Entries |
Document | Title | Date |
20090011611 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object to provide a method for manufacturing a semiconductor device that has a semiconductor element including a film in which mixing impurities is suppressed. It is another object to provide a method for manufacturing a semiconductor device with high yield. In a method for manufacturing a semiconductor device in which an insulating film is formed in contact with a semiconductor layer provided over a substrate having an insulating surface with use of a plasma CVD apparatus, after an inner wall of a reaction chamber of the plasma CVD apparatus is coated with a film that does not include an impurity to the insulating film, a substrate is introduced in the reaction chamber, and the insulating film is deposited over the substrate. As a result, an insulating film in which the amount of impurities is reduced can be formed. | 01-08-2009 |
20090023299 | Reduction of defects formed on the surface of a silicon oxynitride film - Methods for reducing defects on the surface of a silicon oxynitride film are disclosed. In one embodiment, the methods include forming a silicon oxynitride film on a semiconductor substrate and heating the silicon oxynitride film to increase a hydrophilicity of a surface of the silicon oxynitride film prior to treating the surface of the silicon oxynitride film with a hydrofluoric acid. | 01-22-2009 |
20090117750 | Methods of Forming a Semiconductor Device - The present disclosure relates to methods for forming a high-k gate dielectric, the methods comprising the steps of providing a semiconductor substrate, cleaning the substrate, performing a thermal treatment, and performing a high-k dielectric material deposition, wherein said thermal treatment step is performed in a non-oxidizing ambient, leading to the formation of a thin interfacial layer between said semiconductor substrate and said high-k dielectric material and wherein the thickness of said thin interfacial layer is less than 10 Å. | 05-07-2009 |
20090181548 | VERTICAL PLASMA PROCESSING APPARATUS AND METHOD FOR SEMICONDUCTOR PROCESS - A vertical plasma processing apparatus for a semiconductor process includes a process container having a process field configured to accommodate a plurality of target substrates at intervals in a vertical direction, and a marginal space out of the process field. In processing the target substrates, a control section simultaneously performs supply of a process gas to the process field from a process gas supply circuit and supply of a blocking gas to the marginal space from a blocking gas supply circuit to inhibit the process gas from flowing into the marginal space. | 07-16-2009 |
20090215280 | Passivation of Wide Band-Gap Based Semiconductor Devices with Hydrogen-Free Sputtered Nitrides - A passivated semiconductor structure and associated method are disclosed. The structure includes a silicon carbide substrate or layer; an oxidation layer on the silicon carbide substrate for lowering the interface density between the silicon carbide substrate and the thermal oxidation layer; a first sputtered non-stoichiometric silicon nitride layer on the thermal oxidation layer for reducing parasitic capacitance and minimizing device trapping; a second sputtered non-stoichiometric silicon nitride layer on the first layer for positioning subsequent passivation layers further from the substrate without encapsulating the structure; a sputtered stoichiometric silicon nitride layer on the second sputtered layer for encapsulating the structure and for enhancing the hydrogen barrier properties of the passivation layers; and a chemical vapor deposited environmental barrier layer of stoichiometric silicon nitride for step coverage and crack prevention on the encapsulant layer. | 08-27-2009 |
20090233451 | SEMICONDUCTOR DEVICE HAVING A GATE INSULATING FILM STRUCTURE INCLUDING AN INSULATING FILM CONTAINING METAL, SILICON AND OXYGEN AND MANUFACTURING METHOD THEREOF - Claimed and disclosed is a semiconductor device including a transistor having a gate insulating film structure containing nitrogen or fluorine in a compound, such as metal silicate, containing metal, silicon and oxygen, a gate insulating film structure having a laminated structure of an amorphous metal oxide film and metal silicate film, or a gate insulating film structure having a first gate insulating film including an oxide film of a first metal element and a second gate insulating film including a metal silicate film of a second metal element. | 09-17-2009 |
20090275212 | METHOD AND APPARATUS FOR PROCESSING SEMICONDUCTOR WAFER AFTER IMPURITY IMPLANTATION - A semiconductor wafer implanted with impurities is loaded into a chamber. After oxygen gas is introduced around the semiconductor wafer, the semiconductor wafer is irradiated with a flash of light from flash lamps for an irradiation time not shorter than 0.1 milliseconds and not longer than 100 milliseconds, to thereby momentarily raise the surface temperature of the semiconductor wafer up to not lower than 800° C. and not higher than 1300° C. Since the temperature rises in an extremely short time, it is possible to activate the impurities while suppressing thermal diffusion thereof. Further, since an extremely thin oxide film is formed on a surface of the semiconductor wafer, this film serves as a protection film in a subsequent cleaning process, to prevent removal of the impurities. | 11-05-2009 |
20100003833 | METHOD OF FORMING FLUORINE-CONTAINING DIELECTRIC FILM - A method of forming a fluorine-containing dielectric film on a substrate by plasma CVD, includes: introducing as a process gas a fluorinated carbon compound having at least two double bonds in its molecule and an unsaturated hydrocarbon compound into a reaction space wherein a substrate is placed; and applying RF power to the reaction space to deposit a fluorine-containing dielectric film on the substrate by plasma CVD. | 01-07-2010 |
20110076857 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE AND SUBSTRATE PROCESSING APPARATUS - Provided is a method of manufacturing a semiconductor device. The method includes: loading a substrate into a process vessel; performing a process to form an oxide, nitride, or oxynitride film on the substrate by alternately repeating: (a) forming a layer containing a predetermined element on the substrate by supplying and exhausting first and second source gases containing the element into and from the process vessel; and (b) changing the layer containing the element into an oxide, nitride, or oxynitride layer by supplying and exhausting reaction gas different from the first and second source gases into and from the process vessel; and unloading the substrate from the process vessel. The first source gas is more reactive than the second source gas, and an amount of the first source gas supplied into the process vessel is set to be less than that of the second source gas supplied into the process vessel. | 03-31-2011 |
20130252437 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, METHOD OF PROCESSING SUBSTRATE, SUBSTRATE PROCESSING APPARATUS, AND RECORDING MEDIUM - A method of manufacturing a semiconductor device includes forming a thin film on a substrate by performing a cycle a predetermined number of times. The cycle includes supplying a source gas to the substrate, and supplying excited species from each of a plurality of excitation units provided at a side of the substrate to the substrate. Each of the plurality of excitation units generates the excited species by plasma-exciting a reaction gas. In supplying the excited species from each of the plurality of excitation units, an in-plane distribution of the excited species supplied from at least one of the plurality of excitation units in the substrate differs from an in-plane distribution of the excited species supplied from another excitation unit, other than the at least one excitation unit, among the plurality of excitation units, in the substrate. | 09-26-2013 |
20150093913 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, SUBSTRATE PROCESSING APPARATUS, AND RECORDING MEDIUM - A method of manufacturing a semiconductor device includes supplying a precursor gas to a substrate; supplying a reaction gas to a plasma generation region; supplying high frequency power to the plasma generation region; and generating plasma of the reaction gas by adjusting a pressure of the plasma generation region to a first pressure before the reaction gas is supplied and adjusting the pressure of the plasma generation region to a second pressure lower than the first pressure while the reaction gas and the high frequency power are supplied. | 04-02-2015 |
20150147891 | Method of Manufacturing Semiconductor Device, Substrate Processing Apparatus and Non-Transitory Computer-Readable Recording Medium - A thin film having a high resistance to HF and a low dielectric constant is formed with high productivity. A method of manufacturing a semiconductor device, includes performing a cycle a predetermined number of times, the cycle including: (a) supplying a source gas containing a predetermined element, carbon and a halogen element and having a chemical bond between the predetermined element and carbon to a substrate; and (b) supplying a reactive gas including a borazine compound to the substrate, wherein the cycle is performed under a condition where a borazine ring structure in the borazine compound and at least a portion of the chemical bond between the predetermined element and carbon in the source gas are preserved to form a thin film including the borazine ring structure and the chemical bond between the predetermined element and carbon on the substrate. | 05-28-2015 |
20160133454 | SYSTEM AND METHOD FOR TREATING A SUBSTRATE - Disclosed are systems and methods for treating a substrate. The method may include supplying supercritical carbon dioxide into a chamber to treat a substrate. Here, temperature and pressure of the chamber is maintained to allow carbon dioxide to be directly changed from a gas state to a supercritical state when the carbon dioxide is supplied into the chamber. | 05-12-2016 |