Class / Patent application number | Description | Number of patent applications / Date published |
438084000 | Having selenium or tellurium elemental semiconductor component | 34 |
20080305573 | Photovoltaically Active Semiconductor Material and Photovoltaic Cell - The invention relates to a photovoltaically active semiconductor material and a photovoltaic cell comprising a photovoltaically active semiconductor material, wherein the photovoltaically active semiconductor material contains a crystal lattice composed of zinc telluride and, in the zinc telluride crystal lattice, ZnTe is substituted by—0.01 to 10 mol % CoTe, —0 to 10 mol % Cu | 12-11-2008 |
20090111209 | METHOD FOR PATTERNING MO LAYER IN A PHOTOVOLTAIC DEVICE COMPRISING CIGS MATERIAL USING AN ETCH PROCESS - A processing method described herein provides a method of patterning a MoSe | 04-30-2009 |
20090130794 | THERMAL EVAPORATION APPARATUS, USE AND METHOD OF DEPOSITING A MATERIAL - Thermal evaporation apparatus for depositing of a material on a substrate, comprising material storage means; heating means to generate a vapour of the material in the material storage means; vapour outlet means comprising a vapour receiving pipe having vapour outlet passages, and emission reducing means arranged such that an external surface of the vapour outlet means directed to said substrate exhibits low emission, and wherein the apparatus further comprises pipe heating means in the interior of said vapour outlet means, wherein at least the surfaces of the material storage means, heating means, and emission reducing means and pipe heating means arranged to come into contact with the material vapour are of a corrosion-resistant material. Further a thermal evaporation apparatus for depositing a material on a substrate comprising a vapour outlet means arranged to receive in its interior the vapour of the material heated in a material storage means and having vapour outlet passages, wherein said vapour outlet means basically consist of a corrosion-resistant material and are gastight to such an extent that sufficient dynamic pressure of said material vapour is achievable for homogenous deposition of said material on said substrate. Also the use of the apparatus, and a method of depositing a material onto a substrate by thermal evaporation. | 05-21-2009 |
20090246906 | High-Throughput Printing of Semiconductor Precursor Layer From Microflake Particles - Methods and devices are provided for high-throughput printing of semiconductor precursor layer from microflake particles. In one embodiment, the method comprises of transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be microflakes that have a high aspect ratio. The resulting dense film formed from microflakes are particularly useful in forming photovoltaic devices. | 10-01-2009 |
20090305455 | Formation of CIGS Absorber Layers on Foil Substrates - An absorber layer of a photovoltaic device may be formed on an aluminum or metallized polymer foil substrate. A nascent absorber layer containing one or more elements of group IB and one or more elements of group IIIA is formed on the substrate. The nascent absorber layer and/or substrate is then rapidly heated from an ambient temperature to an average plateau temperature range of between about 200° C. and about 600° C. and maintained in the average plateau temperature range 2 to 30 minutes after which the temperature is reduced. | 12-10-2009 |
20100009496 | Structuring Device for Structuring Plate-Like Elements, in Particular Thin-Film Solar Modules - A structuring device is for structuring a plate-like element. A solar module and/or a thin-film solar module comprises a plurality of structuring tools which are configured respectively for introducing a track into the plate-like element, characterised by a first structuring unit which has a plurality of these structuring tools, at least two structuring tools of this first structuring unit being configured such that two first tracks which extend parallel to each other and at a constant spacing from each other can be introduced into the plate-like element with said structuring tools (first track group SG | 01-14-2010 |
20100015753 | High Power Efficiency, Large Substrate, Polycrystalline CdTe Thin Film Semiconductor Photovoltaic Cell Structures Grown by Molecular Beam Epitaxy at High Deposition Rate for Use in Solar Electricity Generation - Solar cell structures formed using molecular beam epitaxy (MBE) that can achieve improved power efficiencies in relation to prior art thin film solar cell structures are provided. A reverse p-n junction solar cell device and methods for forming the reverse p-n junction solar cell device using MBE are described. A variety of n-p junction and reverse p-n junction solar cell devices and related methods of manufacturing are provided. N-intrinsic-p junction and reverse p-intrinsic-n junction solar cell devices are also described. | 01-21-2010 |
20100055826 | Methods of Fabrication of Solar Cells Using High Power Pulsed Magnetron Sputtering - A method of fabricating a solar cell is provided. The method includes depositing a transparent conductive contact layer on a surface of a substrate, where the transparent conductive contact layer is configured to act as a front electrode for the solar cell, depositing a window layer over the transparent conductive contact layer, depositing an absorber layer on the window layer, wherein the absorber layer and the window layer are oppositely doped and form a semiconductor junction, and where at least one of the window layer or the absorber layer is deposited by employing high power pulsed magnetron sputtering, and depositing an electrically conductive film on the semiconductor junction, wherein the electrically conductive film is configured to act as a back electrode layer for the solar cell. | 03-04-2010 |
20100203668 | METHOD AND APPARATUS FOR THERMALLY CONVERTING METALLIC PRECURSOR LAYERS INTO SEMICONDUCTING LAYERS, AND ALSO SOLAR MODULE - An accelerated and simple-to-realize fast method for thermally converting metallic precursor layers on any desired substrates into semiconducting layers, and also an apparatus suitable for carrying out the method and serving for producing solar modules with high efficiency are provided. The substrates previously prepared at least with a metallic precursor layer are heated in a furnace, which is segmented into a plurality of temperature regions, at a pressure at approximately atmospheric ambient pressure in a plurality of steps in each case to a predetermined temperature up to an end temperature between 400° C. and 600° C. and are converted into semiconducting layers whilst maintaining the end temperature in an atmosphere comprising a mixture of a carrier gas and vaporous chalcogens. | 08-12-2010 |
20100248416 | DEPOSITION OF HIGH VAPOR PRESSURE MATERIALS - The present invention provides deposition sources, systems, and related methods that can efficiently and controllably provide vaporized material for deposition of thin-film materials. The deposition sources, systems and related methods described herein can be used to deposit any desired material and are particularly useful for depositing high vapor pressure materials such as selenium in the manufacture of copper indium gallium diselenide based photovoltaic devices. | 09-30-2010 |
20100248417 | METHOD FOR PRODUCING CHALCOPYRITE-TYPE SOLAR CELL - The present invention relates to a method for producing a chalcopyrite-type solar cell. The chalcopyrite-type solar cell has a light absorbing layer formed by selenizing a Cu—In—Ga alloy layer. The alloy layer is formed on a first electrode layer by sputtering using only a Cu—In—Ga alloy target (CIG target). | 09-30-2010 |
20100330733 | SEMITRANSPARENT FLEXIBLE THIN FILM SOLAR CELLS AND MODULES - A method of manufacturing partially light transparent thin film solar cells generally includes forming a solar cell structure stack and forming multiple openings through the solar cell structure stack. The solar cell structure stack includes a flexible foil substrate, a contact layer formed over the flexible foil substrate, a Group IBIIIAVIA absorber layer formed over the contact layer and a transparent conductive layer formed over the Group IBIIIAVIA absorber layer. A terminal structure including at least one busbar and a plurality of conductive finger patterns is deposited onto a top surface of the transparent conductive layer forming a semi-transparent solar cell. | 12-30-2010 |
20110020977 | Mechanical patterning of thin film photovoltaic materials and structure - A method for forming one or more patterns for a thin film photovoltaic material. The method includes providing a substrate including a molybdenum layer and an overlying absorber comprising a copper bearing species and a window layer comprising a cadmium bearing species. The substrate is supported to expose a surface of the window layer. In a specific embodiment, the method includes using a scribe device. The scribe device includes a scribe having a tip. The scribe device is configured to pivot about one or more regions and configured to apply pressure to the tip, such that the tip is placed on a selected region of the window layer or the absorber layer. The method moves the scribe device relative to the substrate in a direction to form a pattern on at least the window layer or the absorber layer at a determined speed maintaining the molybdenum layer free from the pattern. | 01-27-2011 |
20110129957 | METHOD OF MANUFACTURING SOLAR CELL - A solar cell manufacturing method is provided. A solar cell manufacturing method according to an exemplary embodiment of the present invention includes: forming a first electrode on a substrate, forming a precursor including copper (Cu), gallium (Ga), and indium (In) on the first electrode, supplying selenium (Se) to the precursor to form a preliminary light absorption layer, depositing at least one of gallium or indium on the preliminary light absorption layer, supplying selenium (Se) to the preliminary light absorption layer deposited with the at least one of gallium and indium to form a light absorption layer and forming a second electrode on the light absorption layer. | 06-02-2011 |
20110136293 | REACTION METHODS TO FORM GROUP IBIIIAVIA THIN FILM SOLAR CELL ABSORBERS - The present invention provides a method to form Group IBIIIAVIA solar cell absorber layers on continuous flexible substrates. In a preferred aspect, the method forms a Group IBIIIAVIA absorber layer for manufacturing photovoltaic cells by providing a workpiece having a precursor layer formed over a substrate, the precursor layer including copper, indium, gallium and selenium; heating the precursor layer to a first temperature; reacting the precursor layer at the first temperature for a first predetermined time to transform the precursor layer to a partially formed absorber structure; cooling down the partially formed absorber structure to a second temperature, wherein both the first temperature and the second temperature are above 400° C.; and reacting the partially formed absorber structure at the second temperature for a second predetermined time, which is longer than the first predetermined time, to form a Group IBIIIAVIA absorber layer. | 06-09-2011 |
20110143489 | PROCESS FOR MAKING THIN FILM SOLAR CELL - A process for making a component of a thin film solar cell is provided. The process includes steps of making the component in the following sequence: depositing an absorber layer on a transparent substrate, depositing a back-contact layer on the absorber layer and activating the absorber layer. The absorber layer comprises tellurium. A process for making a thin film solar cell is also presented. | 06-16-2011 |
20110143490 | METHODS OF MANUFACTURING CADMIUM TELLURIDE THIN FILM PHOTOVOLTAIC DEVICES - Methods for manufacturing a cadmium telluride based thin film photovoltaic device are generally disclosed. A resistive transparent layer can be sputtered on a transparent conductive oxide layer from a metal alloy target in a sputtering atmosphere of argon and oxygen that includes argon from about 5% to about 40%. A cadmium sulfide layer can then be formed on the resistive transparent layer. A cadmium telluride layer can be formed on the cadmium sulfide layer; and a back contact layer can be formed on the cadmium telluride layer. The sputtering can be accomplished within a sputtering chamber. | 06-16-2011 |
20110143491 | VAPOR DEPOSITION APPARATUS AND PROCESS FOR CONTINUOUS DEPOSITION OF A THIN FILM LAYER ON A SUBSTRATE - An apparatus and related process are provided for vapor deposition of a sublimated source material as a thin film on a photovoltaic (PV) module substrate. A receptacle is disposed within a vacuum head chamber and is configured for receipt of a source material. A heated distribution manifold is disposed below the receptacle and includes a plurality of passages defined therethrough. The receptacle is indirectly heated by the distribution manifold to a degree sufficient to sublimate source material within the receptacle. A distribution plate is disposed below the distribution manifold and at a defined distance above a horizontal plane of a substrate conveyed through the apparatus. The distribution plate includes a pattern of holes therethrough that further distribute the sublimated source material passing through the distribution manifold onto the upper surface of the underlying substrate. | 06-16-2011 |
20110143492 | METHOD OF P-TYPE DOPING OF CADMIUM TELLURIDE - A method of p-type doping cadmium telluride (CdTe) is disclosed. The method comprising the steps of, (a) providing a first component comprising cadmium telluride (CdTe) comprising an interfacial region, and (b) subjecting the CdTe to a functionalizing treatment to obtain p-type doped CdTe, said functionalizing treatment comprising a thermal treatment of at least a portion of the interfacial region in the presence of a first material comprising a p-type dopant, and of a second material comprising a halogen. A method of making a photovoltaic cell is also disclosed. | 06-16-2011 |
20110143493 | METHOD OF MAKING PHOTOVOLTAIC CELL - Methods of making a photovoltaic (PV) cell are disclosed. The methods comprise at least the steps of, providing a first component comprising a cadmium telluride (CdTe) layer comprising an interfacial region, and subjecting the first component to a functionalizing treatment in the presence of a material comprising copper. | 06-16-2011 |
20110244620 | Methods Of Forming A Conductive Transparent Oxide Film Layer For Use In A Cadmium Telluride Based Thin Film Photovoltaic Device - Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer on a substrate at a sputtering temperature from about 50° C. to about 250° C., and annealing the transparent conductive oxide layer at an anneal temperature of about 450° C. to about 650° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device. | 10-06-2011 |
20110244621 | METHODS OF FORMING A CONDUCTIVE TRANSPARENT OXIDE FILM LAYER FOR USE IN A CADMIUM TELLURIDE BASED THIN FILM PHOTOVOLTAIC DEVICE - Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer on a substrate from a target (e.g., including cadmium stannate) in a sputtering atmosphere comprising cadmium. The transparent conductive oxide layer can be sputtered at a sputtering temperature of about 100° C. to about 600° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device. | 10-06-2011 |
20110244622 | METHODS OF FORMING A CONDUCTIVE TRANSPARENT OXIDE FILM LAYER FOR USE IN A CADMIUM TELLURIDE BASED THIN FILM PHOTOVOLTAIC DEVICE - Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer (e.g., including cadmium stannate) on a substrate from a target in a sputtering atmosphere comprising cadmium. The transparent conductive oxide layer can be sputtered at a sputtering temperature greater of about 100° C. to about 600° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device. | 10-06-2011 |
20110263070 | TREATMENT OF THIN FILM LAYERS PHOTOVOLTAIC MODULE MANUFACTURE - Systems and processes for treatment of a cadmium telluride thin film photovoltaic device are generally provided. The systems can include a treatment system and a conveyor system. The treatment system includes a preheating section, a treatment chamber, and an anneal oven that are integrally interconnected within the treatment system. The conveyor system is operably disposed within the treatment system and configured for transporting substrates in a serial arrangement into and through the preheat section, into and through the treatment chamber, and into and through the anneal oven at a controlled speed. The treatment chamber is configured for applying a material to a thin film on a surface of the substrate and the anneal oven is configured to heat the substrate to an annealing temperature as the substrates are continuously conveyed by the conveyor system through the treatment chamber. | 10-27-2011 |
20110287573 | ATYPICAL KESTERITE COMPOSITIONS - This invention relates to processes for making kesterite compositions with atypical Cu:Zn:Sn:S ratios and/or kesterite compositions with unusually small coherent domain sizes. This invention also relates to these kesterite compositions and their use in preparing CZTS films. | 11-24-2011 |
20120003784 | METHODS OF FORMING A CONDUCTIVE TRANSPARENT OXIDE FILM LAYER FOR USE IN A CADMIUM TELLURIDE BASED THIN FILM PHOTOVOLTAIC DEVICE - Methods for forming a conductive oxide layer on a substrate are provided. The method can include sputtering a transparent conductive oxide layer (“TCO layer”) on a substrate from a target (e.g., including cadmium stannate) at a sputtering temperature of about 10° C. to about 100° C. The TCO layer can then be annealed in an anneal temperature comprising cadmium at an annealing temperature of about 500° C. to about 700° C. The method of forming the TCO layer can be used in a method for manufacturing a cadmium telluride based thin film photovoltaic device, further including forming a cadmium sulfide layer over the transparent conductive oxide layer and forming a cadmium telluride layer over the cadmium sulfide layer. | 01-05-2012 |
20120003785 | Method and Apparatus for Controllable Sodium Delivery for Thin Film Photovoltaic Materials - A solar cell includes a substrate, a first electrode located over the substrate, where the first electrode comprises a first transition metal layer, at least one p-type semiconductor absorber layer located over the first electrode, an n-type semiconductor layer located over the p-type semiconductor absorber layer, and a second electrode located over the n-type semiconductor layer. The first transition metal layer contains (i) an alkali element or an alkali compound and (ii) a lattice distortion element or a lattice distortion compound. The p-type semiconductor absorber layer includes a copper indium selenide (CIS) based alloy material. | 01-05-2012 |
20120021556 | DEPOSITION SYSTEM - A selenium deposition system can improve the selenium vapor distribution. | 01-26-2012 |
20120164784 | INTEGRATED DEPOSITION OF THIN FILM LAYERS IN CADMIUM TELLURIDE BASED PHOTOVOLTAIC MODULE MANUFACTURE - Apparatus and processes for thin film deposition of semiconducting layers in the formation of cadmium telluride thin film photovoltaic device are provided. The apparatus includes a series of integrally connected chambers, such as a load vacuum chamber connected to a load vacuum pump; a sputtering deposition chamber; a vacuum buffer chamber; and, a vapor deposition chamber. A conveyor system is operably disposed within the apparatus and configured for transporting substrates in a serial arrangement into and through the load vacuum chamber, the sputtering deposition chamber, the vacuum buffer chamber, and the vapor deposition chamber at a controlled speed. The sputtering deposition chamber; the vacuum buffer chamber; and the vapor deposition chamber are integrally connected such that the substrates being transported through the apparatus are kept at a system pressure less than about 760 Torr. | 06-28-2012 |
20120264254 | METHOD OF CADMIUM MOLECULAR BEAM BASED ANNEALS FOR MANUFACTURE OF HGCDTE PHOTODIODE ARRAYS - In the preferred embodiment of the present invention, narrow bandgap II-VI compound semiconductor Hg | 10-18-2012 |
20120264255 | PRODUCTION OF THIN FILMS HAVING PHOTOVOLTAIC PROPERTIES AND CONTAINING A I-III-VI2-TYPE ALLOY, COMPRISING SUCCESSIVE ELECTRODEPOSITS AND THERMAL POST-TREATMENT - The invention relates to the production of a thin film having photovoltaic properties, containing a I-III-VI | 10-18-2012 |
20140170802 | Absorber Layer for a Thin Film Photovoltaic Device With a Double-Graded Band Gap - A gallium-containing alloy is formed on the light-receiving surface of a CIGS absorber layer, and, in conjunction with a subsequent selenization or anneal process, is converted to a gallium-rich region at the light-receiving surface of the CIGS absorber layer. A second gallium-rich region is formed at the back contact surface of the CIGS absorber layer during selenization, so that the CIGS absorber layer has a double-graded gallium concentration that increases toward the light-receiving surface and toward the back contact surface of the CIGS absorber layer. The double-graded gallium concentration advantageously produces a double-graded bandgap profile for the CIGS absorber layer. | 06-19-2014 |
20140179053 | METHOD FOR FABRICATING ABSORBING LAYER OF SOLAR CELL AND THERMAL TREATMENT DEVICE THEREOF - A method for fabricating an absorbing layer of a solar cell and a thermal treatment device thereof adapted for forming an absorbing layer on a substrate are disclosed. The method includes the following steps. First, a solid-phase vapor source in a chamber and an absorbing layer precursor on a substrate are maintained by a predetermined distance. The solid-phase vapor source contains tin. The absorbing layer precursor contains copper, zinc, tin and sulfur. The temperature inside the chamber is raised to a forming temperature, so that the absorbing layer precursor forms an absorbing layer on the substrate. | 06-26-2014 |
20140248738 | Method of P-Type Doping of Cadmium Telluride - A method of p-type doping cadmium telluride (CdTe) is disclosed. The method comprising the steps of, (a) providing a first component comprising cadmium telluride (CdTe) comprising an interfacial region, and (b) subjecting the CdTe to a functionalizing treatment to obtain p-type doped CdTe, said functionalizing treatment comprising a thermal treatment of at least a portion of the interfacial region in the presence of a first material comprising a p-type dopant, and of a second material comprising a halogen. A method of making a photovoltaic cell is also disclosed. | 09-04-2014 |