Class / Patent application number | Description | Number of patent applications / Date published |
360324110 | Detail of pinned film or additional film for affecting or biasing the pinned film | 54 |
20080198515 | THIN FILM MAGNETIC HEAD HAVING A BIAS MAGNETIC LAYER PROVIDED WITH ANTIFERROMAGNETIC LAYER AND A PINNED LAYER PROVIDED WITH HARD MAGNETIC LAYER - A thin film magnetic head has: a spin valve having a pinned layer whose magnetization direction is fixed relative to an external magnetic field, a first nonmagnetic intermediate layer which is disposed on said pinned layer, and a free layer whose magnetization direction is changed according to the external magnetic field, said free layer being disposed on said first nonmagnetic intermediate layer; and bias magnetic layers for applying a bias magnetic field to said free layer, said bias magnetic layers being provided on both sides of said spin valve with regard to a track width direction thereof. The pinned layer has a hard magnetic layer, a second nonmagnetic intermediate layer which is disposed on said hard magnetic layer, and a ferromagnetic layer which is disposed on said second nonmagnetic intermediate layer. The bias magnetic layer has a bias antiferromagnetic layer, and a bias ferromagnetic layer which is disposed on said bias antiferromagnetic layer. The pinned layer is formed in a manner such that a height direction dimension thereof is longer than a track width direction dimension thereof, and is longer than a height direction dimension of said free layer. | 08-21-2008 |
20080204945 | MAGNETORESISTANCE SENSORS PINNED BY AN ETCH INDUCED MAGNETIC ANISOTROPY - Magnetoresistance sensors with magnetic pinned layers that are pinned by anisotropic etch induced magnetic anisotropies and methods for fabricating the magnetoresistance sensors are provided. The method comprises forming a seed layer structure. The seed layer is etched to form an anisotropic etch along a top surface of the seed layer. A magnetic pinned layer is formed on the top surface of the seed layer structure. The anisotropic etch on the top surface of the seed layer structure induces a magnetic anisotropy in the magnetic pinned layer, which pins the magnetization of the magnetic pinned layer structure. | 08-28-2008 |
20080218914 | READ SENSOR WITH A UNIFORM LONGITUDINAL BIAS STACK - A read sensor with a uniform longitudinal bias (LB) stack is proposed. The read sensor is a giant magnetoresistance (GMR) sensor used in a current-in-plane (CIP) or a current-perpendicular-to-plane (CPP) mode, or a tunneling magnetoresistance (TMR) sensor used in the CPP mode. The transverse pinning layer of the read sensor is made of an antiferromagnetic Pt—Mn, Ir—Mn or Ir—Mn—Cr film. In one embodiment of this invention, the uniform LB stack comprises a longitudinal pinning layer, preferable made of an antiferromagnetic Ir—Mn—Cr or Ir—Mn film, in direct contact with and exchange-coupled to sense layers of the read sensor. In another embodiment of the present invention, the uniform LB stack comprises the Ir—Mn—Cr or Ir—Mn longitudinal pinning layer exchange coupled to a ferromagnetic longitudinal pinned layer, and a nonmagnetic antiparallel-coupling spacer layer sandwiched between and the ferromagnetic longitudinal pinned layer and the sense layers. | 09-11-2008 |
20080232003 | MAGNETORESISTANCE EFFECT DEVICE, MAGNETIC LAMINATION STRUCTURAL BODY, AND MANUFACTURE METHOD FOR MAGNETIC LAMINATION STRUCTURAL BODY - An underlying layer ( | 09-25-2008 |
20080247097 | MAGNETORESISTANCE EFFECT ELEMENT AND MAGNETIC HEAD - A magnetoresistance effect element has a lamination structure comprising a free layer including two ferromagnetic layers, a pinned layer including two ferromagnetic layers, and at least one nano-contact portion composed of a single ferromagnetic layer and disposed at least one portion between the free layer and the pinned layer. A distance between the free layer and the pinned layer, i.e., thickness of the nano-contact portion in the lamination direction, is not more than Fermi length, preferably less than 100 nm. | 10-09-2008 |
20080266725 | TMR SENSOR HAVING AN UNDER-LAYER TREATED WITH NITROGEN FOR INCREASED MAGNETORESISTANCE - A tunnel junction TMR magnetoresistive sensor formed on layers having nitrogen interspersed therein. The nitrogenation of the layers on which the sensor is deposited allows the sensor layers to have very smooth, uniform surfaces. This greatly improves sensor performance by, for example, providing a very uniform barrier layer thickness. | 10-30-2008 |
20080273279 | Reorientation of Magnetic Layers and Structures Having Reoriented Magnetic Layers - A magnetoresistive assembly includes at least a first and a second magnetoresistive element formed on a common substrate, the at least first magnetoresistive element comprising a first pinned ferromagnetic layer being magnetized in a first direction, the at least second magnetoresistive element comprising a second pinned ferromagnetic layer being magnetized in a second direction different than the first direction. | 11-06-2008 |
20080278863 | TUNNELING MAGNETIC SENSING ELEMENT AND METHOD FOR MANUFACTURING THE SAME - A tunneling magnetic sensing element includes: a pinned magnetic layer whose direction of magnetization is pinned in one direction; an insulating barrier layer; and a free magnetic layer whose direction of magnetization changes in response to an external magnetic field. The pinned magnetic layer, the insulating barrier layer and the free magnetic layer are deposited in the named order. A first protective layer composed of a platinum-group element is disposed on the free magnetic layer, and a second protective layer composed of Ti is disposed on the first protective layer. | 11-13-2008 |
20080285181 | METHOD FOR PROTECTING AGAINST CORROSION IN A GMR SENSOR BY PROVIDING A PROTECTIVE COATING OVER AN END OF A COPPER LAYER SPACED APART FROM A DETECTION SURFACE BY A SPECIFIED DIMENSION - A method for providing a giant magneto-resistive (GMR) sensor for use in sensing magnetic flux is provided. The method comprises positioning a layer of Cu material between first and second layers of a specified ferromagnetic material. The respective end surfaces of the Cu layer and the first and second layers are initially located in a common plane and in a co-planar relationship with one another. The method further comprises removing an amount of material from the copper layer to form a new end surface thereof that is selectively spaced apart from the common plane and applying a protective coating to the new end surface of the Cu layer to inhibit corrosion of the Cu layer. | 11-20-2008 |
20080285182 | ENHANCED ANTI-PARALLEL-PINNED SENSOR USING THIN RUTHENIUM SPACER AND HIGH MAGNETIC FIELD ANNEALING - An anti-parallel pinned sensor is provided with a spacer that increases the anti-parallel coupling strength of the sensor. The anti-parallel pinned sensor is a GMR or TMR sensor having a pure ruthenium or ruthenium alloy spacer. The thickness of the spacer is less than 0.8 nm, preferably between 0.1 and 0.6 nm. The spacer is also annealed in a magnetic field that is 1.5 Tesla or higher, and preferably greater than 5 Tesla. This design yields unexpected results by more than tripling the pinning field over that of typical AP-pinned GMR and TMR sensors that utilize ruthenium spacers which are 0.8 nm thick and annealed in a relatively low magnetic field of approximately 1.3 Tesla. | 11-20-2008 |
20080285183 | MAGNETO-RESISTANCE EFFECT ELEMENT AND MAGNETIC MEMORY - An area of an element can be made small and fluctuation in area can be reduced. A magneto-resistance effect element is provided with a first electrode with an end face; a magneto-resistance effect film which is formed such that a surface thereof comes in contact with the end face of the first electrode; and a second electrode which is formed on another surface of the magneto-resistance effect element opposed from the surface coming in contact with the surface of the first electrode. The magneto-resistance effect film includes a magnetization pinned layer whose magnetization direction is pinned, a magnetization free layer whose magnetization direction is changeable, and a first non-magnetic layer which is provided between the magnetization pinned layer and the magnetization free layer. | 11-20-2008 |
20080291585 | MAGNETORESISTIVE EFFECT ELEMENT AND MAGNETORESISTIVE RANDOM ACCESS MEMORY - It is made possible to provide a magnetoresistive effect element that can reverse magnetization direction with a low current, having low areal resistance (RA) and a high TMR ratio. A magnetoresistive effect element includes: a film stack that includes a magnetization free layer including a magnetic layer in which magnetization direction is changeable, a magnetization pinned layer including a magnetic layer in which magnetization direction is pinned, and an intermediate layer provided between the magnetization free layer and the magnetization pinned layer, the intermediate layer being an oxide containing boron (B) and an element selected from the group consisting of Ca, Mg, Sr, Ba, Ti, and Sc. Current is applied bidirectionally between the magnetization pinned layer and the magnetization free layer through the intermediate layer, so that the magnetization of the magnetization free layer is reversible. | 11-27-2008 |
20080291586 | Tunneling magnetic sensor including platinum layer and method for producing the same - A tunneling magnetic sensor includes a platinum layer between a pinned magnetic layer and an insulating barrier layer. The platinum layer can probably vary the barrier height (potential height) and barrier width (potential width) of the insulating barrier layer to reduce the absolute value of VCR, thus providing higher operating stability than known tunneling magnetic sensors. In addition, the insulating barrier layer can achieve increased flatness at its bottom interface (where the insulating barrier layer starts to be formed). The tunneling magnetic sensor can therefore provide a higher rate of resistance change (ΔR/R) at low RA than known tunneling magnetic sensors. | 11-27-2008 |
20080297954 | MAGNETIC SENSOR AND MANUFACTURING METHOD THEREFOR - A magnetic sensor includes a plurality of giant magnetoresistive elements, each of which includes a free layer, a conductive layer, and a pin layer sequentially laminated on a substrate, wherein the pin layer formed by sequentially laminating a first magnetic layer, an Ru layer, a second magnetic layer, and an antiferromagnetic layer is subjected to magnetization heat treatment so as to fix the magnetization direction thereof. The first and second magnetic layers differ from each other in thickness and magnetic moment thereof, and the thickness of the Ru layer ranges from 4 Å to 10 Å. The magnetization heat treatment is performed so as to maintain an anti-parallel state between the first and second magnetic layers. In order to detect magnetic fields in three-axial directions, one giant magnetoresistive element is formed using a planar surface, and the other giant magnetoresistive elements are formed using respective slopes on the substrate. | 12-04-2008 |
20080316657 | TMR or CPP structure with improved exchange properties - An insertion layer is provided between an AFM layer and an AP2 pinned layer in a GMR or TMR element to improve exchange coupling properties by increasing Hex and the Hex/Hc ratio without degrading the MR ratio. The insertion layer may be a 1 to 15 Angstrom thick amorphous magnetic layer comprised of at least one element of Co, Fe, or Ni, and at least one element having an amorphous character selected from B, Zr, Hf, Nb, Ta, Si, or P, or a 1 to 5 Angstrom thick non-magnetic layer comprised of Cu, Ru, Mn, Hf, or Cr. Preferably, the content of the one or more amorphous elements in the amorphous magnetic layer is less than 40 atomic %. Optionally, the insertion layer may be formed within the AP2 pinned layer. Examples of an insertion layer are CoFeB, CoFeZr, CoFeNb, CoFeHf, CoFeNiZr, CoFeNiHf, and CoFeNiNbZr. | 12-25-2008 |
20090009915 | FILM AND METHOD FOR PRODUCING NANO-PARTICLES FOR MAGNETORESISTIVE DEVICE - A method of generating a thin film for use in a spin valve of a magnetoresistive (MR) sensor having a nano-constricted spacer is provided. The bottom portion of the spin valve is deposited up to the pinned layer, a deposition chamber is provided, and the spacer layer is sputtered thereon. A main ion beam generates ions onto a composite surface including magnetic chips and insulator material. Simultaneously, an assisted ion beam provides ions directly to the substrate, thus improving the softness of the free layer and smoothness of the spacer layer. Neutralizers are also provided to prevent ion repulsion and improve ion beam focus. As a result, a thin film spacer can be formed, and the nano-constricted MR spin valve having low free layer coercivity and low interlayer coupling between the free layer and pinned layer is formed. | 01-08-2009 |
20090015972 | LOW NOISE MAGNETIC FIELD SENSOR - The present invention relates to a magnetoresistive sensor comprising a first pinned-magnetization magnetic layer ( | 01-15-2009 |
20090021870 | Magnetic head having CPP sensor with improved stabilization of the magnetization of the pinned magnetic layer - A magnetic head having a CPP read head sensor that includes a layered sensor stack including an antiferromagnetic (AFM) layer, a pinned magnetic layer, and a free magnetic layer. The pinned magnetic layer is comprised of a high, positive magnetostriction material and has a thickness t and a height (H), such that the ratio (t/H) of the thickness t to the height H of the pinned magnetic layer is fabricated to be within the range of from approximately 1/10 to approximately 1/500. Ion milling is conducted at a grazing angle to the surface of the layer upon which the pinned magnetic layer is fabricated, where the ion beam is oriented in the direction of the desired magnetization of the pinned magnetic layer. | 01-22-2009 |
20090027812 | MAGNETIC SIGNAL REPRODUCTION SYSTEM AND MAGNETIC SIGNAL REPRODUCTION METHOD - The magnetic signal reproduction system comprises a magnetic recording medium comprising a magnetic layer comprising a ferromagnetic powder and a binder on a nonmagnetic support and a reproduction head, wherein a number of protrusions equal to or greater than 10 nm in height on the magnetic layer surface, as measured by an atomic force microscope, ranges from 50 to 2500/10,000 μm | 01-29-2009 |
20090034134 | MAGNETORESISTANCE EFFECT ELEMENT, MAGNETIC HEAD AND MAGNETIC REPRODUCING APPARATUS - A magnetoresistance effect element includes a magnetoresistance effect film including a magnetically pinned layer having a magnetic material film whose direction of magnetization is pinned substantially in one direction, a magnetically free layer having a magnetic material film whose direction of magnetization changes in response to an external magnetic field, and a nonmagnetic metal intermediate layer located between said pinned layer and said free layer. The element also includes a pair of electrodes electrically connected to the magnetoresistance effect film to supply a sense current perpendicularly to a film plane of the magnetoresistance effect film. At least one of the pinned layer and the free layer may include a thin-film insertion layer. The nonmagnetic metal intermediate layer includes a resistance adjusting layer including at least one of oxides, nitrides and fluorides, and the thin-film insertion layer includes at least one element selected from the group consisting of iron (Fe), cobalt (Co) and nickel (Ni). | 02-05-2009 |
20090046397 | METHODS AND APPARATUS FOR A SYNTHETIC ANTI-FERROMAGNET STRUCTURE WITH IMPROVED THERMAL STABILITY - A synthetic antiferromagnet (SAF) structure includes a bottom ferromagnetic layer, a coupling layer formed over the bottom ferromagnetic layer, and a top ferromagnetic layer formed over the coupling layer. One of the top and bottom ferromagnetic layers comprises an amorphous alloy characterized by (Co | 02-19-2009 |
20090059444 | METHODS AND STRUCTURES FOR AN INTEGRATED TWO-AXIS MAGNETIC FIELD SENSOR - A two-axis, single-chip external magnetic field sensor incorporates tunneling magneto-resistance (TMR) technology. In one embodiment, an integrated device includes at least two sensor elements having pinned layers with orientation situated at a known angle (e.g., 90 degrees) with respect to each other. In the presence of a magnetic field, the information from the multiple sensor elements can be processed (e.g., using a conventional bridge configuration) to determine the orientation of the integrated sensor with respect to the external field. In order to achieve an integrated sensor with multiple pinned layer orientations, a novel processing method utilizes antiferromagnetic pinning layers different materials with different blocking temperatures (e.g., PtMn and IrMn). | 03-05-2009 |
20090080123 | MAGNETORESISTANCE EFFECT ELEMENT AND MAGNETORESISTIVE DEVICE - The high quality magnetoresistance effect element is capable of reducing resistance in the perpendicular-plane direction and preventing performance deterioration of a barrier layer. The magnetoresistance effect element comprises: a free layer; a pinned magnetic layer; and a barrier layer being provided between the free layer and the pinned magnetic layer, and the barrier layer is composed of a semiconductor. | 03-26-2009 |
20090086385 | CURRENT PERPENDICULAR TO PLANE MAGNETORESISTIVE SENSOR WITH REDUCED READ GAP - A magnetoresistive sensor having a greatly reduced read gap. The sensor has a pinned layer structure formed above the free layer. A layer of antiferromagnetic material (AFM layer) is formed over the pinned layer structure and has a front edge disposed toward, but recessed from the air bearing surface. An electrically conductive, magnetic lead is formed over the pinned layer and AFM layer such that the lead fills a space between the AFM layer and the air bearing surface. In this way, the read gap is distance between the outermost portion of the pinned layer structure and free layer. The thickness of the AFM layer and capping layer are not included in the read gap. | 04-02-2009 |
20090091864 | CURRENT-PERPENDICULAR-TO-THE-PLANE (CPP) MAGNETORESISTIVE SENSOR WITH ANTIPARALLEL-PINNED LAYER CONTAINING SILICON - A current-perpendicular-to-the-plane (CPP) spin-valve (SV) magnetoresistive sensor uses an antiparallel (AP) pinned structure and has a ferromagnetic alloy comprising Co, Fe and Si in the reference layer of the AP-pinned structure and optionally in the CPP-SV sensor's free layer. The reference layer or AP2 layer is a multilayer of a first AP2-1 sublayer that contains no Si and is in contact with the AP-pinned structure's antiparallel coupling (APC) layer, and a second AP2-2 sublayer that contains Si and is in contact with the CPP-SV sensor's spacer layer. The Si-containing alloy may consist essentially of only Co, Fe and Si according to the formula (Co | 04-09-2009 |
20090161268 | CURRENT-PERPENDICULAR-TO-PLANE READ SENSOR WITH AMORPHOUS FERROMAGNETIC AND POLYCRYSTALLINE NONMAGNETIC SEED LAYERS - A method, apparatus, and article of manufacture for a current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) or a tunneling magnetoresistance (TMR) read sensor is proposed. The CPP read sensor comprises an amorphous ferromagnetic first seed layer, a polycrystalline nonmagnetic second seed layer, a nonmagnetic first cap layer, a nonmagnetic second cap layer, and a ferromagnetic third gap layer. A read gap is defined by a distance between the ferromagnetic first seed layer and the ferromagnetic third cap layer. | 06-25-2009 |
20090168269 | CURRENT PERPENDICULAR TO PLANE SPIN VALVE WITH HIGH-POLARIZATION MATERIAL IN AP1 LAYER FOR REDUCED SPIN TORQUE - A current perpendicular to plane magnetoresistive sensor having improved resistance amplitude change and reduced spin torque noise. The sensor has an antiparallel coupled pinned layer structure with at least one of the layers of the pinned layer structure includes a high spin polarization material such as Co | 07-02-2009 |
20090168270 | EXCHANGE-COUPLED ELEMENT AND MAGNETORESISTANCE EFFECT ELEMENT - In comparison with conventional exchange-coupled elements, the exchange-coupled element of the present invention has greater unidirectional magnetization anisotropy. The exchange-coupled element comprises: an ordered antiferromagnetic layer; and a pinned magnetic layer being exchange-coupled with the ordered antiferromagnetic layer, the pinned magnetic layer having unidirectional magnetization anisotropy. The pinned magnetic layer is constituted by a first pinned magnetic layer having a composition, which can have a face-centered cubic lattice structure, and a second pinned magnetic layer having a composition, which can have a body-centered cubic lattice structure. | 07-02-2009 |
20090201614 | SPIN-TORQUE OSCILLATOR, MAGNETIC HEAD INCLUDING THE SPIN-TORQUE OSCILLATOR, AND MAGNETIC RECORDING AND REPRODUCING APPARATUS - It is made possible to to provide a spin-torque oscillator that has a high Q value and a high output. A spin-torque oscillator includes: an oscillating field generating unit configured to generate an oscillating field; and a magnetoresistive element including a magnetoresistive effect film including a first magnetization pinned layer of which a magnetization direction is pinned, a first magnetization free layer of which a magnetization direction oscillates with the oscillating field, and a first spacer layer interposed between the first magnetization pinned layer and the first magnetization free layer. | 08-13-2009 |
20090207534 | MAGNETO-RESISTANCE EFFECT ELEMENT INCLUDING STACK WITH DUAL FREE LAYER AND MAGNETIZED SHIELD ELECTRODE LAYERS - A magneto-resistance effect element comprises; a magneto-resistance effect stack including an upper magnetic layer and a lower magnetic layer in which respective magnetization directions change in accordance with an external magnetic field, a non-magnetic intermediate layer sandwiched between the upper and lower magnetic layers, an upper gap adjustment layer and a lower gap adjustment layer provided at respective ends in the direction of stacking the magneto-resistance effect stack, an upper exchange coupling transmission layer configured to generate exchange coupling between the upper magnetic layer and the upper gap adjustment layer, and a lower exchange coupling transmission layer configured to generate exchange coupling between the lower magnetic layer and the lower gap adjustment layer; an upper shield electrode layer and a lower shield electrode layer which are provided to sandwich the magneto-resistance effect stack therebetween in the direction of stacking the magneto-resistance effect stack, wherein the upper shield electrode layer and the lower shield electrode layer supply sense current in the direction of stacking, and magnetically shield the magneto-resistance effect stack; and a bias magnetic layer which is provided on a surface of the magneto-resistance effect stack opposite to an air bearing surface, and wherein the bias magnetic layer applies a bias magnetic field to the upper and lower magnetic layers in a direction perpendicular to the air bearing surface, wherein the upper and lower shield electrode layers are each magnetized in a track width direction by a magnetization controller, and the upper and lower gap adjustment layers are composed of a material having a higher magnetic permeability and a lower saturation magnetic flux density than the upper and lower shield electrode layers respectively. | 08-20-2009 |
20090244792 | MAGNETORESISTANCE EFFECT ELEMENT AND MAGNETIC RANDOM ACCESS MEMORY - A magnetoresistance effect element includes: a first ferromagnetic layer having invariable magnetization perpendicular to a film plane; a second ferromagnetic layer having variable magnetization perpendicular to the film plane; a first nonmagnetic layer interposed between the first ferromagnetic layer and the second ferromagnetic layer; a third ferromagnetic layer provided on an opposite side of the second ferromagnetic layer from the first nonmagnetic layer, and having variable magnetization parallel to the film plane; and a second nonmagnetic layer interposed between the second and third ferromagnetic layers. Spin-polarized electrons are injected into the second ferromagnetic layer by flowing a current in the direction perpendicular to the film planes between the first and third ferromagnetic layers, precession movement is induced in the magnetization of the third ferromagnetic layer by injecting the spin-polarized electrons, and a microwave magnetic field of a frequency corresponding to the precession movement is applied to the second ferromagnetic layer. | 10-01-2009 |
20090257152 | MAGNETORESISTIVE SENSOR WITH HIGH TMR AND LOW RA - A magnetoresistive sensor having an antiparallel coupled pinned layer structure including an AP | 10-15-2009 |
20100020447 | SYSTEM WITH 90 DEGREE SENSE LAYER MAGNETIC ORIENTATION - A system including a sense layer, a first pinned layer and a first interlayer. The first pinned layer is held in a fixed magnetic orientation. The first interlayer is configured to couple the sense layer and the first pinned layer and provide a magnetic orientation in the sense layer that is 90 degrees from the fixed magnetic orientation. The magnetic orientation in the sense layer rotates in response to an external magnetic field. | 01-28-2010 |
20100033881 | MAGNETIC FIELD SENSING SYSTEM USING SPIN-TORQUE DIODE EFFECT - A magnetic field sensing system with a current-perpendicular-to-the-plane (CPP) sensor, like that used for giant magnetoresistive (GMR) and tunneling magnetoresistive (TMR) spin-valve (SV) sensors, operates in a mode different from conventional GMR-SV and TMR-SV systems. An alternating-current (AC) source operates at a fixed selected frequency and directs AC perpendicularly through the layers of the CPP sensor, with the AC amplitude being high enough to deliberately induce a spin-torque in the CPP sensor's free layer. The AC-induced spin-torque at the selected frequency causes oscillations in the magnetization of the free layer that give rise to a DC voltage signal V | 02-11-2010 |
20100091416 | MAGNETIC READ HEAD - A magnetoresistive head which has a high head SNR by reducing generated mag-noise without deteriorating an output comprises, according to one embodiment, a magnetoresistive sensor having a laminated structure which includes an antiferromagnetic layer, a magnetization pinned layer, a non-magnetic intermediate layer, a magnetization free layer, and a magnetization stable layer arranged adjacent to the magnetization free layer. The magnetization stable layer comprises non-magnetic coupling layer, a first ferromagnetic stable layer, an antiparallel coupling layer, and a second ferromagnetic stable layer. A magnetization quantity of a first ferromagnetic stable layer and a second ferromagnetic stable layer are substantially equal, and the magnetization of the first ferromagnetic stable layer and the second ferromagnetic stable layer are magnetically coupled in the antiparallel direction from each other. The magnetizations of the first ferromagnetic stable layer and the free layer are coupled in an antiferromagnetic or a ferromagnetic alignment. | 04-15-2010 |
20100103565 | ST-RAM EMPLOYING HEUSLER ALLOYS - A memory cell including a free magnetic layer, the magnetization of which is free to rotate under the influence of spin torque; an insulating layer; and a pinned magnetic layer, wherein at least one of the free magnetic layer or the pinned magnetic layer includes a Heusler alloy, and wherein the insulating layer separates the free magnetic layer from the pinned magnetic layer. | 04-29-2010 |
20100142101 | DIFFERENTIAL MAGNETORESISTIVE EFFECT HEAD AND MAGNETIC RECORDING/READING DEVICE - According to one embodiment, a differential magnetoresistive effect element comprises a first magnetoresistive effect element having a first pinning layer, a first intermediate layer, and a first free layer. The differential magnetoresistive effect element also comprises a second magnetoresistive effect element stacked via a spacer layer above the first magnetoresistive effect element, the second magnetoresistive effect element having a second pinning layer, a second intermediate layer, and a second free layer. The first magnetoresistive effect element and the second magnetoresistive effect element show in-opposite-phase resistance change in response to a magnetic field in the same direction, and tp | 06-10-2010 |
20100202088 | Magnetoresistive element, thin film magnetic head, magnetic head slider, head gimbal assembly, head arm assembly and magnetic disk device - The invention is devised to provide a magnetoresistive element that is hardly susceptible to harmful influence of unnecessary magnetic fields and noise of heat even when reduction in size is achieved to be adaptable to higher recording density, and therefore that is excellent in operational reliability. The magnetoresistive element includes a stacked structure including, in order: a magnetically pinned layer whose magnetization direction is fixed in a given direction; a non-magnetic layer; a magnetically free layer whose magnetization direction changes according to an external magnetic field; and an antiferromagnetic bias layer exchange-coupled with the magnetically free layer. The exchange-coupling magnetic field between the magnetically free layer and the antiferromagnetic bias layer is smaller than a saturation magnetic field of the magnetically free layer. | 08-12-2010 |
20100232074 | Magnetoresistive effect element and magnetic disk device - A magnetoresistive effect element is structured in the manner that the antiferromagnetic layer interposed between the upper and lower shields is eliminated and the antiferromagnetic layer is positioned in a so-called shield layer. Therefore, it is realized to solve a pin reversal problem and to allow narrower tracks and narrower read gaps. | 09-16-2010 |
20100296203 | SPIN VALVE ELEMENT AND METHOD OF DRIVING SAME - A method for driving a spin valve element, including passing driving current through the spin valve element to generate an oscillation signal, and performing amplitude modulation of the driving current at a frequency lower than the oscillation frequency of oscillation signals. This amplitude modulation can be ON-OFF modulation, and the interval t | 11-25-2010 |
20100302690 | Spin-Torque Magnetoresistive Structures - Magnetoresistive structures, devices, memories, and methods for forming the same are presented. For example, a magnetoresistive structure includes a first ferromagnetic layer, a first nonmagnetic spacer layer proximate to the first ferromagnetic layer, a second ferromagnetic layer proximate to the first nonmagnetic spacer layer, and a first antiferromagnetic layer proximate to the second ferromagnetic layer. For example, the first ferromagnetic layer may comprise a first pinned ferromagnetic layer, the second ferromagnetic layer may comprise a free ferromagnetic layer, and the first antiferromagnetic layer may comprise a free antiferromagnetic layer. | 12-02-2010 |
20110019314 | MAGNETORESISTIVE DEVICE WITH ENHANCED PINNED LAYER - A magnetoresistive device includes a free layer, a separating layer, a pinned layer, and a magnetic stabilizer in close proximity to the pinned layer, wherein the magnetic stabilizer may enhance the stability of the magnetization direction of the pinned layer. | 01-27-2011 |
20110026168 | CURRENT-PERPENDICULAR-TO-THE-PLANE (CPP) MAGNETORESISTIVE SENSOR WITH CoFeGe FERROMAGNETIC LAYERS AND Ag OR AgCu SPACER LAYER - A current-perpendicular-to-the-plane spin-valve (CPP-SV) magnetoresistive sensor has a ferromagnetic alloy comprising Co, Fe and Ge in the sensor's free layer and/or pinned layer and a spacer layer of Ag, Cu or a AgCu alloy between the free and pinned layers. The sensor may be a simple pinned structure, in which case the pinned layer may be formed of the CoFeGe ferromagnetic alloy. Alternatively, the sensor may have an AP-pinned layer structure, in which case the AP2 layer may be formed of the CoFeGe ferromagnetic alloy. The Ge-containing alloy comprises Co, Fe and Ge, wherein Ge is present in the alloy in an amount between about 20 and 40 atomic percent, and wherein the ratio of Co to Fe in the alloy is between about 0.8 and 1.2. More particularly, the CoFeGe alloy may consist essentially of only Co, Fe and Ge according to the formula (Co | 02-03-2011 |
20110122534 | MAGNETORESISTANCE SENSORS PINNED BY AN ETCH INDUCED MAGNETIC ANISOTROPY - Magnetoresistance sensors with magnetic pinned layers that are pinned by anisotropic etch induced magnetic anisotropies and methods for fabricating the magnetoresistance sensors are provided. The method comprises forming a seed layer structure. The seed layer is etched to form an anisotropic etch along a top surface of the seed layer. A magnetic pinned layer is formed on the top surface of the seed layer structure. The anisotropic etch on the top surface of the seed layer structure induces a magnetic anisotropy in the magnetic pinned layer, which pins the magnetization of the magnetic pinned layer structure. | 05-26-2011 |
20120206839 | MAGNETORESISTIVE DEVICE WITH ENHANCED PINNED LAYER - A magnetoresistive device includes a free layer, a separating layer, a pinned layer, and a magnetic stabilizer in close proximity to the pinned layer, wherein the magnetic stabilizer may enhance the stability of the magnetization direction of the pinned layer. | 08-16-2012 |
20120218667 | MAGNETIC OSCILLATOR - According to one embodiment, a magnetic oscillator includes a layered film and a pair of electrodes. The layered film includes a first ferromagnetic layer, an insulating layer stacked on the first ferromagnetic layer, and a second ferromagnetic layer stacked on the insulating layer. The pair of electrodes is configured to apply a current to the layered film in a direction perpendicular to a film surface of the layered film. Regions having different resistance area products are provided between the first ferromagnetic layer and the second ferromagnetic layer. | 08-30-2012 |
20120224283 | THREE-DIMENSIONAL MAGNETIC RECORDING AND REPRODUCING APPARATUS - According to one embodiment, a three-dimensional magnetic recording and reproducing apparatus includes a magnetic head and a magnetic storage medium. The magnetic head includes a spin-torque oscillator including a free layer, a non-magnetic layer and a fixed layer, magnetization of the free layer being rotatable, the non-magnetic layer being laminated on the free layer, the fixed layer being laminated on the non-magnetic layer, a magnetization direction of the fixed layer being fixed. The magnetic storage medium includes first magnetic layers formed of magnetic materials having different resonant frequencies, each of the first magnetic layers being formed of an in-plane magnetization film and having recording tracks. | 09-06-2012 |
20120229936 | MAGNETO-RESISTANCE EFFECT DEVICE, AND MAGNETIC RECORDER - According to one embodiment, a magneto-resistance effect device includes: a multilayer structure having a cap layer; a magnetization pinned layer; a magnetization free layer provided between the cap layer and the magnetization pinned layer; a spacer layer provided between the magnetization pinned layer and the magnetization free layer; a function layer which is provided in the magnetization pinned layer, between the magnetization pinned layer and the spacer layer, between the spacer layer and the magnetization free layer, in the magnetization free layer, or between the magnetization free layer and the cap layer, the function layer having oxide containing at least one element selected from Zn, In, Sn and Cd, and at least one element selected from Fe, Co and Ni; and a pair of electrodes for applying a current perpendicularly to a film plane of the multilayer structure. | 09-13-2012 |
20130003229 | Giant Magnetoresistive Sensor Having Horizontal Stablizer - A giant magnetoresistive (GMR) sensor for reading information from a magnetic storage medium has a first non-magnetoresistive layer, a first magnetoresistive layer formed on the first non-magnetoresistive layer, a second non-magnetoresitive layer formed on the first magnetoresistive layer, a second magnetoresistive layer formed on the second non-magnetoresistive layer, and a third non-magnetoresistive layer formed on the second magnetoresistive layer. The first non-magnetoresistive layer is provided with a single step on a surface of the first non-magnetoresistive layer. The step has an edge extending in a direction substantially parallel to a plane of a working surface of the GMR sensor. | 01-03-2013 |
20130128390 | Trapezoidal Back Bias and Trilayer Reader Geometry to Enhance Device Performance - A magnetoresistive sensor is generally disclosed. Various embodiments of a sensor can have at least a trilayer sensor stack biased with a back biasing magnet adjacent a back of the trilayer sensor. The back biasing magnet, the trilayer sensor stack, or both have substantially trapezoidal shapes to enhance the biasing field and to minimize noise. | 05-23-2013 |
20130222949 | SPIN-TORQUE OSCILLATOR (STO) WITH ANTIPARALLEL-COUPLED FREE FERROMAGNETIC LAYERS AND MAGNETIC DAMPING - A spin-torque oscillator with antiferromagnetically-coupled free layers has at least one of the free layers with increased magnetic damping. The Gilbert magnetic damping parameter (α) is at least 0.05. The damped free layer may contain as a dopant one or more damping elements selected from the group consisting of Pt, Pd and the 15 lanthanide elements. The free layer damping may also be increased by a damping layer adjacent the free layer. One type of damping layer may be an antiferromagnetic material, like a Mn alloy. As a modification to the antiferromagnetic damping layer, a bilayer damping layer may be formed of the antiferromagnetic layer and a nonmagnetic metal electrically conductive separation layer between the free layer and the antiferromagnetic layer. Another type of damping layer may be one formed of one or more of the elements selected from Pt, Pd and the lanthanides. | 08-29-2013 |
20140153139 | METHOD OF MANUFACTURING MAGNETORESISTIVE ELEMENT - According to one embodiment, a method of manufacturing a magnetoresistive element includes a layered structure and a pair of electrodes, the layered structure including a cap layer, a magnetization pinned layer, a magnetization free layer, a spacer layer and a functional layer provided in the magnetization pinned layer, between the magnetization pinned layer and the spacer layer, between the spacer layer and the magnetization free layer, in the magnetization free layer, or between the magnetization free layer and the cap layer and including an oxide, the method including forming a film including a base material of the functional layer, performing an oxidation treatment on the film using a gas containing oxygen in a form of at least one selected from the group consisting of molecule, ion, plasma and radical, and performing a reduction treatment using a reducing gas on the film after the oxidation treatment. | 06-05-2014 |
20140168824 | MAGNETIC SENSOR HAVING AN EXTENDED PINNED LAYER AND SHAPE ENHANCED BIAS STRUCTURE - A magnetic read sensor having an extended pinned layer structure and also having an extended free layer structure. The extended pinned layer structure and extended free layer structure both extend beyond the strip height of the free layer of the sensor to provide improved pinning strength as well as improved free layer biasing reliability and bias field strength. | 06-19-2014 |
20150077883 | MAGNETIC RECORDING APPARATUS - According to an embodiment, a magnetic recording apparatus includes following elements. The spin torque oscillator generates a first oscillating magnetic field. The recording medium unit includes one or more recording medium layers which are stacked, each of the one or more recording medium layers including a recording medium and spin-wave lines each of which generates a second oscillating magnetic field. The write magnetic field source generates a write magnetic field. The controller is configured to control the spin torque oscillator, the spin-wave lines, and the write magnetic field source to simultaneously apply the write magnetic field, and the first and second oscillating magnetic fields to target medium magnetization in the recording medium. | 03-19-2015 |