Class / Patent application number | Description | Number of patent applications / Date published |
438487000 | Utilizing wave energy (e.g., laser, electron beam, etc.) | 77 |
20080206969 | Laser Optical Apparatus - There is provided a structure for reducing optical loss in an optical apparatus (homogenizer) for making the intensity distribution of a laser beam uniform. | 08-28-2008 |
20080213984 | MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE - A cap film is formed over semiconductor films formed over an insulating substrate; the semiconductor films are irradiated with a laser beam which is capable of completely melting the semiconductor film in a film-thickness direction to completely melt the semiconductor film. By controlling the laser beam, a crystalline semiconductor films are formed over the substrate, in each of which orientations of crystal planes are controlled. In addition, an n-channel thin film transistor is formed using a crystalline region in which crystal planes are oriented along {001} and a p-channel thin film transistor is formed using a crystalline region in which crystal planes are oriented along {211} or {101}. | 09-04-2008 |
20080213985 | METHOD OF FORMING POLYCRYSTALLINE SILICON THIN FILM AND METHOD OF MANUFACTURING THIN FILM TRANSISTOR USING THE METHOD - Provided is a method of forming a polycrystalline silicon thin film with improved electrical characteristics. The method includes forming an amorphous silicon thin film on a substrate, partially melting a portion of the amorphous silicon thin film by irradiating the portion of the amorphous silicon thin film with a laser beam having a low energy density, forming polycrystalline silicon grains with a predetermined crystalline arrangement by crystallizing the partially molten portion of the amorphous silicon thin film, completely melting a portion of the polycrystalline silicon grains and a portion of the amorphous silicon thin film by irradiation of a laser beam having a high energy density while repeatedly moving the substrate by a predetermined distance, and growing the polycrystalline silicon grains by crystallizing the completely molten silicon homogeneously with the predetermined crystalline arrangement. | 09-04-2008 |
20080213986 | LASER ANNEALING METHOD AND LASER ANNEALING DEVICE - In order to promote an effect of laser annealing in respect of a semiconductor film, moisture is intentionally included in an atmosphere in irradiating laser beam to the semiconductor film by which a temperature holding layer comprising water vapor is formed on the surface of the semiconductor film in irradiating the laser beam and the laser annealing operation can be performed effectively. | 09-04-2008 |
20080227274 | MANUFACTURING METHOD OF DISPLAY DEVICE - In crystallization of a silicon film by annealing using a linear-shaped laser beam having a width of the short axis of the beam is ununiform, the profile (intensity distribution) of the laser beam is evaluated and the results are fed back to a condition of oscillating the laser beam or an optical condition for projecting the laser beam onto the silicon film, whereby a display device comprising a high-quality crystalline silicon film is manufactured. The energy distribution of the linear-shaped laser beam is determined by a detector type CCD camera which is moved stepwise in the directions in which its long axis and short axis extend, respectively, and a value obtained by dividing an accumulated intensity E in the long axis direction obtained by accumulating the detected signal in the direction parallel to the short axis by the square root of the width W of the short axis of the above linear-shaped laser beam in each position of the long axis: E/√{square root over ( )}(W), is determined in all the positions of a cross section of the linear-shaped laser beam to evaluate the above intensity distribution. | 09-18-2008 |
20080233719 | Method for Manufacturing Crystalline Semiconductor Film and Method for Manufacturing Thin Film Transistor - The present invention relates to a method for manufacturing a polycrystalline semiconductor film that can be used for a semiconductor device. In the method, an amorphous semiconductor film is irradiated with a femtosecond laser to be crystallized. By laser irradiation using a femtosecond laser, when an amorphous semiconductor film over which a cap film is formed is crystallized with a laser, it becomes possible to perform crystallization of the semiconductor film and removal of the cap film at the same time. Therefore, a step of removing the cap film in a later step can be omitted. | 09-25-2008 |
20080280425 | Beam Homogenizer, and Laser Irradiation Method, Laser Irradiation Apparatus, and Laser Annealing Method of Non-Single Crystalline Semiconductor Film Using the Same - A rectangular beam having the energy density distribution homogenized in its short-side direction is formed in a beam homogenizer wherein two light reflection surfaces are parallel-provided in a beam progression optical waveguide with a predetermined space so as to face each other at surfaces along the beam progression direction and a course change reflection surface for changing the beam progression direction is formed at a surface in the direction intersected with the light reflection surfaces. The beam enters a cylindrical lens array and a cylindrical lens sequentially to homogenize the energy density distribution in its long-side direction. Then, the irradiation laser from the cylindrical lens is projected onto a non-single crystalline semiconductor film to perform annealing. | 11-13-2008 |
20080293224 | METHOD OF FORMING A DIODE AND METHOD OF MANUFACTURING A PHASE-CHANGE MEMORY DEVICE USING THE SAME - In a method of forming a diode, a first amorphous thin film doped with first impurities is formed on a single crystalline substrate. A second amorphous thin film doped with second impurities is formed on the first amorphous thin film. A laser beam having sufficient energy to melt both of the first and second amorphous thin films is irradiated on the first and second amorphous thin films to change crystal structures of the first and second amorphous thin films using the single crystalline substrate as a seed, so that first and second single crystalline thin films are sequentially formed on the single crystalline substrate. | 11-27-2008 |
20080318398 | Method for manufacturing crystalline semiconductor film and semiconductor device - There is provided a method for manufacturing a crystalline semiconductor film. An insulating film is formed over a substrate; an amorphous semiconductor film is formed over the insulating film; a cap film is formed over the amorphous semiconductor film; the amorphous semiconductor film is scanned and irradiated with a continuous wave laser beam or a laser beam with a repetition rate of greater than or equal to 10 MHz, through the cap film; and the amorphous semiconductor film is melted and crystallized. At that time, an energy period in a length direction in a laser beam spot of the laser beam is 0.5 μm to 10 μm, preferably, 1 μm to 5 μm; an energy distribution in a width direction in a laser beam spot of the laser beam is a Gaussian distribution; and the amorphous semiconductor film is scanned with the laser beam so as to be irradiated with the laser beam for a period of greater than or equal to 5 microseconds and less than or equal to 100 microseconds per region. | 12-25-2008 |
20090061603 | METHOD OF CRYSTALLIZING SEMICONDUCTOR FILM - A method of crystallizing a semiconductor film including splitting a pulse laser beam oscillated from a laser oscillator, and synthesizing the split pulse laser beams after the split pulse laser beams have propagated through optical paths different in optical path length, modulating the synthesized pulse laser beam into a pulse laser beam by a phase modulating element, and irradiating a non-single-crystal film formed on a substrate with the laser beam to crystallize the non-single-crystal film. Splitting the pulse laser beam and synthesizing the split pulse laser beams are performed using at least three optical splitting/synthesizing units arranged in order, and include sequentially splitting one pulse laser beam split by one optical splitting/synthesizing unit by succeeding splitting/synthesizing unit, and synthesizing the other pulse laser beam split by one optical splitting/synthesizing unit with the other pulse laser beam split by preceding splitting/synthesizing unit. | 03-05-2009 |
20090075460 | PROCESS FOR FABRICATING SEMICONDUCTOR DEVICE - A process for fabricating a semiconductor device comprising the steps of introducing into an amorphous silicon film, a metallic element which accelerates the crystallization of the amorphous silicon film; applying heat treatment to the amorphous silicon film to obtain a crystalline silicon film; irradiating a laser beam or an intense light to the crystalline silicon film; and heat treating the crystalline silicon film irradiated with a laser beam or an intense light. | 03-19-2009 |
20090104759 | Methods of manufacturing semiconductor devices including a doped silicon layer - Methods for manufacturing a semiconductor device include forming a seed layer containing a silicon material on a substrate. An amorphous silicon layer containing amorphous silicon material is formed on the seed layer. The amorphous silicon layer is doped with an impurity. A laser beam is irradiated onto the amorphous silicon layer to produce a phase change of the amorphous silicon layer and change the amorphous silicon layer into a single-crystal silicon layer based on the seed layer. | 04-23-2009 |
20090117716 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE, AND SEMICONDUCTOR DEVICE AND ELECTRONIC DEVICE - To provide a high-performance semiconductor device using an SOI substrate in which a substrate having low heat resistance is used as a base substrate, to provide a high-performance semiconductor device without performing mechanical polishing, and to provide an electronic device using the semiconductor device, planarity of a semiconductor layer is improved and defects in the semiconductor layer are reduced by laser beam irradiation. Accordingly, a high-performance semiconductor device can be provided without performing mechanical polishing. In addition, a semiconductor device is manufactured using a region having the most excellent characteristics in a region irradiated with the laser beam. Specifically, instead of the semiconductor layer in a region which is irradiated with the edge portion of the laser beam, the semiconductor layer in a region which is irradiated with portions of the laser beam except the edge portion is used as a semiconductor element. Accordingly, performance of the semiconductor device can be greatly improved. Moreover, an excellent electronic device can be provided. | 05-07-2009 |
20090137104 | Method of fabricating polycrystalline semiconductor - Disclosed is a method of providing a poly-Si layer used in fabricating poly-Si TFT's or devices containing poly-Si layers. Particularly, a method utilizing at least one metal plate covering the amorphous silicon layer or the substrate, and applying RTA (Rapid Thermal Annealing) for light illuminating process, then the light converted into heat by the metal plate will further be conducted to the amorphous silicon layer to realize rapid thermal crystallization. Thus the poly-Si layer of the present invention is obtained. | 05-28-2009 |
20090137105 | SYSTEMS AND METHODS FOR PREPARING EPITAXIALLY TEXTURED POLYCRYSTALLINE FILMS - The disclosed subject matter relates to systems and methods for preparing epitaxially textured polycrystalline films. In one or more embodiments, the method for making a textured thin film includes providing a precursor film on a substrate, the film includes crystal grains having a surface texture and a non-uniform degree of texture throughout the thickness of the film, wherein at least a portion of the this substrate is transparent to laser irradiation; and irradiating the textured precursor film through the substrate using a pulsed laser crystallization technique at least partially melt the film wherein the irradiated film crystallizes upon cooling to form crystal grains having a uniform degree of texture. | 05-28-2009 |
20090149007 | ELECTRONIC DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided are an electronic device and a method of manufacturing the same. The device includes a plastic substrate, a transparent thermal conductive layer stacked on the plastic substrate, a polysilicon layer stacked on the thermal conductive layer; and a functional device disposed on the polysilicon layer. The functional device is any one of a transistor, a light emitting device, and a memory device. The functional device may be a thin film transistor including a gate stack stacked on the polysilicon layer. | 06-11-2009 |
20090176354 | METHOD FOR FABRICATION OF SINGLE CRYSTAL DIODES FOR RESISTIVE MEMORIES - The present invention, in one embodiment, provides a method of producing a PN junction the method including providing a single crystal substrate; forming an insulating layer on the single crystal substrate; forming a via through the insulating layer to provide an exposed portion of the single crystal substrate; forming amorphous Si on at least the exposed portion of the single crystal substrate; converting at least a portion of the amorphous Si into single crystal Si; and forming dopant regions in the single crystal Si. In one embodiment the diode of the present invention is integrated with a memory device. | 07-09-2009 |
20090186468 | Laser Annealing Method - In crystallizing an amorphous silicon film by illuminating it with linear pulse laser beams having a normal-distribution type beam profile or a similar beam profile, the linear pulse laser beams are applied in an overlapped manner. There can be obtained effects similar to those as obtained by a method in which the laser illumination power is gradually increased and then decreased in a step-like manner in plural scans. | 07-23-2009 |
20090317961 | BEAM HOMOGENIZER AND LASER IRRADIATION APPARATUS AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - The inhomogeneous energy distribution at the beam spot on the irradiated surface is caused by a structural problem and processing accuracy of the cylindrical lens array forming an optical system. | 12-24-2009 |
20100009523 | MASK AND METHOD OF FABRICATING A POLYSILICON LAYER USING THE SAME - A mask includes a primary opaque pattern and a number of clusters of secondary opaque patterns. The primary opaque pattern defines a number of strip transparent slits whose extending directions are substantially the same. The clusters of the secondary opaque patterns are connected to the primary opaque pattern, and each of the clusters of the secondary opaque patterns is disposed in one of the transparent slits, respectively. Each of the clusters of the secondary opaque patterns includes a number of secondary opaque patterns, and extending directions of at least a portion of the secondary opaque patterns and the extending directions of the transparent slits together form included angles that are not equal to about 90°. | 01-14-2010 |
20100075487 | Crystallization method - To crystallize a material, a thin layer of amorphous or polycrystalline material is deposited on at least one area of the surface of a top part of a substrate. A metal layer is then deposited on at least one area of the thin layer. Thermal treatment is then performed to enable crystalline growth of the material of the thin layer, resulting in:
| 03-25-2010 |
20100105196 | METHOD FOR PATTERNING POLYCRYSTALLINE INDIUM TIN OXIDE - A method for patterning polycrystalline indium tin oxide by using a Gaussian laser beam focused on an amorphous indium tin oxide layer is disclosed to pattern the non-crystalline amorphous indium tin oxide layer and transfer part of the amorphous indium tin oxide layer into polycrystalline indium tin oxide while the remaining amorphous indium tin oxide layer is etched due to etching selectivity of an etching solution. The method comprises: providing a substrate with an amorphous indium tin oxide layer thereon on a carrier; transferring the amorphous indium tin oxide layer in a predetermined area into a polycrystalline indium tin oxide layer by emitting a Gaussian laser beam focused on the amorphous indium tin oxide layer in the predetermined area; and removing the remaining amorphous indium tin oxide layer on the substrate by an etching solution to form a patterned polycrystalline indium tin oxide layer. | 04-29-2010 |
20100112792 | THICK EPITAXIAL SILICON BY GRAIN REORIENTATION ANNEALING AND APPLICATIONS THEREOF - The invention provides a high temperature (about 1150° C. or greater) annealing process for converting thick polycrystalline Si layers on the order of 1 μm to 40 μm on a single crystal seed layer into thick single crystal Si layers having the orientation of the seed layer, thus allowing production of thick Si films having the quality of single crystal silicon at high rates and low cost of processing. Methods of integrating such high temperature processing into solar cell fabrication are described, with particular attention to process flows in which the seed layer is disposed on a porous silicon release layer. Another aspect pertains to the use of similar high temperature anneals for poly-Si grain growth and grain boundary passivation. A further aspect relates to structures in which these thick single crystal Si films and passivated poly-Si films are incorporated. | 05-06-2010 |
20100159676 | Method For Manufacturing A Mono-Crystalline Semiconductor Layer on a Substrate - The described system relates to a method for forming a layer of a mono-crystalline semiconductor material on a substrate comprising providing a substrate, growing epitaxially a template comprising at least one monolayer of a semiconductor material on the substrate, thereafter depositing an amorphous layer of said semiconductor material on the template, and performing a thermal treatment or a laser anneal, thereby converting substantially all of the amorphous layer of the semiconductor material into a mono-crystalline layer of said semiconductor material. According to an embodiment, the semiconductor material is Ge, and the substrate is a Si substrate. The template is preferably a few monolayers thick. | 06-24-2010 |
20100173480 | LASER ANNEALING APPARATUS AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD - This invention is intended to provide a laser annealing method by employing a laser annealer lower in running cost so as to deal with a large-sized substrate, for preventing or decreasing the generation of a concentric pattern and to provide a semiconductor device manufacturing method including a step using the laser annealing method. While moving a substrate at a constant rate between 20 and 200 cm/s, a laser beam is radiated aslant to a semiconductor film on a surface of the semiconductor substrate. Therefore, it is possible to radiate a uniform laser beam to even a semiconductor film on a large-sized substrate and to thereby manufacture a semiconductor device for which the generation of a concentric pattern is prevented or decreased. By condensing a plurality of laser beams into one flux, it is possible to prevent or decrease the generation of a concentric pattern and to thereby improve the reliability of the semiconductor device. | 07-08-2010 |
20100173481 | LASER MASK AND CRYSTALLIZATION METHOD USING THE SAME - A crystallization method using a mask includes providing a substrate having a semiconductor layer; positioning a mask over the substrate, the mask having first, second and third blocks, each block having a periodic pattern including a plurality of transmitting regions and a blocking region, the periodic pattern of the first block having a first position, the periodic pattern of the second block having a second position, the periodic pattern of the third block having a third position, the first, second and third positions being different from each other; and crystallizing the semiconductor layer by irradiating a laser beam through the mask. | 07-08-2010 |
20100184277 | METHOD OF FABRICATING SEMICONDUCTOR DEVICE - A semiconductor device is fabricated by forming a first crystalline region by irradiating a laser beam to a first region of an amorphous semiconductor film by relatively moving the laser beam with respect to the first region of the amorphous semiconductor film. A second crystalline region is formed by irradiating the laser beam to a second region of the amorphous semiconductor film including a portion of the first crystalline region by relatively moving the laser beam with respect to the second region of the amorphous semiconductor film. The wavelength of the laser beam falls in a range of 370 rim through 650 nm. In general, crystalline performance of the first crystalline region, the second crystalline region, and a region of overlap between the first crystalline region and the second crystalline region are the same. | 07-22-2010 |
20100221898 | LASER ANNEALING METHOD AND LASER ANNEALING DEVICE - The energy distribution in the short-side direction of a rectangular laser beam applied to an amorphous semiconductor film (amorphous silicon film) is uniformized. It is possible to the energy distribution in the short-side direction of the rectangular laser beam by the use of a cylindrical lens array | 09-02-2010 |
20100221899 | METHOD OF MANUFACTURING A POLYCRYSTALLINE SEMICONDUCTOR THIN FILM - A TFT and the like capable of realizing performances such as a low threshold voltage value, high carrier mobility and a low leak current easily. A TFT consists of a polycrystalline Si film having a small heat capacity part and a large heat capacity part, and the small heat capacity part is used at least as a channel part. The polycrystalline Si film is formed of a crystal grain film through laser annealing of an energy density with which the small heat capacity part melts completely but the large heat capacity part does not melt completely. Since the channel part is formed of large crystal grains grown from the boundaries between the small heat capacity part and the large heat capacity parts, it is possible to realize performances such as a low threshold voltage value, high carrier mobility and a low leak current by using a typical laser annealing device. | 09-02-2010 |
20100221900 | MASK FOR SEQUENTIAL LATERAL SOLIDIFICATION (SLS) PROCESS AND A METHOD FOR CRYSTALLIZING AMORPHOUS SILICON BY USING THE SAME - A mask for sequential lateral solidification (SLS) processes including at least one first window, one second window, one third window, and one fourth window is provided. Each window has a length extending longitude on the mask. The second window is aligned to the first window. The width of the first window is greater than that of the second window. The fourth window is aligned to the third window. The width of the third window is greater than that of the fourth window. | 09-02-2010 |
20100227458 | METHOD OF FORMING POLYCRYSTALLINE SILICON LAYER AND ATOMIC LAYER DEPOSITION APPARATUS USED FOR THE SAME - A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer. | 09-09-2010 |
20100291760 | Method and system for spatially selective crystallization of amorphous silicon - The manufacturing methodology to produce polycrystalline silicon in time and cost efficient manner uses a spatially selective crystallization approach to greatly reduce the amount of energy delivered to the work surface. The amorphous silicon film is subjected to laser radiation substantially exclusively at localized areas where TFTs are to be formed. The source of radiation is a copper vapor laser which produces a highly stable radiation in a visible spectrum with an energy sufficient to convert amorphous silicon into polysilicon in 1-3 shots. The optic system delivers the homogenized, conditioned and focused laser beam to the area of interest in a controlled manner. Single or multi-laser beam arrangements, as well as different shapes and sizes of laser beam spots are contemplated. | 11-18-2010 |
20100323504 | LASER IRRADIATION APPARATUS AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - It is an object of the present invention to provide a laser irradiation apparatus being able to irradiate the irradiation object with the laser beam having homogeneous energy density without complicating the optical system. The laser irradiation apparatus of the present invention comprises a laser oscillator, an optical system for scanning repeatedly a beam spot of the laser beam emitted from the laser oscillator in a uniaxial direction over the surface of the irradiation object, and a position controlling means for moving the position of the irradiation object relative to the laser beam in a direction perpendicular to the uniaxial direction. | 12-23-2010 |
20100330785 | METHOD OF MANUFACTURING CRYSTALLINE SEMICONDUCTOR THIN FILM - Provided is a method of manufacturing a crystalline semiconductor thin film formed on an amorphous or poly-crystalline substrate such as a glass substrate, a ceramic substrate, and a plastic substrate through induction heating using photo-charges. The method of manufacturing a crystalline semiconductor thin film includes a process of forming a low-concentration semiconductor layer on an inexpensive amorphous or poly-crystalline substrate such as a glass substrate, a ceramic substrate, and a plastic substrate and a process of crystallizing the low-concentration semiconductor layer through an induction heating manner using photo-charges. Accordingly, a low-concentration crystalline semiconductor thin film having characteristics better than those of general amorphous or poly-crystalline semiconductor thin film can be obtained by using simple processes at low production cost. | 12-30-2010 |
20110034009 | SEMICONDUCTOR DEVICE AND METHOD OF FABRICATING THE SAME - To provide a thin film transistor having a high field effect mobility and a small variation in characteristics thereof, a second amorphous semiconductor layer patterned in a predetermined shape is formed on a first crystalline semiconductor layer | 02-10-2011 |
20110065264 | METHODS OF SOLID PHASE RECRYSTALLIZATION OF THIN FILM USING PULSE TRAIN ANNEALING METHOD - Embodiments of the present invention provide methods of solid phase recrystallization of thin film using a plurality of pulses of electromagnetic energy. In one embodiment, the methods of the present invention may be used to anneal an entire substrate surface or selected regions of a surface of a substrate by delivering a plurality of pluses of energy to a crystalline seed region or layer upon which an amorphous layer is deposited to recrystallize the amorphous layer so that it has the same grain structure and crystal orientation as that of the underlying crystalline seed region or layer. | 03-17-2011 |
20110111580 | METHOD OF FABRICATING A SEMICONDUCTOR DEVICE - According to one embodiment, a method of fabricating a semiconductor device is disclosed. The method can include forming an amorphous layer on a portion of a first silicon substrate having a first plane orientation, and irradiating with micro wave on the amorphous layer to transform from the amorphous layer into a crystalline layer having the first plane orientation. | 05-12-2011 |
20110117731 | LASER MASK AND SEQUENTIAL LATERAL SOLIDIFICATION CRYSTALLIZATION METHOD USING THE SAME - A laser mask is disclosed. In one embodiment, the laser mask includes: a mask substrate including i) at least one light transmission portion configured to transmit light therethrough and ii) a plurality of light interruption portions separated by the light transmission portion interposed therebetween. The light interruption portions are configured to block light; and a plurality of protrusion and depression regions positioned on the light interruption portions of the mask substrate. The protrusion and depression regions comprise a plurality of concave portions and a plurality of convex portions which are alternately formed. | 05-19-2011 |
20110183502 | Linear and Cross-Linked High Molecular Weight Polysilanes, Polygermanes, and Copolymers Thereof, Compositions Containing the Same, and Methods of Making and Using Such Compounds and Compositions - Methods are disclosed of making linear and cross-linked, HMW (high molecular weight) polysilanes and polygermanes, polyperhydrosilanes and polyperhydrogermanes, functional liquids containing the same, and methods of using the liquids in a range of desirable applications. The silane and germane polymers are generally composed of chains of Si and/or Ge substituted with R′ substituents, where each instance of R′ is, for example, independently hydrogen, halogen, alkenyl, alkynyl, hydrocarbyl, aromatic hydrocarbyl, heterocyclic aromatic hydrocarbyl, SiR″ | 07-28-2011 |
20110201183 | METHOD FOR MANUFACTURING CRYSTALLINE SEMICONDUCTOR FILM AND SEMICONDUCTOR DEVICE - There is provided a method for manufacturing a crystalline semiconductor film. An insulating film is formed over a substrate; an amorphous semiconductor film is formed over the insulating film; a cap film is formed over the amorphous semiconductor film; the amorphous semiconductor film is scanned and irradiated with a continuous wave laser beam or a laser beam with a repetition rate of greater than or equal to 10 MHz, through the cap film; and the amorphous semiconductor film is melted and crystallized At this time, an energy distribution in a length direction and a width direction in a laser beam spot is a Gaussian distribution, and the amorphous semiconductor film is scanned with the laser beam so as to be irradiated with the laser beam for a period of greater than or equal to 5 microseconds and less than or equal to 100 microseconds per region. | 08-18-2011 |
20110207303 | Methods of Fabricating Semiconductor Devices - Methods for fabricating a semiconductor device are provided. In the methods, first material layers and second material layers may be alternatingly and repeatedly stacked on a substrate. An opening penetrating the first material layers and the second material layers may be formed. A semiconductor solution may be formed in the opening by using a spin-on process. | 08-25-2011 |
20110207304 | Method of Fabricating Semiconductor Devices - Methods of fabricating a semiconductor device include alternatingly and repeatedly stacking sacrificial layers and first insulating layers on a substrate, forming an opening penetrating the sacrificial layers and the first insulating layers, and forming a spacer on a sidewall of the opening, wherein a bottom surface of the opening is free of the spacer. A semiconductor layer is formed in the opening. Related devices are also disclosed. | 08-25-2011 |
20110223748 | METHOD FOR PHASE TRANSITION OF AMORPHOUS MATERIAL - Disclosed herein is a method of crystallizing an amorphous material for use in fabrication of thin film transistors. The method includes forming an amorphous silicon layer on a substrate, depositing a Ni metal layer on part of the amorphous silicon layer, and heat-treating the amorphous silicon layer to cause phase transition of the amorphous silicon, wherein the Ni metal layer is deposited to an average thickness of 0.79 Å or less. The method can crystallize an amorphous material for use in thin film transistors using the metal induced lateral crystallization while restricting thickness and density of Ni, thereby minimizing current leakage in the thin film transistor. | 09-15-2011 |
20110230037 | BEAM HOMOGENIZER, LASER IRRADIATION APPARATUS, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - The present invention provides a beam homogenizer being able to form a rectangular beam spot having homogeneous energy distribution in a direction of its major axis without using the optical lens requiring to be manufactured with high accuracy. In addition, the present invention provides a laser irradiation apparatus being able to irradiate the laser beam having homogeneous energy distribution in a direction of its major axis. Furthermore, the present invention provides a method for manufacturing a semiconductor device being able to enhance crystallinity in the surface of the substrate and to manufacture TFT with a high operating characteristic. | 09-22-2011 |
20110263107 | METHOD OF FORMING POLYCRYSTALLINE SILICON LAYER AND ATOMIC LAYER DEPOSITION APPARATUS USED FOR THE SAME - A method of forming a polycrystalline silicon layer and an atomic layer deposition apparatus used for the same. The method includes forming an amorphous silicon layer on a substrate, exposing the substrate having the amorphous silicon layer to a hydrophilic or hydrophobic gas atmosphere, placing a mask having at least one open and at least one closed portion over the amorphous silicon layer, irradiating UV light toward the amorphous silicon layer and the mask using a UV lamp, depositing a crystallization-inducing metal on the amorphous silicon layer, and annealing the substrate to crystallize the amorphous silicon layer into a polycrystalline silicon layer. This method and apparatus provide for controlling the seed position and grain size in the formation of a polycrystalline silicon layer. | 10-27-2011 |
20110312165 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A layer including a semiconductor film is formed over a glass substrate and is heated. A thermal expansion coefficient of the glass substrate is greater than 6×10 | 12-22-2011 |
20110318908 | MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MANUFACTURING APPARATUS - The present invention is a semiconductor manufacturing apparatus by which an impurity can be introduced into an active layer at a low and a stable concentration in order to form semiconductor elements that have little variation in threshold voltage. In the semiconductor manufacturing apparatus that includes a washing unit; an impurity introduction unit used to attach the impurity to the surface of the semiconductor film; a laser crystallization unit used to crystallize the semiconductor film to which an impurity has been attached; and transfer robots, the amount of the impurity attached to the semiconductor film is controlled by the length of time of exposure of the substrate in the impurity introduction unit, and the semiconductor film is crystallized while a crystalline semiconductor film that contains an impurity at low concentration is formed simultaneously by laser crystallization. | 12-29-2011 |
20120115316 | Crystallization apparatus, crystallization method, and method of manufacturing organic light-emitting display device, which use sequential lateral solidification - A crystallization apparatus, which uses sequential lateral solidification (SLS) and crystallizes an amorphous silicon layer formed on a substrate, includes a laser generating device, a first optical system, a second optical system, and a path switching member. The laser generating device is configured to emit a laser beam. The first optical system is configured to process the laser beam emitted from the laser generating device and to irradiate the processed laser beam onto the substrate. The second optical system is parallel to the first optical system and is configured to process the laser beam emitted from the laser generating device and to irradiate the processed laser beam onto the substrate. The path switching member is configured to switch a path of the laser beam emitted from the laser generating device and to alternately distribute the laser beam to the first and second optical systems. | 05-10-2012 |
20120129323 | SEMICONDUCTOR THIN FILM, THIN FILM TRANSISTOR, METHOD FOR MANUFACTURING SAME, AND MANUFACTURING EQUIPMENT OF SEMICONDUCTOR THIN FILM - A method for manufacturing a semiconductor thin film is provided which can form its crystal grains having a uniform direction of crystal growth and being large in size and a manufacturing equipment using the above method, and a method for manufacturing a thin film transistor. In the above method, by applying an energy beam partially intercepted by a light shielding element, melt and re-crystallization occur with a light-shielded region as a starting point. The irradiation of the beam gives energy to the light-shielded region of the silicon thin film so that melt and re-crystallization occur with the light-shielded region as the starting point and so that a local temperature gradient in the light-shielded region is made to be 1200° C./μm or more. In the manufacturing method, a resolution of an optical system used to apply the energy beam is preferably 4 μm or less. | 05-24-2012 |
20120295426 | CMOS WITH CHANNEL P-FINFET AND CHANNEL N-FINFET HAVING DIFFERENT CRYSTALLINE ORIENTATIONS AND PARALLEL FINS - A method for fabricating an integrated circuit with at least one p-FinFET device and at least one n-FinFET device. The method includes bonding a first silicon layer having a first crystalline orientation to a second silicon layer having a second crystalline orientation that is different from the first crystalline orientation. A first plurality of fins and a second plurality of fins are created. A spacer is formed around each fin in the first plurality of fins and second plurality of fins. A set of regions of the second layer between each fin in the first plurality of fins and the second plurality of fins are recessed to form a base with exposed sidewalls under each fin in the first plurality of fins and the second plurality of fins. The base under each fin and a set of exposed regions between each fin is oxidized. | 11-22-2012 |
20120329255 | OUT-OF-PLANE MEMS RESONATOR WITH STATIC OUT-OF-PLANE DEFLECTION - A method of forming a microelectromechanical systems (MEMS) device includes forming an electrode on a substrate. The method includes forming a structural layer on the substrate. The structural layer is disposed about a perimeter of the electrode and has a residual film stress gradient. The method includes releasing the structural layer to form a resonator coupled to the substrate. The residual film stress gradient deflects a first portion of the resonator out of a plane defined by a surface of the electrode. | 12-27-2012 |
20130005123 | Laser Annealing Method And Device - A laser annealing method for executing laser annealing by irradiating a semiconductor film formed on a surface of a substrate with a laser beam, the method including the steps of, generating a linearly polarized rectangular laser beam whose cross section perpendicular to an advancing direction is a rectangle with an electric field directed toward a long-side direction of the rectangle or an elliptically polarized rectangular laser beam having a major axis directed toward a long-side direction, causing the rectangular laser beam to be introduced to the surface of the substrate, and setting a wavelength of the rectangular laser beam to a length which is about a desired size of a crystal grain in a standing wave direction. | 01-03-2013 |
20130230976 | FLAT PANEL DISPLAY DEVICE COMPRISING POLYSILICON THIN FILM TRANSISTOR AND METHOD OF MANUFACTURING THE SAME - The present invention relates to a flat panel display device comprising a polysilicon thin film transistor and a method of manufacturing the same. Grain sizes of polysilicon grains formed in active channel regions of thin film transistors of a driving circuit portion and a pixel portion of the flat panel display device are different from each other. Further, the flat panel display device comprising P-type and N-type thin film transistors having different particle shapes from each other. | 09-05-2013 |
20130280895 | LASER CRYSTALLIZATION APPARATUS AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR ARRAY PANEL USING THE SAME - Laser crystallization equipment includes a laser generator generating a laser beam, the laser beam being directed toward a processing target substrate, and a blade member over the processing target substrate, the blade member being configured to chop the laser beam with a predetermined width in two directions, wherein two ends of the laser beam chopped by the blade member are irradiated to the processing target substrate as diffraction light. | 10-24-2013 |
20130288463 | METHOD FOR PRODUCING THIN LAYERS OF CRYSTALLINE OR POLYCRYSTALLINE MATERIALS - Method for making thin crystalline or polycrystalline layers. The method includes electrochemically etching a crystalline silicon template to form a porous double layer thereon, the double layer including a highly porous deeper layer and a less porous shallower layer. The shallower layer is irradiated with a short laser pulse selected to recrystallize the shallower layer resulting in a crystalline layer. Silicon is deposited on the recrystallized shallower layer and the silicon is irradiated with a short laser pulse selected to crystalize the silicon leaving a layer of crystallized silicon on the template. Thereafter, the layer of crystallized silicon is separated from the template. The process of the invention can be used to make optoelectronic devices. | 10-31-2013 |
20140011343 | LASER IRRADIATION METHOD, LASER IRRADIATION APPARATUS, AND METHOD OF MANUFACTURING A SEMICONDUCTOR DEVICE - In the present invention, each laser light emitted from a plurality of lasers is divided, and laser light including at least one laser light that is emitted from a different laser and that has different energy distribution is synthesized with another such laser light, or laser light including at least one laser light that has different energy distribution is synthesized with another such laser light through a convex lens that is set at an angle to the direction each laser light travels, to form laser light having excellent uniformity in energy distribution. | 01-09-2014 |
20140057419 | METHOD FOR FORMING LOW TEMPERATURE POLYSILICON THIN FILM - Embodiments of the present invention provide a method for forming a low temperature polysilicon thin film. The method for forming the low temperature polysilicon thin film can comprise: depositing a buffer layer and an amorphous silicon layer on a substrate in this order; heating the amorphous silicon layer; performing an excimer laser annealing process on the amorphous silicon layer to form a polysilicon layer; oxidizing partially the polysilicon layer so as to form an oxidation portion at an upper portion of the polysilicon layer; and removing the oxidation portion of the polysilicon layer to form a polysilicon thin film. | 02-27-2014 |
20140057420 | PROCESS FOR PRODUCING A POLYCRYSTALLINE LAYER - A process is provided for producing a polycrystalline layer. This process includes the steps of: applying to a substrate a layer sequence comprising at least one amorphous starting layer provided with impurities, a metallic activator layer, and a cleaning layer based on titanium or titanium oxide arranged between the starting layer and the activator layer for withdrawing the impurities from the starting layer; and carrying out a heat treatment after the layer sequence has been applied for forming a polycrystalline end layer. | 02-27-2014 |
20140065804 | LOW TEMPERATURE POLYSILICON THIN FILM AND MANUFACTURING METHOD THEREOF - An embodiment of the present invention relates to a low temperature polysilicon thin film and a manufacturing method thereof. The manufacturing method comprises: forming a buffer layer on a substrate (S | 03-06-2014 |
20140065805 | MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MANUFACTURING APPARATUS - According to one embodiment, a manufacturing method of a semiconductor device includes forming a crystal film on a semiconductor substrate by irradiating the semiconductor substrate with a first microwave, obtained by providing frequency modulation or phase modulation of a first carrier wave which is a sine wave with a first frequency, using a first signal wave which is a sine wave or a pulse wave with a third frequency lower than a first frequency, and irradiating the semiconductor substrate with a second microwave, obtained by providing frequency modulation or phase modulation of a second carrier wave, which is a sine wave with a second frequency higher than the first frequency, using a second signal wave which is a sine wave or a pulse wave with a fourth frequency lower than the second frequency. | 03-06-2014 |
20140065806 | ELECTRONIC DEVICES INCLUDING BARIUM STRONTIUM TITANIUM OXIDE FILMS - Apparatus and methods of forming the apparatus include a dielectric layer containing barium strontium titanium oxide layer, an erbium-doped barium strontium titanium oxide layer, or a combination thereof. Embodiments of methods of fabricating such dielectric layers provide dielectric layers for use in a variety of devices. Embodiments include forming barium strontium titanium oxide film using atomic layer deposition. Embodiments include forming erbium-doped barium strontium titanium oxide film using atomic layer deposition. | 03-06-2014 |
20140099780 | Laser Doping of Crystalline Semiconductors Using a Dopant-Containing Amorphous Silicon Stack For Dopant Source and Passivation - Techniques and structures for laser doping of crystalline semiconductors using a dopant-containing amorphous silicon stack for dopant source and passivation. A method includes forming a dopant-containing amorphous silicon layer stack on at least one portion of a surface of a crystalline semiconductor layer, and irradiating a selected area of the dopant-containing amorphous silicon layer stack, wherein the selected area of the dopant-containing amorphous silicon layer stack interacts with an upper portion of the underlying crystalline semiconductor layer to form a doped, conductive crystalline region, and each non-selected area of the dopant-containing amorphous silicon layer stack remains intact on the at least one portion of the surface of the crystalline semiconductor layer. | 04-10-2014 |
20140099781 | BEAM HOMOGENIZER, LASER IRRADIATION APPARATUS, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - The energy distribution of the beam spot on the irradiated surface changes due to the change in the oscillation condition of the laser or before and after the maintenance. The present invention provides an optical system for forming a rectangular beam spot on an irradiated surface including a beam homogenizer for homogenizing the energy distribution of the rectangular beam spot on the irradiated surface in a direction of its long or short side. The beam homogenizer includes an optical element having a pair of reflection planes provided oppositely for reflecting the laser beam in the direction where the energy distribution is homogenized and having a curved shape in its entrance surface. The entrance surface of the optical element means a surface of the optical element where the laser beam is incident first. | 04-10-2014 |
20140113440 | LASER IRRADIATION METHOD AND LASER IRRADIATION DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - The present invention is characterized in that by laser beam being slantly incident to the convex lens, an aberration such as astigmatism or the like is occurred, and the shape of the laser beam is made linear on the irradiation surface or in its neighborhood. Since the present invention has a very simple configuration, the optical adjustment is easier, and the device becomes compact in size. Furthermore, since the beam is slantly incident with respect to the irradiated body, the return beam can be prevented. | 04-24-2014 |
20140120704 | METHOD FOR CRYSTALLIZING A SILICON SUBSTRATE - A method for crystallizing a silicon substrate includes manufacturing a crystallized silicon test substrate that is crystallized by scanning excimer laser annealing beams with different energy densities on respective areas of an amorphous silicon test substrate, irradiating a surface of the crystallized silicon test substrate using a light source, and measuring reflectivity corresponding to the respective areas of the crystallized silicon test substrate in a visible light wavelength range, extracting average reflectivities of the respective areas of the crystallized silicon test substrate in wavelength ranges corresponding to respective colors, calculating an optimum energy density (OPED) index per energy density by using a value acquired by subtracting average reflectivity of red-based colors from average reflectivity of blue-based colors, selecting an optimal energy density, and crystallizing an amorphous silicon substrate using the optimal energy density. | 05-01-2014 |
20140162440 | SEMICONDUCTOR MEMORY DEVICES AND METHODS OF FORMING THE SAME - Methods of forming semiconductor devices may be provided. A method of forming a semiconductor device may include patterning first and second material layers to form a first through region exposing a substrate. The method may include forming a first semiconductor layer in the first through region on the substrate and on sidewalls of the first and second material layers. In some embodiments, the method may include forming a buried layer filling the first through region on the first semiconductor layer. In some embodiments, the method may include removing a portion of the buried layer to form a second through region between the sidewalls of the first and second material layers. Moreover, the method may include forming a second semiconductor layer in the second through region. | 06-12-2014 |
20140256118 | METHOD FOR FORMING POLYSILICON USING HIGH ENERGY RADIATION SOURCE - A method for forming polysilicon using high energy sources of radiation includes the steps of providing a laser system which has at least two laser sources with different wavelengths, a dichroic mirror, a reflecting mirror and a substrate; generating a laser beam by the laser sources to irradiate towards the substrate perpendicularly by the dichroic mirror and the reflecting mirror which are faced to the laser source and meet the laser sources at a certain angle; placing the reflecting mirror above the dichroic mirror; placing the a semiconductor thin-film material on the substrate. The advantages of the above technical solution are that as follows: the crystallization rate of poly-silicon is effectively increased; the usage frequency of the excimer laser is reduced; the cost thereof is reduced; the throughput of annealing is affectively improved. | 09-11-2014 |
20140287571 | DOUBLE-ACTIVE-LAYER STRUCTURE WITH A POLYSILICON LAYER AND A MICROCRYSTALLINE SILICON LAYER, METHOD FOR MANUFACTURING THE SAME AND ITS APPLICATION - A first amorphous silicon layer is formed over a substrate and a second amorphous silicon layer is formed over the first amorphous silicon layer. When a laser annealing process is performed, the second amorphous silicon layer absorbs more laser light than the first amorphous silicon layer does. The first amorphous silicon layer crystallizes into a microcrystalline silicon layer and the second amorphous silicon layer crystallizes into a polysilicon layer. During the laser annealing process, light interference between the first amorphous silicon layer and an underlying buffer layer is eliminated owing to that the second amorphous silicon layer absorbs more laser light. The laser fringe is eliminated. The microcrystalline silicon layer with better crystalline uniformity can serve as an active layer for TFTs in the display area of an OLED display to improve its illumination uniformity. | 09-25-2014 |
20140308803 | DEVICE AND METHOD FOR IMPROVING CRYSTALLIZATION - The invention discloses a method and a device of improving crystallization ratio of polysilicon, which is applied to the process that the amorphous silicon layer converts into the polysilicon layer. More specifically, superposing at least two pulse laser beams into a superposed pulse laser beam. The pulse width of the superposed pulse laser beam is larger than each pulse laser beam. Next, utilizing the superposed pulse laser beam to irradiate onto the amorphous silicon layer for transforming the amorphous silicon layer into polysilicon layer. The superposed pulse laser beam irradiates onto the surface of the amorphous silicon layer. The amorphous silicon layer is transformed into the polysilicon layer. Consequently, the crystallization ratio of polysilicon is improved. | 10-16-2014 |
20140308804 | METHOD FOR FORMING CRYSTALLINE THIN-FILM AND METHOD FOR MANUFACTURING THIN FILM TRANSISTOR - A method for forming the crystalline thin film according to an implementation of the present invention includes: preparing a substrate; forming a non-crystalline thin film above the substrate; and crystallizing at least a predetermined region in the non-crystalline thin film, by irradiating the non-crystalline thin film with a laser beam having a predetermined wavelength and scanned relative to the substrate. In the preparing, a direction of a largest residual stress on the substrate is identified. In the crystallizing, the laser beam is scanned in the identified direction of the largest residual stress. | 10-16-2014 |
20140357065 | AMORPHOUS SILICON THICKNESS UNIFORMITY IMPROVED BY PROCESS DILUTED WITH HYDROGEN AND ARGON GAS MIXTURE - The embodiments described herein generally relate to methods for forming an amorphous silicon structure that may be used in thin film transistor devices. In embodiments disclosed herein, the amorphous silicon layer is deposited using a silicon-based gas with an activation gas comprising a high concentration of inert gas and a low concentration of hydrogen-based gas. The activation gas combination allows for a good deposition profile of the amorphous silicon layer from the edge of the shadow frame which is translated to the polycrystalline silicon layer post-annealing. | 12-04-2014 |
20140357066 | METHODS OF CRYSTALLISING THIN FILMS - A method of crystallising a thin film ( | 12-04-2014 |
20150140794 | POLYCRYSTALLIZATION METHOD - According to one embodiment, provided is a polycrystallization method for polycrystallizing an amorphous semiconductor film that has a natural oxide film on the surface . The polycrystallization method includes a step of cleaning the natural oxide film while leaving the natural oxide film on the surface of the amorphous semiconductor film, and a step of polycrystallizing the amorphous semiconductor film in the state where the natural oxide film is left. | 05-21-2015 |
20150348782 | APPARATUS FOR AND METHOD OF CRYSTALLIZING ACTIVE LAYER OF THIN FILM TRANSISTOR - An apparatus for crystallizing an active layer of a thin film transistor, the apparatus includes a first laser irradiating a first beam toward a substrate, an amorphous layer on the substrate being crystallizable into the active layer of the thin film transistor by the first beam, and a second laser irradiating a second beam toward the substrate to heat the active layer, the second beam having an asymmetric intensity profile in a scanning direction of the first and second beams. | 12-03-2015 |
20160013055 | ORGANIC LIGHT-EMITTING DISPLAY APPARATUS | 01-14-2016 |
20160254151 | LASER ANNEALING DEVICE, PRODUCTION PROCESS OF POLYCRYSTALLINE SILICON THIN FILM, AND POLYCRYSTALLINE SILICON THIN FILM PRODUCED BY THE SAME | 09-01-2016 |
20190148149 | TECHNIQUE AND RELATED SEMICONDUCTOR DEVICES BASED ON CRYSTALLINE SEMICONDUCTOR MATERIAL FORMED ON THE BASIS OF DEPOSITED AMORPHOUS SEMICONDUCTOR MATERIAL | 05-16-2019 |