Class / Patent application number | Description | Number of patent applications / Date published |
438656000 | Having refractory group metal (i.e., titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), tungsten (W), or alloy thereof) | 49 |
20080227291 | FORMATION OF COMPOSITE TUNGSTEN FILMS - Embodiments of the invention provide methods for depositing tungsten materials. In one embodiment, a method for forming a composite tungsten film is provided which includes positioning a substrate within a process chamber, forming a tungsten nucleation layer on the substrate by subsequently exposing the substrate to a tungsten precursor and a reducing gas containing hydrogen during a cyclic deposition process, and forming a tungsten bulk layer during a plasma-enhanced chemical vapor deposition (PE-CVD) process. The PE-CVD process includes exposing the substrate to a deposition gas containing the tungsten precursor while depositing the tungsten bulk layer over the tungsten nucleation layer. In some example, the tungsten nucleation layer has a thickness of less than about 100 Å, such as about 15 Å. In other examples, a carrier gas containing hydrogen is constantly flowed into the process chamber during the cyclic deposition process. | 09-18-2008 |
20080293242 | METAL SPACER IN SINGLE AND DUAL DAMASCENE PROCESSING - A method and structure for a single or dual damascene interconnect structure comprises forming wiring lines in a metallization layer over a substrate, shaping a laminated insulator stack above the metallization layer, patterning a hardmask over the laminated insulator stack, forming troughs in the hardmask, patterning the laminated insulator stack, forming vias in the patterned laminated insulator stack, creating sidewall spacers in the bottom portion of the vias, depositing an anti-reflective coating on the sidewall spacers, etching the troughs, removing the anti-reflective coating, depositing a metal layer in the troughs, vias, and sidewall spacers, and applying conductive material in the troughs and the vias. The laminated insulator stack comprises a dielectric layer further comprising oxide and polyarylene. | 11-27-2008 |
20080311741 | Selective W-Cvd Method and Method for Forming Multi-Layered Cu Electrical Interconnection - A substrate provided thereon with an electrical insulating film which carries holes or the like filled with a Cu-containing electrical interconnection film is subjected to a pre-treatment in which the surface of the electrical insulating film and that of the Cu-containing electrical interconnection film are treated at a temperature of not more than 300° C. using, in a predetermined state, a gas of a compound containing an atom selected from the group consisting of N, H and Si atoms within the chemical formula thereof, before selectively forming a W-capping film on the electrical interconnection film. After the completion of the pre-treatment, a W-capping film is selectively formed on the electrical interconnection film and then an upper Cu electrical interconnection is further formed. | 12-18-2008 |
20090017616 | METHOD FOR FORMING CONDUCTIVE STRUCTURES - A method of forming a method a conductive wire. The method includes forming a dielectric hardmask layer on a dielectric layer; forming an electrically conductive hardmask layer on the dielectric hardmask layer; forming a trench extending through the conductive and dielectric hardmask layers into the dielectric layer; depositing a liner/seed layer on the conductive hardmask layer and the sidewalls and bottom of the trench; filling the trench with a fill material; removing the liner/seed layer from the top surface of the conductive hardmask layer; removing the fill material from the trench; electroplating a metal layer onto exposed surfaces of the conductive hardmask layer and liner/seed layer; and removing the metal layer and the conductive hardmask layer from the dielectric hardmask layer so the metal layer and edges of the liner/seed layer are coplanar with the top surface of the dielectric hardmask layer. | 01-15-2009 |
20090061622 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE CAPABLE OF PREVENTING LIFTING OF AMORPHOUS CARBON LAYER FOR HARD MASK - In a method for manufacturing a semiconductor device, a conductive layer is formed on a semiconductor substrate. A surface of the conductive layer is then treated by plasma. After the conductive layer is treated, an amorphous carbon layer for a hard mask is formed on the surface of the conductive layer that has been treated by the plasma. | 03-05-2009 |
20090068835 | METHOD OF FABRICATING ULTRA-DEEP VIAS AND THREE-DIMENSIONAL INTEGRATED CIRCUITS USING ULTRA-DEEP VIAS - A method of forming a high aspect ratio via opening through multiple dielectric layers, a high aspect ratio electrically conductive via, methods of forming three-dimension integrated circuits, and three-dimensional integrated circuits. The methods include forming a stack of at least four dielectric layers and etching the first and third dielectric layers with processes selective to the second and fourth dielectric layers, etching the second and third dielectric layers with processes selective to the first and second dielectric layers. Advantageously the process used to etch the third dielectric layer is not substantially selective to the first dielectric layer. | 03-12-2009 |
20090068836 | METHOD OF FORMING CONTACT PLUG OF SEMICONDUCTOR DEVICE - The present invention relates to a method of forming contact plugs of a semiconductor device. According to the method, a first insulating layer is formed over a semiconductor substrate in which a cell region and a peri region are defined and a first contact plug is formed in the peri region. The first insulating layer is etched using an etch process, thus forming contact holes through which junctions are exposed in the cell region and the first contact plug is exposed in the peri region. Second contact plugs are formed in the contact holes. The second contact plug formed within the contact hole of the peri region are removed using an etch process. A spacer is formed on sidewalls of the contact holes. Third contact plugs are formed within the contact holes. | 03-12-2009 |
20090117734 | PROCESSES FOR FORMING ELECTRONIC DEVICES INCLUDING POLISHING METAL-CONTAINING LAYERS - A process of forming an electronic device can include providing a workpiece. The workpiece can include a substrate, an interlevel dielectric overlying the substrate, a refractory-metal-containing layer over the interlevel dielectric, and a first metal-containing layer over the refractory-metal-containing layer. The first metal-containing layer can include a metal element other than a refractory metal element. The process further includes polishing the first metal-containing layer and the refractory-metal-containing layer as a continuous action to expose the interlevel dielectric. In one embodiment, the metal element can include copper, nickel, or a noble metal. In another embodiment, polishing can be performed using a selectivity agent to reduce the amount of the interlevel dielectric removed. | 05-07-2009 |
20090130845 | DIRECT ELECTRODEPOSITION OF COPPER ONTO TA-ALLOY BARRIERS - A method of depositing copper directly onto a tantalum alloy layer of an on-chip copper interconnect structure, which includes electrodepositing copper from a neutral or basic electrolyte onto a surface of a tantalum alloy layer, in which the tantalum alloy layer is deposited on a substrate of the on-chip copper interconnect structure, and in which the copper nucleates onto the surface of the tantalum alloy layer without use of a seed layer to form a copper conductor. | 05-21-2009 |
20090246953 | Method for Manufacturing Semiconductor Device - It is an object of the present invention to provide a semiconductor device including a wiring having a preferable shape. A manufacturing method includes the steps of forming a first conductive layer connected to an element and a second conductive layer thereover; forming a resist mask over the second conductive layer; processing the second conductive layer by dry etching with the use of the mask; and processing the first conductive layer by wet etching with the mask left, wherein the etching rate of the second conductive layer is higher than that of the first conductive layer in the dry etching, and wherein the etching rate of the second conductive layer is the same as or more than that of the first conductive layer in the wet etching. | 10-01-2009 |
20090263966 | APPARATUS FOR SPUTTERING AND A METHOD OF FABRICATING A METALLIZATION STRUCTURE - A method of depositing a metallization structure ( | 10-22-2009 |
20090275197 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A hole is formed in an insulating layer. A semiconductor substrate is heated at a temperature of equal to or more than 330° C. and equal to or less than 400° C. Tungsten-containing gas and at least one of B | 11-05-2009 |
20090280643 | OPTIMAL TUNGSTEN THROUGH WAFER VIA AND PROCESS OF FABRICATING SAME - A method of optimally filling a through via within a through wafer via structure with a conductive metal such as, for example, W is provided. The inventive method includes providing a structure including a substrate having at least one aperture at least partially formed through the substrate. The at least one aperture of the structure has an aspect ratio of at least 20:1 or greater. Next, a refractory metal-containing liner such as, for example, Ti/TiN, is formed on bare sidewalls of the substrate within the at least one aperture. A conductive metal seed layer is then formed on the refractory metal-containing liner. In the invention, the conductive metal seed layer formed is enriched with silicon and has a grain size of about 5 nm or less. Next, a conductive metal nucleation layer is formed on the conductive metal seed layer. The conductive metal nucleation layer is also enriched with silicon and has a grain size of about 20 nm or greater. Next, a conductive metal is formed on the conductive metal nucleation layer. After performing the above processing steps, a backside planarization process is performed to convert the at least one aperture into at least one through via that is now optimally filled with a conductive metal. | 11-12-2009 |
20100105205 | CLEANING SOLUTION AND SEMICONDCUTOR PROCESS USING THE SAME - A semiconductor process is provided. First, a metal layer, a dielectric layer and a patterned hard mask layer are sequentially formed on a substrate. Thereafter, a portion of the dielectric layer is removed to form an opening exposing the metal layer. Afterwards, a cleaning solution is used to clean the opening. The cleaning solution includes a triazole compound with a content of 0.00275 to 3 wt %, sulfuric acid with a content of 1 to 10 wt %, hydrofluoric acid with a content of 1 to 200 ppm and water. | 04-29-2010 |
20100240214 | METHOD OF FORMING MULTI METAL LAYERS THIN FILM ON WAFER - A method of forming the multi metal layers thin film has Ti sputtered on top surface of a substrate by PVD first. Then, Ti is transformed into TiN via CVD. Thus, by skipping the extra process steps of wafer cleaning and surface treating, the method not only solves the stress problems between two different metal layers but also improves the cycle time and particle performance for the production without any yield impact. | 09-23-2010 |
20100273323 | PRE-TREATMENT METHOD TO INCREASE COPPER ISLAND DENSITY OF CU ON BARRIER LAYERS - A method for producing on-chip interconnect structures on a substrate is provided, comprising at least the steps of providing a substrate and depositing a ruthenium-comprising layer on top of said substrate, and then performing a pre-treatment of the Ru-comprising layer electrochemically with an HBF | 10-28-2010 |
20110027988 | METHOD FOR FORMING BURIED WORD LINE IN SEMICONDUCTOR DEVICE - Provided is a method for forming a buried word line in a semiconductor device. The method includes forming a trench by etching a pad layer and a substrate, forming a conductive layer to fill the trench, planarizing the conductive layer until the pad layer is exposed, performing an etch-back process on the planarized conductive layer, and performing an annealing process in an atmosphere of a nitride-based gas after at least one of the forming of the conductive layer, the planarizing of the conductive layer, and the performing of the etch-back process on the planarized conductive layer. | 02-03-2011 |
20110129997 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A method for manufacturing a semiconductor device according to the present invention includes the following step: a step (S | 06-02-2011 |
20110151664 | METHOD OF MANUFACTURING MULTI-LEVEL METAL THIN FILM AND APPARATUS FOR MANUFACTURING THE SAME - Provided are methods and apparatuses for manufacturing a multilayer metal thin film without additional heat treatment processes. The method of manufacturing a multilayer metal thin film including steps of: (a) forming a first metal layer on a substrate by flowing a first metal precursor into a first reaction container; and (b) forming a second metal layer on the first metal layer by flowing a second metal precursor into a second reaction container, wherein the step (b) is performed in a range of a heat treatment temperature of the first metal layer so that the second metal layer is formed as the first metal layer is heat-treated. | 06-23-2011 |
20110256718 | THIN FILMS - Thin films are formed by formed by atomic layer deposition, whereby the composition of the film can be varied from monolayer to monolayer during cycles including alternating pulses of self-limiting chemistries. In the illustrated embodiments, varying amounts of impurity sources are introduced during the cyclical process. A graded gate dielectric is thereby provided, even for extremely thin layers. The gate dielectric as thin as 2 nm can be varied from pure silicon oxide to oxynitride to silicon nitride. Similarly, the gate dielectric can be varied from aluminum oxide to mixtures of aluminum oxide and a higher dielectric material (e.g., ZrO | 10-20-2011 |
20110269309 | PHOTORESIST COMPOSITION, METHOD OF FORMING PATTERN BY USING THE PHOTORESIST COMPOSITION, AND METHOD OF MANUFACTURING THIN-FILM TRANSISTOR SUBSTRATE - Provided are a photoresist composition having superior adhesion to an etch target film, a method of forming a pattern by using the photoresist composition, and a method of manufacturing a thin-film transistor (TFT) substrate. The photoresist composition includes an alkali-soluble resin; a photosensitive compound; a solvent; and 0.01 to 0.1 parts by weight of a compound represented by Formula 1: | 11-03-2011 |
20110312178 | METHOD FOR MANUFACTURING SEMICONDUCTOR MEMORY ELEMENT AND SPUTTERING APPARATUS - The present invention provides a method for manufacturing a semiconductor memory element including a chalcogenide material layer and an electrode layer, each having an improved adhesion, and a sputtering apparatus thereof. One embodiment of the present invention is the method for manufacturing a semiconductor memory element including: a first step of forming the chalcogenide material layer ( | 12-22-2011 |
20120077340 | CONDUCTIVE LINE STRUCTURE AND THE METHOD OF FORMING THE SAME - The conductive line structure of a semiconductor device including a base; at least one patterned conductive layer formed over the base; a conductive line formed over the at least one patterned conductive layer; a protection layer that encompasses the top surface and sidewall of the conductive line to prevent undercut generated by etching. The structure further comprises an underlying layer under the conductive line. The underlying layer includes Ni, Cu or Pt. The conductive line includes gold or copper. The at least one patterned conductive layer includes at least Ti/Cu. The protection layer includes electro-less plating Sn, Au, Ag or Ni. | 03-29-2012 |
20120100713 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A semiconductor device and a method for forming the same are disclosed. In the method for manufacturing the semiconductor device, a lower electrode material is deposited over a semiconductor substrate including a lower electrode contact plug so as to form a sacrificial insulation film. After the sacrificial insulation film and a lower electrode material are etched using a dry etching process, additional lower electrode material is deposited and etched back so as to form a lower electrode. As a result, a margin or region between a lower electrode contact plug and the lower electrode can be guaranteed. | 04-26-2012 |
20120115324 | METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE HAVING A REFRACTORY METAL CONTAINING FILM - A semiconductor device and a method for manufacturing the same of the present invention in which the semiconductor device is provided with a fuse structure or an electrode pad structure, suppress the copper blowing-out from a copper containing metal film. The semiconductor device comprises a silicon substrate, SiO | 05-10-2012 |
20120115325 | ION-INDUCED ATOMIC LAYER DEPOSITION OF TANTALUM - Systems, methods, and apparatus for depositing a tantalum layer on a wafer substrate are disclosed. In one aspect, a tantalum layer may be deposited on a surface of a wafer substrate using an ion-induced atomic layer deposition process with a tantalum precursor. A copper layer may be deposited on the tantalum layer. | 05-10-2012 |
20120315757 | METHOD OF FORMING WIRING AND METHOD OF MANUFACTURING SEMICONDUCTOR SUBSTRATES - Disclosed is a method of forming wiring. The method includes the steps of: depositing a metal thin film ( | 12-13-2012 |
20120322258 | MODULATED DEPOSITION PROCESS FOR STRESS CONTROL IN THICK TiN FILMS - A multi-layer TiN film with reduced tensile stress and discontinuous grain structure, and a method of fabricating the TiN film are disclosed. The TiN layers are formed by PVD or IMP in a nitrogen plasma. Tensile stress in a center layer of the film is reduced by increasing N | 12-20-2012 |
20120329274 | METHOD OF FABRICATING A CELL CONTACT AND A DIGIT LINE FOR A SEMICONDUCTOR DEVICE - The present invention proposes the use of a silicon nitride layer on top of a second conductive layer. After a step of etching a second conductive layer, an oxide spacer is formed to define a gap. Then, another silicon nitride layer fills up the gap. After that, the oxide spacer is removed. Later, a first conductive layer is etched to separate the digit line to cell contact line. | 12-27-2012 |
20130078801 | MANUFACTURE METHODS OF DOUBLE LAYER GATE ELECTRODE AND RELEVANT THIN FILM TRANSISTOR - Disclosed is a manufacture method of a double layer gate electrode by patterning the photoresist layer with a half tone mask to make thicknesses of two sides of the photoresist layer are smaller than a thickness of middle of the photoresist layer and twice wet etchings thereafter to realize the manufacture of the double layer gate electrode. The present invention also relates to a manufacture method of a thin film transistor. The manufacture methods of a double layer gate electrode and a relevant thin film transistor according to the present invention employs half tone mask and twice wet etchings thereafter for manufacturing the gate electrode to solve technical problems of high manufacture cost and great manufacture difficulty of double layer gate electrodes according to prior arts. | 03-28-2013 |
20130196504 | TRANSFER SUBSTRATE FOR FORMING METAL WIRING AND METHOD FOR FORMING METAL WIRING USING SAID TRANSFER SUBSTRATE - The present invention provides a transfer substrate for transferring a metal wiring material to a transfer-receiving object, the transfer substrate comprising a substrate, at least one metal wiring material formed on the substrate and an underlying metal film formed between the substrate and the metal wiring material, wherein the metal wiring material is a molded article prepared by sintering, e.g., gold powder having a purity of 99.9% by weight or more and an average particle size of 0.01 μm to 1.0 μm and the underlying metal film is composed of a metal such as gold or an alloy. The transfer substrate is capable of transferring a metal wiring material to the transfer-receiving object even at a temperature for heating the transfer-receiving object of 80 to 300° C. | 08-01-2013 |
20140057435 | METHODS OF FORMING A METAL CAP LAYER ON COPPER-BASED CONDUCTIVE STRUCTURES ON AN INTEGRATED CIRCUIT DEVICE - Disclosed herein are various methods of forming a metal cap layer on copper-based conductive structures on integrated circuit devices, and integrated circuit devices having such a structure. In one example, the method includes the steps of forming a conductive feature comprised of copper in a layer of insulating material, performing a metal removal process to remove a portion of the conductive feature and thereby define a recess above a residual portion of the copper feature, and performing a selective deposition process to form a cap layer comprised of cobalt, manganese, CoWP or NiWP within the recess. | 02-27-2014 |
20140073131 | METHOD TO IMPROVE SEMICONDUCTOR SURFACES AND POLISHING - A method of forming a semiconductor device is disclosed. The method including providing a substrate with at least one insulating layer disposed thereon, the at least one insulating layer including a trench; forming at least one liner layer on the at least one insulating layer; forming a nucleation layer on the at least one liner layer; forming a first metal film on a surface of the nucleation layer; etching the first metal film; and depositing a second metal film on the etched surface of the first metal film, the second metal film substantially forming an overburden above the trench. | 03-13-2014 |
20140087557 | THROUGH SILICON VIA WAFER, CONTACTS AND DESIGN STRUCTURES - Disclosed herein are through silicon vias (TSVs) and contacts formed on a semiconductor material, methods of manufacturing, and design structures. The method includes forming a contact hole in a dielectric material formed on a substrate. The method further includes forming a via in the substrate and through the dielectric material. The method further includes lining the contact hole and the dielectric material with a metal liner using a deposition technique that will avoid formation of the liner in the viaformed in the substrate. The method further includes filling the contact hole and the via with a metal such that the metal is formed on the liner in the contact hole and directly on the substrate in the via. | 03-27-2014 |
20140213052 | System for Self-Aligned Contacts - A system for forming self-aligned contacts includes electroplating a first metal contact onto a Group III-V semiconductor substrate, the first metal contact having a greater height than width and having a straight sidewall profile, etching back the semiconductor substrate down to a base layer to expose an emitter semiconductor layer under the first metal contact, conformally depositing a dielectric layer on a vertical side of the first metal contact, a vertical side of the emitter semiconductor layer and on the base layer, anisotropically etching the dielectric layer off of the semiconductor substrate to form a dielectric sidewall spacer on the vertical side of the first metal contact and providing a second metal contact immediately adjacent the dielectric sidewall spacer. | 07-31-2014 |
20140295664 | METHODS OF FORMING MASKING LAYERS FOR USE IN FORMING INTEGRATED CIRCUIT PRODUCTS - One illustrative method disclosed herein includes forming a seed layer above a structure, forming a nucleation layer on the seed layer, forming a plurality of spaced-apart, vertically oriented alloy structures that are comprised of materials from the seed layer and the nucleation layer, forming a sacrificial material layer above the nucleation layer and around the alloy structures, performing an etching process to remove the alloy structures and portions of the seed layer so as to thereby define a plurality of openings, forming an initial masking structure in each of the openings, performing an etching process to remove the sacrificial material layer and the nucleation layer so as to thereby expose the structure and define a masking layer comprised of the initial masking structures, and performing at least one process operation on the structure through the masking layer. | 10-02-2014 |
20140335691 | MANUFACTURING METHOD OF METAL WIRE AND THIN TRANSISTOR ARRAY PANEL - A manufacturing method of a wire including: forming a lower layer on a substrate; forming a middle layer on the lower layer; forming an upper layer on the middle layer; forming, exposing, and developing a photoresist layer on the upper layer to form a photoresist pattern; and etching the upper layer, the middle layer, and the lower layer by using the photoresist pattern as a mask to form a wire such that the upper layer covers an end of the middle layer. | 11-13-2014 |
20140335692 | METHOD FOR FORMING A RESIST UNDER LAYER FILM AND PATTERNING PROCESS - The present invention provides a method for forming a resist under layer film used in a lithography process, comprising: a process for applying a composition for forming a resist under layer film containing an organic compound having an aromatic unit on a substrate; and a process for heat-treating the resist under layer film applied in an atmosphere whose oxygen concentration is 10% or more at 150° C. to 600° C. for 10 to 600 seconds after heat-treating the same in an atmosphere whose oxygen concentration is less than 10% at 50 to 350° C. There can be provided a method for forming a resist under layer film having excellent filling/flattening properties so that unevenness on a substrate can be flattened even in complex processes such as multi-layer resist method and double patterning. | 11-13-2014 |
20140377948 | METHOD OF DEPOSITING COPPER USING PHYSICAL VAPOR DEPOSITION - The present method of forming an electronic structure includes providing a tantalum base layer and depositing a layer of copper on the tantalum layer, the deposition being undertaken by physical vapor deposition with the temperature of the base layer at 50.degree. C. or less, with the deposition taking place at a power level of 300 W or less. | 12-25-2014 |
20140377949 | METHOD OF DEPOSITING COPPER USING PHYSICAL VAPOR DEPOSITION - The present method of forming an electronic structure includes providing a tantalum base layer and depositing a layer of copper on the tantalum layer, the deposition being undertaken by physical vapor deposition with the temperature of the base layer at 50.degree. C. or less, with the deposition taking place at a power level of 300 W or less. | 12-25-2014 |
20150017801 | SEMICONDUCTOR STRUCTURE AND METHOD FOR MAKING SAME - One or more embodiments relate to a method for making a semiconductor structure, comprising: providing a substrate; forming a dielectric layer over the substrate; forming a first opening and a second opening at least partially simultaneously through the dielectric layer over the substrate; and forming a third opening through the bottom surface of the first opening and into at least a portion of the substrate. | 01-15-2015 |
20150118842 | Global Dielectric And Barrier Layer - Methods of fabricating a semiconductor device are described. The method includes forming a patterned oxide layer having a plurality of openings over a substrate, depositing a metal layer in the openings to form metal plugs, depositing a global transformable (GT) layer on the oxide layer and the metal plugs, and depositing a capping layer directly on the GT layer without exposing the GT layer to ambient air. The GT layer on the oxide layer transforms into a dielectric oxide and the GT layer on the metal plugs remains conductive during deposition of the capping layer. | 04-30-2015 |
20150325535 | Method for Processing a Semiconductor Workpiece and Semiconductor Workpiece - A method for processing a semiconductor device in accordance with various embodiments may include: depositing a first metallization layer over a semiconductor workpiece; patterning the first metallization layer; and depositing a second metallization layer over the patterned first metallization layer, wherein depositing the second metallization layer includes an electroless deposition process including immersing the patterned first metallization layer in a metal electrolyte. | 11-12-2015 |
20150353353 | METHODS FOR STICTION REDUCTION IN MEMS SENSORS - A method of the invention includes reducing stiction of a MEMS device by providing a conductive path for electric charge collected on a bump stop formed on a substrate. The bump stop is formed by depositing and patterning a dielectric material on the substrate, and the conductive path is provided by a conductive layer deposited on the bump stop. The conductive layer can also be roughened to reduce stiction. | 12-10-2015 |
20150364368 | SEMICONDUCTOR STRUCTURES HAVING LOW RESISTANCE PATHS THROUGHOUT A WAFER - A semiconductor structure with low resistance conduction paths and methods of manufacture are disclosed. The method includes forming at least one low resistance conduction path on a wafer, and forming an electroplated seed layer in direct contact with the low resistance conduction path. | 12-17-2015 |
20150380303 | CONDUCTIVE ELEMENT STRUCTURE AND METHOD - Conductive element structures and methods of manufacture thereof are disclosed. In some embodiments, a method of forming a conductive element in an insulating layer includes: forming a recess in a metal layer disposed over the insulating layer; selectively forming a metal liner on a sidewall of the recess; and etching a via in the insulating layer using the metal layer and the metal liner as a mask. | 12-31-2015 |
20160056044 | METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE - A method of manufacturing a semiconductor device includes: (a) supplying a halogen-based source gas containing a first element to a substrate; (b) supplying a reaction gas containing a second element to react with the first element to the substrate; (c) forming a first layer containing the first element and the second element by time-dividing and performing (a) and (b) a predetermined number of times; (d) supplying an organic source gas containing the first element to the substrate; (e) supplying the reaction gas to the substrate; (f) forming a second layer containing the first element and the second element by time-dividing and performing (d) and (e) a predetermined number of times; and (g) forming a thin film containing the first element and the second element on the substrate by time-dividing and performing (c) and (f) a predetermined number of times. | 02-25-2016 |
20160086846 | Global Dielectric and Barrier Layer - Methods of fabricating a semiconductor device are described. The method includes forming a patterned oxide layer having a plurality of openings over a substrate, depositing a metal layer in the openings to form metal plugs, depositing a global transformable (GT) layer on the oxide layer and the metal plugs, and depositing a capping layer directly on the GT layer without exposing the GT layer to ambient air. The GT layer on the oxide layer transforms into a dielectric oxide and the GT layer on the metal plugs remains conductive during deposition of the capping layer. | 03-24-2016 |
20160379879 | TUNGSTEN FILM FORMING METHOD - In a method for forming a tungsten film, a substrate to be processed is disposed in a processing chamber having a reduced pressure atmosphere. Then a reducing gas and a tungsten chloride gas as a tungsten source are supplied to the processing chamber simultaneously or alternately with a process of purging an inside of the processing chamber interposed therebetween. The substrate is heated and the tungsten chloride gas and the reducing gas react with each other on the heated substrate to form a tungsten film. | 12-29-2016 |