Class / Patent application number | Description | Number of patent applications / Date published |
315111510 | Induction type | 34 |
20080265780 | Plasma Generator Having a Power Supply With Multiple Leakage Flux Coupled Transformers - A plasma generating apparatus includes a plurality of discharge cells in which a gas is excited by a high frequency excitation signal produced at an inverter. Each of a plurality of transformers couples the excitation signal from the inverter to one of the discharge cells, thereby forming a separate resonant circuit that has a resonant frequency. A gap in the transformer core creates a stray magnetic field outside the transformer. The plurality of transformers are in close proximity to each other so that the stray magnetic field from one transformer is coupled to at least one other transformer. Coupling the stray magnetic fields between transformers results in each resonant circuit resonating at the same frequency, thereby compensating for manufacturing tolerances and changes in operating conditions of the discharge cells that otherwise affect the resonant frequency of a given circuit. | 10-30-2008 |
20080309242 | Plasma Source - A plasma source is described. The source includes a reactive impedance element formed from a plurality of electrodes. By providing such a plurality of electrodes and powering adjacent electrodes out of phase with one another, it is possible to improve the characteristics of the plasma generated. | 12-18-2008 |
20090015165 | Plasma generating apparatus - A plasma generating apparatus having superior plasma generation efficiency that uses a single reaction chamber. The plasma generating apparatus includes a RF generator for providing a RF power, an antenna for generating an electromagnetic field upon receiving the RF power, a reaction chamber for exciting/ionizing a reaction gas via the electromagnetic field, and generating a plasma, and a plasma channel for absorbing the RF power, and allowing a current signal to be induced to the plasma. | 01-15-2009 |
20090200949 | PLASMA PROCESSING SYSTEM WITH LOCALLY-EFFICIENT INDUCTIVE PLASMA COUPLING - An inductively coupled plasma source is provided with a peripheral ionization source for producing a high-density plasma in a vacuum chamber for semiconductor wafer coating or etching. The source includes a segmented configuration having high and low radiation segments and produces a generally ring-shaped array of energy concentrations in the plasma around the periphery of the chamber. Energy is coupled from a segmented low inductance antenna through a dielectric window or array of windows and through a segmented shield or baffle. The antenna has concentrated conductor segments through which current flows in one or more small cross-section conductors to produce high magnetic fields that couple through the high-transparency shield segments into the chamber, while alternating distributed conductor segments, formed of large cross-section conductor portions or diverging small conductor sections, permit magnetic fields to pass through or between the conductors and deliver only weak fields, which are aligned with opaque shield sections and couple insignificant energy to the plasma. The source provides spatial control of plasma energy distribution, which aids in control of the uniformity of plasma processing across the surface of the semiconductor being processed. | 08-13-2009 |
20090278459 | INDUCTION COIL, A PLASMA GENERATOR AND A PLASMA GENERATING METHOD - The plasma generator of our invention comprises of the induction coil which is symmetric with respect to the reference plane between two terminal ends. Plasma processing gas is supplied to a predetermined space, and high frequency electricity is supplied to the induction coil, thereby the plasma generator generates plasma in the space. The reference plane passes between the two terminal ends and through longitude axis of the induction coil. The plasma generator can generate plasma with high quality of homogeneous. | 11-12-2009 |
20100066251 | PLASMA PROCESSING APPARATUS - An induction coil composed of n pieces of identically shaped coil elements (where n is equal to or greater than two), which are rotation-symmetrically arranged with respect to an axis normal to the surface of an object to be processed, is provided above the object, the coil elements being electrically connected in parallel. Each of the coil elements of the induction coil encircles the aforementioned axis, with the ground end and the feed end located at the same position on a projection plane on the object with the ground end under the feed end. Each coil element has a bottom portion shaped like an arc having a predetermined width and a central angle of 360°/n, with the ground end at one end thereof, and a feed portion shaped like an arc having a predetermined width, with the feed end at one end thereof, the feed portion being located above the bottom portion and electrically connected to the same bottom portion. It is also possible to assemble a plurality of coil elements so that the ground end of each coil element is located immediately below the feed end of another coil element. | 03-18-2010 |
20100156300 | Plasma excitation module - A plasma excitation module including a chamber, a plurality of coils and a multi-duct gas intake system is provided. The chamber has a dielectric layer. The coils are disposed at an outer side of the dielectric layer, and the coils are separated from each other by an interval and in parallel connection. The multi-duct gas intake system surrounds the dielectric layer and is communicated with the chamber. | 06-24-2010 |
20100187999 | RADIOFREQUENCY PLASMA GENERATION DEVICE - A device including two plasma generation electrodes, a series resonator having a resonant frequency above 1 MHz and including a capacitor with two terminals, and an induction coil surrounded by a screen, the capacitor and the coil being placed in series, the electrodes being connected to the respective terminals of the capacitor. The ratio of the spark plug to the radius of the screen is equal to 0.56. The device can optimize the Q-factor of such a device by adjusting the radius of the coil to that of the screen. | 07-29-2010 |
20100194280 | Plasma Supply Device - A plasma supply device generates an output power greater than 500 W at an essentially constant basic frequency greater than 3 MHz and powers a plasma process to which is supplied the generated output power, and from which reflected power is returned to the plasma supply device. The plasma supply device includes at least one inverter connected to a DC power supply, which inverter has at least one switching element, and an output network, wherein the at least one output network includes at least one inductance that has at least one magnetic field strengthening element that is a Perminvar ferrite. | 08-05-2010 |
20100219757 | Method and Apparatus of Providing Power to Ignite and Sustain a Plasma in a Reactive Gas Generator - Described are methods and apparatuses, including computer program products, for igniting and/or sustaining a plasma in a reactive gas generator. Power is provided from an ignition power supply to a plasma ignition circuit. A pre-ignition signal of the plasma ignition circuit is measured. The power provided to the plasma ignition circuit is adjusted based on the measured pre-ignition signal and an adjustable pre-ignition control signal. The adjustable pre-ignition control signal is adjusted after a period of time has elapsed. | 09-02-2010 |
20100244699 | Inductive Plasma Applicator - An inductive plasma applicator comprises a ferromagnetic inductively coupled source and an electrode with a hole pattern centred with respect to the plasma source. Such plasma applicator provides an efficient energy transfer to the plasma. The plasma applicator is preferably manufactured using a technology for producing electrical circuits. The electrode and a coil of the ferromagnetic inductively coupled plasma source are metal track portions formed on an insulating substrate. For example, the plasma applicator is manufactured using printed circuit board technology. | 09-30-2010 |
20110095689 | Inductively-Coupled Plasma Device - A plasma device configured to receive ionizable media is disclosed. The plasma device includes a first pair of dielectric substrates each having an inner surface and an outer surface. The first pair of dielectric substrates is disposed in spaced, parallel relation relative to one another with the inner surfaces thereof facing one another. The device also includes a first pair of spiral coils each disposed on the inner surface of the dielectric substrates. The first pair of spiral coils is configured to couple to a power source and configured to inductively couple to an ionizable media passed therebetween to ignite the ionizable media to form a plasma effluent. | 04-28-2011 |
20110163674 | Mitigation of plasma-inductor termination - In accordance with one embodiment of the present invention, the dielectric discharge chamber of a generally axially symmetric ion source has a hollow cylindrical shape. One end of the discharge chamber is closed with a dielectric wall. The working gas is introduced through an aperture in the center of this wall. The ion-optics grids are at the other end of the discharge chamber, which is left open. The inductor is a helical coil of copper conductor that surrounds the cylindrical portion of the dielectric discharge chamber. The modification that produces uniformity about the axis of symmetry is a shorted turn of the helical-coil inductor at the end of the inductor closest to the ion-optics grids. | 07-07-2011 |
20110291568 | PLASMA PROCESSING APPARATUS AND PROCESSING GAS SUPPLY STRUCTURE THEREOF - There is provided a plasma processing apparatus for generating inductively coupled plasma in a processing chamber and performing a process on a substrate accommodated in the processing chamber. The plasma processing apparatus includes an upper cover installed to cover a top opening of the processing chamber and having a dielectric window; a high frequency coil installed above the dielectric window at an outer side of the processing chamber; a gas supply mechanism supported by the upper cover and installed under the dielectric window. Here, the gas supply mechanism includes a layered body including plates having through holes. Further, the gas supply mechanism is configured to supply a processing gas into the processing chamber in a horizontal direction via groove-shaped gas channels installed between the plates or between the plate and the dielectric window, and end portions of the groove-shaped gas channels are opened to edges of the through holes. | 12-01-2011 |
20110298376 | Apparatus And Method For Producing Plasma - The plasma generation device comp rising first plasma generation chamber | 12-08-2011 |
20120187844 | ELECTROSTATIC REMOTE PLASMA SOURCE - This disclosure describes systems, methods, and apparatus for capacitively coupling energy into a plasma to ignite and sustain the plasma within a remote plasma source. The power is provided by a first electrode that at least partially surrounds or is surrounded by a second electrode. The second electrode can be grounded or floating. First and second dielectric components can be arranged to separate one or both of the electrodes from the plasma and thereby DC isolate the plasma from one or both of the electrodes. | 07-26-2012 |
20120242229 | REMOTE PLASMA SOURCE GENERATING A DISC-SHAPED PLASMA - Disclosed herein are systems, methods and apparatuses for dissociating a non-activated gas through a disc-shaped plasma in a remote plasma source. Two inductive elements, one on either side of the disc-shaped plasma, generate a magnetic field that induces electric fields that sustain the disc-shaped plasma. The inductive elements can be coiled conductors having any number of loops and can be arranged in planar or vertical coils or a combination of planar and vertical coils. Additionally, the ratio of inductive element radius to gap distance between the two inductive elements can be configured to achieve a desired vertical plasma confinement. | 09-27-2012 |
20120268010 | Inductively-Coupled Plasma Device - A plasma device configured to receive ionizable media is disclosed. The plasma device includes a first pair of dielectric substrates each having an inner surface and an outer surface. The first pair of dielectric substrates is disposed in spaced, parallel relation relative to one another with the inner surfaces thereof facing one another. The device also includes a first pair of spiral coils each disposed on the inner surface of the dielectric substrates. The first pair of spiral coils is configured to couple to a power source and configured to inductively couple to an ionizable media passed therebetween to ignite the ionizable media to form a plasma effluent. | 10-25-2012 |
20130113378 | MAGNETIC FIELD REDUCTION APPARATUS AND MAGNETIC PLASMA FLOOD SYSTEM FOR ION BEAM PROCESSING - An ion beam processing system includes a plasma generator with a magnetic flood system. Magnets are provided for reducing the transverse magnetic field in the ion beam transport region of the plasma flood device so as to control charging damage or to neutralize beam space charge in ion beam processing and semiconductor ion implantation. The system is especially adapted for beam lines with ribbon beams. | 05-09-2013 |
20130154480 | HYBRID PLASMA REACTOR - A hybrid plasma reactor includes a reactor body having a plasma discharge space, a gas inlet, and a gas outlet; a hybrid plasma source including a first hybrid electrode and a second hybrid electrode, which face each other while the reactor body is positioned therebetween and provide a current path having one or more turns, to be inductively and capacitively coupled to plasma formed in the plasma discharge space; and an alternating switching power supply for supplying plasma generation power to the first hybrid electrode and the second hybrid electrode. The hybrid plasma reactor can complexly generate capacitively coupled plasma and inductively coupled plasma, thereby achieving a wide operation area from a low-pressure area to a high-pressure area. | 06-20-2013 |
20130307414 | HYBRID PLASMA REACTOR - A hybrid plasma reactor includes a reactor body having a plasma discharge space, a gas inlet, and a gas outlet; a hybrid plasma source including an inductive antenna inductively coupled to plasma formed in the plasma discharge space and a primary winding coil transformer coupled to the plasma and wound in a magnetic core; and an alternating switching power supply for supplying plasma generation power to the inductive antenna and the primary winding coil. The hybrid plasma reactor induces a plasma discharge using the inductively coupled plasma source and the transformer coupled plasma source, so that it has a wide operational area from a low pressure area to a high pressure area. | 11-21-2013 |
20130320853 | PASSIVE POWER DISTRIBUTION FOR MULTIPLE ELECTRODE INDUCTIVE PLASMA SOURCE - Systems, methods, and Apparatus for controlling the spatial distribution of a plasma in a processing chamber are disclosed. An exemplary system includes a primary inductor disposed to excite the plasma when power is actively applied to the primary inductor; at least one secondary inductor located in proximity to the primary inductor such that substantially all current that passes through the secondary inductor results from mutual inductance through the plasma with the primary inductor. In addition, at least one terminating element is coupled to the at least one secondary inductor, the at least one terminating element affecting the current through the at least one secondary inductor so as to affect the spatial distribution of the plasma. | 12-05-2013 |
20130320854 | INDUCTIVELY COUPLED PLASMA FLOOD GUN USING AN IMMERSED LOW INDUCTANCE RF COIL AND MULTICUSP MAGNETIC ARRANGEMENT - An inductively coupled radio frequency plasma flood gun having a plasma chamber with one or more apertures, a gas source capable of supplying a gaseous substance to the plasma chamber, a single-turn coil disposed within the plasma chamber, and a power source coupled to the coil for inductively coupling radio frequency electrical power to excite the gaseous substance in the plasma chamber to generate plasma. The inner surface of the plasma chamber may be free of metal-containing material and the plasma may not be exposed to any metal-containing component within the plasma chamber. The plasma chamber may include a plurality of magnets for controlling the plasma and an exit aperture to enable negatively charged particles of the resulting plasma to engage an ion beam that is part of an associated ion implantation system. Magnets are disposed on opposite sides of the aperture used to manipulate the electrons of the plasma. | 12-05-2013 |
20130328483 | MICROWAVE ICP RESONATOR - A microwave resonator for inductively generating a plasma ( | 12-12-2013 |
20140021861 | SYMMETRICAL INDUCTIVELY COUPLED PLASMA SOURCE WITH SIDE RF FEEDS AND RF DISTRIBUTION PLATES - A plasma reactor has an overhead multiple coil inductive plasma source with symmetric and radial RF feeds and cylindrical RF shielding around the symmetric and radial RF feeds. The radial RF feeds are symmetrically fed to the plasma source. | 01-23-2014 |
20140077700 | PLASMA GENERATION APPARATUS - A plasma generation apparatus includes a vacuum container, dielectrics connected to through-holes formed in the vacuum container, RF coils of the same structure disposed in the vicinity of the respective dielectrics and electrically connected in parallel, an RF power source to supply power to the RF coils, an impedance matching circuit disposed between the RF power source and the RF coils, and a power distribution unit disposed between the impedance matching circuit and one ends of the RF coils to distribute the power of the RF power source to the RF coils. The power distribution unit includes a power distribution line and a conductive outer cover enclosing the power distribution line. Distance between an input end of the power distribution unit and the RF coils are equal to each other, and the other ends of the RF coils are connected to the conductive outer cover to be grounded. | 03-20-2014 |
20140320017 | PLASMA GENERATING DEVICE, METHOD OF CONTROLLING THE SAME, AND SUBSTRATE PROCESSING DEVICE INCLUDING THE PLASMA GENERATING DEVICE - Provided is a plasma generating device. The plasma generating device includes: an RF power supply providing an RF signal; a plasma chamber providing a space where gas is injected to generate plasma; a first electromagnetic inducer installed at one portion of the plasma chamber and inducing an electromagnetic field in the plasma chamber as the RF signal is applied; a second electromagnetic inducer installed at another portion of the plasma chamber and inducing an electromagnetic field in the plasma chamber as the RF signal is applied; a first load connected to the first electromagnetic inducer; a second load connected to the second electromagnetic inducer; and a controller controlling a power supplied to the first electromagnetic inducer and the second electromagnetic inducer by adjusting at least one impedance of the first load and the second load. | 10-30-2014 |
20140346952 | REMOTE PLASMA SYSTEM HAVING SELF-MANAGEMENT FUNCTION AND SELF MANAGEMENT METHOD OF THE SAME - A remote plasma system having a self-management function measures an operating state of a remote plasma generator while a remote plasma generator operates, which generates plasma and remotely supplies the generated plasma to a process chamber, thereby allowing a process manager to check the measured operating state and performing a required process control depending on an operating state. According to the remote plasma system having the self-management function, it is possible to check operating state information of the remote plasma generator and plasma treatment process progress state information in the process chamber in real time so as to determine whether the remote plasma generator normally operates and immediately sense occurrence of an error during the operation. | 11-27-2014 |
20140354154 | Harmonic Cold Plasma Device and Associated Methods - A method for generating atmospheric pressure cold plasma inside a hand-held unit discharges cold plasma with simultaneously different rf wavelengths and their harmonics. The unit includes an rf tuning network that is powered by a low-voltage power supply connected to a series of high-voltage coils and capacitors. The rf energy signal is transferred to a primary containment chamber and dispersed through an electrode plate network of various sizes and thicknesses to create multiple frequencies. Helium gas is introduced into the first primary containment chamber, where electron separation is initiated. The energized gas flows into a secondary magnetic compression chamber, where a balanced frequency network grid with capacitance creates the final electron separation, which is inverted magnetically and exits through an orifice with a nozzle. The cold plasma thus generated has been shown to be capable of accelerating a healing process in flesh wounds on animal laboratory specimens. | 12-04-2014 |
20150108898 | HYBRID GENERATORS AND METHODS OF USING THEM - Certain embodiments described herein are directed to generators that can be used to sustain a plasma in a driven mode and in an oscillation mode and optionally in a hybrid mode. In some embodiments, the generator is configured to switch between the two modes during operation. In certain instances, the plasma may be ignited when the generator is in a driven mode and may be used to analyze samples when the generator is in an oscillation mode or driven mode or hybrid mode. | 04-23-2015 |
20150303031 | PLASMA REACTOR AND PLASMA IGNITION METHOD USING THE SAME - A plasma reactor and a plasma ignition method using the same are disclosed. The disclosed plasma reactor includes at least one magnetic core having a transformer primary winding wound thereon, an AC power supply for supplying AC power to the transformer primary winding wound on the magnetic core, at least one plasma chamber body, at which the magnetic core is installed, to directly induce a voltage in the plasma chamber body through the magnetic core, thereby inducing induced electromotive force in the plasma chamber body, and at least one floating chamber connected to the plasma chamber body via an insulating region, the induced electromotive force from the plasma chamber body being indirectly transferred to the floating chamber. Ignition of plasma is generated in accordance with a voltage difference generated between, the plasma chamber body and the floating chamber, and the ignited plasma is supplied to a process chamber. | 10-22-2015 |
20150303033 | RF Impedance Matching Network - An RF matching network includes a control circuit configured to instruct at least one EVC to alter its variable capacitance, the alteration of the variable capacitance causing the matching network to achieve a preliminary match state, the preliminary match state having an associated first reflection parameter value at an RF source output; and upon the achievement of the preliminary match state, instruct an RF source to alter a variable RF source frequency, the alteration of the variable RF source frequency causing achievement of a final match state, the final match state having an associated second reflection parameter value at the RF source output; wherein the second reflection parameter value is less than the first reflection parameter value. | 10-22-2015 |
20160020070 | PLASMA GENERATING APPARATUS USING DUAL PLASMA SOURCE AND SUBSTRATE TREATING APPARATUS INCLUDING THE SAME - Provided is a plasma generating apparatus using a dual plasma source and a substrate treating apparatus including the same. A plasma generating apparatus may include: an RF power source supplying an RF signal; a plasma chamber providing a space for generating plasma; a first plasma source disposed on a portion of the plasma chamber to generate plasma; and a second plasma source disposed on another portion of the plasma chamber to generate plasma wherein the second source comprises a plurality of gas supply loops disposed along a circumference of the plasma chamber and supplied with a process gas therein to supply the process gas to the plasma chamber; and a plurality of electromagnetic field applicators coupled to the gas supply loop and receiving the RF signal to generate plasma from the process gas. | 01-21-2016 |
20160027616 | SYSTEM AND METHOD FOR SELECTIVE COIL EXCITATION IN INDUCTIVELY COUPLED PLASMA PROCESSING REACTORS - Spatial distribution of RF power delivered to plasma in a processing chamber is controlled using an arrangement of primary and secondary inductors, wherein the current through the secondary inductors affects the spatial distribution of the plasma. The secondary inductors are configured to resonate at respectively different frequencies. A first secondary inductor is selectively excited to resonance, during a first time period within a duty cycle, by delivering power to a primary inductor at the resonant frequency of the first secondary inductor. A second secondary inductor is selectively excited to resonance, during a second time period within a duty cycle, by delivering power to a primary inductor at the resonant frequency of the second secondary inductor. The secondary inductors are isolated from one another and terminated such that substantially all current that passes through them and into the plasma results from mutual inductance with a primary inductor. | 01-28-2016 |