagnostic problems, the validation of the targets identified according to the invention is of central importance. In this connection, validation is carried out by expression analysis at both RNA and protein levels.
1. Examination of RNA Expression.
[0214] The identified tumor antigens are first validated with the aid of RNA which is obtained from various tissues or from tissue-specific cell lines. Since the differential expression pattern of healthy tissue in comparison with tumor tissue is of decisive importance for the subsequent therapeutic application, the target genes are preferably characterized with the aid of these tissue samples.
[0215] Total RNA is isolated from native tissue samples or from tumor cell lines by standard methods of molecular biology. Said isolation may be carried out, for example, with the aid of the RNeasy Maxi kit (Qiagen, Cat. No. 75162) according to the manufacturer's instructions. This isolation method is based on the use of chaotropic reagent guanidinium isothiocyanate. Alternatively, acidic phenol can be used for isolation (Chomczynski & Sacchi, Anal. Biochem. 162: 156-159, 1987). After the tissue has been worked up by means of guanidinium isothiocyanate, RNA is extracted with acidic phenol, subsequently precipitated with isopropanol and taken up in DEPC-treated water.
[0216] 2-4 μg of the RNA isolated in this way are subsequently transcribed into cDNA, for example by means of Superscript II (Invitrogen) according to the manufacturer's protocol. cDNA synthesis is primed with the aid of random hexamers (e.g. Roche Diagnostics) according to standard protocols of the relevant manufacturer. For quality control, the cDNAs are amplified over 30 cycles, using primers specific for the p53 gene which is expressed only lowly. Only p53-positive cDNA samples will be used for the subsequent reaction steps.
[0217] The targets are analyzed in detail by carrying out an expression analysis by means of PCR or quantitative PCR (qPCR) on the basis of a cDNA archive which has been isolated from various normal and tumor tissues and from tumor cell lines. For this purpose, 0.5 μl of cDNA of the above reaction mixture is amplified by a DNA polymerase (e.g. 1 U of HotStarTaq DNA polymerase, Qiagen) according to the protocols of the particular manufacturer (total volume of the reaction mixture: 25-50 μl). Aside from said polymerase, the amplification mixture comprises 0.3 mM dNTPs, reaction buffer (final concentration 1×, depending on the manufacturer of the DNA polymerase) and in each case 0.3 mM gene-specific forward and reverse primers.
[0218] The specific primers of the target gene are, as far as possible, selected in such a way that they are located in two different exons so that genomic contaminations do not lead to false-positive results. In a non-quantitative end point PCR, the cDNA is typically incubated at 95° C. for 15 minutes in order to denature the DNA and to activate the Hot-Start enzyme. Subsequently the DNA is amplified over 35 cycles (1 min at 95° C., 1 min at the primer-specific hybridization temperature (approx. 55-65° C.), 1 min at 72° C. to elongate the amplicons). Subsequently, 10 μl of the PCR mixture are applied to agarose gels and fractionated in the electric field. The DNA is made visible in the gels by staining with ethidium bromide and the PCR result is documented by way of a photograph.
[0219] As an alternative to conventional PCR, expression of a target gene may also be analyzed by quantitative real time PCR. Meanwhile various analytical systems are available for this analysis, of which the best known ones are the ABI PRISM sequence detection system (TaqMan, Applied Biosystems), the iCycler (Biorad) and the Light cycler (Roche Diagnostics). As described above, a specific PCR mixture is subjected to a run in the real time instruments. By adding a DNA-intercalating dye (e.g. ethidium bromide, CybrGreen), the newly synthesized DNA is made visible by specific light excitation (according to the dye manufacturers' information). A multiplicity of points measured during amplification enables the entire process to be monitored and the nucleic acid concentration of the target gene to be determined quantitatively. The PCR mixture is normalized by measuring a housekeeping gene (e.g. 18S RNA, β-actin). Alternative strategies via fluorescently labeled DNA probes likewise allow quantitative determination of the target gene of a specific tissue sample (see TaqMan applications from Applied Biosystems).
2. Cloning.
[0220] The complete target gene which is required for further characterization of the tumor antigen is cloned according to common molecular-biological methods (e.g. in "Current Protocols in Molecular Biology", John Wiley & Sons Ltd., Wiley InterScience). In order to clone the target gene or to analyze its sequence, said gene is first amplified by a DNA polymerase having a proof reading function (e.g. pfu, Roche Diagnostics). The amplicon is then ligated by standard methods into a cloning vector. Positive clones are identified by sequence analysis and subsequently characterized with the aid of prediction programs and known algorithms.
3. Prediction of the Protein.
[0221] Many of the genes found according to the invention (in particular those from the RefSeq XM domain) are newly discovered genes which require cloning of the full-length gene, determination of the open reading frame and deduction and analysis of the protein sequence.
[0222] In order to clone the full-length sequence, we used common protocols for the rapid amplification of cDNA ends and the screening of cDNA expression libraries with gene-specific probes (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd edition (1989), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).
[0223] After assembling the fragments found in this way, potential open reading frames (ORF) were predicted using common prediction programs. Since the position of the PolyA tail and of polyadenylation motifs predetermines the orientation of the potential gene product, only the 3 reading frames of that particular orientation remain out of a possible 6 reading frames. The former often yield only one sufficiently large open reading frame which may code for a protein, while the other reading frames have too many stop codons and would not code for any realistic protein. In the case of alternative open reading frames, identification of the authentic ORF is assisted by taking into account the Kozak criteria for optimal transcription initiation and by analyzing the deduced protein sequences which may arise. Said ORF is further verified by generating immune sera against proteins deduced from the potential ORFs and analyzing said immune sera for recognition of a real protein in tissues and cell lines.
4. Production of Antibodies.
[0224] The tumor-associated antigens identified according to the invention are characterized, for example, by using antibodies. The invention further comprises the diagnostic or therapeutic use of antibodies. Antibodies may recognize proteins in the native and/or denatured state (Anderson et al., J. Immunol. 143: 1899-1904, 1989; Gardsvoll, J. Immunol. Methods 234: 107-116, 2000; Kayyem et al., Eur. J. Biochem. 208: 1-8, 1992; Spiller et al., J. Immunol. Methods 224: 51-60, 1999).
[0225] Antisera comprising specific antibodies which specifically bind to the target protein may be prepared by various standard methods; cf., for example, "Monoclonal Antibodies: A Practical Approach" by Phillip Shepherd, Christopher Dean ISBN 0-19-963722-9, "Antibodies: A Laboratory Manual" by Ed Harlow, David Lane ISBN: 0879693142 and "Using Antibodies: A Laboratory Manual: Portable Protocol NO" by Edward Harlow, David Lane, Ed Harlow ISBN: 0879695447. It is also possible here to generate affine and specific antibodies which recognize complex membrane proteins in their native form (Azorsa et al., J. Immunol. Methods 229: 35-48, 1999; Anderson et al., J. Immunol. 143: 1899-1904, 1989; Gardsvoll, J. Immunol. Methods. 234: 107-116, 2000). This is especially important in the preparation of antibodies which are intended to be used therapeutically but also for many diagnostic applications. For this purpose, both the complete protein and extracellular partial sequences may be used for immunization.
Immunization and Production of Polyclonal Antibodies.
[0226] A species (e.g. rabbits, mice) is immunized by a first injection of the desired target protein. The immune response of the animal to the immunogen can be enhanced by a second or third immunization within a defined period of time (approx. 2-4 weeks after the previous immunization). Blood is taken from said animals and immune sera obtained, again after various defined time intervals (1st bleeding after 4 weeks, then every 2-3 weeks, up to 5 takings). The immune sera taken in this way comprise polyclonal antibodies which may be used to detect and characterize the target protein in Western blotting, by flow cytometry, immunofluorescence or immunohistochemistry.
[0227] The animals are usually immunized by any of four well-established methods, with other methods also in existence. The immunization may be carried out using peptides specific for the target protein, using the complete protein, using extracellular partial sequences of a protein which can be identified experimentally or via prediction programs. Since the prediction programs do not always work perfectly, it is also possible to employ two domains separated from one another by a transmembrane domain. In this case, one of the two domains has to be extracellular, which may then be proved experimentally (see below). [0228] (1) In the first case, peptides (length: 8-12 amino acids) are synthesized by in vitro methods (possibly carried out by a commercial service), and said peptides are used for immunization. Normally 3 immunizations are carried out (e.g. with a concentration of 5-100 μg/immunization). The immunization may also be carried out by commercial service providers. [0229] (2) Alternatively, immunization may be carried out using recombinant proteins.
[0230] For this purpose, the cloned DNA of the target gene is cloned into an expression vector and the target protein is synthesized, for example, cell-free in vitro, in bacteria (e.g. E. coli), in yeast (e.g. S. pombe), in insect cells or in mammalian cells, according to the conditions of the particular manufacturer (e.g. Roche Diagnostics, Invitrogen, Clontech, Qiagen). It is also possible to synthesize the target protein with the aid of viral expression systems (e.g. baculovirus, vacciniavirus, adenovirus). After it has been synthesized in one of said systems, the target protein is purified, normally by employing chromatographic methods. In this context, it is also possible to use for immunization proteins which have a molecular anchor as an aid for purification (e.g. His tag, Qiagen; FLAG tag, Roche Diagnostics; GST fusion proteins). A multiplicity of protocols can be found, for example, in "Current Protocols in Molecular Biology", John Wiley & Sons Ltd., Wiley InterScience. After the target protein has been purified, an immunization is carried out as described above. [0231] (3) If a cell line is available which synthesizes the desired protein endogenously, it is also possible to use this cell line directly for preparing the specific antiserum. In this case, immunization is carried out by 1-3 injections with in each case approx. 1-5×107 cells. [0232] (4) The immunization may also be carried out by injecting DNA (DNA immunization). For this purpose, the target gene is first cloned into an expression vector so that the target sequence is under the control of a strong eukaryotic promoter (e.g. CMV promoter). Subsequently, DNA (e.g. 1-10 μg per injection) is transferred as immunogen using a gene gun into capillary regions with a strong blood flow in an organism (e.g. mouse, rabbit). The transferred DNA is taken up by the animal's cells, the target gene is expressed, and the animal finally develops an immune response to the target protein (Jung et al., Mol. Cells 12: 41-49, 2001; Kasinrerk et al., Hybrid Hybridomics 21: 287-293, 2002).
Production of Monoclonal Antibodies.
[0233] Monoclonal antibodies are traditionally produced with the aid of the hybridoma technology (technical details: see "Monoclonal Antibodies: A Practical Approach" by Philip Shepherd, Christopher Dean ISBN 0-19-963722-9; "Antibodies: A Laboratory Manual" by Ed Harlow, David Lane ISBN: 0879693142, "Using Antibodies: A Laboratory Manual: Portable Protocol NO" by Edward Harlow, David Lane, Ed Harlow ISBN: 0879695447). A new method which is also used is the "SLAM" technology. Here, B cells are isolated from whole blood and the cells are made monoclonal. Subsequently the supernatant of the isolated B cell is analyzed for its antibody specificity. In contrast to the hybridoma technology, the variable region of the antibody gene is then amplified by single-cell PCR and cloned into a suitable vector. In this manner production of monoclonal antibodies is accelerated (de Wildt et al., J. Immunol. Methods 207:61-67, 1997).
5. Validation of the Targets by Protein-Chemical Methods Using Antibodies.
[0234] The antibodies which can be produced as described above can be used to make a number of important statements about the target protein. Specifically the following analyses of validating the target protein are useful:
Specificity of the Antibody.
[0235] Assays based on cell culture with subsequent Western blotting are most suitable for demonstrating the fact that an antibody binds specifically only to the desired target protein (various variations are described, for example, in "Current Protocols in Proteinchemistry", John Wiley & Sons Ltd., Wiley InterScience). For the demonstration, cells are transfected with a cDNA for the target protein, which is under the control of a strong eukaryotic promoter (e.g. cytomegalovirus promoter; CMV). A wide variety of methods (e.g. electroporation, liposome-based transfection, calcium phosphate precipitation) are well established for transfecting cell lines with DNA (e.g. Lemoine et al., Methods Mol. Biol. 75: 441-7, 1997). As an alternative, it is also possible to use cell lines which express the target gene endogenously (detection via target gene-specific RT-PCR). As a control, in the ideal case, homologous genes are cotransfected in the experiment, in order to be able to demonstrate in the following Western blot the specificity of the analyzed antibody.
[0236] In the subsequent Western blotting, cells from cell culture or tissue samples which might contain the target protein are lysed in a 1% strength SDS solution, and the proteins are denatured in the process. The lysates are fractionated according to size by electrophoresis on 8-15% strength denaturing polyacrylamide gels (contain 1% SDS) (SDS polyacrylamide gel electrophoresis, SDS-PAGE). The proteins are then transferred by one of a plurality of blotting methods (e.g. semi-dry electroblot; Biorad) to a specific membrane (e.g. nitrocellulose, Schleicher & Schull). The desired protein can be visualized on this membrane. For this purpose, the membrane is first incubated with the antibody which recognizes the target protein (dilution approx. 1:20-1:200, depending on the specificity of said antibody), for 60 minutes. After a washing step, the membrane is incubated with a second antibody which is coupled to a marker (e.g. enzymes such as peroxidase or alkaline phosphatase) and which recognizes the first antibody. It is then possible to make the target protein visible on the membrane in a color or chemiluminescent reaction (e.g. ECL, Amersham Bioscience). An antibody with a high specificity for the target protein should in the ideal case only recognise the desired protein itself
Localization of the Target Protein.
[0237] Various methods are used to confirm the membrane localization, identified in the in silico approach, of the target protein. An important and well-established method using the antibodies described above is immunofluorescence (IF). For this purpose, cells of established cell lines which either synthesize the target protein (detection of the RNA by RT-PCR or of the protein by Western blotting) or else have been transfected with plasmid DNA are utilized. A wide variety of methods (e.g. electroporation, liposome-based transfection, calcium phosphate precipitation) are well established for transfection of cell lines with DNA (e.g. Lemoine et al., Methods Mol. Biol. 75: 441-7, 1997). The plasmid transfected into the cells, in immunofluorescence, may encode the unmodified protein or else couple different amino acid markers to the target protein. The principle markers are, for example, the fluorescent green fluorescent protein (GFP) in various differentially fluorescent forms, short peptide sequences of 6-12 amino acids for which high-affinity and specific antibodies are available, or the short amino acid sequence Cys-Cys-X-X-Cys-Cys which can bind via its cysteines specific fluorescent substances (Invitrogen). Cells which synthesize the target protein are fixed, for example, with paraformaldehyde or methanol. The cells may then, if required, be permeabilized by incubation with detergents (e.g. 0.2% Triton X-100). The cells are then incubated with a primary antibody which is directed against the target protein or against one of the coupled markers. After a washing step, the mixture is incubated with a second antibody coupled to a fluorescent marker (e.g. fluorescein, Texas Red, Dako), which binds to the first antibody. The cells labeled in this way are then overlaid with glycerol and analyzed with the aid of a fluorescence microscope according to the manufacturer's information. Specific fluorescence emissions are achieved in this case by specific excitation depending on the substances employed. The analysis usually permits reliable localization of the target protein, the antibody quality and the target protein being confirmed in double stainings with, in addition to the target protein, also the coupled amino acid markers or other marker proteins whose localization has already been described in the literature being stained. GFP and its derivatives represent a special case, being excitable directly and themselves fluorescing. The membrane permeability which may be controlled through the use of detergents, in immunofluorescence, allows demonstration of whether an immunogenic epitope is located inside or outside the cell. The prediction of the selected proteins can thus be supported experimentally. An alternative possibility is to detect extracellular domains by means of flow cytometry. For this purpose, cells are fixed under non-permeabilizing conditions (e.g. with PBS/Na azide/2% FCS/5 mM EDTA) and analyzed in a flow cytometer in accordance with the manufacturer's instructions. Only extracellular epitopes can be recognized by the antibody to be analyzed in this method. A difference from immunofluorescence is that it is possible to distinguish between dead and living cells by using, for example, propidium iodide or Trypan blue, and thus avoid false-positive results.
[0238] Another important detection is by immunohistochemistry (IHC) on specific tissue samples. The aim of this method is to identify the localization of a protein in a functionally intact tissue aggregate. IHC serves specifically for (1) being able to estimate the amount of target protein in tumor and normal tissues, (2) analyzing how many cells in tumor and healthy tissues synthesize the target gene, and (3) defining the cell type in a tissue (tumor, healthy cells) in which the target protein is detectable. Alternatively, the amounts of protein of a target gene may be quantified by tissue immunofluorescence using a digital camera and suitable software (e.g. Tillvision, Till-photonics, Germany). The technology has frequently been published, and details of staining and microscopy can therefore be found, for example, in "Diagnostic Immunohistochemistry" by David J., MD Dabbs ISBN: 0443065667 or in "Microscopy, Immunohistochemistry, and Antigen Retrieval Methods: For Light and Electron Microscopy" ISBN: 0306467704. It should be noted that, owing to the properties of antibodies, different protocols have to be used (an example is described below) in order to obtain a meaningful result.
[0239] Normally, histologically defined tumor tissues and, as reference, comparable healthy tissues are employed in IHC. It is also possible to use as positive and negative controls cell lines in which the presence of the target gene is known through RT-PCR analyses. A background control must always be included.
[0240] Formalin-fixed (another fixation method, for example with methanol, is also possible) and paraffin-embedded tissue pieces with a thickness of 4 μm are applied to a glass support and deparaffinated with xylene, for example. The samples are washed with TBS-T and blocked in serum. This is followed by incubation with the first antibody (dilution: 1:2 to 1:2000) for 1-18 hours, with affinity-purified antibodies normally being used. A washing step is followed by incubation with a second antibody which is coupled to an alkaline phosphatase (alternative: for example peroxidase) and directed against the first antibody, for approx. 30-60 minutes. This is followed by a color reaction using said alkaline phosphatase (cf., for example, Shi et al., J. Histochem. Cytochem. 39: 741-748, 1991; Shin et al., Lab. Invest. 64: 693-702, 1991). To demonstrate antibody specificity, the reaction can be blocked by previous addition of the immunogen.
Analysis of Protein Modifications.
[0241] Secondary protein modifications such as, for example, N- and O-glycosylations or myristilations may impair or even completely prevent the accessibility of immunogenic epitopes and thus call into question the efficacy of antibody therapies. Moreover, it has frequently been demonstrated that the type and amount of secondary modifications differ in normal and tumor tissues (e.g. Durand & Seta, 2000; Clin. Chem. 46: 795-805; Hakomori, 1996; Cancer Res. 56: 5309-18). The analysis of these modifications is therefore essential to the therapeutic success of an antibody. Potential binding sites can be predicted by specific algorithms.
[0242] Analysis of protein modifications usually takes place by Western blotting (see above). Glycosylations which usually have a size of several kDa, especially lead to a larger total mass of the target protein, which can be fractionated in SDS-PAGE. To detect specific O- and N-glycosidic bonds, protein lysates are incubated prior to denaturation by SDS with O- or N-glycosylases (in accordance with their respective manufacturer's instructions, e.g. PNgase, endoglycosidase F, endoglycosidase H, Roche Diagnostics). This is followed by Western blotting as described above. Thus, if there is a reduction in the size of a target protein after incubation with a glycosidase, it is possible to detect a specific glycosylation and, in this way, also analyze the tumor specificity of a modification.
Functional Analysis of the Target Gene.
[0243] The function of the target molecule may be crucial for its therapeutic usefulness, so that functional analyses are an important component in the characterization of therapeutically utilizable molecules. The functional analysis may take place either in cells in cell culture experiments or else in vivo with the aid of animal models. This involves either switching off the gene of the target molecule by mutation (knockout) or inserting the target sequence into the cell or the organism (knockin) Thus it is possible to analyze functional modifications in a cellular context firstly by way of the loss of function of the gene to be analyzed (loss of function). In the second case, modifications caused by addition of the analyzed gene can be analyzed (gain of function).
a. Functional Analysis in Cells.
[0244] Transfection. In order to analyze the gain of function, the gene of the target molecule must be transferred into the cell. For this purpose, cells which allow synthesis of the target molecule are transfected with a DNA. Normally, the gene of the target molecule here is under the control of a strong eukaryotic promoter (e.g. cytomegalovirus promoter; CMV). A wide variety of methods (e.g. electroporation, liposome-based transfection, calcium phosphate precipitation) are well established for transfecting cell lines with DNA (e.g. Lemoine et al., Methods Mol. Biol. 75: 441-7, 1997). The gene may be synthesized either transiently, without genomic integration, or else stably, with genomic integration after selection with neomycin, for example.
[0245] RNA interference (siRNA). An inhibition of expression of the target gene, which may induce a complete loss of function of the target molecule in cells, may be generated by the RNA interference (siRNA) technology in cells (Hannon, G J. 2002. RNA interference. Nature 418: 244-51; Czauderna et al. 2003. Nucl. Acid Res. 31: 670-82). For this purpose, cells are transfected with short, double-stranded RNA molecules of approx. 20-25 nucleotides in length, which are specific for the target molecule. An enzymic process then results in degradation of the specific RNA of the target gene and thus in an inhibition of the function of the target protein and consequently enables the target gene to be analyzed.
[0246] Cell lines which have been modified by means of transfection or siRNA may subsequently be analyzed in different ways. The most common examples are listed below.
1. Proliferation and Cell Cycle Behavior.
[0247] A multiplicity of methods for analyzing cell proliferation are established and are commercially supplied by various companies (e.g. Roche Diagnostics, Invitrogen; details of the assay methods are described in the numerous application protocols). The number of cells in cell culture experiments can be determined by simple counting or by colorimetric assays which measure the metabolic activity of the cells (e.g. wst-1, Roche Diagnostics). Metabolic assay methods measure the number of cells in an experiment indirectly via enzymic markers. Cell proliferation may be measured directly by analyzing the rate of DNA synthesis, for example by adding bromodeoxyuridine (BrdU), with the integrated BrdU being detected colorimetrically via specific antibodies.
2. Apoptosis and Cytotoxicity.
[0248] A large number of assay systems for detecting cellular apoptosis and cytotoxicity are available. A decisive characteristic is the specific, enzyme-dependent fragmentation of genomic DNA, which is irreversible and results in certain death of the cell. Methods for detecting these specific DNA fragments are commercially obtainable. An additional method available is the TUNEL assay which can detect DNA single-strand breaks also in tissue sections. Cytotoxicity is mainly detected via an altered cell permeability which serves as marker of the vitality state of cells. This involves on the one hand the analysis of markers which can typically be found intracellularly in the cell culture supernatant. On the other hand, it is also possible to analyze the absorbability of dye markers which are not absorbed by intact cells. The best-known examples of dye markers are Trypan blue and propidium iodide, a common intracellular marker is lactate dehydrogenase which can be detected enzymatically in the supernatant. Different assay systems of various commercial suppliers (e.g. Roche Diagnostics, Invitrogen) are available.
3. Migration Assay.
[0249] The ability of cells to migrate is analyzed in a specific migration assay, preferably with the aid of a Boyden chamber (Corning Costar) (Cinamon G., Alon R. J. Immunol. Methods. 2003 February; 273(1-2):53-62; Stockton et al. 2001. Mol. Biol. Cell. 12: 1937-56). For this purpose, cells are cultured on a filter with a specific pore size. Cells which can migrate are capable of migrating through this filter into another culture vessel below. Subsequent microscopic analysis then permits determination of a possibly altered migration behavior induced by the gain of function or loss of function of the target molecule.
b. Functional Analysis in Animal Models.
[0250] A possible alternative of cell culture experiments for the analysis of target gene function are complicated in vivo experiments in animal models. Compared to the cell-based methods, these models have the advantage of being able to detect faulty developments or diseases which are detectable only in the context of the whole organism. A multiplicity of models for human disorders are available by now (Abate-Shen & Shen. 2002. Trends in Genetics S1-5; Matsusue et al. 2003. J. Clin. Invest. 111:737-47). Various animal models such as, for example, yeast, nematodes or zebra fish have since been characterized intensively. However, models which are preferred over other species are mammalian animal models such as, for example, mice (Mus musculus) because they offer the best possibility of reproducing the biological processes in a human context. For mice, on the one hand transgenic methods which integrate new genes into the mouse genome have been established in recent years (gain of function; Jegstrup I. et al. 2003. Lab Anim. 2003 January; 37(1):1-9). On the other hand, other methodical approaches switch off genes in the mouse genome and thus induce a loss of function of a desired gene (knockout models, loss of function; Zambrowicz BP & Sands AT. 2003. Nat. Rev. Drug Discov. 2003 Jan; 2(1):38-51; Niwa H. 2001. Cell Struct. Funct. 2001 June; 26(3):137-48); technical details have been published in large numbers.
[0251] After the mouse models have been generated, alterations induced by the transgene or by the loss of function of a gene can be analyzed in the context of the whole organism (Balling R, 2001. Ann. Rev. Genomics Hum. Genet. 2:463-92). Thus it is possible to carry out, for example, behavior tests as well as to biochemically study established blood parameters. Histological analyses, immunohistochemistry or electron microscopy enable alterations to be characterized at the cellular level. The specific expression pattern of a gene can be detected by in-situ hybridization (Peters T. et al. 2003. Hum. Mol. Genet 12:2109-20).
Example 3
Identification of SEQ ID NO: 1/2 as a Diagnostic and Therapeutic Cancer Target
[0252] SEQ ID NO: 1 (nucleic acid sequence) is encoded by a new gene on chromosome 6 (6q26-27) and represents the deduced protein sequence (SEQ ID NO: 2). An alternative open reading frame of this gene locus is SEQ ID NO: 267 which codes for the deduced protein sequence SEQ ID NO: 268. Both protein sequences show no homologies to previously known proteins.
[0253] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing a specific quantitative RT-PCR (primer pair SEQ ID NO: 3 and 4). The transcript was not detected in any of the normal tissues analyzed. Surprisingly, we detected very specifically substantial amounts of said transcript in almost all melanoma samples studied, although the gene is not expressed in normal skin as tissue of origin (FIG. 1). The selectivity of this marker for melanomas was confirmed by a conventional RT-PCR (FIG. 2). Surprisingly, we amplified in the process two fragments which reflect gene-specific variants (probably SEQ ID NO: 1 and SEQ ID NO: 267).
[0254] We thus demonstrate that this gene is an absolutely specific marker for melanoma cells and, due to its absence in each of the normal tissues studied, is suitable as biomarker for targeted therapeutic and diagnostic approaches.
[0255] In particular it is possible to utilize according to the invention extracellular portions of SEQ ID NO: 2 or 268 as target structure of monoclonal antibodies. This applies inter alia to the following epitopes: amino acids 1-50 based on SEQ ID NO: 2, amino acids 1-12 based on SEQ ID NO: 268, amino acids 70-88 based on SEQ ID NO: 2, amino acids 33-129 based on SEQ ID NO: 268, and SEQ ID NO: 281.
[0256] According to the invention, other target-oriented approaches such as vaccines and therapies with small compounds, which have only this gene as target structure and thus do not affect any healthy cells, are also therapeutically conceivable. Said gene may also be utilized diagnostically owing to its selectivity for tumor cells.
Example 4
Identification of SEQ ID NO: 5/6 as Diagnostic and Therapeutic Cancer Target
[0257] SEQ ID NO: 5 (nucleic acid sequence) is encoded by a new gene on chromosome 11 (11q12.1) and represents the deduced protein sequence (SEQ ID NO: 6). An alternative open reading frame of this gene locus is SEQ ID NO: 269 which codes for the deduced protein sequence SEQ ID NO: 270. Both protein sequences show no homologies to previously known proteins.
[0258] According to the invention, the amount of gene-specific transcript in healthy tissue and in carcinoma samples (in each case pool of samples) was studied after establishing a gene-specific quantitative RT-PCR (primer pair SEQ ID NO: 7 and 8). We detected no specific RNA at all or else only small amounts thereof in the healthy tissues we studied, with the exception of testis (FIG. 3; A quantitative RT-PCR; B gel image). Consequently, there is a high probability of the locus expressing a germ cell-specific gene product. However, the gene is activated in many tumor samples, and specific RNA was detectable in substantial amounts (FIG. 3). The highest prevalence and level of expression were found in renal cell tumors. But specific transcripts were also detectable in gastric, pancreatic, ENT and lung tumors (FIG. 4; A quantitative RT-PCR; B gel image). Even repeated examinations of the corresponding normal tissues were unable to detect gene-specific transcripts. In order to additionally prove expression from this gene locus, a Northern blot was additionally carried out. For this purpose, a probe was prepared in a specific PCR of primers SEQ ID NO: 7 and 8 with incorporation of digoxigenin-dUTP (Roche Diagnostics) according to the manufacturer's instructions. The probe was then hybridized with 2 μg (FIG. 5, lane 1) and 1 μg (FIG. 5, lane 2), respectively, of total RNA from testis tissue and the digoxigenin of said probe was subsequently detected in a specific color reaction. An approx. 3.1 kB gene-specific fragment was detected in the experiment (FIG. 5) and thus additionally confirmed expression of this locus.
[0259] Said gene locus is thus a typical representative of the class of the "cancer/testis antigens" which are expressed in normal tissues virtually exclusively in the germ cells of the testis. In tumors, however, cancer/testis antigens are frequently switched on, although they are not expressed in the underlying somatic normal tissue cells. Several members of this functionally and structurally heterogeneous class are already tested for specific immunotherapeutic approaches with cancers in phase I/II studies, owing to their attractive selective tissue distribution (e.g. Scanlan M J, Gure A O, Jungbluth A A, Old L J, Chen Y T. 2002. Immunol. Rev. 2002 October; 188:22-32).
[0260] Antibodies may be produced by utilizing the peptides according to SEQ ID NO: 282 and 283. In particular, according to the invention it is possible to utilize the extracellular domains of SEQ ID NO: 6 and SEQ ID NO: 270 as target structures of monoclonal antibodies.
Example 5
Identification of LOC203413 as Diagnostic and Therapeutic Cancer Target
[0261] The gene or protein of the gene locus LOC203413 (nucleic acid sequence: SEQ ID NO: 9; amino acid sequence: SEQ ID NO: 10) is a gene on the X chromosome (Xq24), which has not been characterized previously. Aside from a transmembrane domain, it has no further functional motifs and no homologies to previously known proteins.
[0262] According to the invention, the amount of transcript in healthy tissue and in carcinoma samples (pool of samples, number indicated in the figure) was studied after establishing an LOC203413-specific quantitative RT-PCR (primer pair SEQ ID NO: 11 and 12) (FIG. 6; A: quantitative evaluation, B: image after gel-electrophoretic fractionation). LOC203413-specific RNA cannot be detected in any of the healthy tissues we studied, with the exception of testis. Consequently, it is highly probable that LOC203413 is a germ cell-specific gene product. As FIG. 6 reveals, LOC203413-specific transcripts were detectable in gastric, pancreatic, esophageal, mammary, ovarian and prostate carcinomas, with high expression being observed in particular in gastric and mammary carcinomas. For a more detailed analysis, healthy gastric samples and gastric carcinoma samples were additionally characterized in a quantitative RT-PCR (FIG. 7A). LOC203413 was expressed in 70% of the carcinomas, whereas no significant expression was detectable in any of the healthy gastric samples. The MKN45 cell line which is derived from a gastric carcinoma also expresses LOC203413. In addition, specific expression was detected in 2/3rds of pancreatic tumors studied and in 40% of liver carcinomas (FIG. 7B).
[0263] LOC203413 is thus a typical representative of the class of cancer/testis antigens which are expressed in normal tissues exclusively in the germ cells of the testis. In tumors, however, cancer/testis antigens are frequently switched on, although they are not expressed in the underlying somatic normal tissue cells. Several members of this functionally and structurally heterogeneous class are already tested for specific immunotherapeutic approaches with cancers in phase I/II studies, owing to their attractive selective tissue distribution (e.g. Scanlan M J, Gure A O, Jungbluth A A, Old L J, Chen Y T. 2002. Immunol. Rev. 2002 October; 188:22-32).
[0264] In particular it is possible to utilize according to the invention the extracellular domain of LOC203413 as target structure of monoclonal antibodies. Thus the amino acids 22-113 (SEQ ID NO: 284) are of interest as epitopes. Conserved N-glycosylation motifs are located in the sequence at amino acid positions 34 and 83, based on SEQ ID NO: 10, which motifs may be suitable in particular for producing tumor-specific antibodies. LOC203413-specific antibodies were produced by using the peptides listed under SEQ ID NO: 285 and 286.
[0265] According to the invention, other target-oriented approaches such as vaccines and therapies with small compounds, which have only this gene as target structure and thus do not affect any healthy cells, are also therapeutically conceivable. Said gene may also be utilized diagnostically owing to its selectivity for tumor cells.
Example 6
Identification of LOC90625 as a Diagnostic and Therapeutic Cancer Target
[0266] The gene LOC90625 (nucleic acid sequence: SEQ ID NO: 13) is a gene on chromosome 21 (21q22.3), which has not been characterized previously. It encodes a protein (amino acid sequence: SEQ ID NO: 14) having a transmembrane domain but otherwise no homologies to previously known proteins.
[0267] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples, the number is indicated in the figure) was investigated after establishing an LOC90625-specific quantitative RT-PCR (primer pair SEQ ID NO: 15 and 16) (FIG. 8). LOC90625 is expressed very selectively in healthy tissue, with specific transcripts being detectable especially in testis. In all other healthy tissues analyzed LOC90625-specific expression was detectable only at a low level, if at all (FIG. 8). Surprisingly, we detected LOC90625-specific overexpression in some types of tumors. LOC90625 was strongly overexpressed in particular in prostate, esophageal and pancreatic carcinomas, in comparison to the respective healthy tissue samples (FIGS. 8 and 9A).
[0268] LOC90625 is a selectively expressed antigen which is obviously increasingly expressed in proliferating tissues. Thus a selective overexpression in tumors can be observed which is therapeutically utilizable.
[0269] The extracellular domain of LOC90625 in particular can be utilized according to the invention as target structure of monoclonal antibodies. Said structure may be, for example, 1-19 (SEQ ID NO: 287) or else the amino acids 40-160 (SEQ ID NO: 288). LOC203413-specific antibodies were produced by using the peptides according to SEQ ID NO: 289 and 290.
Example 7
Identification of the FAM26A Protein as a Diagnostic and Therapeutic Cancer Target
[0270] The FAM26A gene (SEQ ID NO: 17; NM--182494) which is located on chromosome 10 (10q24) encodes the gene product of SEQ ID NO: 18 (NP--872300). FAM26A has several transmembrane domains, with an N-glycosylation motif being located at amino acid position 142. The deduced protein sequence displays a distant homology to the PMP/claudin family.
[0271] According to the invention, the amount of gene-specific transcripts in healthy tissue and in tumor samples was investigated after establishing an FAM26A-specific quantitative RT-PCR (primer pair SEQ ID NO: 19 and 20) (FIG. 10). Surprisingly, we were able to detect overexpression of FAM26A in various tumors. FAM26A was expressed at a distinctly higher level in particular in ovarian, gastric, esophageal, pancreatic and liver tumors, in comparison with the corresponding healthy tissue. According to the invention, selectively high expression of FAM26A in various tumor tissues may be utilized for molecular diagnostic methods such as, for example, RT-PCR for detecting tumor cells in tissue biopsies.
[0272] In order to further verify the expression data, FAM26A-specific antibodies were produced by immunization of animals. Polyclonal antibodies were produced by using the peptides listed under SEQ ID NO: 291 and 292. The specificity of the antibodies was demonstrated by Western blot analysis (FIG. 11A: SEQ ID NO: 291; B: SEQ ID NO: 292). For this purpose, COS cells were transfected with an FAM26 fragment-encoding plasmid construct. The Western blot showed a specific signal with both antibodies, which was not detectable in the respective controls (FIG. 11). We detected FAM26A also in various cervical, ovarian and pancreatic tumors, using a SEQ ID NO: 292-specific antibody (FIG. 12), as well as in the cell lines SW480, EFO 27 and SNU 16 which were in each case RT-PCR-positive, using a SEQ ID NO: 291-specific antibody (FIG. 13A). Here we found, in addition to an approx. 50 kDa specific band, also a weaker band at approx. 40 kDa. The latter corresponds to about the expected size. The major fragment at 50 kDa represents a post-translationally modified protein. The endogenous FAM26A protein was moreover detected in SW480 cells by means of immunofluorescence using a SEQ ID NO: 292-specific antibody. The analysis reveals localization in the plasma membrane (FIG. 13B). In order to analyze localization of FAM26A in a tissue assemblage, healthy testis samples were characterized immunohistologically. In testis, the FAM26A protein was detected specifically in the membrane of spermatocytes, and due to the results, a membrane localization of FAM26A appears likely (FIG. 14). This was also confirmed in tumor samples (FIG. 15).
[0273] The extracellular domains of FAM26A in particular may be utilized according to the invention as target structures of monoclonal antibodies. These are, based on SEQ ID NO: 17, the amino acids 38-48 (SEQ ID NO: 293) and the amino acids 129-181 (SEQ ID NO: 294). Alternatively, the C-terminal amino acids 199-334 (SEQ ID NO: 295) may also be preferred epitopes for producing antibodies for diagnostic or therapeutic purposes. In addition, the N-glycosylation motif at position 142 may be an interesting point of attack for therapeutic antibodies.
Example 8
Identification of SEMA5B as Diagnostic and Therapeutic Cancer Target
[0274] The gene semaphorin 5B (SEMA5B; SEQ ID NO: 21) which encodes the protein of SEQ ID NO: 22 is located on chromosome 3 (3q21.1). SEMA5B is a type I transmembrane protein and belongs to the family of semaphorins.
[0275] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples, the number is indicated in the figure) was investigated after establishing an SEMA5B-specific quantitative RT-PCR (primer pair SEQ ID NO: 23 and 24) (FIG. 16). We found that, in healthy tissue, SEMA5B is very selectively restricted to testis and skin. In all other healthy tissues analyzed SEMA5B-specific expression was detectable at low level or not at all (FIG. 16). In contrast, we surprisingly found SEMA5B-specific overexpression in some types of tumors, in particular in kidney carcinomas and breast tumors (FIG. 17A and B), in comparison to the respective healthy tissues.
[0276] Said selective overexpression in tumors can be utilized therapeutically.
[0277] The extracellular domain of SEMA5B (aa 20-1035; SEQ ID NO: 296) in particular may be utilized according to the invention as target structure of antibodies. SEMA5B is a type I transmembrane domain protein (TM aa 1035-1057) whose C terminus is located inside the cell (aa 1058-1151). SEMA5B-specific antibodies were produced by using the peptides according to SEQ ID NO: 297 and 298.
Example 9
Identification of GJB5 as a Diagnostic and Therapeutic Cancer Target
[0278] The protein GBJ5 (nucleic acid sequence: SEQ ID NO: 25; amino acid sequence: SEQ ID NO: 26) is a member of the connexin family. The gene consists of two exons and is located on chromosome 1 (1p35.1). The deduced amino acid sequence codes for a protein of 273 amino acids. Connexins have an important function in cell-cell contacts via "gap junctions" which are used for exchanging small cytoplasmic molecules, ions and secondary transmitters and thus enable individual cells to communicate with each other. Gap junctions consist of several connexin subunits which form a membrane channel. 11 different members of the connexins have been described to date, all of which are located in a gene cluster on chromosome 1 (Richard, G.; Nature Genet. 20: 366-369, 1998). GBJ5 has four transmembrane domains, with the N and C termini of the protein being located inside the cell.
[0279] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated (pool of samples, the number is indicated in the figure) after establishing a GBJ5-specific quantitative RT-PCR (primer pair SEQ ID NO: 27, 28). Our studies reveal differential distribution of expression in normal tissues. We found GBJ5 transcripts to be expressed virtually exclusively in the esophagus and in the skin, with transcription being very weak or not detectable in all other tissues analyzed (FIG. 18). Very strong tumor-specific overexpression was observed in esophageal, colon, gastric and pancreatic carcinomas (FIG. 18). This was confirmed by analyzing individual samples of the four carcinomas (FIG. 19A-D). In addition, the GBJ5-specific transcript can clearly be detected in the established cell lines LoVo, MKN45 and NCI-N87 (FIG. 19A-D).
[0280] The extracellular domains of GBJ5 in particular may be utilized according to the invention as target structure of therapeutic antibodies. Based on SEQ ID NO: 26, the amino acids 41-75 (SEQ ID NO: 299) and the region between amino acids 150 and 187 (SEQ ID NO: 300) are located extracellularly. GBJ5-specific antibodies were produced by using the peptides according to SEQ ID NO: 301 and 302.
Example 10
Identification of KLK5 as a Diagnostic and Therapeutic Cancer Target
[0281] The gene KLK5 (SEQ ID NO: 29) and its translation product (SEQ ID NO: 30) is a member of the kallikrein family, a group of serine proteases with very different physiological functions. The gene is located on chromosome 19 (19q13.3-13.4) and codes for a serine protease. KLK5 is synthesized as pro form and is activated by proteolysis in the stratum corneum (Brattsand, M et al; J. Biol. Chem. 274: 1999). The active protease (aa 67-293) is secreted and is involved in the process of desquamation. The propeptide (aa 30-67) remains bound to the cell surface via the transmembrane domain (aa 1-29) (Ekholm, E et al; Jour Investigative Dermatol, 114; 2000).
[0282] According to the invention the distribution of KLK5-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing a KLK5-specific quantitative RT-PCR (primer pair SEQ ID NO: 31, 32) (FIG. 20). In most normal tissues expression of KLK5 is at a very low to non-existent level, with moderate expression of KLK5 being found only in testis, esophagus, skin and prostate. We detected significant overexpression of KLK5 in esophageal carcinomas, cervical and in ENT tumors, in comparison with the corresponding normal tissues of origin (FIGS. 20, 21). Distinctly weaker but detectable KLK5-specific expression was moreover detected in some tumors of other tissues (e.g. in gastric and pancreatic carcinomas).
[0283] The extracellular domain of KLK5 in particular may be utilized according to the invention as target structure of therapeutic antibodies (SEQ ID NO: 303). The region of the propeptide (amino acids 30 to 67) is particularly suitable for this. KLK5-specific antibodies were produced by using the peptide listed under SEQ ID NO: 304.
Example 11
Identification of LOC352765 as a Diagnostic and Therapeutic Cancer Target
[0284] The LOC352765 gene locus is located on chromosome 9 (9q34.12). The gene (SEQ ID NO: 33) encodes the gene product of SEQ ID NO: 34. The LOC352765 protein has a transmembrane domain at the N terminus. The hypothetical protein displays no homologies to previously known proteins.
[0285] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples) was investigated after establishing an LOC352765-specific quantitative RT-PCR (primer pair SEQ ID NO: 35 and 36) (FIG. 22). LOC352765 is expressed very selectively in healthy tissue, and we found specific transcripts to be detectable only in testis, skin and bladder. In contrast, LOC352765-specific overexpression was detected in some types of tumors. Particularly in breast tumors, expression was higher than in the normal tissue with the highest level of expression. We also found LOC352765 to be distinctly overexpressed in colon and ovarian carcinomas and in ENT tumors (FIGS. 22, 23).
[0286] Owing to its selective overexpression in tumors, LOC352765 can be utilized therapeutically. The extracellular domain of LOC352765 (amino acids 44-211, SEQ ID NO: 34) in particular may be utilized according to the invention as target structure of antibodies and other targeted forms of therapy. Specific antibodies were produced by using the peptides according to SEQ ID NO: 305 and 306.
Example 12
Identification of SVCT1 as a Diagnostic and Therapeutic Cancer Target
[0287] The gene SVCT1 (SEQ ID NO: 37) is located on chromosome 7 (7q33) and codes for the gene product of SEQ ID NO: 38. The SVCT1 protein has four transmembrane domains and displays no homologies to previously known proteins.
[0288] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples) was investigated after establishing an SVCT1-specific quantitative RT-PCR (primer pair SEQ ID NO: 39 and 40) (FIG. 24). SVCT1 in healthy tissue is restricted selectively to kidney, testis, thymus and mammary gland. In contrast, SVCT1-specific overexpression was surprisingly detected in some types of tumors. SVCT1 is strongly overexpressed in particular in carcinomas of the kidney, esophagus and pancreas and in ENT tumors (FIGS. 24, 25), and that is not only in comparison with the corresponding healthy tissue of origin but also with respect to the normal tissue with the highest level of expression over all.
[0289] SVCT1 can be therapeutically utilized owing to its selective overexpression in tumors. The extracellular domains of SVCT1 in particular may be utilized according to the invention as target structures of antibodies and for other targeted forms of therapy. Specific antibodies were produced by using the peptides according to SEQ ID NO: 307 and 308.
Example 13
Identification of LOC 199953 as a Diagnostic and Therapeutic Cancer Target
[0290] The gene or protein of the LOC199953 gene locus (nucleic acid sequence: SEQ ID NO: 41; amino acid sequence: SEQ ID NO: 42) is located on chromosome 1 (1q36.22). The protein has several transmembrane domains. Alternative open reading frames of this gene locus are SEQ ID NO: 271 with its gene product SEQ ID NO: 272 and SEQ ID NO: 273 with the corresponding gene product SEQ ID NO: 274. Other than that, the hypothetical protein displays no further homologies to previously known protein domains.
[0291] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC199953-specific quantitative RT-PCR (primer pair SEQ ID NO: 43 and 44). LOC199953 is selectively expressed in healthy tissues and overexpressed in some tumors. In particular, it was possible to identify overexpression in ENT and kidney carcinomas (FIG. 26) in approx. 50% of the tumor samples, in comparison with normal tissues.
[0292] According to the invention, the extracellular domains of LOC199953 may be utilized as target structure of antibodies.
Example 14
Identification of TMEM31 as a Diagnostic and Therapeutic Cancer Target
[0293] The gene TMEM31 (SEQ ID NO: 45) of the LOC203562 gene locus is located on chromosome X (Xq22.2). The gene codes for the protein of SEQ ID NO: 46. Said protein has two transmembrane domains and otherwise displays no homologies to previously known proteins.
[0294] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing a TMEM31-specific quantitative RT-PCR (primer pair SEQ ID NO: 47 and 48). In healthy tissues, TMEM31 is very selectively restricted especially to testis (FIG. 27). Surprisingly, we also found expression in some types of tumors, whereas no expression was detectable in the corresponding normal tissues. Said tumors are in particular carcinomas of the kidney, colon, stomach, breast, liver and lung and ENT carcinomas (FIGS. 27, 28).
[0295] TMEM31 is thus a typical representative of the class of cancer/testis antigens which are expressed in normal tissues exclusively in the germ cells of the testis. In tumors, however, cancer/testis antigens are frequently switched on, although they are not expressed in the underlying somatic normal tissue cells. Several members of this functionally and structurally heterogeneous class are already tested for specific immunotherapeutic approaches with cancers in phase I/II studies, owing to their attractive selective tissue distribution (e.g. Scanlan M J, Gure A O, Jungbluth A A, Old L J, Chen Y T. 2002. Immunol. Rev. 2002 October; 188:22-32).
[0296] The extracellular TMEM31 domains may be utilized according to the invention as target structure of antibodies.
Example 15
Identification of FLJ25132 as a Diagnostic and Therapeutic Cancer Target
[0297] The FLJ25132 gene/protein (nucleic acid sequence: SEQ ID NO: 49; amino acid sequence: SEQ ID NO: 50) is located on chromosome 17 (17q25.3). FLJ25132 has a transmembrane domain but otherwise does not display any homologies to previously known proteins.
[0298] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an FLJ25132-specific quantitative RT-PCR (primer pair SEQ ID NO: 51 and 52). FLJ25132 is partially overexpressed in the carcinoma samples studied by us, in comparison to healthy tissue (FIG. 29). Distinct overexpression of FLJ25132 was detected in particular in ovarian and in prostate carcinomas.
[0299] The extracellular FLJ25132 domains may be utilized according to the invention as target structure of antibodies.
Example 16
Identification of LOC143724, LOC284263, LOC283435 and LOC349260 as Diagnostic and Therapeutic Cancer Targets
[0300] The gene loci (with the correspondingly encoded genes and gene products), LOC143724, LOC284263, LOC283435 and LOC349260, are combined, owing to their similar profiles.
[0301] The gene with SEQ ID NO: 53, which is present in the LOC143724 gene locus on chromosome 11 (11q13.1), encodes the gene product SEQ ID NO: 54. SEQ ID NO: 275 with its gene product SEQ ID NO: 276 represents an alternative open reading frame of this gene locus, which is either a separate transcript or a splice variant of SEQ ID NO: 53. The primers according to SEQ ID NO: 55 and 56 were used for gene-specific amplification of said gene.
[0302] The gene with SEQ ID NO: 89, which is present in the LOC284263 gene locus on chromosome 18 (18q21.1), encodes the gene product with SEQ ID NO: 90. The primers according to SEQ ID NO: 91 and 92 were used for gene-specific amplification of said gene.
[0303] The gene with SEQ ID NO: 117, which is present in the LOC283435 gene locus on chromosome 12 (12q24.32), encodes the gene product with SEQ ID NO: 118. The primers according to SEQ ID NO: 119 and 120 were used for gene-specific amplification of said gene.
[0304] The gene with SEQ ID NO: 121, which is present in the LOC349260 gene locus on chromosome 9 (9q11.2), encodes the gene product with SEQ ID NO: 122. The primers according to SEQ ID NO: 123 and 124 were used for gene-specific amplification of said gene.
[0305] All proteins have transmembrane domains and, in addition, do not display any homologies to previously known proteins.
[0306] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing specific quantitative RT-PCR analyses. None of the four genes were detected in the healthy tissues which are investigated, with the exception of testis. Consequently, there is a high probability of said genes being germ cell-specific. However, surprisingly significant expression is found in various tumor samples.
[0307] The four genes are thus typical representatives of the class of cancer/testis antigens which are expressed in normal tissues exclusively in the germ cells of the testis. In tumors, however, cancer/testis antigens are frequently switched on, although they are not expressed in the underlying somatic normal tissue cells. Several members of this functionally and structurally heterogeneous class are already tested for specific immunotherapeutic approaches with cancers in phase I/II studies, owing to their attractive selective tissue distribution (e.g. Scanlan M J, Gure A O, Jungbluth A A, Old L J, Chen Y T. 2002. Immunol. Rev. 2002 October; 188:22-32).
[0308] The extracellular domains of the four genes may be utilized according to the invention as target structure of antibodies.
Example 17
Identification of the Sequence According to SEQ ID NO: 57 as a Diagnostic and Therapeutic Cancer Target
[0309] The sequence according to SEQ ID NO: 57 is derived from a gene on chromosome 1 (1p21.3) and encodes the protein sequence according to SEQ ID NO: 58. SEQ ID NO: 277 with its gene product SEQ ID NO: 278 represents an alternative transcript of said gene locus. The transmembrane protein does not display any homologies to previously known proteins.
[0310] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing a specific quantitative RT-PCR (primer pair SEQ ID NO: 59 and 60). SEQ ID NO: 57 is selectively expressed in the healthy tissues studied by us (FIG. 30). Specific transcripts were detectable in nearly all types of tumors analyzed and overexpressed in particular in liver, ENT and kidney tumors. This was confirmed in the analysis of individual tumor samples in comparison with healthy tissue samples (FIG. 31).
[0311] The extracellular domains of the sequence according to SEQ ID NO: 58 may be utilized according to the invention as target structure of antibodies, in particular with amino acids 20-38 and 90-133 being located extracellularly.
Example 18
Identification of LOC 119395 as a Diagnostic and Therapeutic Cancer Target
[0312] The gene with SEQ ID NO: 61, which is present in the LOC119395 gene locus on chromosome 17 (17q25.3), encodes a gene product with SEQ ID NO: 62. The transmembrane protein displays no homologies to previously known proteins.
[0313] According to the invention the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC119395-specific quantitative RT-PCR (primer pair SEQ ID NO: 63 and 64) (FIG. 32). LOC1 19395 is very selectively expressed in the healthy tissues studied by us and is detectable only in a few tissues (FIG. 32). In contrast, LOC119395-specific transcripts were detectable in nearly all types of tumors analyzed. In parts distinct, tumor-selective overexpression of LOC 119395 was observed in particular in gastric, ovarian and prostate carcinomas. This was confirmed in the analysis of individual tumor samples in comparison with healthy tissue samples (FIG. 33). It was possible to detect overexpression of LOCI 19395 in mammary carcinomas and esophageal tumors in comparison with the respective healthy tissue. Tumor-selective expression was identified in colon carcinomas and gastric carcinomas (FIG. 33).
[0314] The extracellular LOC119395 domain (amino acids 44-129) may be utilized according to the invention as target structure of antibodies.
Example 19
Identification of LOC 121838 as a Diagnostic and Therapeutic Cancer Target
[0315] The gene which is located in the LOC121838 gene locus on chromosome 13 (13q14.11) and has the transcript of SEQ ID NO: 65 encodes the protein with SEQ ID NO: 66. The transmembrane protein displays no homologies to previously known proteins.
[0316] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC121838-specific quantitative RT-PCR (primer pair SEQ ID NO: 67 and 68) (FIG. 34A). LOC121838 is very selectively expressed in the healthy tissues studied by us and is detectable only in a few tissues (FIGS. 34A and B). In contrast, LOC121838-specific transcripts were detectable in many types of tumors analyzed. We found distinct tumor-selective overexpression of LOC121838 in particular in ovarian and esophageal carcinomas.
[0317] The extracellular LOC121838 domains may be utilized according to the invention as target structure of antibodies.
Example 20
Identification of LOC221103 as a Diagnostic and Therapeutic Cancer Target
[0318] The gene which is localized in the LOC221103 gene locus on chromosome 11 (11q12.3) and has the transcript of SEQ ID NO: 69 encodes the protein with SEQ ID NO: 70. The transmembrane protein displays no homologies to previously known proteins.
[0319] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC221103-specific quantitative RT-PCR (primer pair SEQ ID NO: 71 and 72). In the healthy tissues studied by us, LOC221103 is expressed only in the liver and otherwise not detectable (FIG. 35). Surprisingly, LOC221103-specific transcripts are overexpressed in liver carcinomas (FIG. 36).
[0320] The extracellular LOC221103 domains may be utilized according to the invention as target structure of antibodies.
Example 21
Identification of LOC338579 as a Diagnostic and Therapeutic Cancer Target
[0321] The gene which is localized in the LOC338579 gene locus on chromosome 10 (10q11.21) and has the transcript of SEQ ID NO: 73 encodes the protein with SEQ ID NO: 74. The transmembrane protein displays no homologies to previously known proteins.
[0322] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC338579-specific quantitative RT-PCR (primer pair SEQ ID NO: 75 and 76). We found expression in healthy tissues only in testis and, at a lower level, in the liver and the thymus. Surprisingly, we found LOC338579 overexpression in colon carcinomas and liver carcinomas in comparison with the healthy tissue (FIG. 37).
[0323] The extracellular LOC338579 domains may be utilized according to the invention as target structure of antibodies.
Example 22
Identification of LOC90342 as a Diagnostic and Therapeutic Cancer Target
[0324] The gene which is located in the LOC90342 gene locus on chromosome 2 (2q11.2) and has the transcript of SEQ ID NO: 77 encodes the protein with SEQ ID NO: 78. The transmembrane protein includes a calcium-binding motif (CalB) which is conserved in protein kinase C and in various phospholipases.
[0325] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC90342-specific quantitative RT-PCR (primer pair SEQ ID NO: 79 and 80) (FIG. 38). We found LOC90342 only in a small number of healthy tissues, most of which are of little relevance with regard to toxicity (FIG. 38). In contrast, we found LOC90342-specific transcripts in a multiplicity of the types of tumors analyzed. In parts distinctly tumor-selective overexpression of LOC90342 was observed in particular in gastric, liver, pancreatic, prostate, ovarian and lung carcinomas.
[0326] The membrane protein has a single transmembrane domain (aa 707-726). The extracellular LOC90342 domain may be utilized according to the invention as target structure of therapeutic antibodies.
Example 23
Identification of LRFN1 as a Diagnostic and Therapeutic Cancer Target
[0327] LRFN1 (SEQ ID NO: 81) is a gene which is localized on chromosome 19 (19q13.2). The gene codes for the protein of SEQ ID NO: 82. Said protein includes a transmembrane domain and displays homologies to the Myb DNA-binding domain and to a C2-type immunoglobulin domain.
[0328] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LRFN1-specific quantitative RT-PCR (primer pair SEQ ID NO: 83 and 84). LRFN1 is very weakly expressed in most of the normal tissues studied, except for activated PBMC and brain (FIG. 39). In contrast, we found LRFN1-specific transcripts to be increasingly detectable in some of the types of tumors analyzed. We found distinct tumor-selective overexpression of LRFN1 in particular in gastric, pancreatic, esophageal and mammary carcinomas, in comparison with the corresponding normal tissues.
[0329] The protein includes a transmembrane domain (aa 448-470). The extracellular LFRN1 domains may be utilized according to the invention as target structure of therapeutic antibodies.
Example 24
Identification of LOC285916 as a Diagnostic and Therapeutic Cancer Target
[0330] The gene which is localized in the LOC285916 gene locus on chromosome 7 (7p22.3) and has the transcript of SEQ ID NO: 85 encodes the protein with SEQ ID NO: 86. The transmembrane protein displays no homologies to previously known proteins.
[0331] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC285916-specific quantitative RT-PCR (primer pair SEQ ID NO: 87 and 88). In the healthy tissues studied by us, LOC285916 is expressed selectively in testis, with no or only little expression being detected by us in all other tissues studied (FIG. 40A). Surprisingly, we found LOC285916-specific transcripts in all types of tumors tested. Distinct tumor-specific overexpression was detectable in particular in mammary, esophageal, renal, ENT and lung carcinomas (FIGS. 40A and B).
[0332] The extracellular LOC285916 domains (amino acids 42 to 93) may be utilized according to the invention as target structure of antibodies.
Example 25
Identification of MGC71744 as a Diagnostic and Therapeutic Cancer Target
[0333] The MGC71744 gene with SEQ ID NO: 93 on chromosome 17 (17p13.2) encodes the protein with SEQ ID NO: 94. The transmembrane protein displays no homologies to previously known proteins.
[0334] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples) was studied after establishing an MGC71744-specific quantitative RT-PCR (primer pair SEQ ID NO: 95 and 96) (FIG. 41). MGC71744 is hardly expressed in healthy tissue. We found small amounts of specific transcripts only in the lung and in the spleen. The level of MGC71744-specific expression in all other healthy tissues analyzed was low or not detectable at all (FIG. 41A). In contrast, we surprisingly found MGC71744-specific overexpression in some types of tumors, in particular in carcinomas of the kidney (FIGS. 41A & B), in comparison with healthy tissue.
[0335] The extracellular domain of MGC71744 (N terminus, aa 67-85) in particular may be utilized according to the invention as target structure of antibodies.
Example 26
Identification of LOC342982 as a Diagnostic and Therapeutic Cancer Target
[0336] The gene which is localized in the LOC342982 gene locus on chromosome 19 (19p13.13) and has the transcript of SEQ ID NO: 97 encodes the protein with SEQ ID NO: 98. The transmembrane protein displays homologies to the carbohydrate binding domain of C-type lectins.
[0337] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples) was investigated after establishing an LOC342982-specific quantitative RT-PCR (primer pair SEQ ID NO: 99 and 100). LOC342982-specific RNA is selectively expressed, with only a low level of expression or no expression being detectable in many normal tissues analyzed (FIG. 42). In contrast, nearly all of the classes of tumors tested exhibited overexpression which was partly tumor-specific. Primarily pancreatic, kidney, lung and mammary carcinomas exhibit very strong expression of LOC342982-specific RNA (FIG. 42).
[0338] The extracellular domain of LOC342982 (amino acids 178-339) in particular may be utilized according to the invention as target structure of monoclonal antibodies.
Example 27
Identification of LOC343169/OR6F1 as a Diagnostic and Therapeutic Cancer Target
[0339] The gene OR6F1 which is localized in the LOC343169 gene locus on chromosome 1 (1q44) and has the transcript of SEQ ID NO: 101 encodes the protein with SEQ ID NO: 102. OR6F1 has several transmembrane domains and belongs to the family of olfactory receptors and thus to the large family of G protein-coupled receptors.
[0340] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples) was investigated after establishing an LOC343169/OR6F1-specific quantitative RT-PCR (primer pair SEQ ID NO: 103 and 104) (FIG. 43A). LOC343169/OR6F1 is very selectively expressed in healthy tissue, with specific transcripts being detectable especially in testis and spleen. The level of LOC343169/OR6F1-specific expression was low or not detectable at all in all other healthy tissues analyzed (FIG. 43A). In contrast, LOC343169/OR6F1-specific overexpression was surprisingly detected is some types of tumors. Tumor-specific overexpression of LOC343169/OR6F1 is seen in particular in mammary, ovarian, kidney, prostate, pancreatic and liver carcinomas (FIG. 43A). An analysis of individual samples confirmed overexpression in ovarian carcinomas. LOC343169/OR6F1 is a selectively expressed antigen which is obviously increasingly expressed in proliferating tissues. Thus selective overexpression in tumors can be observed which is therapeutically utilizable. The extracellular domains in particular may be utilized according to the invention as target structures of monoclonal antibodies.
Example 28
Identification of LOC340204 as a Diagnostic and Therapeutic Cancer Target
[0341] The gene which is localized in the LOC340204 gene locus on chromosome 6 (6p21.31) and has the transcript of SEQ ID NO: 105 encodes the protein with SEQ ID NO: 106. Said protein has a transmembrane domain. Moreover said protein displays strong homology to a "colipase" domain. A cofactor function for pancreatic lipase is attributed to colipase. SEQ ID NO: 279 with its gene product SEQ ID NO: 280 represents an alternative transcript of said gene locus, which could be both a separate transcript and a splice variant of SEQ ID NO: 105.
[0342] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an LOC340204-specific quantitative RT-PCR (primer pair SEQ ID NO: 107 and 108). LOC340204 is selectively expressed in healthy tissues and strongly overexpressed in some tumors. Distinct overexpression in tumor samples in comparison with various normal tissues was detected in particular in gastric, pancreatic, ovarian, lung and esophageal carcinomas (FIG. 44).
[0343] The extracellular LOC340204 domains may be utilized according to the invention as target structure of monoclonal antibodies.
Example 29
Identification of LOC340067 as a Diagnostic and Therapeutic Cancer Target
[0344] The gene which is localized in the LOC340067 gene locus on chromosome 5 (5q22.3) and has the transcript of SEQ ID NO: 109 encodes the protein with SEQ ID NO: 110. The transmembrane protein displays no homologies to other protein domains.
[0345] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing a quantitative RT-PCR (primer pair SEQ ID NO: 111 and 112) specific for LOC340067. LOC340067 is selectively expressed in healthy tissues and strongly overexpressed in some tumors (FIG. 45). Distinct overexpression in tumor samples in comparison with various healthy tissues was detected in particular in pancreatic, mammary, liver, ovarian, lung and kidney carcinomas.
[0346] The extracellular LOC340067 domain may be utilized according to the invention as target structure of monoclonal antibodies.
Example 30
Identification of LOC342780 as a Diagnostic and Therapeutic Cancer Target
[0347] The gene which is localized in the LOC342780 gene locus on chromosome 18 (18q21.32) and has the transcript of SEQ ID NO: 309 encodes the protein with SEQ ID NO: 310. The transmembrane protein includes an acyltransferase domain which is present in many C. elegans proteins which have previously not been characterized in detail.
[0348] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples (pool of samples, the number is indicated in the figure) was investigated after establishing an LOC342780-specific quantitative RT-PCR (primer pair SEQ ID NO: 311 and 312). LOC342780 is very selectively expressed in healthy tissue, with specific transcripts being detectable especially in the prostate, stomach, testis, lung and the mammary gland (FIG. 46). In contrast, LOC342780-specific expression was surprisingly detected in all types of tumors analyzed. Tumor-specific overexpression of LOC342780 is seen in particular in mammary, ovarian, kidney and liver carcinomas (FIG. 46).
[0349] LOC342780 is a selectively expressed antigen which is obviously increasingly expressed in proliferating tissues. Thus selective overexpression in tumors can be observed which is therapeutically utilizable. The extracellularly located amino acids 76-89, 316-345, 399-493 and 650-665 (based on SEQ ID NO: 310) may be utilized according to the invention as target structures of monoclonal antibodies.
Example 31
Identification of LOC339511 as a Diagnostic and Therapeutic Cancer Target
[0350] The sequence according to SEQ ID NO: 113 is derived from a gene which is located on chromosome 1 (1q23.1). The gene encodes the protein of SEQ ID NO: 114. The transmembrane protein displays homologies to the group of olfactory 7-transmembrane receptors.
[0351] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing a quantitative RT-PCR (primer pair SEQ ID NO: 115 and 116) specific for LOC339511. In healthy tissues, LOC339511 is selectively expressed in the liver (FIG. 47A). In the carcinoma samples, LOC339511-specific transcripts were identified in liver tumors, with weak expression being moreover detectable in colon carcinomas, mammary and lung carcinomas. When comparing liver-specific expression in tumor and in healthy tissue, increased expression was detected in some tumor samples (FIG. 47B).
[0352] The extracellular domains of SEQ ID NO: 113 may be utilized according to the invention as target structures of monoclonal antibodies. In particular, the extracellularly located amino acid residues 1-23, 82-100, 167-175 and 226-236 are therefore particularly suitable for producing monoclonal antibodies.
Example 32
Identification of C14orf37 as a Diagnostic and Therapeutic Cancer Target
[0353] C14orf37 (SEQ ID NO: 125) is a gene which is localized on chromosome 14 (14q22.3) and which encodes the gene product with SEQ ID NO: 126. The transmembrane protein displays no homologies to previously known proteins.
[0354] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing a quantitative RT-PCR (primer pair SEQ ID NO: 127 and 128) specific for C14orf37. C14orf37 is expressed in various healthy tissues, and strongest in testis (FIG. 48). A distinct overexpression in comparison with various healthy tissues was detected in particular in kidney carcinomas.
[0355] The extracellular domain of SEQ ID NO: 126 may be utilized according to the invention as target structure of monoclonal antibodies.
Example 33
Identification of ATP1A4 as a Diagnostic and Therapeutic Cancer Target
[0356] The ATP1A4 gene (SEQ ID NO: 129) is located on chromosome 1 (1q21-23). The gene codes for a protein with SEQ ID NO: 130. ATP1A4 is an integral transmembrane protein with eight transmembrane domains, which is located in the plasma membrane. ATP1A4 is part of a protein complex, with the catalytical part of the sodium/potassium ATPase being present at the N terminus (Woo et al., J. 2000. Biol. Chem. 275, 20693-99). ATP1A4 displays strong homologies to numerous other representatives of the cation ATPase family.
[0357] According to the invention, the amount of gene-specific transcripts in healthy tissue and in carcinoma samples was investigated after establishing an ATP1A4-specific quantitative RT-PCR (primer pair SEQ ID NO: 131 and 132). In healthy tissues, ATP1A4 is selectively expressed especially in testis (FIG. 49). Strong overexpression of ATP1A4 was detected in some tumor samples in comparison with the respective healthy tissue. Distinct overexpression in tumor samples in comparison with healthy tissues was detected in particular in pancreatic, mammary, liver and kidney carcinomas (FIG. 49), with expression in pancreatic and mammary carcinomas being very high over all.
[0358] The extracellular domains of ATP1A4 may be utilized according to the invention as target structure of monoclonal antibodies. The following amino acid residues, based on SEQ ID NO: 130, are located extracellularly: amino acid residues 129-137, 321-329, 816-857 and 977-990.
Example 34
Identification of SEQ ID NO: 133 to 264 as a Diagnostic and Therapeutic Cancer Target
[0359] The sequences according to SEQ ID NO: 133-266 are 33 genes (nucleic acid sequence, amino acid sequence), together with the respective PCR primers for specific RT-PCR reactions. All proteins have one or more transmembrane domains, but there is little information on homologies to protein domains.
[0360] According to the invention, the amount of the particular gene-specific transcripts in healthy tissue and in carcinoma samples was investigated for these genes in specific quantitative RT-PCR reactions. For all of the genes, overexpression which was partially strong in comparison with the respective healthy tissue was detected in tumor samples.
[0361] All genes of this group are therapeutically and diagnostically utilizable. The extracellular domains may be utilized here according to the invention as target structure of antibodies.
Sequence CWU
1
3121920DNAHomo sapiens 1tctgtagagg ggaatggctg ctgtgtcatg ggggtgcatg
agcagcccag tggagaggtg 60cacttggtga gaaaccgatg cctctgccaa ccacctgcac
taacctgctg ggtctgagac 120tgagccactt tggaagctga tcttggagca ccagtcaagc
ccttagctgg ctgcagccac 180agccaacaac aagactgcaa cctcctgggg gatcctgagc
cagaatcccc tggctaaatt 240gctccttgat tcttaaccca cagaaattgt gtaagacctc
catcaggtgt cgacaaggaa 300gatcccagta gggcaggaga caggagcacc tctgctgtgg
ccaatgcagg aatgctggcc 360atcattgctt ctgctgggcg actgagaagc atcacccact
tccccagaac cttttttacg 420tggagtgaaa actttaaggg gctgtccagc taaacctcca
acctccagat cccatgccaa 480tttctctgct tctgcaaaag gacttcaagt gaaagacatc
tgcagctgtg aacgggggta 540aaaccctccc tgccccaggc cccaagcaag gatttcccta
gcggggagga aggtagaatc 600gagagacctc taaccctggg agaggaggga gggaaatctc
cgaggaccag ggttatgcaa 660caacacaagg gaagtacctg ctgggttctg ggggttgggg
aaggaaaatc cctactgccc 720caagagccag ccccgaaccc aaggcacagc ttatactggc
cccggggcct gggggggcac 780gaaaaccttg aaaaaggggc gccttcccag cttccccggg
ggtaagggct ttacccccca 840gagggggggg gaaaaatccg agtgggatct ttcccaaccg
ccgaagacta aaacctttaa 900acccccaaag aaaccttcta
920288PRTHomo sapiens 2Arg Arg Phe Leu Trp Gly Phe
Lys Gly Phe Ser Leu Arg Arg Leu Gly1 5 10
15Lys Ile Pro Leu Gly Phe Phe Pro Pro Pro Leu Gly Gly
Lys Ala Leu 20 25 30Thr Pro
Gly Glu Ala Gly Lys Ala Pro Leu Phe Gln Gly Phe Arg Ala 35
40 45Pro Pro Gly Pro Gly Ala Ser Ile Ser Cys
Ala Leu Gly Ser Gly Leu 50 55 60Ala
Leu Gly Ala Val Gly Ile Phe Leu Pro Gln Pro Pro Glu Pro Ser65
70 75 80Arg Tyr Phe Pro Cys Val
Val Ala 85322DNAArtificial SequenceOligonucleotide
3gcagccacag ccaacaacaa ga
22425DNAArtificial SequenceOligonucleotide 4acagcagagg tgctcctgtc tcctg
2552856DNAHomo sapiens
5atggccaaaa gaaatctcag cactgtgaca gagttcattc ttgtagtctt cacagatcac
60cctgaactgg cagttccact cttcctagtg tttctcagtt tctatcttgt cacttttctg
120gggaatgggg ggatgatcat tctaatccaa gtggatgccc aactccacac ccccgtgtac
180ttcttcctga gccaccttgc tttcctggat gcctgctgtg cctcagtaat cacccctcag
240attctggcca cactggccac agacaagaca gttatctcct atggctgccg tgctgtgcag
300ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggcctat
360gaccgctttg ttgccattag caatccactg cactgtaaca tgaccatgac tccaggtacc
420tgcagggtct ttttggccag tgccttcatc tgtggggtgt caggggccat tctgcatacc
480acgtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac
540ctcccacccc tgctgaagct cgcctgcagc agcatgacac aaactgagat tgtcattctc
600ctttgtgcaa aatgcatgtt cctagccaat gtcatggtta tcctgatctg ctacatgctc
660attatcagag ccattttgag ggtgaagtcg gcaggaggcc tcctgatagc atctgctcat
720ttcgatgcat atgtatatga gacaggcatc aactacaaca cagtttatgg ctcaggaaag
780gcagtagggt ggtcctggag gagcctgcgg gaaaccaacc acatgagacc aggaaatact
840tcaaaacact cagcagccca gctgcatcaa tgcctcatcc agcaagttgg caggtggccc
900ttgcagagca tgcccttccc cgtttctgca gggccacctt ataagtcagt gcagcctctc
960cctggagacc cccggcctct cctgtgcatc accggattat ttctgacttt gaagatgatg
1020gggtgtgggc ccaggaggcc cagggacagg aagtctgact tcttcataaa cacagaccct
1080ggtgcagggt caccagaaga acagaggtgt ggatgggaag ggcatccttc ccactcctat
1140accctggggc tgtctctgcc agtcaacttc ggcctgaaat gtccatggtg gacactatct
1200ggacccccag ctacctgcca acgtccagac ctgcagacac cttctccacc aaaggagata
1260tgttcatccg ggctgcgacc ccttacacac agcgctggac cagacagaag tcaagttcca
1320gcagcctccg gagcagccac tatgctgaca aaggggctgc ccgacatcac tgtgggactg
1380cagatttatg actcctgcat ctcagggatc caggctctgg ggagcaccct ggccctgctg
1440tccaatcagc ttccacccac aaccaactat gcttgtggct cccagcaaca tctcctgggc
1500gtggttggag ggatgacctt cctggagtca gagcccatgt ctgagctgct ctccatctac
1560agagtccctc agggccaaag actcaccaaa aactttgaag taaaagaact tgtctgcaca
1620tatctggtag gacagcttcc ttatggcctg gtcagttatg acaacagcaa ctttgagtgg
1680ctggatcagc agctgcagaa gcagatcggg ggcgagggac ttcctgttgg cgctgcgccc
1740agccgtgtag ccaggcaaca gtctgatgag gaagctgtgg gaggagtgca gggatacagg
1800tggtctggat taggggcttc catccaaagt gccagagaag gggcttggca tcgcacaggg
1860ctggagaaca tgaccactgc ccacctgtct gccttcaaac ttcctgatct aactgccact
1920taccaagcct acctggcagc caaagccctg tgggttgcct atcagaactt gatgtcctgc
1980tctgagagag agggaccatt cctgggaggc acgtatgcca atgcatggga agccaggctt
2040tctcaggtta acttcaccac caaagcccaa gaagaggttt tcttcgccaa agatggggaa
2100gtgctgacaa cgtttgacat taaaaacatc tatgttctcc cagacctgtc aggacagaca
2160gccattgttg gacactttga cttcagagca ccttctggaa aagagcttct gttggatgac
2220agcgcaattg tctgggcaga aggaccctta aagattagag ctgagagaac cctaagaacc
2280aagaccacac agcacctctc acatcccaag ctccaggagt cccttcctct gtctgcaacg
2340aaaaacgtcc tgtggaaacc aggaagtcaa ccctatttga gaagtcaaaa tgctgctaca
2400aaagccttcc ctgacccaga agagaaatcg caatgtcacc agtttctctt tctcccttca
2460gatagtgttg catgtcagaa gtgctctgac aaccagtggc ccaatgtgca gaagggcgag
2520tgcatcccca aaacccttga cttcttgttc tatcacaagc cccttgacac agcgttggct
2580gtctgcacag ccctgctctt tctccttgcc ctggccatct taggcatctt ccatgttgtc
2640tgctcctgtg tctgggtgtc cttcatacct gcccacatgc atgcccacag caaagacacc
2700atggccatgg aggtctttgt catcttggca tcagcaggag gcctcatgtc ctccctcttc
2760ttttccaaat gctacatcat ccttctccat cctgaaaaga acacaaaaga ccaaatgttt
2820ggccggcatc atcgcaagtg ggaaaaactg aagtga
28566951PRTHomo sapiens 6Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu Phe
Ile Leu Val Val1 5 10
15Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu
20 25 30Ser Phe Tyr Leu Val Thr Phe
Leu Gly Asn Gly Gly Met Ile Ile Leu 35 40
45Ile Gln Val Asp Ala Gln Leu His Thr Pro Val Tyr Phe Phe Leu
Ser 50 55 60His Leu Ala Phe Leu Asp
Ala Cys Cys Ala Ser Val Ile Thr Pro Gln65 70
75 80Ile Leu Ala Thr Leu Ala Thr Asp Lys Thr Val
Ile Ser Tyr Gly Cys 85 90
95Arg Ala Val Gln Phe Ser Phe Phe Thr Ile Cys Ala Gly Thr Glu Cys
100 105 110Tyr Leu Leu Ser Val Met
Ala Tyr Asp Arg Phe Val Ala Ile Ser Asn 115 120
125Pro Leu His Cys Asn Met Thr Met Thr Pro Gly Thr Cys Arg
Val Phe 130 135 140Leu Ala Ser Ala Phe
Ile Cys Gly Val Ser Gly Ala Ile Leu His Thr145 150
155 160Thr Cys Thr Phe Thr Leu Ser Phe Cys Cys
Asp Asn Gln Ile Asn Phe 165 170
175Phe Phe Cys Asp Leu Pro Pro Leu Leu Lys Leu Ala Cys Ser Ser Met
180 185 190Thr Gln Thr Glu Ile
Val Ile Leu Leu Cys Ala Lys Cys Met Phe Leu 195
200 205Ala Asn Val Met Val Ile Leu Ile Cys Tyr Met Leu
Ile Ile Arg Ala 210 215 220Ile Leu Arg
Val Lys Ser Ala Gly Gly Leu Leu Ile Ala Ser Ala His225
230 235 240Phe Asp Ala Tyr Val Tyr Glu
Thr Gly Ile Asn Tyr Asn Thr Val Tyr 245
250 255Gly Ser Gly Lys Ala Val Gly Trp Ser Trp Arg Ser
Leu Arg Glu Thr 260 265 270Asn
His Met Arg Pro Gly Asn Thr Ser Lys His Ser Ala Ala Gln Leu 275
280 285His Gln Cys Leu Ile Gln Gln Val Gly
Arg Trp Pro Leu Gln Ser Met 290 295
300Pro Phe Pro Val Ser Ala Gly Pro Pro Tyr Lys Ser Val Gln Pro Leu305
310 315 320Pro Gly Asp Pro
Arg Pro Leu Leu Cys Ile Thr Gly Leu Phe Leu Thr 325
330 335Leu Lys Met Met Gly Cys Gly Pro Arg Arg
Pro Arg Asp Arg Lys Ser 340 345
350Asp Phe Phe Ile Asn Thr Asp Pro Gly Ala Gly Ser Pro Glu Glu Gln
355 360 365Arg Cys Gly Trp Glu Gly His
Pro Ser His Ser Tyr Thr Leu Gly Leu 370 375
380Ser Leu Pro Val Asn Phe Gly Leu Lys Cys Pro Trp Trp Thr Leu
Ser385 390 395 400Gly Pro
Pro Ala Thr Cys Gln Arg Pro Asp Leu Gln Thr Pro Ser Pro
405 410 415Pro Lys Glu Ile Cys Ser Ser
Gly Leu Arg Pro Leu Thr His Ser Ala 420 425
430Gly Pro Asp Arg Ser Gln Val Pro Ala Ala Ser Gly Ala Ala
Thr Met 435 440 445Leu Thr Lys Gly
Leu Pro Asp Ile Thr Val Gly Leu Gln Ile Tyr Asp 450
455 460Ser Cys Ile Ser Gly Ile Gln Ala Leu Gly Ser Thr
Leu Ala Leu Leu465 470 475
480Ser Asn Gln Leu Pro Pro Thr Thr Asn Tyr Ala Cys Gly Ser Gln Gln
485 490 495His Leu Leu Gly Val
Val Gly Gly Met Thr Phe Leu Glu Ser Glu Pro 500
505 510Met Ser Glu Leu Leu Ser Ile Tyr Arg Val Pro Gln
Gly Gln Arg Leu 515 520 525Thr Lys
Asn Phe Glu Val Lys Glu Leu Val Cys Thr Tyr Leu Val Gly 530
535 540Gln Leu Pro Tyr Gly Leu Val Ser Tyr Asp Asn
Ser Asn Phe Glu Trp545 550 555
560Leu Asp Gln Gln Leu Gln Lys Gln Ile Gly Gly Glu Gly Leu Pro Val
565 570 575Gly Ala Ala Pro
Ser Arg Val Ala Arg Gln Gln Ser Asp Glu Glu Ala 580
585 590Val Gly Gly Val Gln Gly Tyr Arg Trp Ser Gly
Leu Gly Ala Ser Ile 595 600 605Gln
Ser Ala Arg Glu Gly Ala Trp His Arg Thr Gly Leu Glu Asn Met 610
615 620Thr Thr Ala His Leu Ser Ala Phe Lys Leu
Pro Asp Leu Thr Ala Thr625 630 635
640Tyr Gln Ala Tyr Leu Ala Ala Lys Ala Leu Trp Val Ala Tyr Gln
Asn 645 650 655Leu Met Ser
Cys Ser Glu Arg Glu Gly Pro Phe Leu Gly Gly Thr Tyr 660
665 670Ala Asn Ala Trp Glu Ala Arg Leu Ser Gln
Val Asn Phe Thr Thr Lys 675 680
685Ala Gln Glu Glu Val Phe Phe Ala Lys Asp Gly Glu Val Leu Thr Thr 690
695 700Phe Asp Ile Lys Asn Ile Tyr Val
Leu Pro Asp Leu Ser Gly Gln Thr705 710
715 720Ala Ile Val Gly His Phe Asp Phe Arg Ala Pro Ser
Gly Lys Glu Leu 725 730
735Leu Leu Asp Asp Ser Ala Ile Val Trp Ala Glu Gly Pro Leu Lys Ile
740 745 750Arg Ala Glu Arg Thr Leu
Arg Thr Lys Thr Thr Gln His Leu Ser His 755 760
765Pro Lys Leu Gln Glu Ser Leu Pro Leu Ser Ala Thr Lys Asn
Val Leu 770 775 780Trp Lys Pro Gly Ser
Gln Pro Tyr Leu Arg Ser Gln Asn Ala Ala Thr785 790
795 800Lys Ala Phe Pro Asp Pro Glu Glu Lys Ser
Gln Cys His Gln Phe Leu 805 810
815Phe Leu Pro Ser Asp Ser Val Ala Cys Gln Lys Cys Ser Asp Asn Gln
820 825 830Trp Pro Asn Val Gln
Lys Gly Glu Cys Ile Pro Lys Thr Leu Asp Phe 835
840 845Leu Phe Tyr His Lys Pro Leu Asp Thr Ala Leu Ala
Val Cys Thr Ala 850 855 860Leu Leu Phe
Leu Leu Ala Leu Ala Ile Leu Gly Ile Phe His Val Val865
870 875 880Cys Ser Cys Val Trp Val Ser
Phe Ile Pro Ala His Met His Ala His 885
890 895Ser Lys Asp Thr Met Ala Met Glu Val Phe Val Ile
Leu Ala Ser Ala 900 905 910Gly
Gly Leu Met Ser Ser Leu Phe Phe Ser Lys Cys Tyr Ile Ile Leu 915
920 925Leu His Pro Glu Lys Asn Thr Lys Asp
Gln Met Phe Gly Arg His His 930 935
940Arg Lys Trp Glu Lys Leu Lys945 950722DNAArtificial
SequenceOligonucleotide 7aggtggtgtg acgctgctgc ta
22822DNAArtificial SequenceOligonucleotide
8tcttcttggg ctttggtggt ga
229543DNAHomo sapiens 9ataaagcggg acaacacaga acttcccagt tacaccaggc
atcctggccc aaagtttccc 60aaatccaggc ggctagaggc ccactgcttc ccaactacca
gctgaggggg tccgtcccga 120gaagggagaa gaggccgaag aggaaacatg aacttctatt
tactcctagc gagcagcatt 180ctgtgtgcct tgattgtctt ctggaaatat cgccgctttc
agagaaacac tggcgaaatg 240tcatcaaatt caactgctct tgcactagtg agaccctctt
cttctgggtt aattaacagc 300aatacagaca acaatcttgc agtctacgac ctctctcggg
atattttaaa taatttccca 360cactcaatag ccaggcagaa gcgaatattg gtaaacctca
gtatggtgga aaacaagctg 420gttgaactgg aacatactct acttagcaag ggtttcagag
gtgcatcacc tcaccggaaa 480tccacctaaa agcgtacagg atgtaatgcc agtggtggaa
atcattaaag acactttgag 540tag
54310113PRTHomo sapiens 10Met Asn Phe Tyr Leu Leu
Leu Ala Ser Ser Ile Leu Cys Ala Leu Ile1 5
10 15Val Phe Trp Lys Tyr Arg Arg Phe Gln Arg Asn Thr
Gly Glu Met Ser 20 25 30Ser
Asn Ser Thr Ala Leu Ala Leu Val Arg Pro Ser Ser Ser Gly Leu 35
40 45Ile Asn Ser Asn Thr Asp Asn Asn Leu
Ala Val Tyr Asp Leu Ser Arg 50 55
60Asp Ile Leu Asn Asn Phe Pro His Ser Ile Ala Arg Gln Lys Arg Ile65
70 75 80Leu Val Asn Leu Ser
Met Val Glu Asn Lys Leu Val Glu Leu Glu His 85
90 95Thr Leu Leu Ser Lys Gly Phe Arg Gly Ala Ser
Pro His Arg Lys Ser 100 105
110Thr1122DNAArtificial SequenceOligonucleotide 11gtgtgccttg attgtcttct
gg 221219DNAArtificial
SequenceOligonucleotide 12cctggctatt gagtgtggg
19132761DNAHomo sapiens 13ctaggcctca gtctgtctgc
atccaggtgc ttattaaaac agtgtgttgc tccacaccgc 60ctcgtgttgt ctgttggcgc
gctctccggg ttccaaccaa tgcaagagcc ttggggctgg 120ccctgaaacc tgcgaggggc
ttccgtccac gtccccagtg gacctaccac ccctccatct 180gggaaagcag gccacagcag
ccggacaaag gaagctcctc agcctctagt cgcctctctg 240tgcatgcaca tcggtcactg
atctcgccta ctggcacaga cgtgtttatc ggccaaactg 300accctcacaa aaagctacca
ccgaagtgga caggccccta cactgtgata ctcagcacac 360caactgcagt gagagtccga
ggactcccca actggatcca tcgcaccagg gtcaagctca 420cccccaaggc agcttcttcc
tccaaaacat taacagctaa gtgtttgtct gggccaattt 480ctcctaccaa gtttaaatta
accaacattt ttttcttaaa accaaaacac aaggaagact 540aaccacgtgc ttccaggaat
ggcctgtatc tacccaacca ctttctatac ctctcttcca 600accaaaagtc ttaatatggg
aatatccctc accacgatcc taatactgtc agtagctgtc 660ctgctgtcca cagcagcccc
tccgagctgc cgtgagtgtt atcagtcttt gcactacaga 720ggggagatgc aacaatactt
tacttaccat actcatatag aaagatcctg ttatggaaac 780ttaatcgagg aatgtgttga
atcaggaaag agttattata aagtaaagaa tctaggagta 840tgtggcagtc gtaatggggc
tatttgcccc agagggaagc agtggctttg cttcaccaaa 900attggacaat ggggagtaaa
cactcaggtg cttgaggaca taaagagaga acagattata 960gccaaagcca aagcctcaaa
accaacaact ccccctgaaa atcgcccgcg gcatttccat 1020tcctttatac aaaaactata
agcagatgca tcccttccta agccaggaaa aaatctgttt 1080gtagatctag gagaaccatt
gtgcttacca tgaatgtgtc caattgttgg gtatgcgggg 1140gagctttatg agtgaacagt
ggctgtggga cgggatagac attccccctt acttacaggc 1200atcccaaaac cccagactca
ctttcactcc tcaggaatgc ccgcagtcct ggacacttac 1260caacccagta tgagggacgg
tgtgcatatc ccgcaagtgg actgataaaa cccatcgcgc 1320cgtaggtgaa aacccgtcac
caaaccctaa cagtcaatgc ctccatagct gagtggtggc 1380caaggttacc ccctggagcc
tggtctcctt ctaacttaag ctacctcaat tgtgtcttgt 1440caaaaaaggc ctggtactgt
acgaacacca ctaaccctta tgccgcatac ctccgcctaa 1500gtgtactatg cgacaatcct
aggaacacca gctgacaatg gactgccact gacggattcc 1560tgtggatatg gggaacccag
gcttactcac agctacctta tcactggcaa ggtacttgct 1620tcctaggcac aattcaacct
ggattctttt tacttccgaa gcaggcgggc aacaccctca 1680gagtccctgt gtatgataac
cagagaaaaa tgatccttgg aggtaggagg gagccaaaga 1740ttgtgagagg acgagtggcc
tctgcaacgg atcattgaat actatggtcc tgccacttgg 1800gcagaggatg gttcatgggg
ttatcgcact cccatatata tgccaaatag agcgattaga 1860ctacaagctg ttctagagat
aatcactaac caaactgcct cagccctaga aatgctcgcg 1920caacaacaaa accaaatgcg
cgcggcaatt tatcaaaaca ggctggccct agactactta 1980ttagcagaag agggtgcggg
ctgtggtaag tttaacatct ccaattgctg tcttaacata 2040ggcaataatg gagaagaggt
tctggaaatc gcttcaaaca tcagaaaagt agcccgtgta 2100ccagtccaaa cctgggaggg
atgggaccca gcaaaccttc taggagggtg gttctctaat 2160ttaggaggat ttaaaatgct
ggtggggaca gtcattttca tcactggggt cctcctgttt 2220ctcccctgtg gtatcccatt
aaaactcttg ttgaaactac agttaacctc ctgacaatcc 2280agatgatgct cctgctacag
cggcacgatg gataccaacc cgtctctcaa gaatacccca 2340aaaattaagt ttttcttttt
ccaaggtgcc cacgccaccc ctatgtcacg cctgaagtag 2400ttattgagaa agtcgtccct
ttcccctttt ctataaccaa atagacagga atggaagatt 2460ctcctcgggg cctgaaagct
tgcgggatga ataactcctc ctcctcaggc ccagtcccaa 2520ggtacaaact tgcaccagca
gcaagatagc agaggcagga agagagctgg ctggaagaca 2580cgtaccccct gaagatcaag
agggaggtcg ccctggtact acatagcagt cacgttaggc 2640tgggacaatt cctgtttaca
gaggactata aaacccctgc cccatcctca cttggggctg 2700atgccatttt aggcctcagc
ctgtctgcat gcaggcgctc attaaaacag catgttgctc 2760c
276114160PRTHomo sapiens
14Met Ala Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr Lys1
5 10 15Ser Leu Asn Met Gly Ile
Ser Leu Thr Thr Ile Leu Ile Leu Ser Val 20 25
30Ala Val Leu Leu Ser Thr Ala Ala Pro Pro Ser Cys Arg
Glu Cys Tyr 35 40 45Gln Ser Leu
His Tyr Arg Gly Glu Met Gln Gln Tyr Phe Thr Tyr His 50
55 60Thr His Ile Glu Arg Ser Cys Tyr Gly Asn Leu Ile
Glu Glu Cys Val65 70 75
80Glu Ser Gly Lys Ser Tyr Tyr Lys Val Lys Asn Leu Gly Val Cys Gly
85 90 95Ser Arg Asn Gly Ala Ile
Cys Pro Arg Gly Lys Gln Trp Leu Cys Phe 100
105 110Thr Lys Ile Gly Gln Trp Gly Val Asn Thr Gln Val
Leu Glu Asp Ile 115 120 125Lys Arg
Glu Gln Ile Ile Ala Lys Ala Lys Ala Ser Lys Pro Thr Thr 130
135 140Pro Pro Glu Asn Arg Pro Arg His Phe His Ser
Phe Ile Gln Lys Leu145 150 155
1601521DNAArtificial SequenceOligonucleotide 15cctctagtcg cctctctgtg
c 211617DNAArtificial
SequenceOligonucleotide 16accctggtgc gatggat
17171635DNAHomo sapiens 17gcctgtccct gccttaagtg
cctactggat cccgggagcc tgggctgggg cctgggcact 60gcttcctcct tggcccctca
ggcccttgga agcagagaga gaacctcttg cagatcccag 120gctcgtcccc agcacagcag
acaccaggaa ggtggccaga gcctcactga gccgaaccga 180cggccgccca cccacccagg
ctggagccat ggataaattc cgcatgctct tccagcactt 240ccagtcaagc tcggagtcgg
tgatgaatgg catctgcctg ctgctggctg cggtcaccgt 300caagctgtac tcctcctttg
acttcaactg tccctgcctg gtgcactaca atgcactcta 360cggcctgggc ctgctgctga
cgcccccgct cgccctgttt ctctgcggcc tcctcgccaa 420ccggcagtct gtggtgatgg
tcgaggagtg gcgccggccc gcagggcacc ggaggaagga 480cccaggcatc atcaggtaca
tgtgctcctc tgtgctgcag agggcgctgg ccgcccccct 540ggtctggatc ctgctggccc
tccttgacgg gaagtgcttc gtgtgtgcct tcagcagctc 600tgtggaccct gagaagtttc
tggactttgc caacatgacc cccagccagg tacagctctt 660cctggccaag gttccctgca
aggaggatga gctggtcagg gatagccctg ctcggaaggc 720agtgtctcgc tacctgcggt
gcctgtcaca ggccatcggc tggagcgtca ccctgctgct 780gatcatcgcg gccttcctgg
cccgctgcct gaggccctgc ttcgaccaga cagtcttcct 840gcagcgcaga tactggagca
actacgtgga cctggagcag aagctcttcg acgagacctg 900ctgtgagcat gcgcgggact
tcgcgcaccg ctgcgtgctg cacttctttg ccagcatgcg 960gagtgagctg caggcgcggg
ggctgcgccg gggcaatgca ggcaggagac tcgagctccc 1020cgcagtgcct gagcccccag
aaggcctgga tagtggaagt gggaaggccc acctgcgcgc 1080aatctccagc cgggagcagg
tggaccgcct cctaagcacg tggtactcca gcaagccgcc 1140gctggacctg gctgcatccc
ccgggctctg cgggggtggc cttagccacc gcgcccctac 1200cttggcactg ggcacgaggc
tgtcacaaca caccgacgtg tagggtcctg gccaggcttg 1260aagcggcagt gttcgcaggt
gaaatgccgc gctgacaaag ttctggagtc tttccaggcc 1320gtggggaccc cacggcaggc
accctaagtc ttgttagcct cctttttaaa gtagcccaat 1380ctctgcctag tttctgggtg
tggcctccag cgcgcttcac aaactttaat gtggactcgg 1440ttcaccgagg gccttgttaa
atacaggttc agacagtgta gccaggaccg agtctgagat 1500tctgcatttt aaacaagctc
ctggaggctg atgtgctttt ggtcagtgaa ccaaactttg 1560agtagcaaga atctaagtaa
atctgccatg ggttctgggt tctagatgtc aattctaaat 1620aataataatg acctt
163518344PRTHomo sapiens
18Met Asp Lys Phe Arg Met Leu Phe Gln His Phe Gln Ser Ser Ser Glu1
5 10 15Ser Val Met Asn Gly Ile
Cys Leu Leu Leu Ala Ala Val Thr Val Lys 20 25
30Leu Tyr Ser Ser Phe Asp Phe Asn Cys Pro Cys Leu Val
His Tyr Asn 35 40 45Ala Leu Tyr
Gly Leu Gly Leu Leu Leu Thr Pro Pro Leu Ala Leu Phe 50
55 60Leu Cys Gly Leu Leu Ala Asn Arg Gln Ser Val Val
Met Val Glu Glu65 70 75
80Trp Arg Arg Pro Ala Gly His Arg Arg Lys Asp Pro Gly Ile Ile Arg
85 90 95Tyr Met Cys Ser Ser Val
Leu Gln Arg Ala Leu Ala Ala Pro Leu Val 100
105 110Trp Ile Leu Leu Ala Leu Leu Asp Gly Lys Cys Phe
Val Cys Ala Phe 115 120 125Ser Ser
Ser Val Asp Pro Glu Lys Phe Leu Asp Phe Ala Asn Met Thr 130
135 140Pro Ser Gln Val Gln Leu Phe Leu Ala Lys Val
Pro Cys Lys Glu Asp145 150 155
160Glu Leu Val Arg Asp Ser Pro Ala Arg Lys Ala Val Ser Arg Tyr Leu
165 170 175Arg Cys Leu Ser
Gln Ala Ile Gly Trp Ser Val Thr Leu Leu Leu Ile 180
185 190Ile Ala Ala Phe Leu Ala Arg Cys Leu Arg Pro
Cys Phe Asp Gln Thr 195 200 205Val
Phe Leu Gln Arg Arg Tyr Trp Ser Asn Tyr Val Asp Leu Glu Gln 210
215 220Lys Leu Phe Asp Glu Thr Cys Cys Glu His
Ala Arg Asp Phe Ala His225 230 235
240Arg Cys Val Leu His Phe Phe Ala Ser Met Arg Ser Glu Leu Gln
Ala 245 250 255Arg Gly Leu
Arg Arg Gly Asn Ala Gly Arg Arg Leu Glu Leu Pro Ala 260
265 270Val Pro Glu Pro Pro Glu Gly Leu Asp Ser
Gly Ser Gly Lys Ala His 275 280
285Leu Arg Ala Ile Ser Ser Arg Glu Gln Val Asp Arg Leu Leu Ser Thr 290
295 300Trp Tyr Ser Ser Lys Pro Pro Leu
Asp Leu Ala Ala Ser Pro Gly Leu305 310
315 320Cys Gly Gly Gly Leu Ser His Arg Ala Pro Thr Leu
Ala Leu Gly Thr 325 330
335Arg Leu Ser Gln His Thr Asp Val 3401920DNAArtificial
SequenceOligonucleotide 19gaggaaggac ccaggcatca
202020DNAArtificial SequenceOligonucleotide
20gaaggcacac acgaagcact
20214556DNAHomo sapiens 21gcggccgccc cattcccaga ccggccgcca gcccatctgg
ttagctcccg ccgctccgcg 60ccgcccggga gtcgggagcc gcggggaacc gggcacctgc
acccgcctct gggagtgagt 120ggttccagct ggtgcctggc ctgtgtctct tggatgccct
gtggcttcag tccgtctcct 180gttgcccacc acctcgtccc tgggccgcct gataccccag
cccaacagct aaggtgtgga 240tggacagtag ggggctggct tctctcactg gtcaggggtc
ttctcccctg tctgcctccc 300ggagctagga ctgcagaggg gcctatcatg gtgcttgcag
gccccctggc tgtctcgctg 360ttgctgccca gcctcacact gctggtgtcc cacctctcca
gctcccagga tgtctccagt 420gagcccagca gtgagcagca gctgtgcgcc cttagcaagc
accccaccgt ggcctttgaa 480gacctgcagc cgtgggtctc taacttcacc taccctggag
cccgggattt ctcccagctg 540gctttggacc cctccgggaa ccagctcatc gtgggagcca
ggaactacct cttcagactc 600agccttgcca atgtctctct tcttcaggcc acagagtggg
cctccagtga ggacacgcgc 660cgctcctgcc aaagcaaagg gaagactgag gaggagtgtc
agaactacgt gcgagtcctg 720atcgtcgccg gccggaaggt gttcatgtgt ggaaccaatg
ccttttcccc catgtgcacc 780agcagacagg tggggaacct cagccggact attgagaaga
tcaatggtgt ggcccgctgc 840ccctatgacc cacgccacaa ctccacagct gtcatctcct
cccaggggga gctctatgca 900gccacggtca tcgacttctc aggtcgggac cctgccatct
accgcagcct gggcagtggg 960ccaccgcttc gcactgccca atataactcc aagtggctta
atgagccaaa cttcgtggca 1020gcctatgata ttgggctgtt tgcatacttc ttcctgcggg
agaacgcagt ggagcacgac 1080tgtggacgca ccgtgtactc tcgcgtggcc cgcgtgtgca
agaatgacgt ggggggccga 1140ttcctgctgg aggacacatg gaccacattc atgaaggccc
ggctcaactg ctcccgcccg 1200ggcgaggtcc ccttctacta taacgagctg cagagtgcct
tccacttgcc ggagcaggac 1260ctcatctatg gagttttcac aaccaacgta aacagcatcg
cggcttctgc tgtctgcgcc 1320ttcaacctca gtgctatctc ccaggctttc aatggcccat
ttcgctacca ggagaacccc 1380agggctgcct ggctccccat agccaacccc atccccaatt
tccagtgtgg caccctgcct 1440gagaccggtc ccaacgagaa cctgacggag cgcagcctgc
aggacgcgca gcgcctcttc 1500ctgatgagcg aggccgtgca gccggtgaca cccgagccct
gtgtcaccca ggacagcgtg 1560cgcttctcac acctcgtggt ggacctggtg caggctaaag
acacgctcta ccatgtactc 1620tacattggca ccgagtcggg caccatcctg aaggcgctgt
ccacggcgag ccgcagcctc 1680cacggctgct acctggagga gctgcacgtg ctgccccccg
ggcgccgcga gcccctgcgc 1740agcctgcgca tcctgcacag cgcccgcgcg ctcttcgtgg
ggctgagaga cggcgtcctg 1800cgggtcccac tggagaggtg cgccgcctac cgcagccagg
gggcatgcct gggggcccgg 1860gacccgtact gtggctggga cgggaagcag caacgttgca
gcacactcga ggacagctcc 1920aacatgagcc tctggaccca gaacatcacc gcctgtcctg
tgcggaatgt gacacgggat 1980gggggcttcg gcccatggtc accatggcaa ccatgtgagc
acttggatgg ggacaactca 2040ggctcttgcc tgtgtcgagc tcgatcctgt gattcccctc
gaccccgctg tgggggcctt 2100gactgcctgg ggccagccat ccacatcgcc aactgctcca
ggaatggggc gtggaccccg 2160tggtcatcgt gggcgctgtg cagcacgtcc tgtggcatcg
gcttccaggt ccgccagcga 2220agttgcagca accctgctcc ccgccacggg ggccgcatct
gcgtgggcaa gagccgggag 2280gaacggttct gtaatgagaa cacgccttgc ccggtgccca
tcttctgggc ttcctggggc 2340tcctggagca agtgcagcag caactgtgga gggggcatgc
agtcgcggcg tcgggcctgc 2400gagaacggca actcctgcct gggctgcggc gtggagttca
agacgtgcaa ccccgagggc 2460tgccccgaag tgcggcgcaa caccccctgg acgccgtggc
tgcccgtgaa cgtgacgcag 2520ggcggggcac ggcaggagca gcggttccgc ttcacctgcc
gcgcgcccct tgcagacccg 2580cacggcctgc agttcggcag gagaaggacc gagacgagga
cctgtcccgc ggacggctcc 2640ggctcctgcg acaccgacgc cctggtggag gtcctcctgc
gcagcgggag cacctccccg 2700cacacggtga gcgggggctg ggccgcctgg ggcccgtggt
cgtcctgctc ccgggactgc 2760gagctgggct tccgcgtccg caagagaacg tgcactaacc
cggagccccg caacgggggc 2820ctgccctgcg tgggcgatgc tgccgagtac caggactgca
acccccaggc ttgcccagtt 2880cggggtgctt ggtcctgctg gacctcatgg tctccatgct
cagcttcctg tggtgggggt 2940cactatcaac gcacccgttc ctgcaccagc cccgcaccct
ccccaggtga ggacatctgt 3000ctcgggctgc acacggagga ggcactatgt gccacacagg
cctgcccaga aggctggtcg 3060ccctggtctg agtggagtaa gtgcactgac gacggagccc
agagccgaag ccggcactgt 3120gaggagctcc tcccagggtc cagcgcctgt gctggaaaca
gcagccagag ccgcccctgc 3180ccctacagcg agattcccgt catcctgcca gcctccagca
tggaggaggc caccgactgt 3240gcagggttca atctcatcca cttggtggcc acgggcatct
cctgcttctt gggctctggg 3300ctcctgaccc tagcagtgta cctgtcttgc cagcactgcc
agcgtcagtc ccaggagtcc 3360acactggtcc atcctgccac ccccaaccat ttgcactaca
agggcggagg caccccgaag 3420aatgaaaagt acacacccat ggaattcaag accctgaaca
agaataactt gatccctgat 3480gacagagcca acttctaccc attgcagcag accaatgtgt
acacgactac ttactaccca 3540agccccctga acaaacacag cttccggccc gaggcctcac
ctggacaacg gtgcttcccc 3600aacagctgat accgccgtcc tggggacttg ggcttcttgc
cttcataagg cacagagcag 3660atggagatgg gacagtggag ccagtttggt tttctccctc
tgcactaggc caagaacttg 3720ctgccttgcc tgtggggggt cccatccggc ttcagagagc
tctggctggc attgaccatg 3780ggggaaaggg ctggtttcag gctgacatat ggccgcaggt
ccagttcagc ccaggtctct 3840catggttatc ttccaaccca ctgtcacgct gacactatgc
tgccatgcct gggctgtgga 3900cctactgggc atttgaggaa ttggagaatg gagatggcaa
gagggcaggc ttttaagttt 3960gggttggaga caacttcctg tggcccccac aagctgagtc
tggccttctc cagctggccc 4020caaaaaaggc ctttgctaca tcctgattat ctctgaaagt
aatcaatcaa gtggctccag 4080tagctctgga ttttctgcca gggctgggcc attgtggtgc
tgccccagta tgacatggga 4140ccaaggccag cgcaggttat ccacctctgc ctggaagtct
atactctacc cagggcatcc 4200ctctggtcag aggcagtgag tactgggaac tggaggctga
cctgtgctta gaagtccttt 4260aatctgggct ggtacaggcc tcagccttgc cctcaatgca
cgaaaggtgg cccaggagag 4320aggatcaatg ccataggagg cagaagtctg gcctctgtgc
ctctatggag actatcttcc 4380agttgctgct caacagagtt gttggctgag acctgcttgg
gagtctctgc tggcccttca 4440tctgttcagg aacacacaca cacacacact cacacacgca
cacacaatca caatttgcta 4500cagcaacaaa aaagacattg ggctgtggca ttattaatta
aagatgatat ccagtc 4556221151PRTHomo sapiens 22Met Pro Cys Gly Phe
Ser Pro Ser Pro Val Ala His His Leu Val Pro1 5
10 15Gly Pro Pro Asp Thr Pro Ala Gln Gln Leu Arg
Cys Gly Trp Thr Val 20 25
30Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro
35 40 45Pro Gly Ala Arg Thr Ala Glu Gly
Pro Ile Met Val Leu Ala Gly Pro 50 55
60Leu Ala Val Ser Leu Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His65
70 75 80Leu Ser Ser Ser Gln
Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln 85
90 95Leu Cys Ala Leu Ser Lys His Pro Thr Val Ala
Phe Glu Asp Leu Gln 100 105
110Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln
115 120 125Leu Ala Leu Asp Pro Ser Gly
Asn Gln Leu Ile Val Gly Ala Arg Asn 130 135
140Tyr Leu Phe Arg Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala
Thr145 150 155 160Glu Trp
Ala Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly
165 170 175Lys Thr Glu Glu Glu Cys Gln
Asn Tyr Val Arg Val Leu Ile Val Ala 180 185
190Gly Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro
Met Cys 195 200 205Thr Ser Arg Gln
Val Gly Asn Leu Ser Arg Thr Ile Glu Lys Ile Asn 210
215 220Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn
Ser Thr Ala Val225 230 235
240Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile Asp Phe Ser
245 250 255Gly Arg Asp Pro Ala
Ile Tyr Arg Ser Leu Gly Ser Gly Pro Pro Leu 260
265 270Arg Thr Ala Gln Tyr Asn Ser Lys Trp Leu Asn Glu
Pro Asn Phe Val 275 280 285Ala Ala
Tyr Asp Ile Gly Leu Phe Ala Tyr Phe Phe Leu Arg Glu Asn 290
295 300Ala Val Glu His Asp Cys Gly Arg Thr Val Tyr
Ser Arg Val Ala Arg305 310 315
320Val Cys Lys Asn Asp Val Gly Gly Arg Phe Leu Leu Glu Asp Thr Trp
325 330 335Thr Thr Phe Met
Lys Ala Arg Leu Asn Cys Ser Arg Pro Gly Glu Val 340
345 350Pro Phe Tyr Tyr Asn Glu Leu Gln Ser Ala Phe
His Leu Pro Glu Gln 355 360 365Asp
Leu Ile Tyr Gly Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala 370
375 380Ser Ala Val Cys Ala Phe Asn Leu Ser Ala
Ile Ser Gln Ala Phe Asn385 390 395
400Gly Pro Phe Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro
Ile 405 410 415Ala Asn Pro
Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly 420
425 430Pro Asn Glu Asn Leu Thr Glu Arg Ser Leu
Gln Asp Ala Gln Arg Leu 435 440
445Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys Val 450
455 460Thr Gln Asp Ser Val Arg Phe Ser
His Leu Val Val Asp Leu Val Gln465 470
475 480Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly
Thr Glu Ser Gly 485 490
495Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser Leu His Gly Cys
500 505 510Tyr Leu Glu Glu Leu His
Val Leu Pro Pro Gly Arg Arg Glu Pro Leu 515 520
525Arg Ser Leu Arg Ile Leu His Ser Ala Arg Ala Leu Phe Val
Gly Leu 530 535 540Arg Asp Gly Val Leu
Arg Val Pro Leu Glu Arg Cys Ala Ala Tyr Arg545 550
555 560Ser Gln Gly Ala Cys Leu Gly Ala Arg Asp
Pro Tyr Cys Gly Trp Asp 565 570
575Gly Lys Gln Gln Arg Cys Ser Thr Leu Glu Asp Ser Ser Asn Met Ser
580 585 590Leu Trp Thr Gln Asn
Ile Thr Ala Cys Pro Val Arg Asn Val Thr Arg 595
600 605Asp Gly Gly Phe Gly Pro Trp Ser Pro Trp Gln Pro
Cys Glu His Leu 610 615 620Asp Gly Asp
Asn Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp625
630 635 640Ser Pro Arg Pro Arg Cys Gly
Gly Leu Asp Cys Leu Gly Pro Ala Ile 645
650 655His Ile Ala Asn Cys Ser Arg Asn Gly Ala Trp Thr
Pro Trp Ser Ser 660 665 670Trp
Ala Leu Cys Ser Thr Ser Cys Gly Ile Gly Phe Gln Val Arg Gln 675
680 685Arg Ser Cys Ser Asn Pro Ala Pro Arg
His Gly Gly Arg Ile Cys Val 690 695
700Gly Lys Ser Arg Glu Glu Arg Phe Cys Asn Glu Asn Thr Pro Cys Pro705
710 715 720Val Pro Ile Phe
Trp Ala Ser Trp Gly Ser Trp Ser Lys Cys Ser Ser 725
730 735Asn Cys Gly Gly Gly Met Gln Ser Arg Arg
Arg Ala Cys Glu Asn Gly 740 745
750Asn Ser Cys Leu Gly Cys Gly Val Glu Phe Lys Thr Cys Asn Pro Glu
755 760 765Gly Cys Pro Glu Val Arg Arg
Asn Thr Pro Trp Thr Pro Trp Leu Pro 770 775
780Val Asn Val Thr Gln Gly Gly Ala Arg Gln Glu Gln Arg Phe Arg
Phe785 790 795 800Thr Cys
Arg Ala Pro Leu Ala Asp Pro His Gly Leu Gln Phe Gly Arg
805 810 815Arg Arg Thr Glu Thr Arg Thr
Cys Pro Ala Asp Gly Ser Gly Ser Cys 820 825
830Asp Thr Asp Ala Leu Val Glu Val Leu Leu Arg Ser Gly Ser
Thr Ser 835 840 845Pro His Thr Val
Ser Gly Gly Trp Ala Ala Trp Gly Pro Trp Ser Ser 850
855 860Cys Ser Arg Asp Cys Glu Leu Gly Phe Arg Val Arg
Lys Arg Thr Cys865 870 875
880Thr Asn Pro Glu Pro Arg Asn Gly Gly Leu Pro Cys Val Gly Asp Ala
885 890 895Ala Glu Tyr Gln Asp
Cys Asn Pro Gln Ala Cys Pro Val Arg Gly Ala 900
905 910Trp Ser Cys Trp Thr Ser Trp Ser Pro Cys Ser Ala
Ser Cys Gly Gly 915 920 925Gly His
Tyr Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pro Ser Pro 930
935 940Gly Glu Asp Ile Cys Leu Gly Leu His Thr Glu
Glu Ala Leu Cys Ala945 950 955
960Thr Gln Ala Cys Pro Glu Gly Trp Ser Pro Trp Ser Glu Trp Ser Lys
965 970 975Cys Thr Asp Asp
Gly Ala Gln Ser Arg Ser Arg His Cys Glu Glu Leu 980
985 990Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Ser
Ser Gln Ser Arg Pro 995 1000
1005Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu Pro Ala Ser Ser Met
1010 1015 1020Glu Glu Ala Thr Asp Cys
Ala Gly Phe Asn Leu Ile His Leu Val 1025 1030
1035Ala Thr Gly Ile Ser Cys Phe Leu Gly Ser Gly Leu Leu Thr
Leu 1040 1045 1050Ala Val Tyr Leu Ser
Cys Gln His Cys Gln Arg Gln Ser Gln Glu 1055 1060
1065Ser Thr Leu Val His Pro Ala Thr Pro Asn His Leu His
Tyr Lys 1070 1075 1080Gly Gly Gly Thr
Pro Lys Asn Glu Lys Tyr Thr Pro Met Glu Phe 1085
1090 1095Lys Thr Leu Asn Lys Asn Asn Leu Ile Pro Asp
Asp Arg Ala Asn 1100 1105 1110Phe Tyr
Pro Leu Gln Gln Thr Asn Val Tyr Thr Thr Thr Tyr Tyr 1115
1120 1125Pro Ser Pro Leu Asn Lys His Ser Phe Arg
Pro Glu Ala Ser Pro 1130 1135 1140Gly
Gln Arg Cys Phe Pro Asn Ser 1145
11502321DNAArtificial SequenceOligonucleotide 23tgcagcacgt cctgtggcat c
212421DNAArtificial
SequenceOligonucleotide 24gttgcacgtc ttgaactcca c
21251299DNAHomo sapiens 25atgaaattca agctgcttgc
tgagtcctat tgccggctgc tgggagccag gagagccctg 60aggagtagtc actcagtagc
agctgacgcg tgggtccacc atgaactgga gtatctttga 120gggactcctg agtggggtca
acaagtactc cacagccttt gggcgcatct ggctgtctct 180ggtcttcatc ttccgcgtgc
tggtgtacct ggtgacggcc gagcgtgtgt ggagtgatga 240ccacaaggac ttcgactgca
atactcgcca gcccggctgc tccaacgtct gctttgatga 300gttcttccct gtgtcccatg
tgcgcctctg ggccctgcag cttatcctgg tgacatgccc 360ctcactgctc gtggtcatgc
acgtggccta ccgggaggtt caggagaaga ggcaccgaga 420agcccatggg gagaacagtg
ggcgcctcta cctgaacccc ggcaagaagc ggggtgggct 480ctggtggaca tatgtctgca
gcctagtgtt caaggcgagc gtggacatcg cctttctcta 540tgtgttccac tcattctacc
ccaaatatat cctccctcct gtggtcaagt gccacgcaga 600tccatgtccc aatatagtgg
actgcttcat ctccaagccc tcagagaaga acattttcac 660cctcttcatg gtggccacag
ctgccatctg catcctgctc aacctcgtgg agctcatcta 720cctggtgagc aagagatgcc
acgagtgcct ggcagcaagg aaagctcaag ccatgtgcac 780aggtcatcac ccccacggta
ccacctcttc ctgcaaacaa gacgacctcc tttcgggtga 840cctcatcttt ctgggctcag
acagtcatcc tcctctctta ccagaccgcc cccgagacca 900tgtgaagaaa accatcttgt
gaggggctgc ctggactggt ctggcaggtt gggcctggat 960ggggaggctc tagcatctct
cataggtgca acctgagagt gggggagcta agccatgagg 1020taggggcagg caagagagag
gattcagacg ctctgggagc cagttcctag tcctcaactc 1080cagccacctg ccccagctcg
acggcactgg gccagttccc cctctgctct gcagctcggt 1140ttccttttct agaatggaaa
tagtgagggc caatgcccag ggttggaggg aggagggcgt 1200tcatagaaga acacacatgc
gggcaccttc atcgtgtgtg gcccactgtc agaacttaat 1260aaaagtcaac tcatttgctg
gaaaaaaaaa aaaaaaaaa 129926273PRTHomo sapiens
26Met Asn Trp Ser Ile Phe Glu Gly Leu Leu Ser Gly Val Asn Lys Tyr1
5 10 15Ser Thr Ala Phe Gly Arg
Ile Trp Leu Ser Leu Val Phe Ile Phe Arg 20 25
30Val Leu Val Tyr Leu Val Thr Ala Glu Arg Val Trp Ser
Asp Asp His 35 40 45Lys Asp Phe
Asp Cys Asn Thr Arg Gln Pro Gly Cys Ser Asn Val Cys 50
55 60Phe Asp Glu Phe Phe Pro Val Ser His Val Arg Leu
Trp Ala Leu Gln65 70 75
80Leu Ile Leu Val Thr Cys Pro Ser Leu Leu Val Val Met His Val Ala
85 90 95Tyr Arg Glu Val Gln Glu
Lys Arg His Arg Glu Ala His Gly Glu Asn 100
105 110Ser Gly Arg Leu Tyr Leu Asn Pro Gly Lys Lys Arg
Gly Gly Leu Trp 115 120 125Trp Thr
Tyr Val Cys Ser Leu Val Phe Lys Ala Ser Val Asp Ile Ala 130
135 140Phe Leu Tyr Val Phe His Ser Phe Tyr Pro Lys
Tyr Ile Leu Pro Pro145 150 155
160Val Val Lys Cys His Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe
165 170 175Ile Ser Lys Pro
Ser Glu Lys Asn Ile Phe Thr Leu Phe Met Val Ala 180
185 190Thr Ala Ala Ile Cys Ile Leu Leu Asn Leu Val
Glu Leu Ile Tyr Leu 195 200 205Val
Ser Lys Arg Cys His Glu Cys Leu Ala Ala Arg Lys Ala Gln Ala 210
215 220Met Cys Thr Gly His His Pro His Gly Thr
Thr Ser Ser Cys Lys Gln225 230 235
240Asp Asp Leu Leu Ser Gly Asp Leu Ile Phe Leu Gly Ser Asp Ser
His 245 250 255Pro Pro Leu
Leu Pro Asp Arg Pro Arg Asp His Val Lys Lys Thr Ile 260
265 270Leu2722DNAArtificial
SequenceOligonucleotide 27ggagtagtca ctcagtagca gc
222819DNAArtificial SequenceOligonucleotide
28gaactcatca aagcagacg
19291528DNAHomo sapiens 29ggaaggcaca ggcctgagaa gtctgcggct gagctgggag
caaatccccc accccctacc 60tgggggacag ggcaagtgag acctggtgag ggtggctcag
caggaaggga aggagaggtg 120tctgtgcgtc ctgcacccac atctttctct gtcccctcct
tgccctgtct ggaggctgct 180agactcctat cttctgaatt ctatagtgcc tgggtctcag
cgcagtgccg atggtggccc 240gtccttgtgg ttcctctcta cctggggaaa taaggtgcag
cggccatggc tacagcaaga 300cccccctgga tgtgggtgct ctgtgctctg atcacagcct
tgcttctggg ggtcacagag 360catgttctcg ccaacaatga tgtttcctgt gaccacccct
ctaacaccgt gccctctggg 420agcaaccagg acctgggagc tggggccggg gaagacgccc
ggtcggatga cagcagcagc 480cgcatcatca atggatccga ctgcgatatg cacacccagc
cgtggcaggc cgcgctgttg 540ctaaggccca accagctcta ctgcggggcg gtgttggtgc
atccacagtg gctgctcacg 600gccgcccact gcaggaagaa agttttcaga gtccgtctcg
gccactactc cctgtcacca 660gtttatgaat ctgggcagca gatgttccag ggggtcaaat
ccatccccca ccctggctac 720tcccaccctg gccactctaa cgacctcatg ctcatcaaac
tgaacagaag aattcgtccc 780actaaagatg tcagacccat caacgtctcc tctcattgtc
cctctgctgg gacaaagtgc 840ttggtgtctg gctgggggac aaccaagagc ccccaagtgc
acttccctaa ggtcctccag 900tgcttgaata tcagcgtgct aagtcagaaa aggtgcgagg
atgcttaccc gagacagata 960gatgacacca tgttctgcgc cggtgacaaa gcaggtagag
actcctgcca gggtgattct 1020ggggggcctg tggtctgcaa tggctccctg cagggactcg
tgtcctgggg agattaccct 1080tgtgcccggc ccaacagacc gggtgtctac acgaacctct
gcaagttcac caagtggatc 1140caggaaacca tccaggccaa ctcctgagtc atcccaggac
tcagcacacc ggcatcccca 1200cctgctgcag ggacagccct gacactcctt tcagaccctc
attccttccc agagatgttg 1260agaatgttca tctctccagc ccctgacccc atgtctcctg
gactcagggt ctgcttcccc 1320cacattgggc tgaccgtgtc tctctagttg aaccctggga
acaatttcca aaactgtcca 1380gggcgggggt tgcgtctcaa tctccctggg gcactttcat
cctcaagctc agggcccatc 1440ccttctctgc agctctgacc caaatttagt cccagaaata
aactgagaag tggaaaaaaa 1500aaaaaaaaaa aaaaaaaaaa aaaaaaaa
152830293PRTHomo sapiens 30Met Ala Thr Ala Arg Pro
Pro Trp Met Trp Val Leu Cys Ala Leu Ile1 5
10 15Thr Ala Leu Leu Leu Gly Val Thr Glu His Val Leu
Ala Asn Asn Asp 20 25 30Val
Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln 35
40 45Asp Leu Gly Ala Gly Ala Gly Glu Asp
Ala Arg Ser Asp Asp Ser Ser 50 55
60Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met His Thr Gln Pro Trp65
70 75 80Gln Ala Ala Leu Leu
Leu Arg Pro Asn Gln Leu Tyr Cys Gly Ala Val 85
90 95Leu Val His Pro Gln Trp Leu Leu Thr Ala Ala
His Cys Arg Lys Lys 100 105
110Val Phe Arg Val Arg Leu Gly His Tyr Ser Leu Ser Pro Val Tyr Glu
115 120 125Ser Gly Gln Gln Met Phe Gln
Gly Val Lys Ser Ile Pro His Pro Gly 130 135
140Tyr Ser His Pro Gly His Ser Asn Asp Leu Met Leu Ile Lys Leu
Asn145 150 155 160Arg Arg
Ile Arg Pro Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser
165 170 175His Cys Pro Ser Ala Gly Thr
Lys Cys Leu Val Ser Gly Trp Gly Thr 180 185
190Thr Lys Ser Pro Gln Val His Phe Pro Lys Val Leu Gln Cys
Leu Asn 195 200 205Ile Ser Val Leu
Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln 210
215 220Ile Asp Asp Thr Met Phe Cys Ala Gly Asp Lys Ala
Gly Arg Asp Ser225 230 235
240Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu Gln
245 250 255Gly Leu Val Ser Trp
Gly Asp Tyr Pro Cys Ala Arg Pro Asn Arg Pro 260
265 270Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp
Ile Gln Glu Thr 275 280 285Ile Gln
Ala Asn Ser 2903119DNAArtificial SequenceOligonucleotide 31cagaaaaggt
gcgaggatg
193221DNAArtificial SequenceOligonucleotide 32ctgggatgac tcaggagttg g
2133636DNAHomo sapiens
33atgacagaag cagcatcgct tgtccctaag aggccaagga ggctcagagg cagccacaag
60ctgcgagttc tggcatggcc agtggtcgtg gtggtgaact ttgtttggca gtgcaacggc
120agcattgctc acaccttcct ggagctaagc ttcgcctgcc ctggaggaag gtacgcaggc
180agtcgcccag ccccggttgc agggatggac cgcgaccagc agagggcaga aagtgcctgt
240gtcccccatt ctcgatcccg gggccccaac ctcccatcgg ctcagtcccc cgcccaatct
300ctgccaggcc cggagctttc ccagacccct cacccacact ccaggctcac tccccgttcc
360tgggcctggg ccccccttgc acgagtccag ggccagccgt cctcgccttc tgcccgcccc
420cgtccttcgt tcctgggagc cggccctctc cgcggaccaa gcggccccga gcaggcgccg
480ccgcccgggg gactccgact cagcccccgc gacctacctc ggccgacagt cgggggttcc
540caagcggcca ctcccggccg gcgccgtccc ctggcggagc cgccgcgctc cctgccgtcc
600gcgcagtctg gcctcgctcg gggccactcc tcgtag
63634211PRTHomo sapiens 34Met Thr Glu Ala Ala Ser Leu Val Pro Lys Arg Pro
Arg Arg Leu Arg1 5 10
15Gly Ser His Lys Leu Arg Val Leu Ala Trp Pro Val Val Val Val Val
20 25 30Asn Phe Val Trp Gln Cys Asn
Gly Ser Ile Ala His Thr Phe Leu Glu 35 40
45Leu Ser Phe Ala Cys Pro Gly Gly Arg Tyr Ala Gly Ser Arg Pro
Ala 50 55 60Pro Val Ala Gly Met Asp
Arg Asp Gln Gln Arg Ala Glu Ser Ala Cys65 70
75 80Val Pro His Ser Arg Ser Arg Gly Pro Asn Leu
Pro Ser Ala Gln Ser 85 90
95Pro Ala Gln Ser Leu Pro Gly Pro Glu Leu Ser Gln Thr Pro His Pro
100 105 110His Ser Arg Leu Thr Pro
Arg Ser Trp Ala Trp Ala Pro Leu Ala Arg 115 120
125Val Gln Gly Gln Pro Ser Ser Pro Ser Ala Arg Pro Arg Pro
Ser Phe 130 135 140Leu Gly Ala Gly Pro
Leu Arg Gly Pro Ser Gly Pro Glu Gln Ala Pro145 150
155 160Pro Pro Gly Gly Leu Arg Leu Ser Pro Arg
Asp Leu Pro Arg Pro Thr 165 170
175Val Gly Gly Ser Gln Ala Ala Thr Pro Gly Arg Arg Arg Pro Leu Ala
180 185 190Glu Pro Pro Arg Ser
Leu Pro Ser Ala Gln Ser Gly Leu Ala Arg Gly 195
200 205His Ser Ser 2103521DNAArtificial
SequenceOligonucleotide 35tgctctcact gtggtcctca g
213621DNAArtificial SequenceOligonucleotide
36tttgtaaagc tccagcgcta c
2137969DNAHomo sapiens 37atgaaggact gtaggaacaa tggcaaggat tgtcaaagtg
cccctgcaac acgtaggcac 60ctcttctctg aagctgccct gcccccttat cgtctttccc
aagggcactt cctcacagcc 120ctggggggcc tcatggcggt gccattcatc ctggccaagg
acctgtgcct gcagcaggac 180cccctgacac agagctacct catcagcacc attttctttg
ctccagcatc tgcatgctcc 240tgcaagctgc ccattcccca gggaggtacg tttgcttttg
tggtaatttc tctggccatg 300ctctcccttc cctcctggaa ttgccctgag tggacactca
gtgccagcca ggtgaacacc 360aactttccag aattcactca gaaatggcag aagaggatcc
aagagggtgc tatcatggtc 420acttcctgtg tccggatgct ggtgggcttc tcaggcctga
ctggctttct catgggtttc 480atctgctcct tggccgttgc tccaactaac tgcctagtgg
ccctgcccct cttggattct 540gcaggcaata atgccgggat ccagtggggg atttctgcca
tgtattgctt cgtgttgcgt 600cttcgcaagg atgagctctg gccatttggt tctccacggc
tgcgtttgcc accatcccca 660ccccgtgatc ggaggcatgt ccccaccccc gtgatcggag
gcatgaccct gtttggggtc 720atcactgccg tggggatctc caatctgcag tacgtggaca
tgaacttgtc caggagcctc 780ttcgcctttg gcttctccat ctactgtggg ctcaccattc
ccaaccgggt gagcaaaaac 840cccgagatgc tccagacagg gattctccag ccggaccagg
ttgttcagat gctgctgacc 900atgggcatgt tcatcagtgg atttctgggt tttcttctag
acaacaccat ccccgagctc 960cttcaataa
96938322PRTHomo sapiens 38Met Lys Asp Cys Arg Asn
Asn Gly Lys Asp Cys Gln Ser Ala Pro Ala1 5
10 15Thr Arg Arg His Leu Phe Ser Glu Ala Ala Leu Pro
Pro Tyr Arg Leu 20 25 30Ser
Gln Gly His Phe Leu Thr Ala Leu Gly Gly Leu Met Ala Val Pro 35
40 45Phe Ile Leu Ala Lys Asp Leu Cys Leu
Gln Gln Asp Pro Leu Thr Gln 50 55
60Ser Tyr Leu Ile Ser Thr Ile Phe Phe Ala Pro Ala Ser Ala Cys Ser65
70 75 80Cys Lys Leu Pro Ile
Pro Gln Gly Gly Thr Phe Ala Phe Val Val Ile 85
90 95Ser Leu Ala Met Leu Ser Leu Pro Ser Trp Asn
Cys Pro Glu Trp Thr 100 105
110Leu Ser Ala Ser Gln Val Asn Thr Asn Phe Pro Glu Phe Thr Gln Lys
115 120 125Trp Gln Lys Arg Ile Gln Glu
Gly Ala Ile Met Val Thr Ser Cys Val 130 135
140Arg Met Leu Val Gly Phe Ser Gly Leu Thr Gly Phe Leu Met Gly
Phe145 150 155 160Ile Cys
Ser Leu Ala Val Ala Pro Thr Asn Cys Leu Val Ala Leu Pro
165 170 175Leu Leu Asp Ser Ala Gly Asn
Asn Ala Gly Ile Gln Trp Gly Ile Ser 180 185
190Ala Met Tyr Cys Phe Val Leu Arg Leu Arg Lys Asp Glu Leu
Trp Pro 195 200 205Phe Gly Ser Pro
Arg Leu Arg Leu Pro Pro Ser Pro Pro Arg Asp Arg 210
215 220Arg His Val Pro Thr Pro Val Ile Gly Gly Met Thr
Leu Phe Gly Val225 230 235
240Ile Thr Ala Val Gly Ile Ser Asn Leu Gln Tyr Val Asp Met Asn Leu
245 250 255Ser Arg Ser Leu Phe
Ala Phe Gly Phe Ser Ile Tyr Cys Gly Leu Thr 260
265 270Ile Pro Asn Arg Val Ser Lys Asn Pro Glu Met Leu
Gln Thr Gly Ile 275 280 285Leu Gln
Pro Asp Gln Val Val Gln Met Leu Leu Thr Met Gly Met Phe 290
295 300Ile Ser Gly Phe Leu Gly Phe Leu Leu Asp Asn
Thr Ile Pro Glu Leu305 310 315
320Leu Gln3920DNAArtificial SequenceOligonucleotide 39atggcggtgc
cattcatcct
204020DNAArtificial SequenceOligonucleotide 40caggagggaa gggagagcat
20411679DNAHomo sapiens
41gaggaggcgc gcgtcgccgc cccgcgtccc gcctgcggcc cgcgcccccg gcgtcaccgc
60ctcctgcccg cctgcccgcc tgcccgcctg cccgcctacc cgcctacccg cctacccgcc
120tacccccctg ccggcctgcc gtccttccac gcggagagcc atggagggag tgagcgcgct
180gctggcccgc tgccccacgg ccggcctggc cggcggcctg ggggtcacgg cgtgcgccgc
240ggccggcgtg ttgctctacc ggatcgcgcg gaggatgaag ccaacgcaca cgatggtcaa
300ctgctggttc tgcaaccagg atacgctggt gccctatggg aaccgcaact gctgggactg
360tccccactgc gagcagtaca acggcttcca ggagaacggc gactacaaca agccgatccc
420cgcccagtac ttggagcacc tgaaccacgt ggtgagcagc gcgcccagcc tgcgcgaccc
480ttcgcagccg cagcagtggg tgagcagcca agtcctgctg tgcaagaggt gcaaccacca
540ccagaccacc aagatcaagc agctggccgc cttcgctccc cgcgaggagg gcaggtatga
600cgaggaggtc gaggtgtacc ggcatcacct ggagcagatg tacaagctgt gccggccgtg
660ccaagcggct gtggagtact acatcaagca ccagaaccgc cagctgcgcg ccctgttgct
720cagccaccag ttcaagcgcc gggaggccga ccagacccac gcacagaact tctcctccgc
780cgtgaagtcc ccggtccagg tcatcctgct ccgtgccctc gccttcctgg cctgcgcctt
840cctactgacc accgcgctgt atggggccag cggacacttc gccccaggca ccactgtgcc
900cctggccctg ccacctggtg gcaatggctc agccacacct gacaatggca ccacccctgg
960ggccgagggc tggcggcagt tgctgggcct actccccgag cacatggcgg agaagctgtg
1020tgaggcctgg gcctttgggc agagccacca gacgggcgtc gtggcactgg gcctactcac
1080ctgcctgctg gcaatgctgc tggctggccg catcaggctc cggaggatcg atgccttctg
1140cacctgcctg tgggccctgc tgctggggct gcacctggct gagcagcacc tgcaggccgc
1200ctcgcctagc tggctagaca cgctcaagtt cagcaccaca tctttgtgct gcctggttgg
1260cttcacggcg gctgtggcca caaggaaggc aacgggccca cggaggttcc ggccccgaag
1320gtcagagaag cagccatgac tgcgggggga ggacacacgg atgctcaggc ccaggctttg
1380ccaggtccga agcgggcccc tctctgtcct gcctcttttc acctgctcac gccctcccac
1440ccccacccta cagccccagg tcctggccca gtccctccac tgcctcgaag agtcagtctg
1500ccctgccttt tcctttcggg caccaccagc catccccgag tgccctgtag ccactcacca
1560ctgctgccac ctctctggcc aatggccctt tcactggcct ggtgactgga atgtgggcag
1620cgcccacaca ggctctggcc catggcttcc tactggcagc tccaggcacc cccctctca
167942392PRTHomo sapiens 42Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys
Pro Thr Ala Gly Leu1 5 10
15Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly Val Leu Leu
20 25 30Tyr Arg Ile Ala Arg Arg Met
Lys Pro Thr His Thr Met Val Asn Cys 35 40
45Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn Arg Asn
Cys 50 55 60Trp Asp Cys Pro His Cys
Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly65 70
75 80Asp Tyr Asn Lys Pro Ile Pro Ala Gln Tyr Leu
Glu His Leu Asn His 85 90
95Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln Pro Gln Gln
100 105 110Trp Val Ser Ser Gln Val
Leu Leu Cys Lys Arg Cys Asn His His Gln 115 120
125Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg Glu
Glu Gly 130 135 140Arg Tyr Asp Glu Glu
Val Glu Val Tyr Arg His His Leu Glu Gln Met145 150
155 160Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala
Val Glu Tyr Tyr Ile Lys 165 170
175His Gln Asn Arg Gln Leu Arg Ala Leu Leu Leu Ser His Gln Phe Lys
180 185 190Arg Arg Glu Ala Asp
Gln Thr His Ala Gln Asn Phe Ser Ser Ala Val 195
200 205Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu
Ala Phe Leu Ala 210 215 220Cys Ala Phe
Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser Gly His Phe225
230 235 240Ala Pro Gly Thr Thr Val Pro
Leu Ala Leu Pro Pro Gly Gly Asn Gly 245
250 255Ser Ala Thr Pro Asp Asn Gly Thr Thr Pro Gly Ala
Glu Gly Trp Arg 260 265 270Gln
Leu Leu Gly Leu Leu Pro Glu His Met Ala Glu Lys Leu Cys Glu 275
280 285Ala Trp Ala Phe Gly Gln Ser His Gln
Thr Gly Val Val Ala Leu Gly 290 295
300Leu Leu Thr Cys Leu Leu Ala Met Leu Leu Ala Gly Arg Ile Arg Leu305
310 315 320Arg Arg Ile Asp
Ala Phe Cys Thr Cys Leu Trp Ala Leu Leu Leu Gly 325
330 335Leu His Leu Ala Glu Gln His Leu Gln Ala
Ala Ser Pro Ser Trp Leu 340 345
350Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu Val Gly Phe
355 360 365Thr Ala Ala Val Ala Thr Arg
Lys Ala Thr Gly Pro Arg Arg Phe Arg 370 375
380Pro Arg Arg Ser Glu Lys Gln Pro385
3904323DNAArtificial SequenceOligonucleotide 43ctacatcaag caccagaacc gcc
234419DNAArtificial
SequenceOligonucleotide 44ggacttcacg gcggaggag
1945727DNAHomo sapiens 45aggcagttgc gggttgcagg
agttcaggaa aggaggtggg actagagtca acctggaata 60gctctacagt aacaatggca
gcctttttgt tgctgggaca tccatacagg caacttagct 120ggtgaaagga ctctggattg
gttggcagtc tgcttttttt tttccaaggt gatcacttta 180ctgtagaaga aatgaggtta
acagaaaaga gtgagggaga acaacaactc aagcccaaca 240actctaatgc acccaatgaa
gatcaagaag aagaaatcca acagtcagaa cagcatactc 300cagcaaggca gcgaacacaa
agagcagaca cacagccatc cagatgtcga ttgccttcac 360gtaggacacc tacaacatcc
agcgacagaa cgatcaacct tcttgaagtc cttccgtggc 420ctactgagtg gattttcaac
ccctatcgat tgcctgctct ttttgagctt tatcctgaat 480ttcttctggt gtttaaagaa
gccttccatg acatatccca ttgtctgaaa gcccagatgg 540aaaagatcgg actgcccatc
atactccacc tcttcgcact ctccaccctc tacttctaca 600agtttttcct tcctacaatt
ctttcccttt ctttctttat tcttcttgta cttctgcttc 660tgctttttat tattgtcttc
attctgatct tcttctgatt cttttgtttc aataaacagc 720aatgagc
72746168PRTHomo sapiens
46Met Arg Leu Thr Glu Lys Ser Glu Gly Glu Gln Gln Leu Lys Pro Asn1
5 10 15Asn Ser Asn Ala Pro Asn
Glu Asp Gln Glu Glu Glu Ile Gln Gln Ser 20 25
30Glu Gln His Thr Pro Ala Arg Gln Arg Thr Gln Arg Ala
Asp Thr Gln 35 40 45Pro Ser Arg
Cys Arg Leu Pro Ser Arg Arg Thr Pro Thr Thr Ser Ser 50
55 60Asp Arg Thr Ile Asn Leu Leu Glu Val Leu Pro Trp
Pro Thr Glu Trp65 70 75
80Ile Phe Asn Pro Tyr Arg Leu Pro Ala Leu Phe Glu Leu Tyr Pro Glu
85 90 95Phe Leu Leu Val Phe Lys
Glu Ala Phe His Asp Ile Ser His Cys Leu 100
105 110Lys Ala Gln Met Glu Lys Ile Gly Leu Pro Ile Ile
Leu His Leu Phe 115 120 125Ala Leu
Ser Thr Leu Tyr Phe Tyr Lys Phe Phe Leu Pro Thr Ile Leu 130
135 140Ser Leu Ser Phe Phe Ile Leu Leu Val Leu Leu
Leu Leu Leu Phe Ile145 150 155
160Ile Val Phe Ile Leu Ile Phe Phe
1654720DNAArtificial SequenceOligonucleotide 47gctggtgaaa ggactctgga
204820DNAArtificial
SequenceOligonucleotide 48tcgctggatg ttgtaggtgt
2049950DNAHomo sapiens 49gcgagcccga gcaggcagac
gcgcggccgg cggtctgggg gcgcgccgcc tcccggtccc 60caaaatgtga agcggggagg
gcggagacgc agagacggcc cggccgggcg ccctcgccgc 120cctccggcag ccgcgccgct
ccctccgctg cacgcccagg cctgagcagc gaggccaccg 180ggccgcgcgc tcccagcttc
gctcggacgc ggcttcggcc cgcagagggt tcgtggcccg 240gacgcggcga gagctgggcc
caggacggtg cgtccggcct cgcccgcggc tgctcgcacc 300aacaagtttg aacaatgatc
accgtcaacc ccgatgggaa gataatggtc agaagatgcc 360tggtcaccct gagacccttt
cggctttttg tcctgggcat cggcttcttc actctctgct 420tcctgatgac gtctctggga
ggccagttct cggcccggcg cctgggggac tcgccattca 480ccatccgcac agaagtgatg
gggggccccg agtcccgcgg cgtcctgcgc aagatgagcg 540acctgctgga gctgatggtg
aagcgcatgg acgcactggc caggctggag aacagcagtg 600agctgcaccg ggccggcggc
gacctgcact ttcccgcaga caggatgccc cctggggccg 660gcctcatgga gcggatccag
gctattgccc agaacgtctc cgacatcgct gtgaaggtgg 720accagatcct gcgccacagt
ctgctcctgc acagcaaggt gtcagaaggc cggcgggacc 780agtgtgaggc acccagtgac
cccaagttcc ctgactgctc agggaaggtg gcagtggatg 840cgtgcccgct ggacctctga
cccctgctac gccttctttg gggtggacgg caccgagtgc 900tccttcctca tctacctcag
tgaggtcgag tggttctgcc ccccgctgcc 95050181PRTHomo sapiens
50Met Ile Thr Val Asn Pro Asp Gly Lys Ile Met Val Arg Arg Cys Leu1
5 10 15Val Thr Leu Arg Pro Phe
Arg Leu Phe Val Leu Gly Ile Gly Phe Phe 20 25
30Thr Leu Cys Phe Leu Met Thr Ser Leu Gly Gly Gln Phe
Ser Ala Arg 35 40 45Arg Leu Gly
Asp Ser Pro Phe Thr Ile Arg Thr Glu Val Met Gly Gly 50
55 60Pro Glu Ser Arg Gly Val Leu Arg Lys Met Ser Asp
Leu Leu Glu Leu65 70 75
80Met Val Lys Arg Met Asp Ala Leu Ala Arg Leu Glu Asn Ser Ser Glu
85 90 95Leu His Arg Ala Gly Gly
Asp Leu His Phe Pro Ala Asp Arg Met Pro 100
105 110Pro Gly Ala Gly Leu Met Glu Arg Ile Gln Ala Ile
Ala Gln Asn Val 115 120 125Ser Asp
Ile Ala Val Lys Val Asp Gln Ile Leu Arg His Ser Leu Leu 130
135 140Leu His Ser Lys Val Ser Glu Gly Arg Arg Asp
Gln Cys Glu Ala Pro145 150 155
160Ser Asp Pro Lys Phe Pro Asp Cys Ser Gly Lys Val Ala Val Asp Ala
165 170 175Cys Pro Leu Asp
Leu 1805121DNAArtificial SequenceOligonucleotide 51agatgcctgg
tcaccctgag a
215220DNAArtificial SequenceOligonucleotide 52ggccccccat cacttctgtg
2053396DNAHomo sapiens
53ctgcaagacc gcatcgccac gttcttcttc ccaaaaggca tgatgctcac cacggctgcg
60ctgatgctct tcttcttaca cctgggcatc ttcatcagag acgtgcacaa cttctgcatc
120acctaccact atgaccacat gagctttcac tacacggtcg tcctgatgtt ctcccaggtg
180atcagcatct gctgggctgc catggggtca ctctatgctg agatgacaga aaacaatgct
240caacggagcc atgttcttca accgcctgtc cttggagttt ctggccatcg agtaccggga
300ggagcaccac tgaggcctgg ggagtcggaa cagggctaag gagggggaag caaaaggctg
360cctcgggtgt tttaataaag ttgttgttta tttcca
3965499PRTHomo sapiens 54Met Met Leu Thr Thr Ala Ala Leu Met Leu Phe Phe
Leu His Leu Gly1 5 10
15Ile Phe Ile Arg Asp Val His Asn Phe Cys Ile Thr Tyr His Tyr Asp
20 25 30His Met Ser Phe His Tyr Thr
Val Val Leu Met Phe Ser Gln Val Ile 35 40
45Ser Ile Cys Trp Ala Ala Met Gly Ser Leu Tyr Ala Glu Met Thr
Glu 50 55 60Asn Asn Ala Gln Arg Ser
His Val Leu Gln Pro Pro Val Leu Gly Val65 70
75 80Ser Gly His Arg Val Pro Gly Gly Ala Pro Leu
Arg Pro Gly Glu Ser 85 90
95Glu Gln Gly5522DNAArtificial SequenceOligonucleotide 55ccgttgagca
ttgttttctg tc
225622DNAArtificial SequenceOligonucleotide 56tgctcttctt cttacacctg gg
2257539DNAHomo sapiens
57ggtgccttaa tgtttgtggc atggatgact actgttagca taggtgtact ggttgcccgg
60ttcttcaagc cagtttggtc aaaagctttc ttgcttggtg aagcagcttg gtttcaggtg
120catcggatgc tcatgttcac cacaactgtc ctcacctgca ttgcttttgt tatgccgttt
180atatacaggg gaggctggag taggcatgca ggttaccacc catacctcgg ctgtatagtg
240atgactttgg cagttcttca gcctcttctg gcagtcttca ggccaccttt acatgaccca
300agaaggcaaa tgtttaactg gactcattgg agtatgggaa cagctgctag aataatagca
360gacttaaaac aatctggaaa atgtgggtgc atctctttta aggattggta gattacgcag
420ccataaaaaa gaatgaagtc atgtcttttg tagcaacatg gatgctgctg gaagtgatta
480tcctacatga attaatgcag aaacagaaaa tcacatacca catgttctca cttataaat
53958133PRTHomo sapiens 58Met Phe Val Ala Trp Met Thr Thr Val Ser Ile Gly
Val Leu Val Ala1 5 10
15Arg Phe Phe Lys Pro Val Trp Ser Lys Ala Phe Leu Leu Gly Glu Ala
20 25 30Ala Trp Phe Gln Val His Arg
Met Leu Met Phe Thr Thr Thr Val Leu 35 40
45Thr Cys Ile Ala Phe Val Met Pro Phe Ile Tyr Arg Gly Gly Trp
Ser 50 55 60Arg His Ala Gly Tyr His
Pro Tyr Leu Gly Cys Ile Val Met Thr Leu65 70
75 80Ala Val Leu Gln Pro Leu Leu Ala Val Phe Arg
Pro Pro Leu His Asp 85 90
95Pro Arg Arg Gln Met Phe Asn Trp Thr His Trp Ser Met Gly Thr Ala
100 105 110Ala Arg Ile Ile Ala Asp
Leu Lys Gln Ser Gly Lys Cys Gly Cys Ile 115 120
125Ser Phe Lys Asp Trp 1305920DNAArtificial
SequenceOligonucleotide 59ttgtggcatg gatgactact
206020DNAArtificial SequenceOligonucleotide
60catcactata cagccgaggt
20613317DNAHomo sapiens 61acactgcgtc cccatcagct caaagaatac gcatggggac
aagcctgggg ggccgtctga 60gagtccccca accctggatc cccacggcag cccccactgt
tgggtttttc agtggctggt 120gtgccctggg ctggtcacct ctgcattttg ctctgctggg
agtttgctcc tggccctcca 180acagcgcctc ctctgtgagg aggaactcct gttcccgtgg
ctctgctggc tctggaggct 240ggagttcccg tgctgggccc tcctgggcgg gttctctctt
gctgccgcca gtaccctgcc 300cctctcgtcc tcctgggtag cctgggagga atggcagaag
aaagcagtga agccaggtag 360cagtagcccg gccaccccac caggctctgc tgtaggctgg
gctctcaagg cagctgctcc 420aggaggggcc ccctaggaag ggactgccac actcctggga
gcgttcctgg ccccctccag 480tgcaaatgac cctgggcccc aaggctccga acacccgccc
ctctgctcca ggctagcttg 540gctgagcccg atgcttctca aggtgaggag ggcgtccttg
aagcctccgg ccaccccaca 600ccaaggagct ttcagggcag gaaatgtgat cgggcagctg
atttatctcc ttacctggtc 660tttgttcaca gcctggctcc ggccccccac cctgctgcag
ggcccgagga cgtctcccca 720ggggtcccca cctcggtctc cttgggggga ctgtgctgag
cccagctgcc tctgtgagat 780gaagataaga aggcgaagac atgaagggcc tgcctggggg
cagtctggct ttcttgcagg 840ggggctgcac ctggttccct cctccctctc gctggcagcc
tgcggggtgg tgaggatgaa 900ggggctgtgg ggccggggtg cagggattag agggaggtga
ctgccatctc ttcctcctca 960tcgtgttttt cacctcttaa gtcaacttta gattctcgga
ctcagagttc tctcctgacg 1020gtggcagggt cctcagatca ccggtgcaga cagggccaga
cagggccaat gtggggaccc 1080actcagcctg tggcctctgc aggagggagg tcggaggcct
cagcagccac cccggccacc 1140tcctgaaaca gtgaatgtcc ttcattttca gctggcaagc
tctgatctta caacgaggta 1200tggaactgtt cagaaaactt tcagcagacg ttcgagggaa
aacagctcag cttcccatgc 1260cccccacctc tgccaggagc gaccccatat cccccaaaca
gaattctggt agcccgggac 1320cacagggtct tcctgtgcct cccctgccag ctctgcatga
ctttgtcacg tacttgagtg 1380ctggctgaga tgatgctacc gctaccaaac aggtgggagg
ccagccccag ccccagcccc 1440agccccaccg gggccggagc tcccggtgaa gaagcgtctg
cctggttcgc aggtgtccag 1500gacacaccag tcgcctgact cccggtcagg caaacgcaca
catcaagttc ttgcaagcca 1560gggctctgct ggcatcttca agaggaggga gggtcctggc
cctgaccaca gggctccctt 1620aacaggagga gttacaaact cggcttcctg gggggcatcg
tggggtgtgc tgcctgccag 1680gagaccccac tcctggtcac ggggttccgt cccacacagt
ggcaggagcc atgcatgatt 1740cttggctgaa gaagaacccg cacagctatg tggtctgccg
cccagcaggg aagcccccac 1800atcagcccta agggaacttc ccaaagctca gcaggtgcct
cttcctgcca tccgctaggt 1860cttctcttgg cccctctccc aagccttgac ccatagctga
cacttctaga aaagtcttta 1920ccgagaaacg gaccggctgc atgggtggtg aggagggcag
ttgcccaggg cctggcatca 1980gaggggcctg tggctaaggc tgtcctgaaa ttcttaatca
ttttacctct gaacttgcgg 2040gtttttgttg ttgttttttg aggcagagtc ttgctctgtc
acccaggctg gagtgcagtg 2100gtgcgatctt ggcttactgc aacttccgac tcccaggttc
aagcgattct cctgcctcag 2160cctcccgagt agctgggact acagaagtgc accaccacac
ccggttaatt tttgtatttt 2220tagtagagac ggggtttcac catgttggcc aggctgatct
caaactcctg atacacccgc 2280ctcggcctct caaagcactg ggattacagg tgtgagccac
cgcgcccggc ccttttcctg 2340cctcctaaac aagtggccag gaattctcct cctgcaccgg
gtccccagat tgtgtggcaa 2400gccctgcaga tggcacaggg gactggttct tcctcgtgga
aagccaggcc cggacacctc 2460tcgggcatcg cctgttgggg tgaccctccc acacccagcc
tggaacccta gccagctcag 2520cctccgtccg ctgagaaatc aaggtgacct tgtggctcag
ccctcagggg gcactcacca 2580cacaagagtt ccctttcaag accccctgtt cggggctggg
gcccccagga acggttgggg 2640caccttcctg gggccctgtt tttccccagg agcggggcct
gggagctgag ggcgtctcat 2700ctccccacag gcatctgctg ctgctcctgg ctgccactca
cccctgtgag atgctgaggg 2760caggatacct gtctgtgcgg ggcgtgggaa aaagggagaa
agcctggcag agggttgggg 2820gctaagaagc aaagggcgtg gaagggccac cgtgcacttt
tgaagtctct acttgccagt 2880ggccacccca cctctccctg ccctcatcca aggacggaca
ggcctggcag gtggaccgga 2940gctgtggggc agaagcatcc caggcctggc ctcagaggag
ggaggccatg gtgaaagtgg 3000aggctgtctg catccacctc cccagccttt gtcaccggga
cctcagcctg accccaggcc 3060caccccaggc tgctcaccga ggtgggtacc ctgcccaccg
ccagctcaga tgcggtgtgt 3120ggactccctt ctctctgggg gtgagcggga gttccctccc
ctccacatca ggagctgggg 3180gagagctgga gggccctggg atccccttga ccctggtcat
cagccccagc cctgacaggc 3240cctgcgtgtg ccatgtgtgg cctgggtttg gagctcagca
ccctgcggga attctattaa 3300atctccgatt ttatctg
331762129PRTHomo sapiens 62Met Leu Leu Lys Val Arg
Arg Ala Ser Leu Lys Pro Pro Ala Thr Pro1 5
10 15His Gln Gly Ala Phe Arg Ala Gly Asn Val Ile Gly
Gln Leu Ile Tyr 20 25 30Leu
Leu Thr Trp Ser Leu Phe Thr Ala Trp Leu Arg Pro Pro Thr Leu 35
40 45Leu Gln Gly Pro Arg Thr Ser Pro Gln
Gly Ser Pro Pro Arg Ser Pro 50 55
60Trp Gly Asp Cys Ala Glu Pro Ser Cys Leu Cys Glu Met Lys Ile Arg65
70 75 80Arg Arg Arg His Glu
Gly Pro Ala Trp Gly Gln Ser Gly Phe Leu Ala 85
90 95Gly Gly Leu His Leu Val Pro Ser Ser Leu Ser
Leu Ala Ala Cys Gly 100 105
110Val Val Arg Met Lys Gly Leu Trp Gly Arg Gly Ala Gly Ile Arg Gly
115 120 125Arg 6320DNAArtificial
SequenceOligonucleotide 63ccccaaggct ccgaacaccc
206420DNAArtificial SequenceOligonucleotide
64cccgatcaca tttcctgccc
20653338DNAHomo sapiens 65gtaggaagta tatgggtagg gtcagataat atttctgaaa
ggaaacaccc aggagtatcc 60caagttaatg acattttaga ccctccaaca accacacaag
tcagctcctt ggaaagactc 120tggttacttt tacaaagcaa accaggagaa ttttcataat
acctgataac tatgtaagac 180ttggaatatt tgaatttcta ggacatggga ttgtgcaacc
attcatttta tcccataata 240ttgaaatctc cctcagataa gcctctcggc acctaataga
gttttcttag tgaagggcta 300cctttctgtg ggtaacaggg aagggcaaaa taaacaacca
aataatatca taatcacgag 360tgtcaatgat tgctggaaca ggtgggggtt ggtcattaaa
ttctagttgt ttccactatt 420ccagtaggag ttgtgtgaat gttagcaaaa gaccagggtg
ttacgatctg actgtgtttc 480atcaattgcc ttgacttttg gatgaaatgc gatttgagga
catatcatta ttagatttgc 540cacagattcc aatttttttc tctaatatga ggctaaccat
gatgtccttt cccaggaagg 600acaatctctc ctttatcagg gaaaaatcag taggggcttc
ctcaattttc tccttcatcc 660ccaccacaga gtcatagagg tcaagtcctt ttcttgtgaa
acctaaaaaa tgcaaattcc 720aaggttgctg ctatggtgta ctaattttgt cacagtgaca
tgccctgtca cagggcgtat 780gtgttctgtt atacagttga aatattggtt atactattga
aatgtttttg tactattgaa 840atcccaaata aacttaattc taaaagaagc atgacctcaa
cagcctcaca cctacttata 900tcttgtagtt ctttctgtct aatgctggca atctaagcat
gttccaggca agcaacattc 960aatagcgttt tactgctcca ataagttggt tcaattagca
atgtcaaagg cagtcactaa 1020atagatagtg tataaccttc atacaatctc gtattatttt
ccactaatta ctatagaaaa 1080atcgatgaag tttcattaca atggaataac ttcaatcaca
cttcaaaaac tacatacgga 1140agatagccac aacttgctgc tctcaaaaaa cacagagatg
gcatctttac tttgtttcaa 1200atccccaacc ctggtggcgg tccaaagtta tggcagttat
aaccccttat gtcattataa 1260ggaggaaggg taaatattaa gtcaacatcc tttaaagcta
agagtatgac tacagtgggg 1320tggaatttgg gacttcatgc ccactccctg tttctgttct
attttacctt tcctgacctc 1380taagccaaca ggagaggggg aagggccaca cttttgtgac
ccttgttaaa gaattgtgag 1440tttaggaaac aaagatggac ttctgagggg gtagttgagg
atgggctgaa ggcacagaag 1500aaaccagctg gtgtgcccct ctccccacta gcagaccctt
cttcctcatt ggttcagggc 1560aaacaatccc ccaaaaattc aagaaaacta acttagagtt
attttctgtt atttctcttt 1620tccttgatct ggagccaatg cagaaagaaa tctaaaggtg
aaggaaaggc agcgttcagc 1680actgagcaag tccatgttgg agaaagttca cagggaattg
gaaatccttg tcttcgtggt 1740tcctggctca gcaggacccc tgtggggcct ctccctctct
tgggaaagag attgctctag 1800aaggtttact acaccagtga ggagaagatg agcgcaaggg
ggattggccg gctgagggcg 1860aaatcaagac tggagccaag tgcgctgagc tctcacatga
ggtcctttgc tcctgttccc 1920tggaggcata agtggctggg gtagagagaa gcaggggtat
ttcttctgtc ctttcttgct 1980tagggattgg gggtggaaat ctccccgcat ctaaggaaat
ttgaaaagac aaactatggc 2040tgcttcttca agcaaaccac ctcaccacac tatccagggg
ataaaacccg cttgctgctg 2100ctaaattatg ccaagagaga acattctgat atttctcctc
aattctaggc atgacagcgt 2160gacttggtgc ttaaaggcat ggagttttga gttgcagacc
taggtttgag tgctgaatct 2220actagcttca gggtgttaaa aaagtttctt aatctctcta
aaccttattt ttctcaaaga 2280taaaaaactg ggtgtagttg tgagtatagt gaatgcacat
agtatgtgcc tttggcatgt 2340taattcacta ttattctgga cataatttct cctaagaaaa
aggatgaact aattgcaggg 2400cctagcctaa gctctgagaa gtcattcgtt atagcatttc
agtccatagt aaacaagaag 2460aaatgaggta aagagtttaa accagggaag gcatagctgt
ggtcaccaaa caacctgtta 2520aaggcgagct gtaggcacca aaaaacctat tatggactga
attgtgttcc tcaaattcat 2580atgttgaagt gctaacccca agtaccaaat gtgactgtat
ttggggatag ggtccctgaa 2640gaagtcactc agctggaagg agtcatattg gattaggtgt
tgggaattgg ctggccaagg 2700gagaaatcaa ggctggaacc aagtgctgaa ctctcacatc
aggtcctttg ctcctgttcc 2760ctggacccta atccaatatg actggcatct ttatatgaag
aggaagaggc accagagggt 2820acacacgcag agaaaaggcc atgtgtggac acagtaagat
gacggacatc tgtaagccaa 2880ggagggaaac ctcagaagaa accagccttg cctgcacctt
gatcttggag gtccagtctc 2940cagaactgtg aaaaaaatga actggtgttg tttaaatccc
ccagtcgtgg tattttgtca 3000tggtggccct agaagacaat atacaaccca aaggaatatt
ctttccactt tctccctctt 3060ccactttata gttttttctc cttcgtttct ttctttttct
cttttacttt ccttttcttc 3120tcttctcttt cctctggttt ttaattttaa ttttaatttt
tggccttcct atacctccat 3180ttgcctctcc aggaagctga attccagaca attaatcatt
catctcatca gttcagcaaa 3240gcaaatgccc tcaatggttt cttttgtgat tcgattatta
tgggatcaga atgtatctta 3300ttcctctggg aaaaatgaaa cataaaaatt tcagaaat
333866122PRTHomo sapiens 66Met Asn Trp Cys Cys Leu
Asn Pro Pro Val Val Val Phe Cys His Gly1 5
10 15Gly Pro Arg Arg Gln Tyr Thr Thr Gln Arg Asn Ile
Leu Ser Thr Phe 20 25 30Ser
Leu Phe His Phe Ile Val Phe Ser Pro Ser Phe Leu Ser Phe Ser 35
40 45Leu Leu Leu Ser Phe Ser Ser Leu Leu
Phe Pro Leu Val Phe Asn Phe 50 55
60Asn Phe Asn Phe Trp Pro Ser Tyr Thr Ser Ile Cys Leu Ser Arg Lys65
70 75 80Leu Asn Ser Arg Gln
Leu Ile Ile His Leu Ile Ser Ser Ala Lys Gln 85
90 95Met Pro Ser Met Val Ser Phe Val Ile Arg Leu
Leu Trp Asp Gln Asn 100 105
110Val Ser Tyr Ser Ser Gly Lys Asn Glu Thr 115
1206719DNAArtificial SequenceOligonucleotide 67ctaaaggtga aggaaaggc
196817DNAArtificial
SequenceOligonucleotide 68cgctcatctt ctcctca
17691119DNAHomo sapiens 69tcaccctcct ggccaattgt
gttgcacctt gggcactgaa tcacatgagc cgtcgactaa 60gccagatgct tctcatgttc
ctactggcaa cctgccttct ggccatcata tttgtgcctc 120aagaaatgca gaccctgcgt
gtggttttgg caaccctggg tgtgggagct gcttctcttg 180gcattacctg ttctactgcc
caagaaaatg aactaattcc ttccataatc aggtacaaaa 240gtttatgtgt gctctgtcat
tctcaaaatg gacctgtctc aaccaattga cacttaacaa 300gggaaaaaaa tccaagacaa
gttagttaaa aaacaatcaa atgtaatagt cataaaaaca 360acaaattaca gcccaagttt
atatcaagct gactttgttc cagacgctgc attaagtctt 420ttaatgcagt atcccatgta
ccttctgaac cacctgaaag gttgatgtta aggaaaatag 480cattttgtaa atgataaaaa
tgtgtctaat tcacttgtga atctaaaata aattgctagc 540aaataagaga aaatttcaaa
agcaagagta tgttatcacc tccatgtgtt taagtgctca 600tccataatca cagcaaaatg
ataaatcaca aattatatgt atgattttta acaacttttc 660ctctgttgct gtttttactc
caaggggaag agctactgga atcactggaa actttgctaa 720tattggggga gccctggctt
ccctcatgat gatcctaagc atatattctc gacccctgcc 780ctggatcatc tatggagtct
ttgccatcct ctctggcctt gttgtcctcc tccttcctga 840aaccaggaac cagcctcttc
ttgacagcat ccaggatgtg gaaaatgagg gagtaaatag 900cctagctgcc cctcagagga
gctctgtgct ataggtctgt gctgaggaaa gcaaaacacc 960atttagggct accatccccc
aaaaaggctt agatctgggc tattcccatg tagtcagtgc 1020ctttgccttt ggtgtatcct
catcccttcc acagtgacct catacatccc ctgagcctca 1080ctagatcaca cagaccatct
ctgcccagcc tgtccagga 11197097PRTHomo sapiens
70Met Ile Phe Asn Asn Phe Ser Ser Val Ala Val Phe Thr Pro Arg Gly1
5 10 15Arg Ala Thr Gly Ile Thr
Gly Asn Phe Ala Asn Ile Gly Gly Ala Leu 20 25
30Ala Ser Leu Met Met Ile Leu Ser Ile Tyr Ser Arg Pro
Leu Pro Trp 35 40 45Ile Ile Tyr
Gly Val Phe Ala Ile Leu Ser Gly Leu Val Val Leu Leu 50
55 60Leu Pro Glu Thr Arg Asn Gln Pro Leu Leu Asp Ser
Ile Gln Asp Val65 70 75
80Glu Asn Glu Gly Val Asn Ser Leu Ala Ala Pro Gln Arg Ser Ser Val
85 90 95Leu7121DNAArtificial
SequenceOligonucleotide 71ttctggccat catatttgtg c
217221DNAArtificial SequenceOligonucleotide
72agtgattccc agtagctctt c
21732837DNAHomo sapiens 73atatcacctc ctaggaaata tgcagtaaga tggattgtgt
gtctaaaggt taaactcttt 60ttccaacaga tggatctagg ccgtatggag gattcactgc
ttctcatacc tccagtgaag 120atgcagataa agtgggatgt tgtaaatgta cttcatttta
atcaggaaga agctgctatg 180gtgaatttaa aacttgtaat gccattagat gagcttctag
cacagtttca gtcatgttac 240catgaggatt ggtgtgacct gttccatatt ccgtggtcca
ttatttggtg ctgaaagaga 300ccatctacct cctagaagtg tgtggtgggt ctcttccaaa
tactcctgaa ggaaacttta 360cttctcctgg ctatgatgga gtcaggaatt actcgagaaa
cctaaactgt gaatggactc 420tcagcaatcc aaatcaggga aattcatcta tttatattca
ttttgaagat ttttacctag 480aaagtcacca agactgtcaa tttgatgtcc ttgagtttcg
agtgggtttg ttaagagcct 540ggtaagaagt gcaagattga caaaggtaag gttagtagcg
gaggtaagtg aaagcttgaa 600tataggaaac cttggaccac ttgccattgc agtggataaa
attttcaaga tttcgttgaa 660tttgaaagtc aaagattcca ttttaaagcc attgactacc
attgtccagt cgctattggg 720gccaggccat gttacaaagg atattgaacg tttgggctta
atgtgagggc ttgtgaccta 780gagtctggag gttgcaaggg agacagccaa gtgatgtgtc
atggggaaac cttcttcagg 840tggattttga ggcttcactg caatactagc ttcctgttgc
tgctgcaaca aattattatt 900attattatta ttattattat tattattatt ttcagatgga
gtctcgctct gtcactcagg 960ctggagtgca gtggtgcgat ctcagctcgt tgcaagctcc
gccttgtggg ttcatgccat 1020tctcgtgcct cagcctccca agtagctggg actacaggaa
cccgccacca cacctggcta 1080atgtttcgta tttttagtag aggtggggtt tcatcgtgtt
agccaggatg gtctcggtct 1140cctgacctag tgattcacct gtcttggcct cccaaagttc
tgggattaca ggcgtgagcc 1200acacacttag tgtctttaaa caacatatat gtattctctc
acagttctgg aggccagaat 1260tctaaattcc ctcccactga gtcaaggtgg gagcagggca
agtgccttcg gaggctctgt 1320gggagaatcc atttcctggc tctggaggca gcctgcactc
ctcgactttt gatgccctcc 1380ttgaatgact ccaatttctc gcttccatca ctacacctcc
caccactctc ccatcacctg 1440ctctgctctt acaaggatca gtgagtacat caacttgcca
cctaaagaag ccgggataat 1500cttccctgcc aaaggtcctt aacttcatta catctgcaaa
gcttctttta ccatataagg 1560tgcaccgggt acttcttgag cattgggatg atctgcttca
cctccagtca cacagcttcc 1620aggcactggg agtggtcctc ctgcaggatg ttcagcttcg
acttggccag agaaatggaa 1680tggttgcatc acttatctac gtaaacaatt gaagaattgt
ctgaaagaaa agcagaagga 1740acatctgaag gaacacctga tgaggctgca cccttggcgg
aaagaacacc tgacatggct 1800gaaagcttgg tggaaaaacc acctgatgag gctgcaccct
tggtggaggg aacagctgac 1860aaaattcaat gtttggggaa agcaacatct ggaaagtttg
aacagtcagc agaagaaaca 1920cctaagaaaa ttatgaggac tgcaaaagaa acatctaaga
aatttgcatg gccagcaaaa 1980gaaagaccta ggaagatcac atgggaggaa aaataaacat
ctgtaaagac tgaatgcgtg 2040gcaggagtaa tacctaataa aactgaagtt ttggaaaaag
gaacatctaa gatgctcacg 2100tgtcctacaa aagaaacatc tacaaaagca agtacaaatg
tggatgtgag ttctgtagag 2160tctatattca gagtctcacc ctgtcaccca ggctggaatg
caatggcacg atctcggctc 2220actgcaacct ccacctccca gaaggaagca acaaagacag
caactgaaca acaagaaaat 2280gatattggaa ttattgaatg agcgccataa gatctaacaa
ataagatgcc cacatcagag 2340tcaggacaaa aagaagatac gaaatcacct tcagtttctg
aggtcacagc tatggatgtg 2400gaagagatag gaaaggcctc accacttaag atagaagcag
cagctgcata gtggtaacag 2460caatgagtgg atgtcaaaag acagattcaa ctagcctatc
aatattcttg ggtgcagttc 2520cttctcatga aagagcaagg gaacttaaaa aatatcactg
tgaacaactt acagcaaaaa 2580taaaacaaat gaaaaataag ttttgggtac tacaaaagga
actatcagaa gcaaaaataa 2640aattgcagta agtgaatcaa aaggttaaat gggaacaaga
gctctgcagt gtgagcttgg 2700aatgaagttg ataatagtga gaccttgttg gtacaagact
atgtaacaca acctgcactt 2760ctcaacaaaa aattgctttt ctgacttctg cactcagtag
gtatctttgg aaaataatct 2820cctattggta ctgaggc
283774102PRTHomo sapiens 74Met Cys His Gly Glu Thr
Phe Phe Arg Trp Ile Leu Arg Leu His Cys1 5
10 15Asn Thr Ser Phe Leu Leu Leu Leu Gln Gln Ile Ile
Ile Ile Ile Ile 20 25 30Ile
Ile Ile Ile Ile Ile Ile Phe Arg Trp Ser Leu Ala Leu Ser Leu 35
40 45Arg Leu Glu Cys Ser Gly Ala Ile Ser
Ala Arg Cys Lys Leu Arg Leu 50 55
60Val Gly Ser Cys His Ser Arg Ala Ser Ala Ser Gln Val Ala Gly Thr65
70 75 80Thr Gly Thr Arg His
His Thr Trp Leu Met Phe Arg Ile Phe Ser Arg 85
90 95Gly Gly Val Ser Ser Cys
1007521DNAArtificial SequenceOligonucleotide 75catctacctc ctagaagtgt g
217621DNAArtificial
SequenceOligonucleotide 76cactcgaaac tcaaggacat c
21775868DNAHomo sapiens 77gatctctccc atgaagtgac
caggatagag aagcaccaga accgccaaaa gtatgggctg 60tgcgtcatct tcctttcctg
taccatgatg cccaacttta aagagctgat ccatttcgag 120gtcagcatcg gtcactatgg
gaacaagatg gacctgaatt acaagcctct agtctcaagc 180acaccgtaca gcccagtgat
atatgatggg aacatctacc attatgtgcc ctggtacaac 240accaagcctg tcgtggccgt
gacctccaac tgggaggacg tcagcttccg catgaactgc 300ctcaacctcc tccacttcac
tcgggaccgc ctgaaagcca acctggacac cctgaaatcc 360acgcggaatc cgaaggatcc
agctctcctc taccagtggg agaaactgct gagggagctg 420gcagaggact gcaagcgccc
tctgccctgc atgacctatc agcccaaagc caccagcctg 480gacaggaaga ggtggcagct
ccgcagcctc ctcctgcagg aactggccca aaaggccaag 540caagccaagc ccaaggacat
ggtggccaca gcggaggact ggctgtaccg cctcaacacc 600gtgctccctg agccccagat
gggcctccct gacgtgatga tttggctggt ggccaaggag 660cagcgagtgg cctatgcaca
gtacccagag ggtgaaggac agaaggatgt gctcccagct 720cacctccggg tctgcatgtg
gcttggcaat gtcacagaca gcaaggacct gcagctgctc 780cgccagggtg acacagcggt
gtacgccgag atggtgagtg tatgagaatc aggccaagta 840taaagaccag tgggggcagc
aggggctgta tcactgcccc aacttctcgg atgtcatggg 900gaacaagacc ctccccatga
cggatttcca accacccctg ggatggcact ggcaggacag 960ctggacagtg gaacctcaga
gaaggctcct cctggacata gacatcaaca agagccaggt 1020gctggaggag gtatatgaga
accagggccg tgacaccaga ggggcctggg ggcctgccgc 1080catcccaaac acagacgtga
atggacagcc catggaggcc cgggagaacg tgaagtgccc 1140ccaaggctgg cactttaaga
aggactgggt ggtggagctg aaccacgcag tggacagtaa 1200gggctgggag tatggagtgg
ggatcccacc gtcgggcctg ccccaggtct ggagcccggt 1260ggagaagacc taccactcgt
gccgccgccg gcgctgggcg cgtgtgcgct tcaggaacca 1320tggggagctg agccacgagc
aggagaccct ctccttcctg cagctgggcc tggccaaggg 1380cgaggaggag ggctgggagt
atgacacctt cggctccaag ttccacctca accctcagcc 1440ccagagccgg ttccgccgcc
gctgctggcg ccgcaggctg gcccccaaca aggacaaggg 1500catcgcgccc atattcctcc
tggaggggtc cttggctatg gatctgaaat accacgctgg 1560gaaggaagag gacagcaaga
catggccatg gggtctggac agacagttca gggaccccca 1620gaggcaggac acccggcccc
ccaacttgcc cttcatctac tgcaccttca ataagcccca 1680ctactaccag ctcttctgct
acatctacca ggcccggaac ctggtgtcca atcagatcct 1740gacattccaa gggcccttca
ttcgggtggt cttcctgaac cacagccagt gcacccaaac 1800cctgaggagc tctgcaggcc
ccacatgggc ccagacactc atcttccagc acctccttct 1860gtacgagaac ccacaggaca
ccaaagagag cccaccgctt gtggtgctgg agctgtggca 1920gcgtgacttc tggggcaagg
agagcttgtg gggacggagc gtgtggcccc caatggtctg 1980gctggatctc caggaccgga
tcctgccccc catgaggtgg catccccttg taaaggagtt 2040ggggaaggaa gagggcgaga
tcttggcatc ctgtgagctg atcctccaga ctgagaagct 2100tggagagaag cagctgccta
tcttaagcgt tccctggaag aatggggcat acacactccc 2160caagagcatc cagcccacga
taaagaggat ggccattgag gtgctggcga tgtgggatgg 2220ggacggtggg caggacaggc
gggggtggtc tggagtgcgc tgcagccttc tgctggtcct 2280ccctgactac tggatccaaa
gctcacaccc cgaaaaagac tacctgggag gtggagggag 2340acaggagaga aacgaagagg
ttctggtgta acactggaaa tcattttacc acaaacctct 2400gcagtgagga gtaggcaaag
ggctgtagca tgcatgatca cttgtgggac tcacgctgcc 2460cctgcgcagt agcaactact
ttgcagagaa ggaaatagag gctccaagag ataacacatt 2520ccacgcacag tgatgcaggg
actaactgac agggccattt aggcccagcc ctgtctgact 2580gcagatgcca ggatgttgct
cacctctctt ctgagagtag catgagggtc ctcattcaga 2640agctgtgtgc cctgccgcaa
atgtggcaaa gagcacaaga cggtcaggcc tctgggactg 2700aaggcttccc caagatcagg
caacttggct ggttcccgct ttaggccccg aggaggccca 2760aagtcagggt gcagctattt
cctggcagga tgccaggtca ctgaatggcc atggggtcct 2820caatgagcta gacggcacag
gggccctgag aaatccaggc acttcctgct tcttcaggcc 2880tcagaggcag tcggcttcag
gaactcctac ctgagaactg atgaggccag acaaggcagc 2940gggtgaggag gggcaatgcc
tgcgggctat ggaggtcagt ggaggatgca gccagtggcc 3000agaggtcacc tccctcatgg
gttgggggac agcgtcccag ccccgagggc aagcactgat 3060ccctcacagg acggggaagc
ctgtccttgt gcgccttcag acactggctc ctctgcagcc 3120ccattccctg gccctgcagg
ctcctgctgc accgctattg cccctcagcc cccttctctg 3180gccaggaccc cattacagag
gcgctgcctg ccccttgtcc tgccctcctt ctttgttctg 3240gtagatcctg gcctggggcc
ttcggaacat gaagaaggcg agctcccccc agctcctggt 3300ggaattcggg gaagagtccc
tgaggacaga acccatcagg gactttcaga ccaaccccaa 3360cttccccgag tctgagtctg
tcctagtcct cacagtgctc atgccgacgg aggaggccta 3420tgcactgccc ctcgtggtga
aggtggtaga caactgggcc ttcggccagc agaccgtgac 3480gggccaggcc aacatcgact
tcctccagcc ctacttctgt gacccctggg ctcaagacta 3540tatgcaccca aagcttccaa
cgctgtctga gaagaagcac caagacttcc taggctacct 3600ctacagaaag ttctggttca
agtccagtaa agcagaggat gagtatgagc atgaggtgga 3660ctggtggagc aagctgttct
gggccacaga tgagcacaag tccctgaagt acaagtacaa 3720agactaccac accctcaagg
tgtatgagtg tgagctggag gccgtgccag ccttccaggg 3780cctgcaggac ttctgccaga
ccttcaaact ctaccaggag cagcccaagt tggacagccc 3840cgtggtaggg gagttcaagg
gccttttccg catctacccc tttcctgaga atccagaagc 3900cccaaagccc ccgctgcagt
tcttggtttg gccagagaga gaggacttcc cccagccgtg 3960cttggtgcgg gtgtacatgg
tacgagccat caacctgcag ccccaggact acaatggcct 4020gtgtgaccct tatgtgatcc
tgaaactggg caagacagag cttggcaacc gggacatgta 4080ccagcccaac actctggatc
ccatctttgg catgatgttt gaactcacct gcaacatacc 4140cctggagaag gacctagaga
tccagctcta tgacttcgac ctattttcac ctgatgataa 4200gataggaacc acagtcatcg
accttgaaaa ccgactccta tctggctttg gagctcattg 4260tgggctctcc aaatcctact
gccagtcagg gccctttaga tggcgggatc agatgccccc 4320aagctacctc ctagaacgct
atgccaagcg gaaagggcta cctccgcctc tgttcagtcc 4380tgaggaagat gctgttttct
ataatgggaa aaagttcaag ctgcaaagct ttgagcccaa 4440aacccctact gttcatggtt
tgggacccaa gaaggaacgc cttgcactgt acctcctgca 4500cacccagggg ctggtacctg
agcacgtgga gacccgcaca ctgtacagcc acagccagcc 4560aggcatcgac cagggaaagg
tgcaaatgtg ggtggacatc ttccccaaga agctggggcc 4620tcctggcccc caagtcaaca
tcaaccccag aaagcctaaa cggtatgagc tgcgatgcat 4680catctggaag actgccaatg
tggacctggt ggatgacaat ttaagtagag agaagacgag 4740cgacatctac atcaaagggt
ggttatacgg gctggagaag gacatgcaga agacagacat 4800ccactaccac tcgctgactg
gggaggccga cttcaactgg cggttcatct ttaccatgga 4860ctacctggcg gcggagcgca
cgtgtgtcca gagccagaag gattacatat ggagcctgga 4920tgccacgtcc atgaagttcc
cagcccgact tatcatccag gtctgggaca atgacatctt 4980ctcccccgac gacttcctag
gggtcctgga gctggatttg tctgacatgc ccctcccggc 5040tcggcacgcc aagcagtgct
ccatcaggat gatggacgcc gaccccaagt ggccctattt 5100catccaatac aagcacttct
ccctctttaa gaagaagact gtgactggct ggtggccttg 5160ccaggtcctc gatggtggca
aatggcgctt gtcgggcaag gtgaagatga gcctggagat 5220tctgtcagag aaggaagcct
taatcaagcc agccgggcga ggccagtcgg aacccaacca 5280gtaccccaca cttcatcctc
ccctacgcac caacacctct ttcacgtggc tgcggtcacc 5340agttcaaaac ttctgctata
ttttctggaa acgctatcgc ttcaaactca tagcctttat 5400ggtcatatcg attatagcac
ttatgctgtt taacttcatc tattcagctc cgcactattt 5460ggccatgagc tggatcaaac
ctcaacttca gctgtatcct cccattaaaa tattcaatat 5520catcaattca ctaaacacca
gcaacgccag ctcttccatc cttcccaccc aggatccaaa 5580cctaaagcct acaatagacc
atgagtggaa actccaccca ggacccacaa atcacctgag 5640tgatattttc ccagaacttc
cagccccagg agactaatta gtccatgctg cctggctttc 5700ctcctgctac caacagccct
ccccttgggc tggctaccag ttctttgttt ctatcttcta 5760gaatatatgc aagatgctag
gaatattctg gctattgtgt tcagaaatca ctttcaacaa 5820gacgagcaga gctgtaattt
tccactgaaa taaacaagtt ctataaca 586878802PRTHomo sapiens
78Met Lys Lys Ala Ser Ser Pro Gln Leu Leu Val Glu Phe Gly Glu Glu1
5 10 15Ser Leu Arg Thr Glu Pro
Ile Arg Asp Phe Gln Thr Asn Pro Asn Phe 20 25
30Pro Glu Ser Glu Ser Val Leu Val Leu Thr Val Leu Met
Pro Thr Glu 35 40 45Glu Ala Tyr
Ala Leu Pro Leu Val Val Lys Val Val Asp Asn Trp Ala 50
55 60Phe Gly Gln Gln Thr Val Thr Gly Gln Ala Asn Ile
Asp Phe Leu Gln65 70 75
80Pro Tyr Phe Cys Asp Pro Trp Ala Gln Asp Tyr Met His Pro Lys Leu
85 90 95Pro Thr Leu Ser Glu Lys
Lys His Gln Asp Phe Leu Gly Tyr Leu Tyr 100
105 110Arg Lys Phe Trp Phe Lys Ser Ser Lys Ala Glu Asp
Glu Tyr Glu His 115 120 125Glu Val
Asp Trp Trp Ser Lys Leu Phe Trp Ala Thr Asp Glu His Lys 130
135 140Ser Leu Lys Tyr Lys Tyr Lys Asp Tyr His Thr
Leu Lys Val Tyr Glu145 150 155
160Cys Glu Leu Glu Ala Val Pro Ala Phe Gln Gly Leu Gln Asp Phe Cys
165 170 175Gln Thr Phe Lys
Leu Tyr Gln Glu Gln Pro Lys Leu Asp Ser Pro Val 180
185 190Val Gly Glu Phe Lys Gly Leu Phe Arg Ile Tyr
Pro Phe Pro Glu Asn 195 200 205Pro
Glu Ala Pro Lys Pro Pro Leu Gln Phe Leu Val Trp Pro Glu Arg 210
215 220Glu Asp Phe Pro Gln Pro Cys Leu Val Arg
Val Tyr Met Val Arg Ala225 230 235
240Ile Asn Leu Gln Pro Gln Asp Tyr Asn Gly Leu Cys Asp Pro Tyr
Val 245 250 255Ile Leu Lys
Leu Gly Lys Thr Glu Leu Gly Asn Arg Asp Met Tyr Gln 260
265 270Pro Asn Thr Leu Asp Pro Ile Phe Gly Met
Met Phe Glu Leu Thr Cys 275 280
285Asn Ile Pro Leu Glu Lys Asp Leu Glu Ile Gln Leu Tyr Asp Phe Asp 290
295 300Leu Phe Ser Pro Asp Asp Lys Ile
Gly Thr Thr Val Ile Asp Leu Glu305 310
315 320Asn Arg Leu Leu Ser Gly Phe Gly Ala His Cys Gly
Leu Ser Lys Ser 325 330
335Tyr Cys Gln Ser Gly Pro Phe Arg Trp Arg Asp Gln Met Pro Pro Ser
340 345 350Tyr Leu Leu Glu Arg Tyr
Ala Lys Arg Lys Gly Leu Pro Pro Pro Leu 355 360
365Phe Ser Pro Glu Glu Asp Ala Val Phe Tyr Asn Gly Lys Lys
Phe Lys 370 375 380Leu Gln Ser Phe Glu
Pro Lys Thr Pro Thr Val His Gly Leu Gly Pro385 390
395 400Lys Lys Glu Arg Leu Ala Leu Tyr Leu Leu
His Thr Gln Gly Leu Val 405 410
415Pro Glu His Val Glu Thr Arg Thr Leu Tyr Ser His Ser Gln Pro Gly
420 425 430Ile Asp Gln Gly Lys
Val Gln Met Trp Val Asp Ile Phe Pro Lys Lys 435
440 445Leu Gly Pro Pro Gly Pro Gln Val Asn Ile Asn Pro
Arg Lys Pro Lys 450 455 460Arg Tyr Glu
Leu Arg Cys Ile Ile Trp Lys Thr Ala Asn Val Asp Leu465
470 475 480Val Asp Asp Asn Leu Ser Arg
Glu Lys Thr Ser Asp Ile Tyr Ile Lys 485
490 495Gly Trp Leu Tyr Gly Leu Glu Lys Asp Met Gln Lys
Thr Asp Ile His 500 505 510Tyr
His Ser Leu Thr Gly Glu Ala Asp Phe Asn Trp Arg Phe Ile Phe 515
520 525Thr Met Asp Tyr Leu Ala Ala Glu Arg
Thr Cys Val Gln Ser Gln Lys 530 535
540Asp Tyr Ile Trp Ser Leu Asp Ala Thr Ser Met Lys Phe Pro Ala Arg545
550 555 560Leu Ile Ile Gln
Val Trp Asp Asn Asp Ile Phe Ser Pro Asp Asp Phe 565
570 575Leu Gly Val Leu Glu Leu Asp Leu Ser Asp
Met Pro Leu Pro Ala Arg 580 585
590His Ala Lys Gln Cys Ser Ile Arg Met Met Asp Ala Asp Pro Lys Trp
595 600 605Pro Tyr Phe Ile Gln Tyr Lys
His Phe Ser Leu Phe Lys Lys Lys Thr 610 615
620Val Thr Gly Trp Trp Pro Cys Gln Val Leu Asp Gly Gly Lys Trp
Arg625 630 635 640Leu Ser
Gly Lys Val Lys Met Ser Leu Glu Ile Leu Ser Glu Lys Glu
645 650 655Ala Leu Ile Lys Pro Ala Gly
Arg Gly Gln Ser Glu Pro Asn Gln Tyr 660 665
670Pro Thr Leu His Pro Pro Leu Arg Thr Asn Thr Ser Phe Thr
Trp Leu 675 680 685Arg Ser Pro Val
Gln Asn Phe Cys Tyr Ile Phe Trp Lys Arg Tyr Arg 690
695 700Phe Lys Leu Ile Ala Phe Met Val Ile Ser Ile Ile
Ala Leu Met Leu705 710 715
720Phe Asn Phe Ile Tyr Ser Ala Pro His Tyr Leu Ala Met Ser Trp Ile
725 730 735Lys Pro Gln Leu Gln
Leu Tyr Pro Pro Ile Lys Ile Phe Asn Ile Ile 740
745 750Asn Ser Leu Asn Thr Ser Asn Ala Ser Ser Ser Ile
Leu Pro Thr Gln 755 760 765Asp Pro
Asn Leu Lys Pro Thr Ile Asp His Glu Trp Lys Leu His Pro 770
775 780Gly Pro Thr Asn His Leu Ser Asp Ile Phe Pro
Glu Leu Pro Ala Pro785 790 795
800Gly Asp7921DNAArtificial SequenceOligonucleotide 79tgttcagtcc
tgaggaagat g
218021DNAArtificial SequenceOligonucleotide 80atgatgcatc gcagctcata c
21813170DNAHomo sapiens
81ggctcaccga caacttcatc gccgccgtgc gccgccgaga cttcgccaac atgaccagcc
60tggtgcacct cactctctcc cggaacacca tcggccaggt ggcagctggc gccttcgccg
120acctgcgtgc cctccgggcc ctgcacctgg acagcaaccg cctggcggag gtgcgcggcg
180accagctccg cggcctgggc aacctccgcc acctgatcct tggaaacaac cagatccgcc
240gggtggagtc ggcggccttt gacgccttcc tgtccaccgt ggaggacctg gatctgtcct
300acaacaacct ggaggccctg ccgtgggagg cggtgggcca gatggtgaac ctaaacaccc
360tcacgctgga ccacaacctc atcgaccaca tcgcggaggg gaccttcgtg cagcttcaca
420agctggtccg tctggacatg acctccaacc gcctgcataa actcccgccc gacgggctct
480tcctgaggtc gcagggcacc gggcccaagc cgcccacccc gctgaccgtc agcttcggcg
540gcaaccccct gcactgcaac tgcgagctgc tctggctgcg gcggctgacc cgcgaggacg
600acttagagac ctgcgccacg cccgaacacc tcaccgaccg ctacttctgg tccatccccg
660aggaggagtt cctgtgtgag cccccgctga tcacacggca ggcggggggc cgggccctgg
720tggtggaagg ccaggcggtg agcctgcgct gccgagcggt gggtgacccc gagccggtgg
780tgcactgggt ggcacctgat gggcggctgc tggggaactc cagccggacc cgggtccggg
840gggacgggac gctggatgtg accatcacca ccttgaggga cagtggcacc ttcacttgta
900tcgcctccaa tgctgctggg gaagcgacgg cgcccgtgga ggtgtgcgtg gtacctctgc
960ctctgatggc acccccgccg gctgccccgc cgcctctcac cgagcccggc tcctctgaca
1020tcgccacgcc gggcagacca ggtgccaacg attctgcggc tgagcgtcgg ctcgtggcag
1080ccgagctcac ctcgaactcc gtgctcatcc gctggccagc ccagaggcct gtgcccggaa
1140tacgcatgta ccaggttcag tacaacagtt ccgttgatga ctccctcgtc tacaggatga
1200tcccgtccac cagtcagacc ttcctggtga atgacctggc ggcgggccgt gcctacgact
1260tgtgcgtgct ggcggtctac gacgacgggg ccacagcgct gccggcaacg cgagtggtgg
1320gctgtgtaca gttcaccacc gctggggatc cggcgccctg ccgcccgctg agggcccatt
1380tcttgggcgg caccatgatc atcgccatcg ggggcgtcat cgtcgcctcg gtcctcgtct
1440tcatcgttct gctcatgatc cgctataagg tgtatggcga cggggacagc cgccgcgtca
1500agggctccag gtcgctcccg cgggtcagcc acgtgtgctc gcagaccaac ggcgcaggca
1560caggcgcggc acaggccccg gccctgccgg cccaggacca ctacgaggcg ctgcgcgagg
1620tggagtccca ggctgccccc gccgtcgccg tcgaggccaa ggccatggag gccgagacgg
1680catccgcgga gccggaggtg gtccttggac gttctctggg cggctcggcc acctcgctgt
1740gcctgctgcc atccgaggaa acttccgggg aggagtctcg ggccgcggtg ggccctcgaa
1800ggagccgatc cggcgccctg gagccaccaa cctcggcgcc ccctactcta gctctagttc
1860ctgggggagc cgcggcccgg ccgaggccgc agcagcgcta ttcgttcgac ggggactacg
1920gggcactatt ccagagccac agttacccgc gccgcgcccg gcggacaaag cgccaccggt
1980ccacgccgca cctggacggg gctggagggg gcgcggccgg ggaggatgga gacctggggc
2040tgggctccgc cagggcgtgc ctggctttca ccagcaccga gtggatgctg gagagtaccg
2100tgtgagcggc gggcgggcgc cgggacgcct gggtgccgca gaccaaacgc ccagccgcac
2160ggacgctggg gcgggactgg gagaaagcgc agcgccaaga cattggacca gagtggagac
2220gcgcccttgt ccccgggagg gggcggggca gcctcgggct gcggctcgag gccacgcccc
2280cgtgcccagg gcggggttcg gggaccggct gccggcctcc cttcccctat ggactcctcg
2340acccccctcc tacccctccc ctcgcgcgct cgcggacctc gctggagccg gtgccttaca
2400cagcgaagcg cggggagggg cagggccccc tgacactgca gcactgagac acgagccccc
2460tcccccagcc cgtcacccgg ggccggggcg aggggcccat ttcttgtatc tggctggact
2520agatcctatt ctgtcccgcg gcggcctcca aagcctccca ccccacccca cgcacattcc
2580tggtccggtc gggtctggct tggggtcccc ctttctctgt ttccctcgtt tgtctctatc
2640ccgccctctt gtcgtctctc tgtagtgcct gtctttccct atttgcctct cctttctctc
2700tgtcctgtcg tctcttgtcc ctcggccctc cctggttttg tctagtctcc ctgtctctcc
2760tgatttcttc tctttactca ttctcccggg caggtcccac tggaaggacc agactctccc
2820aaataaatcc ccacacgaac aaaatccaaa accaaatccc cctccctacc ggagccggga
2880ccctccgccg cagcagaatt aaactttttt ctgtgtctga ggccctgctg acctgtgtgt
2940gtgtctgtat gtgtgtccgc gtgtagtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg
3000tgtgtgttgg gggagggtga cctagattgc agcataagga ctctaagtga gactgaagga
3060agatgggaag atgactaact ggggccggag gagactggca gacaggcttt tatcctctga
3120gagacttaga ggtggggaat aatcacaaaa ataaaatgat cataatagct
317082684PRTHomo sapiens 82Met Thr Ser Leu Val His Leu Thr Leu Ser Arg
Asn Thr Ile Gly Gln1 5 10
15Val Ala Ala Gly Ala Phe Ala Asp Leu Arg Ala Leu Arg Ala Leu His
20 25 30Leu Asp Ser Asn Arg Leu Ala
Glu Val Arg Gly Asp Gln Leu Arg Gly 35 40
45Leu Gly Asn Leu Arg His Leu Ile Leu Gly Asn Asn Gln Ile Arg
Arg 50 55 60Val Glu Ser Ala Ala Phe
Asp Ala Phe Leu Ser Thr Val Glu Asp Leu65 70
75 80Asp Leu Ser Tyr Asn Asn Leu Glu Ala Leu Pro
Trp Glu Ala Val Gly 85 90
95Gln Met Val Asn Leu Asn Thr Leu Thr Leu Asp His Asn Leu Ile Asp
100 105 110His Ile Ala Glu Gly Thr
Phe Val Gln Leu His Lys Leu Val Arg Leu 115 120
125Asp Met Thr Ser Asn Arg Leu His Lys Leu Pro Pro Asp Gly
Leu Phe 130 135 140Leu Arg Ser Gln Gly
Thr Gly Pro Lys Pro Pro Thr Pro Leu Thr Val145 150
155 160Ser Phe Gly Gly Asn Pro Leu His Cys Asn
Cys Glu Leu Leu Trp Leu 165 170
175Arg Arg Leu Thr Arg Glu Asp Asp Leu Glu Thr Cys Ala Thr Pro Glu
180 185 190His Leu Thr Asp Arg
Tyr Phe Trp Ser Ile Pro Glu Glu Glu Phe Leu 195
200 205Cys Glu Pro Pro Leu Ile Thr Arg Gln Ala Gly Gly
Arg Ala Leu Val 210 215 220Val Glu Gly
Gln Ala Val Ser Leu Arg Cys Arg Ala Val Gly Asp Pro225
230 235 240Glu Pro Val Val His Trp Val
Ala Pro Asp Gly Arg Leu Leu Gly Asn 245
250 255Ser Ser Arg Thr Arg Val Arg Gly Asp Gly Thr Leu
Asp Val Thr Ile 260 265 270Thr
Thr Leu Arg Asp Ser Gly Thr Phe Thr Cys Ile Ala Ser Asn Ala 275
280 285Ala Gly Glu Ala Thr Ala Pro Val Glu
Val Cys Val Val Pro Leu Pro 290 295
300Leu Met Ala Pro Pro Pro Ala Ala Pro Pro Pro Leu Thr Glu Pro Gly305
310 315 320Ser Ser Asp Ile
Ala Thr Pro Gly Arg Pro Gly Ala Asn Asp Ser Ala 325
330 335Ala Glu Arg Arg Leu Val Ala Ala Glu Leu
Thr Ser Asn Ser Val Leu 340 345
350Ile Arg Trp Pro Ala Gln Arg Pro Val Pro Gly Ile Arg Met Tyr Gln
355 360 365Val Gln Tyr Asn Ser Ser Val
Asp Asp Ser Leu Val Tyr Arg Met Ile 370 375
380Pro Ser Thr Ser Gln Thr Phe Leu Val Asn Asp Leu Ala Ala Gly
Arg385 390 395 400Ala Tyr
Asp Leu Cys Val Leu Ala Val Tyr Asp Asp Gly Ala Thr Ala
405 410 415Leu Pro Ala Thr Arg Val Val
Gly Cys Val Gln Phe Thr Thr Ala Gly 420 425
430Asp Pro Ala Pro Cys Arg Pro Leu Arg Ala His Phe Leu Gly
Gly Thr 435 440 445Met Ile Ile Ala
Ile Gly Gly Val Ile Val Ala Ser Val Leu Val Phe 450
455 460Ile Val Leu Leu Met Ile Arg Tyr Lys Val Tyr Gly
Asp Gly Asp Ser465 470 475
480Arg Arg Val Lys Gly Ser Arg Ser Leu Pro Arg Val Ser His Val Cys
485 490 495Ser Gln Thr Asn Gly
Ala Gly Thr Gly Ala Ala Gln Ala Pro Ala Leu 500
505 510Pro Ala Gln Asp His Tyr Glu Ala Leu Arg Glu Val
Glu Ser Gln Ala 515 520 525Ala Pro
Ala Val Ala Val Glu Ala Lys Ala Met Glu Ala Glu Thr Ala 530
535 540Ser Ala Glu Pro Glu Val Val Leu Gly Arg Ser
Leu Gly Gly Ser Ala545 550 555
560Thr Ser Leu Cys Leu Leu Pro Ser Glu Glu Thr Ser Gly Glu Glu Ser
565 570 575Arg Ala Ala Val
Gly Pro Arg Arg Ser Arg Ser Gly Ala Leu Glu Pro 580
585 590Pro Thr Ser Ala Pro Pro Thr Leu Ala Leu Val
Pro Gly Gly Ala Ala 595 600 605Ala
Arg Pro Arg Pro Gln Gln Arg Tyr Ser Phe Asp Gly Asp Tyr Gly 610
615 620Ala Leu Phe Gln Ser His Ser Tyr Pro Arg
Arg Ala Arg Arg Thr Lys625 630 635
640Arg His Arg Ser Thr Pro His Leu Asp Gly Ala Gly Gly Gly Ala
Ala 645 650 655Gly Glu Asp
Gly Asp Leu Gly Leu Gly Ser Ala Arg Ala Cys Leu Ala 660
665 670Phe Thr Ser Thr Glu Trp Met Leu Glu Ser
Thr Val 675 6808317DNAArtificial
SequenceOligonucleotide 83cgaactccgt gctcatc
178417DNAArtificial SequenceOligonucleotide
84cgcacaagtc gtaggca
17852206DNAHomo sapiens 85cgacaacgtc acccgcagac cggccaatcc cgccaggccg
cggcccagtg gcgccggcgc 60acaccgaaga cgacaccagc catccggcca atcccgcccc
gccgcgcccc gcaggcccgc 120ccactcctcg cttctccact tcccttctcg aagtgtccgg
tcgcttctcg caggcggcgc 180gcttgctggg tcacagtgag gcggctccgc gcaggcgcag
ccgggcgggc gaggagcggg 240gaagctgact cagggctgcg gccggggtcc tgcggggtag
gagcgcgagg ccggcctgag 300ggaggaggcc tagcgaccca tccggcgcct cccgccccgg
gcacccgccc gcggccgcgc 360atcctgcggg ccccaggagg cctccatctc aaaacaacgt
gtttttagga tctcatccac 420tatcacagtt tcagctttcc ccaaactgga atgtgtcttt
gcagacgccc atccttatta 480aagggcaaag acttctcata cacctaggat ggatcttata
ttcttggcgg gactgcagag 540aaggtgccgt gtcctgagtc ctcatgtcag ggcacaggct
tccagccagt tctacctggg 600ttatgtttat ctcaattccc tggtggtatt ggtgtctgct
gggttttgcc agaatgaaga 660caccgtgttt tcatttgtca gttgattcgt attttccagg
aagacattct gagattacag 720cattgtctta gtcaaggtgc tgcagaagga cagaactaat
aggatatatg tacatatgaa 780agaaagttta tgaagaactg gctcacacca tcacaaggca
aagtcccatg acaggccatc 840tgcaagctga ggagcgagga agccagcagt ggctcagccg
gagtccaaca gcctcaaacg 900gaatccaaca gttcaggctt cagtctgtgg ccaaatgccc
agagaccccg gaaagctact 960ggtgttagtc ccagagccgg aaggccaaag aacctggagt
gtgatgtcca agggcaggag 1020gaatggacag aagcatccag catggggtaa agacgaaagc
cagaagactc agcaagctag 1080cttacctact ttcttctgcc tgccttgttc tagccgcgct
ggcagccggt tggagggtgc 1140ccacccccac tgagggtgga tcttcctctc ctagtccact
gactcaaatt tcagtctctc 1200tgggagcacc atcacaccag aaacaatacc agccatctag
ccacccttca gttcaccatc 1260acaaccattg tcttattcat gaaacttctg cagacccacc
ttaacctcca tcggtgactt 1320ctacctgaag ccctctgatt gttgcccagt ggtgcttttt
aaaataattt ccatagtttc 1380ttctacacct ttagttggca ttctactgta aaggagagat
tttattttct tactcattta 1440tttgttagtt tatagtcacc accatatgga tgcagagttc
tgtctcattc actgggaagt 1500attctattgc agtcatgatt tattttgatg ttcacatccc
agagttggtg agtgagcgcc 1560ccttcacgct ggctcccgag tgctgacgtg tccccgtcct
tctctgcact tttccttacc 1620tcctggcctc agatattcca gggtcatttg ttctctccct
gctccaaccc tgcagtcagc 1680catctcccta gggacgttgg ttcctttatg gaaggtggca
tttagaagcc aggatttggg 1740ctgagcactg tggctcatgc ttgtaatccc agcacttggg
gaggccgaag tgggcggatc 1800gctggaggcc aagagtctga gaccagcctg gctaacatgg
tgaaaccctt ccccgtctct 1860actacaaata aaaaattagc tgggtgtgtt ggcacgtgcc
tgtaatccca gttactcagg 1920aggctgaagc accagaatct cttgaaccca ggaggccgag
gttgcagtga gccaagattg 1980caccactgca ctacagcttg ggtgacagcg cgagacaccg
tctcaaaaag gataataatt 2040taaaaaacag caggatttgg gtgagcagtg cgctcattgc
ttctgggctc tctcggtgga 2100cataggctag gaatgtaaga tgtatgtgcc tgtgtatata
cacacgtctg tagctatgtc 2160tatgttgcat acatgtgttt ttccaaaaac caaatccata
accatg 22068693PRTHomo sapiens 86Met Asp Arg Ser Ile Gln
His Gly Val Lys Thr Lys Ala Arg Arg Leu1 5
10 15Ser Lys Leu Ala Tyr Leu Leu Ser Ser Ala Cys Leu
Val Leu Ala Ala 20 25 30Leu
Ala Ala Gly Trp Arg Val Pro Thr Pro Thr Glu Gly Gly Ser Ser 35
40 45Ser Pro Ser Pro Leu Thr Gln Ile Ser
Val Ser Leu Gly Ala Pro Ser 50 55
60His Gln Lys Gln Tyr Gln Pro Ser Ser His Pro Ser Val His His His65
70 75 80Asn His Cys Leu Ile
His Glu Thr Ser Ala Asp Pro Pro 85
908721DNAArtificial SequenceOligonucleotide 87aaactacgtg tggccaggat c
218821DNAArtificial
SequenceOligonucleotide 88cgacatgagg actcaggaca c
2189455DNAHomo sapiens 89gtgaagacag ggagctcaag
tgacctcctc cagggtatat agctgtggtg tgggaagcat 60catgagaaca cggtctttga
tggggataat tactctgaat ctaccaggct gattaagcca 120cagcagatca gcaggtgaga
attcaactgt ccagatagaa aggtggacat ggaaaaattg 180ggctttgcaa atggtcaccc
aattcttgcc ttcctggtct ccagatcacc cttcctatac 240cgccactctg gagaaagaag
tacagaacgc taacaaggat ggcttggagt tgcagtggtc 300acctcagatc ttaaggtcac
tttggagatg gaacccctgt gactaggaat ggcagaagag 360aaaggtagaa agagattgag
tcctggggat gtggcagagc accatcctag ccccgtactg 420cgtacttctg gacttccttt
aaattgagag aaaca 4559061PRTHomo sapiens
90Cys Phe Ser Gln Phe Lys Gly Ser Pro Glu Val Arg Ser Thr Gly Leu1
5 10 15Gly Trp Cys Ser Ala Thr
Ser Pro Gly Leu Asn Leu Phe Leu Pro Phe 20 25
30Ser Ser Ala Ile Pro Ser His Arg Gly Ser Ile Ser Lys
Val Thr Leu 35 40 45Arg Ser Glu
Val Thr Thr Ala Thr Pro Ser His Pro Cys 50 55
609120DNAArtificial SequenceOligonucleotide 91gaacacggtc
tttgatgggg
209221DNAArtificial SequenceOligonucleotide 92gccatccttg ttagcgttct g
21931230DNAHomo sapiens
93aggggcagag gggtcttccc aaccctaccc ctattttcgg tgatttttgt gtgagaatat
60taatattaaa aataaacgga gaaaaaaaat cctgtttcgc taacggctgg tggtagcagg
120ttgagtaccg ggagggctgc aagaccgtga ttgatgggga ggactgcgca gaccctggcg
180agggtgagcc cctccccgga ggcgcctgtg gaatgtccag ggctctggtc cgctcctcgg
240gatggggggt gcctaatcct agagccgcat tccaggataa ggggggtggg gagaggctgg
300gccgggggag gggcaggaaa gagggctata agggcagcgg cccaggcggg cgggatccag
360gcgggccatg gcggatgtcc ccggggcaca gcgagcggtt cctggtgacg gcccagagcc
420ccgggacccc ctggactgtt gggcctgcgc tgttcttgta acagcccaga atctgctggt
480ggctgccttc aatcttctcc tgctggtgct ggtgctaggg accatcttgc tacccgctgt
540caccatgctg ggcttcggct tcctctgcca ctctcagttc ctgcgctccc aggcaccccc
600ttgcaccgcg cacctgcggg accccggttt cacggcccta ctggtcaccg gattcctgct
660cctcgtgccg ctgctcgtgc ttgctctggc cagctaccgc cgcctctgcc tgcgcctccg
720cctagccgat tgcctcgtgc cctacagccg agccctttat cggcgtcggc gcgccccgca
780gccgcggcaa atccgggcct caccagggtc ccaggccgtt cccacatcag gaaaggtctg
840ggtctaatga ccctcgagtc aagaacaacc ctgacggctg ccctccctct tattcggccc
900aaggacttga agcccggcat cttccgacct gccctgcccc cacccctgcc tgagcggagt
960cctagcatcc ccttgggagc agcagcgtca gtggacccag tgctgagaaa agcccccaca
1020tcccggaaaa cccactttcc tttcacgacc cacatctcaa tcctgaacat ctaggctgga
1080acctgcacac ctccccctca gctccgtcgt gaatgggaca acaatctcgt gccctcgttt
1140tatggtgcag cttctctagt atttctgggg ctggggggcg gggctggagg ggaaggagtg
1200tccacgcatc aataaagatt taacgaactg
123094159PRTHomo sapiens 94Met Ala Asp Val Pro Gly Ala Gln Arg Ala Val
Pro Gly Asp Gly Pro1 5 10
15Glu Pro Arg Asp Pro Leu Asp Cys Trp Ala Cys Ala Val Leu Val Thr
20 25 30Ala Gln Asn Leu Leu Val Ala
Ala Phe Asn Leu Leu Leu Leu Val Leu 35 40
45Val Leu Gly Thr Ile Leu Leu Pro Ala Val Thr Met Leu Gly Phe
Gly 50 55 60Phe Leu Cys His Ser Gln
Phe Leu Arg Ser Gln Ala Pro Pro Cys Thr65 70
75 80Ala His Leu Arg Asp Pro Gly Phe Thr Ala Leu
Leu Val Thr Gly Phe 85 90
95Leu Leu Leu Val Pro Leu Leu Val Leu Ala Leu Ala Ser Tyr Arg Arg
100 105 110Leu Cys Leu Arg Leu Arg
Leu Ala Asp Cys Leu Val Pro Tyr Ser Arg 115 120
125Ala Leu Tyr Arg Arg Arg Arg Ala Pro Gln Pro Arg Gln Ile
Arg Ala 130 135 140Ser Pro Gly Ser Gln
Ala Val Pro Thr Ser Gly Lys Val Trp Val145 150
1559521DNAArtificial SequenceOligonucleotide 95ttcctctgcc actctcagtt
c 219621DNAArtificial
SequenceOligonucleotide 96cgataaaggg ctcggctgta g
21971020DNAHomo sapiens 97atggaggagg aggaggagga
tgatgactat gagaactcaa cacctcccta caaggacctt 60cctcccaagc cagggaccat
ggaggaggag gaggaggatg atgactatga gaactcaaca 120cctccctaca aggaccttcc
tcccaagcca gggaccatgg aggaggagga ggaggatgat 180gactatgaga actcaacacc
tccctacaag gaccttcctc ccaagccagg ttcaagtgct 240ccaccaagac ctccaagggc
agcaaaggaa acagagaaac ccccacttcc ttgcaagccc 300cggaacatga caggcctgga
cctcgccgct gtcacctgtc cacctcctca actggctgtg 360aatcttgagc cttctccatt
gcagccatcc ctggccgcaa ctccagtccc ctggctcaat 420cagaggtctg gaggtcctgg
ctgctgccag aagaggtgga tggtgtacct gtgtctgctg 480gtggtgactt ccctgttcct
gggctgcctt ggtctcactg tgaccctgat taagttgact 540ggcatggcag ggctagctgg
cctgaagcat gacattgccc gtgtaagagc tgacaccaac 600cagtccctgg tggaactttg
gggcttatta gactgccgcc gaattacctg tcctgaaggc 660tggctgccct ttgagggcaa
gtgttactac ttctccccaa gcaccaagtc atgggatgag 720gcccggatgt tctgccagga
gaattactct cacttggtca tcatcaatag ctttgctgag 780cacaattttg tggccaaggc
ccatggctct ccacgggtgt actggctggg gctgaatgac 840agggcccagg aaggggactg
gaggtggctg gatgggtctc ctgtgacatt aaggcaacca 900gaggaaccca ataacatcca
cgatgaggac tgtgctacca tgaacaaagg tggcacctgg 960aatgatctct cttgctacaa
aactacgtat tggatttgtg agcggaaatg ttcctgttga 102098339PRTHomo sapiens
98Met Glu Glu Glu Glu Glu Asp Asp Asp Tyr Glu Asn Ser Thr Pro Pro1
5 10 15Tyr Lys Asp Leu Pro Pro
Lys Pro Gly Thr Met Glu Glu Glu Glu Glu 20 25
30Asp Asp Asp Tyr Glu Asn Ser Thr Pro Pro Tyr Lys Asp
Leu Pro Pro 35 40 45Lys Pro Gly
Thr Met Glu Glu Glu Glu Glu Asp Asp Asp Tyr Glu Asn 50
55 60Ser Thr Pro Pro Tyr Lys Asp Leu Pro Pro Lys Pro
Gly Ser Ser Ala65 70 75
80Pro Pro Arg Pro Pro Arg Ala Ala Lys Glu Thr Glu Lys Pro Pro Leu
85 90 95Pro Cys Lys Pro Arg Asn
Met Thr Gly Leu Asp Leu Ala Ala Val Thr 100
105 110Cys Pro Pro Pro Gln Leu Ala Val Asn Leu Glu Pro
Ser Pro Leu Gln 115 120 125Pro Ser
Leu Ala Ala Thr Pro Val Pro Trp Leu Asn Gln Arg Ser Gly 130
135 140Gly Pro Gly Cys Cys Gln Lys Arg Trp Met Val
Tyr Leu Cys Leu Leu145 150 155
160Val Val Thr Ser Leu Phe Leu Gly Cys Leu Gly Leu Thr Val Thr Leu
165 170 175Ile Lys Leu Thr
Gly Met Ala Gly Leu Ala Gly Leu Lys His Asp Ile 180
185 190Ala Arg Val Arg Ala Asp Thr Asn Gln Ser Leu
Val Glu Leu Trp Gly 195 200 205Leu
Leu Asp Cys Arg Arg Ile Thr Cys Pro Glu Gly Trp Leu Pro Phe 210
215 220Glu Gly Lys Cys Tyr Tyr Phe Ser Pro Ser
Thr Lys Ser Trp Asp Glu225 230 235
240Ala Arg Met Phe Cys Gln Glu Asn Tyr Ser His Leu Val Ile Ile
Asn 245 250 255Ser Phe Ala
Glu His Asn Phe Val Ala Lys Ala His Gly Ser Pro Arg 260
265 270Val Tyr Trp Leu Gly Leu Asn Asp Arg Ala
Gln Glu Gly Asp Trp Arg 275 280
285Trp Leu Asp Gly Ser Pro Val Thr Leu Arg Gln Pro Glu Glu Pro Asn 290
295 300Asn Ile His Asp Glu Asp Cys Ala
Thr Met Asn Lys Gly Gly Thr Trp305 310
315 320Asn Asp Leu Ser Cys Tyr Lys Thr Thr Tyr Trp Ile
Cys Glu Arg Lys 325 330
335Cys Ser Cys9921DNAArtificial SequenceOligonucleotide 99atagctttgc
tgagcacctt c
2110021DNAArtificial SequenceOligonucleotide 100aagagacact cagatatgga c
211011680DNAHomo sapiens
101atggccaatg tcaccttggt gacaggattt cttcttatgg ggttttctaa tatccagaag
60ctgcggattt tatatggtgt gctcttccta ctgatttacc tggcagccct aatgagtaac
120cttctcatca ttactctcat taccctggac gtaaagctcc aaacacccat gtacttcttc
180ctgaagaact tatccttttt ggatgtcttc ctggtgtctg ttccaatccc aaaattcatt
240gtcaacaacc taacccacaa caattccatt tccattctag gatgtgcctt ccagctactt
300ttaatgactt ccttctcagc aggagagata tttatcctca ctgccatgtc ctatgaccgc
360tatgtagcca tctgctgtcc cctgaactac gaggtaatca tgaatactgg agtctgtgtg
420ttaatggcaa gtgtttcctg ggccattgga gggctctttg gtactgcgta cacagctggc
480acattttcca tgcctttctg tggctccagt gtgattccac agtttttctg tgatgttcct
540tcattactaa ggatttcctg ttctgaaaca ctaatggtaa tttatgcagg tattggagtt
600ggtgcatgtt taagcatttc ttgtttcatc tgtattgtga tctcttacat ttatatcttc
660tccactgtac tgaagatccc taccactaaa ggactgtgtg attgggttaa agggctcagt
720gcggggactc tgttttctgg tttcagtacc acaatggaca caggcaacaa aactctgccc
780caggactttc tcttactggg ctttcctggt tctcaaactc ttcagctctc tctctttatg
840ctttttctgg tgatgtacat cctcacagtt agtggtaatg tggctatctt gatgttggtg
900agcacctccc atcagttgca tacccccatg tacttctttc tgagcaacct ctccttcctg
960gagatttggt ataccacagc agcagtgccc aaagcactgg ccatcctact ggggagaagt
1020cagaccatat catttacaag ctgtcttttg cagatgtact ttgttttctc attaggctgc
1080acagagtact tcctcctggc agccatggct tatgaccgct gtcttgccat ctgctatcct
1140ttacactacg gagccatcat gagtagcctg ctctcagcgc agctggccct gggctcctgg
1200gtgtgtggtt tcgtggccat tgcagtgccc acagccctca tcagtggcct gtccttctgt
1260ggcccccgtg ccatcaacca cttcttctgt gacattgcac cctggattgc cctggcctgc
1320accaacacac aggcagtaga gcttgtggcc tttgtgattg ctgttgtggt tatcctgagt
1380tcatgcctca tcacctttgt ctcctatgtg tacatcatca gcaccatcct caggatcccc
1440tctgccagtg gccggagcaa agccttctcc acgtgctcct cgcatctcac cgtggtgctc
1500atttggtatg ggtccacagt tttccttcac gtccgcacct ctatcaaaga tgccttggat
1560ctgatcaaag ctgtccacgt cctgaacact gtggtgactc cagttttaaa ccccttcatc
1620tatacgcttc gtaataagga agtaagagag actctgctga agaaatggaa gggaaaataa
1680102559PRTHomo sapiens 102Met Ala Asn Val Thr Leu Val Thr Gly Phe Leu
Leu Met Gly Phe Ser1 5 10
15Asn Ile Gln Lys Leu Arg Ile Leu Tyr Gly Val Leu Phe Leu Leu Ile
20 25 30Tyr Leu Ala Ala Leu Met Ser
Asn Leu Leu Ile Ile Thr Leu Ile Thr 35 40
45Leu Asp Val Lys Leu Gln Thr Pro Met Tyr Phe Phe Leu Lys Asn
Leu 50 55 60Ser Phe Leu Asp Val Phe
Leu Val Ser Val Pro Ile Pro Lys Phe Ile65 70
75 80Val Asn Asn Leu Thr His Asn Asn Ser Ile Ser
Ile Leu Gly Cys Ala 85 90
95Phe Gln Leu Leu Leu Met Thr Ser Phe Ser Ala Gly Glu Ile Phe Ile
100 105 110Leu Thr Ala Met Ser Tyr
Asp Arg Tyr Val Ala Ile Cys Cys Pro Leu 115 120
125Asn Tyr Glu Val Ile Met Asn Thr Gly Val Cys Val Leu Met
Ala Ser 130 135 140Val Ser Trp Ala Ile
Gly Gly Leu Phe Gly Thr Ala Tyr Thr Ala Gly145 150
155 160Thr Phe Ser Met Pro Phe Cys Gly Ser Ser
Val Ile Pro Gln Phe Phe 165 170
175Cys Asp Val Pro Ser Leu Leu Arg Ile Ser Cys Ser Glu Thr Leu Met
180 185 190Val Ile Tyr Ala Gly
Ile Gly Val Gly Ala Cys Leu Ser Ile Ser Cys 195
200 205Phe Ile Cys Ile Val Ile Ser Tyr Ile Tyr Ile Phe
Ser Thr Val Leu 210 215 220Lys Ile Pro
Thr Thr Lys Gly Leu Cys Asp Trp Val Lys Gly Leu Ser225
230 235 240Ala Gly Thr Leu Phe Ser Gly
Phe Ser Thr Thr Met Asp Thr Gly Asn 245
250 255Lys Thr Leu Pro Gln Asp Phe Leu Leu Leu Gly Phe
Pro Gly Ser Gln 260 265 270Thr
Leu Gln Leu Ser Leu Phe Met Leu Phe Leu Val Met Tyr Ile Leu 275
280 285Thr Val Ser Gly Asn Val Ala Ile Leu
Met Leu Val Ser Thr Ser His 290 295
300Gln Leu His Thr Pro Met Tyr Phe Phe Leu Ser Asn Leu Ser Phe Leu305
310 315 320Glu Ile Trp Tyr
Thr Thr Ala Ala Val Pro Lys Ala Leu Ala Ile Leu 325
330 335Leu Gly Arg Ser Gln Thr Ile Ser Phe Thr
Ser Cys Leu Leu Gln Met 340 345
350Tyr Phe Val Phe Ser Leu Gly Cys Thr Glu Tyr Phe Leu Leu Ala Ala
355 360 365Met Ala Tyr Asp Arg Cys Leu
Ala Ile Cys Tyr Pro Leu His Tyr Gly 370 375
380Ala Ile Met Ser Ser Leu Leu Ser Ala Gln Leu Ala Leu Gly Ser
Trp385 390 395 400Val Cys
Gly Phe Val Ala Ile Ala Val Pro Thr Ala Leu Ile Ser Gly
405 410 415Leu Ser Phe Cys Gly Pro Arg
Ala Ile Asn His Phe Phe Cys Asp Ile 420 425
430Ala Pro Trp Ile Ala Leu Ala Cys Thr Asn Thr Gln Ala Val
Glu Leu 435 440 445Val Ala Phe Val
Ile Ala Val Val Val Ile Leu Ser Ser Cys Leu Ile 450
455 460Thr Phe Val Ser Tyr Val Tyr Ile Ile Ser Thr Ile
Leu Arg Ile Pro465 470 475
480Ser Ala Ser Gly Arg Ser Lys Ala Phe Ser Thr Cys Ser Ser His Leu
485 490 495Thr Val Val Leu Ile
Trp Tyr Gly Ser Thr Val Phe Leu His Val Arg 500
505 510Thr Ser Ile Lys Asp Ala Leu Asp Leu Ile Lys Ala
Val His Val Leu 515 520 525Asn Thr
Val Val Thr Pro Val Leu Asn Pro Phe Ile Tyr Thr Leu Arg 530
535 540Asn Lys Glu Val Arg Glu Thr Leu Leu Lys Lys
Trp Lys Gly Lys545 550
55510325DNAArtificial SequenceOligonucleotide 103catttcttgt ttcatctgta
ttgtg 2510420DNAArtificial
SequenceOligonucleotide 104tgttgcctgt gtccattgtg
20105499DNAHomo sapiens 105acacccacat ggtcggcgtg
caggatattt cgctggaccc tagaaaagcc accacgacct 60gtgggccatg atgctacccc
aatggctgct gctgctgttc cttctcttct tctttctctt 120cctcctcacc aggggctcac
tttctccaac aaaatacaac cttttggagc tcaaggagtc 180ttgcatccgg aaccaggact
gcgagactgg ctgctgccaa cgtgctccag acaattgcga 240gtcgcactgc gcggagaagg
ggtccgaggg cagtctgtgt caaacgcagg tgttctttgg 300ccaatataga gcgtgtccct
gcctgcggaa cctgacttgt atatattcaa agaatgagaa 360atggcttagc atcgcctatg
gccgttgtca gaaaattgga aggcagaagt tggctaagaa 420aatgttcttc tagtgctccc
tccttcttgc tgcctcctcc tcctccacct gctctcctcc 480ctacccagag ctctgtgtt
499106121PRTHomo sapiens
106Met Met Leu Pro Gln Trp Leu Leu Leu Leu Phe Leu Leu Phe Phe Phe1
5 10 15Leu Phe Leu Leu Thr Arg
Gly Ser Leu Ser Pro Thr Lys Tyr Asn Leu 20 25
30Leu Glu Leu Lys Glu Ser Cys Ile Arg Asn Gln Asp Cys
Glu Thr Gly 35 40 45Cys Cys Gln
Arg Ala Pro Asp Asn Cys Glu Ser His Cys Ala Glu Lys 50
55 60Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Val Phe
Phe Gly Gln Tyr65 70 75
80Arg Ala Cys Pro Cys Leu Arg Asn Leu Thr Cys Ile Tyr Ser Lys Asn
85 90 95Glu Lys Trp Leu Ser Ile
Ala Tyr Gly Arg Cys Gln Lys Ile Gly Arg 100
105 110Gln Lys Leu Ala Lys Lys Met Phe Phe 115
12010717DNAArtificial SequenceOligonucleotide 107tgtgtcaaac
gcaggtg
1710820DNAArtificial SequenceOligonucleotide 108ggagggagca ctagaagaac
20109659DNAHomo sapiens
109agcaaattac accattaatg tcatcctggc gaatgaaaca agagaatagt atttatcaga
60gaaagtctgg tgagttgaag tccaagaccc caggaaacaa ctagccctgc tgggctgccc
120ctccttcgga gtgggactat atgatcctca tcaggccaat ccacgtcaca gaatggtcta
180ggcattggat gagtgcctca atctgagcca atgaaggtca ttgctgagac attttactgg
240ttgccaggct gcaggcatcc caggcttcct gctgccctca tgtctacaac ctgtcgtctg
300gaacattcca ggagccactt ttatcacttg cagcaatctt cttcagtgag ttccccagga
360cttgatttca tcttacaatc tgattccatg tgtctcccat attttaagga ttctttatta
420tttctggctt acagagaaca aacattattt tttgctttcc tggtctgttc tagattttca
480aaaataactc tgtcacttct gttatatggt atcattgctt gtaattatct atttacttat
540ctgtctctgg actggactct ttacagacag gcaataacta attatctgtc tgtctggcat
600ttggtagtca ctcataaatc gtttattgca ttactaacta aataaaaaag ttgaccttg
659110144PRTHomo sapiens 110Met Lys Val Ile Ala Glu Thr Phe Tyr Trp Leu
Pro Gly Cys Arg His1 5 10
15Pro Arg Leu Pro Ala Ala Leu Met Ser Thr Thr Cys Arg Leu Glu His
20 25 30Ser Arg Ser His Phe Tyr His
Leu Gln Gln Ser Ser Ser Val Ser Ser 35 40
45Pro Gly Leu Asp Phe Ile Leu Gln Ser Asp Ser Met Cys Leu Pro
Tyr 50 55 60Phe Lys Asp Ser Leu Leu
Phe Leu Ala Tyr Arg Glu Gln Thr Leu Phe65 70
75 80Phe Ala Phe Leu Val Cys Ser Arg Phe Ser Lys
Ile Thr Leu Ser Leu 85 90
95Leu Leu Tyr Gly Ile Ile Ala Cys Asn Tyr Leu Phe Thr Tyr Leu Ser
100 105 110Leu Asp Trp Thr Leu Tyr
Arg Gln Ala Ile Thr Asn Tyr Leu Ser Val 115 120
125Trp His Leu Val Val Thr His Lys Ser Phe Ile Ala Leu Leu
Thr Lys 130 135 14011125DNAArtificial
SequenceOligonucleotide 111atcctggcga atgaaacaag agaat
2511226DNAArtificial SequenceOligonucleotide
112gcaaccagta aaatgtctca gcaatg
26113831DNAHomo sapiens 113atgcgaagaa agaacctcac agaggtaaca gagtttgttt
tcctgggatt ctccagattc 60cacaaacatc acatcactct ctttgtggtt tttctcatcc
tgtacacatt aactgtggct 120ggcaatgcca tcatcatgac catcatctgc attgaccgtc
acctccacac tcccatgtac 180ttcttcctga gcatgctggc tagctcaaag acagtgtaca
cactgttcat cattccacag 240atgctctcca gcttcgtaac ccagacccag ccaatctccc
tagcaggttg taccacccaa 300acgttcttct ttgttacctt ggccatcaac aattgcttct
tgctcacagt gatgggctat 360gaccactata tggccatctg caatcccttg agatacaggg
tcattacgag caagaaggtg 420tgtgtccagc tggtgtgtgg agcctttagc attggcctgg
ccatggcagc tgtccaggta 480acatccatat ttaccttacc tttttgtcac acggtggttg
gtcatttctt ctgtgacatc 540ctccctgtca tgaaactctc ctgtattaat accactatca
atgagataat caattttgtt 600gtcaggttat ttgtcatcct ggtccccatg ggtctggtct
tcatctccta tgtcctcatc 660atctccactg tcctcaagat tgcctcagct gagggttgga
agaagacctt tgccacctgt 720gccttccacc tcactgtggt cattgtccat tatggctgtg
cttccattgc ctacctcatg 780cccaagtcag aaaactctat agaacaagac ctccttctct
cagtgaccta a 831114276PRTHomo sapiens 114Met Arg Arg Lys Asn
Leu Thr Glu Val Thr Glu Phe Val Phe Leu Gly1 5
10 15Phe Ser Arg Phe His Lys His His Ile Thr Leu
Phe Val Val Phe Leu 20 25
30Ile Leu Tyr Thr Leu Thr Val Ala Gly Asn Ala Ile Ile Met Thr Ile
35 40 45Ile Cys Ile Asp Arg His Leu His
Thr Pro Met Tyr Phe Phe Leu Ser 50 55
60Met Leu Ala Ser Ser Lys Thr Val Tyr Thr Leu Phe Ile Ile Pro Gln65
70 75 80Met Leu Ser Ser Phe
Val Thr Gln Thr Gln Pro Ile Ser Leu Ala Gly 85
90 95Cys Thr Thr Gln Thr Phe Phe Phe Val Thr Leu
Ala Ile Asn Asn Cys 100 105
110Phe Leu Leu Thr Val Met Gly Tyr Asp His Tyr Met Ala Ile Cys Asn
115 120 125Pro Leu Arg Tyr Arg Val Ile
Thr Ser Lys Lys Val Cys Val Gln Leu 130 135
140Val Cys Gly Ala Phe Ser Ile Gly Leu Ala Met Ala Ala Val Gln
Val145 150 155 160Thr Ser
Ile Phe Thr Leu Pro Phe Cys His Thr Val Val Gly His Phe
165 170 175Phe Cys Asp Ile Leu Pro Val
Met Lys Leu Ser Cys Ile Asn Thr Thr 180 185
190Ile Asn Glu Ile Ile Asn Phe Val Val Arg Leu Phe Val Ile
Leu Val 195 200 205Pro Met Gly Leu
Val Phe Ile Ser Tyr Val Leu Ile Ile Ser Thr Val 210
215 220Leu Lys Ile Ala Ser Ala Glu Gly Trp Lys Lys Thr
Phe Ala Thr Cys225 230 235
240Ala Phe His Leu Thr Val Val Ile Val His Tyr Gly Cys Ala Ser Ile
245 250 255Ala Tyr Leu Met Pro
Lys Ser Glu Asn Ser Ile Glu Gln Asp Leu Leu 260
265 270Leu Ser Val Thr 27511518DNAArtificial
SequenceOligonucleotide 115cttcgtaacc cagaccca
1811618DNAArtificial SequenceOligonucleotide
116cttgctcgta atgaccct
181171233DNAHomo sapiens 117gaagcagcca ccaccatctt gggagctctg ggagcaagga
cccctgtaac acattcatcc 60ttgaatgaca aaatgtctgg tccagcatgg tattataaca
taaacatgaa gaggaagaga 120catgagagat acgcacagtg aagagaccaa gctgggacac
agtacgaagg tggcatctgc 180acgccaagca gagggacctc agaagaaact gagccagcca
gcaccccacc ttcgtctttg 240acctccagcc tccagaacta aggatagagc tcttcatctc
tgttagaaac gaccatcaaa 300aagatacatc aattcattag aatcaaaagg acatgagtta
tcagaattct ttctcctgaa 360agaaagtgga gatcaaaggt aaaacttcta gagaatgaga
tgaaggcaga tgaaagaagt 420taacaagaca ttacatgact tgataatatt gcatgtatgc
aaaaacctta tgaaatcaac 480tgtgttctag cgaccacttg tttttctttt tgtcataata
ctttttattc tcttgcaatg 540atattgattc atctgcacct gacatcaact ctgcatttgt
agaaggtgat aagaatacag 600ggaaatggaa taagtggctt tgcctgcaat cccgcagcag
cagaaatgtc catttcctct 660ctcctgaata atactacatt ctccactggg ttccacaagt
ttcgaggtaa aagcatgaac 720atacacgaag tcaccatcac taccctcacc accaccacca
ttatttccac catattcacc 780cttttaatac gcaaacttcc tccaaggctt cctgaagtca
cccagaaatg catttcccca 840agagtgagtt gtgctaacat tgtatcctat ggaactctgg
gaagctaccc agatcctcaa 900ctcttggagt cttgctgact gcatgttcca ggctccacat
ttaagctcca gtgactgctg 960atgactgcat gacctaacac atgtcctcaa tcctttcttg
gcctcagttt cttcaccagt 1020gaattctgaa tgctggaatt ggcaatattt caggttcttt
ccaactggaa atacccatgc 1080taataatttt agtaagtcaa tagccataga aacctactga
caaaatgagt attttaacag 1140agacagttgt actttcttaa tttttagcag aagggaatgc
atatgtataa tatctatgtt 1200gccttctatg tgtaaaaata aatacacaga cac
123311890PRTHomo sapiens 118Met Ser Ile Ser Ser Leu
Leu Asn Asn Thr Thr Phe Ser Thr Gly Phe1 5
10 15His Lys Phe Arg Gly Lys Ser Met Asn Ile His Glu
Val Thr Ile Thr 20 25 30Thr
Leu Thr Thr Thr Thr Ile Ile Ser Thr Ile Phe Thr Leu Leu Ile 35
40 45Arg Lys Leu Pro Pro Arg Leu Pro Glu
Val Thr Gln Lys Cys Ile Ser 50 55
60Pro Arg Val Ser Cys Ala Asn Ile Val Ser Tyr Gly Thr Leu Gly Ser65
70 75 80Tyr Pro Asp Pro Gln
Leu Leu Glu Ser Cys 85
9011919DNAArtificial SequenceOligonucleotide 119caccccacct tcgtctttg
1912024DNAArtificial
SequenceOligonucleotide 120gttttacctt tgatctccac tttc
241214209DNAHomo sapiens 121agttgcttga aagcaacgtg
cctattcaca tggagaatct tccctttcct ttaaaattac 60ttagtgcctc atcgctaaac
gcccccagct ccacaccatg ggtgttggat atcttcctca 120ccttggtgtt tgccctgggg
ttcttcttcc tattactccc ctacttatct tacttccatt 180gtgatgaccc accctcacca
tcgcctggga agagaaagtg tccagtaggg cggaggcgga 240ggcccagagg caggatgaaa
aaccacagtc tgagagctgg tagagagtgc ccgagaggcc 300tggaggagac ttcggacctt
ctttcacaac tgcagagcct cctggggcca caccttgaca 360aaggtgactt tggtcagctc
tccggtccag accccccagg tgaggtgggc gaaagagcac 420ctgatggagc ctcccagtcc
tctcatgagc ctatggaaga tgctgctccc attctctccc 480cgttagcttc cccggatcct
caagccaagc atcctcagga tctggcctcc accccatcac 540caggcccaat gaccacctca
gtctcctccc taagtgcctc ccagccacca gaaccttccc 600ttcccctaga acacccctca
cccgagccac ctgcactttt ccctcaccca ccacacaccc 660ctgatcctct ggcctgctct
ccgcctcctc caaaaggctt cactgctcct cccctgcggg 720actccacact gataactcca
tctcactgtg actcagtggc acttccactg ggcaccgtcc 780ctcaaagctt gtctccacat
gaggatttgg tggcttctgt cccagccatc tcaggccttg 840gtggctcaaa cagtcatgtt
tctgcctcct cccggtggca ggagactgcc agaacctcgt 900gcgcctttaa ctcatcagtc
cagcaagatc ctctttcccg ccacccacca gagacctgtc 960agatggaagc tggtagcctg
tttttgctca gctctgatgg ccagaatgtc gtggggatac 1020aagtcacaga aacagccaag
gtcaacattt gggaagaaaa agaaaatgtt ggatcattta 1080caaatcaaat gaccccagaa
aagcacttaa attctttggg gaatttggct aaatcattgg 1140atgctgagca ggacaccaca
aacccaaaac ccttctggaa catgggagag aactcgaaac 1200agctgcccgg acctcagaag
tgctcagatc ctaggctctt gcaggaaagt ttttggaaga 1260attatagcca gcttttctgg
ggcctcccct ctctgcacag cgagtccctg gtggctaacg 1320cctgggtaac tgacaggtct
tatactttac agtctcctcc tttcttgttc aatgaaatgt 1380ccaatgtctg cccaattcaa
agggagacta caatgtcccc actgcttttc caggcccagc 1440ccctgtccca ccgccaaccc
tttatttcat ccacacccca attcctgccc acacctatgg 1500ctcaggccga ggctcaggcc
catcttcagt cttctttccc agtcctatct cctgcttttc 1560catccctgat taagaacact
ggagtagctt gccctgcatc gcagaataaa gtgcaagctc 1620tctccctacc tgaaactcag
caccctgaat ggcctttgtt gaggaaacaa ctagaaggta 1680ggttggcttt accctctagg
gtccaaaaat ctcaggacgt ctttagtgtc tccactccta 1740accttcccca ggaaagtttg
acatccattc tgcctgagaa ctttccagtc agtcctgaac 1800tccggagaca actggagcaa
cacataaaaa agtggatcat ccaacactgg ggcaacctgg 1860gaaggatcca agagtctctg
gatctgatgc agcttcggga cgaatcacca gggacaagtc 1920aggccaaggg caaacccagt
ccctggcagt cctccacgtc cacaggtgaa agcagcaagg 1980aggcacagaa ggtgaagttc
cagctagaga gggacctgtg cccacatctg gggcaaattc 2040tgggtgagac cccacaaaat
ctatccaggg acatgaaaag cttcccacgg aaggttctgg 2100gggtgacttc tgaggagtcg
gaaaggaact tgaggaagcc cttgaggagt gactcgggaa 2160gtgatttatt aagatgcaca
gagaggactc atatagaaaa catcctgaaa gcccacatgg 2220gcaggaactt gggccagacc
aacgagggct tgatccccgt gcgtgtgcgt cgatcctggc 2280ttgctgtcaa ccaggctctt
cccgtgtcca acacccatgt gaaaaccagc aatctagcag 2340ccccgaaaag tgggaaagcc
tgtgtgaaca cagcccaggt gctttccttc ctcgagccgt 2400gtactcagca ggggttggga
gcccatattg tgaggttttg ggccaaacac aggtggggtc 2460tacccctcag ggtcctcaag
cccattcagt gctttaaact ggaaaaggtt tcatccttgt 2520cccttacgca gcttgctggt
ccctcctcag ccacctgtga atctggggct ggctcagaag 2580ttgaggtgga catgttcctt
agaaagccac caatggcaag tctgagaaag caggtgctga 2640ccaaagcatc tgatcacatg
ccagagagtc ttctggcctc ctcacctgca tggaagcagt 2700tccagagggc accgcgagga
atcccatctt ggaatgatca tgggcccttg aagcctcctc 2760cagctggaca ggagggcagg
tggccatcta agcccctcac gtacagcctc acaggcagca 2820cccagcagag caggagctta
ggagcccaat cttcaaaggc tggagagaca agggaggcag 2880tgccacaatg cagagtcccc
ttggaaacct gtatgctggc aaacctccaa gccacaagtg 2940aggatgtgca tggtttcgag
gctccaggga ccagcaaaag ctctctacac cctagagtgt 3000ctgtctccca agatccaaga
aagctgtgtc ttatggagga ggttgttagt gaatttgagc 3060ctggaatggc cacaaagtca
gagacccagc ctcaagtttg tgccgctgtt gtgctccttc 3120cagatgggca agcatctgtt
gtgccccacg cttcagagaa tttggtttct caagtgcccc 3180agggccatct ccagagcatg
cctactggga acatgcgggc ttcccaggag ctacatgacc 3240tcatggcagc cagaaggagc
aaactggtgc aagaggagcc cagaaaccca aactgtcaag 3300gctcatgcaa gagccaaagg
ccaatgtttc cccctattca caagagtgag aagtctagga 3360agcccaactt agaaaaacat
gaagaaaggc ttgaaggatt gaggactcct caacttaccc 3420cagtcaggaa aacagaagac
acccatcagg atgaaggcgt ccagctactg ccatcaaaga 3480aacagcctcc ttcagtaagc
cactttggag aaaacatcaa gcaatttttt cagtggattt 3540tttcaaagaa aaaaagcaag
ccagcaccag tcactgctga gagccaaaaa acagtaaaaa 3600acagatcatg tgtgtacagc
agcagtgctg aagctcaggg tctcatgacg gcagttggac 3660aaatgctgga caagaaaatg
tcactttgcc atgcgcacca tgcctcgaag gtaaatcagc 3720acaaacagaa gtttcaagcc
ccagtctgtg ggtttccctg caaccacagg cacctcttct 3780actcagaaca tggcagaata
ctgagctatg cagccagcag tcaacaagcc actctcaaga 3840gccagggttg tcccaacaga
gacaggcaaa tcagaaatca acagcccttg aaaagtgtgc 3900ggtgcaacaa tgagcaatgg
ggcctgcgac atccccaaat cttgcacccc aagaaagctg 3960tatccccagt cagtccccct
cagcactggc cgaagacatc cggtgcctct agccaccatc 4020accactgtcc aaggcactgt
cttctttggg aaggtatctg atttggtcag tcacaaattc 4080ttttttagcc ttccctggag
aaaaacaagt ccccaagaaa aaattcactc tatgtagaga 4140aaaaatattt tctctcatgt
tagtaaatgc agaacattta atattccaca atatatatgg 4200ttttttatt
42091221343PRTHomo sapiens
122Met Glu Asn Leu Pro Phe Pro Leu Lys Leu Leu Ser Ala Ser Ser Leu1
5 10 15Asn Ala Pro Ser Ser Thr
Pro Trp Val Leu Asp Ile Phe Leu Thr Leu 20 25
30Val Phe Ala Leu Gly Phe Phe Phe Leu Leu Leu Pro Tyr
Leu Ser Tyr 35 40 45Phe His Cys
Asp Asp Pro Pro Ser Pro Ser Pro Gly Lys Arg Lys Cys 50
55 60Pro Val Gly Arg Arg Arg Arg Pro Arg Gly Arg Met
Lys Asn His Ser65 70 75
80Leu Arg Ala Gly Arg Glu Cys Pro Arg Gly Leu Glu Glu Thr Ser Asp
85 90 95Leu Leu Ser Gln Leu Gln
Ser Leu Leu Gly Pro His Leu Asp Lys Gly 100
105 110Asp Phe Gly Gln Leu Ser Gly Pro Asp Pro Pro Gly
Glu Val Gly Glu 115 120 125Arg Ala
Pro Asp Gly Ala Ser Gln Ser Ser His Glu Pro Met Glu Asp 130
135 140Ala Ala Pro Ile Leu Ser Pro Leu Ala Ser Pro
Asp Pro Gln Ala Lys145 150 155
160His Pro Gln Asp Leu Ala Ser Thr Pro Ser Pro Gly Pro Met Thr Thr
165 170 175Ser Val Ser Ser
Leu Ser Ala Ser Gln Pro Pro Glu Pro Ser Leu Pro 180
185 190Leu Glu His Pro Ser Pro Glu Pro Pro Ala Leu
Phe Pro His Pro Pro 195 200 205His
Thr Pro Asp Pro Leu Ala Cys Ser Pro Pro Pro Pro Lys Gly Phe 210
215 220Thr Ala Pro Pro Leu Arg Asp Ser Thr Leu
Ile Thr Pro Ser His Cys225 230 235
240Asp Ser Val Ala Leu Pro Leu Gly Thr Val Pro Gln Ser Leu Ser
Pro 245 250 255His Glu Asp
Leu Val Ala Ser Val Pro Ala Ile Ser Gly Leu Gly Gly 260
265 270Ser Asn Ser His Val Ser Ala Ser Ser Arg
Trp Gln Glu Thr Ala Arg 275 280
285Thr Ser Cys Ala Phe Asn Ser Ser Val Gln Gln Asp Pro Leu Ser Arg 290
295 300His Pro Pro Glu Thr Cys Gln Met
Glu Ala Gly Ser Leu Phe Leu Leu305 310
315 320Ser Ser Asp Gly Gln Asn Val Val Gly Ile Gln Val
Thr Glu Thr Ala 325 330
335Lys Val Asn Ile Trp Glu Glu Lys Glu Asn Val Gly Ser Phe Thr Asn
340 345 350Gln Met Thr Pro Glu Lys
His Leu Asn Ser Leu Gly Asn Leu Ala Lys 355 360
365Ser Leu Asp Ala Glu Gln Asp Thr Thr Asn Pro Lys Pro Phe
Trp Asn 370 375 380Met Gly Glu Asn Ser
Lys Gln Leu Pro Gly Pro Gln Lys Cys Ser Asp385 390
395 400Pro Arg Leu Leu Gln Glu Ser Phe Trp Lys
Asn Tyr Ser Gln Leu Phe 405 410
415Trp Gly Leu Pro Ser Leu His Ser Glu Ser Leu Val Ala Asn Ala Trp
420 425 430Val Thr Asp Arg Ser
Tyr Thr Leu Gln Ser Pro Pro Phe Leu Phe Asn 435
440 445Glu Met Ser Asn Val Cys Pro Ile Gln Arg Glu Thr
Thr Met Ser Pro 450 455 460Leu Leu Phe
Gln Ala Gln Pro Leu Ser His Arg Gln Pro Phe Ile Ser465
470 475 480Ser Thr Pro Gln Phe Leu Pro
Thr Pro Met Ala Gln Ala Glu Ala Gln 485
490 495Ala His Leu Gln Ser Ser Phe Pro Val Leu Ser Pro
Ala Phe Pro Ser 500 505 510Leu
Ile Lys Asn Thr Gly Val Ala Cys Pro Ala Ser Gln Asn Lys Val 515
520 525Gln Ala Leu Ser Leu Pro Glu Thr Gln
His Pro Glu Trp Pro Leu Leu 530 535
540Arg Lys Gln Leu Glu Gly Arg Leu Ala Leu Pro Ser Arg Val Gln Lys545
550 555 560Ser Gln Asp Val
Phe Ser Val Ser Thr Pro Asn Leu Pro Gln Glu Ser 565
570 575Leu Thr Ser Ile Leu Pro Glu Asn Phe Pro
Val Ser Pro Glu Leu Arg 580 585
590Arg Gln Leu Glu Gln His Ile Lys Lys Trp Ile Ile Gln His Trp Gly
595 600 605Asn Leu Gly Arg Ile Gln Glu
Ser Leu Asp Leu Met Gln Leu Arg Asp 610 615
620Glu Ser Pro Gly Thr Ser Gln Ala Lys Gly Lys Pro Ser Pro Trp
Gln625 630 635 640Ser Ser
Thr Ser Thr Gly Glu Ser Ser Lys Glu Ala Gln Lys Val Lys
645 650 655Phe Gln Leu Glu Arg Asp Leu
Cys Pro His Leu Gly Gln Ile Leu Gly 660 665
670Glu Thr Pro Gln Asn Leu Ser Arg Asp Met Lys Ser Phe Pro
Arg Lys 675 680 685Val Leu Gly Val
Thr Ser Glu Glu Ser Glu Arg Asn Leu Arg Lys Pro 690
695 700Leu Arg Ser Asp Ser Gly Ser Asp Leu Leu Arg Cys
Thr Glu Arg Thr705 710 715
720His Ile Glu Asn Ile Leu Lys Ala His Met Gly Arg Asn Leu Gly Gln
725 730 735Thr Asn Glu Gly Leu
Ile Pro Val Arg Val Arg Arg Ser Trp Leu Ala 740
745 750Val Asn Gln Ala Leu Pro Val Ser Asn Thr His Val
Lys Thr Ser Asn 755 760 765Leu Ala
Ala Pro Lys Ser Gly Lys Ala Cys Val Asn Thr Ala Gln Val 770
775 780Leu Ser Phe Leu Glu Pro Cys Thr Gln Gln Gly
Leu Gly Ala His Ile785 790 795
800Val Arg Phe Trp Ala Lys His Arg Trp Gly Leu Pro Leu Arg Val Leu
805 810 815Lys Pro Ile Gln
Cys Phe Lys Leu Glu Lys Val Ser Ser Leu Ser Leu 820
825 830Thr Gln Leu Ala Gly Pro Ser Ser Ala Thr Cys
Glu Ser Gly Ala Gly 835 840 845Ser
Glu Val Glu Val Asp Met Phe Leu Arg Lys Pro Pro Met Ala Ser 850
855 860Leu Arg Lys Gln Val Leu Thr Lys Ala Ser
Asp His Met Pro Glu Ser865 870 875
880Leu Leu Ala Ser Ser Pro Ala Trp Lys Gln Phe Gln Arg Ala Pro
Arg 885 890 895Gly Ile Pro
Ser Trp Asn Asp His Gly Pro Leu Lys Pro Pro Pro Ala 900
905 910Gly Gln Glu Gly Arg Trp Pro Ser Lys Pro
Leu Thr Tyr Ser Leu Thr 915 920
925Gly Ser Thr Gln Gln Ser Arg Ser Leu Gly Ala Gln Ser Ser Lys Ala 930
935 940Gly Glu Thr Arg Glu Ala Val Pro
Gln Cys Arg Val Pro Leu Glu Thr945 950
955 960Cys Met Leu Ala Asn Leu Gln Ala Thr Ser Glu Asp
Val His Gly Phe 965 970
975Glu Ala Pro Gly Thr Ser Lys Ser Ser Leu His Pro Arg Val Ser Val
980 985 990Ser Gln Asp Pro Arg Lys
Leu Cys Leu Met Glu Glu Val Val Ser Glu 995 1000
1005Phe Glu Pro Gly Met Ala Thr Lys Ser Glu Thr Gln
Pro Gln Val 1010 1015 1020Cys Ala Ala
Val Val Leu Leu Pro Asp Gly Gln Ala Ser Val Val 1025
1030 1035Pro His Ala Ser Glu Asn Leu Val Ser Gln Val
Pro Gln Gly His 1040 1045 1050Leu Gln
Ser Met Pro Thr Gly Asn Met Arg Ala Ser Gln Glu Leu 1055
1060 1065His Asp Leu Met Ala Ala Arg Arg Ser Lys
Leu Val Gln Glu Glu 1070 1075 1080Pro
Arg Asn Pro Asn Cys Gln Gly Ser Cys Lys Ser Gln Arg Pro 1085
1090 1095Met Phe Pro Pro Ile His Lys Ser Glu
Lys Ser Arg Lys Pro Asn 1100 1105
1110Leu Glu Lys His Glu Glu Arg Leu Glu Gly Leu Arg Thr Pro Gln
1115 1120 1125Leu Thr Pro Val Arg Lys
Thr Glu Asp Thr His Gln Asp Glu Gly 1130 1135
1140Val Gln Leu Leu Pro Ser Lys Lys Gln Pro Pro Ser Val Ser
His 1145 1150 1155Phe Gly Glu Asn Ile
Lys Gln Phe Phe Gln Trp Ile Phe Ser Lys 1160 1165
1170Lys Lys Ser Lys Pro Ala Pro Val Thr Ala Glu Ser Gln
Lys Thr 1175 1180 1185Val Lys Asn Arg
Ser Cys Val Tyr Ser Ser Ser Ala Glu Ala Gln 1190
1195 1200Gly Leu Met Thr Ala Val Gly Gln Met Leu Asp
Lys Lys Met Ser 1205 1210 1215Leu Cys
His Ala His His Ala Ser Lys Val Asn Gln His Lys Gln 1220
1225 1230Lys Phe Gln Ala Pro Val Cys Gly Phe Pro
Cys Asn His Arg His 1235 1240 1245Leu
Phe Tyr Ser Glu His Gly Arg Ile Leu Ser Tyr Ala Ala Ser 1250
1255 1260Ser Gln Gln Ala Thr Leu Lys Ser Gln
Gly Cys Pro Asn Arg Asp 1265 1270
1275Arg Gln Ile Arg Asn Gln Gln Pro Leu Lys Ser Val Arg Cys Asn
1280 1285 1290Asn Glu Gln Trp Gly Leu
Arg His Pro Gln Ile Leu His Pro Lys 1295 1300
1305Lys Ala Val Ser Pro Val Ser Pro Pro Gln His Trp Pro Lys
Thr 1310 1315 1320Ser Gly Ala Ser Ser
His His His His Cys Pro Arg His Cys Leu 1325 1330
1335Leu Trp Glu Gly Ile 134012324DNAArtificial
SequenceOligonucleotide 123ctattactcc cctacttatc ttac
2412418DNAArtificial SequenceOligonucleotide
124tttcgcccac ctcacctg
181253136DNAHomo sapiens 125gtcgccgccg ctaccgccgc cgccgccgca gggcccgccg
ctgggatgcc gagcgcccgc 60gccgccgctg cctctgtcct ccgcgcgctg ctcagctgaa
ggcgcacagg attcaattac 120tggacttgtc aactctgcca gtgtacgtgc catttctctt
ccactatgag aggaccgatt 180gtattgcaca tttgtctggc tttctgtagc cttctgcttt
tcagcgttgc cacacaatgt 240ctggccttcc ccaaaataga aaggaggagg gagatagcac
atgttcatgc ggaaaaaggg 300cagtccgata agatgaacac cgatgaccta gaaaatagct
ctgttacctc aaagcagact 360ccccaactgg tggtctctga agatccaatg atgatgtcag
cagtaccatc ggcaacatca 420ttaaataaag cattctcgat taacaaagaa acccagcctg
gacaagctgg gctcatgcaa 480acagaacgcc ctggtgtttc cacacctact gagtcaggtg
tcccctcagc tgaagaagta 540tttggttcca gccagccaga gagaatatct cctgaaagtg
gacttgccaa ggccatgtta 600accattgcta tcactgcgac tccttctctg actgttgatg
aaaaggagga actccttaca 660agcactaact ttcagcccat tgtagaagag atcacagaaa
ccacaaaagg ttttctgaag 720tatatggata atcaatcatt tgcaactgaa agtcaggaag
gagttggttt gggacattca 780ccttcatcct atgtgaatac taaggaaatg ctaaccacca
atccaaagac tgagaaattt 840gaagcagaca cagaccacag gacaacttct tttcctggtg
ctgagtccac agcaggcagt 900gagcctggaa gcctcacccc tgataaggag aagccttcgc
agatgacagc tgataacacc 960caggctgctg ccaccaagca accactcgaa acttccgagt
acaccctgag tgttgagcca 1020gaaactgata gtctgctggg agccccagaa gtcacagtga
gtgtcagcac agctgttcca 1080gctgcctctg ccttaagtga tgagtgggat gacaccaaat
tagagagtgt aagccggata 1140aggaccccca agcttggaga caatgaagag actcaggtga
gaacggagat gtctcagaca 1200gcacaagtaa gccatgaggg tatggaagga ggccagcctt
ggacagaggc tgcacaggtg 1260gctctggggc tgcctgaagg ggaaacacac acgggcacag
ccctgctaat agcgcatggg 1320aatgagagat cacctgcttt cactgatcaa agttccttta
cccccacaag tctgatggaa 1380gacatgaaag tttccattgt gaacttgctc caaagtacgg
gagacttcac ggaatccacc 1440aaggaaaacg atgccctgtt tttcttagaa accactgttt
ctgtctctgt atatgagtct 1500gaggcagacc aactgttggg aaatacaatg aaagacatca
tcactcaaga gatgacaaca 1560gctgttcaag agccagatgc cactttatcc atggtgacac
aagagcaggt tgctaccctc 1620gagcttatca gagacagtgg caagactgag gaagaaaagg
aggacccctc tcctgtgtct 1680gacgttcctg gtgttactca gctgtcaaga agatgggagc
ctctggccac tacaatttca 1740actacagtcg tccctttgtc ttttgaagtt actcccactg
tggaagaaca aatggacaca 1800gtcacagggc caaatgagga gttcacacca gttctgggat
ctccagtgac acctcctgga 1860ataatggtgg gggaacccag catttcccct gcacttcctg
ctttggaggc atcctctgag 1920agaagaactg ttgttccatc tattactcgt gttaatacag
ctgcctcata tggcctggac 1980caacttgaat ctgaagaggg acaagaagat gaggatgaag
aggatgaaga agatgaagat 2040gaagaagagg aagatgagga agaagatgag gaagataaag
atgcagactc gctggatgag 2100ggcttggatg gtgacactga gctgccaggt tttaccctcc
ctggtatcac atcccaggaa 2160ccaggcttag aggagggaaa catggacctg ttggagggag
ctacctacca ggtgccagat 2220gccctcgagt gggaacagca gaatcaaggc ctggtgagaa
gctggatgga aaaattaaaa 2280gacaaggctg gttacatgtc tgggatgctg gtgcctgtag
gggttgggat agctggagcc 2340ttgttcatct tgggagccct ctacagcatt aaggttatga
atcgccgaag gagaaatggc 2400ttcaaaaggc ataaaagaaa gcagagagaa ttcaacagca
tgcaagatcg agtaatgctc 2460ttagccgaca gctctgaaga tgaattttga attggactgg
gttttaattg ggatattcaa 2520cgatgctact attctaattt ttattttgga gcagaaaaaa
aaaaagaaca acctgccaca 2580ttgctgctat caggccgtta gtcctagtgt ctgctgggtg
ctgggtagta gatttttctt 2640gtactgagca gaaatggcat gttgtatact aaacgtatca
tgcagtattt ggttttattc 2700tgtagtgaat tttccacaac cgtgggctac aactcataaa
tatgcaacat atatgttttt 2760cagtaggagt tgctacatta ggcagagtaa atattttgta
gttttccaca gtgtcttttc 2820cttggtttga attacctgca ttgagaataa tgattgttgc
caccaaggca tgcttgactc 2880tgagatataa atcttaacaa agaataactt ctcaagatat
actctaccta cttgaaacca 2940cagggttgtg ggccatggta catactgcat ttgcatcaaa
ctagcagtaa ctcagaatga 3000aatcattttc attaagaagc tctctcagca tattaggatt
atatgtagat ttgtatgtat 3060tttgcattat gtacttcagt ctcctagttt tattattctc
accttccgtt ttattcttgg 3120cgaggaaaaa aatgca
3136126774PRTHomo sapiens 126Met Arg Gly Pro Ile
Val Leu His Ile Cys Leu Ala Phe Cys Ser Leu1 5
10 15Leu Leu Phe Ser Val Ala Thr Gln Cys Leu Ala
Phe Pro Lys Ile Glu 20 25
30Arg Arg Arg Glu Ile Ala His Val His Ala Glu Lys Gly Gln Ser Asp
35 40 45Lys Met Asn Thr Asp Asp Leu Glu
Asn Ser Ser Val Thr Ser Lys Gln 50 55
60Thr Pro Gln Leu Val Val Ser Glu Asp Pro Met Met Met Ser Ala Val65
70 75 80Pro Ser Ala Thr Ser
Leu Asn Lys Ala Phe Ser Ile Asn Lys Glu Thr 85
90 95Gln Pro Gly Gln Ala Gly Leu Met Gln Thr Glu
Arg Pro Gly Val Ser 100 105
110Thr Pro Thr Glu Ser Gly Val Pro Ser Ala Glu Glu Val Phe Gly Ser
115 120 125Ser Gln Pro Glu Arg Ile Ser
Pro Glu Ser Gly Leu Ala Lys Ala Met 130 135
140Leu Thr Ile Ala Ile Thr Ala Thr Pro Ser Leu Thr Val Asp Glu
Lys145 150 155 160Glu Glu
Leu Leu Thr Ser Thr Asn Phe Gln Pro Ile Val Glu Glu Ile
165 170 175Thr Glu Thr Thr Lys Gly Phe
Leu Lys Tyr Met Asp Asn Gln Ser Phe 180 185
190Ala Thr Glu Ser Gln Glu Gly Val Gly Leu Gly His Ser Pro
Ser Ser 195 200 205Tyr Val Asn Thr
Lys Glu Met Leu Thr Thr Asn Pro Lys Thr Glu Lys 210
215 220Phe Glu Ala Asp Thr Asp His Arg Thr Thr Ser Phe
Pro Gly Ala Glu225 230 235
240Ser Thr Ala Gly Ser Glu Pro Gly Ser Leu Thr Pro Asp Lys Glu Lys
245 250 255Pro Ser Gln Met Thr
Ala Asp Asn Thr Gln Ala Ala Ala Thr Lys Gln 260
265 270Pro Leu Glu Thr Ser Glu Tyr Thr Leu Ser Val Glu
Pro Glu Thr Asp 275 280 285Ser Leu
Leu Gly Ala Pro Glu Val Thr Val Ser Val Ser Thr Ala Val 290
295 300Pro Ala Ala Ser Ala Leu Ser Asp Glu Trp Asp
Asp Thr Lys Leu Glu305 310 315
320Ser Val Ser Arg Ile Arg Thr Pro Lys Leu Gly Asp Asn Glu Glu Thr
325 330 335Gln Val Arg Thr
Glu Met Ser Gln Thr Ala Gln Val Ser His Glu Gly 340
345 350Met Glu Gly Gly Gln Pro Trp Thr Glu Ala Ala
Gln Val Ala Leu Gly 355 360 365Leu
Pro Glu Gly Glu Thr His Thr Gly Thr Ala Leu Leu Ile Ala His 370
375 380Gly Asn Glu Arg Ser Pro Ala Phe Thr Asp
Gln Ser Ser Phe Thr Pro385 390 395
400Thr Ser Leu Met Glu Asp Met Lys Val Ser Ile Val Asn Leu Leu
Gln 405 410 415Ser Thr Gly
Asp Phe Thr Glu Ser Thr Lys Glu Asn Asp Ala Leu Phe 420
425 430Phe Leu Glu Thr Thr Val Ser Val Ser Val
Tyr Glu Ser Glu Ala Asp 435 440
445Gln Leu Leu Gly Asn Thr Met Lys Asp Ile Ile Thr Gln Glu Met Thr 450
455 460Thr Ala Val Gln Glu Pro Asp Ala
Thr Leu Ser Met Val Thr Gln Glu465 470
475 480Gln Val Ala Thr Leu Glu Leu Ile Arg Asp Ser Gly
Lys Thr Glu Glu 485 490
495Glu Lys Glu Asp Pro Ser Pro Val Ser Asp Val Pro Gly Val Thr Gln
500 505 510Leu Ser Arg Arg Trp Glu
Pro Leu Ala Thr Thr Ile Ser Thr Thr Val 515 520
525Val Pro Leu Ser Phe Glu Val Thr Pro Thr Val Glu Glu Gln
Met Asp 530 535 540Thr Val Thr Gly Pro
Asn Glu Glu Phe Thr Pro Val Leu Gly Ser Pro545 550
555 560Val Thr Pro Pro Gly Ile Met Val Gly Glu
Pro Ser Ile Ser Pro Ala 565 570
575Leu Pro Ala Leu Glu Ala Ser Ser Glu Arg Arg Thr Val Val Pro Ser
580 585 590Ile Thr Arg Val Asn
Thr Ala Ala Ser Tyr Gly Leu Asp Gln Leu Glu 595
600 605Ser Glu Glu Gly Gln Glu Asp Glu Asp Glu Glu Asp
Glu Glu Asp Glu 610 615 620Asp Glu Glu
Glu Glu Asp Glu Glu Glu Asp Glu Glu Asp Lys Asp Ala625
630 635 640Asp Ser Leu Asp Glu Gly Leu
Asp Gly Asp Thr Glu Leu Pro Gly Phe 645
650 655Thr Leu Pro Gly Ile Thr Ser Gln Glu Pro Gly Leu
Glu Glu Gly Asn 660 665 670Met
Asp Leu Leu Glu Gly Ala Thr Tyr Gln Val Pro Asp Ala Leu Glu 675
680 685Trp Glu Gln Gln Asn Gln Gly Leu Val
Arg Ser Trp Met Glu Lys Leu 690 695
700Lys Asp Lys Ala Gly Tyr Met Ser Gly Met Leu Val Pro Val Gly Val705
710 715 720Gly Ile Ala Gly
Ala Leu Phe Ile Leu Gly Ala Leu Tyr Ser Ile Lys 725
730 735Val Met Asn Arg Arg Arg Arg Asn Gly Phe
Lys Arg His Lys Arg Lys 740 745
750Gln Arg Glu Phe Asn Ser Met Gln Asp Arg Val Met Leu Leu Ala Asp
755 760 765Ser Ser Glu Asp Glu Phe
77012718DNAArtificial SequenceOligonucleotide 127ccctccctgg tatcacat
1812818DNAArtificial
SequenceOligonucleotide 128caccagcatc ccagacat
181293627DNAHomo sapiens 129gggactgggg ggttcccaga
tccttgaagc tcactccgcc tcctcactct cactgcattt 60cccaccttcc tgtgggcctt
gcggcatctt catcactgag gcacctggtt acgcttcacc 120tcttgtttcc tgccctcact
gcattccctc acctctacct ttttatcctt ccaccctagg 180cttctctcct ccctcttccc
tcactcctga ctcttcctct tcccagcgga cggctggagg 240accgctcagt ctctcctctc
tcacttccct tcctctctct caccttcacc acccaacacc 300tccctccctg cctctttctt
tctgctccct cattctctcc ccaccactct cttctcgtgg 360cccccttgcc cgcgcgccct
cttcccttcc ccttgcctca ctctctcagc tttcttccca 420cagttgagct cgggcagctc
tttctgggga tagctatggg gctttggggg aagaaaggga 480cagtggctcc ccatgaccag
agtccaagac gaagacctaa aaaagggctt atcaagaaaa 540aaatggtgaa gagggaaaaa
cagaagcgca atatggagga actgaagaag gaagtggtca 600tggatgatca caaattaacc
ttggaagagc tgagcaccaa gtactccgtg gacctgacaa 660agggccatag ccaccaaagg
gcaaaggaaa tcctgactcg aggtggaccc aatactgtta 720ccccaccccc caccactcca
gaatgggtca aattctgtaa gcaactgttc ggaggcttct 780ccctcctact atggactggg
gccattctct gctttgtggc ctacagcatc cagatatatt 840tcaatgagga gcctaccaaa
gacaacctct acctgagcat cgtactgtcc gtcgtggtca 900tcgtcactgg ctgcttctcc
tattatcagg aggccaagag ctccaagatc atggagtctt 960ttaagaacat ggtgcctcag
caagctctgg taattcgagg aggagagaag atgcaaatta 1020atgtacaaga ggtggtgttg
ggagacctgg tggaaatcaa gggtggagac cgagtccctg 1080ctgacctccg gcttatctct
gcacaaggat gtaaggtgga caactcatcc ttgactgggg 1140agtcagaacc ccagagccgc
tcccctgact tcacccatga gaaccctctg gagacccgaa 1200acatctgctt cttttccacc
aactgtgtgg aaggaaccgc ccggggtatt gtgattgcta 1260cgggagactc cacagtgatg
ggcagaattg cctccctgac gtcaggcctg gcggttggcc 1320agacacctat cgctgctgag
atcgaacact tcatccatct gatcactgtg gtggccgtct 1380tccttggtgt cacttttttt
gcgctctcac ttctcttggg ctatggttgg ctggaggcta 1440tcatttttct cattggcatc
attgtggcca atgtgcctga ggggctgttg gccacagtca 1500ctgtgtgcct gaccctcaca
gccaagcgca tggcgcggaa gaactgcctg gtgaagaacc 1560tggaggcggt ggagacgctg
ggctccacgt ccaccatctg ctcagacaag acgggcaccc 1620tcacccagaa ccgcatgacc
gtcgcccaca tgtggtttga tatgaccgtg tatgaggccg 1680acaccactga agaacagact
ggaaaaacat ttaccaagag ctctgatacc tggtttatgc 1740tggcccgaat cgctggcctc
tgcaaccggg ctgactttaa ggctaatcag gagatcctgc 1800ccattgctaa gagggccaca
acaggtgatg cttccgagtc agccctcctc aagttcatcg 1860agcagtctta cagctctgtg
gcggagatga gagagaaaaa ccccaaggtg gcagagattc 1920cctttaattc taccaacaag
taccagatgt ccatccacct tcgggaggac agctcccaga 1980cccacgtact gatgatgaag
ggtgctccgg agaggatctt ggagttttgt tctacctttc 2040ttctgaatgg gcaggagtac
tcaatgaacg atgaaatgaa ggaagccttc caaaatgcct 2100acttagaact gggaggtctg
ggggaacgtg tgctaggctt ctgcttcttg aatctgccta 2160gcagcttctc caagggattc
ccatttaata cagatgaaat aaatttcccc atggacaacc 2220tttgttttgt gggcctcata
tccatgattg accctccccg agctgcagtg cctgatgctg 2280tgagcaagtg tcgcagtgca
ggaattaagg tgatcatggt aacaggagat catcccatta 2340cagctaaggc cattgccaag
ggtgtgggca tcatctcaga aggcactgag acggcagagg 2400aagtcgctgc ccggcttaag
atccctatca gcaaggtcga tgccagtgct gccaaagcca 2460ttgtggtgca tggtgcagaa
ctgaaggaca tacagtccaa gcagcttgat cagatcctcc 2520agaaccaccc tgagatcgtg
tttgctcgga cctcccctca gcagaagctc atcattgtcg 2580agggatgtca gaggctggga
gccgttgtgg ccgtgacagg tgacggggtg aacgactccc 2640ctgcgctgaa gaaggctgac
attggcattg ccatgggcat ctctggctct gacgtctcta 2700agcaggcagc cgacatgatc
ctgctggatg acaactttgc ctccatcgtc acgggggtgg 2760aggagggccg cctgatcttt
gacaacctga agaaatccat catgtacacc ctgaccagca 2820acatccccga gatcacgccc
ttcctgatgt tcatcatcct cggtataccc ctgcctctgg 2880gaaccataac catcctctgc
attgatctcg gcactgacat ggtccctgcc atctccttgg 2940cttatgagtc agctgaaagc
gacatcatga agaggcttcc aaggaaccca aagacggata 3000atctggtgaa ccaccgtctc
attggcatgg cctatggaca gattgggatg atccaggctc 3060tggctggatt ctttacctac
tttgtaatcc tggctgagaa tggttttagg cctgttgatc 3120tgctgggcat ccgcctccac
tgggaagata aatacttgaa tgacctggag gacagctacg 3180gacagcagtg gacctatgag
caacgaaaag ttgtggagtt cacatgccaa acggcctttt 3240ttgtcaccat cgtggttgtg
cagtgggcgg atctcatcat ctccaagact cgccgcaact 3300cacttttcca gcagggcatg
agaaacaaag tcttaatatt tgggatcctg gaggagacac 3360tcttggctgc atttctgtcc
tacactccag gcatggacgt ggccctgcga atgtacccac 3420tcaagataac ctggtggctc
tgtgccattc cctacagtat tctcatcttc gtctatgatg 3480aaatcagaaa actcctcatc
cgtcagcacc cggatggctg ggtggaaagg gagacgtact 3540actaaactca gcagatgaag
agcttcatgt gacacagggg tgttgtgaga gctgggatgg 3600ggccagagat tataagtttg
acacaac 36271301029PRTHomo sapiens
130Met Gly Leu Trp Gly Lys Lys Gly Thr Val Ala Pro His Asp Gln Ser1
5 10 15Pro Arg Arg Arg Pro Lys
Lys Gly Leu Ile Lys Lys Lys Met Val Lys 20 25
30Arg Glu Lys Gln Lys Arg Asn Met Glu Glu Leu Lys Lys
Glu Val Val 35 40 45Met Asp Asp
His Lys Leu Thr Leu Glu Glu Leu Ser Thr Lys Tyr Ser 50
55 60Val Asp Leu Thr Lys Gly His Ser His Gln Arg Ala
Lys Glu Ile Leu65 70 75
80Thr Arg Gly Gly Pro Asn Thr Val Thr Pro Pro Pro Thr Thr Pro Glu
85 90 95Trp Val Lys Phe Cys Lys
Gln Leu Phe Gly Gly Phe Ser Leu Leu Leu 100
105 110Trp Thr Gly Ala Ile Leu Cys Phe Val Ala Tyr Ser
Ile Gln Ile Tyr 115 120 125Phe Asn
Glu Glu Pro Thr Lys Asp Asn Leu Tyr Leu Ser Ile Val Leu 130
135 140Ser Val Val Val Ile Val Thr Gly Cys Phe Ser
Tyr Tyr Gln Glu Ala145 150 155
160Lys Ser Ser Lys Ile Met Glu Ser Phe Lys Asn Met Val Pro Gln Gln
165 170 175Ala Leu Val Ile
Arg Gly Gly Glu Lys Met Gln Ile Asn Val Gln Glu 180
185 190Val Val Leu Gly Asp Leu Val Glu Ile Lys Gly
Gly Asp Arg Val Pro 195 200 205Ala
Asp Leu Arg Leu Ile Ser Ala Gln Gly Cys Lys Val Asp Asn Ser 210
215 220Ser Leu Thr Gly Glu Ser Glu Pro Gln Ser
Arg Ser Pro Asp Phe Thr225 230 235
240His Glu Asn Pro Leu Glu Thr Arg Asn Ile Cys Phe Phe Ser Thr
Asn 245 250 255Cys Val Glu
Gly Thr Ala Arg Gly Ile Val Ile Ala Thr Gly Asp Ser 260
265 270Thr Val Met Gly Arg Ile Ala Ser Leu Thr
Ser Gly Leu Ala Val Gly 275 280
285Gln Thr Pro Ile Ala Ala Glu Ile Glu His Phe Ile His Leu Ile Thr 290
295 300Val Val Ala Val Phe Leu Gly Val
Thr Phe Phe Ala Leu Ser Leu Leu305 310
315 320Leu Gly Tyr Gly Trp Leu Glu Ala Ile Ile Phe Leu
Ile Gly Ile Ile 325 330
335Val Ala Asn Val Pro Glu Gly Leu Leu Ala Thr Val Thr Val Cys Leu
340 345 350Thr Leu Thr Ala Lys Arg
Met Ala Arg Lys Asn Cys Leu Val Lys Asn 355 360
365Leu Glu Ala Val Glu Thr Leu Gly Ser Thr Ser Thr Ile Cys
Ser Asp 370 375 380Lys Thr Gly Thr Leu
Thr Gln Asn Arg Met Thr Val Ala His Met Trp385 390
395 400Phe Asp Met Thr Val Tyr Glu Ala Asp Thr
Thr Glu Glu Gln Thr Gly 405 410
415Lys Thr Phe Thr Lys Ser Ser Asp Thr Trp Phe Met Leu Ala Arg Ile
420 425 430Ala Gly Leu Cys Asn
Arg Ala Asp Phe Lys Ala Asn Gln Glu Ile Leu 435
440 445Pro Ile Ala Lys Arg Ala Thr Thr Gly Asp Ala Ser
Glu Ser Ala Leu 450 455 460Leu Lys Phe
Ile Glu Gln Ser Tyr Ser Ser Val Ala Glu Met Arg Glu465
470 475 480Lys Asn Pro Lys Val Ala Glu
Ile Pro Phe Asn Ser Thr Asn Lys Tyr 485
490 495Gln Met Ser Ile His Leu Arg Glu Asp Ser Ser Gln
Thr His Val Leu 500 505 510Met
Met Lys Gly Ala Pro Glu Arg Ile Leu Glu Phe Cys Ser Thr Phe 515
520 525Leu Leu Asn Gly Gln Glu Tyr Ser Met
Asn Asp Glu Met Lys Glu Ala 530 535
540Phe Gln Asn Ala Tyr Leu Glu Leu Gly Gly Leu Gly Glu Arg Val Leu545
550 555 560Gly Phe Cys Phe
Leu Asn Leu Pro Ser Ser Phe Ser Lys Gly Phe Pro 565
570 575Phe Asn Thr Asp Glu Ile Asn Phe Pro Met
Asp Asn Leu Cys Phe Val 580 585
590Gly Leu Ile Ser Met Ile Asp Pro Pro Arg Ala Ala Val Pro Asp Ala
595 600 605Val Ser Lys Cys Arg Ser Ala
Gly Ile Lys Val Ile Met Val Thr Gly 610 615
620Asp His Pro Ile Thr Ala Lys Ala Ile Ala Lys Gly Val Gly Ile
Ile625 630 635 640Ser Glu
Gly Thr Glu Thr Ala Glu Glu Val Ala Ala Arg Leu Lys Ile
645 650 655Pro Ile Ser Lys Val Asp Ala
Ser Ala Ala Lys Ala Ile Val Val His 660 665
670Gly Ala Glu Leu Lys Asp Ile Gln Ser Lys Gln Leu Asp Gln
Ile Leu 675 680 685Gln Asn His Pro
Glu Ile Val Phe Ala Arg Thr Ser Pro Gln Gln Lys 690
695 700Leu Ile Ile Val Glu Gly Cys Gln Arg Leu Gly Ala
Val Val Ala Val705 710 715
720Thr Gly Asp Gly Val Asn Asp Ser Pro Ala Leu Lys Lys Ala Asp Ile
725 730 735Gly Ile Ala Met Gly
Ile Ser Gly Ser Asp Val Ser Lys Gln Ala Ala 740
745 750Asp Met Ile Leu Leu Asp Asp Asn Phe Ala Ser Ile
Val Thr Gly Val 755 760 765Glu Glu
Gly Arg Leu Ile Phe Asp Asn Leu Lys Lys Ser Ile Met Tyr 770
775 780Thr Leu Thr Ser Asn Ile Pro Glu Ile Thr Pro
Phe Leu Met Phe Ile785 790 795
800Ile Leu Gly Ile Pro Leu Pro Leu Gly Thr Ile Thr Ile Leu Cys Ile
805 810 815Asp Leu Gly Thr
Asp Met Val Pro Ala Ile Ser Leu Ala Tyr Glu Ser 820
825 830Ala Glu Ser Asp Ile Met Lys Arg Leu Pro Arg
Asn Pro Lys Thr Asp 835 840 845Asn
Leu Val Asn His Arg Leu Ile Gly Met Ala Tyr Gly Gln Ile Gly 850
855 860Met Ile Gln Ala Leu Ala Gly Phe Phe Thr
Tyr Phe Val Ile Leu Ala865 870 875
880Glu Asn Gly Phe Arg Pro Val Asp Leu Leu Gly Ile Arg Leu His
Trp 885 890 895Glu Asp Lys
Tyr Leu Asn Asp Leu Glu Asp Ser Tyr Gly Gln Gln Trp 900
905 910Thr Tyr Glu Gln Arg Lys Val Val Glu Phe
Thr Cys Gln Thr Ala Phe 915 920
925Phe Val Thr Ile Val Val Val Gln Trp Ala Asp Leu Ile Ile Ser Lys 930
935 940Thr Arg Arg Asn Ser Leu Phe Gln
Gln Gly Met Arg Asn Lys Val Leu945 950
955 960Ile Phe Gly Ile Leu Glu Glu Thr Leu Leu Ala Ala
Phe Leu Ser Tyr 965 970
975Thr Pro Gly Met Asp Val Ala Leu Arg Met Tyr Pro Leu Lys Ile Thr
980 985 990Trp Trp Leu Cys Ala Ile
Pro Tyr Ser Ile Leu Ile Phe Val Tyr Asp 995 1000
1005Glu Ile Arg Lys Leu Leu Ile Arg Gln His Pro Asp
Gly Trp Val 1010 1015 1020Glu Arg Glu
Thr Tyr Tyr 102513121DNAArtificial SequenceOligonucleotide
131tgtaatcctg gctgagaatg g
2113218DNAArtificial SequenceOligonucleotide 132aagtgagttg cggcgagt
18133279DNAHomo sapiens
133atgtatgtaa aaattgcaaa acatctcaat gatgtttatg ccccccagaa ggtactgtgt
60cacgggatct catatattct ggctgtcatt gtcataataa gccactcttg gtcatatgga
120aaagcattca gctgctccct gcctttgctc acagcgtgtg gtactctctt agaagctatt
180cctgtcctat ttaggcagtt attcctgctt cttgtgttgg acctgaagtc aacagggcca
240gcaatagaga agaaagatga tgtgaaggag agcaactga
27913492PRTHomo sapiens 134Met Tyr Val Lys Ile Ala Lys His Leu Asn Asp
Val Tyr Ala Pro Gln1 5 10
15Lys Val Leu Cys His Gly Ile Ser Tyr Ile Leu Ala Val Ile Val Ile
20 25 30Ile Ser His Ser Trp Ser Tyr
Gly Lys Ala Phe Ser Cys Ser Leu Pro 35 40
45Leu Leu Thr Ala Cys Gly Thr Leu Leu Glu Ala Ile Pro Val Leu
Phe 50 55 60Arg Gln Leu Phe Leu Leu
Leu Val Leu Asp Leu Lys Ser Thr Gly Pro65 70
75 80Ala Ile Glu Lys Lys Asp Asp Val Lys Glu Ser
Asn 85 9013520DNAArtificial
SequenceOligonucleotide 135tgctccctgc ctttgctcac
2013624DNAArtificial SequenceOligonucleotide
136ggtacttggt ctcgaacgat gatc
241371569DNAHomo sapiens 137atgcctgtag ggggtggccc tgagagtgtg ggcaggtgca
atggctgtca atgccacata 60aagggcaagg ggatctacat cctaaacagt gaaagaccag
tgcccggaga ctacatctac 120atcaggaaga agaagcagca aaattctgac ccacagccca
agaggggtcg gggcagcaga 180acctcagcca cagccaatca cagcggggtc cttcggggag
gggcgtggcc tgacaacttc 240ggcgacgcgg ctggaccaat ccggacggag gagagcgaag
ctcctctgca ctgggcccag 300gtgcgctcct cagcgtctcc gggtggcggg gcgcgcggga
tggaggagtc ttgggaggct 360gcgcccggag gccaagccgg ggcagagctc ccaatggagc
ccgtgggaag cctggtcccc 420acgctggagc agccgcaggt gcccgcgaag gtgcgacaac
ctgaaggtcc cgaaagcagc 480ccaagtccgg ccggggccgt ggagaaggcg gcgggcgcag
gcctggagcc ctcgagcaag 540aaaaagccgc cttcgcctcg ccccgggtcc ccgcgcgtgc
cgccgctcag cctgggctac 600ggggtctgcc ccgagccgcc gtcaccgggc cctgccttgg
tcaagctgcc ccggaatggc 660gaggcgcccg gggctgagcc tgcgcccagc gcctgggcgc
ccatggagct gcaggtagat 720gtgcgcgtga agcccgtggg cgcggccggt ggcagcagca
cgccatcgcc caggccctcc 780acgcgcttcc tcaaggtgcc ggtgcccgag tcccctgcct
tctcccgcca cgcggacccg 840gcgcaccagc tcctgctgcg cgcaccatcc cagggcggca
cgtggggccg ccgctcgccg 900ctggctgcag cccggacgga gagcggctgc gacgcagagg
gccgggccag ccccgcggaa 960ggaagcgccg gctccccggg ctcccccacg tgctgccgct
gcaaggagct ggggctggag 1020aaggaggatg cggcgctgtt gccccgcgcg gggttggacg
gcgacgagaa gctgccccgg 1080gccgtaacgc ttacggggct acccatgtac gtgaagtccc
tgtactgggc cctggcgttc 1140atggctgtgc tcctggcagt ctctggggtt gtcattgtgg
tcctggcctc aagagcagga 1200gccagatgcc agcagtgccc cccaggctgg gtgttgtccg
aggagcactg ttactacttc 1260tctgcagaag cgcaggcctg ggaagccagc caggctttct
gctcagccta ccacgctacc 1320ctccccctgc taagccacac ccaggacttc ctgggcagat
acccagtctc caggcactcc 1380tgggtggggg cctggcgagg cccccagggc tggcactgga
tcgacgaggc cccactcccg 1440ccccagctac tccctgagga cggcgaggac aatctggata
tcaactgtgg ggccctggag 1500gaaggcacgc tggtggctgc aaactgcagc actccaagac
cctgggtctg tgccaagggg 1560acccagtga
1569138522PRTHomo sapiens 138Met Pro Val Gly Gly
Gly Pro Glu Ser Val Gly Arg Cys Asn Gly Cys1 5
10 15Gln Cys His Ile Lys Gly Lys Gly Ile Tyr Ile
Leu Asn Ser Glu Arg 20 25
30Pro Val Pro Gly Asp Tyr Ile Tyr Ile Arg Lys Lys Lys Gln Gln Asn
35 40 45Ser Asp Pro Gln Pro Lys Arg Gly
Arg Gly Ser Arg Thr Ser Ala Thr 50 55
60Ala Asn His Ser Gly Val Leu Arg Gly Gly Ala Trp Pro Asp Asn Phe65
70 75 80Gly Asp Ala Ala Gly
Pro Ile Arg Thr Glu Glu Ser Glu Ala Pro Leu 85
90 95His Trp Ala Gln Val Arg Ser Ser Ala Ser Pro
Gly Gly Gly Ala Arg 100 105
110Gly Met Glu Glu Ser Trp Glu Ala Ala Pro Gly Gly Gln Ala Gly Ala
115 120 125Glu Leu Pro Met Glu Pro Val
Gly Ser Leu Val Pro Thr Leu Glu Gln 130 135
140Pro Gln Val Pro Ala Lys Val Arg Gln Pro Glu Gly Pro Glu Ser
Ser145 150 155 160Pro Ser
Pro Ala Gly Ala Val Glu Lys Ala Ala Gly Ala Gly Leu Glu
165 170 175Pro Ser Ser Lys Lys Lys Pro
Pro Ser Pro Arg Pro Gly Ser Pro Arg 180 185
190Val Pro Pro Leu Ser Leu Gly Tyr Gly Val Cys Pro Glu Pro
Pro Ser 195 200 205Pro Gly Pro Ala
Leu Val Lys Leu Pro Arg Asn Gly Glu Ala Pro Gly 210
215 220Ala Glu Pro Ala Pro Ser Ala Trp Ala Pro Met Glu
Leu Gln Val Asp225 230 235
240Val Arg Val Lys Pro Val Gly Ala Ala Gly Gly Ser Ser Thr Pro Ser
245 250 255Pro Arg Pro Ser Thr
Arg Phe Leu Lys Val Pro Val Pro Glu Ser Pro 260
265 270Ala Phe Ser Arg His Ala Asp Pro Ala His Gln Leu
Leu Leu Arg Ala 275 280 285Pro Ser
Gln Gly Gly Thr Trp Gly Arg Arg Ser Pro Leu Ala Ala Ala 290
295 300Arg Thr Glu Ser Gly Cys Asp Ala Glu Gly Arg
Ala Ser Pro Ala Glu305 310 315
320Gly Ser Ala Gly Ser Pro Gly Ser Pro Thr Cys Cys Arg Cys Lys Glu
325 330 335Leu Gly Leu Glu
Lys Glu Asp Ala Ala Leu Leu Pro Arg Ala Gly Leu 340
345 350Asp Gly Asp Glu Lys Leu Pro Arg Ala Val Thr
Leu Thr Gly Leu Pro 355 360 365Met
Tyr Val Lys Ser Leu Tyr Trp Ala Leu Ala Phe Met Ala Val Leu 370
375 380Leu Ala Val Ser Gly Val Val Ile Val Val
Leu Ala Ser Arg Ala Gly385 390 395
400Ala Arg Cys Gln Gln Cys Pro Pro Gly Trp Val Leu Ser Glu Glu
His 405 410 415Cys Tyr Tyr
Phe Ser Ala Glu Ala Gln Ala Trp Glu Ala Ser Gln Ala 420
425 430Phe Cys Ser Ala Tyr His Ala Thr Leu Pro
Leu Leu Ser His Thr Gln 435 440
445Asp Phe Leu Gly Arg Tyr Pro Val Ser Arg His Ser Trp Val Gly Ala 450
455 460Trp Arg Gly Pro Gln Gly Trp His
Trp Ile Asp Glu Ala Pro Leu Pro465 470
475 480Pro Gln Leu Leu Pro Glu Asp Gly Glu Asp Asn Leu
Asp Ile Asn Cys 485 490
495Gly Ala Leu Glu Glu Gly Thr Leu Val Ala Ala Asn Cys Ser Thr Pro
500 505 510Arg Pro Trp Val Cys Ala
Lys Gly Thr Gln 515 52013918DNAArtificial
SequenceOligonucleotide 139gagaaggagg atgcggcg
1814021DNAArtificial SequenceOligonucleotide
140ggaccacaat gacaacccca g
211412217DNAHomo sapiens 141atggtttgca cgttcgattc tgagcttctg aattgtcaaa
ggaaagatga atataatcag 60ttccagactt atcgggccca taaaataaaa gccaaaagaa
gcatagccac tcctgaaaac 120ctgaagaaat tattgccacg tgttcccaaa aacagtgccc
tgagtgatga aatgacaaag 180cttcacaaag gagctaagcc atgcaaatca aatacatttg
gatgttttcc tattcatcag 240gctgtacttt caggttccaa agaatgcatg gaaataatat
tgaagtttgg tgaagagcac 300gggtacagca gacagtgtca catcaacttt gtggataacg
ggaaagccag ccctctccat 360ctggctgtgc aaaatggtga cttggaaatg atgaaaatgt
gcctggacaa tggtgtacaa 420atagacctag tggagatgca acagatcaaa gagctggtaa
tggatgaaga caacgatggg 480tgtactcctc tacattatgc atgtagacag gggggccctg
gttctgtaaa taacctactt 540ggctttaatg tgtccattca ttccaaaagc aaagataaga
aatcacctct gcattttgca 600gccagttatg ggcgtatcaa tacctgtcag aggctcctac
aagacataag tgatacgagg 660cttctgaatg aaggggacct tcatggaatg actcctctcc
atctggcagc aaagaatgga 720catgataaag tagttcagct tcttctgaaa aaaggtgcat
tgtttctcag atgggatgaa 780tgtcttaagg tttttagtca ttattctcca aacaataaat
gtccaatttt ggaaatgatc 840gaatacctcc ctgaatgcat gaagaaagtt ctacccttct
tttctaatgt tcacgtaaga 900cctgctccaa accagaatca aataaaccat ggagaacaca
ggttggctta cggatttata 960gcccatatga taaatctagg attttactgt cttggtctca
taccaatgac ctttcttgtt 1020gtcagaataa aaccaggaat ggctttcaac tctgctggaa
tcatcaataa aactagtgat 1080cattcagaaa tactagataa catgaattca agtctaataa
caatttgtat gattttagtt 1140ttttgctcaa gtatattagg gtatgtcaaa gaagtggttc
aaattttcca acagaaaagg 1200aattacttta tggatattag cagtagtact gaatggatta
tcaacacgat gggccccatt 1260ttagtgctgc ccttgttcac tgaaatagca gcccatctgc
aatttgagaa ttgtggaatt 1320ttcattgtta tattggaggt aatttttaaa actttgttga
ggtctgcagt tgtatttttc 1380ttccttcttt tggcttttgg actcagcttt tacgtcctcc
tgaatttaca gtccttccta 1440gaaccatttc tgaagaataa attggcacat ccagttctgt
cctttgcaca gcttatttcc 1500ttcacagtat ttgccccaat tgtcctcatg aatttactta
ttggtttggc agttggtgac 1560attgctgagg tccagaaaca tgcatcattg aagaggatag
ctatgcagaa gctgccatgc 1620tgttgcatac gcaaagtgga tcggaaatcc accgccgtat
gtcccaacaa acccagatgt 1680gatgggacat tatttcaagt cctactcgct ctaggccccc
tacccctaga agaaaataga 1740aacataaaaa gttttcttcc tactgagatc actgttaaga
ggactcacga acaccttcct 1800tctgcaggtt ttggtcatca tgggaaacat accttgtcct
tgcttttggt agaagagtgg 1860cttcctctga atgtagtaca ctcctcttgc tctgccttca
gagtggttgg ccagatcttt 1920cccattagac attttcagtg gattcatgtg aatgagccgc
acactggcaa tttaaaagag 1980aaattggctg ctccatacat cactcaccag atcaagccat
tcttgcgagc agctggtttt 2040tgcacagtga aggtggtcca gagagatgac atctctgtgt
ggagtgtgga tttcaggtgg 2100ctcaatgcat gggaagcagc gattcgaaag cagtctctca
gacaatctga gatggaggaa 2160ctgagctgct cgctgctgct gcgtgtcact gatgtgcaca
caagaagctt gtattag 2217142738PRTHomo sapiens 142Met Val Cys Thr Phe
Asp Ser Glu Leu Leu Asn Cys Gln Arg Lys Asp1 5
10 15Glu Tyr Asn Gln Phe Gln Thr Tyr Arg Ala His
Lys Ile Lys Ala Lys 20 25
30Arg Ser Ile Ala Thr Pro Glu Asn Leu Lys Lys Leu Leu Pro Arg Val
35 40 45Pro Lys Asn Ser Ala Leu Ser Asp
Glu Met Thr Lys Leu His Lys Gly 50 55
60Ala Lys Pro Cys Lys Ser Asn Thr Phe Gly Cys Phe Pro Ile His Gln65
70 75 80Ala Val Leu Ser Gly
Ser Lys Glu Cys Met Glu Ile Ile Leu Lys Phe 85
90 95Gly Glu Glu His Gly Tyr Ser Arg Gln Cys His
Ile Asn Phe Val Asp 100 105
110Asn Gly Lys Ala Ser Pro Leu His Leu Ala Val Gln Asn Gly Asp Leu
115 120 125Glu Met Met Lys Met Cys Leu
Asp Asn Gly Val Gln Ile Asp Leu Val 130 135
140Glu Met Gln Gln Ile Lys Glu Leu Val Met Asp Glu Asp Asn Asp
Gly145 150 155 160Cys Thr
Pro Leu His Tyr Ala Cys Arg Gln Gly Gly Pro Gly Ser Val
165 170 175Asn Asn Leu Leu Gly Phe Asn
Val Ser Ile His Ser Lys Ser Lys Asp 180 185
190Lys Lys Ser Pro Leu His Phe Ala Ala Ser Tyr Gly Arg Ile
Asn Thr 195 200 205Cys Gln Arg Leu
Leu Gln Asp Ile Ser Asp Thr Arg Leu Leu Asn Glu 210
215 220Gly Asp Leu His Gly Met Thr Pro Leu His Leu Ala
Ala Lys Asn Gly225 230 235
240His Asp Lys Val Val Gln Leu Leu Leu Lys Lys Gly Ala Leu Phe Leu
245 250 255Arg Trp Asp Glu Cys
Leu Lys Val Phe Ser His Tyr Ser Pro Asn Asn 260
265 270Lys Cys Pro Ile Leu Glu Met Ile Glu Tyr Leu Pro
Glu Cys Met Lys 275 280 285Lys Val
Leu Pro Phe Phe Ser Asn Val His Val Arg Pro Ala Pro Asn 290
295 300Gln Asn Gln Ile Asn His Gly Glu His Arg Leu
Ala Tyr Gly Phe Ile305 310 315
320Ala His Met Ile Asn Leu Gly Phe Tyr Cys Leu Gly Leu Ile Pro Met
325 330 335Thr Phe Leu Val
Val Arg Ile Lys Pro Gly Met Ala Phe Asn Ser Ala 340
345 350Gly Ile Ile Asn Lys Thr Ser Asp His Ser Glu
Ile Leu Asp Asn Met 355 360 365Asn
Ser Ser Leu Ile Thr Ile Cys Met Ile Leu Val Phe Cys Ser Ser 370
375 380Ile Leu Gly Tyr Val Lys Glu Val Val Gln
Ile Phe Gln Gln Lys Arg385 390 395
400Asn Tyr Phe Met Asp Ile Ser Ser Ser Thr Glu Trp Ile Ile Asn
Thr 405 410 415Met Gly Pro
Ile Leu Val Leu Pro Leu Phe Thr Glu Ile Ala Ala His 420
425 430Leu Gln Phe Glu Asn Cys Gly Ile Phe Ile
Val Ile Leu Glu Val Ile 435 440
445Phe Lys Thr Leu Leu Arg Ser Ala Val Val Phe Phe Phe Leu Leu Leu 450
455 460Ala Phe Gly Leu Ser Phe Tyr Val
Leu Leu Asn Leu Gln Ser Phe Leu465 470
475 480Glu Pro Phe Leu Lys Asn Lys Leu Ala His Pro Val
Leu Ser Phe Ala 485 490
495Gln Leu Ile Ser Phe Thr Val Phe Ala Pro Ile Val Leu Met Asn Leu
500 505 510Leu Ile Gly Leu Ala Val
Gly Asp Ile Ala Glu Val Gln Lys His Ala 515 520
525Ser Leu Lys Arg Ile Ala Met Gln Lys Leu Pro Cys Cys Cys
Ile Arg 530 535 540Lys Val Asp Arg Lys
Ser Thr Ala Val Cys Pro Asn Lys Pro Arg Cys545 550
555 560Asp Gly Thr Leu Phe Gln Val Leu Leu Ala
Leu Gly Pro Leu Pro Leu 565 570
575Glu Glu Asn Arg Asn Ile Lys Ser Phe Leu Pro Thr Glu Ile Thr Val
580 585 590Lys Arg Thr His Glu
His Leu Pro Ser Ala Gly Phe Gly His His Gly 595
600 605Lys His Thr Leu Ser Leu Leu Leu Val Glu Glu Trp
Leu Pro Leu Asn 610 615 620Val Val His
Ser Ser Cys Ser Ala Phe Arg Val Val Gly Gln Ile Phe625
630 635 640Pro Ile Arg His Phe Gln Trp
Ile His Val Asn Glu Pro His Thr Gly 645
650 655Asn Leu Lys Glu Lys Leu Ala Ala Pro Tyr Ile Thr
His Gln Ile Lys 660 665 670Pro
Phe Leu Arg Ala Ala Gly Phe Cys Thr Val Lys Val Val Gln Arg 675
680 685Asp Asp Ile Ser Val Trp Ser Val Asp
Phe Arg Trp Leu Asn Ala Trp 690 695
700Glu Ala Ala Ile Arg Lys Gln Ser Leu Arg Gln Ser Glu Met Glu Glu705
710 715 720Leu Ser Cys Ser
Leu Leu Leu Arg Val Thr Asp Val His Thr Arg Ser 725
730 735Leu Tyr14320DNAArtificial
SequenceOligonucleotide 143ttccttactc tccgctttcc
2014420DNAArtificial SequenceOligonucleotide
144aactttgtgg ataacgggaa
201451155DNAHomo sapiens 145atgcagtctc tcatctcgcc ggtgaccaag gcgatcctgg
tggccctctt catcttcgcc 60atcctcctca tcctctacgt gatcctctgg gacgcaccgg
ggagagcggg tgagtgcgct 120cgtgcgggcg ctttgggggg ccacggttgg ggagccccaa
cttcggggag gacgcggaat 180ccggacgcgg gactgaaccc gaggattcac ggagcccggg
gctcccctat ggggcacggg 240aagcggcaga tgcgcgtgca gagaggtccg tcccacccac
cccctgggcg ccttgggtcc 300aaggcgcata ggcgctcccg cctgtggccg ccaccggtgc
agcagaacgc gggctctcgg 360gtgggtccaa tgcgctatgg cacaccaggc gctatcgggt
ccctagccct ctgctccggc 420ggtggggacc ccgcactcaa gttccctata acctccatgg
acaaacacgg aaaaatcatg 480tcttggaaga acagcatcgc cctacagata cagactaggc
actttgcaca tgaaacaaga 540gtcccagaaa tttctagaag caaatctcgc attcgtgacc
gccagaccta cgggatgtac 600cactttggga attttggaga agaaagaata aaggcagaaa
tgaggataca gaaagcatgt 660cacttgaaga tcaagaagtc aagcttggat gccaatggta
aagtggatga tggtgaggat 720gatgatggtg aggatgatga tggtgaggat gatgatggtg
atgatgatgg tgaggatgat 780gatggtgagg atgatgatgg tgaggatgat gatggtgagg
atgatggtga ggatgatgat 840ggtgatgatg atggtgagga tgatgatggt gatgatgatg
gtgatgatga tggtgaggat 900gatgatggtg aggatgatga tggtgacagt gaggatgatg
gtgaggatgg tgatgatgat 960ggtgaggatg atgatggtga cagtgaggat gatggcgatg
atggtgatga tgatggtgag 1020gatgatgatc atggtgatga tgtgaggatg atgatgatga
tggtgatgac agtgacgatg 1080atgaagaatg ttgttggtaa ttacagactt cctgagctac
caacttggac atctgtacaa 1140cgatacaaat tttga
1155146384PRTHomo sapiens 146Met Gln Ser Leu Ile
Ser Pro Val Thr Lys Ala Ile Leu Val Ala Leu1 5
10 15Phe Ile Phe Ala Ile Leu Leu Ile Leu Tyr Val
Ile Leu Trp Asp Ala 20 25
30Pro Gly Arg Ala Gly Glu Cys Ala Arg Ala Gly Ala Leu Gly Gly His
35 40 45Gly Trp Gly Ala Pro Thr Ser Gly
Arg Thr Arg Asn Pro Asp Ala Gly 50 55
60Leu Asn Pro Arg Ile His Gly Ala Arg Gly Ser Pro Met Gly His Gly65
70 75 80Lys Arg Gln Met Arg
Val Gln Arg Gly Pro Ser His Pro Pro Pro Gly 85
90 95Arg Leu Gly Ser Lys Ala His Arg Arg Ser Arg
Leu Trp Pro Pro Pro 100 105
110Val Gln Gln Asn Ala Gly Ser Arg Val Gly Pro Met Arg Tyr Gly Thr
115 120 125Pro Gly Ala Ile Gly Ser Leu
Ala Leu Cys Ser Gly Gly Gly Asp Pro 130 135
140Ala Leu Lys Phe Pro Ile Thr Ser Met Asp Lys His Gly Lys Ile
Met145 150 155 160Ser Trp
Lys Asn Ser Ile Ala Leu Gln Ile Gln Thr Arg His Phe Ala
165 170 175His Glu Thr Arg Val Pro Glu
Ile Ser Arg Ser Lys Ser Arg Ile Arg 180 185
190Asp Arg Gln Thr Tyr Gly Met Tyr His Phe Gly Asn Phe Gly
Glu Glu 195 200 205Arg Ile Lys Ala
Glu Met Arg Ile Gln Lys Ala Cys His Leu Lys Ile 210
215 220Lys Lys Ser Ser Leu Asp Ala Asn Gly Lys Val Asp
Asp Gly Glu Asp225 230 235
240Asp Asp Gly Glu Asp Asp Asp Gly Glu Asp Asp Asp Gly Asp Asp Asp
245 250 255Gly Glu Asp Asp Asp
Gly Glu Asp Asp Asp Gly Glu Asp Asp Asp Gly 260
265 270Glu Asp Asp Gly Glu Asp Asp Asp Gly Asp Asp Asp
Gly Glu Asp Asp 275 280 285Asp Gly
Asp Asp Asp Gly Asp Asp Asp Gly Glu Asp Asp Asp Gly Glu 290
295 300Asp Asp Asp Gly Asp Ser Glu Asp Asp Gly Glu
Asp Gly Asp Asp Asp305 310 315
320Gly Glu Asp Asp Asp Gly Asp Ser Glu Asp Asp Gly Asp Asp Gly Asp
325 330 335Asp Asp Gly Glu
Asp Asp Asp His Gly Asp Asp Val Arg Met Met Met 340
345 350Met Met Val Met Thr Val Thr Met Met Lys Asn
Val Val Gly Asn Tyr 355 360 365Arg
Leu Pro Glu Leu Pro Thr Trp Thr Ser Val Gln Arg Tyr Lys Phe 370
375 38014721DNAArtificial
SequenceOligonucleotide 147tccatgctgc cagcttcata c
2114821DNAArtificial SequenceOligonucleotide
148ctcacaagtg atgagattga g
211494384DNAHomo sapiens 149aaacagacgc ataactgtgc attgttcttt gggattttga
gagccttcat ctcaatttca 60actttaaagc agcttaatct ttaaggaaca tatctctgat
ctgggtaatt tgtagaactt 120aatttgaggg tcattacatg tgaggatagc aggagttgaa
gatgccaagg acctgaaggg 180ctactggagg gacaggtgaa gtgatttgaa gatgtagcat
tttgaatctc tttctggccc 240atcctctgct tcacaccaga atcattgtga cctgtagacc
tgcaaaacaa aggaccaaag 300gttagcatgc agaagtgaaa gtgtcaataa taaccaaacc
actccatcaa gttaggtctg 360gggaaaagca gcagcaaaaa tgagttctta cttctgggca
caaaatgaaa gtaacagacc 420tgatttactc tgcgggcagc cagctgacta ccttgttgaa
gagaaacatt tcacaacgct 480tgtatgcttc attgttgttt tgggagggct tttgaagatg
tgtttaaaga attgtgaagt 540cattgttttg acgattcttt ctctatcagg attcgtgata
ggacacatgg cctacaattc 600tgttgaggtg caccaaattg tctaccctct tctaagaaca
tcaagttttt cactttattc 660ttacttttca cctttaatta tatttatggt tgctttggat
gtagaatttt atacactcaa 720gaaaatgttt tggcaggtct tgttaactgg attaattagc
ttttctacag caagcatcat 780aattggatat gtcgttataa aattcaataa agattcatgg
gatttgcaat cttgcctact 840ctttagcatc acccttggca ttatagatcc tcttcgttct
gtgaattcac taaaaactat 900tggcatttct aaaatataca ttgatctcat tagaggagaa
tcattgatca tttgtagcat 960cgcatcaatt ttttttggaa attttcgggg caacagaatc
cacttttcta tttttagaga 1020tttacatgta ggcattgaac tcagctatga cattttggga
agcataatat ttggatattg 1080gtgtgcaaaa atcattcagt gtatattggc tgacgttttt
agcaatatgc tgactaatat 1140cattctctgc ttttcaatgg tgtacatgac tttctatatt
gtggaatttt taggaatgtc 1200aggcactctt gccttagccg ctgtaggact gaatttagat
tctttaactt ttaaaccgaa 1260gatcgaactt gtaattacta agttcttaag aattttttca
tctgtatatg aacatttaat 1320atatgctttc tttggcattg tgattggatg tggagaactc
agccactatg aatttcacac 1380tatacctttc atattcattt tatttacaac agtgaatttg
gtaaggttgc ttactatttt 1440gttagtgagc cctattttga tgcattcaaa ttatgaatat
aattggcgat ggggagttgt 1500aatcacgtgg tctggaatta aaggagtttt taatttactc
tgggctcctg atgtttataa 1560tctcgctgaa cgaaaagtgg aagtaccaca aatgtttata
ctctatgtac aagtaatatc 1620attattgaca atgggaataa attcatacgt gatgactcag
tcagccagga agttagattt 1680gtgtgttctt tccctcccaa gacaaatgat cttgcaaaat
gccactcagc acatacagga 1740gatagtacag aacacaataa ctttatttaa aacagaaaaa
attttgacaa atgttaactg 1800gaccttagta gaagataaaa cgaggatcga atacattcct
ttttcccacg tttcacataa 1860tgatatgaag acagaatcca caacagatga agctttaatg
gaggaagcca gattgcatgt 1920agctgcaata caaatgagta gctttgaaaa acagcgtaac
aatggaattc ttgaaataga 1980ggcagcccgg atattaattg gtgcagcaaa atgctattac
tccatccaag gaaaattcat 2040gagtatttat gatgtttcaa cttatatgag aactagaagt
tggcttataa agtttaaaaa 2100tgttttaact ttcttggaat attgtataga aaagatacat
tttattccac ctgagagtaa 2160tacatttctg acttttatat ttcacatagt attttctgaa
gaatttgaat atacaggaca 2220gattataaat ttgatatata tttatcctat gataatacat
ctgtggccaa tggcaagagg 2280tttaaatgta tcagcactga tatcaataaa ctactatttt
atgtttttat atgtattaga 2340atcaacattg aagataataa ttttgaaaag gaaatatttt
caacaatgtt ggaatacttt 2400ggaatttttt atcctggtta ttggaatcat tgatatcttt
tgtgtatact ttgtgaaatt 2460gagaccagac aacttggctc ttatacagct tacagtaata
atgggatatt taagaataat 2520taggtttctt cctctcttca agataatagt accaatactg
ataagaattg cagatgtgca 2580gatcaaaaag cgcctcagct tgatgtatag tattacaaaa
ggctatatca aaagtcaaga 2640agatgccaaa cttctaataa aacaaatagc tgtctgtgaa
tcaatatatc agaaactatg 2700tgaaattttg gaaaccaaca aacaggatgc tgtcaaagaa
ttagtactca tggagcatga 2760gggtcgtgat gttgtcattg ctttgaagac taaacaggca
atccggaatg tgattgctaa 2820agctctaaaa aatctcacct tcctttgttc aagaggcatt
attgataagc atgaagtcat 2880tgagataaat aaggtacttc ttaaaaaatt aaaagcacta
aataactttc caaaggcaat 2940cccaccccca actcctgaca tataccttca caacatcatt
tggctggaag gtaaagatgt 3000tctcattgac ttcttcaagg aaagagccaa acttgcctgt
tttgactctg gagataccat 3060ttgtaaagga ggtgaaatgc cacaaggaat ctacttaatt
atttcaggaa tggcaatttt 3120gcatagttta tctcctacct ttggaataga gagtaatcaa
aggtgtgata gagggtccag 3180agacatgttt acagagttct gtactactgg ggacataatt
ggagagctaa gctgtctgct 3240taagcgtgaa attgaatata ccgtcatctg tgaaactagt
ttacaggcct gctttatctc 3300cctggaggat ttatatgaag gctttgatgc cttctggcca
tctctggaat ataaaatatg 3360gctaaagctt gctctcagta ctgcctatca gtattttgaa
tcaagtctta ttgatgagga 3420cttaaggttt cagaactgtg tgatgttcaa tcaagcatat
gtggaaactt tatcaagcta 3480tagtgacatg attattgata atatgaccat gaaatttgtt
atcattgtgt atggcagtgt 3540aattgatact aagacagagg aaccatattt tgcaccttgc
attataccta caacctgtga 3600gcaggttcag ggaacttctg atttaagcaa gctgctgata
atccaagcat ctgagcttac 3660ccaaagaaat agtaacacca atgtcatggc ctcagtcaac
acggtctttg aacaaccagg 3720aaagaatata aatggaagac aaaagatgag ttgaaaactg
gataccattt tagaaaaggg 3780tattaatgat acaaatatga tgtgtggagt caggttaaag
accaaactac tttcctcgct 3840caaatactaa aggattatct gcaaggagtt tacttagaag
ctactgaaac aggttactgc 3900tgcatttagt ttataagcaa tggatggact tctgtaaaac
ttcttaattt taagtagttg 3960cattatattt gggatgttaa aaaagtcttc aggataatat
aaaatacact gaaacatatg 4020tcctaccaaa tgaaaccctg tttccagcta agagcaaatt
ttaacatagt gcattataaa 4080aagtgttgta taactgatat gttactctct aaagcataga
acctgtaatt ttcatttgtg 4140aaattgttat aattagtgcc tccctaatat tttcccgagt
atagctattc tccccttccc 4200agtttggtaa atattgaaaa acagaattat attccacaat
cttagtaact ttcagtaagt 4260aagtaacttt tgctttcagt gaaatttagg agaaattaat
attctcatat tgcatagtac 4320tgtttgatgt cacctttcat tttattttta aaaatcaaat
aaagttgagt tttatggttg 4380tcta
43841501124PRTHomo sapiens 150Met Ser Ser Tyr Phe
Trp Ala Gln Asn Glu Ser Asn Arg Pro Asp Leu1 5
10 15Leu Cys Gly Gln Pro Ala Asp Tyr Leu Val Glu
Glu Lys His Phe Thr 20 25
30Thr Leu Val Cys Phe Ile Val Val Leu Gly Gly Leu Leu Lys Met Cys
35 40 45Leu Lys Asn Cys Glu Val Ile Val
Leu Thr Ile Leu Ser Leu Ser Gly 50 55
60Phe Val Ile Gly His Met Ala Tyr Asn Ser Val Glu Val His Gln Ile65
70 75 80Val Tyr Pro Leu Leu
Arg Thr Ser Ser Phe Ser Leu Tyr Ser Tyr Phe 85
90 95Ser Pro Leu Ile Ile Phe Met Val Ala Leu Asp
Val Glu Phe Tyr Thr 100 105
110Leu Lys Lys Met Phe Trp Gln Val Leu Leu Thr Gly Leu Ile Ser Phe
115 120 125Ser Thr Ala Ser Ile Ile Ile
Gly Tyr Val Val Ile Lys Phe Asn Lys 130 135
140Asp Ser Trp Asp Leu Gln Ser Cys Leu Leu Phe Ser Ile Thr Leu
Gly145 150 155 160Ile Ile
Asp Pro Leu Arg Ser Val Asn Ser Leu Lys Thr Ile Gly Ile
165 170 175Ser Lys Ile Tyr Ile Asp Leu
Ile Arg Gly Glu Ser Leu Ile Ile Cys 180 185
190Ser Ile Ala Ser Ile Phe Phe Gly Asn Phe Arg Gly Asn Arg
Ile His 195 200 205Phe Ser Ile Phe
Arg Asp Leu His Val Gly Ile Glu Leu Ser Tyr Asp 210
215 220Ile Leu Gly Ser Ile Ile Phe Gly Tyr Trp Cys Ala
Lys Ile Ile Gln225 230 235
240Cys Ile Leu Ala Asp Val Phe Ser Asn Met Leu Thr Asn Ile Ile Leu
245 250 255Cys Phe Ser Met Val
Tyr Met Thr Phe Tyr Ile Val Glu Phe Leu Gly 260
265 270Met Ser Gly Thr Leu Ala Leu Ala Ala Val Gly Leu
Asn Leu Asp Ser 275 280 285Leu Thr
Phe Lys Pro Lys Ile Glu Leu Val Ile Thr Lys Phe Leu Arg 290
295 300Ile Phe Ser Ser Val Tyr Glu His Leu Ile Tyr
Ala Phe Phe Gly Ile305 310 315
320Val Ile Gly Cys Gly Glu Leu Ser His Tyr Glu Phe His Thr Ile Pro
325 330 335Phe Ile Phe Ile
Leu Phe Thr Thr Val Asn Leu Val Arg Leu Leu Thr 340
345 350Ile Leu Leu Val Ser Pro Ile Leu Met His Ser
Asn Tyr Glu Tyr Asn 355 360 365Trp
Arg Trp Gly Val Val Ile Thr Trp Ser Gly Ile Lys Gly Val Phe 370
375 380Asn Leu Leu Trp Ala Pro Asp Val Tyr Asn
Leu Ala Glu Arg Lys Val385 390 395
400Glu Val Pro Gln Met Phe Ile Leu Tyr Val Gln Val Ile Ser Leu
Leu 405 410 415Thr Met Gly
Ile Asn Ser Tyr Val Met Thr Gln Ser Ala Arg Lys Leu 420
425 430Asp Leu Cys Val Leu Ser Leu Pro Arg Gln
Met Ile Leu Gln Asn Ala 435 440
445Thr Gln His Ile Gln Glu Ile Val Gln Asn Thr Ile Thr Leu Phe Lys 450
455 460Thr Glu Lys Ile Leu Thr Asn Val
Asn Trp Thr Leu Val Glu Asp Lys465 470
475 480Thr Arg Ile Glu Tyr Ile Pro Phe Ser His Val Ser
His Asn Asp Met 485 490
495Lys Thr Glu Ser Thr Thr Asp Glu Ala Leu Met Glu Glu Ala Arg Leu
500 505 510His Val Ala Ala Ile Gln
Met Ser Ser Phe Glu Lys Gln Arg Asn Asn 515 520
525Gly Ile Leu Glu Ile Glu Ala Ala Arg Ile Leu Ile Gly Ala
Ala Lys 530 535 540Cys Tyr Tyr Ser Ile
Gln Gly Lys Phe Met Ser Ile Tyr Asp Val Ser545 550
555 560Thr Tyr Met Arg Thr Arg Ser Trp Leu Ile
Lys Phe Lys Asn Val Leu 565 570
575Thr Phe Leu Glu Tyr Cys Ile Glu Lys Ile His Phe Ile Pro Pro Glu
580 585 590Ser Asn Thr Phe Leu
Thr Phe Ile Phe His Ile Val Phe Ser Glu Glu 595
600 605Phe Glu Tyr Thr Gly Gln Ile Ile Asn Leu Ile Tyr
Ile Tyr Pro Met 610 615 620Ile Ile His
Leu Trp Pro Met Ala Arg Gly Leu Asn Val Ser Ala Leu625
630 635 640Ile Ser Ile Asn Tyr Tyr Phe
Met Phe Leu Tyr Val Leu Glu Ser Thr 645
650 655Leu Lys Ile Ile Ile Leu Lys Arg Lys Tyr Phe Gln
Gln Cys Trp Asn 660 665 670Thr
Leu Glu Phe Phe Ile Leu Val Ile Gly Ile Ile Asp Ile Phe Cys 675
680 685Val Tyr Phe Val Lys Leu Arg Pro Asp
Asn Leu Ala Leu Ile Gln Leu 690 695
700Thr Val Ile Met Gly Tyr Leu Arg Ile Ile Arg Phe Leu Pro Leu Phe705
710 715 720Lys Ile Ile Val
Pro Ile Leu Ile Arg Ile Ala Asp Val Gln Ile Lys 725
730 735Lys Arg Leu Ser Leu Met Tyr Ser Ile Thr
Lys Gly Tyr Ile Lys Ser 740 745
750Gln Glu Asp Ala Lys Leu Leu Ile Lys Gln Ile Ala Val Cys Glu Ser
755 760 765Ile Tyr Gln Lys Leu Cys Glu
Ile Leu Glu Thr Asn Lys Gln Asp Ala 770 775
780Val Lys Glu Leu Val Leu Met Glu His Glu Gly Arg Asp Val Val
Ile785 790 795 800Ala Leu
Lys Thr Lys Gln Ala Ile Arg Asn Val Ile Ala Lys Ala Leu
805 810 815Lys Asn Leu Thr Phe Leu Cys
Ser Arg Gly Ile Ile Asp Lys His Glu 820 825
830Val Ile Glu Ile Asn Lys Val Leu Leu Lys Lys Leu Lys Ala
Leu Asn 835 840 845Asn Phe Pro Lys
Ala Ile Pro Pro Pro Thr Pro Asp Ile Tyr Leu His 850
855 860Asn Ile Ile Trp Leu Glu Gly Lys Asp Val Leu Ile
Asp Phe Phe Lys865 870 875
880Glu Arg Ala Lys Leu Ala Cys Phe Asp Ser Gly Asp Thr Ile Cys Lys
885 890 895Gly Gly Glu Met Pro
Gln Gly Ile Tyr Leu Ile Ile Ser Gly Met Ala 900
905 910Ile Leu His Ser Leu Ser Pro Thr Phe Gly Ile Glu
Ser Asn Gln Arg 915 920 925Cys Asp
Arg Gly Ser Arg Asp Met Phe Thr Glu Phe Cys Thr Thr Gly 930
935 940Asp Ile Ile Gly Glu Leu Ser Cys Leu Leu Lys
Arg Glu Ile Glu Tyr945 950 955
960Thr Val Ile Cys Glu Thr Ser Leu Gln Ala Cys Phe Ile Ser Leu Glu
965 970 975Asp Leu Tyr Glu
Gly Phe Asp Ala Phe Trp Pro Ser Leu Glu Tyr Lys 980
985 990Ile Trp Leu Lys Leu Ala Leu Ser Thr Ala Tyr
Gln Tyr Phe Glu Ser 995 1000
1005Ser Leu Ile Asp Glu Asp Leu Arg Phe Gln Asn Cys Val Met Phe
1010 1015 1020Asn Gln Ala Tyr Val Glu
Thr Leu Ser Ser Tyr Ser Asp Met Ile 1025 1030
1035Ile Asp Asn Met Thr Met Lys Phe Val Ile Ile Val Tyr Gly
Ser 1040 1045 1050Val Ile Asp Thr Lys
Thr Glu Glu Pro Tyr Phe Ala Pro Cys Ile 1055 1060
1065Ile Pro Thr Thr Cys Glu Gln Val Gln Gly Thr Ser Asp
Leu Ser 1070 1075 1080Lys Leu Leu Ile
Ile Gln Ala Ser Glu Leu Thr Gln Arg Asn Ser 1085
1090 1095Asn Thr Asn Val Met Ala Ser Val Asn Thr Val
Phe Glu Gln Pro 1100 1105 1110Gly Lys
Asn Ile Asn Gly Arg Gln Lys Met Ser 1115
112015121DNAArtificial SequenceOligonucleotide 151ctacaacctg tgagcaggtt c
2115221DNAArtificial
SequenceOligonucleotide 152cctgtttcag tggcttctaa g
211531189DNAHomo sapiens 153ctatgccttc tgaccccgtc
ttggacttca actgggagaa tgtggagcca tttgaacagg 60ctcctcttct ggagcatatt
ttcttctgtc acttgtagaa aagctgtatt ggattgtgag 120gcaatgaaaa caaatgaatt
cccttctcca tgtttggact caaagactaa ggtggttatg 180aagggtcaaa atgtatctat
gttttgttcc cataagaaca aatcactgca gatcacctat 240tcattgtttc gacgtaagac
acacctggga acccaggatg gaaaaggtga acctgcgatt 300tttaacctaa gcatcacaga
agcccatgaa tcaggcccct acaaatgcaa agcccaagtt 360accagctgtt caaaatacag
tcgtgacttc agcttcacga ttgtcgaccc ggtgacttcc 420ccagtgctga acattatggt
cattcaaaca gaaacagacc gacatataac attacattgc 480ctctcagtca atggctcgct
gcccatcaat tacactttct ttgaaaacca tgttgccata 540tcaccagcta tttccaagta
tgacagggag cctgctgaat ttaacttaac caagaagaat 600cctggagaag aggaagagta
taggtgtgaa gctaaaaaca gattgcctaa ctatgcaaca 660tacagtcacc ctgtcaccat
gccctcaaca ggcggagaca gctgtccttt ctgtctgaag 720ctactacttc cagggttatt
actgttgctg gtggtgataa tcctaattct ggctttttgg 780gtactgccca aatacaaaac
aagaaaagct atgagaaata atgtgcccag ggaccgtgga 840gacacagcca tggaagttgg
aatctatgca aatatccttg aaaaacaagc aaaggaggaa 900tctgtgccag aagtgggatc
caggccgtgt gtttccacag cccaagatga ggccaaacac 960tcccaggagc tacagtatgc
cacccccgtg ttccaggagg tggcaccaag agagcaagaa 1020gcctgtgatt cttataaatc
tggatatgtc tattctgaat cctgacctca gatgatctgc 1080ctgcctcggc ctcccaaagt
gctggaacta caagcctgag ccaccgtgcc cggccctgaa 1140tcgctttagt aaataaaggg
tctccaagaa taaattcatc cgaacatgc 1189154341PRTHomo sapiens
154Met Trp Ser His Leu Asn Arg Leu Leu Phe Trp Ser Ile Phe Ser Ser1
5 10 15Val Thr Cys Arg Lys Ala
Val Leu Asp Cys Glu Ala Met Lys Thr Asn 20 25
30Glu Phe Pro Ser Pro Cys Leu Asp Ser Lys Thr Lys Val
Val Met Lys 35 40 45Gly Gln Asn
Val Ser Met Phe Cys Ser His Lys Asn Lys Ser Leu Gln 50
55 60Ile Thr Tyr Ser Leu Phe Arg Arg Lys Thr His Leu
Gly Thr Gln Asp65 70 75
80Gly Lys Gly Glu Pro Ala Ile Phe Asn Leu Ser Ile Thr Glu Ala His
85 90 95Glu Ser Gly Pro Tyr Lys
Cys Lys Ala Gln Val Thr Ser Cys Ser Lys 100
105 110Tyr Ser Arg Asp Phe Ser Phe Thr Ile Val Asp Pro
Val Thr Ser Pro 115 120 125Val Leu
Asn Ile Met Val Ile Gln Thr Glu Thr Asp Arg His Ile Thr 130
135 140Leu His Cys Leu Ser Val Asn Gly Ser Leu Pro
Ile Asn Tyr Thr Phe145 150 155
160Phe Glu Asn His Val Ala Ile Ser Pro Ala Ile Ser Lys Tyr Asp Arg
165 170 175Glu Pro Ala Glu
Phe Asn Leu Thr Lys Lys Asn Pro Gly Glu Glu Glu 180
185 190Glu Tyr Arg Cys Glu Ala Lys Asn Arg Leu Pro
Asn Tyr Ala Thr Tyr 195 200 205Ser
His Pro Val Thr Met Pro Ser Thr Gly Gly Asp Ser Cys Pro Phe 210
215 220Cys Leu Lys Leu Leu Leu Pro Gly Leu Leu
Leu Leu Leu Val Val Ile225 230 235
240Ile Leu Ile Leu Ala Phe Trp Val Leu Pro Lys Tyr Lys Thr Arg
Lys 245 250 255Ala Met Arg
Asn Asn Val Pro Arg Asp Arg Gly Asp Thr Ala Met Glu 260
265 270Val Gly Ile Tyr Ala Asn Ile Leu Glu Lys
Gln Ala Lys Glu Glu Ser 275 280
285Val Pro Glu Val Gly Ser Arg Pro Cys Val Ser Thr Ala Gln Asp Glu 290
295 300Ala Lys His Ser Gln Glu Leu Gln
Tyr Ala Thr Pro Val Phe Gln Glu305 310
315 320Val Ala Pro Arg Glu Gln Glu Ala Cys Asp Ser Tyr
Lys Ser Gly Tyr 325 330
335Val Tyr Ser Glu Ser 34015521DNAArtificial
SequenceOligonucleotide 155gaggaatctg tgccagaagt g
2115621DNAArtificial SequenceOligonucleotide
156acagagtgag actccatcct g
211572713DNAHomo sapiens 157gggcttggct ggggtgctca gcccaatttt ccgtgtaggg
agcgggcggc ggcgggggag 60gcagaggcgg aggcggagtc aagagcgcac cgccgcgccc
gccgtgccgg gcctgagctg 120gagccgggcg tgagtcgcag caggagccgc agccggagtc
acagccgcag ccagagccgc 180agccaaagcc tcagagagca ggagttggag cgcaggccct
gctggatccg cgcctagctc 240gccgccaggc accggccgga ggacgggccg tggtgtcagc
tcactgcccg ggcgctgtgg 300gaggcagcga gcccgcgacc ccccgggccg ggcaccgcca
ggcgcggagc ccagatcgcc 360cccctgccag gcctggtcac ggccagagca cgcaggagtt
cccagggtct ggatctgcgc 420gcaccctaat gacctgggga ctgaagagaa aaaaggaacg
aggatttcat ctaaaagcat 480aacgtgggca ctaggcgagg aggaaagtgg agaccacctg
gcacggggca gaggtgcctg 540gagcccacgc ttgagcatcg gagaccctgg catcctagca
gccgcgacct tggctctgcc 600ctgtctgagc tggaaacaca gcttagcttc tagacatcgc
tggcacaggc ctggcacaag 660taagcagtgt cctcacctgt ctgaaacggg acacggggtc
ggaggaacca ggatctagcc 720tggccccaag cggaactctc tggtggccca gaggtcgtca
ctggggagcc cgcctcctgc 780cctagcctca ctggtgcgga tgtgccgctg cccgccggag
caccatgatg gcaggatgac 840ctcagccgaa gtaggagcag cagctggtgg tgctcaggcg
gctgggcccc ccgagtggcc 900ccctggcagc cctcaggccc tccggcagcc tggccgggcc
cgagtggcca tggcagcact 960ggtgtggctg ctggcgggag ccagcatgtc aagcctcaac
aagtggatct tcacagtgca 1020cggctttggg cggcccctgc tgctgtcggc cctgcacatg
ctggtggcag ccctggcatg 1080ccaccggggg gcacggcgcc ccatgccagg cggcactcgc
tgccgagtcc tactgctcag 1140tctcaccttt ggcacgtcca tggcctgcgg caacgtgggc
ctaagggctg tgcccctgga 1200cctggcacaa ctggttacta ccaccacacc tctgttcacc
ctggccctgt cggcgctgct 1260gctgggccgc cgccaccacc cacttcagtt ggccgccatg
ggtccgctct gcctgggggc 1320cgcctgcagc ctggctggag agttccggac accccctacc
ggctgtggct tcctgctcgc 1380agccacctgc ctccgcggac tcaagtcggt tcagcaaagt
gccctgctgc aggaggagag 1440gctggacgcg gtgaccctgc tttacgccac ctcgctgccc
agcttctgcc tgctggcggg 1500tgcagccctg gtgctggagg ctggcgttgc cccaccgccc
actgctggcg actctcgcct 1560ctgggcctgc atcctgctca gctgcctcct gtctgttctc
tataacctgg ccagcttctc 1620cctgctggcc ctcacctctg ccctcaccgt ccacgtcctg
ggcaacctca ccgtggtggg 1680caacctcatc ctgtcccggc tgttgtttgg cagccgcctc
agtgccctca gctacgtggg 1740catcgcactc actctttcag gaatgttcct ttaccacaac
tgcgagttcg tggcctcctg 1800ggctgcccgt cgggggctgt ggcggaggga ccagcccagc
aagggtcttt gagacctggg 1860ggatctcagg agccacctgg gatggccctg gcctgaatcc
agcctccgct gtggccatag 1920aaggaatgga gaacagggct gggcatggtg gctcacgcct
ataatcccag cacttccaga 1980gtccgaggtg ggtggatcac ctgaggccag gagttcgaga
ccagcctggc taacatggca 2040aaacctcatc tctactaaaa atagaaaaat tagctgggca
tggtggcgcg tgcctatagt 2100cccagctaca tgggaggcta aggtgggagg atcacttgag
ccctggagat cgaggctgca 2160gtaagccaag atcgcatgct actgcactcc agcctgggag
acagagcgag acgctgtctc 2220aattaaaaaa aaaaaaaagt ggagaactgg cagtgacctc
tactgggggc catggcaggg 2280aggggagcct tctggaaggg ctgccttgga gattggaatg
gggactccca gggagacctg 2340cgttccatcc ctgcctgcct cacccctgcc acagactctg
cacaccactg gatggtgggt 2400ccaagcctgg cacagtccct gtgcttgtca gagtcattat
tatgattaat atcaattacg 2460atgccaaaaa ttgctgggca aactttgaag acctcaactt
gttacaatga cgatgatgat 2520gattcttggc ggttacacaa tccttcctcc tgggggggag
gcagctagga ggcccagcag 2580gggggcttct atgctgctgg gctcccctag ggagttgggg
tagtctgtgc caactccagg 2640cagctgctgt ggcctcaccc ctgggccccc caattttggg
tcatccatcc tcaaatacac 2700tatttttgct tgt
2713158350PRTHomo sapiens 158Met Cys Arg Cys Pro
Pro Glu His His Asp Gly Arg Met Thr Ser Ala1 5
10 15Glu Val Gly Ala Ala Ala Gly Gly Ala Gln Ala
Ala Gly Pro Pro Glu 20 25
30Trp Pro Pro Gly Ser Pro Gln Ala Leu Arg Gln Pro Gly Arg Ala Arg
35 40 45Val Ala Met Ala Ala Leu Val Trp
Leu Leu Ala Gly Ala Ser Met Ser 50 55
60Ser Leu Asn Lys Trp Ile Phe Thr Val His Gly Phe Gly Arg Pro Leu65
70 75 80Leu Leu Ser Ala Leu
His Met Leu Val Ala Ala Leu Ala Cys His Arg 85
90 95Gly Ala Arg Arg Pro Met Pro Gly Gly Thr Arg
Cys Arg Val Leu Leu 100 105
110Leu Ser Leu Thr Phe Gly Thr Ser Met Ala Cys Gly Asn Val Gly Leu
115 120 125Arg Ala Val Pro Leu Asp Leu
Ala Gln Leu Val Thr Thr Thr Thr Pro 130 135
140Leu Phe Thr Leu Ala Leu Ser Ala Leu Leu Leu Gly Arg Arg His
His145 150 155 160Pro Leu
Gln Leu Ala Ala Met Gly Pro Leu Cys Leu Gly Ala Ala Cys
165 170 175Ser Leu Ala Gly Glu Phe Arg
Thr Pro Pro Thr Gly Cys Gly Phe Leu 180 185
190Leu Ala Ala Thr Cys Leu Arg Gly Leu Lys Ser Val Gln Gln
Ser Ala 195 200 205Leu Leu Gln Glu
Glu Arg Leu Asp Ala Val Thr Leu Leu Tyr Ala Thr 210
215 220Ser Leu Pro Ser Phe Cys Leu Leu Ala Gly Ala Ala
Leu Val Leu Glu225 230 235
240Ala Gly Val Ala Pro Pro Pro Thr Ala Gly Asp Ser Arg Leu Trp Ala
245 250 255Cys Ile Leu Leu Ser
Cys Leu Leu Ser Val Leu Tyr Asn Leu Ala Ser 260
265 270Phe Ser Leu Leu Ala Leu Thr Ser Ala Leu Thr Val
His Val Leu Gly 275 280 285Asn Leu
Thr Val Val Gly Asn Leu Ile Leu Ser Arg Leu Leu Phe Gly 290
295 300Ser Arg Leu Ser Ala Leu Ser Tyr Val Gly Ile
Ala Leu Thr Leu Ser305 310 315
320Gly Met Phe Leu Tyr His Asn Cys Glu Phe Val Ala Ser Trp Ala Ala
325 330 335Arg Arg Gly Leu
Trp Arg Arg Asp Gln Pro Ser Lys Gly Leu 340
345 35015921DNAArtificial SequenceOligonucleotide
159caagtcggtt cagcaaagtg c
2116021DNAArtificial SequenceOligonucleotide 160cctgaaagag tgagtgcgat g
21161963DNAHomo sapiens
161gactacacaa ggactgaacc agaaggaaga ggacagagca aagccatgaa catcatccta
60gaaatccttc tgcttctgat caccatcatc tactcctact tggagtcgtt ggtgaagttt
120ttcattcctc agaggagaaa atctgtggct ggggagattg ttctcattac tggagctggg
180catggaatag gcaggcagac tacttatgaa tttgcaaaac gacagagcat attggttctg
240tgggatatta ataagcgcgg tgtggaggaa actgcagctg agtgccgaaa actaggcgtc
300actgcgcatg cgtatgtggt agactgcagc aacagagaag agatctatcg ctctctaaat
360caggtgaaga aagaagtggg tgatgtaaca atcgtggtga ataatgctgg gacagtatat
420ccagccgatc ttctcagcac caaggatgaa gagattacca agacatttga ggtcaacatc
480ctaggacatt tttggatcac aaaagcactt cttccatcga tgatggagag aaatcatggc
540cacatcgtca cagtggcttc agtgtgcggc cacgaaggga ttccttacct catcccatat
600tgttccagca aatttgccgc tgttggcttt cacagaggtc tgacatcaga acttcaggcc
660ttgggaaaaa ctggtatcaa aacctcatgt ctctgcccag tttttgtgaa tactgggttc
720accaaaaatc caagcacaag attatggcct gtattggaga cagatgaagt cgtaagaagt
780ctgatagatg gaatacttac caataagaaa atgatttttg ttccatcgta tatcaatatc
840tttctgagac tacagaatcc tgataatatt aaaaacattg gtttggcact agcagcagtc
900aaacgaacaa gattaattac ctgtcttcct gtttctcaag aatatttacg tagtttttca
960tag
963162305PRTHomo sapiens 162Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Leu
Ile Thr Ile Ile Tyr1 5 10
15Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg Arg Lys
20 25 30Ser Val Ala Gly Glu Ile Val
Leu Ile Thr Gly Ala Gly His Gly Ile 35 40
45Gly Arg Gln Thr Thr Tyr Glu Phe Ala Lys Arg Gln Ser Ile Leu
Val 50 55 60Leu Trp Asp Ile Asn Lys
Arg Gly Val Glu Glu Thr Ala Ala Glu Cys65 70
75 80Arg Lys Leu Gly Val Thr Ala His Ala Tyr Val
Val Asp Cys Ser Asn 85 90
95Arg Glu Glu Ile Tyr Arg Ser Leu Asn Gln Val Lys Lys Glu Val Gly
100 105 110Asp Val Thr Ile Val Val
Asn Asn Ala Gly Thr Val Tyr Pro Ala Asp 115 120
125Leu Leu Ser Thr Lys Asp Glu Glu Ile Thr Lys Thr Phe Glu
Val Asn 130 135 140Ile Leu Gly His Phe
Trp Ile Thr Lys Ala Leu Leu Pro Ser Met Met145 150
155 160Glu Arg Asn His Gly His Ile Val Thr Val
Ala Ser Val Cys Gly His 165 170
175Glu Gly Ile Pro Tyr Leu Ile Pro Tyr Cys Ser Ser Lys Phe Ala Ala
180 185 190Val Gly Phe His Arg
Gly Leu Thr Ser Glu Leu Gln Ala Leu Gly Lys 195
200 205Thr Gly Ile Lys Thr Ser Cys Leu Cys Pro Val Phe
Val Asn Thr Gly 210 215 220Phe Thr Lys
Asn Pro Ser Thr Arg Leu Trp Pro Val Leu Glu Thr Asp225
230 235 240Glu Val Val Arg Ser Leu Ile
Asp Gly Ile Leu Thr Asn Lys Lys Met 245
250 255Ile Phe Val Pro Ser Tyr Ile Asn Ile Phe Leu Arg
Leu Gln Asn Pro 260 265 270Asp
Asn Ile Lys Asn Ile Gly Leu Ala Leu Ala Ala Val Lys Arg Thr 275
280 285Arg Leu Ile Thr Cys Leu Pro Val Ser
Gln Glu Tyr Leu Arg Ser Phe 290 295
300Ser30516321DNAArtificial SequenceOligonucleotide 163ggtctgacat
cagaacttca g
2116421DNAArtificial SequenceOligonucleotide 164tgcatacatc tctggctgga g
211656014DNAHomo sapiens
165cacccggaag gagcggtgtg agcggtccaa ggagccccgc aggtttgcct cggagatgaa
60gcagtgtgtc cggctgacgg tccatcccaa caatatctcc gtctctcagt acaacgtgct
120gctggtcctg gagacgtaca atgtcccgga gctgtcagct ggcgtcaact gcacctttga
180ggacctgtca gagatggatg ggctggtcgt gggcaatcag atccagtgct actcccctgc
240agccaaggag gtgccccgga tcatcacaga gaatggggac caccatgtcg tacagcttca
300gctcaaatca aaggagaccg gcatgacctt cgccagcacc agctttgtct tctacaattg
360cagcgtccac aattcgtgcc tgtcctgcgt ggagagtcca taccgctgcc actggtgtaa
420ataccggcat gtctgcaccc atgaccccaa gacctgctcc ttccaggaag gccgagtgaa
480gctgcccgag gactgccccc agctgctgcg agtggacaag atcctggtgc ccgtggaggt
540gatcaagcct atcacgctga aggccaagaa cctcccccag ccccagtctg ggcagcgtgg
600ctacgaatgc atcctcaaca ttcagggcag cgagcagcga gtgcccgccc tgcgcttcaa
660cagctccagc gtacagtgcc agaacacctc ttattcctat gaagggatgg agatcaacaa
720cctgcccgtg gagttgacag tcgtgtggaa tgggcacttc aacattgaca acccagctca
780gaataaagtt cacctctaca agtgtggagc catgcgtgag agctgcgggc tgtgcctcaa
840ggctgaccca gacttcgcat gtggctggtg ccagggccca ggccagtgca ccctgcgcca
900gcactgccct gcccaggaga gccagtggct ggagctgtct ggtgccaaaa gcaagtgcac
960aaacccccgc atcacagaga taatcccggt gacaggcccc cgggaagggg gcaccaaggt
1020cactatccga ggggagaacc tgggcctgga atttcgcgac atcgcctccc atgtcaaggt
1080tgctggcgtg gagtgcagcc ctttagtgga tggttacatc cctgcagaac agatcgtgtg
1140tgagatgggg gaggccaagc ccagccagca tgcaggcttc gtggagatct gcgtggctgt
1200gtgtcggcct gaattcatgg cccggtcctc acagctctat tacttcatga cactgactct
1260ctcagatctg aagcccagcc gggggcccat gtccggaggg acccaagtga ccatcacagg
1320caccaacctg aatgccggaa gcaacgtggt ggtgatgttt ggaaagcagc cctgtctctt
1380ccacaggcga tctccatcct acattgtctg caacaccaca tcctcagatg aggtgctaga
1440gatgaaggtg tcggtgcagg tggacagggc caagatccac caggacctgg tctttcagta
1500tgtggaagac cccaccatcg tgcggattga gccagaatgg agcattgtca gtggaaacac
1560acccatcgcc gtatggggga cccacctgga cctcatacag aacccccaga tccgtgccaa
1620gcatggaggg aaggagcaca tcaatatctg tgaggttctg aacgctactg agatgacctg
1680tcaggcgccc gccctcgctc tgggtcctga ccaccagtca gacctgaccg agaggcccga
1740ggagtttggc ttcatcctgg acaacgtcca gtccctgctc atcctcaaca agaccaactt
1800cacctactat cccaacccgg tgtttgaggc ctttggtccc tcaggaatcc tggagctcaa
1860gcctggcacg cccatcatcc taaagggcaa gaacctgatc ccgcctgtgg ctgggggcaa
1920cgtgaagctg aactacactg tgctggttgg ggagaagccg tgcaccgtga ccgtgtcaga
1980tgtccagctg ctctgcgagt cccccaacct catcggcagg cacaaagtga tggcccgtgt
2040cggtggcatg gagtactccc cggggatggt gtacattgcc ccggacagcc cgctcagcct
2100gcccgccatc gtcagcatcg cagtggctgg cggcctcctc atcattttca tcgtggccgt
2160gctcattgcc tataaacgca agtcccgcga aagtgacctc acgctgaagc ggctgcagat
2220gcagatggac aacctggagt cccgtgtggc cctggagtgc aaggaaggta ctgagtggcc
2280ccatgctgga ggccatgtgt gtgtgcgtgt gtgcatatgt gtgtgcatgc acatctgtgt
2340atgtgtatgc atatgtttca tatacaaaca agcaggctgg gcagcagtgg gcagtgctgg
2400aggctggcgg tgtgtgtgtc tgtgcgaatg tgtgtgtgtg catgtgtgtg tgtgcacatc
2460tgtatgtata tatgtttcat atacaagcaa gcaggccggg cagcagtgag cagtgctgga
2520ggctgtatat gtgtctgtgt gcgtgcgcat ctgtgtatgt gtatatgttt catgtacaag
2580caagcaggcc gggcagcagt gggcagtgct ggaggctctg tgtgtgcgtg tgcatgtgtg
2640tgtatgtatg tgtatgtgtt ccatttacaa gcaagcaggc caggcaactg tgagcagtgc
2700tggaggctgt gtgcgcgtgt gtgtgtgtat gtgtatgtgt ttcatttaca agcaagcagg
2760ccaggcagct gtgagcagtg ctggaggctg tgtgtgtgtg tgtgtgagca cgcacgtgtg
2820tgagcacgca cgtgtatgtg tatgtgtgtc atttacaagc aagcaggcca ggcagctgtg
2880agcagtgctg gaggccgtgt gtgtgtgtgt gtgtgtgtgt gcgcgcgcgc ctgtatatgt
2940gtatgtgttt catttacaag caagcaggcc aggcagctgt gggcagtgct ggaggctgtg
3000tgtgtgtgca cgtgtgtgta tgcgtatgtg tttcatttac aagcaagcag gccaggcagc
3060tgtgggcagt gctggaggct gtgtgtgtgt gtgtgtgtgt gtgtgtgtat atatgtgtat
3120gtgtatgtgt ttcatttaca agcaagcagc ccaggcagct gtgggcagtg ctggaggctg
3180tgtgtgtgtg tgtgtgtgtg tgtgtatgtg tttcatttac aagtgtgtgt gtgtgtgtgt
3240atgtgtatgt gtatgtgttt catttacaag caagcaggcc aggcagctgt gggcaatgct
3300ggaggctgtg catcctacct gcatacctgc aaagcctctc actctatagt ccctatgcct
3360gtgtcccaga ccacacccat acccaagcag gccccaccct ggcaacacca gagaggccaa
3420ggtctccttg ccctctcctt gaaggtgtag tgattagaat ctcttttatg tgtggcaggc
3480acacagcttt gaatgttgga ggcgcttggt gacttaaagg aaagctgcag actgataaaa
3540agccaactcc ctccttctgc tccctgtggg ccgagcaccc caactgggag ggggcagccg
3600aggggagctc ccacccagga ttgtcacctt caccccacta gagcaccttc accccactag
3660agcagcctcc atacctggaa tcctggttga gtgggttttg cactctactc gaggggaggt
3720ctgggggtgt cttaacatga cgcatttcag caatctccag ctttcttcct ctagcaggaa
3780ggtaaggctg tagggctgat ctgtgattta gaaggaaggg tgtttcaaag cttgtattaa
3840aaaaattaca aacaccacca taaagtgaaa tcagctgcac taaatccaag aaggaaattt
3900aggagtcaga ctcttgtaac ccccaggata tcattttgtg actcatcctg ggaggatctg
3960agctggttct ttgctgtaga tttgtacatg gagtaaatcc ggccccatac ctggggctct
4020cacttcacac cgattcccac cagggcagcc acggctcttt ttgatgggga agtggatcca
4080ttccatcccc tctctacatc cttcagctgt caacacagca tccgccttgt gggactgtta
4140attactgcct tttattatat ttacgctgct taattttttt ctccgcaatg tactctttcc
4200tctaattagg tgtagtgatt agaatctctt ttatgtgtgg caggcacgca gctttgaatg
4260ttggaggcgc ttggtgactt aaaggaaagc tgcagactga taaaaagcca acaccctcct
4320tctgctccct gtgggccgag caccccaact gggagggagc agccgatggg agctcccacc
4380caggattgtc agctgaggcc ccaggaggaa accttggctt cagactttag gggcgagcta
4440tgctgtgcac gtaggaagaa ggggtcttac agcaaaggac ttgtcagact agccacagag
4500gcactttgca gcttgcccag agccagccac tgaacgttta cagggctgca ctggcccaag
4560ccaaggggtc tccttgaaga cttcacagca agccaggacg tcctctacac aaactcagaa
4620gacacccagc tgggcccttc atgggcctaa gcttctgata tataaacata cccgtgtatt
4680tacaaacact cccacacagg cccacacacc ctcactgaca tacactcatg gactcacaca
4740tacactcaca tgcacacatg catgcacact cacatacact cactcgtgca ctcacacata
4800catgcccaca catagtgaca tgctcacaca ctcatgcttt cacatacata cactcactga
4860catacactca tgtgctcaca cgctcatgta ctcacattcg tacacacaca ctgacatata
4920cttacacact cacacttgca catgcataca catgcactca catgcacaca tgcatgcaca
4980ctcatacact cacgcactca acttgcaggc gtgcacacac atgcccacat actcatgcac
5040tcacattcac acatgcgtgc acacatagac gcatgcactc acacatgcat acacacagac
5100atacacatgc actcacattc gtacttgcat acacaccaac acacatatgc acactcacac
5160tgacaagcat acacacacac tcatgcactc acacccacgc aggcactcac attcacacac
5220atacacactc attgacatac attcattcac atccatgcac tcacattcac acatgcatac
5280acactgacat tcacacttgc acatgcctac acactcactg acatacacac acacatgcag
5340tcatacacac tccctgacat gctcacacac tgtcatactc acacactccc tgacatgctc
5400acacactgtc acactcacac actcacatac actccctgac atacacactc agacaagtgc
5460ccatgcaccc acacctatgc tcatgcacat gttcccacac tctcttataa gcatacacac
5520ccatgttcct cactcaggac acacatgaat gttccccagg gcatcatgtg acatcgcaga
5580ggacagatgg tggaaaagac atgagcaacc taatgggaag aggaaaatgg gaaacaatgc
5640attggaagag gaagaaaaaa aataaataac caaaggtttt ggcaagtgca gtaccaggtg
5700gagaagcttg acttttctat ccttgatcat tttattccct cccaagaagt cagtcacagg
5760acctggaagg ccagaaaggg tacatgtggg agacggtctg aggaagtacc tcggtcacta
5820caatattttt gcacatataa agggttgggg aggaaagaga cacaaacgta tttaacacag
5880atttgctgga tggaagctgc gtgtgtgaac gtgtgtatga gtgagtgcat tttgattttt
5940tttttttttt tttgcacagt taagagaaaa aatcaaacaa gcagaaaaaa aaaagaaaaa
6000agacttatca cggt
6014166817PRTHomo sapiens 166Met Lys Gln Cys Val Arg Leu Thr Val His Pro
Asn Asn Ile Ser Val1 5 10
15Ser Gln Tyr Asn Val Leu Leu Val Leu Glu Thr Tyr Asn Val Pro Glu
20 25 30Leu Ser Ala Gly Val Asn Cys
Thr Phe Glu Asp Leu Ser Glu Met Asp 35 40
45Gly Leu Val Val Gly Asn Gln Ile Gln Cys Tyr Ser Pro Ala Ala
Lys 50 55 60Glu Val Pro Arg Ile Ile
Thr Glu Asn Gly Asp His His Val Val Gln65 70
75 80Leu Gln Leu Lys Ser Lys Glu Thr Gly Met Thr
Phe Ala Ser Thr Ser 85 90
95Phe Val Phe Tyr Asn Cys Ser Val His Asn Ser Cys Leu Ser Cys Val
100 105 110Glu Ser Pro Tyr Arg Cys
His Trp Cys Lys Tyr Arg His Val Cys Thr 115 120
125His Asp Pro Lys Thr Cys Ser Phe Gln Glu Gly Arg Val Lys
Leu Pro 130 135 140Glu Asp Cys Pro Gln
Leu Leu Arg Val Asp Lys Ile Leu Val Pro Val145 150
155 160Glu Val Ile Lys Pro Ile Thr Leu Lys Ala
Lys Asn Leu Pro Gln Pro 165 170
175Gln Ser Gly Gln Arg Gly Tyr Glu Cys Ile Leu Asn Ile Gln Gly Ser
180 185 190Glu Gln Arg Val Pro
Ala Leu Arg Phe Asn Ser Ser Ser Val Gln Cys 195
200 205Gln Asn Thr Ser Tyr Ser Tyr Glu Gly Met Glu Ile
Asn Asn Leu Pro 210 215 220Val Glu Leu
Thr Val Val Trp Asn Gly His Phe Asn Ile Asp Asn Pro225
230 235 240Ala Gln Asn Lys Val His Leu
Tyr Lys Cys Gly Ala Met Arg Glu Ser 245
250 255Cys Gly Leu Cys Leu Lys Ala Asp Pro Asp Phe Ala
Cys Gly Trp Cys 260 265 270Gln
Gly Pro Gly Gln Cys Thr Leu Arg Gln His Cys Pro Ala Gln Glu 275
280 285Ser Gln Trp Leu Glu Leu Ser Gly Ala
Lys Ser Lys Cys Thr Asn Pro 290 295
300Arg Ile Thr Glu Ile Ile Pro Val Thr Gly Pro Arg Glu Gly Gly Thr305
310 315 320Lys Val Thr Ile
Arg Gly Glu Asn Leu Gly Leu Glu Phe Arg Asp Ile 325
330 335Ala Ser His Val Lys Val Ala Gly Val Glu
Cys Ser Pro Leu Val Asp 340 345
350Gly Tyr Ile Pro Ala Glu Gln Ile Val Cys Glu Met Gly Glu Ala Lys
355 360 365Pro Ser Gln His Ala Gly Phe
Val Glu Ile Cys Val Ala Val Cys Arg 370 375
380Pro Glu Phe Met Ala Arg Ser Ser Gln Leu Tyr Tyr Phe Met Thr
Leu385 390 395 400Thr Leu
Ser Asp Leu Lys Pro Ser Arg Gly Pro Met Ser Gly Gly Thr
405 410 415Gln Val Thr Ile Thr Gly Thr
Asn Leu Asn Ala Gly Ser Asn Val Val 420 425
430Val Met Phe Gly Lys Gln Pro Cys Leu Phe His Arg Arg Ser
Pro Ser 435 440 445Tyr Ile Val Cys
Asn Thr Thr Ser Ser Asp Glu Val Leu Glu Met Lys 450
455 460Val Ser Val Gln Val Asp Arg Ala Lys Ile His Gln
Asp Leu Val Phe465 470 475
480Gln Tyr Val Glu Asp Pro Thr Ile Val Arg Ile Glu Pro Glu Trp Ser
485 490 495Ile Val Ser Gly Asn
Thr Pro Ile Ala Val Trp Gly Thr His Leu Asp 500
505 510Leu Ile Gln Asn Pro Gln Ile Arg Ala Lys His Gly
Gly Lys Glu His 515 520 525Ile Asn
Ile Cys Glu Val Leu Asn Ala Thr Glu Met Thr Cys Gln Ala 530
535 540Pro Ala Leu Ala Leu Gly Pro Asp His Gln Ser
Asp Leu Thr Glu Arg545 550 555
560Pro Glu Glu Phe Gly Phe Ile Leu Asp Asn Val Gln Ser Leu Leu Ile
565 570 575Leu Asn Lys Thr
Asn Phe Thr Tyr Tyr Pro Asn Pro Val Phe Glu Ala 580
585 590Phe Gly Pro Ser Gly Ile Leu Glu Leu Lys Pro
Gly Thr Pro Ile Ile 595 600 605Leu
Lys Gly Lys Asn Leu Ile Pro Pro Val Ala Gly Gly Asn Val Lys 610
615 620Leu Asn Tyr Thr Val Leu Val Gly Glu Lys
Pro Cys Thr Val Thr Val625 630 635
640Ser Asp Val Gln Leu Leu Cys Glu Ser Pro Asn Leu Ile Gly Arg
His 645 650 655Lys Val Met
Ala Arg Val Gly Gly Met Glu Tyr Ser Pro Gly Met Val 660
665 670Tyr Ile Ala Pro Asp Ser Pro Leu Ser Leu
Pro Ala Ile Val Ser Ile 675 680
685Ala Val Ala Gly Gly Leu Leu Ile Ile Phe Ile Val Ala Val Leu Ile 690
695 700Ala Tyr Lys Arg Lys Ser Arg Glu
Ser Asp Leu Thr Leu Lys Arg Leu705 710
715 720Gln Met Gln Met Asp Asn Leu Glu Ser Arg Val Ala
Leu Glu Cys Lys 725 730
735Glu Gly Thr Glu Trp Pro His Ala Gly Gly His Val Cys Val Arg Val
740 745 750Cys Ile Cys Val Cys Met
His Ile Cys Val Cys Val Cys Ile Cys Phe 755 760
765Ile Tyr Lys Gln Ala Gly Trp Ala Ala Val Gly Ser Ala Gly
Gly Trp 770 775 780Arg Cys Val Cys Leu
Cys Glu Cys Val Cys Val His Val Cys Val Cys785 790
795 800Thr Ser Val Cys Ile Tyr Val Ser Tyr Thr
Ser Lys Gln Ala Gly Gln 805 810
815Gln16721DNAArtificial SequenceOligonucleotide 167gcaccaaggt
cactatccga g
2116821DNAArtificial SequenceOligonucleotide 168tctgagagag tcagtgtcat g
211692565DNAHomo sapiens
169actgcgacgg taccggggcg gcggggaagg accgagaggc gggaggagca gcggctcagg
60cgcctgcaaa ctggtggcct gaacgaggta gaccatgact gtggtttcag tggcgtcact
120cgctgggctg ctcttcctga ggttttccta agccatcccc tggcggaacc gcccccagta
180tggactccaa ttgccttgac agtgttttta gtggctgttg caacattatg taaagaacaa
240ggaataacag ttgtaggaat ttgctgtgtg tatgaagtgt ttattgccca ggggtatact
300ttgccattac tatgtactac tgctggacag tttctccgtg gaaagggtag cattccattt
360tctatgctgc agacactagt aaaactcatt gtcttgatgt tcagtacatt attacttgtt
420gtgattagag tccaggttat tcaatcccaa cttccagtat tcaccaggtt tgataaccca
480gctgctgtaa gcccaactcc tacaaggcaa ctaactttta actacctcct tcctgtgaat
540gcttggttgt tattaaatcc ttcagagctc tgctgtgatt ggaccatggg aacaatacca
600cttatagagt cattactaga tattcgaaat ctggccacat ttactttctt ttgttttctg
660gggatgttgg gagtattcag tatcagatac tctggtgatt cctccaagac tgttttaatg
720ttgcctgcta aaactgacat gggtcaaaaa tttgagaaaa gtagtgaaga ttcaaagcag
780tcaagaagag tggaaggaac tttccagaga aacctagaaa tcccaaacag tcttaaggat
840aaatttgaac ttggtgctca tgcttttatg acagtattaa tctgttcagc tttgggactt
900tctctagcag tgcgttgcca ctctgttgga tttgttgttg ccgagcgagt attatatgtt
960cccagcatgg ggttctgtat tttggtagcc catggatggc agaaaatatc aacaaaaagt
1020gtatttaaaa agctatcctg gatttgtctg tctatggtga tactcactca ttccttaaaa
1080acattccaca gaaattggga ttgggagtct gaatatacat tgtttatgtc agccttgaag
1140gtaaataaaa ataatgccaa actttggaat aatgtgggtc atgctctgga aaatgaaaag
1200aactttgaga gagctttgaa atacttctta caggctaccc atgttcagcc agatgatatt
1260ggtgcccata tgaatgtagg aagaacttat aaaaatttaa atagaaccaa agaagctgaa
1320gaatcttaca tgatggctaa atcactgatg cctcaaatta ttcctggtaa aaaatatgca
1380gccagaattg cccctaacca cctaaatgtt tatatcaatc tggctaacct gatccgagca
1440aatgagtccc gactggaaga agcagatcag ctgtaccgtc aagcaataag catgaggccc
1500gacttcaagc aggcttacat tagcagagga gaattgcttt taaaaatgaa taaacctctt
1560aaagcaaagg aagcatatct taaagcacta gagctggaca gaaataatgc agatctttgg
1620tacaacttgg caattgtaca tattgaactt aaagaaccaa atgaagccct aaaaaacttt
1680aatcgtgctc tggaactaaa tccaaagcat aaactagcat tattcaactc tgctatagta
1740atgcaagaat caggtgaggt taaactcaga cctgaagcta gaaaacgact tctaagttat
1800ataaatgaag agccactaga tgctaatggg tatttcaatt tgggaatgct tgccatggat
1860gacaaaaagg acaatgaagc agagatttgg atgaagaaag ccataaagtt acaagccgac
1920ttccgaagtg ctttgtttaa tctggctctc ctgtattccc agactgcaaa ggaattaaag
1980gctttgccaa ttttggagga gttactcaga tactaccctg atcatatcaa gggcctcatt
2040ttaaaaggag acattctgat gaatcaaaag aaagatatac taggagcaaa aaaatgtttt
2100gaaaggattt tggagatgga tccaagcaat gtgcaaggaa aacacaatct ttgtgttgtt
2160tattttgaag aaaaagactt attaaaagct gaaagatgcc ttcttgaaac actggcatta
2220gcaccacatg aagaatatat tcagcgccat ttgaatatag tcagggataa gatttcctca
2280tctagtttta tagagccaat attcccaacc agtaagattt caagtgtgga aggaaagaaa
2340attccaactg aaagtgtaaa agaaattaga ggtgaatcca gacaaacaca aatagtaaaa
2400acaagtgata ataaaagtca gtctaaatcc aacaaacaat taggaaaaaa tggagacgaa
2460gagacacccc acaaaacaac aaaagacatc aaagaaattg agaagaaaag agttgctgct
2520ttaaaaagac tagaagagat tgaacgtatt ttaaatggtg aataa
2565170733PRTHomo sapiens 170Met Leu Gln Thr Leu Val Lys Leu Ile Val Leu
Met Phe Ser Thr Leu1 5 10
15Leu Leu Val Val Ile Arg Val Gln Val Ile Gln Ser Gln Leu Pro Val
20 25 30Phe Thr Arg Phe Asp Asn Pro
Ala Ala Val Ser Pro Thr Pro Thr Arg 35 40
45Gln Leu Thr Phe Asn Tyr Leu Leu Pro Val Asn Ala Trp Leu Leu
Leu 50 55 60Asn Pro Ser Glu Leu Cys
Cys Asp Trp Thr Met Gly Thr Ile Pro Leu65 70
75 80Ile Glu Ser Leu Leu Asp Ile Arg Asn Leu Ala
Thr Phe Thr Phe Phe 85 90
95Cys Phe Leu Gly Met Leu Gly Val Phe Ser Ile Arg Tyr Ser Gly Asp
100 105 110Ser Ser Lys Thr Val Leu
Met Leu Pro Ala Lys Thr Asp Met Gly Gln 115 120
125Lys Phe Glu Lys Ser Ser Glu Asp Ser Lys Gln Ser Arg Arg
Val Glu 130 135 140Gly Thr Phe Gln Arg
Asn Leu Glu Ile Pro Asn Ser Leu Lys Asp Lys145 150
155 160Phe Glu Leu Gly Ala His Ala Phe Met Thr
Val Leu Ile Cys Ser Ala 165 170
175Leu Gly Leu Ser Leu Ala Val Arg Cys His Ser Val Gly Phe Val Val
180 185 190Ala Glu Arg Val Leu
Tyr Val Pro Ser Met Gly Phe Cys Ile Leu Val 195
200 205Ala His Gly Trp Gln Lys Ile Ser Thr Lys Ser Val
Phe Lys Lys Leu 210 215 220Ser Trp Ile
Cys Leu Ser Met Val Ile Leu Thr His Ser Leu Lys Thr225
230 235 240Phe His Arg Asn Trp Asp Trp
Glu Ser Glu Tyr Thr Leu Phe Met Ser 245
250 255Ala Leu Lys Val Asn Lys Asn Asn Ala Lys Leu Trp
Asn Asn Val Gly 260 265 270His
Ala Leu Glu Asn Glu Lys Asn Phe Glu Arg Ala Leu Lys Tyr Phe 275
280 285Leu Gln Ala Thr His Val Gln Pro Asp
Asp Ile Gly Ala His Met Asn 290 295
300Val Gly Arg Thr Tyr Lys Asn Leu Asn Arg Thr Lys Glu Ala Glu Glu305
310 315 320Ser Tyr Met Met
Ala Lys Ser Leu Met Pro Gln Ile Ile Pro Gly Lys 325
330 335Lys Tyr Ala Ala Arg Ile Ala Pro Asn His
Leu Asn Val Tyr Ile Asn 340 345
350Leu Ala Asn Leu Ile Arg Ala Asn Glu Ser Arg Leu Glu Glu Ala Asp
355 360 365Gln Leu Tyr Arg Gln Ala Ile
Ser Met Arg Pro Asp Phe Lys Gln Ala 370 375
380Tyr Ile Ser Arg Gly Glu Leu Leu Leu Lys Met Asn Lys Pro Leu
Lys385 390 395 400Ala Lys
Glu Ala Tyr Leu Lys Ala Leu Glu Leu Asp Arg Asn Asn Ala
405 410 415Asp Leu Trp Tyr Asn Leu Ala
Ile Val His Ile Glu Leu Lys Glu Pro 420 425
430Asn Glu Ala Leu Lys Asn Phe Asn Arg Ala Leu Glu Leu Asn
Pro Lys 435 440 445His Lys Leu Ala
Leu Phe Asn Ser Ala Ile Val Met Gln Glu Ser Gly 450
455 460Glu Val Lys Leu Arg Pro Glu Ala Arg Lys Arg Leu
Leu Ser Tyr Ile465 470 475
480Asn Glu Glu Pro Leu Asp Ala Asn Gly Tyr Phe Asn Leu Gly Met Leu
485 490 495Ala Met Asp Asp Lys
Lys Asp Asn Glu Ala Glu Ile Trp Met Lys Lys 500
505 510Ala Ile Lys Leu Gln Ala Asp Phe Arg Ser Ala Leu
Phe Asn Leu Ala 515 520 525Leu Leu
Tyr Ser Gln Thr Ala Lys Glu Leu Lys Ala Leu Pro Ile Leu 530
535 540Glu Glu Leu Leu Arg Tyr Tyr Pro Asp His Ile
Lys Gly Leu Ile Leu545 550 555
560Lys Gly Asp Ile Leu Met Asn Gln Lys Lys Asp Ile Leu Gly Ala Lys
565 570 575Lys Cys Phe Glu
Arg Ile Leu Glu Met Asp Pro Ser Asn Val Gln Gly 580
585 590Lys His Asn Leu Cys Val Val Tyr Phe Glu Glu
Lys Asp Leu Leu Lys 595 600 605Ala
Glu Arg Cys Leu Leu Glu Thr Leu Ala Leu Ala Pro His Glu Glu 610
615 620Tyr Ile Gln Arg His Leu Asn Ile Val Arg
Asp Lys Ile Ser Ser Ser625 630 635
640Ser Phe Ile Glu Pro Ile Phe Pro Thr Ser Lys Ile Ser Ser Val
Glu 645 650 655Gly Lys Lys
Ile Pro Thr Glu Ser Val Lys Glu Ile Arg Gly Glu Ser 660
665 670Arg Gln Thr Gln Ile Val Lys Thr Ser Asp
Asn Lys Ser Gln Ser Lys 675 680
685Ser Asn Lys Gln Leu Gly Lys Asn Gly Asp Glu Glu Thr Pro His Lys 690
695 700Thr Thr Lys Asp Ile Lys Glu Ile
Glu Lys Lys Arg Val Ala Ala Leu705 710
715 720Lys Arg Leu Glu Glu Ile Glu Arg Ile Leu Asn Gly
Glu 725 73017121DNAArtificial
SequenceOligonucleotide 171aggcttacat tagcagagga g
2117221DNAArtificial SequenceOligonucleotide
172cgttttctag cttcaggtct g
211733296DNAHomo sapiens 173tgaattcaaa acagttactc tgaatggtct ttgctaagaa
caatttaatg attaagtaag 60gtcagtgtcc ttggaagtcc aaactctagc cagatttccc
tggtctacac ccctagggat 120aaggtaaatg tttaagcaca cagtgaactt cctgaggccc
ccaaatctaa tggaactagc 180tattgagggc taaaagagga tggttttttt agaaaactcg
aagcaaatct ctcaggctgg 240ggatatttca aagactacta ctattattat taataacaat
tgcaatattt gttgagtccc 300taaatgaagc taaaactttg ttctaataaa tttaatcttt
acagcaacct atgaggtaga 360taatattgtc attcccatga gggagctaag gatcagagaa
ggtaagtcac ttgtctaagg 420tcacatagct agcatgttat gcaatcagga gtcaaacctg
gtttgtctga atctgaagtc 480catctgctct gtgcactttt ataccgtctg ctttttcctt
tattcctaac cttcttccat 540tctgattccc actgagtagt ggacaggaac cactgaagtt
tgcctgacac catcaaccag 600gccctagtca cctggctttg cctttgccct gctgtgtgat
cttagctccc tgcccaggcc 660cacagccatg gccatggccc agaaactcag ccacctcctg
ccgagtctgc ggcaggtcat 720ccaggagcct cagctatctc tgcagccaga gcctgtcttc
acggtggatc gagctgaggt 780gccgccgctc ttctggaagc cgtacatcta tgcgggctac
cggccgctgc atcagacctg 840gcgcttctat ttccgcacgc tgttccagca gcacaacgag
gccgtgaatg tctggaccca 900cctgctggcg gccctggtac tgctgctgcg gctggccctc
tttgtggaga ccgtggactt 960ctggggagac ccacacgccc tgcccctctt catcattgtc
cttgcctctt tcacctacct 1020ctccttcagt gccttggctc acctcctgca ggccaagtct
gagttctggc attacagctt 1080cttcttcctg gactatgtgg gggtggccgt gtaccagttt
ggcagtgcct tggcacactt 1140ctactatgct atcgagcccg cctggcatgc ccaggtgcag
gctgtttttc tgcccatggc 1200tgcctttctc gcctggcttt cctgcattgg ctcctgctat
aacaagtaca tccagaaacc 1260aggcctgctg ggccgcacat gccaggaggt gccctccgtc
ctggcctacg cactggacat 1320tagtcctgtg gtgcatcgta tcttcgtgtc ctccgacccc
accacggatg atccagctct 1380tctctaccac aagtgccagg tggtcttctt tctgctggct
gctgccttct tctctacctt 1440catgcccgag cgctggttcc ctggcagctg ccatgtcttc
gggcagggcc accaactttt 1500ccacatcttc ttggtgctgt gcacgctggc tcagctggag
gctgtggcac tggactatga 1560ggcccgacgg cccatctatg agcctctgca cacgcactgg
cctcacaact tttctggcct 1620cttcctgctc acggtgggca gcagcatcct cactgcattc
ctcctgagcc agctggtaca 1680gcgcaaactt gatcagaaga ccaagtgaag ggggatggca
tctggtaggg agggaggtat 1740agttggggga caggggtctg ggtttggctc caggtgggaa
caaggcctgg taaagttgtt 1800tgtgtctggc ccacagtgac tctctgtgca cgactcaact
gccaagggca tcactggcca 1860attcttggat ttagggattg gctaggagtt gctggggtcc
actcctgggc ctgccccagc 1920tccttgccca gggagaggga aagagttaac ggtgtgggcc
actccagctt gcccttccac 1980tgccactcac tggggtgagg ctgggggtca gcttggtgag
gattggggct tctagattgt 2040ctaggcagga ggtgaaactt aggccagagt cagatttgag
ctgagccagg ggaggccttg 2100gcaacctact tctactcaga tttcattgct ggatgcggaa
ggggtaggcc caaaatatat 2160acaggatctt actgtccctt gaagcccagc cacaagtgtt
ggagctgcag agagacccca 2220aaggtagtag attgtgccag atacaaatgg gtcccatcca
gtgcttcata ctccttcagt 2280cactatccca gacagtgagc cccagatctc ctagctctgg
cttctgtgtc ccacacggcc 2340tgttcccagc ttctctcctg gttcccttgt tacggattca
tttatccatt cagtgtttcc 2400tgggcctctg ctcagaggca ggtcaccact gggccctgtg
gatcaatgca agatgacaaa 2460ggcttttttt tttttttttt tttttttttt ttttgaggag
tttcgctctt gttggctagg 2520ctggagtaaa atggtgcgat ctcggctcac tgcacctccg
cctcccaggt tcaagcgatt 2580ttcctgcctc agcctcccga gtagctgggg ttacaggcat
gcaccaccat gcctggctaa 2640ttttctgtat ttttagtaga gacggggttt ctccatgttg
gtcaggctgg tcttgaactc 2700ctgacctcag gtgatctgcc cgtctcggcc tcccaaagtg
ctgggattac cggcatgagc 2760cactgcgcct ggccgacaaa ggctttgata tcagaatgaa
ctgtcaaggg aggtgctgga 2820gagggattaa cctgtgctgc ctgggaccct cagggtctta
ggttggggag tgtgaatagg 2880agtttgcaga tggagaatag gaagggcatt ccaggcagag
ggaaacctgt gcagagacca 2940agaggtgtgg aaggaaaagt ggggttgggg ctgggtggtc
tggattatgg cctggatgca 3000ataaagtact gtgacagtag ccacctcttt gttttttgtc
tcctgtttcc gggaggggcc 3060cctgctcaca ttactggagg ttttccggag gaagctgggg
cccctgggag tggacacagg 3120gtgcagggag cagttcttgt tttatctttg ctgggggatg
gggttggggc cttatatacc 3180atatctatat atacaaaatt tgtttggcaa gggagtgggc
ggcagtttta ttactaaagt 3240tttataagta gttaaaataa tgtgtttaaa atatgataat
cccactttat gatctg 3296174346PRTHomo sapiens 174Met Ala Met Ala Gln
Lys Leu Ser His Leu Leu Pro Ser Leu Arg Gln1 5
10 15Val Ile Gln Glu Pro Gln Leu Ser Leu Gln Pro
Glu Pro Val Phe Thr 20 25
30Val Asp Arg Ala Glu Val Pro Pro Leu Phe Trp Lys Pro Tyr Ile Tyr
35 40 45Ala Gly Tyr Arg Pro Leu His Gln
Thr Trp Arg Phe Tyr Phe Arg Thr 50 55
60Leu Phe Gln Gln His Asn Glu Ala Val Asn Val Trp Thr His Leu Leu65
70 75 80Ala Ala Leu Val Leu
Leu Leu Arg Leu Ala Leu Phe Val Glu Thr Val 85
90 95Asp Phe Trp Gly Asp Pro His Ala Leu Pro Leu
Phe Ile Ile Val Leu 100 105
110Ala Ser Phe Thr Tyr Leu Ser Phe Ser Ala Leu Ala His Leu Leu Gln
115 120 125Ala Lys Ser Glu Phe Trp His
Tyr Ser Phe Phe Phe Leu Asp Tyr Val 130 135
140Gly Val Ala Val Tyr Gln Phe Gly Ser Ala Leu Ala His Phe Tyr
Tyr145 150 155 160Ala Ile
Glu Pro Ala Trp His Ala Gln Val Gln Ala Val Phe Leu Pro
165 170 175Met Ala Ala Phe Leu Ala Trp
Leu Ser Cys Ile Gly Ser Cys Tyr Asn 180 185
190Lys Tyr Ile Gln Lys Pro Gly Leu Leu Gly Arg Thr Cys Gln
Glu Val 195 200 205Pro Ser Val Leu
Ala Tyr Ala Leu Asp Ile Ser Pro Val Val His Arg 210
215 220Ile Phe Val Ser Ser Asp Pro Thr Thr Asp Asp Pro
Ala Leu Leu Tyr225 230 235
240His Lys Cys Gln Val Val Phe Phe Leu Leu Ala Ala Ala Phe Phe Ser
245 250 255Thr Phe Met Pro Glu
Arg Trp Phe Pro Gly Ser Cys His Val Phe Gly 260
265 270Gln Gly His Gln Leu Phe His Ile Phe Leu Val Leu
Cys Thr Leu Ala 275 280 285Gln Leu
Glu Ala Val Ala Leu Asp Tyr Glu Ala Arg Arg Pro Ile Tyr 290
295 300Glu Pro Leu His Thr His Trp Pro His Asn Phe
Ser Gly Leu Phe Leu305 310 315
320Leu Thr Val Gly Ser Ser Ile Leu Thr Ala Phe Leu Leu Ser Gln Leu
325 330 335Val Gln Arg Lys
Leu Asp Gln Lys Thr Lys 340 3451752858DNAHomo
sapiens 175agtggcgggg aagcaaagca caggagcgct gtggtgccag cggccgggct
agggacgact 60ggcgggtttg cgctggaccc gaccccgagg gcgggcgcaa gggggcgggc
gctgccgtac 120tcaggccgcg gggccagggc gggccggccg gcggggcatt taaaccccgc
tgacagccag 180tccagcccgg gacacgcgcc cagctctgta gcctcctccg tcgactcagc
cttaggtacc 240ggtcaggcaa aatgcggtcc tccctggctc cgggagtctg gttcttccgg
gccttctcca 300gggacagctg gttccgaggc ctcatcctgc tgctgacctt cctaatttac
gcctgctatc 360acatgtccag gaagcctatc agtatcgtca agagccgtct gcaccagaac
tgctcggagc 420agatcaaacc catcaatgat actcacagtc tcaatgacac catgtggtgc
agctgggccc 480catttgacaa ggacaactat aaggagttac tagggggcgt ggacaacgcc
ttcctcatcg 540cctatgccat cggcatgttc atcagtgggg tttttgggga gcggcttccg
ctccgttact 600acctctcagc tggaatgctg ctcagtggcc ttttcacctc gctctttggc
ctgggatatt 660tctggaacat ccacgagctc tggtactttg tggtcatcca ggtctgtaat
ggactcgtcc 720agaccacagg ctggccctct gtggtgacct gtgttggcaa ctggttcggg
aaggggaagc 780gggggttcat catgggcatc tggaattccc acacatctgt gggcaacatc
ctgggctccc 840tgatcgccgg catctgggtg aacgggcagt ggggcctgtc gttcatcgtg
cctggcatca 900ttactgccgt catgggcgtc atcaccttcc tcttcctcat cgaacaccca
gaagatgtgg 960actgcgcccc tcctcagcac cacggtgagc cagctgagaa ccaggacaac
cctgaggacc 1020ctgggaacag tccctgctct atcagggaga gcggccttga gactgtggcc
aaatgctcca 1080aggggccatg cgaagagcct gctgccatca gcttctttgg ggcgctccgg
atcccaggcg 1140tggtcgagtt ctctctgtgt ctgctgtttg ccaagctggt cagttacacc
ttcctctact 1200ggctgcccct ctacatcgcc aatgtggctc actttagtgc caaggaggct
ggggacctgt 1260ctacactctt cgatgttggt ggcatcatag gcggcatcgt ggcagggctc
gtctctgact 1320acaccaatgg cagggccacc acttgctgtg tcatgctcat cttggctgcc
cccatgatgt 1380tcctgtacaa ctacattggc caggacggga ttgccagctc catagtgatg
ctgatcatct 1440gtgggggcct ggtcaatggc ccatacgcgc tcatcaccac tgctgtctct
gctgatctgg 1500ggactcacaa gagcctgaag ggcaacgcca aagccctgtc cacggtcacg
gccatcattg 1560acggcaccgg ctccataggt gcggctctgg ggcctctgct ggctgggctc
atctccccca 1620cgggctggaa caatgtcttc tacatgctca tctctgccga cgtcctagcc
tgcttgctcc 1680tttgccggtt agtatacaaa gagatcttgg cctggaaggt gtccctgagc
agaggcagcg 1740ggtataaaga aatatgaggc cccaattgga acagcagcat ggagggtccc
agttgggtcc 1800ccaacgtgct ccccatgggc aagacaatgg aaacttccac aagcagggaa
ggcaaaccct 1860ctttattgaa cattagccag cccagcccag accccagggc tgcctaagga
cacagagatt 1920ctccatggga aggggactgc caagcatgag gaaatagaag attcaggggc
ctgagctctg 1980gaagctgcaa gcaaaaggga tgggactagg gctgagttgt gtctccattt
tgataaggaa 2040aggatatgct cagactcttg cttgttcaga ttccaagaca gaaggcttca
caaggccaac 2100gcctggaaaa tgggcatctc tccttcccat gttaagcttt aacctctgta
atctgcctgt 2160atctataggt gggcatctca ctccaccaaa ggagcccagc ctctctttgt
ccctctatcc 2220atgcaacagt cttctctgtg catttcccca agctgggccc tcttctactc
tccatttagg 2280cctgttgata actccattac ccgcccatca ctgctgttcc tccagggcca
gcactcgggc 2340gaggcagggg agctgccttc ggtacataat ttgaaggggc actccctctt
gggcacatgc 2400cggccctgag tgcctccctt gcctcactct gatcctggcc ccataatgtc
ctcagtggaa 2460ggtgatgggg gccggtgctg tggggagagt agaaagaggg gttggcatga
ctaaaaatac 2520cagtatgtgt attaagtatt ttgagaatga aatgccaagg agtgcctact
atatgccagc 2580tctaggaatg gagtagacag tggacacaag aaggacttac gccctgagca
caggtgccaa 2640tggtgacaag actggcaaga cgtgagggca tgaatggttc attcaggcag
ctgctgcaga 2700tgtggtcacc tggtgccatc tgctgctccc ttttccactt ttctatgtcc
tccttccacc 2760ccaagtcccg gatcactcgc tgttttctgg ctagctcttg gcatctccat
ctgagcctaa 2820agttgcccac tggcaccaat agattctgtt tgacctgc
2858176501PRTHomo sapiens 176Met Arg Ser Ser Leu Ala Pro Gly
Val Trp Phe Phe Arg Ala Phe Ser1 5 10
15Arg Asp Ser Trp Phe Arg Gly Leu Ile Leu Leu Leu Thr Phe
Leu Ile 20 25 30Tyr Ala Cys
Tyr His Met Ser Arg Lys Pro Ile Ser Ile Val Lys Ser 35
40 45Arg Leu His Gln Asn Cys Ser Glu Gln Ile Lys
Pro Ile Asn Asp Thr 50 55 60His Ser
Leu Asn Asp Thr Met Trp Cys Ser Trp Ala Pro Phe Asp Lys65
70 75 80Asp Asn Tyr Lys Glu Leu Leu
Gly Gly Val Asp Asn Ala Phe Leu Ile 85 90
95Ala Tyr Ala Ile Gly Met Phe Ile Ser Gly Val Phe Gly
Glu Arg Leu 100 105 110Pro Leu
Arg Tyr Tyr Leu Ser Ala Gly Met Leu Leu Ser Gly Leu Phe 115
120 125Thr Ser Leu Phe Gly Leu Gly Tyr Phe Trp
Asn Ile His Glu Leu Trp 130 135 140Tyr
Phe Val Val Ile Gln Val Cys Asn Gly Leu Val Gln Thr Thr Gly145
150 155 160Trp Pro Ser Val Val Thr
Cys Val Gly Asn Trp Phe Gly Lys Gly Lys 165
170 175Arg Gly Phe Ile Met Gly Ile Trp Asn Ser His Thr
Ser Val Gly Asn 180 185 190Ile
Leu Gly Ser Leu Ile Ala Gly Ile Trp Val Asn Gly Gln Trp Gly 195
200 205Leu Ser Phe Ile Val Pro Gly Ile Ile
Thr Ala Val Met Gly Val Ile 210 215
220Thr Phe Leu Phe Leu Ile Glu His Pro Glu Asp Val Asp Cys Ala Pro225
230 235 240Pro Gln His His
Gly Glu Pro Ala Glu Asn Gln Asp Asn Pro Glu Asp 245
250 255Pro Gly Asn Ser Pro Cys Ser Ile Arg Glu
Ser Gly Leu Glu Thr Val 260 265
270Ala Lys Cys Ser Lys Gly Pro Cys Glu Glu Pro Ala Ala Ile Ser Phe
275 280 285Phe Gly Ala Leu Arg Ile Pro
Gly Val Val Glu Phe Ser Leu Cys Leu 290 295
300Leu Phe Ala Lys Leu Val Ser Tyr Thr Phe Leu Tyr Trp Leu Pro
Leu305 310 315 320Tyr Ile
Ala Asn Val Ala His Phe Ser Ala Lys Glu Ala Gly Asp Leu
325 330 335Ser Thr Leu Phe Asp Val Gly
Gly Ile Ile Gly Gly Ile Val Ala Gly 340 345
350Leu Val Ser Asp Tyr Thr Asn Gly Arg Ala Thr Thr Cys Cys
Val Met 355 360 365Leu Ile Leu Ala
Ala Pro Met Met Phe Leu Tyr Asn Tyr Ile Gly Gln 370
375 380Asp Gly Ile Ala Ser Ser Ile Val Met Leu Ile Ile
Cys Gly Gly Leu385 390 395
400Val Asn Gly Pro Tyr Ala Leu Ile Thr Thr Ala Val Ser Ala Asp Leu
405 410 415Gly Thr His Lys Ser
Leu Lys Gly Asn Ala Lys Ala Leu Ser Thr Val 420
425 430Thr Ala Ile Ile Asp Gly Thr Gly Ser Ile Gly Ala
Ala Leu Gly Pro 435 440 445Leu Leu
Ala Gly Leu Ile Ser Pro Thr Gly Trp Asn Asn Val Phe Tyr 450
455 460Met Leu Ile Ser Ala Asp Val Leu Ala Cys Leu
Leu Leu Cys Arg Leu465 470 475
480Val Tyr Lys Glu Ile Leu Ala Trp Lys Val Ser Leu Ser Arg Gly Ser
485 490 495Gly Tyr Lys Glu
Ile 50017721DNAArtificial SequenceOligonucleotide
177tctacatcgc caatgtggct c
2117821DNAArtificial SequenceOligonucleotide 178cagatgatca gcatcactat g
211794892DNAHomo sapiens
179atagaaacct taaaagggca acacaaagtt ttgaatagaa gaggccaagc agcctcgccc
60agaagctgat gtttgtgaat gtactgggcc ttctaaagcg gcgcttcaca caccttttca
120cttcttggca caggtaggaa aggatgatat tacaagggtc aaaatggggg taaacagaag
180aggctgctcc tgcagaaggc ttcctgcaga agcccttgca cttggagggc tgggaagacc
240catgctgtat ctgcatccct gtcattcgtt tcacggcatc cagttgggaa gctctgctta
300aagctttgtc tggcacgttt tcttagctac atttttccac tccagctgag actgcctcac
360tgagttgtca acacttggtc ttcttcagca gtgaggaacc aacaagacag gaggctgggt
420caatactcaa cttggcaaac tccaggaaat ggtgcttaaa acgtttggct tcttgaatgg
480aattcatggt actgctccca gcctgcacct gggttctcca acttgagaca atttctcccc
540gcatcccccc acccttccct ggctttcact cactagcaag tgggctgctt ctactttctt
600tctcacattc atttcttagg tccattctca gagcggttag gattactgtt taattagcct
660cataatcata tctatgatgg caaaatcaag aaacaattta aacatgattc ttaaaagtaa
720ggagataaat accagagaca tagaaggtga aagaatttgc ctctaggaag caggaattta
780aatttgggga agacagggtg gagcaaggga tataaatcta gtccattttt cttttctttt
840cttttctttt ttttttattt ttaagataga gtctcactct gtcgcccagg ctggagtgca
900gtggcatgat cttggctcac tgcaacctct gcctccttcg ttcaagcgat tctcccacct
960cagcctccct agtaactggg attacaagtg actgccacta tgcccagcta attttgtatt
1020tttagtagag acgaggtttc accatgttgg ccaggctggt ctcgaactcc tgacctcagg
1080ggatccgccc agctcagcct cccaaagtgc taggattcca ggcgtgagcc actgcacctg
1140gcggaatcta gtccattttc cactttgcta ccacacatct gcagggtttc ttgcttgctt
1200aaaagctttc attggctccc aatctctgat aatatcaaga gcaagttcct gaacaactca
1260ttcaagaccc atcacccctc gcatctgtca actctgcccc ttgaatatta cacctcattt
1320tactacacca catctagttc cctgaatatg caaacagatt tcatacattt gcacctttat
1380acatgttatt gcttttgcct gggagagtat tctcttgctg ctataataat agctaatgac
1440actgtgctaa gtactttctg tgatttataa ctgttaattc ttacatcaac cctatggtaa
1500atgttactgt tatctccatt ttataaacaa gaaaactaag acttaaagag tttaagtgat
1560ttgcagaaat atgtagtatt tggtgaggct aaatttgaac ccagcaatct gactccagga
1620ctaacataat attacctatt catccttcta aaatgtttcc cagacactaa atttgaacag
1680gattaaaaga tttaaatgtt tttaagtctt aaaagggcaa ggagaaaata caagtgaatt
1740gcttttaatc tcaaactaag catgaaacaa cggctgaaat tacaaaggaa aagtgacaga
1800tctgactgtt gaacttttaa cttcttttat ccaaaaaaaa accccataga ataaaattta
1860aaaacaagta aaaattacaa aaaatttgca atatacatga cagataagca taacattaaa
1920gagaacttag aaagaaaaaa tagcctacta aaaatgagca aaatgcaaat tcgtcatcat
1980gagagaaaaa tgtaaatggc caaacatttt taagagaagt aaaaacttaa aacgataatg
2040caccatcaaa ttgagaataa aataatactc agagctagta atttgggcca gtgacccttg
2100gagtaggatg tatagcaact aaagaaactc atacattact gagaagggtg taaattggct
2160caacgattct ggagagcaat ttgacagaat gtagtgaaag cgtcaaaaat gttcacacac
2220tttgacttaa aaattacatt cctggaaatt tataatacaa acattttcta taaaaggtca
2280gatggcaaat actttgggct ttgaaggcca catatgtctc tgtggctttt cttttgtgtg
2340tgtgtttaaa aaaaaaaaaa actgcccccc ctccccccac ccttgttagg ccattcttgc
2400attactataa agaaatacct gaggctggtt aatttatatg aaaagaggtt taactggctc
2460atggttctgc aggctgtaca ggaagcataa tgccatctgc ttctgggggg gcctcaggaa
2520gcttccaatc atgctggaag gtgatgggga gcagatgtct cacatggtga gaacgggagc
2580aagaaggagt tgggggggag gagccacata aacaatgaga tccctgtgag ctcagagtga
2640gagcacactt atcaccaagg agatggccca agctattcat gagggatccg cccctatgat
2700ccaaacacct cccaccaggc tccacctcca acactggaga ttatatctca acatgaaatt
2760tgaatgggac atccaaactg tatcaccccc aaaatgtaaa gtctcatcac agtacatttg
2820gtaatggcca aaagagaaac caaactaaat gtccgagaat aaaaattagt tacaactaga
2880tacacggagg caagttttta aaaagtgtta aaattttaaa atgttgcaga atggtatcta
2940ttggataaaa tagtatttat gatttattaa gtggaaaata cagtttacaa aataatatgg
3000tgtgatcccg aaaacaacat aatcatgtgt gtataaatgc atagaaaaaa atctggaaag
3060atataaacag atatttatag tggtctaggg caggggatgg aattgtagat atttgctttt
3120tgttttatgt atatgtttcc cataatgaaa tgtattgttt atataattaa aaaatatacg
3180aaactttgct tgggggacaa caaagcacct catttgttaa tttgggaaaa tcttttatta
3240caatctctgt aaggagttgg ttgctctctc ttctgtactc cctgattaca taatgctctt
3300ctgagcactt ttatttaata gcagaatggt tgatatcatt atttagttaa ggtttcctct
3360attatcgaac atctgagttc ccagtacact agtctcccct tatctgtggt tttgcttcca
3420aggtttcagt tatgatcaac caagatctga aaatattaaa tgaaaaattc cagaaataaa
3480acaattcata agttttacat tgtgcaccat cctgctgtat cctgtccagg ccatgggtca
3540tccctcttgt tcagtgtgtc cacactgtag atgctcccct gtctgttagt cactttgtag
3600ttggcttggt tgtcagacct actgtcaagg tattgcagta cttatgtcca agtaacactt
3660atttaactta ataatggccc ctaaacacaa gagtagtaat gttggcaatt tgggtatgcc
3720aaagaaaagt cataaagtgc ttcttttaag tgaaaaccca aaagtttttg aattagtaag
3780gaaagaaaaa aatccatatg ctgaggtcgc taagatctat gataagaatg aatcttctac
3840ctgtgaaatt gtgaaggaaa aagaaattca cgttagtttt gctgttgtac ctcaaactgc
3900aaaagttatg gccacagtgt ataactttta ttaaaatata tttgtataac tgttcttatt
3960ttacttttct gttttatttt tagagacagg gcttcattct gtcacccagg ctggagtgca
4020aaggtgcaat catagctcac tgcagcctca aactctttgg ctcaagtgat cttcctgcct
4080cagcctccca agtagctggg actgcaggtg tgcatcacta cgcccagcta attttttaat
4140tttttgtgca gatggagtct gactctgttg cccaggaact cctggcctca agtaatcctc
4200ccgcctcggt tttccaaaga gctgggatta caggcatgag ccactgtgcc tggctattct
4260attttattag cagtaattgt tgttaatctc ttattgtgcc ttatttatat taataactta
4320atcatagata gatatgtata ggaaaaaaca ttgtatataa agggttcagt actatctgca
4380gtttcagata tccatgaggg gtcttgaaac gtatccccca caggtaaggg gggacttgta
4440tttctctgtt ataaatatgc tggttattct ccacttgttg tgttttagtg ccatcttctg
4500ctcttctctg ctagactctg tgcctcagaa ggtggaattt ttcataaact attccagctg
4560gggtctcatg ccagttggtt ttgaccaatg ggtaacacca tcagtagatt ggaggatgga
4620aaaggaaaaa aggttaggat atgtttcacc acctcttttc ctgcttctgg ctgggttctg
4680atggtggctt tgtcccttga aggctcctcc tgcaaggcag ccctgctcca ctgtgccagc
4740cttcactggg ctctactaac gtgattccct ccccttattt cttcaggcct agctgtgcta
4800actcctaggt acctccatgt ttcttgtttc ctttcatcca accctaaccc taacttctat
4860aaatagttcc cgcaataaag tctcttcagc tg
489218095PRTHomo sapiens 180Met Arg Gly Leu Glu Thr Tyr Pro Pro Gln Val
Arg Gly Asp Leu Tyr1 5 10
15Phe Ser Val Ile Asn Met Leu Val Ile Leu His Leu Leu Cys Phe Ser
20 25 30Ala Ile Phe Cys Ser Ser Leu
Leu Asp Ser Val Pro Gln Lys Val Glu 35 40
45Phe Phe Ile Asn Tyr Ser Ser Trp Gly Leu Met Pro Val Gly Phe
Asp 50 55 60Gln Trp Val Thr Pro Ser
Val Asp Trp Arg Met Glu Lys Glu Lys Arg65 70
75 80Leu Gly Tyr Val Ser Pro Pro Leu Phe Leu Leu
Leu Ala Gly Phe 85 90
9518115DNAArtificial SequenceOligonucleotide 181gctcaacgat tctgg
1518215DNAArtificial
SequenceOligonucleotide 182atgtggcctt caaag
15183501DNAHomo sapiens 183atgaacagaa gcatctatga
ccgacagttg ctctgtgtcc ttctagcctc gcaggagttt 60ccagctcatg agggcagagg
agatgaagag aggccgatcg acgtgagggt tgtgcaggcg 120gcccctctga ggtgtgactc
cactcctcct gagggtgctg taggagacat ctgcaaaaaa 180gaagatgctg gcaatatgcc
atcaacctca gaggggagta tttaccctga aatggctcac 240ttcctgagga acaaacttgc
tggatctagt gtacggaaac ctgattctgg gttcctttgg 300gaaggagcat tacgggcctg
gttatttctc atcctaatag ttctcaccca catcatgtgg 360gtcccattag tacaggtatc
tccgaatgct ccactcttcc attacattga gtcaattgct 420catgaccttg ggcctccaat
tggggctatt ttcctgctat ccatctcctg gtctatagta 480aaagagccaa tgagcagata a
501184166PRTHomo sapiens
184Met Asn Arg Ser Ile Tyr Asp Arg Gln Leu Leu Cys Val Leu Leu Ala1
5 10 15Ser Gln Glu Phe Pro Ala
His Glu Gly Arg Gly Asp Glu Glu Arg Pro 20 25
30Ile Asp Val Arg Val Val Gln Ala Ala Pro Leu Arg Cys
Asp Ser Thr 35 40 45Pro Pro Glu
Gly Ala Val Gly Asp Ile Cys Lys Lys Glu Asp Ala Gly 50
55 60Asn Met Pro Ser Thr Ser Glu Gly Ser Ile Tyr Pro
Glu Met Ala His65 70 75
80Phe Leu Arg Asn Lys Leu Ala Gly Ser Ser Val Arg Lys Pro Asp Ser
85 90 95Gly Phe Leu Trp Glu Gly
Ala Leu Arg Ala Trp Leu Phe Leu Ile Leu 100
105 110Ile Val Leu Thr His Ile Met Trp Val Pro Leu Val
Gln Val Ser Pro 115 120 125Asn Ala
Pro Leu Phe His Tyr Ile Glu Ser Ile Ala His Asp Leu Gly 130
135 140Pro Pro Ile Gly Ala Ile Phe Leu Leu Ser Ile
Ser Trp Ser Ile Val145 150 155
160Lys Glu Pro Met Ser Arg 16518520DNAArtificial
SequenceOligonucleotide 185ctgagggtgc tgtaggagac
2018615DNAArtificial SequenceOligonucleotide
186ggcccgtaat gctcc
151873978DNAHomo sapiens 187agactagggg cgagtttgga gcaagtaact gtcagtgagg
ttgcagttgg tctgggctgt 60ttggctgtga gcgaaatagc tgccccccac ttctcacttg
cacaccacgg gatactcctc 120ctgaggctcc ggatgattca gatggactgt gaaaaacaac
aagatggatg atcatatgga 180gattgcttct aacataaatc tgcataaaaa tttttctgaa
acatggctgg aatatttaag 240gagttttttt tcagtactga ggacctccct gaagtcattc
taacattgtc tttgatcagc 300tccattggag catttttgaa ccggcacttg gaagactttc
caattcctgt ccctgtgata 360ttatttttac ttggatgcag ttttgaagta ttaagcttta
catcttcaca ggtccaaaga 420tacgcaaacg ccatacaatg gatgagtcca gacttatttt
ttcgtatatt tacaccagta 480gttttcttta ctactgcatt tgacatggat acgtacatgc
ttcaaaagtt attttggcag 540atacttttaa tttcaattcc cggctttttg gttaattata
tcttagttct ttggcatctg 600gcatctgtaa atcaattact tttgaagcct acccaatggt
tattattttc agctatcctt 660gtgagttcag atcccatgct aaccgcagct gctataagag
accttgggct ttctagaagc 720ctcatcagtt taattaatgg agaaagtctg atgacctctg
ttatatcatt aattacattt 780actagtatta tggattttga ccaaagacta caaagtaaaa
gaaaccatac cttagctgaa 840gagatcgtgg gtggaatttg ttcatatatt atagcaagtt
tcttgtttgg aattctaagt 900tcaaaactga ttcaattttg gatgtcaact gtttttggtg
atgatgtcaa tcatataagt 960ctcatctttt caattctgta tctcatcttt tatatttgtg
agttagttgg aatgtcagga 1020atatttactc tggccattgt gggacttctt ttaaattcta
caagttttaa agcagcaatt 1080gaagaaacac ttcttcttga atttctgacc cttcttttaa
taagccctgt tttgtctcga 1140gttggtcatg agttcagttg gcgctggata ttcataatgg
tctgtagtga aatgaagggg 1200atgcctaata taaacatggc ccttctgctt gcctactctg
atctttattt tggatctgac 1260aaagaaaaat ctcaaatatt atttcatgga gtgttagtat
gcctaataac ccttgttgtc 1320aatagattta ttttgccagt ggcagttact atactaggtc
ttcgtgatgc cacatcaaca 1380aaatataaat cggtttgttg cacatttcaa cactttcaag
agctaaccaa gtctgcagcc 1440tctgccctta aatttgacaa agatcttgct aatgctgatt
ggaacatgat tgagaaagca 1500attacacttg aaaacccata catgttgaac gaagaagaaa
caacagaaca tcagaaggtg 1560aaatgtccac actgtaacaa ggaaatagat gagatcttta
acactgaagc aatggagctg 1620gccaacaggc gtctcttgtc agcacaaata gcaagctacc
agagacaata caggaatgag 1680attctgtccc agagtgctgt ccaggtgttg gttggtgcag
cagaaagttt tggtgagaag 1740aagggaaaat gtatgagtct tgatacaata aagaattatt
ctgaaagcca aaaaacagtt 1800acctttgcta gaaaactact acttaattgg gtgtataata
ccagaaagga aaaagagggc 1860ccatcaaaat acttcttttt tcgtatatgc catacaatag
tatttactga ggaatttgaa 1920catgttggat accttgtgat attaatgaat atatttccct
ttataatctc ttggatatcc 1980cagttaaatg taatctacca cagcgaatta aaacacacta
actactgttt tcttacactt 2040tatattctag aggcactact taagatagca gcaatgagga
aggacttttt ttcacatgcc 2100tggaacatat tcgagttagc aattacatta attggcatct
tacatgtaat acttattgaa 2160atagacacca ttaagtatat ttttaatgag actgaagtaa
tagtctttat aaaagttgtt 2220caattttttc gtatactacg cattttcaag ctcatagcac
caaagttgct gcaaataata 2280gataaaagaa tgagtcatca gaagaccttt tggtatggaa
tactaaaagg ctatgtccaa 2340ggcgaagcag acataatgac cataattgat cagattacaa
gttctaaaca gattaaacag 2400atgttattaa agcaagtgat aaggaatatg gaacatgcta
taaaagagct aggctactta 2460gagtatgatc acccagaaat tgctgtcact gtgaaaacaa
aggaagaaat taatgttatg 2520ctcaatatgg ctacagaaat tcttaaggct tttggcttaa
aaggaattat tagtaaaact 2580gaaggtgctg gaattaataa gttaatcatg gccaaaaaga
aagaggtgct tgattctcaa 2640tctattatca ggcctcttac tgttgaagaa gttctatatc
atattccgtg gctagataaa 2700aacaaagatt atataaactt cattcaggaa aaagccaaag
ttgtaacatt tgattgtgga 2760aatgatatat ttgaagaagg tgatgagccc aaaggaatct
atatcattat ttcaggcatg 2820gtaaagcttg aaaaatcaaa gccaggttta gggattgatc
aaatggtgga gtcaaaggag 2880aaagattttc cgataattga cacagactat atgctcagtg
gagaaataat aggagagata 2940aactgcttaa ctaatgaacc tatgaaatat tctgccacct
gcaaaactgt agtggagaca 3000tgttttattc ccaaaactca cttgtatgat gcttttgagc
aatgctctcc tctcattaaa 3060caaaaaatgt ggctaaaact tggactcgct attacagcca
gaaaaatcag agaacactta 3120tcttatgagg attggaacta caatatgcaa ctaaagctct
ctaatattta tgtagtagat 3180ataccaatga gtaccaaaac tgatatttat gatgaaaatc
taatctatgt tatcctcata 3240catggagctg tagaagattg tctgttacga aaaacttata
gagcaccttt cttaattcct 3300ataacatgcc atcagataca aagtattgaa gatttcacaa
aagtagtgat tattcaaact 3360ccgattaaca tgaaaacatt cagaaggaat attagaaagt
ttgttcctaa acataaaagt 3420tatcttacac caggattaat aggttcagtt ggaacattgg
aagaaggcat tcaagaagaa 3480agaaatgtta aggaggatgg agcacacagt gccgccactg
ccaggagtcc ccagccttgc 3540tccctgctgg ggacaaagtt caactgtaag gagtccccta
gaataaacct aaggaaagtc 3600aggaaagagt aagactgtta agaagaccga agcatgtatt
aatgctgtgg ctatgagagg 3660cctcctgctg cagaaacaca cttccctaca tcaagaagga
gtaacttcag gttggatcct 3720gtgtggatga tcttggtgct aagcagaaaa gaaatttgga
ccttgaaacc agcagttcaa 3780catatatact ttttgcaaaa tttccttgat ttaaaatatt
tgttatttta aatatacaaa 3840acattttaga aaatcttaga gtaaatttta gtcttaaagc
cagaaaataa gtttatagcc 3900atctagatat tttgcatatt gctcttacag caataatggt
ttggttcact ttatgaaaaa 3960taaaatgtat taaaatat
39781881129PRTHomo sapiens 188Met Ala Gly Ile Phe
Lys Glu Phe Phe Phe Ser Thr Glu Asp Leu Pro1 5
10 15Glu Val Ile Leu Thr Leu Ser Leu Ile Ser Ser
Ile Gly Ala Phe Leu 20 25
30Asn Arg His Leu Glu Asp Phe Pro Ile Pro Val Pro Val Ile Leu Phe
35 40 45Leu Leu Gly Cys Ser Phe Glu Val
Leu Ser Phe Thr Ser Ser Gln Val 50 55
60Gln Arg Tyr Ala Asn Ala Ile Gln Trp Met Ser Pro Asp Leu Phe Phe65
70 75 80Arg Ile Phe Thr Pro
Val Val Phe Phe Thr Thr Ala Phe Asp Met Asp 85
90 95Thr Tyr Met Leu Gln Lys Leu Phe Trp Gln Ile
Leu Leu Ile Ser Ile 100 105
110Pro Gly Phe Leu Val Asn Tyr Ile Leu Val Leu Trp His Leu Ala Ser
115 120 125Val Asn Gln Leu Leu Leu Lys
Pro Thr Gln Trp Leu Leu Phe Ser Ala 130 135
140Ile Leu Val Ser Ser Asp Pro Met Leu Thr Ala Ala Ala Ile Arg
Asp145 150 155 160Leu Gly
Leu Ser Arg Ser Leu Ile Ser Leu Ile Asn Gly Glu Ser Leu
165 170 175Met Thr Ser Val Ile Ser Leu
Ile Thr Phe Thr Ser Ile Met Asp Phe 180 185
190Asp Gln Arg Leu Gln Ser Lys Arg Asn His Thr Leu Ala Glu
Glu Ile 195 200 205Val Gly Gly Ile
Cys Ser Tyr Ile Ile Ala Ser Phe Leu Phe Gly Ile 210
215 220Leu Ser Ser Lys Leu Ile Gln Phe Trp Met Ser Thr
Val Phe Gly Asp225 230 235
240Asp Val Asn His Ile Ser Leu Ile Phe Ser Ile Leu Tyr Leu Ile Phe
245 250 255Tyr Ile Cys Glu Leu
Val Gly Met Ser Gly Ile Phe Thr Leu Ala Ile 260
265 270Val Gly Leu Leu Leu Asn Ser Thr Ser Phe Lys Ala
Ala Ile Glu Glu 275 280 285Thr Leu
Leu Leu Glu Phe Leu Thr Leu Leu Leu Ile Ser Pro Val Leu 290
295 300Ser Arg Val Gly His Glu Phe Ser Trp Arg Trp
Ile Phe Ile Met Val305 310 315
320Cys Ser Glu Met Lys Gly Met Pro Asn Ile Asn Met Ala Leu Leu Leu
325 330 335Ala Tyr Ser Asp
Leu Tyr Phe Gly Ser Asp Lys Glu Lys Ser Gln Ile 340
345 350Leu Phe His Gly Val Leu Val Cys Leu Ile Thr
Leu Val Val Asn Arg 355 360 365Phe
Ile Leu Pro Val Ala Val Thr Ile Leu Gly Leu Arg Asp Ala Thr 370
375 380Ser Thr Lys Tyr Lys Ser Val Cys Cys Thr
Phe Gln His Phe Gln Glu385 390 395
400Leu Thr Lys Ser Ala Ala Ser Ala Leu Lys Phe Asp Lys Asp Leu
Ala 405 410 415Asn Ala Asp
Trp Asn Met Ile Glu Lys Ala Ile Thr Leu Glu Asn Pro 420
425 430Tyr Met Leu Asn Glu Glu Glu Thr Thr Glu
His Gln Lys Val Lys Cys 435 440
445Pro His Cys Asn Lys Glu Ile Asp Glu Ile Phe Asn Thr Glu Ala Met 450
455 460Glu Leu Ala Asn Arg Arg Leu Leu
Ser Ala Gln Ile Ala Ser Tyr Gln465 470
475 480Arg Gln Tyr Arg Asn Glu Ile Leu Ser Gln Ser Ala
Val Gln Val Leu 485 490
495Val Gly Ala Ala Glu Ser Phe Gly Glu Lys Lys Gly Lys Cys Met Ser
500 505 510Leu Asp Thr Ile Lys Asn
Tyr Ser Glu Ser Gln Lys Thr Val Thr Phe 515 520
525Ala Arg Lys Leu Leu Leu Asn Trp Val Tyr Asn Thr Arg Lys
Glu Lys 530 535 540Glu Gly Pro Ser Lys
Tyr Phe Phe Phe Arg Ile Cys His Thr Ile Val545 550
555 560Phe Thr Glu Glu Phe Glu His Val Gly Tyr
Leu Val Ile Leu Met Asn 565 570
575Ile Phe Pro Phe Ile Ile Ser Trp Ile Ser Gln Leu Asn Val Ile Tyr
580 585 590His Ser Glu Leu Lys
His Thr Asn Tyr Cys Phe Leu Thr Leu Tyr Ile 595
600 605Leu Glu Ala Leu Leu Lys Ile Ala Ala Met Arg Lys
Asp Phe Phe Ser 610 615 620His Ala Trp
Asn Ile Phe Glu Leu Ala Ile Thr Leu Ile Gly Ile Leu625
630 635 640His Val Ile Leu Ile Glu Ile
Asp Thr Ile Lys Tyr Ile Phe Asn Glu 645
650 655Thr Glu Val Ile Val Phe Ile Lys Val Val Gln Phe
Phe Arg Ile Leu 660 665 670Arg
Ile Phe Lys Leu Ile Ala Pro Lys Leu Leu Gln Ile Ile Asp Lys 675
680 685Arg Met Ser His Gln Lys Thr Phe Trp
Tyr Gly Ile Leu Lys Gly Tyr 690 695
700Val Gln Gly Glu Ala Asp Ile Met Thr Ile Ile Asp Gln Ile Thr Ser705
710 715 720Ser Lys Gln Ile
Lys Gln Met Leu Leu Lys Gln Val Ile Arg Asn Met 725
730 735Glu His Ala Ile Lys Glu Leu Gly Tyr Leu
Glu Tyr Asp His Pro Glu 740 745
750Ile Ala Val Thr Val Lys Thr Lys Glu Glu Ile Asn Val Met Leu Asn
755 760 765Met Ala Thr Glu Ile Leu Lys
Ala Phe Gly Leu Lys Gly Ile Ile Ser 770 775
780Lys Thr Glu Gly Ala Gly Ile Asn Lys Leu Ile Met Ala Lys Lys
Lys785 790 795 800Glu Val
Leu Asp Ser Gln Ser Ile Ile Arg Pro Leu Thr Val Glu Glu
805 810 815Val Leu Tyr His Ile Pro Trp
Leu Asp Lys Asn Lys Asp Tyr Ile Asn 820 825
830Phe Ile Gln Glu Lys Ala Lys Val Val Thr Phe Asp Cys Gly
Asn Asp 835 840 845Ile Phe Glu Glu
Gly Asp Glu Pro Lys Gly Ile Tyr Ile Ile Ile Ser 850
855 860Gly Met Val Lys Leu Glu Lys Ser Lys Pro Gly Leu
Gly Ile Asp Gln865 870 875
880Met Val Glu Ser Lys Glu Lys Asp Phe Pro Ile Ile Asp Thr Asp Tyr
885 890 895Met Leu Ser Gly Glu
Ile Ile Gly Glu Ile Asn Cys Leu Thr Asn Glu 900
905 910Pro Met Lys Tyr Ser Ala Thr Cys Lys Thr Val Val
Glu Thr Cys Phe 915 920 925Ile Pro
Lys Thr His Leu Tyr Asp Ala Phe Glu Gln Cys Ser Pro Leu 930
935 940Ile Lys Gln Lys Met Trp Leu Lys Leu Gly Leu
Ala Ile Thr Ala Arg945 950 955
960Lys Ile Arg Glu His Leu Ser Tyr Glu Asp Trp Asn Tyr Asn Met Gln
965 970 975Leu Lys Leu Ser
Asn Ile Tyr Val Val Asp Ile Pro Met Ser Thr Lys 980
985 990Thr Asp Ile Tyr Asp Glu Asn Leu Ile Tyr Val
Ile Leu Ile His Gly 995 1000
1005Ala Val Glu Asp Cys Leu Leu Arg Lys Thr Tyr Arg Ala Pro Phe
1010 1015 1020Leu Ile Pro Ile Thr Cys
His Gln Ile Gln Ser Ile Glu Asp Phe 1025 1030
1035Thr Lys Val Val Ile Ile Gln Thr Pro Ile Asn Met Lys Thr
Phe 1040 1045 1050Arg Arg Asn Ile Arg
Lys Phe Val Pro Lys His Lys Ser Tyr Leu 1055 1060
1065Thr Pro Gly Leu Ile Gly Ser Val Gly Thr Leu Glu Glu
Gly Ile 1070 1075 1080Gln Glu Glu Arg
Asn Val Lys Glu Asp Gly Ala His Ser Ala Ala 1085
1090 1095Thr Ala Arg Ser Pro Gln Pro Cys Ser Leu Leu
Gly Thr Lys Phe 1100 1105 1110Asn Cys
Lys Glu Ser Pro Arg Ile Asn Leu Arg Lys Val Arg Lys 1115
1120 1125Glu18917DNAArtificial
SequenceOligonucleotide 189tttgaaccgg cacttgg
1719023DNAArtificial SequenceOligonucleotide
190tcaaatgcag tagtaaagaa aac
231912898DNAHomo sapiens 191atgtgggtgc ggtgtgcact cctggttgca cgcgactgtg
gctgtgctga gcgcgtgtgc 60ccgtctgtgg tgcgtgaccg cgtgtgtgtt gtgggggcgg
ggaaaattca tacaaaagaa 120aaaaatatag cacatctctt ggaaatgaaa tacttcaagt
ttaatatctc tcttgctaat 180gcagaattta tcagccaaga cagctggctg gcctgggtgg
ggtttgttaa agttgtcaag 240tataaggcct actgtaagag ataccaagtg acttttagaa
gacagtgtga gggtaaaact 300gattactatg cttggaaaca cttagtggta caggataaaa
ataagtctaa cacacacaaa 360tacagaatga ttatttgtgt gataaataca gataccattt
gtgagatggc ttatgcccat 420atagaatggg acatgatagt ctgtgcagct tatgcacacg
aacttccaaa atacggtgta 480aaggttggcc tgacaaatga tgctgcagca tgttgtactg
gcctgctgct ggcatgcagg 540cttctcagta ggtttggcat ggacaagatc tataaaggcc
aagtggaggt aaccagagat 600gaatacaacg tgggaagcac tgatggtcag ccaggtgcct
ttacctgctg tttggatgca 660ggccttgcca gaaccaccac tgacaataaa gtttttgggg
ctctgagagt gctgtggatg 720gaggtttctc tatccctcac agtgcctaac gattccctga
gtaaagggaa gcctggcccc 780aggaaggagc agctgcctgc aagagggagc ctgagccgtg
gagtcctggg agcctttgag 840gtgggcagcc agggcgtgga ggcagcagca agcccaaacg
gtcaatacgg gcccagctgg 900ggcctggcgg cggagggcac ggagggagct aggccacagg
caccaaagcg ggatttgtcc 960tatagcagga ctgactctca cagagactgt tctcctgtct
gtcacaacat gtccctgagg 1020ggtcaccttg tccccaagaa gccctcaaag gagaagcagg
gacagcagaa actggacagc 1080aagttttatg agagctgggc cacagccttg ctcacagcta
tattcccggt gcttggcatc 1140ttggtgcttg ttgaatcttt gctgatgaat gacccaatgc
gtgaatgcat cctcagcacc 1200tctggcttct cagggcctcg cgccaggctc ctgggggtcc
tggccctggg cgggcttcct 1260ctccatcttg gtgcacctgt tattgtaatg gcgtggattg
tccttgcttt gctattcaca 1320cggagcagga ccagggctga tcctgcagac gtgctgcccc
ctggtgcatt tgagaagact 1380cgcatgcatg cactgccccc gcctcttggt ttgactttag
atgacggtga agtgatcacc 1440acaagattgc tcactgatgc ttctgtgcaa aaagtcgtgg
tccggatatc tgaatcctcc 1500tcctgcctcc acaatgggct gctatccggt aacggctgtg
aggtccatta ccgcagggcg 1560aggctcttcc aggacgctca gatgcctgct cagagcccag
cttatcgggg ggatctgcga 1620gctcctgtca acgccctgag aattcagaac cggagtcagc
tcagcccagg tggaaagatc 1680aagtggcggc agcacaggca gctggaaggt acccacagaa
agaaatcgag cactatgttc 1740agaaagatcc actccatctt taactccagc ccacagagaa
agacggcggc cgagagcccc 1800ttctacgaag gagccagccc cgcagtgaag ctgattcgaa
gcagttccat gtatgtggtc 1860ggggaccacg gggagaaatt cagcgagtcc ttaaagaagt
acaaaagcac cagtagcatg 1920gacaccagcc tgtactacct gcggcaggag gaggaccggg
cgtggatgta ttcgcgcacc 1980caggactgcc tgcagtacct gcaggagctg ctggccttgc
gcaaaaaata tctcagcagc 2040ttcagtgatc tgaagcccca ccgcacccag gggatttcct
caacctcctc caaatcctcc 2100aagggaggga aaaagactcc tgtccggtct actcccaaag
aaataaagaa agcaacccca 2160aagaaatact cgcagttcag tgctgatgtg gccgaggcca
ttgccttctt tgactccatc 2220attgcagagc tggatacaga gagacgaccc cgggctgctg
aggccagcct gccaaatgaa 2280gatgtggact ttgacgtggc caccagctcc agggagcaca
gcttgcattc taactggatc 2340ctgcgggcac cgcgcagaca ctccgaggat atcgctgccc
acactgtgca tactgtagac 2400ggccagtttc gaaggagcac cgagcacagg accgtgggca
ctcagaggag actcgagagg 2460caccccattt atttgcccaa ggctgtggaa ggggccttca
acacctggaa atttaagccc 2520aaagcctgca aaaaagacct ggggagctcc agacagatcc
ttttcaactt ctcaggagaa 2580gatatggagt gggatgcaga gctctttgcg ttggagcccc
agttgtctcc tggggaggac 2640tactatgaga cagagaaccc caaaggacag tggctgcttc
gagaaagact ttgggagcgg 2700acgactgggt ccctgagaag ctgtccgctt tcagcgcagc
atgaggtatt tggtagagtt 2760gaaaatgcca attgtaacac agtcaaccca ctcagcacac
tgcctgctgg tgccgtgcca 2820gtgccaaaca gacctgtggc ttcccagggg acaggtctca
ggacactctc agagcttgag 2880tttctctgcg tgggctga
2898192965PRTHomo sapiens 192Met Trp Val Arg Cys
Ala Leu Leu Val Ala Arg Asp Cys Gly Cys Ala1 5
10 15Glu Arg Val Cys Pro Ser Val Val Arg Asp Arg
Val Cys Val Val Gly 20 25
30Ala Gly Lys Ile His Thr Lys Glu Lys Asn Ile Ala His Leu Leu Glu
35 40 45Met Lys Tyr Phe Lys Phe Asn Ile
Ser Leu Ala Asn Ala Glu Phe Ile 50 55
60Ser Gln Asp Ser Trp Leu Ala Trp Val Gly Phe Val Lys Val Val Lys65
70 75 80Tyr Lys Ala Tyr Cys
Lys Arg Tyr Gln Val Thr Phe Arg Arg Gln Cys 85
90 95Glu Gly Lys Thr Asp Tyr Tyr Ala Trp Lys His
Leu Val Val Gln Asp 100 105
110Lys Asn Lys Ser Asn Thr His Lys Tyr Arg Met Ile Ile Cys Val Ile
115 120 125Asn Thr Asp Thr Ile Cys Glu
Met Ala Tyr Ala His Ile Glu Trp Asp 130 135
140Met Ile Val Cys Ala Ala Tyr Ala His Glu Leu Pro Lys Tyr Gly
Val145 150 155 160Lys Val
Gly Leu Thr Asn Asp Ala Ala Ala Cys Cys Thr Gly Leu Leu
165 170 175Leu Ala Cys Arg Leu Leu Ser
Arg Phe Gly Met Asp Lys Ile Tyr Lys 180 185
190Gly Gln Val Glu Val Thr Arg Asp Glu Tyr Asn Val Gly Ser
Thr Asp 195 200 205Gly Gln Pro Gly
Ala Phe Thr Cys Cys Leu Asp Ala Gly Leu Ala Arg 210
215 220Thr Thr Thr Asp Asn Lys Val Phe Gly Ala Leu Arg
Val Leu Trp Met225 230 235
240Glu Val Ser Leu Ser Leu Thr Val Pro Asn Asp Ser Leu Ser Lys Gly
245 250 255Lys Pro Gly Pro Arg
Lys Glu Gln Leu Pro Ala Arg Gly Ser Leu Ser 260
265 270Arg Gly Val Leu Gly Ala Phe Glu Val Gly Ser Gln
Gly Val Glu Ala 275 280 285Ala Ala
Ser Pro Asn Gly Gln Tyr Gly Pro Ser Trp Gly Leu Ala Ala 290
295 300Glu Gly Thr Glu Gly Ala Arg Pro Gln Ala Pro
Lys Arg Asp Leu Ser305 310 315
320Tyr Ser Arg Thr Asp Ser His Arg Asp Cys Ser Pro Val Cys His Asn
325 330 335Met Ser Leu Arg
Gly His Leu Val Pro Lys Lys Pro Ser Lys Glu Lys 340
345 350Gln Gly Gln Gln Lys Leu Asp Ser Lys Phe Tyr
Glu Ser Trp Ala Thr 355 360 365Ala
Leu Leu Thr Ala Ile Phe Pro Val Leu Gly Ile Leu Val Leu Val 370
375 380Glu Ser Leu Leu Met Asn Asp Pro Met Arg
Glu Cys Ile Leu Ser Thr385 390 395
400Ser Gly Phe Ser Gly Pro Arg Ala Arg Leu Leu Gly Val Leu Ala
Leu 405 410 415Gly Gly Leu
Pro Leu His Leu Gly Ala Pro Val Ile Val Met Ala Trp 420
425 430Ile Val Leu Ala Leu Leu Phe Thr Arg Ser
Arg Thr Arg Ala Asp Pro 435 440
445Ala Asp Val Leu Pro Pro Gly Ala Phe Glu Lys Thr Arg Met His Ala 450
455 460Leu Pro Pro Pro Leu Gly Leu Thr
Leu Asp Asp Gly Glu Val Ile Thr465 470
475 480Thr Arg Leu Leu Thr Asp Ala Ser Val Gln Lys Val
Val Val Arg Ile 485 490
495Ser Glu Ser Ser Ser Cys Leu His Asn Gly Leu Leu Ser Gly Asn Gly
500 505 510Cys Glu Val His Tyr Arg
Arg Ala Arg Leu Phe Gln Asp Ala Gln Met 515 520
525Pro Ala Gln Ser Pro Ala Tyr Arg Gly Asp Leu Arg Ala Pro
Val Asn 530 535 540Ala Leu Arg Ile Gln
Asn Arg Ser Gln Leu Ser Pro Gly Gly Lys Ile545 550
555 560Lys Trp Arg Gln His Arg Gln Leu Glu Gly
Thr His Arg Lys Lys Ser 565 570
575Ser Thr Met Phe Arg Lys Ile His Ser Ile Phe Asn Ser Ser Pro Gln
580 585 590Arg Lys Thr Ala Ala
Glu Ser Pro Phe Tyr Glu Gly Ala Ser Pro Ala 595
600 605Val Lys Leu Ile Arg Ser Ser Ser Met Tyr Val Val
Gly Asp His Gly 610 615 620Glu Lys Phe
Ser Glu Ser Leu Lys Lys Tyr Lys Ser Thr Ser Ser Met625
630 635 640Asp Thr Ser Leu Tyr Tyr Leu
Arg Gln Glu Glu Asp Arg Ala Trp Met 645
650 655Tyr Ser Arg Thr Gln Asp Cys Leu Gln Tyr Leu Gln
Glu Leu Leu Ala 660 665 670Leu
Arg Lys Lys Tyr Leu Ser Ser Phe Ser Asp Leu Lys Pro His Arg 675
680 685Thr Gln Gly Ile Ser Ser Thr Ser Ser
Lys Ser Ser Lys Gly Gly Lys 690 695
700Lys Thr Pro Val Arg Ser Thr Pro Lys Glu Ile Lys Lys Ala Thr Pro705
710 715 720Lys Lys Tyr Ser
Gln Phe Ser Ala Asp Val Ala Glu Ala Ile Ala Phe 725
730 735Phe Asp Ser Ile Ile Ala Glu Leu Asp Thr
Glu Arg Arg Pro Arg Ala 740 745
750Ala Glu Ala Ser Leu Pro Asn Glu Asp Val Asp Phe Asp Val Ala Thr
755 760 765Ser Ser Arg Glu His Ser Leu
His Ser Asn Trp Ile Leu Arg Ala Pro 770 775
780Arg Arg His Ser Glu Asp Ile Ala Ala His Thr Val His Thr Val
Asp785 790 795 800Gly Gln
Phe Arg Arg Ser Thr Glu His Arg Thr Val Gly Thr Gln Arg
805 810 815Arg Leu Glu Arg His Pro Ile
Tyr Leu Pro Lys Ala Val Glu Gly Ala 820 825
830Phe Asn Thr Trp Lys Phe Lys Pro Lys Ala Cys Lys Lys Asp
Leu Gly 835 840 845Ser Ser Arg Gln
Ile Leu Phe Asn Phe Ser Gly Glu Asp Met Glu Trp 850
855 860Asp Ala Glu Leu Phe Ala Leu Glu Pro Gln Leu Ser
Pro Gly Glu Asp865 870 875
880Tyr Tyr Glu Thr Glu Asn Pro Lys Gly Gln Trp Leu Leu Arg Glu Arg
885 890 895Leu Trp Glu Arg Thr
Thr Gly Ser Leu Arg Ser Cys Pro Leu Ser Ala 900
905 910Gln His Glu Val Phe Gly Arg Val Glu Asn Ala Asn
Cys Asn Thr Val 915 920 925Asn Pro
Leu Ser Thr Leu Pro Ala Gly Ala Val Pro Val Pro Asn Arg 930
935 940Pro Val Ala Ser Gln Gly Thr Gly Leu Arg Thr
Leu Ser Glu Leu Glu945 950 955
960Phe Leu Cys Val Gly 96519322DNAArtificial
SequenceOligonucleotide 193cgagaggcac cccatttatt tg
2219426DNAArtificial SequenceOligonucleotide
194ttctctgtct catagtagtc ctcccc
261951363DNAHomo sapiens 195aacaggcccc atgctgctct ggacggctgt gctgctcttt
ggtaagtcaa cgagcatggg 60catcccctct tggagcacta aggaccttcc ctgtgttggg
aaaactgtct ggctgtacct 120ccaagcctgg ccaaaccctg tgtttgaagg agatgccctg
actctgcgat gtcagggatg 180gaagaataca ccactgtctc aggtgaagtt ctacagagat
ggaaaattcc ttcatttctc 240taaggaaaac cagactctgt ccatgggagc agcaacagtg
cagagccgtg gccagtacag 300ctgctctggg caggtgatgt atattccaca gacattcaca
caaacttcag agactgccat 360ggttcaagtc caagagctgt ttccacctcc tgtgctgagt
gccatcccct ctcctgagcc 420ccgagagggt agcctggtga ccctgagatg tcagacaaag
ctgcaccccc tgaggtcagc 480cttgaggctc cttttctcct tccacaagga cggccacacc
ttgcaggaca ggggccctca 540cccagaactc tgcatcccgg gagccaagga gggagactct
gggctttact ggtgtgaggt 600ggcccctgag ggtggccagg tccagaagca gagcccccag
ctggaggtca gagtgcaggc 660tcctgtatcc cgtcctgtgc tcactctgca ccacgggcct
gctgaccctg ctgtggggga 720catggtgcag ctcctctgtg aggcacagag gggctcccct
ccgatcctgt attccttcta 780ccttgatgag aagattgtgg ggaaccactc agctccctgt
ggtggaacca cctccctcct 840cttcccagtg aagtcagaac aggatgctgg gaactactcc
tgcgaggctg agaacagtgt 900ctccagagag aggagtgagc ccaagaagct gtctctgaag
ggttctcaag tcttgttcac 960tcccgccagc aactggctgg ttccttggct tcctgcgagc
ctgcttggcc tgatggttat 1020tgctgctgca cttctggttt atgtgagatc ctggagaaaa
gctgggcccc ttccatccca 1080gataccaccc acagctccag gtggagagca gtgcccacta
tatgccaacg tgcatcacca 1140gaaagggaaa gatgaaggtg ttgtctactc tgtggtgcat
agaacctcaa agaggagtga 1200agccaggtct gctgagttca ccgtggggag aaagcacaaa
gcttcaccca aattccaccc 1260caccctggat ctccacacca agcggctcag ggttaatggt
cgagttcagg aagcttatgt 1320ggccttggtc aacacctgct ccctcacccc cagcctgaag
tga 1363196450PRTHomo sapiens 196Met Leu Leu Trp Thr
Ala Val Leu Leu Phe Gly Lys Ser Thr Ser Met1 5
10 15Gly Ile Pro Ser Trp Ser Thr Lys Asp Leu Pro
Cys Val Gly Lys Thr 20 25
30Val Trp Leu Tyr Leu Gln Ala Trp Pro Asn Pro Val Phe Glu Gly Asp
35 40 45Ala Leu Thr Leu Arg Cys Gln Gly
Trp Lys Asn Thr Pro Leu Ser Gln 50 55
60Val Lys Phe Tyr Arg Asp Gly Lys Phe Leu His Phe Ser Lys Glu Asn65
70 75 80Gln Thr Leu Ser Met
Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr 85
90 95Ser Cys Ser Gly Gln Val Met Tyr Ile Pro Gln
Thr Phe Thr Gln Thr 100 105
110Ser Glu Thr Ala Met Val Gln Val Gln Glu Leu Phe Pro Pro Pro Val
115 120 125Leu Ser Ala Ile Pro Ser Pro
Glu Pro Arg Glu Gly Ser Leu Val Thr 130 135
140Leu Arg Cys Gln Thr Lys Leu His Pro Leu Arg Ser Ala Leu Arg
Leu145 150 155 160Leu Phe
Ser Phe His Lys Asp Gly His Thr Leu Gln Asp Arg Gly Pro
165 170 175His Pro Glu Leu Cys Ile Pro
Gly Ala Lys Glu Gly Asp Ser Gly Leu 180 185
190Tyr Trp Cys Glu Val Ala Pro Glu Gly Gly Gln Val Gln Lys
Gln Ser 195 200 205Pro Gln Leu Glu
Val Arg Val Gln Ala Pro Val Ser Arg Pro Val Leu 210
215 220Thr Leu His His Gly Pro Ala Asp Pro Ala Val Gly
Asp Met Val Gln225 230 235
240Leu Leu Cys Glu Ala Gln Arg Gly Ser Pro Pro Ile Leu Tyr Ser Phe
245 250 255Tyr Leu Asp Glu Lys
Ile Val Gly Asn His Ser Ala Pro Cys Gly Gly 260
265 270Thr Thr Ser Leu Leu Phe Pro Val Lys Ser Glu Gln
Asp Ala Gly Asn 275 280 285Tyr Ser
Cys Glu Ala Glu Asn Ser Val Ser Arg Glu Arg Ser Glu Pro 290
295 300Lys Lys Leu Ser Leu Lys Gly Ser Gln Val Leu
Phe Thr Pro Ala Ser305 310 315
320Asn Trp Leu Val Pro Trp Leu Pro Ala Ser Leu Leu Gly Leu Met Val
325 330 335Ile Ala Ala Ala
Leu Leu Val Tyr Val Arg Ser Trp Arg Lys Ala Gly 340
345 350Pro Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro
Gly Gly Glu Gln Cys 355 360 365Pro
Leu Tyr Ala Asn Val His His Gln Lys Gly Lys Asp Glu Gly Val 370
375 380Val Tyr Ser Val Val His Arg Thr Ser Lys
Arg Ser Glu Ala Arg Ser385 390 395
400Ala Glu Phe Thr Val Gly Arg Lys His Lys Ala Ser Pro Lys Phe
His 405 410 415Pro Thr Leu
Asp Leu His Thr Lys Arg Leu Arg Val Asn Gly Arg Val 420
425 430Gln Glu Ala Tyr Val Ala Leu Val Asn Thr
Cys Ser Leu Thr Pro Ser 435 440
445Leu Lys 45019719DNAArtificial SequenceOligonucleotide 197gtcagggatg
gaagaatac
1919818DNAArtificial SequenceOligonucleotide 198acaggaggtg gaaacagc
18199534DNAHomo sapiens
199acaattgtgt cttcttccag atgtcatcgc tataaggagt ggggctttca tcacctcctt
60gacgtaggat gtgtacatgg ctctccaggt cagagttgct ccaagcaagg ttgttttgca
120gaagtttctt ctatgtgtca ttcttttcta cactgtgtac tatgtgtccc tgagcatggg
180ctgcgtgatg tttgaggtgc atgagttgaa tgtcctggct ccatttgatt tcaaaacaaa
240tccctcatgg ctcaacataa actataaagt tcttttagtt tcaacagagg tcacctactt
300tgtttgtgga ttgttttttg ttccagttgt ggaagaatgg gtttgggatt atgctatttc
360agtcactatt cttcatgttg ccatcacttc aactgttatg ttggaattcc ccttgacatc
420acattggtgg gctgctttag gtatatcaaa attgcttgtt tagattctct aatgcacaga
480aataatgtta aatagaataa ctgtggaaat atattttatt ttctcataga tttt
534200128PRTHomo sapiens 200Met Ala Leu Gln Val Arg Val Ala Pro Ser Lys
Val Val Leu Gln Lys1 5 10
15Phe Leu Leu Cys Val Ile Leu Phe Tyr Thr Val Tyr Tyr Val Ser Leu
20 25 30Ser Met Gly Cys Val Met Phe
Glu Val His Glu Leu Asn Val Leu Ala 35 40
45Pro Phe Asp Phe Lys Thr Asn Pro Ser Trp Leu Asn Ile Asn Tyr
Lys 50 55 60Val Leu Leu Val Ser Thr
Glu Val Thr Tyr Phe Val Cys Gly Leu Phe65 70
75 80Phe Val Pro Val Val Glu Glu Trp Val Trp Asp
Tyr Ala Ile Ser Val 85 90
95Thr Ile Leu His Val Ala Ile Thr Ser Thr Val Met Leu Glu Phe Pro
100 105 110Leu Thr Ser His Trp Trp
Ala Ala Leu Gly Ile Ser Lys Leu Leu Val 115 120
12520120DNAArtificial SequenceOligonucleotide 201tcaaacatca
cgcagcccat
2020222DNAArtificial SequenceOligonucleotide 202tggggctttc atcacctcct tg
22203615DNAHomo sapiens
203ggggatgtga tgtcaggctt gattgtgggc atattattgg tgccccagtc cattgcttat
60tccctgctgg ctggccaaga acctgtctat ggtctgtaca catctttttt tgccagcatc
120atttattttc tcttgggtac ctcccgtcac atctctgtgg gcatttttgg agtactgtgc
180cttatgattg gtgagacagt tgaccgagaa ctacagaaag ctggctatga caatgcccat
240agtgctcctt ccttaggaat ggtttcaaat gggagcacat tattaaatca tacatcagac
300aggatatgtg acaaaagttg ctatgcaatt atggttggca gcactgtaac ctttatagct
360ggagtttatc agtgattgtt ttgttaatgt ggaagcaaca ttttctatga ttaatctgct
420gttacctgtt ttgactgagc tactacaaaa agaaaaatca ctgaattgct atgggtttct
480gaaatatcca aaaaattaac ctgaagcagg gggaaaaatg acatcacacc attagcaggt
540attgtgtgaa acttctaaaa atgaaactga catttatctg acttattagg aataaatact
600ctctaatgaa ctctc
615204121PRTHomo sapiens 204Met Ser Gly Leu Ile Val Gly Ile Leu Leu Val
Pro Gln Ser Ile Ala1 5 10
15Tyr Ser Leu Leu Ala Gly Gln Glu Pro Val Tyr Gly Leu Tyr Thr Ser
20 25 30Phe Phe Ala Ser Ile Ile Tyr
Phe Leu Leu Gly Thr Ser Arg His Ile 35 40
45Ser Val Gly Ile Phe Gly Val Leu Cys Leu Met Ile Gly Glu Thr
Val 50 55 60Asp Arg Glu Leu Gln Lys
Ala Gly Tyr Asp Asn Ala His Ser Ala Pro65 70
75 80Ser Leu Gly Met Val Ser Asn Gly Ser Thr Leu
Leu Asn His Thr Ser 85 90
95Asp Arg Ile Cys Asp Lys Ser Cys Tyr Ala Ile Met Val Gly Ser Thr
100 105 110Val Thr Phe Ile Ala Gly
Val Tyr Gln 115 12020520DNAArtificial
SequenceOligonucleotide 205taaatcatac atcagacagg
2020620DNAArtificial SequenceOligonucleotide
206aaaacaggta acagcagatt
20207513DNAHomo sapiens 207atggcggcgg ccgctctcgc gagaattcgg cccgtcgggc
tccaagcccg gcgcctggcg 60tcggagggaa agactcgagc cgaaagcccc atctctgacc
ctagcaactc atacccttct 120ggcttccctt tagcaaagcg cctggacgtc atcccctctt
cagatacccc aggcctcgtc 180ctggccactg gcttgactat tgcaggagag cctgataaga
tgggacacgg ctccaccttg 240cattcagcaa gtcgttatcc tgcaactacg atgcaccagg
aagaggatgt ggtgaggcca 300gcttttccat atgcagttag gcatcgaagg gaagatctgc
tgtacctaag tggggtgggc 360atttcatttt tagggaccgt ctttgttaaa ataatttggg
acctcataaa gcctccagcc 420attcctgatc aggacatagc ttacaacagc agcctggtgc
ccataacctg gacagcctgg 480agtgaagtca cactcccaga cttgatgttc taa
513208170PRTHomo sapiens 208Met Ala Ala Ala Ala
Leu Ala Arg Ile Arg Pro Val Gly Leu Gln Ala1 5
10 15Arg Arg Leu Ala Ser Glu Gly Lys Thr Arg Ala
Glu Ser Pro Ile Ser 20 25
30Asp Pro Ser Asn Ser Tyr Pro Ser Gly Phe Pro Leu Ala Lys Arg Leu
35 40 45Asp Val Ile Pro Ser Ser Asp Thr
Pro Gly Leu Val Leu Ala Thr Gly 50 55
60Leu Thr Ile Ala Gly Glu Pro Asp Lys Met Gly His Gly Ser Thr Leu65
70 75 80His Ser Ala Ser Arg
Tyr Pro Ala Thr Thr Met His Gln Glu Glu Asp 85
90 95Val Val Arg Pro Ala Phe Pro Tyr Ala Val Arg
His Arg Arg Glu Asp 100 105
110Leu Leu Tyr Leu Ser Gly Val Gly Ile Ser Phe Leu Gly Thr Val Phe
115 120 125Val Lys Ile Ile Trp Asp Leu
Ile Lys Pro Pro Ala Ile Pro Asp Gln 130 135
140Asp Ile Ala Tyr Asn Ser Ser Leu Val Pro Ile Thr Trp Thr Ala
Trp145 150 155 160Ser Glu
Val Thr Leu Pro Asp Leu Met Phe 165
17020920DNAArtificial SequenceOligonucleotide 209tgagccctag atatacttgg
2021018DNAArtificial
SequenceOligonucleotide 210cagtcagcct ccatttct
18211508DNAHomo sapiens 211tgagccctag atatacttgg
cttgcattta ggggccatga tgtttagaga tgaataatgc 60cttacatgct ggagtcaccc
tcagtttgtc aaagtgttca cactgtgaga ggctcacaga 120aatggaggct gactgaagga
agagcagatt cacatctttc atcccttctt tatgctcatg 180cttctaattt ttgttcccat
gttttcttgc ccctcctctt cttagcattt attttgtctg 240tttctctttc ccctcttctg
gctccctctc catctctcct gagcacagaa atgcggctac 300tgtatttaat ccacagtggc
cccctctggc cccctctttg tgtctcctga gcacaggccc 360tggccccctc tccatctctc
ctgacctcct gatccgccca cctcggccag ttattgctgt 420tttataagga aaatgttttc
tagtaccaca cttgtctccc tggaagggat agaagaagga 480gggaaggaag tagggaggca
gggaagag 50821297PRTHomo sapiens
212Met Pro Tyr Met Leu Glu Ser Pro Ser Val Cys Gln Ser Val His Thr1
5 10 15Val Arg Gly Ser Gln Lys
Trp Arg Leu Thr Glu Gly Arg Ala Asp Ser 20 25
30His Leu Ser Ser Leu Leu Tyr Ala His Ala Ser Asn Phe
Cys Ser His 35 40 45Val Phe Leu
Pro Leu Leu Phe Leu Ala Phe Ile Leu Ser Val Ser Leu 50
55 60Ser Pro Leu Leu Ala Pro Ser Pro Ser Leu Leu Ser
Thr Glu Met Arg65 70 75
80Leu Leu Tyr Leu Ile His Ser Gly Pro Leu Trp Pro Pro Leu Cys Val
85 90 95Ser21325DNAArtificial
SequenceOligonucleotide 213ctgtatttaa tccacagtgg ccccc
2521427DNAArtificial SequenceOligonucleotide
214tccctacttc cttccctcct tcttcta
272151321DNAHomo sapiens 215cagtgcccag gcaagcccag gagttgacat ttctctgccc
agccatgggc ctcaccctgc 60tcttgctgct gctcctggga ctagaaggtc agggcatagt
tggcagcctc cctgaggtgc 120tgcaggcacc cgtgggaagc tccattctgg tgcagtgcca
ctacaggctc caggatgtca 180aagctcagaa ggtgtggtgc cggttcttgc cggaggggtg
ccagcccctg gtgtcctcag 240ctgtggatcg cagagctcca gcgggcaggc gtacgtttct
cacagacctg ggtgggggcc 300tgctgcaggt ggaaatggtt accctgcagg aagaggatgc
tggcgagtat ggctgcatgg 360tggatggggc cagggggccc cagattttgc acagagtctc
tctgaacata ctgcccccag 420aggaagaaga agagacccat aagattggca gtctggctga
gaacgcattc tcagaccctg 480caggcagtgc caaccctttg gaacccagcc aggatgagaa
gagcatcccc ttgatctggg 540gtgctgtgct cctggtaggt ctgctggtgg cagcggtggt
gctgtttgct gtgatggcca 600agaggaaaca agggaacagg cttggtgtct gtggccgatt
cctgagcagc agagtttcag 660gcatgaatcc ctcctcagtg gtccaccacg tcagtgactc
tggaccggct gctgaattgc 720ctttggatgt accacacatt aggcttgact caccaccttc
atttgacaat accacctaca 780ccagcctacc tcttgattcc ccatcaggaa aaccttcact
cccagctcca tcctcattgc 840cccctctacc tcctaaggtc ctggtctgct ccaagcctgt
gacatatgcc acagtaatct 900tcccgggagg gaacaagggt ggagggacct cgtgtgggcc
agcccagaat ccacctaaca 960atcagactcc atccagctaa gctgctcatc acactttaaa
ctcatgagga ccatccctag 1020gggttctgtg catccatcca gccagctcat gccctaggat
ccttaggata tctgagcaac 1080cagggacttt aagatctaat ccaatgtcct aactttacta
gggaaagtga cgctcagaca 1140tgactgagat gtcttgggga agacctccct gcacccaact
cccccactgg ttcttctacc 1200attacacact gggctaaata aaccctaata atgatgtgca
aactcttaat ggctgaatgg 1260gaaaggaaac tgcccaagtt tgactaattg cttggcctgt
gaatggaaaa gactctggtc 1320t
1321216311PRTHomo sapiens 216Met Gly Leu Thr Leu
Leu Leu Leu Leu Leu Leu Gly Leu Glu Gly Gln1 5
10 15Gly Ile Val Gly Ser Leu Pro Glu Val Leu Gln
Ala Pro Val Gly Ser 20 25
30Ser Ile Leu Val Gln Cys His Tyr Arg Leu Gln Asp Val Lys Ala Gln
35 40 45Lys Val Trp Cys Arg Phe Leu Pro
Glu Gly Cys Gln Pro Leu Val Ser 50 55
60Ser Ala Val Asp Arg Arg Ala Pro Ala Gly Arg Arg Thr Phe Leu Thr65
70 75 80Asp Leu Gly Gly Gly
Leu Leu Gln Val Glu Met Val Thr Leu Gln Glu 85
90 95Glu Asp Ala Gly Glu Tyr Gly Cys Met Val Asp
Gly Ala Arg Gly Pro 100 105
110Gln Ile Leu His Arg Val Ser Leu Asn Ile Leu Pro Pro Glu Glu Glu
115 120 125Glu Glu Thr His Lys Ile Gly
Ser Leu Ala Glu Asn Ala Phe Ser Asp 130 135
140Pro Ala Gly Ser Ala Asn Pro Leu Glu Pro Ser Gln Asp Glu Lys
Ser145 150 155 160Ile Pro
Leu Ile Trp Gly Ala Val Leu Leu Val Gly Leu Leu Val Ala
165 170 175Ala Val Val Leu Phe Ala Val
Met Ala Lys Arg Lys Gln Gly Asn Arg 180 185
190Leu Gly Val Cys Gly Arg Phe Leu Ser Ser Arg Val Ser Gly
Met Asn 195 200 205Pro Ser Ser Val
Val His His Val Ser Asp Ser Gly Pro Ala Ala Glu 210
215 220Leu Pro Leu Asp Val Pro His Ile Arg Leu Asp Ser
Pro Pro Ser Phe225 230 235
240Asp Asn Thr Thr Tyr Thr Ser Leu Pro Leu Asp Ser Pro Ser Gly Lys
245 250 255Pro Ser Leu Pro Ala
Pro Ser Ser Leu Pro Pro Leu Pro Pro Lys Val 260
265 270Leu Val Cys Ser Lys Pro Val Thr Tyr Ala Thr Val
Ile Phe Pro Gly 275 280 285Gly Asn
Lys Gly Gly Gly Thr Ser Cys Gly Pro Ala Gln Asn Pro Pro 290
295 300Asn Asn Gln Thr Pro Ser Ser305
31021718DNAArtificial SequenceOligonucleotide 217aggaagaaga agagaccc
1821818DNAArtificial
SequenceOligonucleotide 218catcacagca aacagcac
182193874DNAHomo sapiens 219gagaactggg gcggcgcggc
gcggcgcggt gcatttccag gcgctgctct ccgtcgcaga 60gaaccctgag ctcggcgcgc
cgagagtccc agcagggcaa gggggcgcgg cgtcctggtc 120ctcgagcttg ggagacagat
gcgcatgggc gtgggggcat gcggacctaa gctcgggtga 180agctctcggg aagggcaaga
ctgcggcgac gagatgcgag cagaggagcc ctgcgccccc 240ggggccccca gcgccctggg
agcccagcgc acgccgggcc ccgagctgcg cctgtccagc 300cagctgctgc ccgagctctg
taccttcgtg gtgcgcgtgc tgttctacct ggggcctgtc 360tacctagctg gctacctggg
gctcagcata acctggttgc tgctcggcgc cctgctgtgg 420atgtggtggc gcaggaaccg
ccgcgggaag cttgggcgcc tggccgccgc cttcgaattc 480cttgacaatg aacgcgagtt
catcagccgc gagctgcggg gccagcacct gccagcctgg 540atccacttcc cggacgtgga
gcgggtcgag tgggccaaca agatcatctc tcagacctgg 600ccctacctaa gcatgatcat
ggaaagcaag ttccgggaga aacttgagcc caagatccga 660gagaagagca tccacctgag
gacctttacc tttaccaagc tctactttgg acagaagtgt 720cccagggtca acggtgtcaa
ggcacacact aatacgtgca accgaagacg tgtgactgtg 780gacctgcaga tctgctacat
cggggactgt gagatcagtg tggagctgca gaagattcag 840gctggtgtga acgggatcca
gttgcagggc accctgcggg tcatcctgga gcccctccta 900gtggacaagc cctttgtggg
agccgtgact gtgttcttcc ttcagaagca gcacctacag 960atcaactgga ctggcctgac
caacctgctg gatgcgccgg gaatcaatga tgtgtcagac 1020agcttactgg aggacctcat
tgccacccac ctggtgctgc ccaaccgtgt gactgtgcct 1080gtgaagaagg ggctggatct
gaccaacctg cgcttccctc tgccctgtgg ggtgatcaga 1140gtgcacttgc tggaggcaga
gcagctggcc cagaaggaca actttctggg gctccgaggc 1200aagtcagatc cctacgccaa
ggtgagcatc ggcctacagc atttccggag taggaccatc 1260tacaggaacc tgaaccccac
ctggaacgaa gtgtttgagt tcatggtgta cgaagtccct 1320ggacaggacc tggaggtaga
cctgtatgat gaggataccg acagggatga cttcctgggc 1380agcctgcaga tctgccttgg
agatgtcatg accaacagag tggtggatga gtggtttgtc 1440ctgaatgaca caaccagcgg
gcggctgcac ctgcggctgg agtggctttc attgcttact 1500gaccaagaag ttctgactga
ggaccatggt ggcctttcca ctgccattct cgtggtcttc 1560ttggagagtg cctgcaactt
gccgagaaac ccttttgact acctgaatgg tgaatatcga 1620gccaaaaaac tctccaggtt
tgccagagtg aaacaaggtc agcaaagacc cttcttccta 1680tgtcaaacta tctgtaggca
agaagacaca tacaagtaag acctgtcccc acaacaagga 1740ccctgtgtgg agccaggtgt
tctccttctt tgtgcacaat gtggccactg agcggctcca 1800tctgaaggtt tgatggaaga
agggctcttg aaacagagtt aagaggtttt taagccaggc 1860gggctgggaa gcttgaagtg
caccttgagc aggttctcct ggcagcgttt aaagtcagcc 1920ccttgtatgt aagagaggac
actgaggccc cacaaggcct catctcctta aggctagtgc 1980ctgaggtcac tgtatagggg
gatgtgggag gataaatcct caagtccctt gactttccct 2040gcaaaagggt ctttatattt
gctacacagt acccagagca gcctatctac acaggacatt 2100aataatggtg tactttaaaa
aatatatgtt tcatttaatc ttcacaaaag atctgtagag 2160taagcaaaga gaggcaaaaa
caatgtcttg tccaagatct catgaccaac aagtggtgga 2220gctgggatct tttagggccc
tgagccctgc ctggagagca gcacagctca tcagtcccca 2280aagccccctg gctctgggca
tttgacagac tagctcatac agatcataat tgcctctact 2340ctgagtcact atcttccctg
acagaagaca aggaccaggt ctggcctgat cccattctag 2400ttttcagaat aggaccagat
gcccatagaa gcacagtaca gactgaagta aacccaaact 2460tggctggggc tcagatacta
gtagtggagt ggtggggctt ggttatcctc ttgttttgtg 2520actggaccac tgcccaggtg
cttgatgatg accaggagtg tgctctggga atgctggagg 2580tccccctgtg ccagatcctc
ccctatgctg acctcactct tgagcagcgc tttcagctgg 2640accactcagg cctggacagc
ctcatctcca tgaggctggt gcttgcagtt cctgcaagtg 2700gaggaacgag agctggggag
cccatacaca ggacctgaag ccctaaagaa aggccctctg 2760ctcatcaaga aagtggctac
caaccagggt cccaaagccc aacctcagga agaaggccct 2820acagatttgc catgtccccc
agaccctgct tctgatacta aggacgtatc caggagtacc 2880acaaccacca ccagtgctac
caccgttgcc actgagccca catcccaaga gacaggccca 2940gagcctaaag gcaaggacag
tgccaaaagg ttctgtgagc ccatcgggga gaagaagagt 3000ccagccacca tcttcctgac
tgtcccaggt ccccactctc cagggcccat caagtcaccc 3060agacccatga aatgccctgc
ctccccattc gcatggccgc ccaagaggct ggctcccagc 3120atgtcctcgc tcaactcctt
ggcctcttct tgctttgacc tggcagatat cagcctcaac 3180attgagtatg cacctctctg
cttaatcttt tctaaaatcg cctgtatgaa aaatacctcg 3240ctggatggaa aagtagatat
gaacttacat ttctgtgcaa gttgtttttt cacaaaatat 3300cttcctaaga ggcagcatgg
tgtggtagaa agaacacagg acaagggaga gagagccaaa 3360caggctgttt atggctctag
ctgcgtactg actataaaat agatgctgga ctctggttga 3420ggtggggacc tcaggcgacg
gcagctgggt gagattcagc tcacagtgcg ctatgtgtgt 3480ctgcggcgct gcctcagcgt
gctaatcaat ggctgcagaa acctaacacc atgtaccagc 3540agtggagctg atccctacgt
ccgtgtctac ttgttgccag aaaggaagtg ggcatgtcgt 3600aagaagactt cagtgaagcg
gaagaccttg gaacccctgt ttgatgagac atttgaattt 3660tttgttccca tggaagaagt
aaagaagagg tcactagatg ttgcagtgaa aaatagtagg 3720ccacttggct cacacagaag
aaaggagtta ggaaaagtac tgattgactt atcaaaagaa 3780gatctgatta agggcttttc
acaatggtaa gtgtgccctt tcattttatc actgttatcc 3840tgctattcaa gacagttttc
ccttttcagt actg 3874220501PRTHomo sapiens
220Met Arg Ala Glu Glu Pro Cys Ala Pro Gly Ala Pro Ser Ala Leu Gly1
5 10 15Ala Gln Arg Thr Pro Gly
Pro Glu Leu Arg Leu Ser Ser Gln Leu Leu 20 25
30Pro Glu Leu Cys Thr Phe Val Val Arg Val Leu Phe Tyr
Leu Gly Pro 35 40 45Val Tyr Leu
Ala Gly Tyr Leu Gly Leu Ser Ile Thr Trp Leu Leu Leu 50
55 60Gly Ala Leu Leu Trp Met Trp Trp Arg Arg Asn Arg
Arg Gly Lys Leu65 70 75
80Gly Arg Leu Ala Ala Ala Phe Glu Phe Leu Asp Asn Glu Arg Glu Phe
85 90 95Ile Ser Arg Glu Leu Arg
Gly Gln His Leu Pro Ala Trp Ile His Phe 100
105 110Pro Asp Val Glu Arg Val Glu Trp Ala Asn Lys Ile
Ile Ser Gln Thr 115 120 125Trp Pro
Tyr Leu Ser Met Ile Met Glu Ser Lys Phe Arg Glu Lys Leu 130
135 140Glu Pro Lys Ile Arg Glu Lys Ser Ile His Leu
Arg Thr Phe Thr Phe145 150 155
160Thr Lys Leu Tyr Phe Gly Gln Lys Cys Pro Arg Val Asn Gly Val Lys
165 170 175Ala His Thr Asn
Thr Cys Asn Arg Arg Arg Val Thr Val Asp Leu Gln 180
185 190Ile Cys Tyr Ile Gly Asp Cys Glu Ile Ser Val
Glu Leu Gln Lys Ile 195 200 205Gln
Ala Gly Val Asn Gly Ile Gln Leu Gln Gly Thr Leu Arg Val Ile 210
215 220Leu Glu Pro Leu Leu Val Asp Lys Pro Phe
Val Gly Ala Val Thr Val225 230 235
240Phe Phe Leu Gln Lys Gln His Leu Gln Ile Asn Trp Thr Gly Leu
Thr 245 250 255Asn Leu Leu
Asp Ala Pro Gly Ile Asn Asp Val Ser Asp Ser Leu Leu 260
265 270Glu Asp Leu Ile Ala Thr His Leu Val Leu
Pro Asn Arg Val Thr Val 275 280
285Pro Val Lys Lys Gly Leu Asp Leu Thr Asn Leu Arg Phe Pro Leu Pro 290
295 300Cys Gly Val Ile Arg Val His Leu
Leu Glu Ala Glu Gln Leu Ala Gln305 310
315 320Lys Asp Asn Phe Leu Gly Leu Arg Gly Lys Ser Asp
Pro Tyr Ala Lys 325 330
335Val Ser Ile Gly Leu Gln His Phe Arg Ser Arg Thr Ile Tyr Arg Asn
340 345 350Leu Asn Pro Thr Trp Asn
Glu Val Phe Glu Phe Met Val Tyr Glu Val 355 360
365Pro Gly Gln Asp Leu Glu Val Asp Leu Tyr Asp Glu Asp Thr
Asp Arg 370 375 380Asp Asp Phe Leu Gly
Ser Leu Gln Ile Cys Leu Gly Asp Val Met Thr385 390
395 400Asn Arg Val Val Asp Glu Trp Phe Val Leu
Asn Asp Thr Thr Ser Gly 405 410
415Arg Leu His Leu Arg Leu Glu Trp Leu Ser Leu Leu Thr Asp Gln Glu
420 425 430Val Leu Thr Glu Asp
His Gly Gly Leu Ser Thr Ala Ile Leu Val Val 435
440 445Phe Leu Glu Ser Ala Cys Asn Leu Pro Arg Asn Pro
Phe Asp Tyr Leu 450 455 460Asn Gly Glu
Tyr Arg Ala Lys Lys Leu Ser Arg Phe Ala Arg Val Lys465
470 475 480Gln Gly Gln Gln Arg Pro Phe
Phe Leu Cys Gln Thr Ile Cys Arg Gln 485
490 495Glu Asp Thr Tyr Lys
50022120DNAArtificial SequenceOligonucleotide 221tggggcctgt ctacctagct
2022219DNAArtificial
SequenceOligonucleotide 222tcttgttggc ccactcgac
192231020DNAHomo sapiens 223agacacagga cctgctgggc
cacagaaagg aggctctggg tagacgcact agattactgg 60ataaatcact tcaatttccc
aatgaatttt atattgttta tttttatacc tggagttttt 120tccttaaaaa gtagcacttt
gaagcctact attgaagcat tgcctaatgt gctaccttta 180aatgaagatg ttaataagca
ggaagaaaag aatgaagatc atactcccaa ttatgctcct 240gctaatgaga aaaatggcaa
ttattataaa gatataaaac aatatgtgtt cacaacacaa 300aatccaaatg gcactgagtc
tgaaatatct gtgagagcca caactgacct gaattttgct 360ctaaaaaacg ataaaactgt
caatgcaact acatatgaaa aatccaccat tgaagaagaa 420acaactacta gcgaaccctc
tcataaaaat attcaaagat caaccccaaa cgtgcctgca 480ttttggacaa tgttagctaa
agctataaat ggaacagcag tggtcatgga tgataaagat 540caattatttc acccaattcc
agagtctgat gtgaatgcta cacagggaga aaatcagcca 600gatctagagg atctgaagat
caaaataatg ctgggaatct cgttgatgac cctcctcctc 660tttgtggtcc tcttggcatt
ctgtagtgct acactgtaca aactgaggca tctgagttat 720aaaagttgtg agagtcagta
ctctgtcaac ccagagctgg ccacgatgtc ttactttcat 780ccatcagaag gtgtttcaga
tacatccttt tccaagagtg cagagagcag cacatttttg 840ggtaccactt cttcagatat
gagaagatca ggcacaagaa catcagaatc taagataatg 900acggatatca tttccatagg
ctcagataat gagatgcatg aaaacgatga gtcggttacc 960cggtgaagaa atcaaggaac
ccggtgaaga aatcttattg atgaataaat aactttaatt 1020224294PRTHomo sapiens
224Met Asn Phe Ile Leu Phe Ile Phe Ile Pro Gly Val Phe Ser Leu Lys1
5 10 15Ser Ser Thr Leu Lys Pro
Thr Ile Glu Ala Leu Pro Asn Val Leu Pro 20 25
30Leu Asn Glu Asp Val Asn Lys Gln Glu Glu Lys Asn Glu
Asp His Thr 35 40 45Pro Asn Tyr
Ala Pro Ala Asn Glu Lys Asn Gly Asn Tyr Tyr Lys Asp 50
55 60Ile Lys Gln Tyr Val Phe Thr Thr Gln Asn Pro Asn
Gly Thr Glu Ser65 70 75
80Glu Ile Ser Val Arg Ala Thr Thr Asp Leu Asn Phe Ala Leu Lys Asn
85 90 95Asp Lys Thr Val Asn Ala
Thr Thr Tyr Glu Lys Ser Thr Ile Glu Glu 100
105 110Glu Thr Thr Thr Ser Glu Pro Ser His Lys Asn Ile
Gln Arg Ser Thr 115 120 125Pro Asn
Val Pro Ala Phe Trp Thr Met Leu Ala Lys Ala Ile Asn Gly 130
135 140Thr Ala Val Val Met Asp Asp Lys Asp Gln Leu
Phe His Pro Ile Pro145 150 155
160Glu Ser Asp Val Asn Ala Thr Gln Gly Glu Asn Gln Pro Asp Leu Glu
165 170 175Asp Leu Lys Ile
Lys Ile Met Leu Gly Ile Ser Leu Met Thr Leu Leu 180
185 190Leu Phe Val Val Leu Leu Ala Phe Cys Ser Ala
Thr Leu Tyr Lys Leu 195 200 205Arg
His Leu Ser Tyr Lys Ser Cys Glu Ser Gln Tyr Ser Val Asn Pro 210
215 220Glu Leu Ala Thr Met Ser Tyr Phe His Pro
Ser Glu Gly Val Ser Asp225 230 235
240Thr Ser Phe Ser Lys Ser Ala Glu Ser Ser Thr Phe Leu Gly Thr
Thr 245 250 255Ser Ser Asp
Met Arg Arg Ser Gly Thr Arg Thr Ser Glu Ser Lys Ile 260
265 270Met Thr Asp Ile Ile Ser Ile Gly Ser Asp
Asn Glu Met His Glu Asn 275 280
285Asp Glu Ser Val Thr Arg 29022524DNAArtificial
SequenceOligonucleotide 225tgaatgctac acagggagaa aatc
2422621DNAArtificial SequenceOligonucleotide
226tgaaagtaag acatcgtggc c
21227309DNAHomo sapiens 227atgaccacag ccacccctct gggggatacc accttcttct
cactgaacat gaccaccagg 60ggagaagact tcctgtataa gagttctgga gccattgttg
ctgccgttgt ggtggttgtc 120atcatcatct tcaccgtggt tctgatcctg ctgaagatgt
acaacaggaa aatgaggacg 180aggcgggaac tagagcccaa gggccccaag ccaaccgccc
cttctgccgt gggcccaaac 240agcaacggca gccaacaccc agcaactgtg accttcagtc
ctgttgacgt ccaggtggag 300acgcgatga
309228102PRTHomo sapiens 228Met Thr Thr Ala Thr
Pro Leu Gly Asp Thr Thr Phe Phe Ser Leu Asn1 5
10 15Met Thr Thr Arg Gly Glu Asp Phe Leu Tyr Lys
Ser Ser Gly Ala Ile 20 25
30Val Ala Ala Val Val Val Val Val Ile Ile Ile Phe Thr Val Val Leu
35 40 45Ile Leu Leu Lys Met Tyr Asn Arg
Lys Met Arg Thr Arg Arg Glu Leu 50 55
60Glu Pro Lys Gly Pro Lys Pro Thr Ala Pro Ser Ala Val Gly Pro Asn65
70 75 80Ser Asn Gly Ser Gln
His Pro Ala Thr Val Thr Phe Ser Pro Val Asp 85
90 95Val Gln Val Glu Thr Arg
10022919DNAArtificial SequenceOligonucleotide 229ggggatacca ccttcttct
1923018DNAArtificial
SequenceOligonucleotide 230agttgctggg tgttggct
182312510DNAHomo sapiens 231gactttttaa taatagtcgt
tctgactgat gtgaaatgga gtctctttgt ggttctgatt 60tgcatctctg atgatgcatg
atgttgacca gtttttaata tgtttgttga ctgcttgtat 120gtcttctttt aagaagtgtc
tgttcatatc ctttgccctt tcgcttctat gcaccaataa 180cacccaggct gagagtcaaa
ccaagaacac aatcctgact acagtagcca taaagaaaat 240gaaatacctg ggaatacacc
taatcaaaaa catgaaagca ctctctagag ggagaactac 300aaaacattgc tgaaagaaat
cagagatgat tctctgaaaa agaagtcaga ttagaaatga 360ttctctgaaa aagaaatcat
ctctgatttc tttcagcagt gtgttttttg tttgtttgtt 420tgttttgaga cagagtcttg
ctctgtcgcc aaggctggag ggcaatggca tgatttcagc 480tcactacaac ctcctgctcc
tgggttcgag cgattctcct acctcagcct cccgagtagc 540tgggattaca ggaggctgag
aaaatgttag aaattggggg agacaagttt cccttagaga 600gcaggaagtt actaagtagt
cctggaaaga acatcagttg cagatgtgac ccctctgaga 660ttaatatatc tgatgaaatg
cctaaaacta cagtttggaa agctctcagt atgaattctg 720gaaatgcaaa ggaaaagagt
ctcttcaact aagagtcttt gctgggatgg aagatttggg 780ccgtgtggtg cctcagggaa
gttctggtta cagagaaaat ggcgagtctc tcagagaaga 840agcaagacca agtctggccc
tgtccttggt catctcaaag ccatgccgaa gcattcagtt 900attcttggtg tgcattggaa
ggcatccagc tatccccata ccagcagcca gtcaccagat 960gtgaatgtgg aagcagaaga
ccacctcctg ttggttcttc tcctcttcct tctttttctc 1020tttagaacgg ccaccattga
agacctagct tcccattttc cagacgtttt ctctgaaatt 1080ctctgctggc ctgccaagcc
atatggattc attctgccac tgaggagtcc ttcagtgagg 1140tccctcttcc taaaggacag
agtggggagt aggaggggaa cagagaggac atcctctctg 1200gctctccagt gctcttagtg
tctacaggct cctaggcagc cctgggcctt ggtttgatta 1260cctcccctgg gggatgctgg
tcagacccag aggttgtcag gaggtcagct accaggaaga 1320tccatgatct gggcattggc
agtgcctgcc accacagcca ggaagatgcc tctgacctgg 1380gtgcatctcc atcactcctt
agcagcagcc tgcataactg gcaagaatct tggatgatac 1440aagagccaag aagggacatt
tgagttgtgt cgcttagata ggaaagggat ccagggaaaa 1500tcaacagtaa gtgaggatga
gcagtgtctc ttggttttca ttgaggatag agtaagagat 1560tgagtttaga ttgcaacaga
aggaattagt ttagatacca ggaagaactt cctagcctga 1620agatttgtca tagtgtctgc
tttctagata tctgggaaag atttgataat agttgtttgt 1680gaatagaaag gaggatatga
tgtttttatt ggccattttg cgggactctt cgacttcttg 1740ctgctgtctc ttgaggatac
attccaattc catcctggcg agatccaagt gcttacgtac 1800tgtctcctta gctgccttag
agtaaacgat catcagttca atggaccaaa atcaccttca 1860gccatgtggt ttcttcatca
tcatggattt cttttggttg acaaacattc tggctctcag 1920atgcaaaaag tcacactggg
aaatgaactg taagtggtga aattagtttt ggtatttaat 1980ttaaaactac atttatagtt
tttctcttct cttctatgtt gcaatgaatg taaagtattt 2040gggatccagt gcttataaac
ctttccttcc tttgtgcaca gaatgtaact agcaagccca 2100ttagcaccca gataattcta
tcatgttagt ttcccatcct ggaaaatctt tgtacagtgg 2160gaagttcccc gatgtgtttt
tctttcttag gtgaagggtt ggctatatca ctttattgaa 2220ttttgcattc cttagacttt
taaaatatac taatgtattc tagtcttact ctaaagacct 2280ttgatgttaa aggaatcctt
catttatttc atattcccta tctcataggg ccacaattat 2340tttaatacag agatgatttt
caaaatattt taacaactgg tacaggacag atgccagcca 2400ctcagaaggg atgcctgctg
taaacaagca gtatgtatgg ttgtaccaat gcctattggc 2460tgaacattat gctactttca
gatattaaaa tggtgttcct ttgaatcgtg 2510232164PRTHomo sapiens
232Met Gln Arg Lys Arg Val Ser Ser Thr Lys Ser Leu Cys Trp Asp Gly1
5 10 15Arg Phe Gly Pro Cys Gly
Ala Ser Gly Lys Phe Trp Leu Gln Arg Lys 20 25
30Trp Arg Val Ser Gln Arg Arg Ser Lys Thr Lys Ser Gly
Pro Val Leu 35 40 45Gly His Leu
Lys Ala Met Pro Lys His Ser Val Ile Leu Gly Val His 50
55 60Trp Lys Ala Ser Ser Tyr Pro His Thr Ser Ser Gln
Ser Pro Asp Val65 70 75
80Asn Val Glu Ala Glu Asp His Leu Leu Leu Val Leu Leu Leu Phe Leu
85 90 95Leu Phe Leu Phe Arg Thr
Ala Thr Ile Glu Asp Leu Ala Ser His Phe 100
105 110Pro Asp Val Phe Ser Glu Ile Leu Cys Trp Pro Ala
Lys Pro Tyr Gly 115 120 125Phe Ile
Leu Pro Leu Arg Ser Pro Ser Val Arg Ser Leu Phe Leu Lys 130
135 140Asp Arg Val Gly Ser Arg Arg Gly Thr Glu Arg
Thr Ser Ser Leu Ala145 150 155
160Leu Gln Cys Ser23320DNAArtificial SequenceOligonucleotide
233gaggctgaga aaatgttaga
2023418DNAArtificial SequenceOligonucleotide 234tccatcccag caaagact
182351977DNAHomo sapiens
235cgtgggcttg aggacctgga gagagtagat cctgaagaac tttttcagtc tgctgaagag
60cttggaagac tggagacaga aggcagagtc tcaggctctg aaggtataag gagtgtgagt
120tcctgtgaga aacactcatt tgattgtgaa aagacttgaa ttctatgcta agcagggttc
180caagtagcta aatgaatgat ctcagcaagt ctctcttgct gctgctgcta ctcgtttaca
240tttattgatt acttacgatg attcaggtac tgttgtaagt gctttacatg ctgttatacg
300agactcttgg gagaaatcac tttaatgaag cttgagacac atggcattgc catgcaatga
360tttttccccc ctcttcacgg gatcagaggg aactaataga atgtgacaat gattctttag
420cagggactgc tgaggcttct ggttcctttt taagatctgc agtgaaagaa gatgagaaac
480atggatatgc ccttcttttg gtccccctct tcctttattt gatctctact tccttctata
540aatatattag ggctacattg tccctttgta tttcaaacaa ggcaaaaaga ggttgtaatt
600acactttact gcaatcctca gtttctccag ggaacaggaa tgcaaaggct ttgaaggcct
660ctctatttgc tgacatggtc agctgggtgc catgggccaa gtccttctgt tgccctcctc
720tgtcaccaag taagctaggt cctttctgag gctcaggttt gctgtgatga tgatcacttt
780taggcagaag gttagaggcc tcatgagtgc tatatggact ttattaggct ttagatttga
840tggggaataa gggatgtgat ttgtcttttg ggaactcatc tttgattcat cattgtctct
900tggtatcttg gaatttccat gtcattacag tctacagaat gaaagagtaa cctgtcccag
960aggagaggca ggtgaaagac tccacagcat gctcattctc attctgtctt ctcagtgaca
1020ccgaggttta ctgagtgccc actatgtgcc aagcactgtg ctcagggctt tctttgtatg
1080catgatctca gtgaatctca ccaagcctca tctggaaaac ggggacaaat taacaacagg
1140atggcaaatt gaaaaacacg taaccatgtt ctacagatgg aaaggggtgc ttggttatta
1200tgaaggcccc ctcgcaagcg tgtgggacat gggtgtgttc tctgggttgt actgatcaga
1260tcaaggacct cccccaccct tctcacactc tgcccacttc cgccctttgc ttatcagacc
1320cttagccagt gactcattcc agaaccagaa ccttggtgaa atctcaaccg acaccagaga
1380tcggtgtctt cagtcctaga ctgatggaga aaatccagaa tatatactag aagctccaaa
1440tgctctgggt ttcagctcct ctgtgctgtg gacactgact ttggctcaga actccgattt
1500agtacaaaag gctcattttt atttcagggg cactcttcct aaagcaaacc taataaatga
1560aatatggaat tcacagatac acacacacat taaaaaatta acctagtgta tctgtgagga
1620gtaggcagaa attcactgta taaaagaatg cttcatttca tagagaattt gtgttaagat
1680tccattagat agtacatttc tcaaagattt ttgaggttgt atttgcttta ccaaaacttg
1740gtttatgtaa gtggaaaaag catgttgcaa aataacttgg tgtctatgat tcagtttatg
1800taaaataata aatgtatgta ggaatacgtg tgttgaaaga tgtacatcaa tttgctaaca
1860atggttatct ctgacgtggt gggatttgag atgtgttttt ctttttggtt gtatttttct
1920ctattgtttg acttaacaca gaacatgttt ggttacaaca ataaagttat tgaagac
1977236130PRTHomo sapiens 236Met Ile Phe Pro Pro Ser Ser Arg Asp Gln Arg
Glu Leu Ile Glu Cys1 5 10
15Asp Asn Asp Ser Leu Ala Gly Thr Ala Glu Ala Ser Gly Ser Phe Leu
20 25 30Arg Ser Ala Val Lys Glu Asp
Glu Lys His Gly Tyr Ala Leu Leu Leu 35 40
45Val Pro Leu Phe Leu Tyr Leu Ile Ser Thr Ser Phe Tyr Lys Tyr
Ile 50 55 60Arg Ala Thr Leu Ser Leu
Cys Ile Ser Asn Lys Ala Lys Arg Gly Cys65 70
75 80Asn Tyr Thr Leu Leu Gln Ser Ser Val Ser Pro
Gly Asn Arg Asn Ala 85 90
95Lys Ala Leu Lys Ala Ser Leu Phe Ala Asp Met Val Ser Trp Val Pro
100 105 110Trp Ala Lys Ser Phe Cys
Cys Pro Pro Leu Ser Pro Ser Lys Leu Gly 115 120
125Pro Phe 13023718DNAArtificial SequenceOligonucleotide
237atgattcttt agcaggga
1823818DNAArtificial SequenceOligonucleotide 238ctctttttgc cttgtttg
182391293DNAHomo sapiens
239aggccgaggg gttcggcgac gcggagggag ggagagtctg ggccgcgcgg gagccgcagg
60gcgccctagc cttcgcagaa acgatggcgg aggaagaagg accacctgta gagctgcgcc
120aaagaaaaaa gccaaagtct tcagaaaata aggaatctgc caaagaagag aaaatcagtg
180acattccaat tcctgaaaga gctccaaaac atgtattatt tcaacgcttt gcaaagattt
240tcattggctg tcttgcagcg gttactagtg gtatgatgta tgctctctac ttatcagcat
300accatgaacg gaaattctgg ttttccaaca ggcaggagct tgaacgggaa atcacgtttc
360agggtgacag tgccatttat tactcctatt ataaagatat gttaaaggca ccttcatttg
420aaagaggtgt ttacgaactg acacacaata acaaaactgt atctctgaag actataaatg
480cagtgcagca aatgtctctg tatccggaac ttattgctag cattttatat caagccactg
540gtagcaatga gattattgag ccagtgtatt tctatattgg cattgttttt ggattgcaag
600gaatatatgt tactgcttta tttgttacaa gttggcttat gagtggaaca tggctagcag
660gaatgcttac tgttgcgtgg ttcgttatta acagttgcac agacccctgg tacagtgtgg
720gaggtgacaa cacaggatat taataccagg aggcaggaat cattgggacc gtcttggagg
780ctggctacca cattcaatta actttgctat taatttcatg taatccctat atctgtcttc
840atatttgaag aggaaaagat actttctcat gtaaacataa tggttttaaa gaataagact
900ctcttatgct acttaaacaa aagaataaga ctctctttag agatcttagt gagaattgta
960agaaataaaa taaacagaag tctgactgcc ttatttgatg tcactgatgt atgttgtatt
1020gctggagtag aagttaaata gaaaaattga cctggtatat tctactcaaa tgtatctttt
1080gacaattgaa atgttcttaa tagctaagtt ttaaaaaatg cgtttgtttg ctttttgttt
1140atattttatt ggtatgtatc ttgtactgca aaatacattt taatgccatg aaagaatatg
1200ctgtctcttt attcatcagc tttatagctt ttatttatat atgacttctt agaaaagtat
1260aaaaagatat taaagtcatt ccattatatt atg
1293240219PRTHomo sapiens 240Met Ala Glu Glu Glu Gly Pro Pro Val Glu Leu
Arg Gln Arg Lys Lys1 5 10
15Pro Lys Ser Ser Glu Asn Lys Glu Ser Ala Lys Glu Glu Lys Ile Ser
20 25 30Asp Ile Pro Ile Pro Glu Arg
Ala Pro Lys His Val Leu Phe Gln Arg 35 40
45Phe Ala Lys Ile Phe Ile Gly Cys Leu Ala Ala Val Thr Ser Gly
Met 50 55 60Met Tyr Ala Leu Tyr Leu
Ser Ala Tyr His Glu Arg Lys Phe Trp Phe65 70
75 80Ser Asn Arg Gln Glu Leu Glu Arg Glu Ile Thr
Phe Gln Gly Asp Ser 85 90
95Ala Ile Tyr Tyr Ser Tyr Tyr Lys Asp Met Leu Lys Ala Pro Ser Phe
100 105 110Glu Arg Gly Val Tyr Glu
Leu Thr His Asn Asn Lys Thr Val Ser Leu 115 120
125Lys Thr Ile Asn Ala Val Gln Gln Met Ser Leu Tyr Pro Glu
Leu Ile 130 135 140Ala Ser Ile Leu Tyr
Gln Ala Thr Gly Ser Asn Glu Ile Ile Glu Pro145 150
155 160Val Tyr Phe Tyr Ile Gly Ile Val Phe Gly
Leu Gln Gly Ile Tyr Val 165 170
175Thr Ala Leu Phe Val Thr Ser Trp Leu Met Ser Gly Thr Trp Leu Ala
180 185 190Gly Met Leu Thr Val
Ala Trp Phe Val Ile Asn Ser Cys Thr Asp Pro 195
200 205Trp Tyr Ser Val Gly Gly Asp Asn Thr Gly Tyr 210
21524119DNAArtificial SequenceOligonucleotide
241accgctgcaa gacagccaa
1924220DNAArtificial SequenceOligonucleotide 242gcagaaacga tggcggagga
202431291DNAHomo sapiens
243atcatgtatt ccattgccac tggaggcttg gttttgatgg cagtgtttta tacacagaaa
60gacagctgca tggaaaacaa aattctgctg ggagtaaatg gaggcctgtg cctgcttata
120tcattggtag ccatctcacc ctgggtccaa aatcgacagc cacactcggg gctcttacaa
180tcaggggtca taagctgcta tgtcacctac ctcaccttct cagctctgtc cagcaaacct
240gcagaagtag ttctagatga acatgggaaa aatgttacaa tctgtgtgcc tgactttggt
300caagacctgt acagagatga aaacttggtg actatactgg ggaccagcct cttaatcgga
360tgtatcttgt attcatgttt gacatcaaca acaagatcga gttctgacgc tctgcagggg
420cgatacgcag ctcctgaatt ggagatagct cgctgttgtt tttgcttcag tcctggtgga
480gaggacactg aagagcagca gccggggaag gagggaccac gggtcattta tgacgagaag
540aaaggcaccg tctacatcta ctcctacttc cacttcgtgt tcttcctagc ttccctgtat
600gtgatgatga ccgtcaccaa ctggttcaac tacgaaagtg ccaacatcga gagcttcttc
660agcgggagct ggtccatctt ctgggtcaag atggcctcct gctggatatg cgtgctgttg
720tacctgtgta cgctggtcgc tcccctctgc tgccccaccc gggagttctc tgtgtgatga
780tatcggcggt cccctgggct ttgtgggcct acagcctgga aagtgccatc ttttgaacag
840tgtccccggg gcagggactg gcgccctgtg cctgagtggg tctgaaaaag ctttgagaga
900gaaaaaaaaa aatctcctga ttagcttttt acttttgaaa ttcaaaaaga aactaccagt
960ttgtcccaaa ggaattgaaa ttttcaacca aactgatcat ggttgaaata tcttacccct
1020aggaactgga taccagttat gttgacttcc ttctgcatgt ttttgccaaa acagaatttg
1080gggcacagca tcttttcaca gggataaaaa tatcttgtgg ggccagtcat tctcatcctc
1140ggaatagaaa aacatgccaa aatcttgagt ccccagcgcc taacagaatc cagacccctc
1200tcactcactt ccgcctctta gagccttgtc cccagggggc tttgaggaca ggactcagcc
1260tgcagggccc ctggtattta tagggtccaa g
1291244257PRTHomo sapiens 244Met Tyr Ser Ile Ala Thr Gly Gly Leu Val Leu
Met Ala Val Phe Tyr1 5 10
15Thr Gln Lys Asp Ser Cys Met Glu Asn Lys Ile Leu Leu Gly Val Asn
20 25 30Gly Gly Leu Cys Leu Leu Ile
Ser Leu Val Ala Ile Ser Pro Trp Val 35 40
45Gln Asn Arg Gln Pro His Ser Gly Leu Leu Gln Ser Gly Val Ile
Ser 50 55 60Cys Tyr Val Thr Tyr Leu
Thr Phe Ser Ala Leu Ser Ser Lys Pro Ala65 70
75 80Glu Val Val Leu Asp Glu His Gly Lys Asn Val
Thr Ile Cys Val Pro 85 90
95Asp Phe Gly Gln Asp Leu Tyr Arg Asp Glu Asn Leu Val Thr Ile Leu
100 105 110Gly Thr Ser Leu Leu Ile
Gly Cys Ile Leu Tyr Ser Cys Leu Thr Ser 115 120
125Thr Thr Arg Ser Ser Ser Asp Ala Leu Gln Gly Arg Tyr Ala
Ala Pro 130 135 140Glu Leu Glu Ile Ala
Arg Cys Cys Phe Cys Phe Ser Pro Gly Gly Glu145 150
155 160Asp Thr Glu Glu Gln Gln Pro Gly Lys Glu
Gly Pro Arg Val Ile Tyr 165 170
175Asp Glu Lys Lys Gly Thr Val Tyr Ile Tyr Ser Tyr Phe His Phe Val
180 185 190Phe Phe Leu Ala Ser
Leu Tyr Val Met Met Thr Val Thr Asn Trp Phe 195
200 205Asn Tyr Glu Ser Ala Asn Ile Glu Ser Phe Phe Ser
Gly Ser Trp Ser 210 215 220Ile Phe Trp
Val Lys Met Ala Ser Cys Trp Ile Cys Val Leu Leu Tyr225
230 235 240Leu Cys Thr Leu Val Ala Pro
Leu Cys Cys Pro Thr Arg Glu Phe Ser 245
250 255Val24518DNAArtificial SequenceOligonucleotide
245agtcaggcac acagattg
1824618DNAArtificial SequenceOligonucleotide 246ttctgctggg agtaaatg
182472412DNAHomo sapiens
247gaacccaggc atcctgggct ccagctgaaa ccattgcatg tggctttccc catccctggc
60cccgtgactc agtccctctg aagggagcag ccctcttttt tggcaatcac cagggaggtg
120gggggaggag gaggggagct aggtggtgac atcacagtcg aaggttataa aagcttccag
180ccaaacggca ttgaagttga agatacaacc tgacagcaca gcctgagatc ttggggatcc
240ctcagcctaa cacccacaga cgtcagctgg tggattcccg ctgcatcaag gcctacccac
300tgtctccatg ctgggctctc cctgccttct gtggctcctg gccgtgacct tcttggttcc
360cagagctcag cccttggccc ctcaagactt tgaagaagag gaggcagatg agactgagac
420ggcgtggccg cctttgccgg ctgtcccctg cgactacgac cactgccgac acctgcaggt
480gccctgcaag gagctacaga gggtcgggcc ggcggcctgc ctgtgcccag gactctccag
540ccccgcccag ccgcccgacc cgccgcgcat gggagaagtg cgcattgcgg ccgaagaggg
600ccgcgcagtg gtccactggt gtgccccctt ctccccggtc ctccactact ggctgctgct
660ttgggacggc agcgaggctg cgcagaaggg gcccccgctg aacgctacgg tccgcagagc
720cgaactgaag gggctgaagc cagggggcat ttatgtcgtt tgcgtagtgg ccgctaacga
780ggccggggca agccgcgtgc cccaggctgg aggagagggc ctcgaggggg ccgacatccc
840tgccttcggg ccttgcagcc gccttgcggt gccgcccaac ccccgcactc tggtccacgc
900ggccgtcggg gtgggcacgg ccctggccct gctaagctgt gccgccctgg tgtggcactt
960ctgcctgcgc gatcgctggg gctgcccgcg ccgagccgcc gcccgagccg caggggcgct
1020ctgaaagggg cctgggggca tctcgggcac agacagcccc acctggggcg ctcagcctgg
1080cccccgggaa agaggaaaac ccgctgcctc cagggagggc tggacggcga gctgggagcc
1140agccccaggc tccagggcca cggcggagtc atggttctca ggactgagcg cttgtttagg
1200tccggtactt ggcgctttgt ttcctggctg aggtctggga aggaatagaa aggggccccc
1260aatttttttt taagcggcca gataataaat aatgtaacct ttgcggttta agaggataaa
1320atggaggata ttattatgtg ggtatttata tgacctttgt aaccatttaa aaatgtaaaa
1380acgacctgac ttagtaatgc gaacctatag tagcagctac tccagaggct gaaatgggag
1440gatctcttga gcccaggagt tggagtccag tccagccagg gcaacacagc cagacgccct
1500tgttttttat tttgttttgt tttggttttt tgttttttga ggagtttccc tctgtcacac
1560aagctggagg gcaatggcgc catctcagct cactgcaacg tccacctcct gggttcaagc
1620gattctcctg cctcagcatc ctaattagtt gggattacag gcgcccacca ccatgcccgg
1680ctaatttttg tgttttttta gtagagacgg ggtttcacca tgttgtcagg ctggtctcaa
1740actcctgacc tcaggtactc cacccgcctt ggtctctcaa agtgctggga ttacaggcat
1800aagccactgt gcccaggcag acccccttct ttaaagatgt aaaacccggc cgggcgcggt
1860ggctcacgcc tgtaatccca gcactttggg aggctgaggc gggcagatca cgaagtcagg
1920agatcgagac catcctggct aacacggtga aaccccgtct ctactaaaaa tacaaaaatt
1980agccgggcat ggtggtgggt acctgtagtc ccagctactc cggaggctga ggcaggagaa
2040tggcgtgaac ccgggaggcg gatcttgcag tgagcggaga ttgcaccact gcactccagc
2100ctgggtgaca gagcaagact ccctctcaaa agaaaaagaa aaaagatgta aaaaccattc
2160ttagtttgtg ggccttacaa atcaggccac tggcccattg cttgtagtta gttgatccat
2220gtcatgcacc ctaaaaatgg ctctgtcact gtgagtggct tcagtaggat tttgagaata
2280agtttatatt cttgctaggt aaaacaaaac aaaaacgaca gtaataccaa ggaatctccc
2340ccccctttta ccctccattt gtgtttattg catatccact ataacaacat taaaggacct
2400ttaaaaggaa gt
2412248238PRTHomo sapiens 248Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu
Ala Val Thr Phe Leu1 5 10
15Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu Glu Glu
20 25 30Ala Asp Glu Thr Glu Thr Ala
Trp Pro Pro Leu Pro Ala Val Pro Cys 35 40
45Asp Tyr Asp His Cys Arg His Leu Gln Val Pro Cys Lys Glu Leu
Gln 50 55 60Arg Val Gly Pro Ala Ala
Cys Leu Cys Pro Gly Leu Ser Ser Pro Ala65 70
75 80Gln Pro Pro Asp Pro Pro Arg Met Gly Glu Val
Arg Ile Ala Ala Glu 85 90
95Glu Gly Arg Ala Val Val His Trp Cys Ala Pro Phe Ser Pro Val Leu
100 105 110His Tyr Trp Leu Leu Leu
Trp Asp Gly Ser Glu Ala Ala Gln Lys Gly 115 120
125Pro Pro Leu Asn Ala Thr Val Arg Arg Ala Glu Leu Lys Gly
Leu Lys 130 135 140Pro Gly Gly Ile Tyr
Val Val Cys Val Val Ala Ala Asn Glu Ala Gly145 150
155 160Ala Ser Arg Val Pro Gln Ala Gly Gly Glu
Gly Leu Glu Gly Ala Asp 165 170
175Ile Pro Ala Phe Gly Pro Cys Ser Arg Leu Ala Val Pro Pro Asn Pro
180 185 190Arg Thr Leu Val His
Ala Ala Val Gly Val Gly Thr Ala Leu Ala Leu 195
200 205Leu Ser Cys Ala Ala Leu Val Trp His Phe Cys Leu
Arg Asp Arg Trp 210 215 220Gly Cys Pro
Arg Arg Ala Ala Ala Arg Ala Ala Gly Ala Leu225 230
23524918DNAArtificial SequenceOligonucleotide 249atccctcagc
ctaacacc
1825018DNAArtificial SequenceOligonucleotide 250gccgtctcag tctcatct
182511024DNAHomo sapiens
251gagcgccagg ggttccagct gcacgtccca ggctctccag cgcgcggcag gccggggcgg
60gacgaggaga gctgcgggga caacgcctgt ggctgggtcc ggaggtgcgg gtgcggcgcg
120ggacaagcgg gcagcatgct cagggcggtc gggagcctac tgcgccttgg ccgcgggcta
180acagtccgct gcggccccgg ggcgcctctc gaggccacgc gacggcccgc accggctctt
240ccgccccggg gtctcccctg ctactccagc ggcggggccc ccagcaattc tgggccccaa
300ggtcacgggg agattcaccg agtccccacg cagcgcaggc cttcgcagtt cgacaagaaa
360atcctgctgt ggacagggcg tttcaaatcg atggaggaga tcccgcctcg gatcccgcca
420gaaatgatag acaccgcaag aaacaaagct cgagtgaaag cttgttacat aatgattgga
480ctcacaatta tcgcctgctt tgctgtgata gtgtcagcca aaagggctgt agaacgacat
540gaatccttaa caagttggaa cttggcaaag aaagctaagt ggcgtgaaga agctgcattg
600gctgcacagg ctaaagctaa atgatattct aagtgacaaa gtgttcacct gaataccatc
660cctgtcatca gcaacagtag aagatgggaa aaatagaata tttaccaaaa tatctgccat
720ggttttattt tggtaacaag aagcacaatg tcttttttat ttttattttt tagtaaactt
780ttactgaagt ataccatgca ttcaaaaagt ggacaaaact gtatacagtc tgatagatat
840ttatgtcgtg aacacctgtg taaccactgc caaagtgaag atgtagaata ttggcaacac
900ttcacagcct cattcctgcc ttttctcagc cattacctcc caaacatagc agtttttctg
960agtttcatca cctttgattc attttgcctg tttttgaact ttatataaat ggatttatac
1020atta
1024252162PRTHomo sapiens 252Met Leu Arg Ala Val Gly Ser Leu Leu Arg Leu
Gly Arg Gly Leu Thr1 5 10
15Val Arg Cys Gly Pro Gly Ala Pro Leu Glu Ala Thr Arg Arg Pro Ala
20 25 30Pro Ala Leu Pro Pro Arg Gly
Leu Pro Cys Tyr Ser Ser Gly Gly Ala 35 40
45Pro Ser Asn Ser Gly Pro Gln Gly His Gly Glu Ile His Arg Val
Pro 50 55 60Thr Gln Arg Arg Pro Ser
Gln Phe Asp Lys Lys Ile Leu Leu Trp Thr65 70
75 80Gly Arg Phe Lys Ser Met Glu Glu Ile Pro Pro
Arg Ile Pro Pro Glu 85 90
95Met Ile Asp Thr Ala Arg Asn Lys Ala Arg Val Lys Ala Cys Tyr Ile
100 105 110Met Ile Gly Leu Thr Ile
Ile Ala Cys Phe Ala Val Ile Val Ser Ala 115 120
125Lys Arg Ala Val Glu Arg His Glu Ser Leu Thr Ser Trp Asn
Leu Ala 130 135 140Lys Lys Ala Lys Trp
Arg Glu Glu Ala Ala Leu Ala Ala Gln Ala Lys145 150
155 160Ala Lys25319DNAArtificial
SequenceOligonucleotide 253attatcgcct gctttgctg
1925422DNAArtificial SequenceOligonucleotide
254ttcccatctt ctactgttgc tg
22255852DNAHomo sapiens 255ttagggcgag tttaaggcac tgtggcagct gtgagataaa
gtctggttcc tccccagctg 60gctcaggaaa tgttcgcgga tacaacggcg gccccctctg
ggcatacctg cctgtggagc 120ggagagtgga cggtgtgagg gggaccggga gaggcaccaa
atctggcctg ggggcccgag 180aagcttcctc tcagtgacca caatatgaat gggaacagca
agatggcaaa agcttgctga 240gtggtacagc gccagcctgg gtagtggcct ccccagcaag
ttgcatgtca ctagcttcct 300gtggctgtca ctcctgggcc caggcacctc cgaagatcag
cacctcctca tgggctcaag 360cgaggacagg agcccgtcac ccatgagctc tcaagggcag
agccactgtc ctgtctcgat 420ggctccaccg tgactccagt ggactttgga cagtggggag
caggcccaac agggccactc 480ggatgtggtc actctggatt tgggtggatc agcaccaagc
tagactcatc cccagccccc 540aggtgctgtt gctgctcctg cgtgaggccc catccacagc
tgcagctgtg gcagggtggc 600tagtggtggc cagcatggcc ctgctgcagc tccacgctgt
ggggggcgtg gccctgacca 660gcagccaccc ctccatgtgg gccacagggg aggagcttag
gaagccgcct tggcaaggtt 720ccgcaggctc tgcgtctggt gtggaagagc tcacggggaa
gcactcctgc ccaggacccg 780aggagccggc caccgttcag aaggccccag cttgaaggcc
tggagagccg cccagcagca 840caacacaggg aa
852256110PRTHomo sapiens 256Met Trp Ser Leu Trp
Ile Trp Val Asp Gln His Gln Ala Arg Leu Ile1 5
10 15Pro Ser Pro Gln Val Leu Leu Leu Leu Leu Arg
Glu Ala Pro Ser Thr 20 25
30Ala Ala Ala Val Ala Gly Trp Leu Val Val Ala Ser Met Ala Leu Leu
35 40 45Gln Leu His Ala Val Gly Gly Val
Ala Leu Thr Ser Ser His Pro Ser 50 55
60Met Trp Ala Thr Gly Glu Glu Leu Arg Lys Pro Pro Trp Gln Gly Ser65
70 75 80Ala Gly Ser Ala Ser
Gly Val Glu Glu Leu Thr Gly Lys His Ser Cys 85
90 95Pro Gly Pro Glu Glu Pro Ala Thr Val Gln Lys
Ala Pro Ala 100 105
11025718DNAArtificial SequenceOligonucleotide 257ttgctgttcc cattcata
1825819DNAArtificial
SequenceOligonucleotide 258gataaagtct ggttcctcc
192594231DNAHomo sapiens 259gcggccgcct ttgcaaggtt
gctggacaga tggaactgga agggcagccg tctgccgccc 60acgaacacct tctcaagcac
tttgagtgac cacggcttgc aagctggtgg ctggcccccc 120gagtcccggg ctctgaggca
cggccgtcga cttaagcgtt gcatcctgtt acctggagac 180cctctgagct ctcacctgct
acttctgccg ctgcttctgc acagagcccg ggcgaggacc 240cctccaggat gcaggtcccg
aacagcaccg gcccggacaa cgcgacgctg cagatgctgc 300ggaacccggc gatcgcggtg
gccctgcccg tggtgtactc gctggtggcg gcggtcagca 360tcccgggcaa cctcttctct
ctgtgggtgc tgtgccggcg catggggccc agatccccgt 420cggtcatctt catgatcaac
ctgagcgtca cggacctgat gctggccagc gtgttgcctt 480tccaaatcta ctaccattgc
aaccgccacc actgggtatt cggggtgctg ctttgcaacg 540tggtgaccgt ggccttttac
gcaaacatgt attccagcat cctcaccatg acctgtatca 600gcgtggagcg cttcctgggg
gtcctgtacc cgctcagctc caagcgctgg cgccgccgtc 660gttacgcggt ggccgcgtgt
gcagggacct ggctgctgct cctgaccgcc ctgtccccgc 720tggcgcgcac cgatctcacc
tacccggtgc acgccctggg catcatcacc tgcttcgacg 780tcctcaagtg gacgatgctc
cccagcgtgg ccatgtgggc cgtgttcctc ttcaccatct 840tcatcctgct gttcctcatc
ccgttcgtga tcaccgtggc ttgttacacg gccaccatcc 900tcaagctgtt gcgcacggag
gaggcgcacg gccgggagca gcggaggcgc gcggtgggcc 960tggccgcggt ggtcttgctg
gcctttgtca cctgcttcgc ccccaacaac ttcgtgctcc 1020tggcgcacat cgtgagccgc
ctgttctacg gcaagagcta ctaccacgtg tacaagctca 1080cgctgtgtct cagctgcctc
aacaactgtc tggacccgtt tgtttattac tttgcgtccc 1140gggaattcca gctgcgcctg
cgggaatatt tgggctgccg ccgggtgccc agagacaccc 1200tggacacgcg ccgcgagagc
ctcttctccg ccaggaccac gtccgtgcgc tccgaggccg 1260gtgcgcaccc tgaagggatg
gagggagcca ccaggcccgg cctccagagg caggagagtg 1320tgttctgagt cccgggggcg
cagcttggag agccgggggc gcagcttgga gatccagggg 1380cgcatggaga ggccacggtg
ccagaggttc agggagaaca gctgcgttgc tcccaggcac 1440tgcagaggcc cggtggggaa
gggtctccag gctttattcc tcccaggcac tgcagaggca 1500ccggtgagga agggtctcca
ggcttcactc agggtagaga aacaagcaaa gcccagcagc 1560gcacagggtg cttgttatcc
tgcagagggt gcctctgcct ctctgtgtca ggggacagct 1620tgtgtcacca cgcccggcta
atttttgtat tttttttagt agagctgggc tgtcaccccc 1680gagctcctta gacactcctc
acacctgtcc atacccgagg gtggatattc aaccagcccc 1740accgcctacc cgactcggtt
tctggatatc ctccgtgggc gaactgcgag ccccattccc 1800agctcttctc cctgctgaca
tcgtccctta gttgtggttc tggccttctc cattctcctc 1860caggggttct ggtctccgta
gcccggtgca cgccgaaatt tctgtttatt tcactcaggg 1920gcactgtggt tgctgtggtt
ggaattcttc tttcagagga gcgcctgggg ctcctgcaag 1980tcagctactc tccgtgccca
cttcccccca cacacacacc ccaccctgtt gctgaccaag 2040gtgatttttg gcacatttgt
tctggcctgg cttggtggga ccccacccct attctgcttc 2100tgtgagtccc tgatagagaa
ggaggtccca tcaggcccct ggaacacact caggcttccc 2160tgactcagga caaggaccac
gggaggccca ggtgcggaaa ggaggctccg tgagatgggg 2220tccagcccat cccaacacaa
gggtgcagct tgattcggga gttccccacc tcctgcccat 2280tctccgcgtc cttttacccc
atggagagcc tcagccatgg caagtccatc tggagtccag 2340gaagcaggca actggcctga
cccatgagac cgtttggaga ccaagcagca gatgcaggtg 2400tggaccccag gaacctacag
gggtgtcagc cgctgagccc cctccctgct gtgtgggtgg 2460tgagcaggct gggtctttgt
ctgtcttctt ctacacggca tgtgcctgca ccagccccaa 2520cacctgagct ggtttagcgc
aaagaagagc tctgactctc caggggtgct gggacatcac 2580gtggaattgg atcccaggct
ctcttgggcg agaaagacca ttctggaggt gggagtggga 2640gagctgcctg tctgcccacg
ggctctgcgt ctccgcagtg ggtggccttg gatgcccggc 2700ccctcccttt ctgtgcactg
gggacgctga tggaggctga agctgctgtt cggaggccct 2760ctattggtgc ctctctcctg
ccgtcatcac tatggcagga aaacagagat ggtttagtaa 2820tgaattatca ttcccaaacc
cgtgtccacc tggaacatca ggatgggacc atgtttgaaa 2880atcgggtctt tccaaatgta
attaagtaag gcgaggccat actgcattta caatgggccc 2940aatccagtgt ccctatgaga
gacggaagag gagacacaga cacaaagcag gaggccacat 3000aaagacagag gcagagactg
aagtgatgct gccccaagcc cagggatgcc tggagtcccc 3060aggagctggg agaggcagga
aggaccctcc cctagagtct ctggagggaa ctggatacaa 3120ttgcagagtg cactaaacag
ttgccccaga aagacatgtc ttgttttaaa gcccagaacc 3180tgaaattatt atagatttta
ttcggtaata aggaactttg catgtgtaat tacttaagga 3240tatgaagatg agattgtgct
ggattattaa gcaccctaaa tgccatgaca ggtgtccttc 3300caagagacag aagaggagac
acagacacag agcaggagga cacgtggaga cagaggcaga 3360ctggagtgat gcggccacaa
gcccagggac acctggagcc cccaggagct gggagaggca 3420ggaaggatcc tcccctagag
cctccagggg gaactggagg atgcgtaaga gacccagaac 3480ttccacagaa ggaggaaaat
taacctcctg cttctctaga ctgttccaaa gctgaaccct 3540agaaagcaaa gctgatacag
aagcatccag gctgcaggag tacaggtcgc aagtgctgag 3600cgtgggcctt gggtgtgtct
catgggggaa aaaaaactgt gaaaaacctc agagtagcat 3660cttcacagta acgcacggac
gatccctaaa ctgccttgta aacaaaaatg agagcttgag 3720tcagaggaag ccgagacaat
atccttcctc gacaacgtgc gagaaccctg acgtccccca 3780gcaaaggaag acgttgcaag
caggcaaaat gcgtcgattt tttttttttg tcagtatgat 3840gatttttgca gccacttggc
tatggagagc agccgacacc ccctcttaca gccgtggatg 3900tttcctggaa gctgactcag
tctgttcact ggttgagctt tgagtgaaaa gataacacag 3960gtctattgac tcacacacat
gttttaagat ggaaaacttt acttctgttc ttggcaggac 4020atggagagag ggagggattc
caaaaagtct cagcctccat caaggcgtgg cagctcatgc 4080cggtaatctc agcactttgg
gaggctcagg cgggaggact gattgagtcc gggtgttcaa 4140gggccaacct aggcaacaca
gtgagaactc atctctgtaa aaaataaaaa taaaacatta 4200aaaaaaaaca tgagctttga
agtgcacagg g 4231260359PRTHomo sapiens
260Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met1
5 10 15Leu Arg Asn Pro Ala Ile
Ala Val Ala Leu Pro Val Val Tyr Ser Leu 20 25
30Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu
Trp Val Leu 35 40 45Cys Arg Arg
Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn 50
55 60Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu
Pro Phe Gln Ile65 70 75
80Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys
85 90 95Asn Val Val Thr Val Ala
Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu 100
105 110Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly
Val Leu Tyr Pro 115 120 125Leu Ser
Ser Lys Arg Trp Arg Arg Arg Arg Tyr Ala Val Ala Ala Cys 130
135 140Ala Gly Thr Trp Leu Leu Leu Leu Thr Ala Leu
Ser Pro Leu Ala Arg145 150 155
160Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe
165 170 175Asp Val Leu Lys
Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val 180
185 190Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu
Ile Pro Phe Val Ile 195 200 205Thr
Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu 210
215 220Glu Ala His Gly Arg Glu Gln Arg Arg Arg
Ala Val Gly Leu Ala Ala225 230 235
240Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe
Val 245 250 255Leu Leu Ala
His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr 260
265 270His Val Tyr Lys Leu Thr Leu Cys Leu Ser
Cys Leu Asn Asn Cys Leu 275 280
285Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu 290
295 300Arg Glu Tyr Leu Gly Cys Arg Arg
Val Pro Arg Asp Thr Leu Asp Thr305 310
315 320Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser
Val Arg Ser Glu 325 330
335Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu
340 345 350Gln Arg Gln Glu Ser Val
Phe 35526119DNAArtificial SequenceOligonucleotide 261cctgttacct
ggagaccct
1926218DNAArtificial SequenceOligonucleotide 262accagcgagt acaccacg
18263717DNAHomo sapiens
263ggccgggctg gggcttcagc gggaggcagc agaggggaag tggtcagcgt ggcgaatgac
60ggaagaaact cgcattgtct actggatcaa ggacagacag ctcaccaacc gtgacagcac
120catactggaa cttcaaaaag ttctgaaaac atgttgtgct cagagcatga aaattttctg
180ctgtctttgg aactttgtct acaaacagtt agaagatgca gcccaagggc tcaccatggg
240tggcgatgtt gaagaacatg aagaccttac tgctgatagc accatcttca aatttgtgga
300agcttataca gagtgggagg tgaagaggtg gtcagacaac aatctgataa tgaaacaaac
360aaatgtgaag agaagacgct tagatgatgt tggccctgaa ttggaaaagg ctgtctggga
420gctcggctgc ccacccagca ttcagtgtct gctacctcct gtctgttatg cttgtgtctg
480gttttttcaa gttttaattt tttttttaat tcttagtttt tgtgggtaca tagtaggtgt
540atatatttat gggttacatg agatgttttg atacaggcat gcaatatgta ataatcacct
600catggagaat ggggtaccca tcacatcaag catttatcct ttgtgttaca aacggtccag
660ttagactctt ttagttatta ttaaaatgta caattaaatt atttttgact atagtca
717264171PRTHomo sapiens 264Met Thr Glu Glu Thr Arg Ile Val Tyr Trp Ile
Lys Asp Arg Gln Leu1 5 10
15Thr Asn Arg Asp Ser Thr Ile Leu Glu Leu Gln Lys Val Leu Lys Thr
20 25 30Cys Cys Ala Gln Ser Met Lys
Ile Phe Cys Cys Leu Trp Asn Phe Val 35 40
45Tyr Lys Gln Leu Glu Asp Ala Ala Gln Gly Leu Thr Met Gly Gly
Asp 50 55 60Val Glu Glu His Glu Asp
Leu Thr Ala Asp Ser Thr Ile Phe Lys Phe65 70
75 80Val Glu Ala Tyr Thr Glu Trp Glu Val Lys Arg
Trp Ser Asp Asn Asn 85 90
95Leu Ile Met Lys Gln Thr Asn Val Lys Arg Arg Arg Leu Asp Asp Val
100 105 110Gly Pro Glu Leu Glu Lys
Ala Val Trp Glu Leu Gly Cys Pro Pro Ser 115 120
125Ile Gln Cys Leu Leu Pro Pro Val Cys Tyr Ala Cys Val Trp
Phe Phe 130 135 140Gln Val Leu Ile Phe
Phe Leu Ile Leu Ser Phe Cys Gly Tyr Ile Val145 150
155 160Gly Val Tyr Ile Tyr Gly Leu His Glu Met
Phe 165 17026518DNAArtificial
SequenceOligonucleotide 265ttcaacatcg ccacccat
1826620DNAArtificial SequenceOligonucleotide
266cagcagaggg gaagtggtca
20267390DNAHomo sapiens 267atggaagtga tattaccaga caaacctcag gtagatgcac
tggcctttct agctgctgtc 60accatgctgt ggataacgct gcccatgagt ccttttgcag
aagcagagaa attggcatgg 120gatctggagg ttggaggttt agctggacag ccccttaaag
ttttcactcc acgtaaaaaa 180ggttctgggg aagtgggtga tgcttctcag tcgcccagca
gaagcaatga tggccagcat 240tcctgcattg gccacagcag agatctctgc tgctacactg
ctcagaccct cataatctcc 300tacacatcaa atggtctttc tcctttagca actccaccct
tccaccctat tcctggaaac 360tgctacgaca gtgttgatta taaaatatag
390268129PRTHomo sapiens 268Met Glu Val Ile Leu
Pro Asp Lys Pro Gln Val Asp Ala Leu Ala Phe1 5
10 15Leu Ala Ala Val Thr Met Leu Trp Ile Thr Leu
Pro Met Ser Pro Phe 20 25
30Ala Glu Ala Glu Lys Leu Ala Trp Asp Leu Glu Val Gly Gly Leu Ala
35 40 45Gly Gln Pro Leu Lys Val Phe Thr
Pro Arg Lys Lys Gly Ser Gly Glu 50 55
60Val Gly Asp Ala Ser Gln Ser Pro Ser Arg Ser Asn Asp Gly Gln His65
70 75 80Ser Cys Ile Gly His
Ser Arg Asp Leu Cys Cys Tyr Thr Ala Gln Thr 85
90 95Leu Ile Ile Ser Tyr Thr Ser Asn Gly Leu Ser
Pro Leu Ala Thr Pro 100 105
110Pro Phe His Pro Ile Pro Gly Asn Cys Tyr Asp Ser Val Asp Tyr Lys
115 120 125Ile2692856DNAHomo sapiens
269atggccaaaa gaaatctcag cactgtgaca gagttcattc ttgtagtctt cacagatcac
60cctgaactgg cagttccact cttcctagtg tttctcagtt tctatcttgt cacttttctg
120gggaatgggg ggatgatcat tctaatccaa gtggatgccc aactccacac ccccgtgtac
180ttcttcctga gccaccttgc tttcctggat gcctgctgtg cctcagtaat cacccctcag
240attctggcca cactggccac agacaagaca gttatctcct atggctgccg tgctgtgcag
300ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggcctat
360gaccgctttg ttgccattag caatccactg cactgtaaca tgaccatgac tccaggtacc
420tgcagggtct ttttggccag tgccttcatc tgtggggtgt caggggccat tctgcatacc
480acgtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac
540ctcccacccc tgctgaagct cgcctgcagc agcatgacac aaactgagat tgtcattctc
600ctttgtgcaa aatgcatgtt cctagccaat gtcatggtta tcctgatctg ctacatgctc
660attatcagag ccattttgag ggtgaagtcg gcaggaggcc tcctgatagc atctgctcat
720ttcgatgcat atgtatatga gacaggcatc aactacaaca cagtttatgg ctcaggaaag
780gcagtagggt ggtcctggag gagcctgcgg gaaaccaacc acatgagacc aggaaatact
840tcaaaacact cagcagccca gctgcatcaa tgcctcatcc agcaagttgg caggtggccc
900ttgcagagca tgcccttccc cgtttctgca gggccacctt ataagtcagt gcagcctctc
960cctggagacc cccggcctct cctgtgcatc accggattat ttctgacttt gaagatgatg
1020gggtgtgggc ccaggaggcc cagggacagg aagtctgact tcttcataaa cacagaccct
1080ggtgcagggt caccagaaga acagaggtgt ggatgggaag ggcatccttc ccactcctat
1140accctggggc tgtctctgcc agtcaacttc ggcctgaaat gtccatggtg gacactatct
1200ggacccccag ctacctgcca acgtccagac ctgcagacac cttctccacc aaaggagata
1260tgttcatccg ggctgcgacc ccttacacac agcgctggac cagacagaag tcaagttcca
1320gcagcctccg gagcagccac tatgctgaca aaggggctgc ccgacatcac tgtgggactg
1380cagatttatg actcctgcat ctcagggatc caggctctgg ggagcaccct ggccctgctg
1440tccaatcagc ttccacccac aaccaactat gcttgtggct cccagcaaca tctcctgggc
1500gtggttggag ggatgacctt cctggagtca gagcccatgt ctgagctgct ctccatctac
1560agagtccctc agggccaaag actcaccaaa aactttgaag taaaagaact tgtctgcaca
1620tatctggtag gacagcttcc ttatggcctg gtcagttatg acaacagcaa ctttgagtgg
1680ctggatcagc agctgcagaa gcagatcggg ggcgagggac ttcctgttgg cgctgcgccc
1740agccgtgtag ccaggcaaca gtctgatgag gaagctgtgg gaggagtgca gggatacagg
1800tggtctggat taggggcttc catccaaagt gccagagaag gggcttggca tcgcacaggg
1860ctggagaaca tgaccactgc ccacctgtct gccttcaaac ttcctgatct aactgccact
1920taccaagcct acctggcagc caaagccctg tgggttgcct atcagaactt gatgtcctgc
1980tctgagagag agggaccatt cctgggaggc acgtatgcca atgcatggga agccaggctt
2040tctcaggtta acttcaccac caaagcccaa gaagaggttt tcttcgccaa agatggggaa
2100gtgctgacaa cgtttgacat taaaaacatc tatgttctcc cagacctgtc aggacagaca
2160gccattgttg gacactttga cttcagagca ccttctggaa aagagcttct gttggatgac
2220agcgcaattg tctgggcaga aggaccctta aagattagag ctgagagaac cctaagaacc
2280aagaccacac agcacctctc acatcccaag ctccaggagt cccttcctct gtctgcaacg
2340aaaaacgtcc tgtggaaacc aggaagtcaa ccctatttga gaagtcaaaa tgctgctaca
2400aaagccttcc ctgacccaga agagaaatcg caatgtcacc agtttctctt tctcccttca
2460gatagtgttg catgtcagaa gtgctctgac aaccagtggc ccaatgtgca gaagggcgag
2520tgcatcccca aaacccttga cttcttgttc tatcacaagc cccttgacac agcgttggct
2580gtctgcacag ccctgctctt tctccttgcc ctggccatct taggcatctt ccatgttgtc
2640tgctcctgtg tctgggtgtc cttcatacct gcccacatgc atgcccacag caaagacacc
2700atggccatgg aggtctttgt catcttggca tcagcaggag gcctcatgtc ctccctcttc
2760ttttccaaat gctacatcat ccttctccat cctgaaaaga acacaaaaga ccaaatgttt
2820ggccggcatc atcgcaagtg ggaaaaactg aagtga
2856270951PRTHomo sapiens 270Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu
Phe Ile Leu Val Val1 5 10
15Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu
20 25 30Ser Phe Tyr Leu Val Thr Phe
Leu Gly Asn Gly Gly Met Ile Ile Leu 35 40
45Ile Gln Val Asp Ala Gln Leu His Thr Pro Val Tyr Phe Phe Leu
Ser 50 55 60His Leu Ala Phe Leu Asp
Ala Cys Cys Ala Ser Val Ile Thr Pro Gln65 70
75 80Ile Leu Ala Thr Leu Ala Thr Asp Lys Thr Val
Ile Ser Tyr Gly Cys 85 90
95Arg Ala Val Gln Phe Ser Phe Phe Thr Ile Cys Ala Gly Thr Glu Cys
100 105 110Tyr Leu Leu Ser Val Met
Ala Tyr Asp Arg Phe Val Ala Ile Ser Asn 115 120
125Pro Leu His Cys Asn Met Thr Met Thr Pro Gly Thr Cys Arg
Val Phe 130 135 140Leu Ala Ser Ala Phe
Ile Cys Gly Val Ser Gly Ala Ile Leu His Thr145 150
155 160Thr Cys Thr Phe Thr Leu Ser Phe Cys Cys
Asp Asn Gln Ile Asn Phe 165 170
175Phe Phe Cys Asp Leu Pro Pro Leu Leu Lys Leu Ala Cys Ser Ser Met
180 185 190Thr Gln Thr Glu Ile
Val Ile Leu Leu Cys Ala Lys Cys Met Phe Leu 195
200 205Ala Asn Val Met Val Ile Leu Ile Cys Tyr Met Leu
Ile Ile Arg Ala 210 215 220Ile Leu Arg
Val Lys Ser Ala Gly Gly Leu Leu Ile Ala Ser Ala His225
230 235 240Phe Asp Ala Tyr Val Tyr Glu
Thr Gly Ile Asn Tyr Asn Thr Val Tyr 245
250 255Gly Ser Gly Lys Ala Val Gly Trp Ser Trp Arg Ser
Leu Arg Glu Thr 260 265 270Asn
His Met Arg Pro Gly Asn Thr Ser Lys His Ser Ala Ala Gln Leu 275
280 285His Gln Cys Leu Ile Gln Gln Val Gly
Arg Trp Pro Leu Gln Ser Met 290 295
300Pro Phe Pro Val Ser Ala Gly Pro Pro Tyr Lys Ser Val Gln Pro Leu305
310 315 320Pro Gly Asp Pro
Arg Pro Leu Leu Cys Ile Thr Gly Leu Phe Leu Thr 325
330 335Leu Lys Met Met Gly Cys Gly Pro Arg Arg
Pro Arg Asp Arg Lys Ser 340 345
350Asp Phe Phe Ile Asn Thr Asp Pro Gly Ala Gly Ser Pro Glu Glu Gln
355 360 365Arg Cys Gly Trp Glu Gly His
Pro Ser His Ser Tyr Thr Leu Gly Leu 370 375
380Ser Leu Pro Val Asn Phe Gly Leu Lys Cys Pro Trp Trp Thr Leu
Ser385 390 395 400Gly Pro
Pro Ala Thr Cys Gln Arg Pro Asp Leu Gln Thr Pro Ser Pro
405 410 415Pro Lys Glu Ile Cys Ser Ser
Gly Leu Arg Pro Leu Thr His Ser Ala 420 425
430Gly Pro Asp Arg Ser Gln Val Pro Ala Ala Ser Gly Ala Ala
Thr Met 435 440 445Leu Thr Lys Gly
Leu Pro Asp Ile Thr Val Gly Leu Gln Ile Tyr Asp 450
455 460Ser Cys Ile Ser Gly Ile Gln Ala Leu Gly Ser Thr
Leu Ala Leu Leu465 470 475
480Ser Asn Gln Leu Pro Pro Thr Thr Asn Tyr Ala Cys Gly Ser Gln Gln
485 490 495His Leu Leu Gly Val
Val Gly Gly Met Thr Phe Leu Glu Ser Glu Pro 500
505 510Met Ser Glu Leu Leu Ser Ile Tyr Arg Val Pro Gln
Gly Gln Arg Leu 515 520 525Thr Lys
Asn Phe Glu Val Lys Glu Leu Val Cys Thr Tyr Leu Val Gly 530
535 540Gln Leu Pro Tyr Gly Leu Val Ser Tyr Asp Asn
Ser Asn Phe Glu Trp545 550 555
560Leu Asp Gln Gln Leu Gln Lys Gln Ile Gly Gly Glu Gly Leu Pro Val
565 570 575Gly Ala Ala Pro
Ser Arg Val Ala Arg Gln Gln Ser Asp Glu Glu Ala 580
585 590Val Gly Gly Val Gln Gly Tyr Arg Trp Ser Gly
Leu Gly Ala Ser Ile 595 600 605Gln
Ser Ala Arg Glu Gly Ala Trp His Arg Thr Gly Leu Glu Asn Met 610
615 620Thr Thr Ala His Leu Ser Ala Phe Lys Leu
Pro Asp Leu Thr Ala Thr625 630 635
640Tyr Gln Ala Tyr Leu Ala Ala Lys Ala Leu Trp Val Ala Tyr Gln
Asn 645 650 655Leu Met Ser
Cys Ser Glu Arg Glu Gly Pro Phe Leu Gly Gly Thr Tyr 660
665 670Ala Asn Ala Trp Glu Ala Arg Leu Ser Gln
Val Asn Phe Thr Thr Lys 675 680
685Ala Gln Glu Glu Val Phe Phe Ala Lys Asp Gly Glu Val Leu Thr Thr 690
695 700Phe Asp Ile Lys Asn Ile Tyr Val
Leu Pro Asp Leu Ser Gly Gln Thr705 710
715 720Ala Ile Val Gly His Phe Asp Phe Arg Ala Pro Ser
Gly Lys Glu Leu 725 730
735Leu Leu Asp Asp Ser Ala Ile Val Trp Ala Glu Gly Pro Leu Lys Ile
740 745 750Arg Ala Glu Arg Thr Leu
Arg Thr Lys Thr Thr Gln His Leu Ser His 755 760
765Pro Lys Leu Gln Glu Ser Leu Pro Leu Ser Ala Thr Lys Asn
Val Leu 770 775 780Trp Lys Pro Gly Ser
Gln Pro Tyr Leu Arg Ser Gln Asn Ala Ala Thr785 790
795 800Lys Ala Phe Pro Asp Pro Glu Glu Lys Ser
Gln Cys His Gln Phe Leu 805 810
815Phe Leu Pro Ser Asp Ser Val Ala Cys Gln Lys Cys Ser Asp Asn Gln
820 825 830Trp Pro Asn Val Gln
Lys Gly Glu Cys Ile Pro Lys Thr Leu Asp Phe 835
840 845Leu Phe Tyr His Lys Pro Leu Asp Thr Ala Leu Ala
Val Cys Thr Ala 850 855 860Leu Leu Phe
Leu Leu Ala Leu Ala Ile Leu Gly Ile Phe His Val Val865
870 875 880Cys Ser Cys Val Trp Val Ser
Phe Ile Pro Ala His Met His Ala His 885
890 895Ser Lys Asp Thr Met Ala Met Glu Val Phe Val Ile
Leu Ala Ser Ala 900 905 910Gly
Gly Leu Met Ser Ser Leu Phe Phe Ser Lys Cys Tyr Ile Ile Leu 915
920 925Leu His Pro Glu Lys Asn Thr Lys Asp
Gln Met Phe Gly Arg His His 930 935
940Arg Lys Trp Glu Lys Leu Lys945 950271956DNAHomo
sapiens 271gccgcgctgt atggggccag cggacacttc gccccaggca ccactgtgcc
cctggccctg 60ccacctggtg gcaatggctc agccacacct gacaatggca ccacccctgg
ggccgagggc 120tggcggcagt tgctgggcct actccccgag cacatggcgg agaagctgtg
tgaggcctgg 180gcctttgggc agagccacca gacgggcgtc gtggcactgg gcctactcac
ctgcctgctg 240gcaatgctgc tggctggccg catcaggctc cggaggatcg atgccttctg
cacctgcctg 300tgggccctgc tgctggggct gcacctggct gagcagcacc tgcaggccgc
ctcgcctagc 360tggctagaca cgctcaagtt cagcaccaca tctttgtgct gcctggttgg
cttcacggcg 420gctgtggcca caaggaaggc aacgggccca cggaggttcc ggccccgaag
gttcttccca 480ggagactctg ccggcctttt ccccaccagc cccagcttgg ccatccctca
cccgagtgtc 540ggaggctctc cagcgtctct gttcatcccc agcccgccca gcttcctgcc
cctcgccaac 600caagcagctc ttccggtctc ctcgacggac ctcaccctcc tcatttgcct
ggccgcctca 660gccgggccct ctctctggga accataccct ctctgactcg agcagactcc
ggctatctgt 720tcagcggtag ccgcccacca tctcaggtgt ctcgatctgg gggagtttcc
tgttttcaga 780ttacttctct cttcttgtcg gggaagctgc ccctccgtcc catcctttcc
cagggccttc 840cgggggcggc tcggtgggcc tccagtccgg ctctctggcc acgggaggcc
ctcatcagcc 900tgccggtcaa cctgagggac gaagtgtgtt gtccggcacc cctggagagg
cccaaa 956272231PRTHomo sapiens 272Ala Ala Leu Tyr Gly Ala Ser Gly
His Phe Ala Pro Gly Thr Thr Val1 5 10
15Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly Ser Ala Thr Pro
Asp Asn 20 25 30Gly Thr Thr
Pro Gly Ala Glu Gly Trp Arg Gln Leu Leu Gly Leu Leu 35
40 45Pro Glu His Met Ala Glu Lys Leu Cys Glu Ala
Trp Ala Phe Gly Gln 50 55 60Ser His
Gln Thr Gly Val Val Ala Leu Gly Leu Leu Thr Cys Leu Leu65
70 75 80Ala Met Leu Leu Ala Gly Arg
Ile Arg Leu Arg Arg Ile Asp Ala Phe 85 90
95Cys Thr Cys Leu Trp Ala Leu Leu Leu Gly Leu His Leu
Ala Glu Gln 100 105 110His Leu
Gln Ala Ala Ser Pro Ser Trp Leu Asp Thr Leu Lys Phe Ser 115
120 125Thr Thr Ser Leu Cys Cys Leu Val Gly Phe
Thr Ala Ala Val Ala Thr 130 135 140Arg
Lys Ala Thr Gly Pro Arg Arg Phe Arg Pro Arg Arg Phe Phe Pro145
150 155 160Gly Asp Ser Ala Gly Leu
Phe Pro Thr Ser Pro Ser Leu Ala Ile Pro 165
170 175His Pro Ser Val Gly Gly Ser Pro Ala Ser Leu Phe
Ile Pro Ser Pro 180 185 190Pro
Ser Phe Leu Pro Leu Ala Asn Gln Ala Ala Leu Pro Val Ser Ser 195
200 205Thr Asp Leu Thr Leu Leu Ile Cys Leu
Ala Ala Ser Ala Gly Pro Ser 210 215
220Leu Trp Glu Pro Tyr Pro Leu225 2302731806DNAHomo
sapiens 273gaggaggcgc gcgtcgccgc cccgcgtccc gcctgcggcc cgcgcccccg
gcgtcaccgc 60ctcctgcccg cctgcccgcc tgcccgcctg cccgcctacc cgcctacccg
cctacccgcc 120tacccccctg ccggcctgcc gtccttccac gcggagagcc atggagggag
tgagcgcgct 180gctggcccgc tgccccacgg ccggcctggc cggcggcctg ggggtcacgg
cgtgcgccgc 240ggccggcgtg ttgctctacc ggatcgcgcg gaggatgaag ccaacgcaca
cgatggtcaa 300ctgctggttc tgcaaccagg atacgctggt gccctatggg aaccgcaact
gctgggactg 360tccccactgc gagcagtaca acggcttcca ggagaacggc gactacaaca
agccgatccc 420cgcccagtac ttggagcacc tgaaccacgt ggtgagcagc gcgcccagcc
tgcgcgaccc 480ttcgcagccg cagcagtggg tgagcagcca agtcctgctg tgcaagaggt
gcaaccacca 540ccagaccacc aagatcaagc agctggccgc cttcgctccc cgcgaggagg
gcaggtatga 600cgaggaggtc gaggtgtacc ggcatcacct ggagcagatg tacaagctgt
gccggccgtg 660ccaagcggct gtggagtact acatcaagca ccagaaccgc cagctgcgcg
ccctgttgct 720cagccaccag ttcaagcgcc gggaggccga ccagacccac gcacagaact
tctcctccgc 780cgtgaagtcc ccggtccagg tcatcctgct ccgtgccctc gccttcctgg
cctgcgcctt 840cctactgacc accgcgctgt atggggccag cggacacttc gccccaggca
ccactgtgcc 900cctggccctg ccacctggtg gcaatggctc agccacacct gacaatggca
ccacccctgg 960ggccgagggc tggcggcagt tgctgggcct actccccgag cacatggcgg
agaagctgtg 1020tgaggcctgg gcctttgggc agagccacca gacgggcgtc gtggcactgg
gcctactcac 1080ctgcctgctg gcaatgctgc tggctggccg catcaggctc cggaggatcg
atgccttctg 1140cacctgcctg tgggccctgc tgctggggct gcacctggct gagcagcacc
tgcaggccgc 1200ctcgcctagc tggctagaca cgctcaagtt cagcaccaca tctttgtgct
gcctggttgg 1260cttcacggcg gctgtggcca caaggaaggc aacgggccca cggaggttcc
ggccccgaag 1320gttcttccca ggagactctg ccggcctttt ccccaccagc cccagcttgg
ccatccctca 1380cccgagtgtc ggaggctctc cagcgtctct gttcatcccc agcccgccca
gcttcctgcc 1440cctcgccaac caagcagctc ttccggtctc ctcgacggac ctcaccctcc
tcatttgcct 1500ggccgcctca gccgggccct ctctctggga accataccct ctctgactcg
agcagactcc 1560ggctatctgt tcagcggtag ccgcccacca tctcaggtgt ctcgatctgg
gggagtttcc 1620tgttttcaga ttacttctct cttcttgtcg gggaagctgc ccctccgtcc
catcctttcc 1680cagggccttc cgggggcggc tcggtgggcc tccagtccgg ctctctggcc
acgggaggcc 1740ctcatcagcc tgccggtcaa cctgagggac gaagtgtgtt gtccggcacc
cctggagagg 1800cccaaa
1806274461PRTHomo sapiens 274Met Glu Gly Val Ser Ala Leu Leu
Ala Arg Cys Pro Thr Ala Gly Leu1 5 10
15Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly Val
Leu Leu 20 25 30Tyr Arg Ile
Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys 35
40 45Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr
Gly Asn Arg Asn Cys 50 55 60Trp Asp
Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly65
70 75 80Asp Tyr Asn Lys Pro Ile Pro
Ala Gln Tyr Leu Glu His Leu Asn His 85 90
95Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln
Pro Gln Gln 100 105 110Trp Val
Ser Ser Gln Val Leu Leu Cys Lys Arg Cys Asn His His Gln 115
120 125Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe
Ala Pro Arg Glu Glu Gly 130 135 140Arg
Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu Glu Gln Met145
150 155 160Tyr Lys Leu Cys Arg Pro
Cys Gln Ala Ala Val Glu Tyr Tyr Ile Lys 165
170 175His Gln Asn Arg Gln Leu Arg Ala Leu Leu Leu Ser
His Gln Phe Lys 180 185 190Arg
Arg Glu Ala Asp Gln Thr His Ala Gln Asn Phe Ser Ser Ala Val 195
200 205Lys Ser Pro Val Gln Val Ile Leu Leu
Arg Ala Leu Ala Phe Leu Ala 210 215
220Cys Ala Phe Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser Gly His Phe225
230 235 240Ala Pro Gly Thr
Thr Val Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly 245
250 255Ser Ala Thr Pro Asp Asn Gly Thr Thr Pro
Gly Ala Glu Gly Trp Arg 260 265
270Gln Leu Leu Gly Leu Leu Pro Glu His Met Ala Glu Lys Leu Cys Glu
275 280 285Ala Trp Ala Phe Gly Gln Ser
His Gln Thr Gly Val Val Ala Leu Gly 290 295
300Leu Leu Thr Cys Leu Leu Ala Met Leu Leu Ala Gly Arg Ile Arg
Leu305 310 315 320Arg Arg
Ile Asp Ala Phe Cys Thr Cys Leu Trp Ala Leu Leu Leu Gly
325 330 335Leu His Leu Ala Glu Gln His
Leu Gln Ala Ala Ser Pro Ser Trp Leu 340 345
350Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu Val
Gly Phe 355 360 365Thr Ala Ala Val
Ala Thr Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg 370
375 380Pro Arg Arg Phe Phe Pro Gly Asp Ser Ala Gly Leu
Phe Pro Thr Ser385 390 395
400Pro Ser Leu Ala Ile Pro His Pro Ser Val Gly Gly Ser Pro Ala Ser
405 410 415Leu Phe Ile Pro Ser
Pro Pro Ser Phe Leu Pro Leu Ala Asn Gln Ala 420
425 430Ala Leu Pro Val Ser Ser Thr Asp Leu Thr Leu Leu
Ile Cys Leu Ala 435 440 445Ala Ser
Ala Gly Pro Ser Leu Trp Glu Pro Tyr Pro Leu 450 455
460`275600DNAHomo sapiensmisc_feature(460)..(460)n is a, c,
g, t or u 275tcaagtctga cttgcatcta cactgcgggc aagatgcggc tgcaagaccg
catcgccacg 60ttcttcttcc caaaaggcat gatgctcacc acggctgcgc tgatgctctt
cttcttacac 120ctgggcatct tcatcagaga cgtgcacaac ttctgcatca cctaccacta
tgaccacatg 180agctttcact acacggtcgt cctgatgttc tcccaggtga tcagcatctg
ctgggctgcc 240atggggtcac tctatgctga gatgacagaa aacaagtacg tctgcttctc
cgccctgacc 300atcctgagtg agtggcagga gggggagggt gcaagaggga gcggggagct
ttggaaccct 360gagatgtggc aaggagtagc cagggaaggg tactggggct catggggggc
tctgtccccc 420gcccagtgct caacggagcc atgctcttca accgcctgtn cttggagttt
ctggccatcg 480agtaccggga ggagcaccac tgaggcctgg ggagtcggaa cagggctaan
gagggggaag 540caaaaggctg cctcgggtgt tttaataaag ctgntgntta tttccaaaaa
aaaaaaaaaa 600276174PRTHomo sapiensUNSURE(128)..(128)Xaa is S, P, T or
A 276Met Met Leu Thr Thr Ala Ala Leu Met Leu Phe Phe Leu His Leu Gly1
5 10 15Ile Phe Ile Arg Asp
Val His Asn Phe Cys Ile Thr Tyr His Tyr Asp 20
25 30His Met Ser Phe His Tyr Thr Val Val Leu Met Phe
Ser Gln Val Ile 35 40 45Ser Ile
Cys Trp Ala Ala Met Gly Ser Leu Tyr Ala Glu Met Thr Glu 50
55 60Asn Lys Tyr Val Cys Phe Ser Ala Leu Thr Ile
Leu Ser Glu Trp Gln65 70 75
80Glu Gly Glu Gly Ala Arg Gly Ser Gly Glu Leu Trp Asn Pro Glu Met
85 90 95Trp Gln Gly Val Ala
Arg Glu Gly Tyr Trp Gly Ser Trp Gly Ala Leu 100
105 110Ser Pro Ala Gln Cys Ser Thr Glu Pro Cys Ser Ser
Thr Ala Cys Xaa 115 120 125Trp Ser
Phe Trp Pro Ser Ser Thr Gly Arg Ser Thr Thr Glu Ala Trp 130
135 140Gly Val Gly Thr Gly Leu Xaa Arg Gly Lys Gln
Lys Ala Ala Ser Gly145 150 155
160Val Leu Ile Lys Leu Xaa Xaa Ile Ser Lys Lys Lys Lys Lys
165 170277457DNAHomo sapiens 277aaacactgca
ggctacgaat cggtcattgc ataggttttc catgaatcag gaagattcag 60tcctggtaaa
ttcattccca ggaacatcgc tgccactgct attattctag cagctgttcc 120catactccaa
tgagtccagt taaacatttg ccttcttggg tcatgtaaag gtggcctgaa 180gactgccaga
agaggctgaa gaactgccaa agtcatcact atacagccga ggtatgggtg 240gtaacctgca
tgcctactcc agcctcccct gtatataaac ggcataacaa aagcaatgca 300ggtgaggaca
gttgtggtga acatgagcat ccgatgcacc tgaaaccaag ctgcttcacc 360aagcaagaaa
gcttttgacc aaactggctt gaagaaccgg gcaaccagta cacctatgct 420aacagtagtc
atccatgcca caaacattaa ggcacca
457278144PRTHomo sapiens 278Met Phe Val Ala Trp Met Thr Thr Val Ser Ile
Gly Val Leu Val Ala1 5 10
15Arg Phe Phe Lys Pro Val Trp Ser Lys Ala Phe Leu Leu Gly Glu Ala
20 25 30Ala Trp Phe Gln Val His Arg
Met Leu Met Phe Thr Thr Thr Val Leu 35 40
45Thr Cys Ile Ala Phe Val Met Pro Phe Ile Tyr Arg Gly Gly Trp
Ser 50 55 60Arg His Ala Gly Tyr His
Pro Tyr Leu Gly Cys Ile Val Met Thr Leu65 70
75 80Ala Val Leu Gln Pro Leu Leu Ala Val Phe Arg
Pro Pro Leu His Asp 85 90
95Pro Arg Arg Gln Met Phe Asn Trp Thr His Trp Ser Met Gly Thr Ala
100 105 110Ala Arg Ile Ile Ala Val
Ala Ala Met Phe Leu Gly Met Asn Leu Pro 115 120
125Gly Leu Asn Leu Pro Asp Ser Trp Lys Thr Tyr Ala Met Thr
Asp Ser 130 135 140279293DNAHomo
sapiens 279tttttttttt tttttttaag gctgaagcaa ataggaacgt atatttctca
tgaatccaaa 60gcaaagacac aggaagtgct ggcattcttt tggtggctgg tagctcttga
ccttctcttc 120aaggttgcca catgccttag cagcagctca tgacttcacg ttctcaccgt
attcgaaggc 180aggaagcatg gagtagctgg cagctgcgtt tgacacagac tgccctcgga
ccccttctcc 240gcgcagtgcg actcgcaatt gtctggagca cgttggcagc agccctcgtg
ccg 29328045PRTHomo sapiens 280Arg His Glu Gly Cys Cys Gln Arg
Ala Pro Asp Asn Cys Glu Ser His1 5 10
15Cys Ala Glu Lys Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln
Leu Pro 20 25 30Ala Thr Pro
Cys Phe Leu Pro Ser Asn Thr Val Arg Thr 35 40
4528115PRTHomo sapiens 281Cys Gln Lys Gln Arg Asn Trp His
Gly Ile Trp Arg Leu Glu Val1 5 10
1528213PRTHomo sapiens 282Met Ala Lys Gln Gly Glu Met Asn Thr
Ser Thr Ser Cys1 5 1028313PRTHomo sapiens
283Pro Lys Arg Gly Gly Arg Ala Gly Arg Glu His Ser Cys1 5
1028491PRTHomo sapiens 284Arg Phe Gln Arg Asn Thr Gly Glu
Met Ser Ser Asn Ser Thr Ala Leu1 5 10
15Ala Leu Val Arg Pro Ser Ser Ser Gly Leu Ile Asn Ser Asn
Thr Asp 20 25 30Asn Asn Leu
Ala Val Tyr Asp Leu Ser Arg Asp Ile Leu Asn Asn Phe 35
40 45Pro His Ser Ile Ala Arg Gln Lys Arg Ile Leu
Val Asn Leu Ser Met 50 55 60Val Glu
Asn Lys Leu Val Glu Leu Glu His Thr Leu Leu Ser Lys Gly65
70 75 80Phe Arg Gly Ala Ser Pro His
Arg Lys Ser Thr 85 9028515PRTHomo sapiens
285Cys Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser1
5 10 1528614PRTHomo sapiens 286Cys
Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr1 5
1028719PRTHomo sapiens 287Met Ala Cys Ile Tyr Pro Thr Thr
Phe Tyr Thr Ser Leu Pro Thr Lys1 5 10
15Ser Leu Asn288121PRTHomo sapiens 288Ala Pro Pro Ser Cys
Arg Glu Cys Tyr Gln Ser Leu His Tyr Arg Gly1 5
10 15Glu Met Gln Gln Tyr Phe Thr Tyr His Thr His
Ile Glu Arg Ser Cys 20 25
30Tyr Gly Asn Leu Ile Glu Glu Cys Val Glu Ser Gly Lys Ser Tyr Tyr
35 40 45Lys Val Lys Asn Leu Gly Val Cys
Gly Ser Arg Asn Gly Ala Ile Cys 50 55
60Pro Arg Gly Lys Gln Trp Leu Cys Phe Thr Lys Ile Gly Gln Trp Gly65
70 75 80Val Asn Thr Gln Val
Leu Glu Asp Ile Lys Arg Glu Gln Ile Ile Ala 85
90 95Lys Ala Lys Ala Ser Lys Pro Thr Thr Pro Pro
Glu Asn Arg Pro Arg 100 105
110His Phe His Ser Phe Ile Gln Lys Leu 115
12028915PRTHomo sapiens 289Cys Glu Asn Arg Pro Arg His Phe His Ser Phe
Ile Gln Lys Leu1 5 10
1529013PRTHomo sapiens 290Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro
Thr1 5 1029114PRTHomo sapiens 291Cys Lys
Glu Asp Glu Leu Val Arg Asp Ser Pro Ala Arg Lys1 5
1029212PRTHomo sapiens 292Ala Leu Gly Thr Arg Leu Ser Gln His
Thr Asp Val1 5 1029311PRTHomo sapiens
293Asp Phe Asn Cys Pro Cys Leu Val His Tyr Asn1 5
1029453PRTHomo sapiens 294Ser Ser Ser Val Asp Pro Glu Lys Phe Leu
Asp Phe Ala Asn Met Thr1 5 10
15Pro Ser Gln Val Gln Leu Phe Leu Ala Lys Val Pro Cys Lys Glu Asp
20 25 30Glu Leu Val Arg Asp Ser
Pro Ala Arg Lys Ala Val Ser Arg Tyr Leu 35 40
45Arg Cys Leu Ser Gln 50295146PRTHomo sapiens 295Arg Cys
Leu Arg Pro Cys Phe Asp Gln Thr Val Phe Leu Gln Arg Arg1 5
10 15Tyr Trp Ser Asn Tyr Val Asp Leu
Glu Gln Lys Leu Phe Asp Glu Thr 20 25
30Cys Cys Glu His Ala Arg Asp Phe Ala His Arg Cys Val Leu His
Phe 35 40 45Phe Ala Ser Met Arg
Ser Glu Leu Gln Ala Arg Gly Leu Arg Arg Gly 50 55
60Asn Ala Gly Arg Arg Leu Glu Leu Pro Ala Val Pro Glu Pro
Pro Glu65 70 75 80Gly
Leu Asp Ser Gly Ser Gly Lys Ala His Leu Arg Ala Ile Ser Ser
85 90 95Arg Glu Gln Val Asp Arg Leu
Leu Ser Thr Trp Tyr Ser Ser Lys Pro 100 105
110Pro Leu Asp Leu Ala Ala Ser Pro Gly Leu Cys Gly Gly Gly
Leu Ser 115 120 125His Arg Ala Pro
Thr Leu Ala Leu Gly Thr Arg Leu Ser Gln His Thr 130
135 140Asp Val1452961035PRTHomo sapiens 296Met Pro Cys
Gly Phe Ser Pro Ser Pro Val Ala His His Leu Val Pro1 5
10 15Gly Pro Pro Asp Thr Pro Ala Gln Gln
Leu Arg Cys Gly Trp Thr Val 20 25
30Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro
35 40 45Pro Gly Ala Arg Thr Ala Glu
Gly Pro Ile Met Val Leu Ala Gly Pro 50 55
60Leu Ala Val Ser Leu Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His65
70 75 80Leu Ser Ser Ser
Gln Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln 85
90 95Leu Cys Ala Leu Ser Lys His Pro Thr Val
Ala Phe Glu Asp Leu Gln 100 105
110Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln
115 120 125Leu Ala Leu Asp Pro Ser Gly
Asn Gln Leu Ile Val Gly Ala Arg Asn 130 135
140Tyr Leu Phe Arg Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala
Thr145 150 155 160Glu Trp
Ala Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly
165 170 175Lys Thr Glu Glu Glu Cys Gln
Asn Tyr Val Arg Val Leu Ile Val Ala 180 185
190Gly Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro
Met Cys 195 200 205Thr Ser Arg Gln
Val Gly Asn Leu Ser Arg Thr Ile Glu Lys Ile Asn 210
215 220Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn
Ser Thr Ala Val225 230 235
240Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile Asp Phe Ser
245 250 255Gly Arg Asp Pro Ala
Ile Tyr Arg Ser Leu Gly Ser Gly Pro Pro Leu 260
265 270Arg Thr Ala Gln Tyr Asn Ser Lys Trp Leu Asn Glu
Pro Asn Phe Val 275 280 285Ala Ala
Tyr Asp Ile Gly Leu Phe Ala Tyr Phe Phe Leu Arg Glu Asn 290
295 300Ala Val Glu His Asp Cys Gly Arg Thr Val Tyr
Ser Arg Val Ala Arg305 310 315
320Val Cys Lys Asn Asp Val Gly Gly Arg Phe Leu Leu Glu Asp Thr Trp
325 330 335Thr Thr Phe Met
Lys Ala Arg Leu Asn Cys Ser Arg Pro Gly Glu Val 340
345 350Pro Phe Tyr Tyr Asn Glu Leu Gln Ser Ala Phe
His Leu Pro Glu Gln 355 360 365Asp
Leu Ile Tyr Gly Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala 370
375 380Ser Ala Val Cys Ala Phe Asn Leu Ser Ala
Ile Ser Gln Ala Phe Asn385 390 395
400Gly Pro Phe Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro
Ile 405 410 415Ala Asn Pro
Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly 420
425 430Pro Asn Glu Asn Leu Thr Glu Arg Ser Leu
Gln Asp Ala Gln Arg Leu 435 440
445Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys Val 450
455 460Thr Gln Asp Ser Val Arg Phe Ser
His Leu Val Val Asp Leu Val Gln465 470
475 480Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly
Thr Glu Ser Gly 485 490
495Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser Leu His Gly Cys
500 505 510Tyr Leu Glu Glu Leu His
Val Leu Pro Pro Gly Arg Arg Glu Pro Leu 515 520
525Arg Ser Leu Arg Ile Leu His Ser Ala Arg Ala Leu Phe Val
Gly Leu 530 535 540Arg Asp Gly Val Leu
Arg Val Pro Leu Glu Arg Cys Ala Ala Tyr Arg545 550
555 560Ser Gln Gly Ala Cys Leu Gly Ala Arg Asp
Pro Tyr Cys Gly Trp Asp 565 570
575Gly Lys Gln Gln Arg Cys Ser Thr Leu Glu Asp Ser Ser Asn Met Ser
580 585 590Leu Trp Thr Gln Asn
Ile Thr Ala Cys Pro Val Arg Asn Val Thr Arg 595
600 605Asp Gly Gly Phe Gly Pro Trp Ser Pro Trp Gln Pro
Cys Glu His Leu 610 615 620Asp Gly Asp
Asn Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp625
630 635 640Ser Pro Arg Pro Arg Cys Gly
Gly Leu Asp Cys Leu Gly Pro Ala Ile 645
650 655His Ile Ala Asn Cys Ser Arg Asn Gly Ala Trp Thr
Pro Trp Ser Ser 660 665 670Trp
Ala Leu Cys Ser Thr Ser Cys Gly Ile Gly Phe Gln Val Arg Gln 675
680 685Arg Ser Cys Ser Asn Pro Ala Pro Arg
His Gly Gly Arg Ile Cys Val 690 695
700Gly Lys Ser Arg Glu Glu Arg Phe Cys Asn Glu Asn Thr Pro Cys Pro705
710 715 720Val Pro Ile Phe
Trp Ala Ser Trp Gly Ser Trp Ser Lys Cys Ser Ser 725
730 735Asn Cys Gly Gly Gly Met Gln Ser Arg Arg
Arg Ala Cys Glu Asn Gly 740 745
750Asn Ser Cys Leu Gly Cys Gly Val Glu Phe Lys Thr Cys Asn Pro Glu
755 760 765Gly Cys Pro Glu Val Arg Arg
Asn Thr Pro Trp Thr Pro Trp Leu Pro 770 775
780Val Asn Val Thr Gln Gly Gly Ala Arg Gln Glu Gln Arg Phe Arg
Phe785 790 795 800Thr Cys
Arg Ala Pro Leu Ala Asp Pro His Gly Leu Gln Phe Gly Arg
805 810 815Arg Arg Thr Glu Thr Arg Thr
Cys Pro Ala Asp Gly Ser Gly Ser Cys 820 825
830Asp Thr Asp Ala Leu Val Glu Val Leu Leu Arg Ser Gly Ser
Thr Ser 835 840 845Pro His Thr Val
Ser Gly Gly Trp Ala Ala Trp Gly Pro Trp Ser Ser 850
855 860Cys Ser Arg Asp Cys Glu Leu Gly Phe Arg Val Arg
Lys Arg Thr Cys865 870 875
880Thr Asn Pro Glu Pro Arg Asn Gly Gly Leu Pro Cys Val Gly Asp Ala
885 890 895Ala Glu Tyr Gln Asp
Cys Asn Pro Gln Ala Cys Pro Val Arg Gly Ala 900
905 910Trp Ser Cys Trp Thr Ser Trp Ser Pro Cys Ser Ala
Ser Cys Gly Gly 915 920 925Gly His
Tyr Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pro Ser Pro 930
935 940Gly Glu Asp Ile Cys Leu Gly Leu His Thr Glu
Glu Ala Leu Cys Ala945 950 955
960Thr Gln Ala Cys Pro Glu Gly Trp Ser Pro Trp Ser Glu Trp Ser Lys
965 970 975Cys Thr Asp Asp
Gly Ala Gln Ser Arg Ser Arg His Cys Glu Glu Leu 980
985 990Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Ser
Ser Gln Ser Arg Pro 995 1000
1005Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu Pro Ala Ser Ser Met
1010 1015 1020Glu Glu Ala Thr Asp Cys
Ala Gly Phe Asn Leu Ile1025 1030
103529716PRTHomo sapiens 297Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala
Val Ile Ser Ser Gln1 5 10
1529811PRTHomo sapiens 298Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr1
5 1029935PRTHomo sapiens 299Glu Arg Val Trp
Ser Asp Asp His Lys Asp Phe Asp Cys Asn Thr Arg1 5
10 15Gln Pro Gly Cys Ser Asn Val Cys Phe Asp
Glu Phe Phe Pro Val Ser 20 25
30His Val Arg 3530038PRTHomo sapiens 300His Ser Phe Tyr Pro Lys
Tyr Ile Leu Pro Pro Val Val Lys Cys His1 5
10 15Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe Ile
Ser Lys Pro Ser 20 25 30Glu
Lys Asn Ile Phe Thr 3530115PRTHomo sapiens 301Cys Leu Pro Asp Arg
Pro Arg Asp His Val Lys Lys Thr Ile Leu1 5
10 1530213PRTHomo sapiens 302Glu Arg Val Trp Ser Asp
Asp His Lys Asp Phe Asp Cys1 5
1030338PRTHomo sapiens 303Asn Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr
Val Pro Ser Gly1 5 10
15Ser Asn Gln Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp
20 25 30Asp Ser Ser Ser Arg Ile
3530415PRTHomo sapiens 304Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly
Ser Asn Gln Asp1 5 10
1530512PRTHomo sapiens 305Cys Val Pro His Ser Arg Ser Arg Gly Pro Asn
Leu1 5 1030612PRTHomo sapiens 306Cys Glu
Leu Ser Gln Thr Pro His Pro His Ser Arg1 5
1030714PRTHomo sapiens 307Cys Leu Asp Ser Ala Gly Asn Asn Ala Gly Ile
Gln Trp Gly1 5 1030814PRTHomo sapiens
308Cys Asn Arg Val Ser Lys Asn Pro Glu Met Leu Gln Thr Gly1
5 103092115DNAHomo sapiens 309atgcgtatat gttatgaatg
ccaaaatgaa agaacattgt ggcgatgtgt ttcccaggat 60ggggctgact acagtgtggg
cgtgtgtgtc cctgattctt gtgctgaaga ggatgtgact 120ctgatgtctc ggctggatac
tttaagattc agaaatactt catttttggc cccttccctc 180tttcttttta caataaattc
ttcctccttg tctggtggga gtgtgaccag atgtgctgct 240ggaaagatcc ccctggacac
atttgctgcc gtatgtctgt tcatcacctt gctgggtctc 300atcctccctc cggctggaac
agtctgcgtg gcagctaggg aatgggggtc agcctgcagg 360acatcgcggg aacacgggga
acctctggcc acttacggga gtctgccact gagcgaggcg 420gagagcaatg aacaaagaag
cagaatccca cggacacact gccgggcaca tctcctcctg 480tcagcagcct ccagcagagg
aaaaaggttt ctaggagccg tggctcatgc tctggagtgc 540ttttcttggc agaagaatgt
gccagccatc tggactacaa aggcaccagg tggcacctgc 600tctgcactga atggcattcg
tgtcttgagt cttctttgga tcatctcggg acacaccagt 660cagatgactg catggctgtc
tttgggatgg aaagatggag ggcacgaaag gccactggtc 720atgtctgggc catcagtggg
aatcggagac accagagaag ccacgagtgg ttggttaagt 780gcaagttcgt ttttaaagat
gcatcagaat tcagacaaag gaataacccc caaaggcata 840ctcagatact ttctcagtca
cctggtaagg ttgcagcctc ttcacctgta ttcaatgtgc 900ttgttggttg gactgttctc
tcttgttccc tggggacctg tctgggaaat gcccaaattc 960cactgggata actgccggca
agcatggtgg acgaatctgc tgttgctaaa taactttgtg 1020tcggtcaaga atgcgtgcaa
tggctggacc tggtaccttg ccaatgactt ccagttccac 1080ctcaccacac cagtgattat
cttcatccat gtaaagagta cacagatcct catcctcctt 1140ggggccatgc tgttcttggc
atctttcaca gccactgctc tgatcacctt ggcatataaa 1200cttcctgtcg tggctccatc
agaaaccagg acttcccggg gagggctgct gaatgccagg 1260ctgttcaccc tgtgcccttt
ggttcatgga aaaagtgggt atgaaacttt tggtctggat 1320gggaaagctg attgccttct
tgcttccaaa cttctgaacc tttcaacctg cactggaaat 1380gaacaagtgt gccctaaatg
tacctttggg cttgctgatt attccaatgg acatctcagg 1440gatttggatt ccctttgcca
tgtccagatc aaacataaca ttttggctta tttccttgta 1500tttttcagtg aagaggcgat
tgtattgtat ttcgtggagt actacacaaa gccctactgc 1560cgatttgggc cagttcttgt
gggcctcttt ctgagcattt acatgcacca aaaccaccag 1620gaaaacattc tcagaaccaa
gctgcagctc tctaccaagc cctccaccgg accctgtggg 1680cggcggctgt gggctgagtc
ctctttgcgt gccacggagg atatggaggt atggaagcgg 1740ctccaggctt tgctgtcggg
ttcacaccct gttcctttaa aggtgacaaa tcgaacacac 1800aggagagcca agcagataaa
aggcttcaat ggaaaagaat cttctccagg tctggtgaac 1860cgtgtgcttt cttgggacat
ctggagtttc ctgtccagca tcagttatgc tcgctacttg 1920gtgcatccga ttctgatcat
cctttacaat ggccttcagg aaacacttat tcaccacact 1980gacaccaaca tgttctatct
tttctctgga caccgtgtgc tgaccttcgt cactgggctg 2040gccctgacgc tgttcattga
gaaaccatgt caggaactga agcagcacct gctgggccat 2100gaatgttctg gttaa
2115310704PRTHomo sapiens
310Met Arg Ile Cys Tyr Glu Cys Gln Asn Glu Arg Thr Leu Trp Arg Cys1
5 10 15Val Ser Gln Asp Gly Ala
Asp Tyr Ser Val Gly Val Cys Val Pro Asp 20 25
30Ser Cys Ala Glu Glu Asp Val Thr Leu Met Ser Arg Leu
Asp Thr Leu 35 40 45Arg Phe Arg
Asn Thr Ser Phe Leu Ala Pro Ser Leu Phe Leu Phe Thr 50
55 60Ile Asn Ser Ser Ser Leu Ser Gly Gly Ser Val Thr
Arg Cys Ala Ala65 70 75
80Gly Lys Ile Pro Leu Asp Thr Phe Ala Ala Val Cys Leu Phe Ile Thr
85 90 95Leu Leu Gly Leu Ile Leu
Pro Pro Ala Gly Thr Val Cys Val Ala Ala 100
105 110Arg Glu Trp Gly Ser Ala Cys Arg Thr Ser Arg Glu
His Gly Glu Pro 115 120 125Leu Ala
Thr Tyr Gly Ser Leu Pro Leu Ser Glu Ala Glu Ser Asn Glu 130
135 140Gln Arg Ser Arg Ile Pro Arg Thr His Cys Arg
Ala His Leu Leu Leu145 150 155
160Ser Ala Ala Ser Ser Arg Gly Lys Arg Phe Leu Gly Ala Val Ala His
165 170 175Ala Leu Glu Cys
Phe Ser Trp Gln Lys Asn Val Pro Ala Ile Trp Thr 180
185 190Thr Lys Ala Pro Gly Gly Thr Cys Ser Ala Leu
Asn Gly Ile Arg Val 195 200 205Leu
Ser Leu Leu Trp Ile Ile Ser Gly His Thr Ser Gln Met Thr Ala 210
215 220Trp Leu Ser Leu Gly Trp Lys Asp Gly Gly
His Glu Arg Pro Leu Val225 230 235
240Met Ser Gly Pro Ser Val Gly Ile Gly Asp Thr Arg Glu Ala Thr
Ser 245 250 255Gly Trp Leu
Ser Ala Ser Ser Phe Leu Lys Met His Gln Asn Ser Asp 260
265 270Lys Gly Ile Thr Pro Lys Gly Ile Leu Arg
Tyr Phe Leu Ser His Leu 275 280
285Val Arg Leu Gln Pro Leu His Leu Tyr Ser Met Cys Leu Leu Val Gly 290
295 300Leu Phe Ser Leu Val Pro Trp Gly
Pro Val Trp Glu Met Pro Lys Phe305 310
315 320His Trp Asp Asn Cys Arg Gln Ala Trp Trp Thr Asn
Leu Leu Leu Leu 325 330
335Asn Asn Phe Val Ser Val Lys Asn Ala Cys Asn Gly Trp Thr Trp Tyr
340 345 350Leu Ala Asn Asp Phe Gln
Phe His Leu Thr Thr Pro Val Ile Ile Phe 355 360
365Ile His Val Lys Ser Thr Gln Ile Leu Ile Leu Leu Gly Ala
Met Leu 370 375 380Phe Leu Ala Ser Phe
Thr Ala Thr Ala Leu Ile Thr Leu Ala Tyr Lys385 390
395 400Leu Pro Val Val Ala Pro Ser Glu Thr Arg
Thr Ser Arg Gly Gly Leu 405 410
415Leu Asn Ala Arg Leu Phe Thr Leu Cys Pro Leu Val His Gly Lys Ser
420 425 430Gly Tyr Glu Thr Phe
Gly Leu Asp Gly Lys Ala Asp Cys Leu Leu Ala 435
440 445Ser Lys Leu Leu Asn Leu Ser Thr Cys Thr Gly Asn
Glu Gln Val Cys 450 455 460Pro Lys Cys
Thr Phe Gly Leu Ala Asp Tyr Ser Asn Gly His Leu Arg465
470 475 480Asp Leu Asp Ser Leu Cys His
Val Gln Ile Lys His Asn Ile Leu Ala 485
490 495Tyr Phe Leu Val Phe Phe Ser Glu Glu Ala Ile Val
Leu Tyr Phe Val 500 505 510Glu
Tyr Tyr Thr Lys Pro Tyr Cys Arg Phe Gly Pro Val Leu Val Gly 515
520 525Leu Phe Leu Ser Ile Tyr Met His Gln
Asn His Gln Glu Asn Ile Leu 530 535
540Arg Thr Lys Leu Gln Leu Ser Thr Lys Pro Ser Thr Gly Pro Cys Gly545
550 555 560Arg Arg Leu Trp
Ala Glu Ser Ser Leu Arg Ala Thr Glu Asp Met Glu 565
570 575Val Trp Lys Arg Leu Gln Ala Leu Leu Ser
Gly Ser His Pro Val Pro 580 585
590Leu Lys Val Thr Asn Arg Thr His Arg Arg Ala Lys Gln Ile Lys Gly
595 600 605Phe Asn Gly Lys Glu Ser Ser
Pro Gly Leu Val Asn Arg Val Leu Ser 610 615
620Trp Asp Ile Trp Ser Phe Leu Ser Ser Ile Ser Tyr Ala Arg Tyr
Leu625 630 635 640Val His
Pro Ile Leu Ile Ile Leu Tyr Asn Gly Leu Gln Glu Thr Leu
645 650 655Ile His His Thr Asp Thr Asn
Met Phe Tyr Leu Phe Ser Gly His Arg 660 665
670Val Leu Thr Phe Val Thr Gly Leu Ala Leu Thr Leu Phe Ile
Glu Lys 675 680 685Pro Cys Gln Glu
Leu Lys Gln His Leu Leu Gly His Glu Cys Ser Gly 690
695 70031121DNAArtificial SequenceOligonucleotide
311aaccgtgtgc tttcttggga c
2131219DNAArtificial SequenceOligonucleotide 312acattcatgg cccagcagg
19
User Contributions:
Comment about this patent or add new information about this topic: