Class / Patent application number | Description | Number of patent applications / Date published |
438782000 | With substrate handling during coating (e.g., immersion, spinning, etc.) | 53 |
20080286982 | PLASMA IMMERSION ION IMPLANTATION WITH HIGHLY UNIFORM CHAMBER SEASONING PROCESS FOR A TOROIDAL SOURCE REACTOR - A method is provided for performing plasma immersion ion implantation with a highly uniform seasoning film on the interior of a reactor chamber having a ceiling and a cylindrical side wall and a wafer support pedestal facing the ceiling. The method includes providing a gas distribution ring with plural gas injection orifices on a periphery of a wafer support pedestal, the orifices facing radially outwardly from the wafer support pedestal. Silicon-containing gas is introduced through the gas distribution orifices of the ring to establish a radially outward flow pattern of the silicon-containing gas. The reactor includes pairs of conduit ports in the ceiling adjacent the side wall at opposing sides thereof and respective external conduits generally spanning the diameter of the chamber and coupled to respective pairs of the ports. The method further includes injecting oxygen gas through the conduit ports into the chamber to establish an axially downward flow pattern of oxygen gas in the chamber. RF power is coupled into the interior of each of the conduits to generate a toroidal plasma current of Si | 11-20-2008 |
20090004885 | Method for fabricating semiconductor device - An object of the present invention is to provide a method for fabricating a semiconductor device capable of implementing planarization of an insulating film formed on a semiconductor substrate formed thereon with a circuit pattern and inhibiting unevenness of a film thickness of the insulating film, and a device thereof. | 01-01-2009 |
20090011612 | METHOD OF SHORTENING PHOTORESIST COATING PROCESS - A method of shortening a photoresist coating process for a plurality of wafers is provided, wherein the photoresist coating process includes a first coating operation to a first wafer using a first photoresist liquid and a second coating operation to a second wafer using a second photoresist liquid. The method includes performing a dummy dispense operation of the second photoresist liquid within the period of the backend part of the first coating operation that needs no nozzle. | 01-08-2009 |
20090098740 | METHOD OF FORMING ISOLATION LAYER IN SEMICONDUCTOR DEVICE - The invention discloses a method of forming an isolation layer in a semiconductor device. The method includes providing a semiconductor substrate having a trench formed therein; forming a first insulating layer in the trench; and forming a densified second insulating layer on the first insulating layer. In the above method, a void is not generated in the isolation layer so a bending phenomenon of an active region can be reduced or prevented to improve an electrical characteristic of the semiconductor. | 04-16-2009 |
20090191720 | COATING PROCESS AND EQUIPMENT FOR REDUCED RESIST CONSUMPTION - A coating system and method of coating semiconductor wafers is disclosed that is able to maintain a wet condition on the outer portion of the semiconductor wafer to provide ease of spreading for a photo-resist or anti-reflective coating (ARC) that is being dispensed. The system can include a plurality of nozzles on a movable arm. A first nozzle dispenses a pre-wet solvent onto the semiconductor wafer. A second nozzle then dispenses the photo-resist or ARC coating onto the semiconductor wafer. A third nozzle dispenses additional pre-wet solvent onto the outer edge of the semiconductor wafer as the photo-resist or ARC coating is being dispensed. The nozzles dispense solutions onto the semiconductor wafer as it rotates. The system produces semiconductor wafers with few coating defects and uses less photo-resist or ARC coating. | 07-30-2009 |
20090253271 | SPIN-ON FILM PROCESSING USING ACCOUSTIC RADIATION PRESSURE - An apparatus and process operate to impose sonic pressure upon a spin-on film liquid mass that exhibits a liquid topography and in a solvent vapor overpressure to alter the liquid topography. Other apparatus and processes are disclosed. | 10-08-2009 |
20100022101 | METHOD FOR CHANGING PHYSICAL VAPOR DEPOSITION FILM FORM - A method for changing a physical vapor deposition film form comprises: providing at least one sample with an active area; delivering the sample to a physical vapor deposition machine with one adjustable angle of one collimator; changing the angle of the collimator in the physical vapor deposition machine; performing physical vapor deposition operation, forming a uniform thin film disposed on one active area of the sample. | 01-28-2010 |
20100075509 | MANUFACTURING METHOD AND MANUFACTURING APPARATUS FOR SEMICONDUCTOR DEVICE - A manufacturing method for a semiconductor device, including: loading a wafer into a reaction chamber; placing the wafer on a push-up shaft moved up; preheating the wafer under controlling an in-plane temperature distribution of the wafer to be a recess state under a state of placing the wafer on the push-up shaft moved up; lowering the push-up shaft with the wafer kept in the recess state to hold the wafer on a wafer holding member; heating the wafer to a predetermined temperature; rotating the wafer; and supplying a process gas onto the wafer. | 03-25-2010 |
20110014796 | DIPPING SOLUTION FOR USE IN PRODUCTION OF SILICEOUS FILM AND PROCESS FOR PRODUCING SILICEOUS FILM USING THE DIPPING SOLUTION - This invention relates to a dipping solution used in a process for producing a siliceous film. The present invention provides a dipping solution and a siliceous film-production process employing the solution. The dipping solution enables to form a homogeneous siliceous film even in concave portions of a substrate having concave portions and convex portions. The substrate is coated with a polysilazane composition, and then dipped in the solution before fire. The dipping solution comprises hydrogen peroxide, a foam-deposit inhibitor, and a solvent. | 01-20-2011 |
20110034038 | Methods and devices for forming nanostructure monolayers and devices including such monolayers - Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). | 02-10-2011 |
20110059620 | PROTECTIVE FILM FORMING METHOD AND APPARATUS - A protective film forming method for forming a protective film of resin on the front side of a wafer to be laser-processed. The protective film forming method includes the steps of holding the wafer on a spinner table in the condition where the front side of the wafer is oriented upward, forming a water layer covering the front side of the wafer held on the spinner table, dropping a liquid resin onto the water layer at the center of the wafer, rotating the spinner table holding the wafer to scatter the water layer and radially spread the liquid resin dropped on the water layer, thereby forming a first resin film covering the front side of the wafer by a centrifugal force produced during rotation of the wafer, dropping the liquid resin onto the first resin film at the center of the wafer, and rotating the spinner table holding the wafer to radially spread the liquid resin dropped on the first resin film, thereby forming a second resin film covering the first resin film by a centrifugal force produced during rotation of the wafer. | 03-10-2011 |
20110143553 | INTEGRATED TOOL SETS AND PROCESS TO KEEP SUBSTRATE SURFACE WET DURING PLATING AND CLEAN IN FABRICATION OF ADVANCED NANO-ELECTRONIC DEVICES - Methods and systems for handling a substrate through processes including an integrated electroless deposition process includes processing a surface of the substrate in an electroless deposition module to deposit a layer over conductive features of the substrate using a deposition fluid. The surface of the substrate is then rinsed in the electroless deposition module with a rinsing fluid. The rinsing is controlled to prevent de-wetting of the surface so that a transfer film defined from the rinsing fluid remains coated over the surface of the substrate. The substrate is removed from the electroless deposition module while maintaining the transfer film over the surface of the substrate. The transfer film over the surface of the substrate prevents drying of the surface of the substrate so that the removing is wet. The substrate, once removed from the electroless deposition module, is moved into a post-deposition module while maintaining the transfer film over the surface of the substrate. | 06-16-2011 |
20110250765 | COATING TREATMENT METHOD, NON-TRANSITORY COMPUTER STORAGE MEDIUM AND COATING TREATMENT APPARATUS - A coating treatment method includes: a first step of discharging a coating solution from a nozzle to a central portion of a substrate while acceleratingly rotating the substrate, to apply the coating solution over the substrate; a second step of then decelerating the rotation of the substrate and continuously rotating the substrate; and a third step of then accelerating the rotation of the substrate to dry the coating solution on the substrate. In the first step, the acceleration of the rotation of the substrate is changed in the order of a first acceleration, a second acceleration higher than the first acceleration, and a third acceleration lower than the second acceleration to acceleratingly rotate the substrate at all times. | 10-13-2011 |
20110300718 | ON-WAFER CRYSTALLIZATION FOR PURE-SILICA-ZEOLITE ULTRA LOW-K FILMS - An on-wafer crystallization method of spin-coating a silicon wafer with a low-k dielectric zeolite material which includes the steps of forming a synthesis solution; generating a nucleated precursor solution; spin-coating the nucleated precursor onto a substrate as a precursor film; and annealing the precursor film into a zeolite film. | 12-08-2011 |
20110312190 | COATING METHOD AND COATING APPARATUS - A coating method based on such a technique includes a prewetting step of supplying a prewetting liquid to the center of a substrate (W) and rotating the substrate thereby spreading the prewetting liquid over the whole surface of a first substrate, and a coating film forming step of supplying a coating solution (e.g., a resist solution) to the substrate supplied with the prewetting liquid and drying the coating solution thereby forming a coating film on the surface of the first substrate. The prewetting liquid used is a mixed liquid obtained by mixing a solvent capable of dissolving components of the coating film (e.g., components of resist) and a high surface tension liquid having a surface tension higher than that of the solvent, the mixed liquid having a surface tension higher than that of the coating solution. | 12-22-2011 |
20120021611 | COATING TREATMENT METHOD, NON-TRANSITORY COMPUTER STORAGE MEDIUM AND COATING TREATMENT APPARATUS - A coating treatment method includes: a first step of rotating a substrate at a first rotation number; a second step of rotating the substrate at a second rotation number being slower than the first rotation number; a third step of rotating the substrate at a third rotation number being faster than the second rotation number and slower than the first rotation number; a fourth step of rotating the substrate at a fourth rotation number being slower than the third rotation number; and a fifth step of rotating the substrate at a fifth rotation number being faster than the fourth rotation number. A supply of a coating solution to a central portion of the substrate is continuously performed from the first step to a middle of the second step or during the first step, and the fourth rotation number is more than 0 rpm and 500 rpm or less. | 01-26-2012 |
20120178265 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE USING SOD METHOD - Such a method is disclosed that includes forming a liner film to cover a surface of the substrate including a trench, washing a surface of the liner film with water, removing remaining water after the washing, applying a polysilazane solution to fill the trench by spin coating after the removing, and reforming the polysilazane solution into a silicon oxide film by annealing. | 07-12-2012 |
20120214317 | SUBSTRATE PROCESSING APPARATUS AND METHOD, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD - A substrate processing apparatus includes a processing chamber configured to process a plurality of substrates, a substrate holder accommodated within the processing chamber and configured to hold the substrates in a vertically spaced-apart relationship, a thermal insulation portion configured to support the substrate holder from below within the processing chamber, a heating unit provided to surround a substrate accommodating region within the processing chamber, and a gas supply system configured to supply a specified gas to at least a thermal insulation portion accommodating region within the processing chamber. | 08-23-2012 |
20120252228 | METHOD OF CONTROLLING SILICON OXIDE FILM THICKNESS - A deposition process for coating a substrate with films of a different thickness on front and rear surface of a substrate can be achieve in one growth. The thickness of the film deposition can be controlled by the separation between the substrates. Different separation distances between the substrates in the same chemical bath will result in different film thicknesses on the substrate. Substrates may be arranged to have different separation distances between front and back surfaces, a V-shaped arrangement, or placed next to a curtain with varying separation distances between a substrate and the curtain. | 10-04-2012 |
20120276753 | COATING TREATMENT APPARATUS, COATING AND DEVELOPING TREATMENT SYSTEM, COATING TREATMENT METHOD, AND NON-TRANSITORY RECORDING MEDIUM HAVING PROGRAM RECORDED THEREON FOR EXECUTING COATING TREATMENT METHOD - A coating treatment apparatus supplying a coating solution to a front surface of a rotated substrate and diffusing the supplied coating solution to an outer periphery side of the substrate to thereby apply the coating solution on the front surface of the substrate includes: a substrate holding part holding a substrate; a rotation part rotating the substrate held on the substrate holding part; a supply part supplying a coating solution to a front surface of the substrate held on the substrate holding part; and an airflow control plate provided at a predetermined position above the substrate held on the substrate holding part for locally changing an airflow above the substrate rotated by the rotation part at an arbitrary position. | 11-01-2012 |
20120289062 | Liner Formation in 3DIC Structures - An integrated circuit structure includes a semiconductor substrate; a through-semiconductor via (TSV) opening extending into the semiconductor substrate; and a TSV liner in the TSV opening. The TSV liner includes a sidewall portion on a sidewall of the TSV opening and a bottom portion at a bottom of the TSV opening. The bottom portion of the TSV liner has a bottom height greater than a middle thickness of the sidewall portion of the TSV liner. | 11-15-2012 |
20130130513 | INTERLAYER INSULATING LAYER FORMING METHOD AND SEMICONDUCTOR DEVICE - The interlayer insulating layer forming method for forming an interlayer insulating layer of a semiconductor device via a plasma CVD method includes: carrying a substrate into a depressurized processing container; supplying a plasma generating gas to a first space spaced apart from the substrate; exciting the plasma generating gas in the first space; and supplying a raw material gas including a boron compound that includes at least a hydrogen group or hydrocarbon group, to a second space between the first space and the substrate. Also, a semiconductor device is interconnected in a multilayer through an interlayer insulating layer having an amorphous structure including boron, carbon, and nitrogen, wherein, in the interlayer insulating layer, a hydrocarbon group or an alkyl amino group is mixed in the amorphous structure comprising hexagonal boron nitride and cubic boron nitride. | 05-23-2013 |
20130224966 | COMPOSITE DIELECTRIC MATERIAL DOPED WITH RARE EARTH METAL OXIDE AND MANUFACTURING METHOD THEREOF - A composite dielectric material doped with rare earth metal oxide and a manufacturing method thereof are provided. The composite dielectric material is doped with nano-crystalline rare metal oxide which is embedded in silicon dioxide glass matrix, and the composite dielectric material of the nano-crystalline rare metal oxide and the silicon dioxide glass matrix is synthesized by the manufacturing method using sol-gel route. The dielectric value of the glass composite dielectric material is greater than that of pure rare metal oxide or that of silicon dioxide. In presence of magnetic field, the dielectric value of the composite dielectric material is substantially enhanced compared with that of the composite dielectric material at zero field. | 08-29-2013 |
20130260574 | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD - In a substrate processing apparatus, with an internal space of a chamber brought into a reduced pressure atmosphere, a first processing liquid is supplied onto an upper surface of a substrate while the substrate is rotated, and the first processing liquid is thereby quickly spread from a center portion toward a peripheral portion on the upper surface of the substrate. It is thereby possible to coat the upper surface of the substrate with the first processing liquid in a shorter time as compared with under normal pressure. Further, by sucking the first processing liquid from the vicinity of an edge of the substrate, it is possible to coat the upper surface of the substrate with the first processing liquid in a still shorter time. As a result, it is possible to shorten the time required for the processing of the substrate. | 10-03-2013 |
20130288485 | DENSIFICATION FOR FLOWABLE FILMS - A method of forming a dielectric layer is described. The method first deposits an initially-flowable layer on a substrate. The initially-flowable layer is then densified by exposing the substrate to a high-density plasma (HDP). Essentially no additional material is deposited on the initially-flowable layer, in embodiments, but the impact of the accelerated ionic species serves to condense the layer and increase the etch tolerance of the processed layer. | 10-31-2013 |
20130295777 | COATING TREATMENT METHOD, COMPUTER STORAGE MEDIUM, AND COATING TREATMENT APPARATUS - A substrate is rotated at a first rotation number (first step). The rotation of the substrate is decelerated to 1500 rpm that is a second rotation number and the substrate is rotated at the second rotation number for 0.5 seconds (second step). The rotation of the substrate is further decelerated to a third rotation number and the substrate is rotated at the third rotation number (third step). The rotation of the substrate is accelerated to a fourth rotation number and the substrate is rotated at the fourth rotation number (fourth step). A resist solution is continuously supplied to a center portion of the substrate from a middle of the first step to a middle of the third step. | 11-07-2013 |
20130337658 | FILM DEPOSITION METHOD - A film deposition method includes a first step and a second step. In the first step, a first reaction gas is supplied from a first gas supply part to a first process area, and a second reaction gas capable of reacting with the first reaction gas is supplied from a second gas supply part to a second process area, while rotating a turntable and supplying a separation gas to separate the first process area and the second process area from each other. In the second step, the second reaction gas is supplied from the second gas supply part to the second process area without supplying the first reaction gas from the first gas supply part for a predetermined period, while rotating the turntable and supplying the separation gas to separate the first process area and the second process area from each other. | 12-19-2013 |
20140017905 | FILM DEPOSITION APPARATUS AND METHOD OF DEPOSITING FILM - A film deposition apparatus that laminates layers of reaction product by repeating cycles of sequentially supplying process gases that mutually reacts in a vacuum atmosphere includes a turntable receiving a substrate, process gas supplying portions supplying mutually different process gases to separated areas arranged in peripheral directions, and a separation gas supplying portion separating the process gases, wherein at least one process gas supplying portion extends between peripheral and central portions of the turntable and includes a gas nozzle discharging one process gas toward the turntable and a current plate provided on an upstream side to allow the separation gas to flow onto its upper surface, wherein a gap between the current plate and the turntable is gradually decreased from a central side of the turntable to a peripheral side of the turntable, and the gap is smaller on the peripheral side by 1 mm or greater. | 01-16-2014 |
20140045344 | COATER APPARATUS AND COATING METHOD - A coater apparatus that coats a substrate with a chemical liquid includes a chemical liquid nozzle, a solvent nozzle, a solvent bath, a dummy dispense port, and an ionizer. The chemical liquid nozzle dispenses the chemical liquid onto the substrate. The solvent nozzle dispenses a solvent onto the substrate. The solvent bath contains a solvent and stores a tip of the chemical liquid nozzle when the chemical liquid nozzle is in standby such that the tip is exposed to a solvent vapor. The dummy dispense port exhausts the chemical liquid being dummy dispensed from the chemical liquid nozzle and stores the solvent nozzle when the solvent nozzle is in standby. The ionizer ionizes an atmosphere around the dummy dispense port. | 02-13-2014 |
20140065843 | Method of Forming a Photoresist Layer - A method for forming a photoresist layer on a semiconductor device is disclosed. An exemplary includes providing a wafer. The method further includes spinning the wafer during a first cycle at a first speed, while a pre-wet material is dispensed over the wafer and spinning the wafer during the first cycle at a second speed, while the pre-wet material continues to be dispensed over the wafer. The method further includes spinning the wafer during a second cycle at the first speed, while the pre-wet material continues to be dispensed over the wafer and spinning the wafer during the second cycle at the second speed, while the pre-wet material continues to be dispensed over the wafer. The method further includes spinning the wafer at a third speed, while a photoresist material is dispensed over the wafer including the pre-wet material. | 03-06-2014 |
20140087567 | SUBSTRATE PROCESSING APPARATUS AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - Provided is a substrate processing apparatus including: a substrate mounting portion provided in a process chamber and capable of mounting a plurality of substrates in a circumferential direction; a rotating mechanism that rotates the substrate mounting portion at a predetermined angular velocity; dividing structures provided in a radial form from a center of a lid of the process chamber so as to divide the process chamber into a plurality of areas; and gas supply areas disposed between the adjacent dividing structures, wherein an angle between the adjacent dividing structures with one gas supply area interposed is set to an angle corresponding to the angular velocity and a period in which a portion of the substrate mounting portion passes through the gas supply area. | 03-27-2014 |
20140179120 | METHOD OF DEPOSITING A FILM - A method of depositing a film of forming an oxide film containing a predetermined element on substrates using an apparatus including a turntable mounting substrates, first and second process areas above the upper surface of the turntable provided with gas supplying portions, a separation gas supplying portion between the first and second process areas, and a separation area including depositing the oxide film by rotating the turntable while supplying a reaction gas containing the predetermined element, the oxidation gas from the second gas supplying portion, and the separation gas; and rotating at least one turn while supplying the separation gas from the first gas supplying portion and the separation gas supplying portion, and the oxidation gas from the second gas supplying portion. | 06-26-2014 |
20140179121 | METHOD OF DEPOSITING A FILM - A method of depositing a film on substrates using an apparatus including a turntable mounting substrates, first and second process areas above the upper surface of the turntable provided with gas supplying portions, a separation gas supplying portion between the first and second process areas, and a separation area including depositing a first oxide film by rotating the turntable first turns while supplying a first reaction gas, the oxidation gas from the second gas supplying portion, and the separation gas; rotating at least one turn while supplying the separation gas from the first gas supplying portion and the separation gas supplying portion, and the oxidation gas from the second gas supplying portion; and rotating at least second turns to deposit a second oxide film while supplying a second reaction gas from the first gas supplying portion, the oxidation gas from the second gas supplying portion, and the separation gas. | 06-26-2014 |
20140179122 | METHOD OF DEPOSITING A FILM - A method of depositing a film of forming a doped oxide film including a first oxide film containing a first element and doped with a second element on substrates mounted on a turntable including depositing the first oxide film onto the substrates by rotating the turntable predetermined turns while a first reaction gas containing the first element is supplied from a first gas supplying portion, an oxidation gas is supplied from a second gas supplying portion, and a separation gas is supplied from a separation gas supplying portion, and doping the first oxide film with the second element by rotating the turntable predetermined turns while a second reaction gas containing the second element is supplied from one of the first and second gas supplying portions, an inert gas is supplied from another one, and the separation gas is supplied from the separation gas supplying portion. | 06-26-2014 |
20140199856 | METHOD OF DEPOSITING A FILM AND FILM DEPOSITION APPARATUS - A method of depositing a film including carrying substrates in plural substrate mounting portions formed on a turntable in a peripheral direction by intermittently rotating the turntable, arranging the plural substrate mounting portions in a carry-in and carry-out area, and sequentially mounting the substrates on the substrate mounting portions, depositing a thin film on a surface of each substrate to laminate a reaction product of reaction gases, which mutually react, by repeating a cycle of rotating the turntable to revolve the substrates and alternately supplying the reaction gases onto surfaces of the substrates, reformulating the thin film by heating each substrate sequentially arranged in a heating area adjacent to the carry-in and carry-out area while intermittently rotating the turntable, and carrying each substrate out after sequentially arranging each substrate, the thin film on which is reformulated, in the carry-in and carry-out area by intermittently rotating the turntable. | 07-17-2014 |
20140199857 | Method of Controlling Silicon Oxide Film Thickness - A deposition process for coating a substrate with films of varying thickness on a substrate can be achieve. The thickness of the film deposition can be controlled by the separation between the substrate and a curtain. Different separation distances between the substrate and curtain in the same chemical bath will result in different film thicknesses depositing on the substrate. | 07-17-2014 |
20140235070 | COVER PLATE FOR WIND MARK CONTROL IN SPIN COATING PROCESS - Techniques disclosed herein provide an apparatus and method of spin coating that inhibits the formation of wind marks and other defects from turbulent fluid-flow, thereby enabling higher rotational velocities and decreased drying times, while maintaining film uniformity. Techniques disclosed herein include a fluid-flow member, such as a ring or cover, positioned or suspended above the surface of a wafer or other substrate. The fluid-flow member has a radial curvature that prevents wind marks during rotation of a wafer during a coating and spin drying process. | 08-21-2014 |
20140242810 | SUBSTRATE PROCESSING APPARATUS AND METHOD OF SUPPLYING AND EXHAUSTING GAS - A substrate processing apparatus includes: a process chamber for processing a substrate; a substrate mounting member including a mounting surface on which a plurality of substrates are concentrically mounted with facing a ceiling of the process chamber; a rotation instrument for rotating the substrate mounting member in a direction parallel to the mounting surface; a gas supply unit and a gas exhaust unit which are disposed in the process chamber above the substrate mounting member upstream and downstream in the substrate mounting member rotating direction, respectively; and a controller for controlling the gas supply unit, the gas exhaust unit, and the rotation instrument to process the substrates, when the substrate passes through a predetermined region formed in the process chamber by the gas supply unit and the gas exhaust unit, by supplying a reactant gas from the gas supply unit and exhausting the reactant gas from the gas exhaust unit. | 08-28-2014 |
20150056820 | SYSTEMS AND METHODS OF SOLVENT TEMPERATURE CONTROL FOR WAFER COATING PROCESSES - Systems and methods of solvent temperature control for wafer coating processes are provided. In an embodiment, a method for spin coating a wafer includes attaching the wafer to a rotatable chuck. The chuck is then rotated, and solvent is dispensed onto the wafer. The solvent dispensing temperature is controlled while the solvent is dispensed onto the wafer. | 02-26-2015 |
20150079806 | Photoresist Coating Scheme - A method includes rotating a wafer at a first speed for a first time duration. The wafer is rotated at a second speed that is lower than the first speed for a second time duration after the first time duration. The wafer is rotated at a third speed that is higher than the second speed for a third time duration after the second time duration. A photoresist is dispensed on the wafer during the first time duration and at least a portion of a time interval that includes the second time duration and the third time duration. | 03-19-2015 |
20150348779 | COATING APPARATUS AND METHOD OF FORMING COATING FILM - A method of forming a coating film over a substrate is provided. The method includes spinning the substrate. The method further includes providing a central coating liquid spray over a central portion of the substrate. The method also includes providing first coating liquid sprays over the substrate. The first coating liquid sprays surround the central coating liquid spray and are spaced apart from the central coating liquid spray by a same first distance. | 12-03-2015 |
20150361550 | FILM FORMATION APPARATUS, FILM FORMATION METHOD, AND STORAGE MEDIUM - Film formation apparatus includes: rotation mechanism to repeat alternately placing the substrate in first region and second region; raw material gas supply unit to supply the first region with gaseous raw material; processing space formation member to move up and down to form processing space isolated from the first region; atmosphere gas supply unit to supply atmosphere gas for forming ozone atmosphere where chain decomposition reaction is generated; energy supply unit to forcibly decompose the ozone by supplying energy to the ozone atmosphere and to obtain the oxide by oxidizing the raw material adsorbed to surface of the substrate; buffer region connected to the processing space and being supplied with inert gas; and partition unit to partition the buffer region off from the processing space when the atmosphere gas is supplied to the processing space and to have the buffer region communicate with the processing space when ozone is decomposed. | 12-17-2015 |
20150371853 | COATING TREATMENT METHOD WITH AIRFLOW CONTROL, AND NON-TRANSITORY RECORDING MEDIUM HAVING PROGRAM RECORDED THEREON FOR EXECUTING COATING TREATMENT WITH AIRFLOW CONTROL - A coating treatment apparatus supplying a coating solution to a front surface of a rotated substrate and diffusing the supplied coating solution to an outer periphery side of the substrate to thereby apply the coating solution on the front surface of the substrate includes: a substrate holding part holding a substrate; a rotation part rotating the substrate held on the substrate holding part; a supply part supplying a coating solution to a front surface of the substrate held on the substrate holding part; and an airflow control plate provided at a predetermined position above the substrate held on the substrate holding part for locally changing an airflow above the substrate rotated by the rotation part at an arbitrary position. | 12-24-2015 |
20160042944 | SEMICONDUCTOR MANUFACTURING APPARATUS AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - In one embodiment, a semiconductor manufacturing apparatus includes a container configured to contain a wafer, and a supporter configured to support the wafer in the container. The apparatus further includes a plasma generator including a plasma tube, and configured to form a film on the wafer by generating plasma in the container with the plasma tube during a first period and during a second period after the first period. The apparatus further includes a controller configured to set a distance between the plasma tube and the wafer to be a first distance during the first period, and set the distance to be a second distance longer than the first distance during the second period. | 02-11-2016 |
20160042945 | COVERAGE OF HIGH ASPECT RATIO FEATURES USING SPIN-ON DIELECTRIC THROUGH A WETTED SURFACE WITHOUT A PRIOR DRYING STEP - A method includes depositing a film solution onto a patterned feature of a semiconductor substrate after wet cleaning the semiconductor substrate and without performing a drying step after the wet cleaning. The film solution includes a dielectric film precursor or a dielectric film precursor and at least one of a reactant, a solvent, a surfactant and a carrier fluid. The method includes baking at least one of solvent and unreacted solution out of a film formed by the film solution by heating the substrate to a baking temperature. The method includes curing the substrate. | 02-11-2016 |
20160071725 | METHOD OF FORMING A THIN FILM THAT ELIMINATES AIR BUBBLES - A method, which forms an air-bubble-free thin film with a high-viscosity fluid resin, initially dispenses the fluid resin on an outer region of a semiconductor wafer while the semiconductor wafer is spinning, and then dispenses the fluid resin onto the center of the semiconductor wafer after the semiconductor wafer has stopped spinning. | 03-10-2016 |
20160099143 | High Temperature Silicon Oxide Atomic Layer Deposition Technology - Processes for depositing SiO | 04-07-2016 |
20160111278 | SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS - A substrate processing method is provided. In the method, a plurality of substrates is placed on a plurality of substrate holding areas provided in a surface of a turntable at predetermined intervals in a circumferential direction, the turntable being provided in a processing chamber. Next, the turntable on which the plurality of substrates is placed is rotated. Then, a fluid is supplied to the surface of the turntable while rotating the turntable. Here, the fluid is supplied to an area between the plurality of substrate holding areas in response to an operation of changing a flow rate of the fluid. | 04-21-2016 |
20160163540 | METHOD FOR CURING FLOWABLE LAYER - Methods for forming a semiconductor structure are provided. The method for forming a semiconductor structure includes forming a flowable layer over a substrate and heating the flowable layer to form a cured layer in a curing process. In addition, the curing process is performed under a pressure of over 2 atmospheres, and the flowable layer reacts with precursors in the flowable layer during the curing process. | 06-09-2016 |
20160172226 | GAS COOLED MINIMAL CONTACT AREA(MCA) ELECTROSTATIC CHUCK(ESC) FOR ALUMINUM NITRIDE(ALN) PVD PROCESS | 06-16-2016 |
20160189951 | METHODS OF FORMING A LAYER AND METHODS OF MANUFACTURING A SEMICONDUCTOR DEVICE USING THE SAME - In a method of forming a layer, a substrate is loaded into a chamber and placed at a home position that is a first relative angular position. A process cycle is performed a number of times while the substrate is at the home position. The cycle includes directing source gas onto the substrate at a first location adjacent the periphery of the substrate, purging the chamber, directing reaction gas onto the substrate from the first location, and purging the chamber. The cycle is performed another number of times while the substrate is at another relative angular position, i.e., at a position rotated about its general center relative from the home position. | 06-30-2016 |
20160254136 | METHOD OF DEPOSITING A SILICON-CONTAINING FILM | 09-01-2016 |
20190148154 | CONTACTLESS ELECTRIC POWER SUPPLY MECHANISM AND METHOD FOR ROTARY TABLE, AND WAFER ROTATING AND HOLDING DEVICE | 05-16-2019 |