Class / Patent application number | Description | Number of patent applications / Date published |
438771000 | Using electromagnetic or wave energy | 39 |
20090004884 | OXIDIZING METHOD AND OXIDIZING APPARATUS - An oxidizing method and oxidizing apparatus in which a plasma generating chamber having an oxidizing gas supply port and a substrate processing chamber having an exhaust port and internally having a substrate susceptor are connected via a partition having a number of through holes, a plasma of an oxidizing gas supplied into the plasma generating chamber is generated, and an oxide layer is formed on a substrate surface by supplying the generated active species onto a substrate are characterized in that the partition is connected to a power supply via a switching mechanism such that a positive, negative, or zero voltage is applied to the partition, and an oxidation process is performed by changing the ratio of radicals, positive ions, and negative ions in the active species supplied onto the substrate by switching the voltages at least once during the oxidation process. | 01-01-2009 |
20090068850 | Method of Fabricating Flash Memory Device - The present invention relates generally to a method of fabricating a flash memory device. The method includes forming a tunnel dielectric layer on a semiconductor substrate using a plasma oxidization process. The tunnel dielectric layer is formed using the plasma oxidation process employing Ar and O | 03-12-2009 |
20090156016 | METHOD FOR TRANSFER OF A THIN LAYER - A method for transferring a thin layer from an initial substrate includes forming an assembly of the initial substrate with one face of a silicone type polymer layer, this face having been treated under an ultraviolet radiation, and processing the initial substrate to form the thin layer on the silicone type polymer layer. | 06-18-2009 |
20100015813 | GAP PROCESSING - Among various methods, devices, and apparatuses, a number of methods are provided for forming a gap between circuitry. One such method includes depositing a first oxide precursor material on at least two conductive lines having at least one gap between the at least two conductive lines, and forming a breadloaf configuration with the first oxide precursor material on a top of each of the at least two conductive lines that leaves a space between a closest approach of at least two adjacent breadloaf configurations. The method also includes depositing a second oxide precursor material over the first oxide precursor material, where depositing the second oxide precursor material results in closing the space between the closest approach of the at least two adjacent breadloaf configurations. | 01-21-2010 |
20100015814 | MOSFET Device With Localized Stressor - MOSFETs having localized stressors are provided. The MOSFET has a stress-inducing layer formed in the source/drain regions, wherein the stress-inducing layer comprises a first semiconductor material and a second semiconductor material. A treatment is performed on the stress-inducing layer such that a reaction is caused with the first semiconductor material and the second semiconductor material is forced lower into the stress-inducing layer. The stress-inducing layer may be either a recessed region or non-recessed region. A first method involves forming a stress-inducing layer, such as SiGe, in the source/drain regions and performing a nitridation or oxidation process. A nitride or oxide film is formed in the top portion of the stress-inducing layer, forcing the Ge lower into the stress-inducing layer. Another method embodiment involves forming a reaction layer over the stress-inducing layer and performing a treatment process to cause the reaction layer to react with the stress-inducing layer. | 01-21-2010 |
20100105215 | METHOD OF MODIFYING INSULATING FILM - An insulting film is modified by subjecting the insulting film to a modification treatment comprising a combination of a plasma treatment and a thermal annealing treatment. There is provided a method of enhancing the characteristic of an insulating film by improving deterioration in the characteristic of the insulating film due to carbon, a suboxide, a dangling bond or the like contained in the insulating film. | 04-29-2010 |
20100233885 | SUBSTRATE PROCESSING METHOD - A method for processing a substrate including a processing target layer and an organic film, include: a deposition/trimming process of forming a reinforcement film on a surface of the organic film and, at the same time, trimming a line width of a line portion of the organic film constituting an opening pattern. The deposition/trimming process includes an adsorption process for allowing a silicon-containing gas to be adsorbed onto the surface of the organic film and an oxidation process in which the line width of the organic film is trimmed while the adsorbed silicon-containing gas is converted into a silicon oxide film. A monovalent aminosilane is employed as the silicon-containing gas. | 09-16-2010 |
20100330814 | METHODS OF FORMING OXIDE LAYERS ON SUBSTRATES - Methods for processing substrates are provided herein. In some embodiments, a method for processing a substrate includes providing a substrate having an oxide layer disposed thereon, the oxide layer including one or more defects; and exposing the oxide layer to a plasma formed from a process gas comprising an oxygen-containing gas to repair the one or more defects. In some embodiments, the oxide layer may be formed on the substrate. In some embodiments, forming the oxide layer further comprises depositing the oxide layer atop the substrate. In some embodiments, forming the oxide layer further comprises thermally oxidizing the surface of the substrate to form the oxide layer. In some embodiments, a processing temperature is maintained at about 700 degrees Celsius or below during the thermal oxidation of the surface. | 12-30-2010 |
20110045676 | REMOTE PLASMA SOURCE SEASONING - Methods of seasoning a remote plasma system are described. The methods include the steps of flowing a silicon-containing precursor into a remote plasma region to deposit a silicon containing film on an interior surface of the remote plasma system. The methods reduce reactions with the seasoned walls during deposition processes, resulting in improved deposition rate, improved deposition uniformity and reduced defectivity during subsequent deposition. | 02-24-2011 |
20110171835 | METHOD AND APPARATUS FOR FORMING SILICON OXIDE FILM - A method of forming a silicon oxide film on silicon exposed on a surface of a workpiece includes mounting the workpiece on a mounting table in a processing chamber; generating plasma of a process gas containing oxygen by supplying the process gas into the processing chamber; applying a bias to the workpiece by supplying high-frequency power to the mounting table; and forming the silicon oxide film by applying the plasma to the biased workpiece and oxidizing the silicon. A ratio of oxygen in the process gas is set to be in the range of 0.1% to 10%. A pressure in the processing chamber is set to be in the range of 1.3 Pa to 266.6 Pa upon forming the silicon oxide film. An output of the high-frequency power is set to be in the range of 0.14 W/cm | 07-14-2011 |
20110250763 | PLASMA OXIDATION METHOD AND PLASMA OXIDATION APPARATUS - A plasma oxidation method includes the steps of: generating oxygen-containing plasma with a process gas containing oxygen; applying a bias voltage to a substrate placed on a stage; and radiating positive ions and negative ions in the oxygen-containing plasma onto the substrate so as to perform plasma oxidation of the substrate while controlling a bias potential of the substrate in such a manner that a maximum value Vmax and a minimum value Vmin of the bias potential and a plasma potential Vp satisfy a following relationship: Vmin10-13-2011 | |
20110250764 | Method of thermally treating silicon with oxygen - A method and apparatus for oxidizing materials used in semiconductor integrated circuits, for example, for oxidizing silicon to form a dielectric gate. An ozonator is capable of producing a stream of least 70% ozone. The ozone passes into an RTP chamber through a water-cooled injector projecting into the chamber. Other gases such as hydrogen to increase oxidation rate, diluent gas such as nitrogen or O | 10-13-2011 |
20110318939 | HIGH ORDER SILANE COMPOSITION AND METHOD OF MANUFACTURING A FILM-COATED SUBSTRATE - A composition comprising a high order silane compound and a solvent, wherein the solvent contains a cyclic hydrocarbon which has one or two double bonds and no alkyl group, is composed of only carbon and hydrogen and has a refractive index of 1.40 to 1.51, a specific permittivity of not more than 3.0 and a molecular weight of not more than 180. | 12-29-2011 |
20120058647 | OXIDATION-PROMOTING COMPOSITIONS, METHODS OF FORMING OXIDE LAYERS, AND METHODS OF FABRICATING SEMICONDUCTOR DEVICES - Provided according to embodiments of the present invention are an oxidation-promoting compositions, methods of forming oxide layers, and methods of fabricating semiconductor devices. In some embodiments of the invention, the oxidation-promoting composition includes an oxidation-promoting agent having a structure of A-M-L, wherein L is a functional group that is chemisorbed to a surface of silicon, silicon oxide, silicon nitride, or metal, A is a thermally decomposable oxidizing functional group, and M is a moiety that allows A and L to be covalently bonded to each other. | 03-08-2012 |
20120064731 | SILICON CARBIDE SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCING THE SAME - A silicon carbide semiconductor device ( | 03-15-2012 |
20120094505 | METHOD FOR SELECTIVE OXIDATION, DEVICE FOR SELECTIVE OXIDATION, AND COMPUTER-READABLE MEMORY MEDIUM - A selective oxidation treatment method in which plasma of a hydrogen gas and an oxygen containing gas is allowed to act on an object to be treated, and in which silicon and a metallic material are exposed in the surface, within a treatment container of a plasma treatment apparatus comprises: after the supply of the hydrogen gas from a hydrogen gas supply source is initiated by using a first inert gas, which passes through a first supply path, as a carrier gas, initiating the supply of the oxygen containing gas from an oxygen containing gas supply source by using a second inert gas, which passes through a second supply path, as a carrier gas before the plasma is ignited; igniting the plasma of a treatment gas including the oxygen containing gas and the hydrogen gas within the treatment container; and selectively oxidizing the silicon by the plasma. | 04-19-2012 |
20120108077 | SUBSTRATE PROCESSING APPARATUS AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD - Disclosed is a substrate processing apparatus that includes: a substrate supporting member that supports a substrate; a processing chamber capable of housing the substrate supporting member; a rotating mechanism that rotates the substrate supporting member; a carrying mechanism that carries out the substrate supporting member from the processing chamber; a material gas supply system that supplies material gas into the processing chamber; a nitrogen-containing-gas supply system that supplies nitrogen containing gas into the processing chamber; and a controller that controls the material gas supply system, the nitrogen-containing-gas supply system, the carrying mechanism, and the rotating mechanism, after forming a nitride film on the substrate by using the material gas and the nitrogen containing gas, to carry out the substrate supporting member that supports the substrate while being rotated from the processing chamber. | 05-03-2012 |
20120270412 | OXIDIZING METHOD AND OXIDIZING APPARATUS - An oxidizing method and oxidizing apparatus in which a plasma generating chamber having an oxidizing gas supply port and a substrate processing chamber having an exhaust port and internally having a substrate susceptor are connected via a partition having a number of through holes, a plasma of an oxidizing gas supplied into the plasma generating chamber is generated, and an oxide layer is formed on a substrate surface by supplying the generated active species onto a substrate are characterized in that the partition is connected to a power supply via a switching mechanism such that a positive, negative, or zero voltage is applied to the partition, and an oxidation process is performed by changing the ratio of radicals, positive ions, and negative ions in the active species supplied onto the substrate by switching the voltages at least once during the oxidation process. | 10-25-2012 |
20130012033 | SILICON OXIDE FILM FORMING METHOD AND PLASMA OXIDATION APPARATUS - A silicon oxide film forming method includes forming a silicon oxide film by allowing a plasma of a processing gas to react on a silicon exposed on a surface of a target object to be processed in a processing chamber of a plasma processing apparatus. The processing gas includes an ozone-containing gas having a volume ratio of O | 01-10-2013 |
20130095669 | SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS - A substrate can be appropriately oxidized, while oxidation of the substrate can be suppressed. | 04-18-2013 |
20140011369 | FILM DEPOSITION APPARATUS, AND METHOD OF DEPOSITING A FILM - A film deposition apparatus forming a thin film by after repeating cycles of sequentially supplying gases to a substrate on a turntable inside a vacuum chamber that includes a first supplying portion for causing the substrate to absorb a first gas containing silicon; a second supplying portion apart from the first supplying portion for supplying a second gas containing active species to produce a silicone dioxide; a separating area between the first and second supplying portions for preventing their mixture; a main heating mechanism for heating the substrate; and an auxiliary mechanism including a heat lamp above the turntable and having a wavelength range absorbable by the substrate to directly heat to be a processing temperature at which an ozone gas is thermally decomposed, wherein a maximum temperature is lower than the thermally decomposed temperature, at which, the first gas is absorbed and oxidized by the second gas. | 01-09-2014 |
20140057456 | Substrate Processing Apparatus and Method of Manufacturing Semiconductor Device - The substrate processing apparatus includes a process chamber; a susceptor configured to support a wafer; lifter pins configured to support the wafer on the susceptor; a gas supply unit configured to supply a gas into the process chamber; a heating unit configured to heat the wafer; an excitation unit configured to excite the gas supplied into the process chamber; an exhaust unit configured to exhaust the inside of the process chamber; and a controller. The controller controls a reducing gas to be supplied into the process chamber in a state in which the wafer is supported by the lifter pins, and controls the gas supply unit to supply an oxidizing gas and a reducing gas into the process chamber in a state in which the wafer is supported by the susceptor. | 02-27-2014 |
20140106573 | Substrate Processing Apparatus and Method of Manufacturing Semiconductor Device - A substrate processing apparatus includes a substrate processing chamber including a plasma generation space where a plasma is generated and a substrate processing space where a substrate is placed during a substrate process; an inductive coupling structure outside the plasma generation space wherein a sum of electrical lengths of a coil of the inductive coupling structure and a waveform adjustment circuit connected to the coil is an integer multiple of a wavelength of an applied power; a substrate mounting table in the substrate processing space and supporting the substrate including grooves having high aspect ratios with a silicon-containing layer disposed thereon; a substrate transfer port at a wall of the substrate processing chamber; a substrate mounting table elevator moving the substrate mounting table upward/downward; an oxygen gas supply system to supply an oxygen-containing gas into the plasma generation space; and an exhaust unit exhausting gas from the substrate processing chamber. | 04-17-2014 |
20140134851 | OZONE GAS GENERATION PROCESSING APPARATUS, METHOD OF FORMING SILICON OXIDE FILM, AND METHOD FOR EVALUATING SILICON SINGLE CRYSTAL WAFER - An ozone gas generation processing apparatus that includes a light source of ultraviolet rays and a wafer placement section, generates ozone gas by irradiating ultraviolet rays from the light source in an atmosphere containing oxygen, and processes a wafer on the wafer placement section with the ozone gas, the ozone gas generation processing apparatus comprising a light-blocking plate that allows the generated ozone gas to pass therethrough and blocks the ultraviolet rays between the light source and the wafer placed on the wafer placement section. An ozone gas generation processing apparatus and a method of forming an oxide film silicon film can make an adjustment to make thinner an oxide film formed on a wafer surface, the wafer surface is not damaged by ultraviolet rays when processed, and a method for evaluating a silicon single crystal wafer, obtaining a more stable measurement value of C-V characteristics are provided. | 05-15-2014 |
20140179116 | IMPROVEMENT OF REVERSE RECOVERY USING OXYGEN-VACANCY DEFECTS - A semiconductor device comprises a semiconductor substrate, a first electrode formed on a first main surface of the semiconductor substrate, and a second electrode formed on a second main surface of the semiconductor substrate. The semiconductor substrate includes a first region in which a density of oxygen-vacancy defects is greater than a density of vacancy cluster defects, and a second region in which the density of vacancy cluster defects is greater than the density of oxygen-vacancy defects. | 06-26-2014 |
20140235068 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, APPARATUS FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND NON-TRANSITORY COMPUTER-READABLE RECORDING MEDIUM - Provided is a method of manufacturing a semiconductor device. The method includes (a) loading a substrate having a silicon-containing film formed thereon into a process chamber; (b) supplying a gas into the process chamber from a gas supply unit until an inner pressure of the process chamber is equal to or greater than atmospheric pressure; and (c) supplying a process liquid from a process liquid supply unit to the substrate to oxidize the silicon-containing film. | 08-21-2014 |
20150140834 | al2o3 surface nucleation preparation with remote oxygen plasma - Methods and apparatus for processing using a plasma source for the treatment of semiconductor surfaces are disclosed. The apparatus includes an outer vacuum chamber enclosing a substrate support, a plasma source (either a direct plasma or a remote plasma), and an optional showerhead. Other gas distribution and gas dispersal hardware may also be used. The plasma source may be used to generate activated species operable to alter the surface of the semiconductor materials. Further, the plasma source may be used to generate activated species operable to enhance the nucleation of deposition precursors on the semiconductor surface. | 05-21-2015 |
20160086797 | SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS - A manufacturing method of a semiconductor device includes generating hydrogen radicals by plasma excitation of hydrogen gas and exposing a surface of a substrate on which silicon and metal are exposed to a reducing atmosphere created with the hydrogen radicals, and generating hydrogen radicals and hydroxyl radicals by plasma excitation of a mixed gas of hydrogen gas and oxygen-containing gas and oxidizing the silicon exposed on the surface of the substrate by exposing the surface of the substrate to the hydrogen radicals and hydroxyl radicals to obtain the substrate on which the metal and oxidized silicon are formed. | 03-24-2016 |
20160118246 | GAPFILL OF VARIABLE ASPECT RATIO FEATURES WITH A COMPOSITE PEALD AND PECVD METHOD - Provided herein are methods and apparatus for filling one or more gaps on a semiconductor substrate. The disclosed embodiments are especially useful for forming seam-free, void-free fill in both narrow and wide features. The methods may be performed without any intervening etching operations to achieve a single step deposition. In various implementations, a first operation is performed using a novel PEALD fill mechanism to fill narrow gaps and line wide gaps. A second operation may be performed using PECVD methods to continue filling the wide gaps. | 04-28-2016 |
438772000 | Microwave gas energizing | 10 |
20090053903 | SILICON OXIDE FILM FORMING METHOD, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND COMPUTER STORAGE MEDIUM - A plasma processing apparatus | 02-26-2009 |
20090233453 | METHODS FOR OXIDATION OF A SEMICONDUCTOR DEVICE - Methods of fabricating an oxide layer on a semiconductor substrate are provided herein. The oxide layer may be formed over an entire structure disposed on the substrate, or selectively formed on a non-metal containing layer with little or no oxidation of an exposed metal-containing layer. The methods disclosed herein may be performed in a variety of process chambers, including but not limited to decoupled plasma oxidation chambers, rapid and/or remote plasma oxidation chambers, and/or plasma immersion ion implantation chambers. In some embodiments, a method may include providing a substrate comprising a metal-containing layer and non-metal containing layer; and forming an oxide layer on an exposed surface of the non-metal containing layer by exposing the substrate to a plasma formed from a process gas comprising a hydrogen-containing gas, an oxygen-containing gas, and at least one of a supplemental oxygen-containing gas or a nitrogen-containing gas. | 09-17-2009 |
20100015815 | PLASMA OXIDIZING METHOD, PLASMA PROCESSING APPARATUS, AND STORAGE MEDIUM - A plasma oxidizing method includes a step of placing an object to be processed and having a surface containing silicon on a susceptor disposed in a processing vessel of a plasma processing apparatus, a step of producing a plasma from a processing gas containing oxygen in the processing vessel, a step of supplying high-frequency electric power to the susceptor and applying a high-frequency bias to the object to be processed when the plasma is produced, and a step of forming a silicon oxide film by oxidizing silicon in the surface of the object to be processed by the plasma. | 01-21-2010 |
20100029093 | PLASMA OXIDIZING METHOD, PLASMA PROCESSING APPARATUS, AND STORAGE MEDIUM - A silicon oxide film forming method includes a step of placing an object to be processed and having a surface having a projecting/recessed pattern and containing silicon in a processing vessel of a plasma processing apparatus, a step of producing a plasma from a processing gas containing oxygen at a proportion of 5 to 20% under a processing pressure of 267 to 400 Pa in the processing vessel, and a step of forming a silicon oxide film by oxidizing silicon in the surface of the object to be processed by the plasma. | 02-04-2010 |
20100093185 | METHOD FOR FORMING SILICON OXIDE FILM, PLASMA PROCESSING APPARATUS AND STORAGE MEDIUM - The present invention provides a method for forming a silicon oxide film, with a substantially uniform film thickness and without being so influenced by dense sites and scattered sites in a pattern provided on an object to be processed, while keeping advantageous points of a plasma oxidation process performed under a lower-pressure and lower-oxygen-concentration condition. In this method, plasma of a processing gas is applied to a surface of the object having a concavo-convex pattern, in a processing chamber of a plasma processing apparatus, so as to oxidize silicon on the surface of the object, thereby forming the silicon oxide film. The plasma is generated under the condition that a ratio of oxygen in the processing gas is within a range of 0.1% to 10% and pressure is within a range of 0.133 Pa to 133.3 Pa. This plasma oxidation process is performed, with a plate, having a plurality of through-holes formed therein, being provided between a region for generating the plasma in the processing chamber and the object to be processed. | 04-15-2010 |
20100093186 | METHOD FOR FORMING SILICON OXIDE FILM, PLASMA PROCESSING APPARATUS AND STORAGE MEDIUM - The present invention provides a method for forming a silicon oxide film, with a substantially uniform film thickness and without being so influenced by dense sites and scattered sites in a pattern provided on an object to be processed, while keeping advantageous points of a plasma oxidation process performed under a lower-pressure and lower-oxygen-concentration condition. In this method, plasma of a processing gas is applied to a surface of the object having a concavo-convex pattern, in a processing chamber of a plasma processing apparatus, so as to oxidize silicon on the surface of the object, thereby forming the silicon oxide film. The plasma is generated under the condition that a ratio of oxygen in the processing gas is within a range of 0.1% to 10% and pressure is within a range of 0.133 Pa to 133.3 Pa. This plasma oxidation process is performed, with a plate, having a plurality of through-holes formed therein, being provided between a region for generating the plasma in the processing chamber and the object to be processed. | 04-15-2010 |
20100105216 | PLASMA OXIDIZING METHOD, STORAGE MEDIUM, AND PLASMA PROCESSING APPARATUS - A plasma oxidizing method in which a plasma is produced in a processing chamber of a plasma processing apparatus under a processing condition that the proportion of oxygen in the processing gas is 20% or more and the processing pressure is 400 to 1333 Pa, and silicon exposed from the surface of an object to be processed is oxidized by the plasma to form a silicon oxide film. | 04-29-2010 |
20100136797 | PLASMA OXIDATION PROCESSING METHOD, PLASMA PROCESSING APPARATUS AND STORAGE MEDIUM - A silicon oxide film is formed in a processing chamber of a plasma processing apparatus by performing oxidation process, by using plasma to a processing object having a patterned irregularity, wherein the plasma is generated while high-frequency power is supplied to a mount table under the conditions that the oxygen content in a process gas is not less than 0.5% and less than 10% and the process pressure is 1.3 to 665 Pa. | 06-03-2010 |
20120252226 | PLASMA PROCESSING METHOD - A plasma processing method performs a plasma oxidation on a substrate, on which a trench is formed after an oxide film is formed, by using a plasma processing apparatus for plasma-processing an object by using microwave plasma. In the plasma processing method, the substrate is mounted on a mounting table to which an ion attraction high frequency voltage is applied, and the plasma oxidation is performed while applying the ion attraction high frequency voltage to the substrate. Further, a process gas used in the plasma oxidation is a mixture of a rare gas having smaller atomic weight than that of argon gas, and oxygen gas, and the plasma processing is performed at a pressure of 6.7 to 133 Pa in a depressurized chamber. | 10-04-2012 |
20140179117 | METHOD FOR FORMING A LAYER ON A SUBSTRATE AT LOW TEMPERATURES - A method for forming an oxide layer on a substrate is described, wherein a plasma is generated adjacent to at least one surface of the substrate by means of microwaves from a gas containing oxygen, wherein the microwaves are coupled into the gas by a magnetron via at least one microwave rod, which is arranged opposite to the substrate and comprises an outer conductor and an inner conductor. During the formation of the oxide layer, the mean microwave power density is set to P=0.8-10 W/cm | 06-26-2014 |