Class / Patent application number | Description | Number of patent applications / Date published |
438074000 | Vertically arranged (e.g., tandem, stacked, etc.) | 14 |
20090155951 | Exponentially Doped Layers In Inverted Metamorphic Multijunction Solar Cells - A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell, including providing first substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a grading interlayer over the second subcell, the grading interlayer having a third band gap greater than the second band gap; and forming a third solar subcell over the grading interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mis-matched with respect to the second subcell, wherein at least one of the bases of a solar subcell has an exponentially doped profile. | 06-18-2009 |
20090209059 | METHOD FOR MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE - The purpose is manufacturing a photoelectric conversion device with excellent photoelectric conversion characteristics typified by a solar cell with effective use of a silicon material. A single crystal silicon layer is irradiated with a laser beam through an optical modulator to form an uneven structure on a surface thereof. The single crystal silicon layer is obtained in the following manner; an embrittlement layer is formed in a single crystal silicon substrate; one surface of a supporting substrate and one surface of an insulating layer formed over the single crystal silicon substrate are disposed to be in contact and bonded; heat treatment is performed; and the single crystal silicon layer is formed over the supporting substrate by separating part of the single crystal silicon substrate fixed to the supporting substrate along the embrittlement layer or a periphery of the embrittlement layer. Then, irradiation with a laser beam is performed on a separation surface of the single crystal silicon layer through an optical modulator which modulates light intensity regularly, and unevenness is formed on the surface. Due to the unevenness, reflection of incident light is reduced and absorptance with respect to light is improved, therefore, photoelectric conversion efficiency of the photoelectric conversion device is improved. | 08-20-2009 |
20100279456 | Compound solar and manufacturing method thereof - On a surface of a GaAs substrate, layers to be a top cell are formed by epitaxial growth. On the top cell, layers to be a bottom cell are formed. Thereafter, on a surface of the bottom cell, a back surface electrode is formed. Thereafter, a glass plate is adhered to the back surface electrode by wax. Then, the GaAs substrate supported by the glass plate is dipped in an alkali solution, whereby the GaAs substrate is removed. Thereafter, a surface electrode is formed on the top cell. Finally the glass plate is separated from the back surface electrode. In this manner, a compound solar battery that improves efficiency of conversion to electric energy can be obtained. | 11-04-2010 |
20110143487 | Method and Structure for Thin Film Tandem Photovoltaic Cell - A tandem photovoltaic cell. The tandem photovoltaic cell includes a bifacial top cell and a bottom cell. The top bifacial cell includes a top first transparent conductive oxide material. A top window material underlies the top first transparent conductive oxide material. A first interface region is disposed between the top window material and the top first transparent conductive oxide material. The first interface region is substantially free from one or more entities from the top first transparent conductive oxide material diffused into the top window material. A top absorber material comprising a copper species, an indium species, and a sulfur species underlies the top window material. A top second transparent conductive oxide material underlies the top absorber material. A second interface region is disposed between the top second transparent conductive oxide material and the top absorber material. The bottom cell includes a bottom first transparent conductive oxide material. A bottom window material underlies the first bottom transparent conductive oxide material. A bottom absorber material underlies the bottom window material. A bottom electrode material underlies the bottom absorber material. The tandem photovoltaic cell further includes a coupling material free from a parasitic junction between the top cell and the bottom cell. | 06-16-2011 |
20130122638 | High Efficiency Multijunction Solar Cells - Multijunction solar cells having at least four subcells are disclosed, in which at least one of the subcells comprises a base layer formed of an alloy of one or more elements from group III on the periodic table, nitrogen, arsenic, and at least one element selected from the group consisting of Sb and Bi, and each of the subcells is substantially lattice matched. Methods of manufacturing solar cells and photovoltaic systems comprising at least one of the multijunction solar cells are also disclosed. | 05-16-2013 |
20140093995 | Method of Hybrid Stacked Chip for a Solar Cell - A method of hybrid stacked Chip for a solar cell onto which semiconductor layers of different materials is provided by stacking tunnel layer and bumps in order to solve the problem of lattices mismatch between the layers for further increasing of the efficiency of solar cell. Electric charges (i.e., current) generated by respective solar cells can be outputted by means of contacts. Further total power P is defined by a summation of powers of respective solar cells, i.e., V1I1+V2I2+ . . . VnIn. This is a great increase in comparison with the power of conventional solar cells connected in series. | 04-03-2014 |
20140342494 | OHMIC N-CONTACT FORMED AT LOW TEMPERATURE IN INVERTED METAMORPHIC MULTIJUNCTION SOLAR CELLS - A method of forming a multijunction solar cell including an upper subcell, a middle subcell, and a lower subcell by providing a substrate for the epitaxial growth of semiconductor material; forming a first solar subcell on the substrate having a first band gap; forming a second solar subcell over the first solar subcell having a second band gap smaller than the first band gap; forming a graded interlayer over the second subcell, the graded interlayer having a third band gap greater than the second band gap; forming a third solar subcell over the graded interlayer having a fourth band gap smaller than the second band gap such that the third subcell is lattice mismatched with respect to the second subcell; and forming a contact composed of a sequence of layers over the first subcell at a temperature of 280° C. or less and having a contact resistance of less than 5×10 | 11-20-2014 |
20150072464 | METHOD AND STRUCTURE FOR THIN FILM TANDEM PHOTOVOLTAIC CELL - A tandem photovoltaic cell. The tandem photovoltaic cell includes a bifacial top cell and a bottom cell. The top bifacial cell includes a top first transparent conductive oxide material. A top window material underlies the top first transparent conductive oxide material. A first interface region is disposed between the top window material and the top first transparent conductive oxide material. The first interface region is substantially free from one or more entities from the top first transparent conductive oxide material diffused into the top window material. A top absorber material comprising a copper species, an indium species, and a sulfur species underlies the top window material. A top second transparent conductive oxide material underlies the top absorber material. A second interface region is disposed between the top second transparent conductive oxide material and the top absorber material. The bottom cell includes a bottom first transparent conductive oxide material. A bottom window material underlies the first bottom transparent conductive oxide material. A bottom absorber material underlies the bottom window material. A bottom electrode material underlies the bottom absorber material. The tandem photovoltaic cell further includes a coupling material free from a parasitic junction between the top cell and the bottom cell. | 03-12-2015 |
20150099324 | BIFACIAL TANDEM SOLAR CELLS - A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material. | 04-09-2015 |
20150104899 | Manufactoring Semiconductor-Based Multi-Junction Photovoltaic Devices - Manufacture of multi-junction solar cells, and devices thereof, are disclosed. The architectures are also adapted to provide for a more uniform and consistent fabrication of the solar cell structures, leading to improved yields and lower costs. Certain solar cells may further include one or more compositional gradients of one or more semiconductor elements in one or more semiconductor layers, resulting in a more optimal solar cell device. | 04-16-2015 |
20150333214 | PHOTOVOLTAIC CELL AND PHOTOVOLTAIC CELL MANUFACTURING METHOD - A photovoltaic cell manufacturing method includes depositing a first buffer layer for performing lattice relaxation on a first silicon substrate; depositing a first photoelectric conversion cell on the first buffer layer, the first photoelectric conversion cell being formed with a compound semiconductor including a pn junction, and the first photoelectric conversion cell having a lattice constant that is higher than that of silicon; connecting a support substrate to the first photoelectric conversion cell to form a first layered body; and removing the first buffer layer and the first silicon substrate from the first layered body. | 11-19-2015 |
20160043269 | METHOD FOR MANUFACTURING MULTI-JUNCTION STRUCTURE FOR PHOTOVOLTAIC CELL - Process for manufacturing a multi-junction structure for a photovoltaic cell. The process includes steps in: a) providing a first donor substrate including a first carrier substrate and a first seed layer including a first material; b) providing a second donor substrate including a second carrier substrate and a second layer including a second material different from the first material; c) bringing the first seed layer and the second layer into contact so as to obtain a direct bond between the first seed layer and the second layer with a view to forming the bonding interface; d) removing the first carrier substrate so as to expose the first seed layer; and e) epitaxially growing at least one first junction on the first seed layer. | 02-11-2016 |
20160079533 | SLOT-DIE COATING METHOD, APPARATUS, AND SUBSTRATE - There is disclosed a slot-die coating method and apparatus, and a substrate having a patterned coating layer. The method comprises controlling an intermittent transfer of the coating fluid from a slot-die coating head onto the substrate surface to provide, by said intermittent transfer, coated areas on the substrate surface separated by uncoated areas. The substrate surface comprises a pre-patterned layer of high surface energy areas and low surface energy areas; wherein a contact angle of the coating fluid on the substrate surface is lower in the high surface energy areas than in the low surface energy areas. Boundaries between the low surface energy areas and high surface energy areas are arranged along a slit direction of the slot die coating head. The method further comprises synchronizing the intermittent transfer with a passage of an outflow opening over the boundaries between the low surface energy areas and high surface energy areas wherein the transfer is enabled when the outflow opening passes over a high surface energy area and wherein the transfer is disabled when the outflow opening passes over a low surface energy area. | 03-17-2016 |
20160172531 | TRANSPARENT ELECTROCONDUCTIVE FILM FOR SOLAR CELL, COMPOSITION FOR TRANSPARENT ELECTROCONDUCTIVE FILM AND MULTI-JUNCTION SOLAR CELL | 06-16-2016 |