Class / Patent application number | Description | Number of patent applications / Date published |
438052000 | Having cantilever element | 27 |
20080220556 | METHOD OF MANUFACTURING ENHANCEMENT TYPE SEMICONDUCTOR PROBE AND INFORMATION STORAGE DEVICE HAVING THE SEMICONDUCTOR PROBE USING THE SAME - A method of manufacturing an enhancement type semiconductor probe and an information storage device having the enhancement type semiconductor probe are provided. The method involves using an anisotropic wet etching and a side-wall in which influence of process parameters upon the performance of a device is reduced to improve reliability of the device in mass-production, and factors of degrading measuring sensitivity is removed to improve the performance of the device. | 09-11-2008 |
20080248604 | Post-logic isolation of silicon regions for an integrated sensor - In producing an integrated sensor, regions of silicon between compensating electronics and a sensor are electrically isolated, while the sensor is delineating and released. The described process can be performed at the end of a fabrication process after electronics processing (i.e., CMOS processing) and compensating electronics are formed. In an aspect, the sensor and a conductive bridge are simultaneously developed from a silicon-on-insulator (SOI) substrate. In an aspect, the sensor is undercut from a silicon substrate utilizing a lateral etch. A cavity is concurrently defined by the same lateral etch in the silicon layer, forming the conductive bridge connecting the sensor to a logic component. An isolation trench is defined in the silicon layer between the sensor components and the logic component. A polymer masks vertical surfaces from the lateral etch, and an insulator layer and photosensitive film mask horizontal surfaces from the lateral etch. | 10-09-2008 |
20090124035 | METHOD OF PRODUCING A SUSPENDED MEMBRANE DEVICE - A method for producing a device with at least one suspended membrane, comprising at least the following steps:
| 05-14-2009 |
20090191661 | PLACING A MEMS PART ON AN APPLICATION PLATFORM USING A GUIDE MASK - A method for fabricating a micro-electro-mechanical system (MEMS) device. The method comprises placing a guiding mask on an application platform, the guiding mask including an opening that defines the position of a MEMS part to be placed on the application platform. The method further comprises placing the MEMS part into the opening of the guiding mask on the application platform, and removing the guiding mask from the application platform after the MEMS part is bonded to the application platform. | 07-30-2009 |
20090258455 | METHOD OF MINIMIZING BEAM BENDING OF MEMS DEVICE BY REDUCING THE INTERFACIAL BONDING STRENGTH BETWEEN SACRIFICIAL LAYER AND MEMS STRUCTURE - The beam bending of a MEMS device is minimized by reducing interfacial strength between a sacrificial layer and a MEMS structure. | 10-15-2009 |
20100015744 | Micro-Electromechanical Device and Method of Making the Same - A method of manufacturing a cantilever-based micro-electromechanical device comprising the steps of providing a first conductive material layer on a substrate to from a plurality of electrodes. Then, depositing a sacrificial material layer on the electrodes and substrate, thereby defining a non-exposed surface and an exposed surface of the sacrificial material. The method comprises the steps of patterning and etching the sacrificial material layer such that at least a portion of at least one electrode is exposed and spuner etching the sacrificial material layer such that the exposed surface of the sacrificial material layer comprises edges which are incongruous with the edges of the non-exposed surface. The method then involves forming a cantilever structure. Finally, the method comprises the step of removing at least a portion of the sacrificial material layer such that at least a portion of the cantilever structure is suspended. | 01-21-2010 |
20100112743 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE INCLUDING VIBRATOR WHICH IS PROVIDED WITH SIDE INSULATING FILM AND INSULATING SEPARATION REGION FORMED BY THERMAL OXIDATION - A method of manufacturing a semiconductor device includes partially etching the upper surface of the semiconductor substrate to form side grooves and expose side surfaces of the vibrators, partially etching the upper surface of the semiconductor substrate to form separation grooves where insulating separation regions between the vibrators and the semiconductor substrate are to be formed, thermally oxidizing surfaces of the separation grooves to form the insulating separation region composed of oxidized films filled in the separation grooves, thermally oxidizing the side surfaces of the vibrators to form side insulating film, and performing release etching of the semiconductor substrate using the side insulating film as a mask to expose bottom surfaces of the vibrators and form the vibrators arranged in the recess formed in the semiconductor substrate. | 05-06-2010 |
20100197065 | Piezo-Diode Cantilever MEMS Fabrication Method - A piezo thin-film diode (piezo-diode) cantilever microelectromechanical system (MEMS) and associated fabrication processes are provided. The method deposits thin-films overlying a substrate. The substrate can be made of glass, polymer, quartz, metal foil, Si, sapphire, ceramic, or compound semiconductor materials. Amorphous silicon (a-Si), polycrystalline Si (poly-Si), oxides, a-Site, poly-SiGe, metals, metal-containing compounds, nitrides, polymers, ceramic films, magnetic films, and compound semiconductor materials are some examples of thin-film materials. A cantilever beam is formed from the thin-films, and a diode is embedded with the cantilever beam. The diode is made from a thin-film shared in common with the cantilever beam. The shared thin-film may a film overlying a cantilever beam top surface, a thin-film overlying a cantilever beam bottom surface, or a thin-film embedded within the cantilever beam. | 08-05-2010 |
20100203664 | Silicon Undercut Prevention in Sacrificial Oxide Release Process and Resulting MEMS Structures - When a native oxide grows on a polysilicon member of, e.g., a MEMS device, delamination between the polysilicon member and subsequently formed layers may occur because the native oxide is undercut during removal of sacrificial oxide layers. Nitriding the native oxide increases the etch selectivity relative the sacrificial oxide layers. Undercutting and delamination is hence reduced or eliminated altogether. | 08-12-2010 |
20100317138 | METHOD FOR FABRICATING MEMS STRUCTURE - A method for fabricating a MEMS is described as follows. A substrate is provided, including a circuit region and an MEMS region separated from each other. A first metal interconnection structure is formed on the substrate in the circuit region, and simultaneously a first dielectric structure is formed on the substrate in the MEMS region. A second metal interconnection structure is formed on the first metal interconnection structure, and simultaneously a second dielectric structure, at least two metal layers and at least one protection ring are formed on the first dielectric structure. The metal layers and the protection ring are formed in the second dielectric structure and the protection ring connects two adjacent metal layers to define an enclosed space between two adjacent metal layers. The first dielectric structure and the second dielectric structure outside the enclosed space are removed to form an MEMS device in the MEMS region. | 12-16-2010 |
20110136284 | Micro-Electro-Mechanical Transducer Having a Surface Plate - A micro-electro-mechanical transducer (such as a cMUT) is disclosed. The transducer has a base, a spring layer placed over the base, and a mass layer connected to the spring layer through a spring-mass connector. The base includes a first electrode. The spring layer or the mass layer includes a second electrode. The base and the spring layer form a gap therebetween and are connected through a spring anchor. The mass layer provides a substantially independent spring mass contribution to the spring model without affecting the equivalent spring constant. The mass layer also functions as a surface plate interfacing with the medium to improve transducing performance. Fabrication methods to make the same are also disclosed. | 06-09-2011 |
20110159627 | METHOD FOR FABRICATING A SENSOR - A method for fabricating a sensor is disclosed that in one embodiment bonds an etched semiconductor substrate wafer to an etched device wafer comprising a double silicon on insulator wafer to create a suspended structure, the flexure of which is sensed by an embedded piezoresistive sensor element. In one embodiment the sensor measures acceleration. In other embodiments the sensor measures pressure. | 06-30-2011 |
20110230001 | MULTIBIT ELECTRO-MECHANICAL MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - A multibit electro-mechanical memory device comprises a substrate, a bit line on the substrate, a first interlayer insulating film on the bit line, first and second lower word lines on the first interlayer insulating film, the first and second lower word lines separated horizontally from each other by a trench, a spacer abutting a sidewall of each of the first and second lower word lines, a pad electrode inside a contact hole, first and second cantilever electrodes suspended over first and second lower voids that correspond to upper parts of the first and second lower word lines provided in both sides on the pad electrode, the first and second cantilever electrodes being separated from each other by the trench, and being curved in a third direction that is perpendicular to the first and second direction; a second interlayer insulating film on the pad electrode, first and second trap sites supported by the second interlayer insulating film to have first and second upper voids on the first and second cantilever electrodes, and first and second upper word lines on the first and second trap sites. | 09-22-2011 |
20110312118 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A micromachine includes a microstructure and a semiconductor element formed over one insulating substrate. The micromachine includes including a movable layer containing polycrystalline silicon and a space below or above the layer. Such polycrystalline silicon is formed on an insulating surface, so that it is used as a microstructure and used for forming a semiconductor element. Accordingly, a semiconductor device may include a microstructure and a semiconductor provided over one insulating substrate. | 12-22-2011 |
20110318861 | PLANAR CAVITY MEMS AND RELATED STRUCTURES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES - A method of forming at least one Micro-Electro-Mechanical System (MEMS) cavity includes forming a first sacrificial cavity layer over a lower wiring layer. The method further includes forming a layer. The method further includes forming a second sacrificial cavity layer over the first sacrificial layer and in contact with the layer. The method further includes forming a lid on the second sacrificial cavity layer. The method further includes forming at least one vent hole in the lid, exposing a portion of the second sacrificial cavity layer. The method further includes venting or stripping the second sacrificial cavity layer such that a top surface of the second sacrificial cavity layer is no longer touching a bottom surface of the lid, before venting or stripping the first sacrificial cavity layer thereby forming a first cavity and second cavity, respectively. | 12-29-2011 |
20120295384 | Temperature Stable MEMS Resonator - One embodiment of the present inventions sets forth a method for decreasing a temperature coefficient of frequency (TCF) of a MEMS resonator. The method comprises lithographically defining slots in the MEMS resonator beams and filling the slots with a compensating material (for example, an oxide) wherein the temperature coefficient of Young's Modulus (TCE) of the compensating material has a sign opposite to a TCE of the material of the resonating element. | 11-22-2012 |
20130122628 | MEMS Relay and Method of Forming the MEMS Relay - A micro-electromechanical systems (MEMS) relay includes a switch with a first contact region and a second contact region that are vertically separated from each other by a gap. The MEMS relay requires a small vertical movement to close the gap and therefore is mechanically robust. In addition, the MEMS relay has a small footprint and, therefore, can be formed on top of small integrated circuits. | 05-16-2013 |
20130196463 | NANO-DEVICES FORMED WITH SUSPENDED GRAPHENE MEMBRANE - Semiconductor nano-devices, such as nano-probe and nano-knife devices, which are constructed using graphene films that are suspended between open cavities of a semiconductor structure. The suspended graphene films serve as electro-mechanical membranes that can be made very thin, from one or few atoms in thickness, to greatly improve the sensitivity and reliability of semiconductor nano-probe and nano-knife devices. | 08-01-2013 |
20130230939 | HIGH ASPECT RATIO MEMS DEVICES AND METHODS FOR FORMING THE SAME - An HF vapor etch etches high aspect ratio openings to form MEMS devices and other tightly-packed semiconductor devices with 0.2 μm air gaps between structures. The HF vapor etch etches oxide plugs and gaps with void portions and oxide liner portions and further etches oxide layers that are buried beneath silicon and other structures and is ideally suited to release cantilevers and other MEMS devices. The HF vapor etches at room temperature and atmospheric pressure in one embodiment. A process sequence is provided that forms MEMS devices including cantilevers and lateral, in-plane electrodes that are stationary and vibration resistant. | 09-05-2013 |
20130309797 | METHOD FOR MANUFACTURING MEMS DEVICE - A method for manufacturing a micro-electro-mechanical system (MEMS) device is provided. The method comprises: providing a semiconductor substrate, the semiconductor substrate having a metal interconnection structure ( | 11-21-2013 |
20140017844 | INTEGRATED CIRCUIT SWITCHES, DESIGN STRUCTURE AND METHODS OF FABRICATING THE SAME - Integrated MEMS switches, design structures and methods of fabricating such switches are provided. The method includes forming at least one tab of sacrificial material on a side of a switching device which is embedded in the sacrificial material. The method further includes stripping the sacrificial material through at least one opening formed on the at least one tab which is on the side of the switching device, and sealing the at least one opening with a capping material. | 01-16-2014 |
20140087509 | MEMS-BASED CANTILEVER ENERGY HARVESTER - The claimed invention is directed to integrated energy-harvesting piezoelectric cantilevers. The cantilevers are fabricated using sol-gel processing using a sacrificial poly-Si seeding layer. Improvements in film microstructure and electrical properties are realized by introducing a poly-Si seeding layer and by optimizing the poling process. | 03-27-2014 |
20140322854 | METHOD FOR MANUFACTURING A MEMS SENSOR - A capacitance type gyro sensor includes a semiconductor substrate, a first electrode integrally including a first base portion and first comb tooth portions and a second electrode integrally including a second base portion and second comb tooth portions, formed by processing the surface portion of the semiconductor substrate. The first electrode has first drive portions that extend from opposed portions opposed to the respective second comb tooth portions on the first base portion toward the respective second comb tooth portions. The second electrode has second drive portions formed on the tip end portions of the respective second comb tooth portions opposed to the respective first drive portions. The first drive portions and the second drive portions engage with each other at an interval like comb teeth. | 10-30-2014 |
20160060107 | PLANAR CAVITY MEMS AND RELATED STRUCTURES, METHODS OF MANUFACTURE AND DESIGN STRUCTURES - A method of forming at least one Micro-Electro-Mechanical System (MEMS) includes forming a beam structure and an electrode on an insulator layer, remote from the beam structure. The method further includes forming at least one sacrificial layer over the beam structure, and remote from the electrode. The method further includes forming a lid structure over the at least one sacrificial layer and the electrode. The method further includes providing simultaneously a vent hole through the lid structure to expose the sacrificial layer and to form a partial via over the electrode. The method further includes venting the sacrificial layer to form a cavity. The method further includes sealing the vent hole with material. The method further includes forming a final via in the lid structure to the electrode, through the partial via. | 03-03-2016 |
20160083249 | MEMS DEVICE WITH DIFFERENTIAL VERTICAL SENSE ELECTRODES - A MEMS device includes a first sense electrode and a first portion of a sense mass formed in a first structural layer, where the first sense electrode is fixedly coupled with the substrate and the first portion of the sense mass is suspended over the substrate. The MEMS device further includes a second sense electrode and a second portion of the sense mass formed in a second structural layer. The second sense electrode is spaced apart from the first portion of the sense mass in a direction perpendicular to a surface of the substrate, and the second portion of the sense mass is spaced apart from the first sense electrode in the same direction. A junction is formed between the first and second portions of the sense mass so that they are coupled together and move concurrently in response to an imposed force. | 03-24-2016 |
20160107886 | Electrically Controllable Integrated Switch - Methods of forming and operating a switching device are provided. The switching device is formed in an interconnect, the interconnect including a plurality of metallization levels, and has an assembly that includes a beam held by a structure. The beam and structure are located within the same metallization level. Locations of fixing of the structure on the beam are arranged so as to define for the beam a pivot point situated between these fixing locations. The structure is substantially symmetric with respect to the beam and to a plane perpendicular to the beam in the absence of a potential difference. The beam is able to pivot in a first direction in the presence of a first potential difference applied between a first part of the structure and to pivot in a second direction in the presence of a second potential difference applied between a second part of the structure. | 04-21-2016 |
20160380118 | INTEGRATED CANTILEVER SWITCH - An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm | 12-29-2016 |