Entries |
Document | Title | Date |
20080220547 | SINGLE-CHIP SURFACE MOUNTED LED STRUCTURE AND A METHOD FOR MANUFACTURING THE SAME - A single-chip surface mounted LED structure and a method for manufacturing the same, said LED structure mainly comprises an LED chip, a heat sink structure, two opposing electrodes, conducting wires and a supporting structure; said method comprises the steps of firstly cutting off a spare area other than said heat sink structure and two opposing electrodes from a metal material belt, forming a basic shape, forming said supporting structure in the region of said heat sink structure and two opposing electrodes using plastic injection molding, and then further cutting off the rest of said metal material belt to separate said heat sink structure and two opposing electrodes, and finally using chip-bonding and wire bonding to package sad LED structure and cutting off said packaged LED structure from said metal material belt. | 09-11-2008 |
20080254555 | PATTERNING METHOD FOR LIGHT-EMITTING DEVICES - A method of patterning a substrate that includes: | 10-16-2008 |
20080268558 | Semiconductor Light Emitting Element and Method for Manufacturing the Same - A high-luminance light emitting element is manufactured by a method comprising: forming a light emitting layer on a first surface of a GaP substrate including the first surface and a second surface opposed to the first surface and having an area smaller than the first area, the light emitting layer emitting light of a wavelength λ permitted to pass through the GaP substrate; forming a plurality of side surfaces on the GaP substrate to be respectively aslant by substantially the same angle to become narrower toward the second surface; and forming a plurality of depressions and protrusions as high as 0.1λ to 3λ on the side surfaces. | 10-30-2008 |
20080293171 | LIGHT EMITTING DIODES (LEDs) WITH IMPROVED LIGHT EXTRACTION BY ROUGHENING - Systems and methods are disclosed for fabricating a semiconductor light emitting diode (LED) device by forming an n-gallium nitride (n-GaN) layer on the LED device and roughening the surface of the n-GaN layer to extract light from an interior of the LED device. | 11-27-2008 |
20080299687 | TOP-EMITTING NITRIDE-BASED LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - Provided are a top-emitting N-based light emitting device and a method of manufacturing the same. The device includes a substrate, an n-type clad layer, an active layer, a p-type clad layer, and a multi ohmic contact layer, which are sequentially stacked. The multi ohmic contact layer includes one or more stacked structures, each including a modified metal layer and a transparent conductive thin film layer, which are repetitively stacked on the p-type clad layer. The modified metal layer is formed of an Ag-based material. | 12-04-2008 |
20090023233 | METHOD OF MANUFACTURING DISPERSION TYPE AC INORGANIC ELECTROLUMINESCENT DEVICE AND DISPERSION TYPE AC INORGANIC ELECTROLUMINESCENT DEVICE MANUFACTURED THEREBY - Disclosed herein is a method of preparing a low resistance metal line, is a method of manufacturing a dispersion type AC inorganic electroluminescent device and a dispersion type AC inorganic electroluminescent device manufactured thereby, in which a light-emitting layer and a dielectric layer between a lower electrode and an upper electrode are simultaneously formed through a single process using spin coating, thereby simplifying the overall manufacturing process and decreasing the manufacturing cost, and furthermore, the contact interface between the light-emitting layer and the dielectric layer is increased, therefore increasing the brightness of the device. | 01-22-2009 |
20090029492 | Method of making light emitting diode - A method of making a light emitting diode (LED) is disclosed. The LED of the present invention comprises a semiconductor layer of a first polarity, an active layer, and a semiconductor layer of a second polarity stacked from bottom to up, wherein a stacked structure at least composed of the active layer and the semiconductor layer of the second polarity have a side with a wave-shape border in a top view of the LED and/or at least one valley, thereby increasing the efficiency of emitting the light to the outside of the LED. | 01-29-2009 |
20090029493 | Methods of Forming Light Emitting Devices with Active Layers that Extend Into Opened Pits - Light emitting devices include an active region comprising a plurality of layers and a pit opening region on which the active region is disposed. The pit opening region is configured to expand a size of openings of a plurality of pits to a size sufficient for the plurality of layers of the active region to extend into the pits. In some embodiments, the active region comprises a plurality of quantum wells. The pit opening region may comprise a superlattice structure. The pits may surround their corresponding dislocations and the plurality of layers may extend to the respective dislocations. At least one of the pits of the plurality of pits may originate in a layer disposed between the pit opening layer and a substrate on which the pit opening layer is provided. The active region may be a Group III nitride based active region. Methods of fabricating such devices are also provided. | 01-29-2009 |
20090042325 | SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - In a semiconductor light emitting device, a semiconductor light emitting element has a light extracted surface on which a plurality of convex structures is formed. The convex structures each have a conical mesa portion constituting a refractive index gradient structure, a cylindrical portion constituting a diffraction grating structure, and a conical portion constituting a refractive index gradient structure. The mesa portion, cylindrical portion, and conical portion are arranged in this order from the light extracted surface. The period between the convex structures is longer than 1/(the refractive index of an external medium+the refractive index of the convex structures) of an emission wavelength and equal to or shorter than the emission wavelength. The circle-equivalent average diameter of the cylindrical portion is ⅓ to 9/10 of that of the bottom of the mesa portion. | 02-12-2009 |
20090061548 | METHOD FOR FABRICATING PIXEL STRUCTURE - A method for fabricating a pixel structure is provided. First, a substrate having an active device formed thereon is provided. The active device has a gate, a gate dielectric layer, and a semiconductor layer having a channel, a source, and a drain region. Then, a dielectric layer is formed to cover the active device, and a photo-resist layer having a first photo-resist block and a second photo-resist block thinner than the first photo-resist block is formed on the dielectric layer. The second photo-resist block has openings above the source and the drain region, respectively. The source and the drain regions are exposed by removing part of the dielectric layer with the photo-resist layer as a mask. A second metal layer is formed after removing the second photo-resist block. A source and a drain are formed after removing the first photo-resist block. A pixel electrode connected to the drain is formed. | 03-05-2009 |
20090075408 | METHOD FOR MANUFACTURING SOI SUBSTRATE AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A nitrogen-containing layer is formed over a semiconductor substrate; ions are added at a predetermined depth in the semiconductor substrate through the nitrogen-containing layer to form a separation layer; an insulating layer is formed over the nitrogen-containing layer; a surface of the insulating layer and a surface of a base substrate are bonded to each other; the semiconductor substrate is cleaved with the separation layer as a cleavage plane, so that single crystal semiconductor layer is formed over the base substrate with the insulating layer interposed therebetween. The ions are added by irradiating the semiconductor layer with an ion beam in a rectangular shape or a linear shape while moving the semiconductor substrate relative to the ion beam in a short side direction of the ion beam. | 03-19-2009 |
20090075409 | FABRICATION APPARATUS AND FABRICATION METHOD OF SEMICONDUCTOR DEVICE PRODUCED BY HEATING SUBSTRATE - A fabrication apparatus and fabrication method of a semiconductor device are provided, allowing the temperature distribution of a substrate to be rendered uniform. The fabrication apparatus for a semiconductor device includes a susceptor holding the substrate, a heater arranged at a back side of the susceptor, a support member located between the substrate and susceptor, including a support portion, and a spacer located between the susceptor and support member. The spacer has an opening formed corresponding to the site where said support portion is located, at an opposite face side of the support member. | 03-19-2009 |
20090075410 | LIGHT SENSOR LOCATED ABOVE AN INTEGRATED CIRCUIT - A light sensor located above an integrated circuit including a lower electrode, a heavily-doped amorphous silicon layer of a first conductivity type, and a lightly-doped amorphous silicon layer of a second conductivity type. The lightly-doped amorphous silicon layer rests on a planar surface at least above and in the vicinity of the lower electrode. | 03-19-2009 |
20090111198 | METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE - A manufacturing method of the present invention includes a process using a first multi-tone mask, in which a first conductive layer in which a transparent conductive layer and a metal layer are stacked over a substrate, a gate electrode formed of a first conductive layer, and a pixel electrode formed of a single layer of the transparent conductive layer are formed, a process using a second multi-tone mask, in which a contact hole to the pixel electrode, and an island of an i-type semiconductor layer and an n | 04-30-2009 |
20090117675 | Method for Producing Group 3-5 Nitride Semiconductor and Method for Producing Light-Emitting Device - The present invention provides a method for producing a group 3-5 nitride semiconductor and a method for producing a light emitting device. The method for producing a group 3-5 nitride semiconductor, comprises the steps of (i), (ii), (iii) and (iv) in this order: (i) placing inorganic particles on a substrate, (ii) growing a semiconductor layer, and (iii) separating the substrate and the semiconductor layer by irradiating the interface between the substrate and the semiconductor layer with light. | 05-07-2009 |
20090124030 | Nitride-Based Light-Emitting Device and Method of Manufacturing the Same - A nitride-based light-emitting device and a method of manufacturing the same. The light-emitting device includes a substrate, and an n-cladding layer, an active layer, a p-cladding layer, a grid cell layer and an ohmic contact layer sequentially formed on the substrate. The grid cell layer has separated, conducting particle type cells with a size of less than 30 micrometers buried in the ohmic contact layer. The nitride-based light-emitting device and the method of manufacturing the same improve the characteristics of ohmic contact on the p-cladding layer, thereby increasing luminous efficiency and life span of the device while simplifying a manufacturing process by omitting an activation process after wafer growth. | 05-14-2009 |
20090130786 | Organic electroluminescent display device and method of fabricating the same - An organic electroluminescent display device includes an array element layer formed on a substrate, the array element layer including a switching element, a driving element, a first electrode, an organic luminescent layer, and a second electrode, and a ground line formed on the substrate, the ground line directly contacting the second electrode. | 05-21-2009 |
20090137071 | High Reliability Surveillance and/or Identification Tag/Devices and Methods of Making and Using the Same - The present invention relates to methods of making capacitors for use in surveillance/identification tags or devices, and methods of using such surveillance/identification devices. The capacitors manufactured according to the methods of the present invention and used in the surveillance/identification devices described herein comprise printed conductive and dielectric layers. The methods and devices of the present invention improve the manufacturing tolerances associated with conventional metal-plastic-metal capacitor, as well as the deactivation reliability of the capacitor used in a surveillance/identification tag or device. | 05-28-2009 |
20090142862 | LUMINESCENT SEMI-CONDUCTIVE POLYMER MATERIAL, METHOD OF PREPARING THE SAME AND ORGANIC LIGHT EMITTING ELEMENT HAVING THE SAME - The present invention is related to a luminescent material generated by polymerization of a pyrromethene complex by glow discharge. The polymer material of the present invention exhibits semi-conductive properties and has a luminescence maximum in a spectrum region in the range of about 540 nm to about 585 nm with a half-width of the luminescence band in the range of about 55 nm to about 75 nm, a quantum yield of photoluminescence in the range of about 0.6 to about 0.8, and an electric conductivity at a temperature of about 20° C. in the range of about | 06-04-2009 |
20090148968 | Organic electroluminescence device and method for manufacturing same - An organic electroluminescence device includes a substrate; first electrodes arranged on the luminous portion of the substrate in a single direction; an insulating layer pattern formed on the first electrodes and the substrate in a lattice shape to define plural pixel openings on the first electrodes; partition layers formed on the insulating layer pattern, the partition layers intersecting the first electrodes perpendicularly; organic thin film layer formed on the pixel openings; second electrodes formed on the organic thin film layer to be perpendicular to the first electrodes; first bus electrode patterns formed on the pad portion of the substrate to be connected with the first electrodes; second bus electrode patterns formed on the pad portion of the substrate to be connected with the second electrodes and including a material for forming the second electrodes; and barrier films formed between the second bus electrode patterns. | 06-11-2009 |
20090170224 | PROCESS FOR FABRICATION OF NITRIDE SEMICONDUCTOR LIGHT EMITTING DEVICE - The present invention relates to a process for fabrication of a nitride semiconductor light emitting device comprising a substrate, a nitride semiconductor layer on the substrate and electrodes on the nitride semiconductor, the process for fabrication of a nitride semiconductor light emitting device being characterized by device working by laser, followed by etching treatment and then electrode formation. | 07-02-2009 |
20090170225 | METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT EMITTING DEVICE - A method for manufacturing a semiconductor light emitting device includes forming an insulating film on a semiconductor substrate, the insulating film having an opening therein, forming a Pd electrode in the opening and on the insulating film, and removing the portion of the Pd electrode on the insulating film by the application of a physical force to the portion, while leaving the Pd electrode in the opening. | 07-02-2009 |
20090186431 | LIGHT-EMITTING DEVICE AND ITS MANUFACTURING METHOD - In a light-emitting device and its manufacturing method, mounting by batch process with surface-mount technology, high light extraction efficiency, and low manufacturing cost are realized. The light-emitting device comprises semiconductor layers of p-type and n-type nitride semiconductor, semiconductor-surface-electrodes to apply currents into each of the semiconductor layers, an insulating layer which holds the semiconductor layers, and mount-surface-electrodes. The semiconductor layers has a non-deposited area where the other semiconductor layer is not deposited. The insulating layer has VIA which electrically connect the mount-surface-electrodes and the semiconductor-surface-electrodes. In the manufacturing process, firstly, semiconductor layers and semiconductor-surface-electrodes are deposited on the transparent crystal substrate, and by using build-up process, insulating layer and the mount-surface-electrodes are formed, and secondly, VIA are formed, and finally, the transparent crystal substrate is separated to get light-emitting device. Light can be extracted directly and efficiently from the semiconductor layers. With the mount-surface-electrodes, light-emitting device can be mounted by using surface mount technology. | 07-23-2009 |
20090215208 | Composition including material, methods of depositing material, articles including same and systems for depositing material - Methods for depositing nanomaterial onto a substrate are disclosed. Also disclosed are compositions useful for depositing nanomaterial, methods of making devices including nanomaterials, and a system and devices useful for depositing nanomaterials. | 08-27-2009 |
20090215209 | Methods of depositing material, methods of making a device, and systems and articles for use in depositing material - Methods for depositing material and/or nanomaterial are disclosed. Also disclosed are methods of making devices including nanomaterials, systems useful for depositing materials and/or nanomaterials, surface treated articles for depositing material and/or nanomaterial onto a substrate, and surface treated transfer surfaces. | 08-27-2009 |
20090233387 | LINEAR PLASMA SOURCE FOR DYNAMIC (MOVING SUBSTRATE) PLASMA PROCESSING - The present invention generally relates to a method and apparatus for depositing a layer onto a substrate as the substrate is moving through the processing chamber. The substrate may move along a roll to roll system. A roll to roll system is a system where a substrate may be unwound from a first roll so that the substrate may undergo processing and then re-wound onto a second roll after the processing. As the substrate moves through the processing chamber, a plasma source may produce a plasma. An electrical bias applied to the substrate may draw the plasma to the substrate and hence, permit deposition of material onto the substrate as the substrate moves through the chamber. | 09-17-2009 |
20090233388 | Manufacturing method of electro line for liquid crystal display device - A manufacturing method of an electro line for a liquid crystal display device includes depositing a barrier layer made of a conducting material on a substrate, depositing a copper layer (Cu) on the barrier layer, wet-etching the Cu layer using a first etchant, and dry-etching the barrier layer using a second etchant using the wet-etched Cu layer as an etch mask. | 09-17-2009 |
20090233389 | METHOD FOR MANUFACTURING THIN FILM TRANSISTOR AND METHOD FOR MANUFACTURING DISPLAY DEVICE - A method for manufacturing a thin film transistor and a display device using a small number of masks is provided. A conductive film is formed, a thin-film stack body having a pattern is formed over the conductive film, an opening portion is formed in the thin-film stack body so as to reach the conductive film, a gate electrode layer is formed by processing the conductive film using side-etching, and an insulating layer, a semiconductor layer, and a source and drain electrode layer are formed over the gate electrode layer, whereby a thin film transistor is manufactured. By provision of the opening portion, controllability of etching is improved. | 09-17-2009 |
20090246896 | METHOD AND APPARATUS FOR IMPROVED PRINTED CATHODES FOR ORGANIC ELECTRONIC DEVICES - Rapid thermal processing of printed electrodes and cathodes for organic electronic devices and light-emitting polymer devices (LEPDs) to prevent detrimental cathode ink/underlying layer interactions is described herein. The ink layer printed cathode can be thinned during fabrication using high mesh count screens, calendered mesh screens, high squeegee pressures, high hardness squeegees, high squeegee angles and combinations thereof. Alone, or in combination with, a thinned ink layer, the printed cathode can be cured using reduced time hot plate processing, infrared processing, heated gas flow processing, or combinations thereof. | 10-01-2009 |
20090280586 | Methods for depositing nanomaterial, methods for fabricating a device, and methods for fabricating an array of devices - A method comprising depositing an ink comprising a nanomaterial and a liquid vehicle from a micro-dispenser onto a layer of a device is disclosed. A method comprising depositing an ink comprising a nanomaterial and a liquid vehicle from a micro-dispenser onto a material capable of transporting charge in a predetermined arrangement is also disclosed. Methods for fabricating devices including nanomaterials are also disclosed. In certain preferred embodiments, the nanomaterial comprises semiconductor nanocrystals. In certain preferred embodiments, a micro-dispenser comprises an inkjet printhead. | 11-12-2009 |
20090280587 | METHOD OF TREATING SODA-LIME GLASS SUBSTRATE AND METHOD OF MANUFACTURING A DISPLAY SUBSTRATE USING THE SAME - A method of treating a soda-lime glass (SLG) substrate includes cleaning the SLG substrate using an alkali cleaning solution and cleaning the cleaned SLG substrate using a plasma process. The SLG substrate is cleaned using the alkali cleaning solution to remove particles adhered to the SLG substrate. Thus, defects due to the adhering particles may be reduced. | 11-12-2009 |
20090280588 | METHOD OF FORMING AN ELECTRONIC DEVICE INCLUDING REMOVING A DIFFERENTIAL ETCH LAYER - A method of forming an electronic device can include forming a metallic layer over a side of a workpiece including a substrate, a differential etch layer, and a semiconductor layer. The differential etch layer may lie between the substrate and the semiconductor layer, and the semiconductor layer may lie along the side of the workpiece. The process can further include selectively removing at least a majority of the differential etch layer from between the substrate and the semiconductor layer, and separating the semiconductor layer and the metallic layer from the substrate. The selective removal can be performed using a wet etching, dry etching, or electrochemical technique. In a particular embodiment, the same plating bath may be used for plating the metallic layer and selectively removing the differential etch layer. | 11-12-2009 |
20090305442 | LIGHT EMITTING DEVICE AND METHOD FOR FABRICATING THE SAME - The light emitting device comprises a substrate | 12-10-2009 |
20090311809 | THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE AND MANUFACTURING METHOD THEREOF - To provide a manufacturing method of a thin film transistor and a display device with fewer masks than a conventional method. A thin film transistor is manufactured by including the steps of: forming a first conductive film, an insulating film, a semiconductor film, an impurity semiconductor film, and a second conductive film to be stacked; forming a resist mask including three regions with different thicknesses; performing first etching to form a thin-film stack body; performing second etching in which side-etching is performed on the thin-film stack body to form a gate electrode layer; and recessing the resist mask to form a semiconductor layer and a source and drain electrode layer. A resist mask including three regions with different thicknesses can be formed using a four-tone photomask, for example. | 12-17-2009 |
20090325331 | METHOD FOR MANUFACTURING PIXEL STRUCTURE - A method for manufacturing a pixel structure is provided. First, a gate and a gate insulating layer are sequentially formed on the substrate. A channel layer and a second metal layer are sequentially formed on the gate insulating layer. The second metal layer is patterned to form a source and a drain by using a patterned photoresist layer formed thereon, wherein the source and the drain are disposed on a portion of the channel layer. The gate, the channel, the source and the drain form a thin film transistor. A passivation layer is formed on the patterned photoresist layer, the gate insulating layer and the thin film transistor. Then, the patterned photoresist layer is removed, such that the passivation layer thereon is removed simultaneously to form a patterned passivation layer and the drain is exposed. A pixel electrode is formed on the patterned passivation layer and the drain. | 12-31-2009 |
20100009475 | Disk Laser Including an Amplified Spontaneous Emission (ASE) Suppression Feature - A laser system may include a first portion of laser host material adapted for amplification of laser radiation and a second portion of laser host material surrounding the first portion which may be adapted for suppression of ASE. The first portion of laser host material and the second portion of laser host material may be respectively doped at a different predetermined concentration of laser ions. A heat exchanger may be provided to dissipate heat from the first portion and the second portion. | 01-14-2010 |
20100015737 | SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THEREOF, AND METHOD OF MANUFACTURING BASE MATERIAL - It is an object of the invention to provide a lightweight semiconductor device having a highly reliable sealing structure which can prevent ingress of impurities such as moisture that deteriorate element characteristics, and a method of manufacturing thereof. A protective film having superior gas barrier properties (which is a protective film that is likely to damage an element if the protective film is formed on the element directly) is previously formed on a heat-resistant substrate other than a substrate with the element formed thereon. The protective film is peeled off from the heat-resistant substrate, and transferred over the substrate with the element formed thereon so as to seal the element. | 01-21-2010 |
20100029025 | Production Apparatus and Method of Producing a Light-Emitting Device by Using the Same Apparatus - The present invention relates to a method for manufacturing a light-emitting device. At least one of a light-emitting film forming step, a conductive film forming step and an insulating film forming step is carried out while holding a substrate in a manner that an angle subtended by a surface of the substrate and the direction of gravity is within a range of from 0 to 30°. | 02-04-2010 |
20100055810 | MASK FOR THIN FILM DEPOSITION AND METHOD OF MANUFACTURING OLED USING THE SAME - A mask for thin film deposition used in forming an organic thin film or a conductive layer in an organic light emitting device is disclosed. In one embodiment, the mask includes i) a base member, ii) a plurality of slits configured to penetrate through the base member, wherein the plurality of slits have a predetermined length and extend in a first direction, wherein the plurality of slits comprise an outermost slit positioned in an outermost in a second direction having a predetermined angle with respect to the first direction, and wherein the outermost slit comprises two sub-slits separated from each other and iii) a rib supporting part formed between and contacting the two sub-slits, wherein the rib supporting part extends from a rib which is adjacent to the outermost slit. | 03-04-2010 |
20100087019 | ORGANIC ELECTROLUMINESCENT DEVICE AND METHOD OF MANUFACTURING THE SAME - An organic electroluminescent device (OELD) and a method of manufacturing the OELD are provided. The OELD includes a substrate, an anode electrode stacked on the substrate, an organic light emitting layer that is stacked on the anode electrode and has a plurality of protrusions on the organic light emitting layer, and a cathode electrode that covers the protrusions formed on the organic light emitting layer and is formed of a metal. | 04-08-2010 |
20100099205 | METHOD OF MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICE - A method of manufacturing a liquid crystal display device is provided which includes ashing first and second photoresist patterns, whereby a copper oxide film is formed at portions of a data line and a source-drain pattern exposed between the ashed first and second photoresist patterns and between the ashed first and second portions of the first photoresist pattern; deoxidizing or removing the copper oxide film; performing a plasma treatment to change the exposed portions of the data line and the source-drain pattern into a copper compound; removing the copper compound using a copper compound removing solution to form source and drain electrodes below the ashed first and second portions, respectively, wherein the copper compound removing solution substantially has no reaction with the copper group material; dry-etching a portion of an ohmic contact layer between the source and drain electrodes using the source and drain electrodes as an etching mask, the ohmic contact layer formed by patterning the impurity-doped amorphous silicon layer. | 04-22-2010 |
20100120180 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME - In a liquid crystal display device of an IPS system, to realize reduction of manufacturing cost and improvement of yield by decreasing the number of steps for manufacturing a TFT. A channel etch type bottom gate TFT structure, where patterning of a source region and a drain region and patterning of a source wiring and a pixel electrode are carried out by the same photomask. | 05-13-2010 |
20100136719 | THIN FILM TRANSISTOR SUBSTRATE HAVING ELECTRODE LAYERS THAT ARE FORMED ON INSULATING LAYER TO COVER COMMON VOLTAGE LINE AND GROUNDING LINE - According to an embodiment, there is provided a fabricating method for a thin film transistor substrate divided into a display area displaying images and a non-display area beside the display area, the fabricating method comprising: forming a gate wire in the display area, a common voltage line for a MPS (mass production system) test in the non-display area, and a grounding line for the MPS test in the non-display area with same material at the same time; forming a gate insulating layer covering the gate wire and a first insulating layer covering the common voltage line for the MPS test and the grounding line for the MPS test with same material at the same time; forming a data wire crossing the gate wire and defining a pixel area in the display area; and forming a pixel electrode in the pixel area and an electrode layer on the first insulating layer corresponding to the common voltage line for the MPS test and the grounding line for the MPS test with same material at the same time. | 06-03-2010 |
20100136720 | MANUFACTURING METHOD OF PIXEL STRUCTURE - A method of manufacturing the pixel structure is provided. The method includes forming a gate, a scan line connected to the gate, and at least one auxiliary pattern on a substrate. An insulating layer, a semiconductor layer, an ohmic contact layer, and a photoresist layer are formed in sequence. Afterwards, a single exposure and development is performed on the photoresist layer to form a first portion and a second portion. Next, the ohmic contact layer and the semiconductor layer which are not covered by the photoresist layer are removed to expose a part of the insulating layer. Next, the second portion of the photoresist layer is removed. Subsequently, a part of the thickness of the semiconductor layer not covered by the first portion is removed and the exposed insulating layer is removed, so as to faun a channel layer and an insulating layer. | 06-03-2010 |
20100136721 | NITRIDE-BASED WHITE LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - A light emitting device includes an n-type cladding layer. a p-type cladding layer. an active layer interposed between the n-type cladding layer and the p-type cladding layer and an ohmic contact layer contacting the p-type cladding layer or the n-type cladding layer. The ohmic contact layer includes a first film that includes a transparent conductive zinc oxide doped with a rare earth metal and including a one-dimensional nano structure. The one-dimensional nano structure is one of a nano-column, a nano rod and a nano wire. | 06-03-2010 |
20100167434 | METHOD FOR FABRICATING LIGHT EMITTING DIODE CHIP - A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer. | 07-01-2010 |
20100221852 | Method for fabricating light emitting diode - A method of fabricating a light emitting diode includes the following steps. A substrate is provided and a first semiconductor layer, an active layer, and a second semiconductor layer are placed on the substrate. A carbon nanotube structure is provided and the carbon nanotube structure is lie on the second semiconductor layer. A first electrode is formed on the carbon nanotube structure. A portion of the first semiconductor layer is exposed and a second electrode is formed on the exposed portion of the first semiconductor layer to obtain the light emitting diode. | 09-02-2010 |
20100248402 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF, DELAMINATION METHOD, AND TRANSFERRING METHOD - A technique for forming a TFT element over a substrate having flexibility typified by a flexible plastic film is tested. When a structure in which a light-resistant layer or a reflective layer is employed to prevent the damage to the delamination layer, it is difficult to fabricate a transmissive liquid crystal display device or a light emitting device which emits light downward. | 09-30-2010 |
20100317131 | METHOD FOR MANUFACTURING LIGHT EMITTING DEVICE - An embodiment of this invention relates to a method for manufacturing a light emitting device. The disclosed method for manufacturing a light emitting device includes the steps of: preparing a substrate wherein the crystal growth surface is a-plane or an m-plane; forming a buffer layer on said substrate; forming a semiconductor layer on said buffer layer, and separating said semiconductor layer from said substrate by removing said buffer layer. | 12-16-2010 |
20100323464 | LIQUID COMPOSITIONS FOR INKJET PRINTING OF ORGANIC LAYERS OR OTHER USES - A method of forming an organic layer for an organic electronic device (e.g., an OLED) by using a liquid composition comprising a small molecule organic semiconductor material mixed in a solvent preparation in which the content of higher boiling impurities is reduced. The solvent preparation comprises a high boiling point solvent and 0.1 wt % or less of impurities having a higher boiling point than the solvent. The liquid composition is deposited on a surface by inkjet printing to form the organic layer. Also, provided are liquid compositions which can be used to make organic layers. | 12-23-2010 |
20100330712 | THIN FILM DEPOSITION APPARATUS AND METHOD OF MANUFACTURING ORGANIC LIGHT EMITTING DEVICE BY USING THE SAME - A thin film deposition apparatus and a method of manufacturing an organic light emitting device (OLED) using the thin film deposition apparatus. The thin film deposition apparatus includes a deposition source; a first nozzle in which a plurality of first slits are formed in one direction; a second nozzle in which a plurality of second slits are formed in the one direction; a second nozzle frame combined with the second nozzle to support the second nozzle; a first barrier wall assembly including a plurality of first barrier walls disposed in the one direction to form a space between the first nozzle and the second nozzle; and a second barrier wall assembly having a plurality of second barrier walls disposed in the one direction and a second barrier wall frame to support the second barrier walls, the second barrier wall assembly disposed at one side of the first barrier wall assembly, wherein the second barrier walls are mounted on the second barrier wall frame in the one direction and the second barrier walls slide on the second barrier wall frame. | 12-30-2010 |
20110003406 | FLAT PANEL DISPLAY WITH HIGH EFFICIENCY AND METHOD OF FABRICATING THE SAME - An organic light emitting device is disclosed. In one embodiment, the organic light emitting device includes red (R), green (G) and blue (B) lower electrodes formed on a substrate. R, G, B organic thin film layers are formed on the R, G, B lower electrodes, respectively. Additionally, an upper single or multilayer electrode is formed over the substrate. Portions of the upper electrode that correspond to the R, G, B organic thin film layers, respectively, are formed to each have a different thickness. Various methods for forming the upper electrode using a fine metal mask, a halftone mask, and single and multiple photolithography processes are also disclosed. | 01-06-2011 |
20110003407 | LIGHT EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME - There are provided a light emitting device and a method of manufacturing the same. A light emitting device according to the present invention includes a substrate; an N-type semiconductor layer, an active layer and a P-type semiconductor layer, sequentially formed on the substrate; one or more trenches formed to expose the N-type semiconductor layer by partially removing at least the P-type semiconductor and active layers; a first insulating layer formed on sidewalls of the trenches; and a conductive layer filled in the trenches having the first insulating layer formed therein. According to the present invention, it is possible to obtain a characteristic of uniform current diffusion, and thus, light is uniformly emitted to thereby enhance the light emitting efficiency. | 01-06-2011 |
20110003408 | FLAT PANEL DISPLAY AND METHOD FOR FABRICATING THE SAME - A flat panel display, having an anti-electrostatic configuration, comprising a plurality of gate lines and data lines formed on an insulating substrate having an emission region and a pad portion, an anti-electrostatic wire initially coupling the gate lines, and an anti-electrostatic circuit coupled to a data line. The anti-electrostatic wire between a gate line and an adjacent gate line is subsequently cut by an opening for cutting the anti-electrostatic wire to electrically isolate the respective gate lines. | 01-06-2011 |
20110008918 | METHODS OF LOW LOSS ELECTRODE STRUCTURES FOR LEDS - Aspects concerning a method of making electrical contact to a region of semiconductor in which one or more LEDs are formed include that a dielectric region can be formed on a p region of the semiconductor, and that a metallic electrode can be formed on (at least partially on) the region of dielectric material. A transparent layer of a material such as Indium Tin Oxide can be used to make ohmic contact between the semiconductor and the metallic electrode, as the metallic electrode is separated from physical contact with the semiconductor by one or more of the dielectric material and the transparent ohmic contact layer (e.g., ITO layer). The dielectric material can enhance total internal reflection of light and reduce an amount of light that is absorbed by the metallic electrode. | 01-13-2011 |
20110014728 | ELECTRONIC DEVICE AND MANUFACTURING METHOD THEREOF - An object of the invention is to provide an electronic device which can be easily manufactured using a wet method. One of electronic devices according to the invention has a first layer and a second layer. The first layer contains a first compound including a conjugated double bond. Here, the first compound preferably has a molecular weight of 100 to 1000. The second layer contains a second compound having a cyclic structure which is formed by an addition reaction between two molecules of the first compound. Here, a light emitting element or an element such as a transistor can be given as the electronic device. | 01-20-2011 |
20110014729 | DONOR FILM FOR LASER INDUCED THERMAL IMAGING METHOD, LIGHT EMITTING DEVICE USING THE SAME, AND METHOD OF MANUFACTURING LIGHT EMITTING DEVICE - A donor film for a laser induced thermal imaging method capable of improving the optical efficiency of an emission layer, a light emitting device using the same, and a method of manufacturing the light emitting device are provided. The donor film for a laser induced thermal imaging method includes a base substrate, a light to heat conversion layer (LTHC) provided on the base substrate and having a pattern with a predetermined step difference, and a transfer layer provided on the LTHC. It is possible to improve the optical efficiency of the emission layer by patterning the transfer layer using the LTHC having the pattern with a predetermined step difference. | 01-20-2011 |
20110033959 | LIQUID CRYSTAL DISPLAY DEVICE AND METHOD FOR FABRICATING THE SAME - A liquid crystal display (LCD) device having an array substrate with a top gate type TFT includes a first transparent metal layer deposited to enhance the adhesion between a data metal layer and an insulating substrate before a data metal deposition, and a second transparent metal layer deposited to enhance the adhesion between a gate metal layer and an insulating substrate before a gate metal deposition. The LCD device having the array substrate with a top gate type TFT can be fabricated with a reduced number of masking or sputtering processes, thereby reducing the fabrication time of the LCD device and increasing the yield of the LCD device. | 02-10-2011 |
20110045617 | THIN FILM DEPOSITION APPARATUS AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY DEVICE BY USING THE SAME - A thin film deposition apparatus and an organic light-emitting display device by using the same. The thin film deposition apparatus includes an electrostatic chuck, an a plurality of chambers; at least one thin film deposition assembly; a carrier; a first power source plug; and a second power source plug. The electrostatic chuck includes a body having a supporting surface that contacts a substrate to support the substrate, wherein the substrate is a deposition target; an electrode embedded into the body and applying an electrostatic force to the supporting surface; and a plurality of power source holes formed to expose the electrode and formed at different locations on the body. The plurality of chambers are maintained in a vacuum state. The at least one thin film deposition assembly is located in at least one of the plurality of chambers, is separated from the substrate by a predetermined distance, and is used to form a thin film on the substrate supported by the electrostatic chuck. The carrier is used to move the electrostatic chuck to pass through the plurality of chambers. The first power source plug is installed to be attachable to and detachable from one of the power source holes in order to supply power to the electrode. The first power source plug is installed at an upstream of a path in which the electrostatic chuck is moved by the carrier. The second power source plug is installed to be attachable to and detachable from another of the power source holes in order to supply power to the electrode. The second power source plug is installed in the path to be downstream to the first power source plug with respect to the path. | 02-24-2011 |
20110053296 | THIN FILM DEPOSITION APPARATUS AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY DEVICE BY USING THE SAME - A thin film deposition apparatus and a method of manufacturing an organic light-emitting display device by using the same, and more particularly, to a thin film deposition apparatus that can remove a deposition material deposited on a patterning slit sheet without performing an additional cleaning process, and a method of manufacturing an organic light-emitting display device by using the thin film deposition apparatus. | 03-03-2011 |
20110092001 | LIGHT EMITTING DIODE - A semiconductor device including a wafer-level LED includes a semiconductor structure coupled to first and second electrodes. The semiconductor includes a P-doped portion of a first layer to an N-doped portion of a second layer. The first layer includes a surface configured to emit light. The first electrode is electrically coupled to the P-doped portion of the first layer on a first side of the semiconductor structure. The first side is adjacent to the surface that is configured to emit the light. The second electrode is electrically coupled to the N-doped portion of the second layer on a second side of the semiconductor structure. The second side is also adjacent to the surface that configured to emit light. | 04-21-2011 |
20110117684 | Semiconductor light-emitting element and method for producing the same - A semiconductor light-emitting element includes, a first semiconductor layer, a second semiconductor layer, a light-emitting layer provided between the first semiconductor layer and the second semiconductor layer, a first electrode connected to the first semiconductor layer, and a second electrode provided on the second semiconductor layer. A side of the second electrode facing to the second semiconductor layer is composed of at least any one of silver and silver alloy. The second electrode has a void having a width of emission wavelength or less of the light-emitting layer in a plane of the second electrode facing to the second semiconductor layer. | 05-19-2011 |
20110143464 | Methods and Apparatus for Control of Hydrothermal Nanowire Synthesis - In exemplary implementations of this invention, hydrothermal synthesis of zinc oxide nanowires is morphologically controlled. Metal complex ions are used to suppress growth in a face-selective manner, by electrostatic crystal growth inhibition. This permits the aspect ratio (height/diameter) of the nanowires to be dynamically tuned over a wide range, from needle-like nanowires that are efficient field emitters to flattened nanowires with a platelet-like shape. The nanowire synthesis is all inorganic and occurs at low temperatures (e.g., <=60° C.). The growth inhibition may be predictively modeled, using speciation plots and treating non-zinc complex ions as ligands. Microfluidic channels may be used for the synthesis, with different solutions flowing down different channels, permitting nanowires with different properties to be synthesized in parallel. This invention may be used to produce field emission devices and nanowire-embedded AC electroluminescent devices, and for in-situ fabrication of spatially complex integrated devices in a polymeric microfluidic system. | 06-16-2011 |
20110151599 | Vapor deposition apparatus having improved carrier gas supplying structure and method of manufacturing an organic light emitting display apparatus by using the vapor deposition apparatus - A vapor deposition apparatus includes a canister configured to contain a vapor deposition source, the canister including a gas inlet and a gas outlet opposite to each other, a heater configured to heat the canister, a chamber in fluid communication with the canister, the chamber being configured to contain a vapor deposition target, and a carrier gas supplying unit configured to supply a carrier gas into the canister. | 06-23-2011 |
20110159610 | Polycrystalline silicon as an electrode for a light emitting diode and method of making the same - Metal induced polycrystallized silicon is used as the anode in a light emitting device, such as an OLED or AMOLED. The polycrystallized silicon is sufficiently non-absorptive, transparent and made sufficiently conductive for this purpose. A thin film transistor can be formed onto the polycrystallized silicon anode, with the silicon anode acting as the drain of the thin film transistor, thereby simplifying production. | 06-30-2011 |
20110165704 | ORGANIC ELECTROLUMINESCENT ELEMENT AND MANUFACTURING METHOD THEREOF - An organic electroluminescent element | 07-07-2011 |
20110165705 | Method for Fabricating LED Chip Comprising Reduced Mask Count and Lift-Off Processing - A method for fabricating a light emitting diode chip is provided. In the method, a half-tone mask process, a gray-tone mask process or a multi-tone mask process is applied and combined with a lift-off process to further reduce process steps of the light emitting diode chip. In the present invention, some components may also be simultaneously formed by an identical process to reduce the process steps of the light emitting diode chip. Consequently, the fabricating method of the light emitting diode provided in the present invention reduces the cost and time for the fabrication of the light emitting diode. | 07-07-2011 |
20110171760 | Method for manufacturing thin film transistor and display device - A method for manufacturing a thin film transistor includes: forming a source electrode and a drain electrode on a substrate by depositing a metal layer on the substrate at a first temperature and etching the metal layer; forming a protective layer on the source and drain electrodes; and performing a heat treatment on the protective layer at a second temperature higher than the first temperature. | 07-14-2011 |
20110177630 | COMPLEX SALTS - Disclosed is a salt of an organometallic complex cation and an organometallic complex anion, wherein the cation as well as the anion consists of a central metal atom M of atomic weight greater than 40 associated to 2 or more ligands, at least one ligand comprising a cyclic organic moiety with a carbon atom bonding to M, and at least one ligand comprising a cyclic organic moiety with a nitrogen atom bonding to M. The novel salts may be used as conductive and/or light emitting components in electronic devices. Color emission may be chosen by selecting anion(s) and cation(s) of suitable emission characteristics. | 07-21-2011 |
20110183449 | APPARATUS AND METHOD FOR MANUFACTURING LIGHT-EMITTING DIODE - An apparatus and method for manufacturing a light emitting devices by separating a semiconductor layer from a substrate includes a laser beam source for emitting a laser beam, a mesh-typed mask having a plurality of apertures through which the laser beam passes to provide a plurality of unit beams; and an imaging lens for forming a plurality of beam spots by focusing the plurality of unit beams at an interface between a substrate and a semiconductor layer to separate the substrate from the semiconductor layer. | 07-28-2011 |
20110263053 | METHOD FOR MANUFACTURING PIXEL STRUCTURE - A pixel structure including a scan line, a data line, an active device, a shielding electrode, and a pixel electrode is provided on a substrate. The data line includes an upper conductive wire and a bottom conductive wire. The upper conductive wire is disposed over and across the scan line. The bottom conductive wire is electrically connected to the upper conductive wire. The active device is electrically connected to the scan line and the upper conductive wire. The shielding electrode is disposed over the bottom conductive wire. The pixel electrode disposed over the shielding electrode is electrically connected to the active device. In addition, parts of the pixel electrode and parts of the shielding electrode form a storage capacitor. | 10-27-2011 |
20110318855 | METHOD FOR FABRICATING LIGHT EMITTING DIODE CHIP - A method for fabricating a light emitting diode chip is provided. Firstly, a semiconductor device layer is formed on a substrate. Afterwards, a current spreading layer is formed on a portion of the semiconductor device layer. Then, a current blocking layer and a passivation layer are formed on a portion of the semiconductor device layer not covered by the current spreading layer. Finally, a first electrode is formed on the current blocking layer and the current spreading layer. Moreover, a second electrode is formed on the semiconductor device layer. | 12-29-2011 |
20120009696 | LIGHT-EMITTING ELEMENT CAPABLE OF INCREASING AMOUNT OF LIGHT EMITTED, LIGHT-EMITTING DEVICE INCLUDING THE SAME, AND METHOD OF MANUFACTURING LIGHT-EMITTING ELEMENT AND LIGHT-EMITTING DEVICE - A light-emitting element capable of increasing the amount of light emitted, a light-emitting device including the same, and a method of manufacturing the light-emitting element and the light-emitting device include a buffer layer having an uneven pattern formed thereon; a light-emitting structure including a first conductive pattern of a first conductivity type that is conformally formed along the buffer layer having the uneven pattern formed thereon, a light-emitting pattern that is conformally formed along the first conductive pattern, and a second conductive pattern of a second conductivity type that is formed on the light-emitting pattern; a first electrode electrically connected to the first conductive pattern; and a second electrode electrically connected to the second conductive pattern. | 01-12-2012 |
20120064648 | DISPLAY DEVICE AND MANUFACTURING METHOD OF THE SAME - It is an object of the present invention to provide a method for manufacturing a display device in which unevenness generated under a light-emitting element does not impart an adverse effect on the light-emitting element. It is another object of the invention to provide a method for manufacturing a display device in which penetration of water into the inside of the display device through a film having high moisture permeability can be suppressed without increasing processing steps considerably. A display device of the present invention comprises a thin film transistor and a light-emitting element, the light-emitting element including a light-emitting laminated body interposed between a first electrode and a second electrode; wherein the first electrode is formed over an insulating film formed over the thin film transistor; and wherein a planarizing film is formed in response to the first electrode between the first electrode and the insulating film. | 03-15-2012 |
20120070919 | SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING THEREOF, AND METHOD OF MANUFACTURING BASE MATERIAL - It is an object of the invention to provide a lightweight semiconductor device having a highly reliable sealing structure which can prevent ingress of impurities such as moisture that deteriorate element characteristics, and a method of manufacturing thereof. A protective film having superior gas barrier properties (which is a protective film that is likely to damage an element if the protective film is formed on the element directly) is previously formed on a heat-resistant substrate other than a substrate with the element formed thereon. The protective film is peeled off from the heat-resistant substrate, and transferred over the substrate with the element formed thereon so as to seal the element. | 03-22-2012 |
20120100644 | ORGANIC LAYER DEPOSITION APPARATUS, AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY APPARATUS USING THE SAME - An organic layer deposition apparatus including an electrostatic chuck combined with a substrate so as to fixedly support the substrate. The organic layer deposition apparatus including a receiving surface that has a set curvature for receiving the substrate; a deposition source for discharging a deposition material toward the substrate; a deposition source nozzle unit disposed at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet disposed to face the deposition source nozzle unit, and having a plurality of patterning slits arranged in a second direction perpendicular to the first direction, wherein a cross section of the patterning slit sheet on a plane formed by lines extending in the second direction and a third direction is bent by a set degree, wherein the third direction is perpendicular to the first and second directions. | 04-26-2012 |
20120100645 | METHOD FOR FABRICATING LIGHT EMITTING DEVICE - A method for fabricating a light emitting device is provided. The method comprises forming a light emitting structure comprising a first conductivity type semiconductor layer, an active layer, and a second conductivity type semiconductor layer and forming a mixed-period photonic crystal structure on the light emitting structure. And the forming of the mixed-period photonic crystal structure includes defining a first photonic crystal structure through a lithography process and a dry etching process, and forming a second photonic crystal structure through a wet etching process. | 04-26-2012 |
20120107972 | LASER DIODE AND METHOD OF MANUFACTURING THE SAME - A laser diode capable of independently driving each ridge section, and inhibiting rotation of a polarization angle resulting from a stress applied to the ridge section without lowering reliability and a method of manufacturing the same are provided. A laser diode includes: three or more strip-like ridge sections in parallel with each other with a strip-like trench in between, including at least a lower cladding layer, an active layer, and an upper cladding layer in this order; an upper electrode on a top face of each ridge section, being electrically connected to the upper cladding layer; a wiring layer electrically connected to the upper electrode, in the air at least over the trench; and a pad electrode in a region different from regions of both the ridge section and the trench, being electrically connected to the upper electrode through the wiring layer. | 05-03-2012 |
20120129280 | Method of Manufacturing Light Emitting Device - A method of manufacturing a light emitting device is provided which requires low cost, is easy, and has high throughput. The method of manufacturing a light emitting device is characterized in that: a solution containing a light emitting material is ejected to an anode or cathode under reduced pressure; a solvent in the solution is volatilized until the solution reaches the anode or cathode; and the remaining light emitting material is deposited on the anode or cathode to form a light emitting layer. A burning step for reduction in film thickness is not required after the solution application. Therefore, the manufacturing method, which requires low cost and is easy but which has high throughput, can be provided. | 05-24-2012 |
20120156812 | MASK FRAME ASSEMBLY, METHOD OF MANUFACTURING THE SAME, AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY DEVICE USING THE MASK FRAME ASSEMBLY - A mask frame includes a frame and a mask installed on the frame while being stretched in a first direction. The mask includes a deposition area including a plurality of deposition pattern portions, an edge unit formed to have a thickness greater than a thickness of the deposition area and including a first edge and a second edge that extend in the first direction on two sides of the deposition area, and two or more ribs formed to have a thickness greater than the thickness of the deposition area between deposition pattern portions adjacent to each other in a second direction perpendicular to the first direction. | 06-21-2012 |
20120164764 | METHOD FOR FABRICATING SEMICONDUCTOR LIGHTING CHIP - A method for fabricating a semiconductor lighting chip includes steps of: providing a substrate with a first block layer dividing an upper surface of the substrate into a plurality of epitaxial regions; forming a first semiconductor layer on the epitaxial regions; forming a second block layer partly covering the first semiconductor layer; forming a lighting structure on an uncovered portion of the first semiconductor layer; removing the first and the second block layers thereby defining clearances at the bottom surfaces of the first semiconductor layer and the lighting structure; and permeating etching solution into the first and second clearances to etch the first semiconductor layer and the lighting structure, thereby to form each of the first semiconductor layer and the lighting structure with an inverted frustum-shaped structure. | 06-28-2012 |
20120164765 | LOCALIZED ANNEALING OF METAL-SILICON CARBIDE OHMIC CONTACTS AND DEVICES SO FORMED - A method of forming an ohmic contact for a semiconductor device can be provided by thinning a substrate to provide a reduced thickness substrate and providing a metal on the reduced thickness substrate. Laser annealing can be performed at a location of the metal and the reduced thickness substrate at an energy level to form a metal-substrate material to provide the ohmic contact thereat. | 06-28-2012 |
20120178190 | Arrangement for Holding a Substrate in a Material Deposition Apparatus - An arrangement ( | 07-12-2012 |
20120178191 | ORGANIC ELECTROLUMINESCENCE ELEMENT AND MANUFACTURING METHOD THEREOF - To improve the light emission characteristics of a device when a transition metal oxide is used for the hole injection layer, in particular, to enhance the electron blocking characteristics of a transition metal oxide. An organic electroluminescence element comprising an anode, a cathode and a plurality of functional layers formed between the anode and the cathode, the functional layer containing a layer with a light-emitting function composed of at least one kind of an organic semiconductor and, between the anode and the layer with a light-emitting function, a charge injection layer composed of at least one kind of a transition metal oxide, wherein the ratio of the metal to oxygen at the anode side of the transition metal oxide layer is smaller than the stoichiometric ratio and at the same time, the ratio of the metal to oxygen at the layer with a light-emitting function side is greater than that at the anode side. | 07-12-2012 |
20120190139 | PREPARATION METHOD FOR REDUCED GRAPHENE OXIDE USING SULFONYL HYDRAZIDE-BASED REDUCING AGENT AND OPTOELECTRONIC DEVICES THEREOF - A method for fabricating a graphene thin film by reducing graphene oxide and a method for fabricating an optoelectronic device using the same are provided. The method for fabricating a graphene thin film comprises: (a) preparing graphene oxide; (b) preparing graphene through reducing the graphene oxide by a sulfonyl hydrazide-based reducing agent; (c) preparing a graphene dispersed solution by dispersing the graphene into an organic solvent; and (d) fabricating a graphene thin film by applying the graphene dispersed solution. The sulfonyl hydrazide-based reducing agent may be a compound having a sulfonyl hydrazide substituent of Chemical Formula 1 in the present disclosure in which A may be any one in Chemical Formula 2 in the present disclosure. | 07-26-2012 |
20120196391 | METHOD FOR FABRICATING SEMICONDUCTOR LIGHTING CHIP - A method for fabricating a semiconductor lighting chip includes steps: providing a substrate with an epitaxial layer, the epitaxial layer comprising a first semiconductor layer, a second semiconductor layer and an active layer located between the first semiconductor layer and the second semiconductor layer; dipping the epitaxial layer into an electrolyte to etch surfaces of the epitaxial layer and form a number of holes on the epitaxial layer; and forming electrodes on the epitaxial layer. | 08-02-2012 |
20120196392 | PIXEL DESIGNS OF IMPROVING THE APERTURE RATIO IN AN LCD - In one aspect of this invention, a pixel structure includes a scan line formed on a substrate and a data line formed over the substrate defining a pixel area, a switch formed inside the pixel area on the substrate, a shielding electrode having a first portion and a second portion extending from the first portion, and formed over the scan line, the data line and the switch, where the first portion is overlapped with the switch and the second portion is overlapped with the data line, and a pixel electrode having a first portion and a second portion extending from the first portion, and formed over the shielding electrode in the pixel area, where the first portion is overlapped with the first portion of the shielding electrode so as to define a storage capacitor therebetween and the second portion has no overlapping with the second portion of the shielding electrode. | 08-02-2012 |
20120214263 | Fabrication System and Manufacturing Method of Light Emitting Device - The present invention provides a vapor deposition method and a vapor deposition system of film formation systems by which EL materials can be used more efficiently and EL materials having superior uniformity with high throughput rate are formed. According to the present invention, inside a film formation chamber, an evaporation source holder in a rectangular shape in which a plurality of containers sealing evaporation material is moved at a certain pitch to a substrate and the evaporation material is vapor deposited on the substrate. Further, a longitudinal direction of an evaporation source holder in a rectangular shape may be oblique to one side of a substrate, while the evaporation source holder is being moved. Furthermore, it is preferable that a movement direction of an evaporation source holder during vapor deposition be different from a scanning direction of a laser beam while a TFT is formed. | 08-23-2012 |
20120244650 | Air-Stable Ink for Scalable, High-Throughput Layer Deposition - A method for producing and depositing air-stable, easily decomposable, vulcanized ink on any of a wide range of substrates is disclosed. The ink enables high-volume production of optoelectronic and/or electronic devices using scalable production methods, such as roll-to-roll transfer, fast rolling processes, and the like. | 09-27-2012 |
20120252143 | METHOD OF MANUFACTURING ORGANIC LIGHT EMITTING DEVICE - To solve a problem that, in a method of manufacturing an organic light emitting device using a step of releasing a layer formed on a release layer by dissolving the release layer, released film flakes are not dissolved in a removing liquid for dissolving the release layer, and thus may drift in the removing liquid and may adhere to a surface of a substrate after patterning to cause defective patterning, provided is a method of manufacturing an organic light emitting device, including forming the release layer continuously over multiple light emitting portions to cause the size of the released film flakes to be large. This may reduce the possibility that the released film flakes adhere to the surface of the substrate and may facilitate, even when the released film flakes once adhere to the surface of the substrate, removal of the released film flakes later, thereby suppressing defective patterning. | 10-04-2012 |
20120276666 | METHOD FOR MAKING LIGHT EMITTING DIODE - A method for making light emitting diode, the method includes the following steps. First, a substrate having an epitaxial growth surface is provided. Second, a carbon nanotube layer is suspended above the epitaxial growth surface. Third, a first semiconductor layer, an active layer and a second semiconductor layer are grown on the epitaxial growth surface in that order. Fourth, a portion of the second semiconductor layer and the active layer is etched to expose a portion of the first semiconductor layer. Fifth, a first electrode is prepared on the first semiconductor layer and a second electrode is prepared on the second semiconductor layer. | 11-01-2012 |
20120295372 | METHOD OF MASKLESS MANUFACTURING OF OLED DEVICES - By the invention it is proposed a method of manufacturing of an OLED-device, comprising the steps of providing a carrier substrate, depositing a first electrode material layer on said carrier substrate, forming electrically separated areas within the deposited first electrode material layer, depositing a layer of an organic optoelectronic active material ( | 11-22-2012 |
20120322176 | METHOD OF MAKING DIODE HAVING REFLECTIVE LAYER - A method of forming a light emitting diode includes forming a transparent substrate and a GaN buffer layer on the transparent substrate. An n-GaN layer is formed on the buffer layer. An active layer is formed on the n-GaN layer. A p-GaN layer is formed on the active layer. A p-electrode is formed on the p-GaN layer and an n-electrode is formed on the n-GaN layer. A reflective layer is formed on a second side of the transparent substrate. A scribe line is formed on the substrate for separating the diodes on the substrate. Also, a cladding layer of AlGaN is between the p-GaN layer and the active layer. | 12-20-2012 |
20120322177 | METHOD OF INTEGRATING SLOTTED WAVEGUIDE INTO CMOS PROCESS - A method for integrating a slotted waveguide into a CMOS process is disclosed. A slot can be patterned on a SOI wafer by etching a first pad hard mask deposited over the wafer. The slot is then filled with a plug material by depositing a second pad hard mask over the first pad hard mask. A waveguide in association with one or more electronic and photonic devices can also be patterned on the SOI wafer. The trenches can be filled with an isolation material and then polished. Thereafter, the first and second pad hard masks can be stripped from the wafer. The slot can once again be filled with the plug material and patterned. After forming one or more electronic and photonic devices on the wafer using the standard CMOS process, a via can be opened up down to the nitride plug and the nitride plug can then be removed. | 12-20-2012 |
20130011942 | Method for Manufacturing Light Emitting Device - An object of the present invention to improve reliability of a light emitting device having a mixed layer including an organic compound and metal oxide without reducing productivity. The above object is solved in such a way that after forming the mixed layer including the organic compound and metal oxide, the mixed layer is exposed to a nitrogen gas atmosphere without being exposed to a gas atmosphere including oxygen, and then a stacked film is formed over the mixed layer without exposing the mixed layer to a gas atmosphere including oxygen. | 01-10-2013 |
20130011943 | Film Forming Method - One embodiment of the present invention is a film forming method comprising: arranging a surface of a film formation substrate | 01-10-2013 |
20130052762 | METHOD OF FORMING AN ARRAY OF HIGH ASPECT RATIO SEMICONDUCTOR NANOSTRUCTURES - A new method for forming an array of high aspect ratio semiconductor nanostructures entails positioning a surface of a stamp comprising a solid electrolyte in opposition to a conductive film disposed on a semiconductor substrate. The surface of the stamp includes a pattern of relief features in contact with the conductive film so as to define a film-stamp interface. A flux of metal ions is generated across the film-stamp interface, and a pattern of recessed features complementary to the pattern of relief features is created in the conductive film. The recessed features extend through an entire thickness of the conductive film to expose the underlying semiconductor substrate and define a conductive pattern on the substrate. The stamp is removed, and material immediately below the conductive pattern is selectively removed from the substrate. Features are formed in the semiconductor substrate having a length-to-width aspect ratio of at least about 5:1. | 02-28-2013 |
20130071959 | OVJP PATTERNING OF ELECTRONIC DEVICES - A method for forming an electronic device such as a passive color OLED display. Bottom electrodes are patterned onto a substrate in rows. Raised posts formed by photoresist are patterned into columns oriented orthogonally to the bottom row electrodes. One or more organic layers, such as R, G, B organic emissive layers are patterned over the raised posts and bottom electrodes using organic vapor jet printing (OVJP). An upper electrode layer is applied over the entire device and forms electrically isolated columnar electrodes due to discontinuities in the upper electrode layer created by the raised columnar posts. This permits patterning of the upper electrodes over the organic layers without using photolithography. A device formed by this method is also described. | 03-21-2013 |
20130102095 | Light Emitting Diodes with Smooth Surface for Reflective Electrode - A light emitting diode comprising an epitaxial layer structure, a first electrode, and a second electrode. The first and second electrodes are separately disposed on the epitaxial layer structure, and the epitaxial layer structure has a root-means-square (RMS) roughness less than about 3 at a surface whereon the first electrode is formed. | 04-25-2013 |
20130115725 | LIGHT EMITTING DIODE HAVING A TRANSPARENT SUBSTRATE - A light emitting diode having a transparent substrate and a method for manufacturing the same. The light emitting diode is formed by creating two semiconductor multilayers and bonding them. The first semiconductor multilayer is formed on a non-transparent substrate. The second semiconductor multilayer is created by forming an amorphous interface layer on a transparent substrate. The two semiconductor multilayers are bonded and the non-transparent substrate is removed, leaving a semiconductor multilayer with a transparent substrate. | 05-09-2013 |
20130130417 | MANUFACTURING METHOD OF A LIGHT-EMITTING DEVICE - A method for manufacturing a light-emitting device includes steps of: providing a substrate comprising an upper surface and a lower surface opposite to the upper surface; processing the upper surface to be an uneven surface; forming a light-emitting structure on the upper surface of the substrate; and forming a hole through the substrate by radiating a coherent laser beam to the lower surface of the substrate for a predetermined time; wherein the band gap energy of the coherent laser beam is higher than the band gap energy of the substrate thereby the substrate is etched away by the laser beam. | 05-23-2013 |
20130143335 | METHOD AND APPARATUS FOR OPTICAL MODULATION - The present invention is a method and an apparatus for optical modulation, for example for use in optical communications links. In one embodiment, an apparatus for optical modulation includes a first silicon layer having one or more trenches formed therein, a dielectric layer lining the first silicon layer, and a second silicon layer disposed on the dielectric layer and filling the trenches. | 06-06-2013 |
20130143336 | Methods of Fabricating Optoelectronic Devices Using Layers Detached from Semiconductor Donors and Devices Made Thereby - Methods of making optoelectronic devices containing functional elements made from layers liberated from natural and/or fabricated lamellar semiconductor donors. In one embodiment, a donor is provided, a layer is detached from the donor, and the layer is incorporated into an optoelectronic device as a functional element thereof. The thickness of the detached layer is tuned as needed to suit the functionality of the functional element. Examples of functional elements that can be made using detached layers include p-n junctions, Schotkey junctions, PIN junctions, and confinement layers, among others. Examples of optoelectronic devices that can incorporate detached layers include LEDs, laser diodes, MOSFET transistors, and MISFET transistors, among others. | 06-06-2013 |
20130157392 | Method of Manufacturing Light Emitting Device - A method of manufacturing a light emitting device is provided which requires low cost, is easy, and has high throughput. The method of manufacturing a light emitting device is characterized in that: a solution containing a light emitting material is ejected to an anode or cathode under reduced pressure; a solvent in the solution is volatilized until the solution reaches the anode or cathode; and the remaining light emitting material is deposited on the anode or cathode to form a light emitting layer. A burning step for reduction in film thickness is not required after the solution application. Therefore, the manufacturing method, which requires low cost and is easy but which has high throughput, can be provided. | 06-20-2013 |
20130164866 | SEMICONDUCTOR LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING SAME - According to one embodiment, a semiconductor light emitting element includes a conductive substrate, a bonding portion, an intermediate metal film, a first electrode, a semiconductor stacked body and a second electrode. The bonding portion is provided on the support substrate and including a first metal film. The intermediate metal film is provided on the bonding portion and having a larger linear expansion coefficient than the first metal film. The first electrode is provided on the intermediate metal film and includes a second metal film having a larger linear expansion coefficient than the intermediate metal film. The semiconductor stacked body is provided on the first electrode and including a light emitting portion. The second electrode is provided on the semiconductor stacked body. | 06-27-2013 |
20130178000 | METHOD FOR FABRICATING SEMICONDUCTOR LIGHT EMITTING DEVICE - A method for fabricating a semiconductor light emitting device is provided. The method includes forming a semiconductor light emitting portion including a first conductivity-type semiconductor layer, a second conductivity-type semiconductor layer, and a light emitting layer disposed between the first conductivity-type semiconductor layer and the second conductivity-type semiconductor layer. The method also includes forming a first conductivity-type semiconductor side electrode connected to the first conductivity-type semiconductor layer; forming a second conductivity-type semiconductor side electrode connected to the second conductivity-type semiconductor layer; and forming an insulator film covering the semiconductor light emitting portion, such that a first portion of the insulator film is surrounded by the second conductivity-type semiconductor side electrode and is separated from the second conductivity-type semiconductor side electrode by a separation area. | 07-11-2013 |
20130203192 | SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer, a second semiconductor layer and a light emitting part. The first semiconductor layer includes an n-type semiconductor layer. The second semiconductor layer includes a p-type semiconductor layer. The light emitting part is provided between the first semiconductor layer and the second semiconductor layer, and includes a plurality of barrier layers and a well layer provided between the plurality of barrier layers. The first semiconductor layer has a first irregularity and a second irregularity. The first irregularity is provided on a first major surface of the first semiconductor layer on an opposite side to the light emitting part. The second irregularity is provided on a bottom face and a top face of the first irregularity, and has a level difference smaller than a level difference between the bottom face and the top face. | 08-08-2013 |
20130217157 | METHOD FOR FABRICATING SEMICONDUCTOR LASER - A method for fabricating a semiconductor laser includes: sequentially forming a cladding layer of a first conductivity type, an active layer, a cladding layer of a second conductivity type, and a contact layer of the second conductivity type on a semiconductor substrate; forming a promotion film which contacts the contact layer only in a window region proximate an end plane of the semiconductor laser and absorbs group-III atoms from the contact layer to promote generation of group-III vacancies; implanting ions into the contact layer in the window region to damage the contact layer in the window region; and after forming the promotion film and implanting the ions, heat treating so that the group-III vacancies are diffused and the active layer is disordered in the window region and forms a window structure. | 08-22-2013 |
20130217158 | DEPOSITING DEVICE AND METHOD FOR MANUFACTURING ORGANIC LIGHT EMITTING DIODE DISPLAY USING THE SAME - A deposition device includes a deposition source for discharging a deposition material to be deposited on a substrate, an angle control member at least partly in a discharging path of the deposition material for controlling a discharging angle of the deposition material, and an angle control member driver coupled to the angle control member, the angle control member driver for moving the angle control member in a discharging direction of the deposition material to control the discharging angle. | 08-22-2013 |
20130244353 | METHOD OF MANUFACTURING LIGHT EMITTING DEVICE - Provided a method of manufacturing a semiconductor light emitting device, the method includes forming a light emitting structure by growing a first conductivity type semiconductor layer, an active layer and a second conductivity type semiconductor layer on a substrate. The forming of the light emitting structure includes: forming a protective layer after a portion of the light emitting structure is formed forming a sacrificial layer on the protective layer; and continuously forming a further portion of the light emitting structure on the sacrificial layer. | 09-19-2013 |
20130260487 | METHOD FOR MAKING LIGHT EMITTING DIODE - A method for making light emitting diode, the method includes the following steps. First, a substrate having an epitaxial growth surface is provided. Second, a carbon nanotube layer is suspended above the epitaxial growth surface. Third, a first semiconductor layer, an active layer and a second semiconductor layer are grown on the epitaxial growth surface in that order, wherein the first semiconductor layer includes a buffer layer, an intrinsic semiconductor layer, and a doped semiconductor layer stacked in that order. Fourth, the doped semiconductor layer is exposed by removing the substrate, the buffer layer, and the intrinsic semiconductor layer. Fifth, a first electrode is prepared on the first semiconductor layer and a second electrode is prepared on the second semiconductor layer. | 10-03-2013 |
20130267049 | METHOD FOR PRODUCING A STRUCTURE COMPRISING AT LEAST ONE ACTIVE PART HAVING ZONES OF DIFFERENT THICKNESSES - Method for producing a structure comprising an active part comprising a first and a second suspended zone of different thicknesses from a first comprising substrate, said method comprising the following steps:
| 10-10-2013 |
20130280832 | FABRCATION METHOD OF LIGHT-EMITTING DEVICE - A fabrication method of a light-emitting device comprises providing a growth substrate; forming a protective layer on a first surface of the growth substrate; and forming a first semiconductor layer on a second surface of the growth substrate opposite to the first surface, wherein the coefficient of thermal expansion of the growth substrate is smaller than that of the protective layer and the first semiconductor layer. | 10-24-2013 |
20130309787 | MANUFACTURING METHOD OF LIGHT EMITTING DEVICE - A manufacturing method of a light emitting device is provided. A first electrode is formed on a substrate. The first electrode includes a patterned conductive layer, and the patterned conductive layer includes an alloy containing a first metal and a second metal. An annealing process is performed on the first electrode, so as to form a passivation layer at least on a side surface of the first electrode. The passivation layer includes a compound of the second metal. A light emitting layer is formed on the first electrode. A second electrode is formed on the light emitting layer. | 11-21-2013 |
20130330849 | METHOD FOR MAKING LIGHT EMITTING DIODE - A method for making light emitting diode includes following steps. A substrate having an epitaxial growth surface is provided. A first semiconductor layer, an active layer, and a second semiconductor layer are epitaxially grown on the epitaxial growth surface of the substrate in that sequence. A cermet layer is formed on the second semiconductor layer. A first electrode is applied to electrically connected to the first semiconductor layer. A second electrode is applied to electrically connected to the second semiconductor layer. | 12-12-2013 |
20130337588 | MASK FOR DEPOSITION AND METHOD FOR MANUFACTURING ORGANIC LIGHT EMITTING DIODE DISPLAY USING THE SAME - A deposition mask for forming an organic layer pattern of an organic light emitting diode (OLED) display includes a base member having a first surface facing a substrate of the OLED display, and a second surface facing a side opposite to the first surface, and including a plurality of openings passing through the first surface and the second surface for forming the organic layer pattern. The opening has a pair of first side walls and a pair of second side walls. Each side wall of the openings has an inclination surface inclined with respect to a thickness direction of the base member, and when measuring an inclination angle of the inclination surface with reference to the first surface of the base member, the inclination angle of the first side wall and the inclination angle of the second side wall are different from each other. | 12-19-2013 |
20140017827 | APPARATUS AND METHOD FOR MANUFACTURING A LIGHT-EMITTING DEVICE USING A NEUTRAL PARTICLE BEAM - The present invention relates to an apparatus and method for manufacturing a semiconductor light-emitting device using a neutral particle beam. According to the present invention, since the kinetic energy of the neutral particle beam is provided as a portion of the reaction energy for causing a nitride semiconductor single crystal thin film to be formed on a substrate, and the reaction energy is not provided as heat energy by heating a substrate as in the prior art, the substrate may be treated at a relatively low temperature. Furthermore, elements such as Si, Mg, and the like, which are solid elements required for doping are sprayed onto the substrate from a source which generates solid elements for doping together with the neutral particle beam to achieve high doping efficiency at a lower temperature. According to the present invention, since the substrate is treated at a low temperature, the degradation of the substrate and thin film may be prevented, and the undesired diffusion of the doping elements may be prevented to enable the manufacture of the semiconductor light-emitting device having superior light-emitting properties in a relatively easy manner. | 01-16-2014 |
20140024150 | SEMICONDUCTOR LIGHT EMITTING ELEMENT AND METHOD FOR MANUFACTURING THE SAME - A method of manufacturing a semiconductor light emitting element includes preparing a semiconductor stacked layer structure by stacking a first semiconductor layer and a second semiconductor layer in this order, forming a second electrode and an insulating layer in this order on the second semiconductor layer, exposing the first semiconductor layer by removing a part of the second semiconductor layer, forming a first electrode by forming a metal layer on the exposed first semiconductor layer and the insulating layer and flattening a surface of the metal layer, forming a first electrode-side bonding layer having a top layer made of Au on the first electrode, preparing a support substrate including a support substrate-side bonding layer having a top surface made of Au, and bonding the first electrode-side bonding layer and the support substrate-side bonding layer. | 01-23-2014 |
20140038320 | METHOD OF MANUFACTURING A LIGHT EMITTING DIODE | 02-06-2014 |
20140045283 | Method for Manufacturing Light-Emitting Device - To provide a method for manufacturing a lightweight light-emitting device having a light-emitting region on a curved surface. The light-emitting region is provided on a curved surface in such a manner that a light-emitting element is formed on a flexible substrate supported in a plate-like shape and the flexible substrate deforms or returns. | 02-13-2014 |
20140080234 | LIGHT EMITTING DIODES WITH SMOOTH SURFACE FOR REFLECTIVE ELECTRODE - A light emitting diode comprising an epitaxial layer structure, a first electrode, and a second electrode. The first and second electrodes are separately disposed on the epitaxial layer structure, and the epitaxial layer structure has a root-means-square (RMS) roughness less than about 3 at a surface whereon the first electrode is formed. | 03-20-2014 |
20140099738 | LASER IRRADIATION APPARATUS AND METHOD OF MANUFACTURING ORGANIC LIGHT-EMITTING DISPLAY APPARATUS USING THE SAME - A laser irradiation apparatus including a chamber configured to receive a panel including an organic layer on a substrate, a laser oscillator outside the chamber, and configured to irradiate a laser beam onto the panel in the chamber, and a transparent window at a side of the chamber, and configured to allow the laser beam to pass therethrough, wherein the laser beam is configured to remove at least a portion of the organic layer on the substrate. | 04-10-2014 |
20140099739 | METHOD FOR MANUFACTURING LIGHT EMITTING DIODE CHIP WITH ELECTRODES HAVING SMOOTH SURFACES - A method for manufacturing a light emitting diode chip includes the following steps: providing an epitaxial structure having an epitaxial layer; forming a first electrode and a second electrode on the epitaxial layer; coating an inert layer on the epitaxial structure, the first electrode and the second electrode continuously; annealing the first electrode and the second electrode; and removing the inert layer coated on the first electrode and the second electrode to expose the first electrode and the second electrode. | 04-10-2014 |
20140099740 | DEPOSITING APPARATUS AND METHOD FOR MANUFACTURING ORGANIC LIGHT EMITTING DIODE DISPLAY USING THE SAME - A deposition apparatus includes a deposition source that receives a deposition material, and a plurality of spray nozzles arranged in a first direction at one side of the deposition source to spray the deposition material to a facing substrate. The deposition source includes a center area and outer areas, the outer areas being at respective ends of the center area with reference to the first direction. The spray nozzles include first spray nozzles arranged in each outer area and extending outwardly from the deposition source, a surface forming an end of the first spray nozzles forming a first inclination angle with a substrate surface in the first direction. | 04-10-2014 |
20140099741 | Insulating Pattern, Method of Forming the Insulating Pattern, Light-Emitting Device, Method of Manufacturing the Light-Emitting Device, and Lighting Device - A simple formation method of an insulating pattern having an eaves portion using one light-exposure mask is provided. As the formation method of an insulating pattern having an eaves portion, first, a first photosensitive organic layer is formed over a substrate, and then a first region is exposed to light with the use of a light-exposure mask, so that a leg portion is formed. After that, a second photosensitive organic layer is formed, the light-exposure mask is moved in the direction parallel to the substrate, and then a second region partly overlapping with the first region is exposed to light plural times, so that a stage portion is formed. The insulating pattern formed by this method may be applied to the light-emitting device or the lighting device. | 04-10-2014 |
20140106482 | DEPOSITING APPARATUS AND METHOD FOR MANUFACTURING ORGANIC LIGHT EMITTING DIODE DISPLAY USING THE SAME - A deposition apparatus includes a deposition source containing a deposition material, the deposition source including a center area between two outer areas along a first direction, and a plurality of spray nozzles arranged on the center area of the deposition source along the first direction, the plurality of spray nozzles being configured to spray the deposition material toward a surface substrate, wherein the spray nozzles include first and second spray nozzles, the first spray nozzles having terminal ends thereof parallel to and facing the surface of the substrate, and the second spray nozzles having terminal ends thereof at an oblique angle with respect to the surface of the substrate. | 04-17-2014 |
20140106483 | VERTICAL NITRIDE-BASED LIGHT EMITTING DIODE HAVING OHMIC CONTACTPATTERN AND METHOD OF MANUFACTURING THE SAME - Provided is a vertical nitride-based LED including a first electrode; a first nitride semiconductor layer that is disposed on the first electrode; an active layer that is disposed on the first nitride semiconductor layer; a second nitride semiconductor layer that is disposed on the active layer; an ohmic contact pattern that is disposed on the second nitride semiconductor layer; a second electrode that is disposed on the ohmic contact pattern; and a bonding pad that is electrically connected to the second electrode and disposed on the second nitride semiconductor layer. | 04-17-2014 |
20140120639 | METHOD OF MANUFACTURING ORGANIC LIGHT EMITTING DIODE DISPLAY - A method of manufacturing an organic light emitting diode (OLED) display, the method including forming a frit adhesive layer on an outer edge portion of a display substrate; forming a mold-releasing layer on a support substrate; attaching the frit adhesive layer of the display substrate on the mold-releasing layer of the support substrate; forming an organic light emitting member on the display substrate; and separating a display portion of the display substrate from the mold-releasing layer by cutting an outer edge portion of the display substrate. | 05-01-2014 |
20140134762 | METHOD AND APPARATUS FOR MANUFACTURING ORGANIC EL DEVICE - Provided are a method and an apparatus for manufacturing an organic EL device which enable deposition of a vaporized material onto a substrate in a desired pattern, while eliminating the need for a conventional strip-shaped shadow mask. A shielding portion is configured to be switchable between a shield position where the shielding portion is arranged between an evaporation source and a substrate so as to shield the substrate and a shield release position where the shielding portion is withdrawn from between the evaporation source and the substrate so as to release the shielding of the substrate. The shielding portion is moved in a transportation direction at the same speed as the substrate when the shielding portion is located at the shield position, whereas the shielding portion is moved in a direction opposite to the transportation direction when the shielding portion is located at the shield release position. | 05-15-2014 |
20140147946 | METHOD OF FABRICATING VERTICAL LIGHT EMITTING DIODE - Provided is a method of fabricating a vertical light emitting diode (LED). Initially, a semiconductor structure layer including an active layer is formed on a front surface of a growth substrate. A conductive support substrate is formed on the semiconductor structure layer. A rear surface of the growth substrate is abraded to reduce the thickness of the growth substrate. The rear surface of the growth substrate whose thickness is reduced due to the abrasion is dry etched to remove the growth substrate. | 05-29-2014 |
20140199793 | SEMICONDUCTOR DEVICE AND A METHOD OF MANUFACTURING THE SAME - A semiconductor device is manufactured by forming at least one epitaxial structure over a substrate. A portion of the substrate is cut and lifted to expose a partial surface of the epitaxial structure. A first electrode is then formed on the exposed partial surface to result in a vertical semiconductor device. | 07-17-2014 |
20140206115 | OPTOELECTRONIC SEMICONDUCTOR DEVICE AND THE MANUFACTURING METHOD THEREOF - The present application provides a method of manufacturing an optoelectronic semiconductor device, comprising the steps of: providing a substrate; forming an optoelectronic system on the substrate; forming a barrier layer on the optoelectronic system; forming an electrode on the barrier layer; and annealing the optoelectronic semiconductor device; wherein the optoelectronic semiconductor device has a first forward voltage before the annealing step and has a second forward voltage after the annealing step, and a difference between the second forward voltage and the first forward voltage is smaller than 0.2 Volt. | 07-24-2014 |
20140234995 | METHOD OF FORMING FLEXIBLE AND TUNABLE SEMICONDUCTOR PHOTONIC CIRCUITS - Methods to physically transfer highly integrated silicon photonic devices from high-quality, crystalline semiconductors on to flexible plastic substrates by a transfer-and-bond fabrication method. With this method, photonic circuits including interferometers and resonators can be transferred onto flexible plastic substrates with preserved optical functionalities and performance. | 08-21-2014 |
20140234996 | OHMIC CONTACTS FOR SEMICONDUCTOR STRUCTURES - A composition and method for formation of ohmic contacts on a semiconductor structure are provided. The composition includes a TiAl | 08-21-2014 |
20140295586 | MANUFACTURING METHOD FOR FLEXIBLE DISPLAY DEVICE - A method of manufacturing a flexible display device, the method including depositing a separation layer on a supporting substrate; depositing a display panel on the separation layer; cutting the display panel to have a predetermined shape; cutting the supporting substrate and the separation layer to have a wider area than an area where the display panel, that is cut with the predetermined shape, contacts the supporting substrate and the separate layer; and separating the separate layer and the display panel from each other. | 10-02-2014 |
20140295587 | DONOR SUBSTRATE AND METHOD OF FORMING TRANSFER PATTERN USING THE SAME - A donor substrate includes a base substrate; a light reflection layer disposed on the base substrate and overlapped with a portion of the base substrate, a heat blocking pattern disposed on the light reflection layer, overlapped with the light reflection layer, and including a plurality of air holes; a light-to-heat conversion layer disposed on the base substrate; and a transfer layer disposed on the light-to-heat conversion layer. | 10-02-2014 |
20140295588 | METHOD OF FORMING LIGHT-EMITTING DIODE - A method of forming a light-emitting diode includes: providing a substrate having one or more first openings passing through the substrate; forming a sacrificial layer on the substrate; forming an epitaxial layer on the sacrificial layer; connecting a supporting substrate with the epitaxial layer; and separating the substrate from the epitaxial layer by selectively etching the sacrificial layer. | 10-02-2014 |
20140295589 | OPTOELECTRONIC COMPONENT AND METHOD FOR PRODUCING AN OPTOELECTRONIC COMPONENT - An optoelectronic component includes a semiconductor layer sequence having an optoelectronically active region; a dielectric layer on the semiconductor layer sequence; and a metal layer on the dielectric layer, wherein an adhesion layer is arranged between the dielectric layer and the metal layer, the adhesion layer being covalently bonded to the dielectric layer and to the metal layer. | 10-02-2014 |
20140308766 | Chromium/Titanium/Aluminum-based Semiconductor Device Contact - A contact to a semiconductor including sequential layers of Cr, Ti, and Al is provided, which can result in a contact with one or more advantages over Ti/Al-based and Cr/Al-based contacts. For example, the contact can: reduce a contact resistance; provide an improved surface morphology; provide a better contact linearity; and/or require a lower annealing temperature, as compared to the prior art Ti/Al-based contacts. | 10-16-2014 |
20140315336 | APPARATUS FOR FORMING ORGANIC LIGHT EMITTING LAYER AND METHOD OF FORMING ORGANIC LIGHT EMITTING LAYER USING THE SAME - An organic light-emitting layer forming apparatus includes a stage supporting an intermediate product of an organic light emitting device, which includes a substrate, and a pixel defining layer including first openings. The apparatus includes a first mask disposed over the stage and including second openings, and a second mask disposed over the first mask and including third openings. The second mask is movable relative to the first mask between first and second positions. The third openings do not overlap the second openings in the first position while overlapping the second openings in the second position. T he apparatus includes an inkjet head unit disposed over the second mask and supplying an organic material to the third openings of the second mask in the first position. The second mask moves to the second position to transfer the organic material through the second openings. | 10-23-2014 |
20140349420 | PRINTING APPARATUS AND METHOD OF FORMING AN ORGANIC LIGHT EMITTING LAYER - A printing apparatus includes a printing mask, which is disposed between a substrate having a display area and a non-display area surrounding the display area. The apparatus further includes a nozzle discharging an organic light emitting liquid onto the substrate. The printing mask includes a mask open part and a mask cover part. The mask open part exposes the display area, and the mask cover part surrounds the mask open part and covers the non-display area. The apparatus can be used to form an organic emitting layer on the substrate. | 11-27-2014 |
20140349421 | SEMICONDUCTOR LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING THE SAME - According to one embodiment, a semiconductor light emitting device includes a structure including a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes an electrode layer provided on the second semiconductor layer side of the structure. The electrode layer includes a metal portion with a thickness of not less than 10 nanometers and not more than 100 nanometers. A plurality of openings pierces the metal portion, each of the openings having an equivalent circle diameter of not less than 10 nanometers and not more than 5 micrometers. The device includes an inorganic film providing on the metal portion and inner surfaces of the openings, the inorganic film having transmittivity with respect to light emitted from the light emitting layer. | 11-27-2014 |
20150011029 | NETWORK OF SEMICONDUCTOR STRUCTURES WITH FUSED INSULATOR COATING - Networks of semiconductor structures with fused insulator coatings and methods of fabricating networks of semiconductor structures with fused insulator coatings are described. In an example, a method of fabricating a semiconductor structure involves forming a mixture including a plurality of discrete semiconductor nanocrystals. Each of the plurality of discrete semiconductor nanocrystals is discretely coated by an insulator shell. The method also involves adding a base to the mixture to fuse the insulator shells of each of the plurality of discrete nanocrystals, providing an insulator network. Each of the plurality of discrete semiconductor nanocrystals is spaced apart from one another by the insulator network. The base one such as, but not limited to, LiOH, RbOH, CsOH, MgOH, Ca(OH) | 01-08-2015 |
20150031150 | METHOD FOR PRODUCING A RADIATION-EMITTING SEMICONDUCTOR COMPONENT - A method for producing a radiation-emitting semiconductor component is provided, comprising the following steps:—providing a growth substrate ( | 01-29-2015 |
20150056728 | METHOD REGARDING A LIGHT-EMITTING DIODE FOR WHICH THE ARRANGEMENT OF AN ELECTRODE ON AN EMITTING FACE IS DETERMINED AS A FUNCTION OF THE SPREADING LENGTH OF THE CURRENT IN SAID LIGHT-EMITTING DIODE - The light-emitting diode comprises a first electrode intended to inject carriers of a first type into a stack of the light-emitting diode and arranged on an emissive face of the stack, a second electrode intended to inject carriers of a second type into the stack, and an emissive surface delimited by areas of the emissive face of the stack not covered by the first electrode. The first electrode is configured in such a way that any point of the emissive surface is situated no more than a predetermined distance from the first electrode dependent on the spreading length of the light-emitting diode. The method comprises a step of determining the spreading length of the light-emitting diode intended to be equipped with the first electrode and a step determining a characteristic of the first electrode from the determined spreading length | 02-26-2015 |
20150064816 | METHOD FOR MAKING LIGHT EMITTING DIODE - A method for making light emitting diode, the method includes the following steps. A substrate having an epitaxial growth surface is provided. A carbon nanotube layer is suspended above the epitaxial growth surface. A first semiconductor layer, an active layer and a second semiconductor layer are grown on the epitaxial growth surface in that order. A third semiconductor layer is formed on a surface of the second semiconductor layer, wherein the third semiconductor layer includes a plurality of spaced protrusions. A portion of the first semiconductor layer is exposed by etching a portion of the third semiconductor layer, the second semiconductor layer, and the active layer. A first electrode is formed to electrically connected to the first semiconductor layer and a second electrode is formed to electrically connected to the second semiconductor layer. | 03-05-2015 |
20150111322 | MANUFACTURING METHOD OF LIGHT-EMITTING STRUCTURE - A manufacturing method of a light-emitting structure is provided. The manufacturing method comprises the following steps. Firstly, a light-emitting die is formed on a carrier substrate carrier substrate, wherein the light-emitting die comprises a first type semiconductor layer, a light-emitting layer and a second type semiconductor layer in order, and has an electrode hole passing through the second type semiconductor layer, the light-emitting layer and a part of the first type semiconductor layer. Next, a current blocking layer covering an inner sidewall of the electrode hole is formed. Then, a current spreading layer covering the current blocking layer is formed, wherein the current spreading layer is separated from the inner sidewall by the current blocking layer. Then, the current blocking layer covering the inner sidewall of the electrode hole is removed. | 04-23-2015 |
20150132870 | METHODS FOR PRODUCING NEW SILICON LIGHT SOURCE AND DEVICES - The present invention relates to production method and device applications of a new silicon (Si) semiconductor light source that emits at a single wavelength at 1320 nm with a full width at half maximum (FWHM) of less than 200 nm and a photoluminescence quantum efficiency of greater than 50% at room temperature. The semiconductor that is the base for the new light source includes a surface which is treated by an acid vapor involving heavy water or Deuterium Oxide (D2O) and a surface layer producing the light source at 1320 nm. | 05-14-2015 |
20160020102 | CARBON DOPANT GAS AND CO-FLOW FOR IMPLANT BEAM AND SOURCE LIFE PERFORMANCE IMPROVEMENT - Ion implantation processes and systems are described, in which carbon dopant source materials are utilized to effect carbon doping. Various gas mixtures are described, including a carbon dopant source material, as well as co-flow combinations of gases for such carbon doping. Provision of in situ cleaning agents in the carbon dopant source material is described, as well as specific combinations of carbon dopant source gases, hydride gases, fluoride gases, noble gases, oxide gases and other gases. | 01-21-2016 |
20160027956 | METHOD FOR MANUFACTURING SEMICONDUCTOR LIGHT-EMITTING ELEMENT - Provided are a highly reliable semiconductor light-emitting element having uniform protrusions that are arranged regularly and have the same size and a method of producing the same. The method of producing a semiconductor light-emitting element according to the present invention includes: forming a mask layer having a plurality of openings that are arranged at equal intervals along a crystal axis of a semiconductor structure layer on the surface of the semiconductor structure layer; performing a plasma treatment on the surface of the semiconductor structure layer exposed from the openings in the mask layer; removing the mask layer; and wet-etching the surface of the semiconductor structure layer to form protrusions on the surface of the semiconductor structure layer. | 01-28-2016 |
20160043277 | LIGHT-EMITTING DEVICE AND MANUFACTURING METHOD THEREOF - An LED manufacturing method includes steps of: providing a substrate including a first surface; forming a first portion of a first semiconductor layer on the first surface in a first atmosphere including a first carrier gas; and forming a second portion of the first semiconductor layer on the first portion in a second atmosphere including a second carrier gas; wherein a plurality of first cavities is formed on a surface of the first portion during forming the first portion; and wherein the plurality of first cavities is transformed to a plurality of second cavities during forming the second portion, and one of the second cavities includes a first inclined surface and a second inclined surface above the first inclined surface. | 02-11-2016 |
20160064670 | THIN FILM FORMING APPARATUS AND THIN FILM FORMING METHOD USING THE SAME - A thin film forming apparatus includes: a thin film source including a thin film on one surface of the thin film source to be transferred to a substrate; and a light emitter configured to apply light energy to the thin film source to transfer the thin film to the substrate. | 03-03-2016 |
20160072005 | OPTICAL MATERIALS, OPTICAL COMPONENTS, AND METHODS - An optical material comprising quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles are in a charge neutral state is disclosed. Also disclosed is an optical component including an optical material comprising quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles are in a charge neutral state. Further disclosed is an optical material obtainable by at least partially encapsulating an optical material comprising quantum confined semiconductor nanoparticles and irradiating the at least partially encapsulated optical material with a light flux for a period of time sufficient to neutralize the charge on at least a portion of the nanoparticles. Further enclosed is an optical component obtainable by at least partially encapsulating an optical component including an optical material comprising quantum confined semiconductor nanoparticles and irradiating the at least partially encapsulated optical material with a light flux for a period of time sufficient to neutralize the charge on at least a portion of the nanoparticles. Methods are also disclosed. | 03-10-2016 |
20160093805 | METHOD FOR PRODUCING AN ELECTRODE LAYER OF AN ELECTRICAL DEVICE - The invention relates to a method for producing an electrode layer of an electrical device, wherein the method includes the following steps: providing a quantity of nanoparticles from an electrically conductive material, the surfaces of each of which have a layer of a hygroscopic stabiliser material, preparing a substrate and producing an electrode layer on a substrate surface, wherein the nanoparticles in this context are deposited on the substrate surface and are tempered in a solvent atmosphere of a polar solvent. | 03-31-2016 |
20160155896 | Quantum Dot Optoelectronic Device and Methods Therefor | 06-02-2016 |
20160160349 | CHEMICAL VAPOR DEPOSITION APPARATUS AND METHOD OF MANUFACTURING LIGHT-EMITTING DIODE DEVICE USING THE SAME - An embodiment includes an apparatus, comprising: a chamber; a main disk that is rotatably disposed in a chamber and configured to receive a substrate; a gas supply unit configured to supply a process gas to the chamber; a gas collector unit including a gas exhaust channel separate from the main disk and vertically lower than the main disk; and a skirt unit disposed on a peripheral portion of the main disk and configured to reduce turbulence of the process gas flowing to the gas collector unit. | 06-09-2016 |
20160172561 | FLEXIBLE LIGHTING DEVICE HAVING UNOBTRUSIVE CONDUCTIVE LAYERS | 06-16-2016 |
20160172562 | Method for forming Circuit-on-Wire | 06-16-2016 |
20160197236 | SUBSTRATE FOR SEMICONDUCTOR LIGHT EMITTING DEVICE AND SEMICONDUCTOR LIGHT EMITTING DEVICE, AND MANUFACTURING METHODS THEREOF | 07-07-2016 |