Class / Patent application number | Description | Number of patent applications / Date published |
438035000 | Multiple wavelength emissive | 44 |
20080233669 | Method for Manufacturing Light-Emitting Device - A full-color light-emitting device is achieved with plural kinds of light-emitting elements in each of which a stacked layer of a first material layer formed selectively with a droplet discharge apparatus and a second material layer formed by vapor-deposition method using the conductive-surface plate on which a layer containing an organic compound is formed is provided between a pair of electrodes. The first material layer is a layer in which an organic compound and a metal oxide which is an inorganic compound are mixed. By adjusting the thickness of the first material layer of each light-emitting element, which is different depending on an emission color, a blue light emission component, a green light emission component, or a red light emission component among a plurality of components for white light emission can be selectively emphasized and taken out by light interference phenomenon. | 09-25-2008 |
20090017570 | SEMICONDUCTOR LASER DEVICE AND METHOD FOR FABRICATING THE SAME - In a semiconductor laser device, a plurality of light-emitting elements emitting light with different wavelengths are integrated on a substrate. Each of the light-emitting elements includes, on the substrate, an active layer and cladding layers respectively provided on top and bottom of the active layer. One of the cladding layers provided on top of the active layer is an upper cladding layer having a mesa ridge portion. An etching stopper layer for forming the ridge portion is interposed between the ridge portion and the other portion of the upper cladding layer. The thickness of the etching stopper layer varies among the light-emitting elements. | 01-15-2009 |
20090170230 | MANUFACTURING METHOD OF DISPLAY APPARATUS AND MANUFACTURING APPARATUS - A manufacturing method including applying a light emitting material solution for forming a light emitting function layer of the light emitting elements each of which has any one of a plurality of luminescent colors which carry out a color display arranged along a plurality of rows and along a plurality of columns on a substrate to a light emitting element forming region on the substrate in which the light emitting elements of a plurality of columns are formed, in an order that the light emitting material solution is not continuously applied to the light emitting element forming regions in adjacent columns among the plurality of columns and in an applying amount which is set so as to correspond to each of the luminescent colors. | 07-02-2009 |
20090186439 | Thin Film Forming Apparatus - There is provided a thin film forming apparatus for precisely forming a film of an organic EL material made of a polymer without a positional deviation and at a high throughput. A pixel portion is divided into a plurality of pixel lines by banks, and a head portion of the thin film forming apparatus is moved along the pixel lines, so that a coating liquid (R), a coating liquid (G), and a coating liquid (B) can be applied respectively in a stripe shape at the same time. Then, luminescent layers emitting lights of respective colors of red, green and blue can be formed by heating these coating liquids. | 07-23-2009 |
20090263924 | Organic Light-Emitting Display Device and Method of Manufacturing the Same - Provided is an organic light-emitting display device that can display a full color image by forming a simple structure of light-emitting layers and a method of manufacturing the same. The organic light-emitting display device includes a substrate; a first electrode layer formed on the substrate; a second electrode layer which is formed above the first electrode layer and faces the first electrode layer; and a light-emitting layer interposed between the first electrode layer and the second electrode layer, wherein the light-emitting layer comprises first and second light-emitting layers respectively corresponding to first and second pixels having different colors from each other, and the first light-emitting layer is commonly formed in the first and second pixels, and the second light-emitting layer is formed in the second pixel. | 10-22-2009 |
20090280592 | Nanoparticle structure and manufacturing process of multi-wavelength light emitting devices - A structure of multi-wavelength light emitting device comprises multi-stacked active layer structure. Each stacked layer comprises lower energy bandgap well | 11-12-2009 |
20090298211 | METHOD FOR MANUFACTURING FLEXIBLE DISPLAY - A method for manufacturing a flexible display is provided. A sacrificial layer is formed on a substrate support, the sacrificial layer having an absorptivity of 1 E+02 to 1 E+06 cm | 12-03-2009 |
20100197060 | Method of Forming Laterally Distributed LEDs - A method of forming laterally distributed light emitting diodes (LEDs) is disclosed. A first buffer layer with a first type of conductivity is formed on a semiconductor substrate, and a dielectric layer is formed on the first buffer layer. The dielectric layer is patterned to form a first patterned space therein, followed by forming a first active layer in the first patterned space. The dielectric layer is then patterned to form a second patterned space therein, followed by forming a second active layer in the second patterned space. Second buffer layers with a second type of conductivity are then formed on the first active layer and the second active layer. Finally, electrodes are formed on the second buffer layers and on the first buffer layer. | 08-05-2010 |
20110003419 | LASER INDUCED THERMAL IMAGING APPARATUS AND FABRICATING METHOD OF ORGANIC LIGHT EMITTING DIODE USING THE SAME - A laser induced thermal imaging apparatus and a fabricating method of organic light emitting diodes using the same, which laminate an acceptor substrate and a donor film using a magnetic force in vacuum, and are used to form a pixel array on the acceptor substrate. A substrate stage includes a magnet or magnetic substance. The acceptor substrate has a pixel region for forming first, second, and third sub-pixels, and the donor film has an organic light emission layer to be transferred to the pixel region. A laser oscillator irradiates a laser to the donor film. A contact frame is adapted to be disposed between the substrate stage and the laser oscillator, and is used to form a magnetic force with the substrate stage. The contact frame includes an opening through which the laser passes. A contact frame feed mechanism moves the contact frame in a direction of the substrate stage. | 01-06-2011 |
20110014739 | MAKING AN EMISSIVE LAYER FOR MULTICOLORED OLEDS - A method of making an electroluminescent device having a substrate, and at least one blue light emitting layer and at least one non-emissive layer containing an emissive material that emits light longer in wavelength than blue light, these two layers being directly separated by and in direct contact with a non-emissive buffer layer; and heating the electroluminescent device after fabrication to cause the long wavelength emissive material to diffuse from the non-emissive layer into at least the buffer layer such that the long wavelength emissive material comes into contact with the blue light-emitting layer such that the recombination energy in the emitting layer is preferentially transferred to the diffused emissive material compared to the blue emissive material and the light emitted is longer in wavelength than blue light. | 01-20-2011 |
20110111542 | METHOD OF FABRICATING ORGANIC LIGHT EMITTING DIODE DISPLAY - A method of fabricating an OLED display, includes sequentially forming a TFT array, first electrodes, and a first related layer on a first substrate, respectively forming heat-generating elements on second and third substrates, forming a red organic emission pattern on the second substrate, and forming a green organic emission pattern on the third substrate, aligning and attaching the first and second substrates, applying a voltage to heat-generating elements to transfer the red organic emission pattern to red pixel regions, thereby forming red organic emission layers, aligning and attaching the first and third substrates, applying a voltage to the heat-generating elements to transfer the green organic emission pattern to green pixel regions, thereby forming green organic emission layers, entirely depositing a blue organic emission material on the first substrate, thereby forming a blue organic emission layer, and sequentially forming a second related layer and a second electrode on the first substrate. | 05-12-2011 |
20110177640 | Method for manufacturing an organic light emitting diode display - A method for manufacturing an organic light emitting diode (OLED) display includes forming a first electrode having different thicknesses corresponding to a first pixel, a second pixel, and a third pixel, forming a first emission layer, a second emission layer, and a third emission layer respectively corresponding to the first pixel, the second pixel, and the third pixel, and forming a second electrode on the first emission layer, the second emission layer, and the third emission layer, wherein forming the first electrodes includes forming a first electrode material layer on the substrate, forming a photoresist pattern having different thicknesses corresponding to the first pixel, the second pixel, and the third pixel, respectively, and etching the first electrode material layer along with the photoresist pattern. | 07-21-2011 |
20110300656 | METHODS FOR FORMING A PIXEL OF A LIGHT-EMITTING DIODE LIGHT SOURCE AND A PLURALITY OF LIGHT-EMITTING DIODE PIXELS ARRANGED IN A TWO-DIMENSIONAL ARRAY - A method for forming a pixel of an LED light source is provided. The method includes: forming a first layer on a first substrate; forming a second layer and a first light-emitting active layer on the first layer; forming a first intermediate layer on the second layer; forming a third layer on a second substrate; forming a fourth layer and a second light-emitting active layer on the third layer; placing the third layer, the fourth layer, and the second light-emitting active layer on the first intermediate layer, wherein the first light-emitting active layer and the second light-emitting active layer emit different colors of light. A method for forming a plurality of light-emitting diode pixels arranged in a two-dimensional array is also provided. | 12-08-2011 |
20120064651 | METHOD FOR MANUFACTURING ORGANIC ELECTROLUMINESCENT DISPLAY APPARATUS - Provided is a method for manufacturing an organic electroluminescent display apparatus that includes a substrate and a plurality of pixels each including two or more types of sub-pixels, in which the pixels are arranged in a display area of the substrate, and, among the sub-pixels, one type of sub-pixels are specified sub-pixels provided at certain intervals. The specified sub-pixels are formed by selectively forming the (2n-1)th specified sub-pixels (wherein n represents an integer of 1 or more) numbered from a side end of the display area using a mask having openings at positions corresponding to the (2n-1)th specified sub-pixels numbered from the side end, and selectively forming the (2n)th specified sub-pixels numbered from the side end using a mask having openings at positions corresponding to the (2n)th specified sub-pixels numbered from the side end. | 03-15-2012 |
20120107986 | ORGANIC EL DISPLAY DEVICE - An organic EL display device includes a pixel electrode which is disposed in each of first to third organic EL elements, a first light emission layer which includes a first dopant material having a first absorbance peak, the first light emission layer extending over the first to third organic EL elements and being disposed above the pixel electrode, a second light emission layer which includes a second dopant material having a second absorbance peak and is disposed above the first light emission layer, a third light emission layer which is disposed above the second light emission layer, a counter-electrode which is disposed above the third light emission layer, and a hole transport layer which is formed of a material having an absorbance bottom on a shorter wavelength side than the first absorbance peak and the second absorbance peak in absorbance spectrum characteristics of the hole transport layer. | 05-03-2012 |
20120156817 | Method for Manufacturing High-quality Organic Light-emitting Diode - The present invention discloses a method for manufacturing a high-quality organic light-emitting diode (OLED), and the method comprises the steps of: providing a substrate; providing at least one template engraved with a pattern; putting at least one organic light-emitting material onto the pattern of the template by an inking process; transferring the organic light-emitting material from the pattern of the template to the substrate by a contact printing process; forming at least one organic light-emitting layer on the substrate, wherein the organic light-emitting layer comprises a plurality of pixels which are arranged in a side by side manner with a complementary emission spectrum, so that the OLED possesses the property of high color rendering, color temperature tunable, or the combination thereof. | 06-21-2012 |
20120295381 | METHOD OF MANUFACTURING ORGANIC EL DISPLAY UNIT - A method of manufacturing an organic EL display unit and an organic EL display unit capable of improving light emitting efficiency and life of blue are provided. A hole injection layer are formed on a lower electrode. For a red organic EL device and a green organic EL device, a hole transport layer, a red light emitting layer, and a green light emitting layer made of a polymer material are formed. A hole transport layer made of a low molecular material is formed on the hole injection layer of a blue organic EL device. A blue light emitting layer made of a low molecular material is formed on the red light emitting layer, the green light emitting layer, and the hole transport layer for the blue organic EL device. An electron transport layer, an electron injection layer, and an upper electrode are sequentially formed on the blue light emitting layer. | 11-22-2012 |
20130084666 | METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE - Provided is a method for manufacturing a light emitting device that includes, on a substrate, a plurality of lower electrodes, a first, a second and a third organic layers each formed on one of the lower electrodes to emit light of a color different from each other, and a upper electrode opposite to the lower electrodes sandwiching the first, the second or the third organic layer. The method includes forming the first organic layer on the plurality of lower electrodes, removing the first organic layer on a certain lower electrode to expose the lower electrode, and then forming a new organic layer on the exposed lower electrode, and repeats this processing for the second and third organic layers. | 04-04-2013 |
20130171756 | ORGANIC EL DISPLAY DEVICE AND MANUFACTURING METHOD OF THE SAME - Disclosed herein is an organic EL display device including, on a substrate: lower electrodes; first hole injection/transport layers; second organic light-emitting layers of colors other than blue; a blue first organic light-emitting layer; electron injection/transport layers; and an upper electrode. | 07-04-2013 |
20130183781 | ORGANIC EL DISPLAY AND METHOD OF MANUFACTURING THE SAME - An organic EL display including lower electrodes arranged on a substrate to correspond to first organic EL elements of blue and second organic EL elements of any other color, respectively; hole injection/transport layers arranged on the lower electrodes; second organic light-emitting layers of the other color arranged on the hole injection/transport layers for the second organic EL elements; a first organic light-emitting layer of blue arranged on whole surfaces of the second organic light-emitting layers and the hole injection/transport layers for the first organic EL elements; an electron injection/transport layer arranged on a whole surface of the first light-emitting layer, the electron injection/transport layer made of a nitrogen-containing heterocyclic compound with an electron mobility of 1.0×10 | 07-18-2013 |
20130203197 | METHOD OF FABRICATING PIXEL STRUCTURE FOR ORGANIC LIGHT-EMITTING DISPLAY - A method of fabricating a pixel structure for an organic light-emitting display (OLED) is disclosed. A substrate having at least a sub-pixel region is provided. An auxiliary electrode layer and an insulating layer are formed on the substrate in the sub-pixel region, wherein the insulating layer has an opening to expose the auxiliary electrode layer. A lower electrode layer, an organic light emission layer, and an upper electrode layer are formed on the substrate, wherein the organic light emission layer fills the opening in the insulating layer. Another opening is formed in the upper electrode layer and the organic light emission layer directly on the opening in the insulating layer by performing a laser process, such that the upper electrode layer and the auxiliary electrode layer are welded together through the opening in the upper electrode layer and the organic light emission layer. | 08-08-2013 |
20130236999 | METHOD FOR FORMING A MULTICOLOR OLED DEVICE - A method is provided for forming a multi-color OLED device that includes providing a substrate, coating the substrate with a fluorinated photoresist solution to form a first photo-patternable layer and exposing it to produce a first pattern of exposed fluorinated photoresist material and a second pattern of unexposed fluorinated photoresist material, developing the photo-patternable layer with a fluorinated solvent to remove the second pattern of unexposed fluorinated photoresist material without removing the first pattern of exposed fluorinated photoresist material, depositing a first organic light-emitting material over the substrate to form a first organic light-emitting layer for emitting a first color of light and applying the first pattern of exposed fluorinated photoresist material to control the removal of a portion of the first organic light-emitting layer. A second fluorinated photoresist solution is then coated over the first patterened organic light-emitting layer and exposed to form a third pattern of exposed fluorinated photoresist material having a pattern different from the first pattern and a fourth pattern of unexposed fluorinated photoresist material, and developing the photo-patternable layer in a fluorinated solvent to remove the fourth pattern of unexposed fluorinated photoresist material without removing the third pattern of exposed fluorinated photoresist material, depositing at least a second light-emitting material to form a second light-emitting layer for emitting a second color of light that is different than the first color of light and applying the third pattern of exposed fluorinated photoresist material to control the removal of a portion of the second organic light-emitting layer. | 09-12-2013 |
20130273678 | ORGANIC LIGHT EMITTING ILLUMINANT, AND DEVICE AND METHOD FOR THE PRODUCTION THEREOF - A coating device for producing an organic light-emitting illuminant comprising mutually adjacent regions having in each case different emission colors, includes a vacuum chamber, a device for linearly transporting a substrate, and a plurality of coating sources and diaphragms, provides OLED structures which have an improved intensity of the light emission. The thicknesses of the hole transport, emission and electron transport layers in the mutually adjacent regions differ and are in each case set such that an optimum coupling-out for the light color emitted in the corresponding region is achievable. | 10-17-2013 |
20130288415 | LASER INDUCED THERMAL IMAGING APPARATUS AND FABRICATING METHOD OF ORGANIC LIGHT EMITTING DIODE USING THE SAME - A laser induced thermal imaging apparatus and a fabricating method of organic light emitting diodes using the same, which laminate an acceptor substrate and a donor film using a magnetic force in vacuum, and are used to form a pixel array on the acceptor substrate. A substrate stage includes a magnet or magnetic substance. The acceptor substrate has a pixel region for forming first, second, and third sub-pixels, and the donor film has an organic light emission layer to be transferred to the pixel region. A laser oscillator irradiates a laser to the donor film. A contact frame is adapted to be disposed between the substrate stage and the laser oscillator, and is used to form a magnetic force with the substrate stage. The contact frame includes an opening through which the laser passes. A contact frame feed mechanism moves the contact frame in a direction of the substrate stage. | 10-31-2013 |
20130323867 | ORGANIC EL DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - Disclosed herein is an organic EL display device, including: a lower electrode provided every first organic EL element for a blue color and every second organic EL element for another color on a substrate; a hole injection/transport layer provided every first and second organic EL elements; a second organic light emitting layer for another color provided on said hole injection/transport layer for said second organic EL element; a connection layer made of a low-molecular material and provided over an entire surface of said hole injection/transport layer for said second organic light emitting layer and said first organic EL element; a first organic light emitting layer for a blue color provided over an entire surface of said connection layer; and an electron injection/transport layer and an upper electrode provided over an entire surface of said organic light emitting layer in order. | 12-05-2013 |
20140065750 | PATTERNING METHOD FOR OLEDS - Methods of fabricating a device having laterally patterned first and second sub-devices, such as subpixels of an OLED, are provided. Exemplary methods may include depositing via organic vapor jet printing (OVJP) a first organic layer of the first sub-device and a first organic layer of the second sub-device. The first organic layer of the first sub-device and the first organic layer of the second sub-device are both the same type of layer, but have different thicknesses. The type of layer is selected from an ETL, an HTL, an HIL, a spacer and a capping layer. | 03-06-2014 |
20140120645 | METHOD OF FABRICATING ORGANIC ELECTROLUMINESCENT DEVICE - A method of fabricating an organic electroluminescent display includes: forming a plastic layer on a substrate including a first pixel region; patterning the first plastic layer to form a first opening in the first pixel region; forming a first organic light emitting layer on the first plastic layer having the first opening; and removing the first plastic layer from the substrate to form a first organic light emitting pattern in the first opening. | 05-01-2014 |
20140141558 | METHOD OF MANUFACTURING DISPLAY PANEL - A method of manufacturing a display panel includes: a first step of forming a partition wall layer above a substrate; a second step of exposing the partition wall layer using a first photomask that has a mask pattern corresponding to a blue opening; a third step of exposing the partition wall layer using a second photomask that has a mask pattern corresponding to a red opening and a green opening; a fourth step of forming a partition wall by removing the partition wall layer to form the red opening, the green opening, and the blue opening in the partition wall layer; and a fifth step of forming a light emitting layer in each opening. | 05-22-2014 |
20140235004 | METHOD OF MANUFACTURING ORGANIC LIGHT EMITTING DISPLAY - A method of manufacturing an organic light emitting display includes forming a first light-emitting layer on a substrate, forming a first portion of a second light-emitting layer on the first light-emitting layer, forming a third light-emitting layer on the first light-emitting layer, and forming a second portion of the second light-emitting layer on the first portion of the second light-emitting layer. | 08-21-2014 |
20140242737 | CATHODE DEPOSITION MASK AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY DEVICE USING THE SAME - Provided is a cathode deposition mask. The cathode deposition mask includes a plurality of first columns and a plurality of second columns arranged alternately, the plurality of first columns and the plurality of second columns being parallel to each other and defining a column dimension along the length of each column, the first columns and the second columns each comprising a plurality of openings, the plurality of openings included in each first column being arranged alternately along the column dimension with respect to the openings in each adjacent first column, and the plurality of openings included in each second column being arranged alternately along the column dimension with respect to the openings in each adjacent second column. | 08-28-2014 |
20140302627 | QUANTUM DOTS, METHODS OF MANUFACTURING QUANTUM DOTS AND METHODS OF MANUFACTURING ORGANIC LIGHT EMITTING DISPLAY DEVICES USING THE SAME - In a method of manufacturing a quantum dot, a core may be formed using (utilizing) at least one cation precursor and at least one anion precursor. The core may be reacted with a shell forming precursor and a ligand forming precursor for more than one hour to form a shell enclosing the core and a ligand. A nanoparticle including the core, the shell and the ligand may be washed. | 10-09-2014 |
20140363912 | Multicolor LED and Method of Fabricating Thereof - A device includes a support including at least a first area and a second area, and a plurality of first light emitting devices located over the first area of the support, each first light emitting device containing a first growth template including a first nanostructure, and each first light emitting device has a first peak emission wavelength. The device also includes a plurality of second light emitting devices located over the second area of the support, each second light emitting device containing a second growth template including a second nanostructure, and each second light emitting device has a second peak emission wavelength different from the first peak emission wavelength. Each first growth template differs from each second growth template. | 12-11-2014 |
20140363913 | ORGANIC LIGHT-EMITTING DIODE AND METHOD OF FABRICATING THE SAME - An organic light-emitting diode includes an anode on a substrate; a first hole transporting layer on the anode; a second hole transporting layer on the first hole transporting layer and corresponding to the red and green pixel areas; a first emitting material pattern of a first thickness on the second hole transporting layer and corresponding to the red pixel area; a second emitting material pattern of a second thickness on the second hole transporting layer and corresponding to the green pixel area; a third emitting material pattern of a third thickness on the first hole transporting layer and corresponding to the blue pixel area; an electron transporting layer on the first, second and third emitting material patterns; and a cathode on the electron transporting layer, wherein the second thickness is less than the first thickness and greater than the third thickness. | 12-11-2014 |
20150044801 | METHOD FOR FORMING A MULTICOLOR OLED DEVICE - A method is provided for forming a multi-color OLED device that includes providing a substrate, coating the substrate with a fluorinated photoresist solution to form a first photo-patternable layer and exposing it to produce a first pattern of exposed fluorinated photoresist material and a second pattern of unexposed fluorinated photoresist material, developing the photo-patternable layer with a fluorinated solvent to remove the second pattern of unexposed fluorinated photoresist material without removing the first pattern of exposed fluorinated photoresist material, depositing a first organic light-emitting material over the substrate to form a first organic light-emitting layer for emitting a first color of light and applying the first pattern of exposed fluorinated photoresist material to control the removal of a portion of the first organic light-emitting layer. A second fluorinated photoresist solution is then coated over the first patterned organic light-emitting layer and exposed to form a third pattern of exposed fluorinated photoresist material having a pattern different from the first pattern and a fourth pattern of unexposed fluorinated photoresist material, and developing the photo-patternable layer in a fluorinated solvent to remove the fourth pattern of unexposed fluorinated photoresist material without removing the third pattern of exposed fluorinated photoresist material, depositing at least a second light-emitting material to form a second light-emitting layer for emitting a second color of light that is different than the first color of light and applying the third pattern of exposed fluorinated photoresist material to control the removal of a portion of the second organic light-emitting layer. | 02-12-2015 |
20150093846 | COATING SYSTEM AND METHOD FOR MANUFACTURING LIGHT-EMITTING DEVICE - Provided is a coating system allowing on-demand preparation and coating of an ink. The coating system ( | 04-02-2015 |
20150099322 | ORGANIC LIGHT EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light emitting display device includes a substrate and a plurality of pixels defined in the substrate. A pixel includes red subpixel, green subpixel, blue subpixel, and white subpixel. The organic light emitting display device includes an anode electrode formed on the substrate, a cathode electrode opposing the anode electrode, and a red common emission layer, a green common emission layer, and a blue common emission layer formed across each of the red, green, blue and white subpixel areas. The blue common emission layer is disposed above and adjacent to the anode electrode, the green common emission layer is disposed above the blue common emission layer, and the red common emission layer is disposed above the green common emission layer and adjacent to the cathode electrode. | 04-09-2015 |
20150364642 | METHOD FOR MANUFACTURING NANO-STRUCTURED SEMICONDUCTOR LIGHT-EMITTING ELEMENT - There is provided a method for manufacturing a nanostructure semiconductor light emitting device, including: forming a mask having a plurality of openings on a base layer; growing a first conductivity-type semiconductor layer on exposed regions of the base layer such that the plurality of openings are filled, to form a plurality of nanocores; partially removing the mask such that side surfaces of the plurality of nanocores are exposed; heat-treating the plurality of nanocores after partially removing the mask; sequentially growing an active layer and a second conductivity-type semiconductor layer on surfaces of the plurality of nanocores to form a plurality of light emitting nanostructures, after the heat treatment; and planarizing upper parts of the plurality of light emitting nanostructures such that upper surfaces of the nanocores are exposed. | 12-17-2015 |
20150380469 | METHOD FOR MANUFACTURING DISPLAY DEVICE - The present invention provides a display device which inhibits deterioration in display quality caused by color mixture of luminescent layers. In a case where vapor deposition particles are deposited onto a substrate, P+2Lc≧{(Ts×M+0.96×G×Wn)/(Ts−G)}+2Dm and 3 μm≦Dm≦5 μm are satisfied, where “M” is a width of a mask opening, “Wn” is a width of an injection hole, “G” is a distance between the TFT substrate and a vapor deposition mask, “Ts” is a distance between the TFT substrate and a vapor deposition source, “P” is a width of a first pixel opening, and “Lc” is a width of a non-display region. | 12-31-2015 |
20160006001 | THIN FILM DEPOSITION APPARATUS AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY APPARATUS BY USING THE SAME - Disclosed is a thin film deposition apparatus and a method of manufacturing an organic light-emitting display apparatus by using the thin film deposition apparatus. The thin film deposition apparatus and the method of manufacturing the organic light-emitting display apparatus using the thin film deposition apparatus reduce manufacturing time and cost. | 01-07-2016 |
20160049587 | DEPOSITION APPARATUS AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY APPARATUS - Provided are a deposition apparatus and a method of manufacturing an organic light-emitting display (OLED) apparatus, which are capable of reducing manufacturing time and manufacturing costs of the OLED apparatus. The method includes: turning a substrate such that a deposition surface of the substrate faces upward; depositing a first deposition layer on a deposition surface of a first donor mask while the deposition surface of the first donor mask faces downward; arranging the first donor mask and the substrate such that the first donor mask is above the substrate while the first deposition layer faces downward and the deposition surface of the substrate faces upward; depositing, on the deposition surface of the substrate, a part of the first deposition layer of the deposition surface of the first donor mask; and turning the substrate such that the deposition surface of the substrate faces downward. | 02-18-2016 |
20160072066 | DONOR MASK AND METHOD OF MANUFACTURING ORGANIC LIGHT EMITTING DISPLAY APPARATUS USING THE SAME - A donor mask includes a base substrate, a light-to-heat conversion layer disposed on the base substrate and including a first upper surface portion and a second upper surface portion, and a reflection layer interposed between the base substrate and the light-to-heat conversion layer and including through holes corresponding to the first upper surface portion and the second upper surface portion. The first upper surface portion includes a first upper surface and a second upper surface connected to the first upper surface and inclined at an angle other than 90 degrees with respect to the first upper surface. | 03-10-2016 |
20160087248 | METHOD OF FABRICATING ORGANIC ELECTROLUMINESCENT DEVICE - A method of fabricating an organic electroluminescent display includes: forming a plastic layer on a substrate including a first pixel region; patterning the first plastic layer to form a first opening in the first pixel region; forming a first organic light emitting layer on the first plastic layer having the first opening; and removing the first plastic layer from the substrate to form a first organic light emitting pattern in the first opening. | 03-24-2016 |
20160118587 | ORGANIC LIGHT-EMITTING DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic light-emitting display device includes a substrate which includes a plurality of areas, a plurality of first electrodes disposed on the areas of the substrate, respectively, a second electrode disposed on the first electrodes, and a plurality of emitting layers disposed between the first electrodes and the second electrode. At least two of the emitting layers are disposed on all of the areas. | 04-28-2016 |
20160149135 | VAPOR DEPOSITION PARTICLE PROJECTION DEVICE AND VAPOR DEPOSITION DEVICE - The vapor deposition particle injecting device ( | 05-26-2016 |