Class / Patent application number | Description | Number of patent applications / Date published |
327203000 | Including field-effect transistor | 62 |
20080231336 | SCAN FLIP-FLOP CIRCUIT WITH EXTRA HOLD TIME MARGIN - The present invention is a scan flip-flop circuit with extra hold time margin. The scan flip-flop circuit includes a multiplexer, a sense amplifier and a latch. The latch includes a generation unit for generating an output signal in response to a first signal and a second signal outputted from the sense amplifier, and a storage unit receives the second signal and the output signal and maintains the output signal of the latch when the first signal and the second signal are non-activated. | 09-25-2008 |
20090002044 | Master-slave type flip-flop circuit - A master-slave type flip-flop circuit consisting of a master latch and a slave latch, wherein the master latch comprises: a first clocked inverter to which data are input and a first latch circuit configuring a closed circuit with a first inverter and a second clocked inverter so that an output of the first clocked inverter is input to the first inverter and; the slave latch comprises: a transmission gate to which an output from the first latch circuit is input and a second latch circuit configuring a closed circuit with a second inverter and a third clocked inverter so that an output of the transmission gate is input to the second inverter, respective components configuring the master latch and the slave latch are configured with Sea Of Gate (hereinafter to be referred to as SOG) configuring a gate array, a basic cell of the SOG consists of triplely arrayed N-type transistors and corresponding triplely arrayed P-type transistors, the triplely arrayed N-type transistors consist of double-arrayed normally sized main transistors and one auxiliary transistor sized smaller than in a normal size and the triplely arrayed P-type transistors consist of double-arrayed normally sized main transistors and one auxiliary transistor sized smaller than in a normal size. | 01-01-2009 |
20090058485 | FLIP-FLOP HAVING LOGIC STATE RETENTION DURING A POWER DOWN MODE AND METHOD THEREFOR - A flip-flop includes a master latch, a first inverter, a slave latch, and a first clocked inverter. The master latch has an input for receiving an input signal and an output. The first inverter has an input coupled to the output of the master latch and an output for providing an output of the flip-flop. The slave latch is directly connected to the input of the first inverter. The first clocked inverter has an input directly connected to the slave latch and an output coupled to the master latch. | 03-05-2009 |
20090058486 | MASTER-SLAVE CIRCUIT AND CONTROL METHOD OF THE SAME - A master-slave circuit that includes a master circuit having input data stored therein, a storage unit for receiving the input data in response to receiving a sleep mode setting signal that sets a sleep mode, and for storing the input data, and a first control unit for interrupting the supply of a power supply voltage to the master circuit after the input data is stored in the storage unit. | 03-05-2009 |
20090066387 | LATCH CIRCUIT - A latch circuit ( | 03-12-2009 |
20090121764 | SEMICONDUCTOR DEVICE - A semiconductor device has a first latch circuit, a second latch circuit configured to receive an output of the first latch circuit, a first switching element provided between the first latch circuit and the second latch circuit, a feedback line for feeding data held by the second latch circuit to the first latch circuit, and a second switching element provided on the feedback line. | 05-14-2009 |
20090167394 | INTEGRATED CIRCUITS HAVING DEVICES IN ADJACENT STANDARD CELLS COUPLED BY THE GATE ELECTRODE LAYER - An integrated circuit ( | 07-02-2009 |
20090256609 | LOW POWER FLIP FLOP THROUGH PARTIALLY GATED SLAVE CLOCK - A system and method for reducing power consumption within a flip-flop circuit on a semiconductor chip. A gated input clock signal is received by a slave latch. The gated input clock is derived from an ungated input clock signal and a clock gating condition. The clock gating condition determines when an input data signal of the flip-flop and the stored internal state of the slave latch have the same logic value, such as only a logic low value. If they have the same value, toggling of the ungated input clock signal is not received by the slave latch, signal switching of internal nodes of the slave latch is reduced, and power consumption is reduced. | 10-15-2009 |
20090309641 | DUAL MODE EDGE TRIGGERED FLIP-FLOP - An edge triggered flip-flop including at least one inverter and at least one transmission gate section. Each transmission gate section includes an upper part having a first transmission gate and a second transmission gate connected in series, the first transmission gate being controlled in accordance with a clock signal, and the second transmission gate being controlled in accordance with an enable clock signal. Each transmission gate section also includes a lower part having a third transmission gate and a fourth transmission gate connected in series, the third transmission gate being controlled complementarily to the first transmission gate in accordance with the clock signal, and the fourth transmission gate being controlled complementarily to the second transmission gate in accordance with the enable clock signal. | 12-17-2009 |
20100052756 | LOW POWER AND SOFT ERROR HARDENED DUAL EDGE TRIGGERED FLIP FLOP - A dual edge triggered flip flop can pass data values on a clock rising or falling edge. The dual edge triggered flip flop can be operated at half the clock speed of a single edge triggered flip flop and produce substantially the same throughput. The dual edge triggered flip flop may use less power than a single edge triggered flip flop due at least in part to the construction of an intermediate gate as a data interlock gate. The dual edge triggered flip flop may contain a plurality of master nodes, and is soft error hardened compared to a single edge triggered flip flop. | 03-04-2010 |
20100123501 | ACTIVE-LOAD DOMINANT CIRCUIT FOR COMMON-MODE GLITCH INTERFERENCE CANCELLATION - “An active-load dominant circuit for common-mode glitch interference cancellation, biased between a first voltage potential and a second voltage potential with an accompanying common-mode glitch interferer. The active-load dominant circuit includes a pair of pull-up networks and a pair of active-load networks. The common-mode glitch interferer is cancelled out due to a symmetric structure of the pair of pull-up networks. At least one set signal and at least one reset signal are provided to a latch in response to a clock signal or a complemented clock signal. At least one of the set signal and the reset signal can be pulled up to the first voltage potential or pulled down to the second voltage potential. The voltage difference of the set signal and the reset signal is large enough for a latch.” | 05-20-2010 |
20100127745 | DOUBLE-TRIGGERED LOGIC CIRCUIT - A double-triggered logic circuit is a composite circuitry consisting of a plurality of PMOS, NMOS, inverters and a signal line. It includes an AND logic circuit and a XNOR logic circuit to generate an adjustable pulse mode to solve the problem of threshold voltage loss. | 05-27-2010 |
20100182063 | FLIP-FLOP CIRCUIT WITH INTERNAL LEVEL SHIFTER - A flip-flop circuit with an internal level shifter includes an input stage, a clock input stage, an output stage and a level shifting stage. The output stage generates an output signal based on an input signal received by the input stage and a clock signal received by the clock input stage. The level shifting stage shifts-up the voltage level of the output signal. | 07-22-2010 |
20100213998 | SEMICONDUCTOR DEVICE - There is provided a semiconductor device having: a latch circuit ( | 08-26-2010 |
20110032016 | SEMICONDUCTOR DEVICE - A semiconductor device includes a flip-flop circuit formed in a CMOS semiconductor integrated circuit. The flip-flop circuit includes at least a first clock generating inverter that generates a first clock signal and a second clock generating inverter that generates a second clock signal obtained by inverting the first clock signal, the first clock generating inverter and the second clock generating inverter are arranged so as to sandwich a latch unit, the latch unit including a master latch unit and a slave latch unit in the flip-flop circuit, the first clock generating inverter and a first other circuit in the flip-flop circuit are configured to share a source region, the first other circuit being adjacent to the first clock generating inverter, and the second clock generating inverter and a second other circuit in the flip-flop circuit are configured to share a source region, the second other circuit being adjacent to the second clock generating inverter. | 02-10-2011 |
20110050309 | DYNAMIC CLOCK FEEDBACK LATCH - A dynamic clock feedback latch includes a feedback path that generates a data value on an output as a function of data inputs in response to a clock input going low and generates a latching value on the output after a delay from the clock input going high. A first transistor pre-charges a node high while the clock input is low. A second transistor provides a drain path for draining the node low from the pre-charged value while the clock input is high. The output controls a third transistor during the delay to drain the node to a low value if the data value is high and to retain the high value if the data value is low. The feedback path generates the predetermined latching value on the output after the delay to cause an inverted value of the data value to be latched onto the node. | 03-03-2011 |
20110084748 | FLIP-FLOP WITH SINGLE CLOCK PHASE AND WITH REDUCED DYNAMIC POWER - A flip-flop may include a first master stage for latching data, a second slave stage for latching data, and an input multiplexer circuit receiving, as input, data to be latched in the flip-flop. The multiplexer may have single clock phase. The first master stage may be clocked based upon a clock phase, whereas the second stage may be clocked based upon another clock phase. | 04-14-2011 |
20110156786 | FLIP-FLOP CIRCUIT AND FREQUENCY DIVIDING CIRCUIT - A flip-flop circuit has a function of respectively switching ON/OFF state of operation of a first data retaining circuit in a master side element and a second data retaining circuit in a slave side element, i.e., constituent elements of the flip-flop circuit, wherein the flip-flop circuit performs timing control, so as to reduce unnecessary current, eliminate the affect caused by parasitic capacitance. The flip-flop circuit operates with a low power consumption but has a high maximum operating frequency. | 06-30-2011 |
20110199139 | FLIP-FLOP CIRCUIT WITH INTERNAL LEVEL SHIFTER - A flip-flop circuit with an internal level shifter includes an input stage, a clock input stage, an output stage and a level shifting stage. The output stage generates an output signal based on an input signal received by the input stage and a clock signal received by the clock input stage. The level shifting stage shifts-up the voltage level of the output signal. | 08-18-2011 |
20110267125 | MULTI-THRESHOLD COMPLEMENTARY METAL-OXIDE SEMICONDUCTOR MASTER SLAVE FLIP-FLOP - A multi-threshold complementary metal-oxide semiconductor technology (MTCMOS technology) master slave flip-flop with a single clock signal includes a master storage element configured to store an input data in response to a clock signal transition and a slave storage element configured to receive data from the master storage element and to output the received data in response to an opposite clock signal transition. The master storage element includes low threshold voltage transistors, the slave storage element includes high threshold voltage transistors, and the master and the slave storage elements are provided with a single clock signal. | 11-03-2011 |
20120139599 | MULTIPLEX DRIVING CIRCUIT - A multiplex driving circuit receives m master signals and n slave signals, and includes m driving modules for generating m×n gate driving signals. Each driving module includes a voltage boost stage and n driving stages. The voltage boost stage is used for receiving a first master signal of the m master signals and converting the first master signal into a first high voltage signal, wherein a high logic level of the first master signal is increased to a highest voltage by the voltage boost stage. The n driving stages receives the n slave signals, respectively, and receives the first high voltage signal. In response to the highest voltage of the first high voltage signal, the n driving stages sequentially generates n gate driving signals according to the n slave signals. | 06-07-2012 |
20120139600 | LOW POWER LATCH USING MULTI-THRESHOLD VOLTAGE OR STACK-STRUCTURED TRANSISTOR - Disclosed is a low power latch that includes a low threshold voltage (LThV) inverter inverting an input data value to provide an output data value and including a LThV pull-up transistor and LThV pull-down transistor that operate at a threshold voltage less than a reference threshold voltage. The low power latch also includes a high threshold voltage (HThV) transistor isolating unit configured to isolate a power supply voltage provided to the LThV inverter during a sleep mode indicated by a sleep mode signal, and including a first HThV transistor and a second HThV transistor that operate at a threshold voltage less than the reference threshold voltage. | 06-07-2012 |
20120194247 | SEMICONDUCTOR DEVICE - A semiconductor device includes: a first master-slave flip-flop having a first master latch which receives and latches first data signal in synchronism with first clock and a first slave latch which receives and latches the first data signal from the first master latch in synchronism with second clock; and a second master-slave flip-flop disposed side by side with the first master-slave flip-flop and having a second master latch which receives and latches second data signal in synchronism with third clock and a second slave latch which receives and latches the second data signal from the second master latch in synchronism with fourth clock, and wherein the second slave latch of the second master-slave flip-flop is disposed adjacent to the first master latch of the first master-slave flip-flop and the second master latch of the second master-slave flip-flop is disposed adjacent to the first slave latch of the first master-slave flip-flop. | 08-02-2012 |
20120286837 | SEMICONDUCTOR INTEGRATED CIRCUIT - According to one embodiment, a semiconductor integrated circuit is provided, which has mounted thereto a flip-flop circuit including a latch portion that takes and holds input data based upon a clock signal, and a clock portion that inputs the clock signal to the latch portion, wherein an active region of the flip-flop circuit is divided in such a manner that the width of the active region is secured, and each of the active regions has uniform width. | 11-15-2012 |
20130057329 | Programmable Scannable Storage Circuit - A scannable storage circuit includes a scan enable input, a storage element having a Node coupled to a data output buffer for driving a data output terminal. The data output buffer includes an inverter; a transmission gate having a first MOS transistor and a second MOS transistor with sources and drains coupled to each other, drains coupled to an output of the inverter and sources coupled to the data output terminal and gates coupled to the scan enable input and an inverted scan enable input. A third MOS transistor and a fourth MOS transistor is coupled to the sources of the first and second MOS transistors, the third MOS transistor and fourth MOS transistor are configured to pull up or pull down the data output terminal in response to a first control signal and a second control signal respectively. A scan output is generated from the output of the inverter. | 03-07-2013 |
20130127507 | LOW-HYSTERESIS HIGH-SPEED DIFFERENTIAL SAMPLER - A low-hysteresis high-speed latch circuit is disclosed which isolates a sample stage and hold stage from one another during a latch clock phase and simultaneously shorts the output nodes together during the latch clock phase to reduce hysteresis of the latch. | 05-23-2013 |
20130207705 | SSPC DISTRIBUTION SYSTEM AND CONTROL STRATEGY - A power distribution system includes the use of a master digital signal processor (DSP) and two slave DSPs connected to the master DSP. The slaves DSPs may be connected to each of a plurality of solid state power channels (SSPC) controlling power distribution functions to each of the channels. A power control strategy may use one power supply for the master DSP, a second power supply shared between the slave DSPs, and a third power supply shared between each of the SSPC channels. | 08-15-2013 |
20130222031 | IMPLEMENTING POWER SAVING SELF POWERING DOWN LATCH STRUCTURE - A method and circuits for implementing power saving self powering down latch operation, and a design structure on which the subject circuit resides are provided. A master slave latch includes a virtual power supply connection. At least one connection control device is coupled between the virtual power supply connection and a voltage supply rail. A driver gate applies a power down signal driving the at least one connection control device to control the at least one connection control device during a self power down mode. The driver gate combines a self power down input signal and a latch data output signal to generate the power down signal. | 08-29-2013 |
20140077855 | MASTER-SLAVE FLIP-FLOP CIRCUIT - A master-slave flip-flop circuit includes: a master circuit to receive input data in a first state of a reference clock and hold the input data in a second state of the reference clock to output intermediary data; and a slave circuit to receive the intermediary data in the second state and hold the intermediary data in the first state to output data, wherein the master circuit includes: a feedback two-input NOR gate to receive an output of the master circuit and a first clock; an input three-input NOR gate to receive the input data, a second clock, and a third clock; and a synthesis two-input NOR gate to receive an output of the input three-input NOR gate and an output of the feedback two-input NOR gate. | 03-20-2014 |
20140184296 | MCML RETENTION FLIP-FLOP/LATCH FOR LOW POWER APPLICATIONS - The present disclosure relates to a device and method to reduce the dynamic/static power consumption of an MCML logic device. In order to retain register contents during power off mode, an MCML retention latch and flip-flop are disclosed. Retention Latch circuits in MCML architecture are used to retain critical register contents during power off mode, wherein combination logic including clock buffers on the clock tree paths are powered off to reduce dynamic/static power consumption. The MCML retention flip-flop comprises a master latch and a slave latch, wherein a power switch is added to the master latch to power the master latch off during power off mode. The slave latch includes pull-down circuits that remain active to enable the slave latch to retain data at a proper voltage level during power off mode. Other devices and methods are also disclosed. | 07-03-2014 |
20140218090 | NEGATIVE EDGE FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CLK and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CLK, CLKN, RET, RETN, SS and SSN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode. | 08-07-2014 |
20140218091 | POSITIVE EDGE FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D | 08-07-2014 |
20140232440 | POSITIVE EDGE RESET FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D | 08-21-2014 |
20140232441 | POSITIVE EDGE PRESET FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D | 08-21-2014 |
20140232442 | NEGATIVE EDGE RESET FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D | 08-21-2014 |
20140232443 | NEGATIVE EDGE PRESET FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D | 08-21-2014 |
20140240017 | MASTER-SLAVE FLIP-FLOP WITH LOW POWER CONSUMPTION - In a master-slave flip-flop, the master latch has first and second three-state stages, and a first feedback stage. The slave latch has third and fourth three-state stages, and a second feedback stage. First and second clock switches having opposite phases are provided. The first clock switch is configured in one of the first and fourth three-state stages, and the other stage shares the first clock switch. The second clock switch is configured in one of the second and third three-state stages, and the other stage shares the second clock switch. The second three-state stage has an additional pair of complementary devices having signal paths connected in series with each other with both being gated by a data output of the slave latch. The flip-flop reduces the number of clock switches and clock switch power consumption. | 08-28-2014 |
20140266365 | LATENCY/AREA/POWER FLIP-FLOPS FOR HIGH-SPEED CPU APPLICATIONS - A circuit for a low latency, low area, and low power flip-flop may include a pass-gate multiplexer that can selectively allow one of input or test data to enter a master cell when a clock signal is low. The master cell may include a first inverter cross-coupled to a second inverter, and may receive the input or test data and may latch and provide at an input node of the slave cell, an inverted input data or the test data, upon a transition of the clock signal to a high state. The slave cell may include a second clock pass-gate and a third inverter that is cross-coupled to a fourth inverter, and may receive the inverted input data or the test data and may latch and provide at an output node, the input data or the test data, upon the transition of the clock signal to a high state. | 09-18-2014 |
20140333363 | SEMICONDUCTOR DEVICE - There is provided a semiconductor device having: a latch circuit having a plurality of data holding nodes; a first capacitance element connected to the first data holding node included in the plurality of data holding nodes; and a first switch element provided between the first data holding node and the first capacitance element. | 11-13-2014 |
20140347113 | POSITIVE EDGE FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D | 11-27-2014 |
20140347114 | NEGATIVE EDGE FLIP-FLOP WITH DUAL-PORT SLAVE LATCH - In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CLK and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CLK, CLKN, RET, RETN, SS and SSN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode. | 11-27-2014 |
20150022250 | MONOLITHIC THREE DIMENSIONAL (3D) FLIP-FLOPS WITH MINIMAL CLOCK SKEW AND RELATED SYSTEMS AND METHODS - Monolithic three dimensional (3D) flip-flops with minimal clock skew and related systems and methods are disclosed. The present disclosure provides a 3D integrated circuit (IC) (3DIC) that has a flop spread across at least two tiers of the 3DIC. The flop is split across tiers with transistor partitioning in such a way that keeps all the clock related devices at the same tier, thus potentially giving better setup, hold and clock-to-q margin. In particular, a first tier of the 3DIC has the master latch, slave latch, and clock circuit. A second tier has the input circuit and the output circuit. | 01-22-2015 |
20150028927 | LOW POWER MASTER-SLAVE FLIP-FLOP - A flip-flop circuit may include a master latch and a slave latch. Each latch may have a transparent mode and a storage mode. The slave latch may be in storage mode when the master latch is in transparent mode; and vice-versa. A clock signal may control the mode of each latch through a pair of clock-gated pull-up transistors and a pair clock-gated of pull-down transistors, for a total of four clock-gated transistors. The clock-gated transistors may be shared by the master latch and the slave latch. Fewer clock-gated transistors may be required when they are shared, as opposed to not being shared. Clock-gated transistors may have parasitic capacitance and consume power when subjected to a varying clock signal, due to the charging and discharging of the parasitic capacitance. Having fewer clock-gated transistors thus may reduce the power consumed by the flip-flop circuit. | 01-29-2015 |
20150070063 | LOW POWER CLOCK GATED FLIP-FLOPS - A flip-flop that includes a multiplexer configured to generate a multiplexer output. The multiplexer output is generated in response to an input and a scan enable, and is given to a transmission gate. A master latch is coupled to the transmission gate and to a tri-state inverter. The master latch is configured to receive an output of the transmission gate. A slave latch is configured to receive an output of the tri-state inverter and the multiplexer output. A data inverter is coupled to the slave latch. The data inverter is configured to generate a flip-flop output. A half clock gating inverter is configured to generate an inverted clock input in response to a clock input and the multiplexer output. | 03-12-2015 |
20150102847 | SEMICONDUCTOR CIRCUIT AND SEMICONDUCTOR SYSTEM - An example embodiment discloses a flip-flop including a first inverter configured to invert first data, first and second transistors connected to each other in series and configured to receive the inverted first data and a first clock, respectively, a third transistor and a first gate configured to perform a logic operation on the first data and the first clock, the third transistor configured to receive an output of the logic operation. The second transistor and the third transistor are connected to a first node. | 04-16-2015 |
20150116019 | APPARATUS AND METHOD FOR LOW POWER FULLY-INTERRUPTIBLE LATCHES AND MASTER-SLAVE FLIP-FLOPS - Described is a latch which comprises: a first AND-OR-invert (AOI) logic gate; and a second AOI logic gate coupled to the first AOI logic gate, wherein the first and second AOI logic gates have respective first and second keeper devices coupled to a power supply node. Described is a flip-flop which comprises: a first latch including: a first AOI logic gate; and a second AOI logic gate coupled to the first AOI logic gate, wherein the first and second AOI logic gates have respective first and second keeper devices coupled to a power supply, the first latch having an output node; and a second latch having an input node coupled to the output node of the first latch, the second latch having an output node to provide an output of the flip-flop. | 04-30-2015 |
20150123722 | LATCH CIRCUIT - A latch circuit is based on a master-slave cross-coupled inverter pair configuration. The inverters of the slave circuit are coupled to a high voltage rail and a low voltage rail, wherein for each of the two inverters of the slave circuit inverter pair, the coupling to one of the voltage rails is through a resistive element. This circuit design avoids the need for an internal clock-buffer and enables single phase clocking, and therefore does not need internal clock signal inversion. The circuit can be implemented with low power, with no dynamic power consumption for redundant transitions when the input and the output data signal is same. | 05-07-2015 |
20150318845 | Multi-Bit Standard Cells For Consolidating Transistors With Selective Sourcing - A method for designing a standard cell, e.g. a multi-bit flip-flop, can include identifying a first set of transistors. This first set functions to source power or ground to circuits of the standard cell. A second set of transistors can be determined and correlated. This second set forms at least part of the first set of transistors. Each correlated group in the second set of transistors receives identical signals, e.g. scan enable, reset, and/or set signals, and provides a same sourcing. A third set of transistors can then be created. This third set has fewer transistors than the second set. The second set of transistors can be deleted in the standard cell. The third set of transistors can be connected to the circuits of the standard cell. This method can significantly extend circuit consolidation to improve the area benefit of multi-bit standard cells. | 11-05-2015 |
20150381154 | FLIP-FLOP CIRCUIT - A flip-flop circuit includes a first clocked inverter that is connected to the data terminal at an input node thereof, and outputs a first signal, which is an inversion of the data signal, in accordance with the third and fourth clock signals. The flip-flop circuit includes a first latching inverter that outputs a second signal, which is an inversion of the first signal, at an output node thereof. The flip-flop circuit includes a transfer gate that passes the second signal therethrough and outputs a third signal at an output node thereof in accordance with the first and second clock signals. The flip-flop circuit includes a second latching inverter that is connected to the output node of the transfer gate at an input node thereof and outputs a fourth signal, which is an inversion of the third signal, at an output node thereof. | 12-31-2015 |
20160056801 | FLIP-FLOP FOR REDUCING DYNAMIC POWER - A flip-flop circuit may include a first latch and a second latch. The first latch, which may operate as a “master” latch, includes a first input terminal to receive a data signal, a second input terminal to receive a clock signal, and an output terminal. The second latch, which may operate as a “slave” latch, includes a first input terminal connected directly to the output terminal of the first latch, a second input terminal to receive the clock signal, and an output terminal to provide an output signal. The first latch and the second latch are to be clocked on the same phase of the clock signal, thereby eliminating the need to include clock inversion circuits that generate complementary clock signals. | 02-25-2016 |
20160065188 | LOW LEAKAGE SHADOW LATCH-BASED MULTI-THRESHOLD CMOS SEQUENTIAL CIRCUIT - Multi-threshold CMOS (MTCMOS) sequential circuits are presented with a first latch circuit formed of transistors with threshold voltages in a first range, along with a second latch circuit with inverters and a transfer gate formed of higher threshold voltage transistors for low-power retention of data from the first latch with power switching circuitry to selectively decouple inverters of the second latch circuit from a voltage supply during low-power retention mode operation of the sequential circuit. | 03-03-2016 |
20160065190 | CLOCK GATED FLIP-FLOP - Aspects of the disclosure provide a data storage circuit. The data storage circuit includes a first latch, a second latch, and a clock gating and buffer circuit. The first latch is configured to provide an intermediate output to the second latch in response to a data input when a clock signal is in a first state and to hold the intermediate output when the clock signal is in a second state, and the second latch is configured to provide a data output in response to the intermediate output and the clock signal. The clock gating and buffer circuit is configured to provide the clock signal, and to suppress providing the clock signal to one or both of the first latch and the second latch when the intermediate output stays unchanged. | 03-03-2016 |
20160087611 | FAULT RESISTANT FLIP-FLOP - A flip-flop ( | 03-24-2016 |
20160094203 | LOW AREA FLIP-FLOP WITH A SHARED INVERTER - A flip-flop is disclosed that utilizes low area. The flip-flop includes a tri-state inverter that receive a flip-flop input, a clock input and an inverted clock input. A master latch receives an output of the tri-state inverter. The master latch includes a common inverter. A slave latch is coupled to the master latch. The common inverter is shared between the master latch and the slave latch. An output inverter is coupled to the common inverter and generates a flip-flop output. | 03-31-2016 |
20160094204 | FLIP-FLOPS WITH LOW CLOCK POWER - The disclosure provides a flip-flop that utilizes low power as a result of reduced transistor count. The flip-flop includes a tri-state inverter that receives a flip-flop input and a clock input. A master latch is coupled to an output of the tri-state inverter and provides a control signal to the tri-state inverter. The control signal activates the tri-state inverter. A slave latch receives an output of the master latch and the control signal. An output inverter is coupled to an output of the slave latch and generates a flip-flop output. | 03-31-2016 |
20160112036 | FLIP-FLOP CELL WITH CONFIGURABLE DELAY - Flip-flop cells that enable time borrowing during the design of the IC to improve setup times while avoiding introducing meta-stability, and alternatively to avoid hold time violations. The flip-flop cells are connected with logic cells in functional data paths. The flip-flop cell has a clock signal controlling both its input and output. A selective delay cell selectively delays either a data signal input to the flip-flop cell or the clock signal controlling the flip-flop cell. The selectively delayed signal adjusts the timing (setup, hold and clock-to-output) of the data path. | 04-21-2016 |
20160126939 | SYNCHRONISER FLIP-FLOP - A synchroniser flip-flop is provided, which is able to better respond to input values that are not provided for the necessary setup or hold times. The flip-flop includes a latch that includes inverter circuitry for producing a first signal and a signal in dependence on a value of an input signal at a node. A clocked inverter includes a first switch that is connected between a first reference voltage supply and an intermediate node and a second switch, which is connected between the intermediate node and a second reference voltage supply. The first switch is controlled by the first signal and the second switch is controlled by the second signal to produce an output signal at the intermediate node. | 05-05-2016 |
20160164503 | LOW-POWER, SMALL-AREA, HIGH-SPEED MASTER-SLAVE FLIP-FLOP CIRCUITS AND DEVICES INCLUDING SAME - An integrated circuit includes a plurality of positive edge-triggered master-slave flip-flop circuits sharing a clock signal. At least one of the positive edge-triggered master-slave flip-flop circuits includes; an input stage that provides a first output signal generated from an input signal in response to the clock signal and an inverted clock signal, a first inverting circuit that generates the inverted clock signal by delaying the clock signal, a transmission gate that receives a second output signal and generates a final output signal, and a second inverting circuit that receives the first output signal and generates the second output signal from the first output signal. The clock signal is applied to an NMOS transistor of the transmission gate and a PMOS transistor of the input stage, and the inverted clock signal is applied to a PMOS transistor of the transmission gate and an NMOS transistor of the input stage. | 06-09-2016 |
20160191028 | LOW AREA ENABLE FLIP-FLOP - The disclosure provides a flip-flop. The flip-flop includes a master latch. The master latch receives a flip-flop input, a clock input, an inverted clock input, an enable signal and an inverted enable signal. A slave latch is coupled to the master latch and receives the enable signal and the inverted enable signal. An output inverter is coupled to the slave latch and generates a flip-flop output. | 06-30-2016 |
20160254803 | Semiconductor Device | 09-01-2016 |
20170237414 | LOW-POWER, SMALL-AREA, HIGH-SPEED MASTER-SLAVE FLIP-FLOP CIRCUITS AND DEVICES INCLUDING SAME | 08-17-2017 |
20180026610 | LATCH CIRCUITRY | 01-25-2018 |