Class / Patent application number | Description | Number of patent applications / Date published |
438711000 | Utilizing multiple gas energizing means | 29 |
20080233757 | PLASMA PROCESSING METHOD - A plasma processing method for processing a target substrate uses a plasma processing apparatus which includes a vacuum evacuable processing vessel for accommodating the target substrate therein, a first electrode disposed in the processing vessel and connected to a first RF power supply for plasma generation and a second electrode disposed to face the first electrode. The method includes exciting a processing gas containing fluorocarbon in the processing vessel to generate a plasma while applying a negative DC voltage having an absolute value ranging from about 100 V to 1500 V or an RF power of a frequency lower than about 4 MHz to the second electrode. The target layer is etched by the plasma, thus forming recesses on the etching target layer based on the pattern of the resist layer. | 09-25-2008 |
20080254637 | Methods for removing photoresist defects and a source gas for same - A method for removing at least one photoresist defect is disclosed. The photoresist defect is exposed to a plasma produced from a source gas including oxygen and a non-oxidizing gas in a plasma reactor, wherein the oxygen is present in the source gas at from 1% by volume to about 89% by volume. The non-oxidizing gas includes a mixture of hydrogen and nitrogen, ammonia or combinations thereof. A method for processing a semiconductor device structure is also disclosed, as are embodiments of the source gas. | 10-16-2008 |
20080261405 | HYDROGEN ASHING ENHANCED WITH WATER VAPOR AND DILUENT GAS - An oxygen-free hydrogen plasma ashing process particularly useful for low-k dielectric materials based on hydrogenated silicon oxycarbide materials. The main ashing step includes exposing a previously etched dielectric layer to a plasma of hydrogen and optional nitrogen, a larger amount of water vapor, and a yet larger amount of argon or helium. Especially for porous low-k dielectrics, the main ashing plasma additionally contains a hydrocarbon gas such as methane. The main ashing may be preceded by a short surface treatment by a plasma of a hydrogen-containing reducing gas such as hydrogen and optional nitrogen. | 10-23-2008 |
20080274622 | Plasma Processing, Deposition and ALD Methods - A plasma processing method includes providing a substrate in a processing chamber, the substrate having a surface, and generating a plasma in the processing chamber. The plasma provides at least two regions that exhibit different plasma densities. The method includes exposing at least some of the surface to both of the at least two regions. Exposing the surface to both of the at least two regions may include rotating the plasma and may cyclically expose the surface to the plasma density differences. Exposing to both of the at least two regions may modify a composition and/or structure of the surface. The plasma may include a plasmoid characterized by a steady state plasma wave providing multiple plasma density lobes uniformly distributed about an axis of symmetry and providing plasma between the lobes exhibiting lower plasma densities. Depositing the layer can include ALD and exposure may remove an ALD precursor ligand. | 11-06-2008 |
20090142929 | Method for plasma processing over wide pressure range - A method for treating a substrate with plasma over a wide pressure range is described. The method comprises exposing the substrate to a low pressure plasma in a process chamber. Further, the method comprises exposing the substrate to a high pressure plasma in the process chamber. | 06-04-2009 |
20090142930 | Gate profile control through effective frequency of dual HF/VHF sources in a plasma etch process - A method of processing a wafer in a plasma, in which target values of two different plasma process parameters are simultaneously realized under predetermined process conditions by setting respective power levels of VHF and HF power simultaneously coupled to the wafer to respective optimum levels. | 06-04-2009 |
20100015809 | ORGANIC LINE WIDTH ROUGHNESS WITH H2 PLASMA TREATMENT - A method for reducing very low frequency line width roughness (LWR) in forming etched features in an etch layer disposed below a patterned organic mask is provided. The patterned organic mask is treated to reduce very low frequency line width roughness of the patterned organic mask, comprising flowing a treatment gas comprising H | 01-21-2010 |
20110039415 | METHOD OF FABRICATING DUAL DAMASCENE STRUCTURE - A semiconductor wafer includes a substrate, a conductive layer, a dielectric layer having a via, a hard mask defined a trench pattern, and a sacrificial layer. Then a sequential of etching processes is performed upon the semiconductor wafer in a chamber to form a trench and expose the conductive layer. By operating all procedures within one chamber, manufacturing time is efficiently shortened and yield is thus increased. | 02-17-2011 |
20110059616 | METHOD FOR PROCESSING A TARGET OBJECT - A method for processing a target object includes arranging a first electrode and a second electrode for supporting the target object in parallel to each other in a processing chamber and processing the target object supported by the second electrode by using a plasma of a processing gas supplied into the processing chamber, the plasma being generated between the first electrode and the second electrode by applying a high frequency power between the first electrode and the second electrode. The target object includes an organic film and a photoresist layer formed on the organic film. The processing gas contains H | 03-10-2011 |
20120009796 | POST-ASH SIDEWALL HEALING - Methods of decreasing the effective dielectric constant present between two conducting components of an integrated circuit are described. The methods involve the use of a gas phase etch which is selective towards the oxygen-rich portion of the low-K dielectric layer. The etch rate attenuates as the etch process passes through the relatively high-K oxygen-rich portion and reaches the low-K portion. The etch process may be easily timed since the gas phase etch process does not readily remove the desirable low-K portion. | 01-12-2012 |
20120083128 | METHOD FOR ETCHING HIGH-ASPECT-RATIO FEATURES - A method for etching high-aspect-ratio features is disclosed. The method is applicable in forming a nanoscale deep trench having a smooth and angle-adjustable sidewall. The method includes: forming a patterned photoresist layer on a surface of a silicon substrate for exposing a part of the silicon substrate; and supplying a process gas simultaneously containing sulfur hexafluoride (SF | 04-05-2012 |
20120088371 | METHODS FOR ETCHING SUBSTRATES USING PULSED DC VOLTAGE - Methods for etching substrates using a pulsed DC voltage are provided herein. In some embodiments, a method for method for etching a substrate disposed on a substrate support within a process chamber may include providing a process gas to the process chamber; forming a plasma from the process gas; applying a pulsed DC voltage to a first electrode disposed within the process chamber; and etching the substrate while applying the pulsed DC voltage. | 04-12-2012 |
20120289053 | Semiconductor Processing System Having Multiple Decoupled Plasma Sources - A semiconductor substrate processing system includes a substrate support defined to support a substrate in exposure to a processing region. The system also includes a first plasma chamber defined to generate a first plasma and supply reactive constituents of the first plasma to the processing region. The system also includes a second plasma chamber defined to generate a second plasma and supply reactive constituents of the second plasma to the processing region. The first and second plasma chambers are defined to be independently controlled. | 11-15-2012 |
20120289054 | Semiconductor Processing System Having Multiple Decoupled Plasma Sources - A semiconductor substrate processing system includes a chamber that includes a processing region and a substrate support. The system includes a top plate assembly disposed within the chamber above the substrate support. The top plate assembly includes first and second sets of plasma microchambers each formed into the lower surface of the top plate assembly. A first network of gas supply channels are formed through the top plate assembly to flow a first process gas to the first set of plasma microchambers to be transformed into a first plasma. A set of exhaust channels are formed through the top plate assembly. The second set of plasma microchambers are formed inside the set of exhaust channels. A second network of gas supply channels are formed through the top plate assembly to flow a second process gas to the second set of plasma microchambers to be transformed into a second plasma. | 11-15-2012 |
20130023127 | METHOD OF FORMING A CONTACT HOLE AND APPARATUS FOR PERFORMING THE SAME - A method of forming a contact hole includes loading a substrate into a plasma chamber, the substrate including an etch stop layer, an insulation interlayer, a mask layer and a photoresist pattern sequentially disposed thereon, applying a DC voltage to an upper electrode and applying a first high frequency power and a second high frequency power to a lower electrode to generate plasma in the chamber, the first frequency power and second high frequency powers having different frequency levels, supplying a reaction gas to the chamber to etch the mask layer and the insulation interlayer, wherein the chamber is maintained at a temperature of 100° C. to 200° C.; and etching the etch stop layer to form a contact hole | 01-24-2013 |
20130059448 | Pulsed Plasma Chamber in Dual Chamber Configuration - Embodiments for processing a substrate in a pulsed plasma chamber are provided. A processing apparatus with two chambers, separated by a plate fluidly connecting the chambers, includes a continuous wave (CW) controller, a pulse controller, and a system controller. The CW controller sets the voltage and the frequency for a first radio frequency (RF) power source coupled to a top electrode. The pulse controller is operable to set voltage, frequency, ON-period duration, and OFF-period duration for a pulsed RF signal generated by a second RF power source coupled to the bottom electrode. The system controller is operable to set parameters to regulate the flow of species between the chambers to assist in the negative-ion etching, to neutralize excessive positive charge on the wafer surface during afterglow in the OFF period, and to assist in the re-striking of the bottom plasma during the ON period. | 03-07-2013 |
20130122711 | SYSTEM, METHOD AND APPARATUS FOR PLASMA SHEATH VOLTAGE CONTROL - A system, method and apparatus for increasing an energy level of the ions emitted from a plasma include a plasma chamber, including a top electrode and a bottom electrode, a multiple RF sources, at least one of the RF sources being coupled to the bottom electrode. A phase locking circuit is coupled to at least two of the RF sources hereafter designated the first RF source and the second RF source. A controller is coupled to the plasma chamber, each of the RF sources and the phase locking circuit. The controller including operating system software, multiple logic circuits and a process recipe. | 05-16-2013 |
20140057447 | SEMICONDUCTOR PROCESSING WITH DC ASSISTED RF POWER FOR IMPROVED CONTROL - Semiconductor processing systems are described including a process chamber. The process chamber may include a lid assembly, grid electrode, conductive insert, and ground electrode. Each component may be coupled with one or more power supplies operable to produce a plasma within the process chamber. Each component may be electrically isolated through the positioning of a plurality of insulation members. The one or more power supplies may be electrically coupled with the process chamber with the use of switching mechanisms. The switches may be switchable to electrically couple the one or more power supplies to the components of the process chamber. | 02-27-2014 |
20140141619 | CAPACITIVELY COUPLED PLASMA EQUIPMENT WITH UNIFORM PLASMA DENSITY - Techniques disclosed herein include apparatus and processes for generating a plasma having a uniform electron density across an electrode used to generate the plasma. An upper electrode (hot electrode), of a capacitively coupled plasma system can include structural features configured to assist in generating the uniform plasma. Such structural features define a surface shape, on a surface that faces the plasma. Such structural features can include a set of concentric rings having an approximately rectangular cross section, and protruding from the surface of the upper electrode. Such structural features can also include nested elongated protrusions having a cross-sectional size and shape, with spacing of the protrusions selected to result in a system that generates a uniform density plasma. | 05-22-2014 |
20140162462 | HIGH FREQUENCY FILTER FOR IMPROVED RF BIAS SIGNAL STABILITY - A plasma-assisted etch process for the manufacture of semiconductor or MEMS devices employs an RF source to generate a plasma that is terminated through an electrode. The termination is designed as a “short” at the frequency of the RF source to minimize voltage fluctuations on the electrode due to the RF source energy. The electrode voltage potential can then be accurately controlled with a bias source, resulting in improved control of etch depth of a semiconductor substrate disposed on the electrode. | 06-12-2014 |
20140199848 | ELECTRON BEAM PLASMA CHAMBER - A method and apparatus for tailoring the formation of active species using one or more electron beams to improve gap-fill during an integrated circuit formation process is disclosed herein. The energy of the electron beams may be decreased to maximize electrons leading to radicals or increased to maximize electrons leading to ions, depending on the fill application. An apparatus comprising multiple impinging jets of gas perpendicular to one or more electron beams is also disclosed. | 07-17-2014 |
20140302682 | METHOD AND APPARATUS FOR PLASMA PROCESSING - The present invention provides a plasma processing method that uses a plasma processing apparatus including a plasma processing chamber in which a sample is plasma processed, a first radio-frequency power supply that supplies a first radio-frequency power for generating plasma, and a second radio-frequency power supply that supplies a second radio-frequency power to a sample stage on which the sample is mounted, wherein the plasma processing method includes the steps of modulating the first radio-frequency power by a first pulse; and controlling a plasma dissociation state to create a desired dissociation state by gradually controlling a duty ratio of the first pulse as a plasma processing time elapses. | 10-09-2014 |
20140329390 | PLASMA TREATMENT METHOD AND PLASMA TREATMENT DEVICE - A plasma treatment device includes a dielectric window containing SiO | 11-06-2014 |
20140363977 | PLASMA PROCESSING APPARATUS AND PLASMA PROCESSING METHOD - In a plasma processing apparatus including a first radio-frequency power supply which supplies first radio-frequency power for generating plasma in a vacuum chamber, a second radio-frequency power supply which supplies second radio-frequency power to a sample stage on which a sample is mounted, and a matching box for the second radio-frequency power supply, the matching box samples information for performing matching during a sampling effective period which is from a point of time after elapse of a prescribed time from a beginning of on-state of the time-modulated second radio-frequency power until an end of the on-state and maintains a matching state attained during the sampling effective period from after the end of the on-state until a next sampling effective period. | 12-11-2014 |
20150024603 | PLASMA ETCHING METHOD AND PLASMA ETCHING APPARATUS - In a plasma etching method for etching a metal layer of a substrate to be processed through a hard mask by using a plasma etching apparatus, a first step in which a first etching gas comprising a mixed gas of O | 01-22-2015 |
20150079797 | SELECTIVE ETCH OF SILICON NITRIDE - A method of etching silicon nitride on patterned heterogeneous structures is described and includes a remote plasma etch formed from a fluorine-containing precursor and a nitrogen-and-oxygen-containing precursor. Plasma effluents from two remote plasmas are flowed into a substrate processing region where the plasma effluents react with the silicon nitride. The plasmas effluents react with the patterned heterogeneous structures to selectively remove silicon nitride while very slowly removing silicon, such as polysilicon. The silicon nitride selectivity results partly from the introduction of fluorine-containing precursor and nitrogen-and-oxygen-containing precursor using distinct (but possibly overlapping) plasma pathways which may be in series or in parallel. | 03-19-2015 |
20150126037 | NON-AMBIPOLAR PLASMA EHNCANCED DC/VHF PHASOR - This disclosure relates to a plasma processing system for controlling plasma density across a substrate and maintaining a tight ion energy distribution within the plasma. In one embodiment, this may include using a dual plasma chamber system including a non-ambipolar plasma chamber and a DC plasma chamber adjacent to the non-ambipolar system. The DC plasma chamber provide power to generate the plasma by rotating the incoming power between four inputs from a VHF power source. In one instance, the power to each of the four inputs are at least 90 degrees out of phase from each other. | 05-07-2015 |
20160379856 | ETCHING METHOD AND PLASMA PROCESSING APPARATUS - An etching method is provided. In the etching method, a silicon oxide film is etched by using plasma in a first condition. In the first condition, a surface temperature of a substrate is controlled to have a temperature lower than −35 degrees C., and the plasma is generated from a hydrogen-containing gas and a fluorine-containing gas by using first radio frequency power output from a first radio frequency power source and second radio frequency power output from a second radio frequency power source. Next, the silicon oxide film is etched by using the plasma in a second condition. In the second condition, the output of the second radio frequency power from the second radio frequency power source is stopped. The silicon oxide film is etched by using the plasma alternately in the first condition and in the second condition multiple times. | 12-29-2016 |
20190148155 | SUBSTRATE PROCESSING METHOD AND SUBSTRATE PROCESSING APPARATUS | 05-16-2019 |