Class / Patent application number | Description | Number of patent applications / Date published |
310323020 |
Motor producing continual motion
| 254 |
310323210 |
Detector (e.g., sensor)
| 16 |
310323170 |
Positions an object
| 10 |
310323180 |
Device performs work on an object (e.g., welding, cutting) | 4 |
20080238255 | VIBRATION ASSISTED MACHINING SYSTEM WITH STACKED ACTUATORS - A vibration assisted machining (VAM) system, including: a frame; a vibration element mechanically coupled to the frame; a cutting tool holder connected to the vibration element; and a workpiece holder coupled to the frame. The vibration element includes a first piezoelectric (PZT) actuator and a second PZT actuator, which are adapted to generate a substantially elliptical tool path in a vibration plane of the VAM system. The VAM system also includes a third PZT actuator coupled between the frame and either the vibration element or the workpiece holder. This third PZT actuator is coupled to the frame such that its polarization axis is substantially in the vibration plane and substantially perpendicular to the feed direction of the VAM system. | 10-02-2008 |
20090146530 | SPINDLE AND FLEXIBLE HINGE USED IN ULTRASONIC MACHINE - A spindle used in an ultrasonic machine for transmitting vibration to a working tool of the ultrasonic machine is disclosed. The spindle includes a main body, a rotor disposed in the main body, an elastic clamping unit disposed in the rotor, a vibrating unit having one end thereof connected to the inner wall of the rotor while the other end connected to the elastic clamping unit, and a pre-pressure unit penetrating the rotor and one end thereof connected to the elastic clamping unit to provide the elastic clamping unit with rigidity against the rotor, thereby making the elastic clamping unit provide pre-pressure to the vibrating unit which further provides the elastic clamping unit with vibration against the rotor. The present invention further provides a flexible hinge for the spindle. | 06-11-2009 |
20100127599 | ULTRASONIC TRANSDUCER - An ultrasonic transducer comprises an elongate horn, a counterpiece, two piezoelectric drives and a screw. The counterpiece is fastened to the horn by means of the screw and thus clamps the piezoelectric drives, which are arranged on either side of a longitudinal axis of the ultrasonic transducer, between the horn and the counterpiece. The ultrasonic transducer is designed in such a way that the tip of a capillary which is clamped in the horn can oscillate in two different directions. | 05-27-2010 |
20120293044 | Ultrasonic torsional mode and longitudinal-torsional mode transducer - The present invention relates to the design of piezoelectric transducer subassemblies and systems primarily intended for medical and dental applications. The invention also provides transducer subassemblies and systems with improved performance and a capability to operate more efficiently in torsional or a combined longitudinal-torsional mode of vibration. The invention enables the size and weight of torsional mode transducers to be reduced. Additionally, the electrical characteristics of these transducer systems are improved, thus enabling the transducer end effector to deliver more power to the operative site. | 11-22-2012 |
310323190 |
Horn or transmission line | 2 |
20090001853 | ULTRASOUND TRANSDUCER MANUFACTURED BY USING MICROMACHINING PROCESS, ITS DEVICE, ENDOSCOPIC ULTRASOUND DIAGNOSIS SYSTEM THEREOF, AND METHOD FOR CONTROLLING THE SAME - An ultrasound transducer manufactured by using a micromachining process comprises: a first electrode into which a control signal for transmitting ultrasound is input; a substrate on which the first electrode is formed; a second electrode that is a ground electrode facing the first electrode with a prescribed space between the first and second electrodes; a membrane on which the second electrode is formed and which vibrates and generates the ultrasound when a voltage is applied between the first and second electrodes; a piezoelectric film contacting the membrane; and a third electrode electrically continuous to the piezoelectric film. | 01-01-2009 |
20090236938 | Ultrasonic torsional mode and longitudinal-torsional mode transducer system - The present invention relates to the design of piezoelectric transducer subassemblies and systems primarily intended for medical and dental applications. The invention also provides transducer subassemblies and systems with improved performance and a capability to operate more efficiently in torsional or a combined longitudinal-torsional mode of vibration. The invention enables the size and weight of torsional mode transducers to be reduced. Additionally, the electrical characteristics of these transducer systems are improved, thus enabling the transducer end effector to deliver more power to the operative site. | 09-24-2009 |
Entries |
Document | Title | Date |
20080284284 | RESONANT ACTUATOR - A resonant actuator includes a driving unit having a displacement element that vibrates at a resonance frequency or in a frequency range in the vicinity of a resonance frequency and having a driven member that is driven by the displacement element, in which the displacement element has a piezoelectric ceramic body made of a bismuth layered compound. The displacement direction of the displacement element is preferably substantially the same as the direction of polarization of the piezoelectric ceramic body. The bismuth layered compound is preferably oriented such that the direction of the c crystallographic axis is substantially perpendicular to the direction of polarization of the piezoelectric ceramic body. More preferably, the degree of c-axis orientation is determined to be at least about 75% by the Lotgering method. Thereby, it is possible to provide a resonant actuator having a large saturated vibration velocity, minimizing reductions in the resonance frequency fr and the mechanical quality factor Qm without the destabilization of the vibration velocity even at a high vibration velocity, and having a large amount of displacement even at a high electric field. | 11-20-2008 |
20090015099 | VIBRATION ACTUATOR AND DRIVE UNIT INCLUDING THE SAME - An ultrasonic actuator includes an actuator body, a case and a support rubber. The support rubber is made of conductive rubber having alternately stacked insulating layers and conductive layers and arranged between the case and the actuator body such that an external electrode and an electrode is brought into conduction and applies in advance a compressive force in the direction of longitudinal vibration to the actuator body at a non-node part of the vibration of the actuator body. The support rubber is arranged such that the stacking direction of the conductive rubber intersects with a plane including the direction of longitudinal vibration and the direction of bending vibration of the actuator body. | 01-15-2009 |
20090167110 | Broad band energy harvesting system and related methods - A broad band energy harvesting system to harvest energy from a structure and associated methods are provided. The system includes a structure carrying a plurality of environmentally produced vibration frequencies extending over a frequency range and an energy harvesting apparatus positioned in vibration receiving communication with the structure to harvest energy from the structure. Each energy harvesting apparatus includes broadly tuned energy harvesting generators having relatively low quality factor and corresponding relatively wide bandwidth. The energy harvesting generators collectively provide energy harvesting over multiple modes to thereby provide energy harvesting over a substantial portion of the frequency range. Each energy harvesting generator can include a cantilevered beam connected to a common backbone comprised of a resilient material configured to transfer energy between adjacent generators to further enhance energy harvesting. | 07-02-2009 |
20110095649 | VIBRATING DEVICE - A vibrating device that includes a small number of components and that has a high vibration transmission efficiency is provided. The vibrating device is fixed to a fixing member. The vibrating device includes a single elastic plate and piezoelectric vibrating plates. The elastic plate includes a fixing portion, a vibrating portion, and a connecting portion. The fixing portion is attached to the fixing member. The vibrating portion is arranged to be substantially parallel to and spaced from a fixing surface at which the fixing portion is fixed to the fixing member. The connecting portion connects an end part of the fixing portion and an end part of the vibrating portion to each other. The piezoelectric vibrating plates are provided on surfaces of the vibrating portion. | 04-28-2011 |
20110140574 | Electronic Component Device and Method for Manufacturing the Same - A vibratory device includes an elastic plate and a piezoelectric diaphragm. The elastic plate includes a fixable portion, a vibratory portion, and a connection portion. The fixable portion is fixed to a fixation member. The vibratory portion is spaced away from a fixable surface of the fixable portion that faces the fixation member and arranged substantially in parallel with the fixable surface. The connection portion connects a first end of the fixable portion in its planar direction and a first end of the vibratory portion in its planar direction. The piezoelectric diaphragm is disposed on a surface of the vibratory portion that is adjacent to the fixable portion. In a direction N normal to the surface of the vibratory portion adjacent to the fixable portion, at least part of the second piezoelectric diaphragm does not overlap the fixable portion. | 06-16-2011 |
20110156533 | ENERGY CONVERTERS AND ASSOCIATED METHODS - Energy converters and associated methods are disclosed herein. In one embodiment, an energy converter includes a first structural member spaced apart from a second structure member, a first piezoelectric element and a second piezoelectric element individually coupled to the first structural member and the second structural member, and a deflection member tensionally suspended between the first and second piezoelectric elements. The deflection member is substantially rigid. | 06-30-2011 |
20110227452 | RESONATOR ELEMENT, RESONATOR, ELECTRONIC DEVICE, AND ELECTRONIC APPARATUS - A resonator element includes at least one resonating arm that vibrates in a torsional mode, wherein the resonating arm includes a structural portion having a first portion disposed in a first direction in a sectional view in the width direction and a second portion connected to the first portion so that the center of gravity departs from the center of gravity of the first portion in the first direction and a second direction perpendicular to the first direction, wherein the first portion vibrates in a stretch mode in the length direction of the resonating arm with an application of a voltage, and wherein the second portion does not substantially vibrate in the stretch mode in the length direction of the resonating arm with the application of the voltage or vibrates in a stretch mode with a phase different from that of the first portion. | 09-22-2011 |
20110266919 | DETECTION SENSOR AND RESONATOR OF DETECTION SENSOR - A detection sensor ( | 11-03-2011 |
20120074812 | Piezoelectric Power Generator and Wireless Sensor Network Apparatus - A piezoelectric power generator that includes a piezoelectric multilayer body including a piezoelectric element that converts vibration into electricity and a substrate on which the piezoelectric multilayer body is mounted. The resonant frequency of the piezoelectric element coincides with the reference of the substrate so that the piezoelectric element efficiently vibrates. The addition of vibration portions in the substrate allows various resonant frequencies to be set. | 03-29-2012 |
20120119619 | High speed optical scanning mirror system using piezoelectric benders - A construction is presented, which is comprised of two piezoelectric bending cantilevers, of different lengths, called a first bender and a second bender respectively, in which both benders bend in opposite directions. The second bender is mechanically in series connected to the first bender, thereby increasing the rotation angle of the tip of the second bender. The length of the second bender is chosen thus that in sinusoidal excitation, the tip of the second bender remains at the same point throughout the entire cycle, while it does undergo rotation. In this fashion a virtual axis at the tip of the second bender is created. The width of both benders is chosen such that the moment that the second bender can exert on an object that is connected to it, enables the construction to drive an optical element to scanning vibratory rotary motion with a large angle at high frequencies. | 05-17-2012 |
20120146459 | VIBRATION TYPE DRIVING APPARATUS - A vibrator according to an aspect of the present invention is provided with an adjustment region which is realized with use of an electro-mechanical energy conversion element that is designed for an adjustment on a resonance frequency, and an impedance element is arranged to be connected to the adjustment region. | 06-14-2012 |
20120228996 | DRIVING APPARATUS - A driving apparatus ( | 09-13-2012 |
20120274180 | VIBRATION WAVE DRIVING APPARATUS AND MANUFACTURING METHOD OF VIBRATION BODY - A vibration wave driving apparatus according to the present invention includes a vibrator having at least a vibration body formed with a projecting portion having spring characteristics and an electro-mechanical energy conversion element, the vibration wave driving apparatus using motion of the projecting portion to drive a driven body in contact with the projecting portion, wherein the vibration body includes a base portion and the projecting portion, the projecting portion includes two wall portions formed in parallel to a direction orthogonal to a drive direction of the driven body extending in an out-of-plane direction with respect to the base portion and two wall portions formed in parallel to the drive direction of the driven body extending in an out-of-plane direction with respect to the base portion and a contact portion including a contact surface with the driven body formed by connecting the wall portions. | 11-01-2012 |
20130241351 | Thin Plate Vibration Device and a Method of Producing the Same - A thin plate type vibration device | 09-19-2013 |
20130241352 | PIEZOELECTRIC VIBRATION DEVICE AND PORTABLE TERMINAL USING THE SAME - A piezoelectric vibration device capable of allowing a low profile and generating strong vibration, and a portable terminal using the same are provided. Disclosed are a piezoelectric vibration device at least including a support body ( | 09-19-2013 |
20130278112 | VIBRATOR, VIBRATION TYPE DRIVING APPARATUS AND MANUFACTURING METHOD OF VIBRATOR - A vibrator includes an elastic body bonded to an electrical-mechanical energy converting element and including at least two contact parts, in which the at least two contact parts have convex shapes, shapes of surfaces of the at least two contact parts are part of spherical shapes, and rising directions of the at least two contact parts toward a member to be driven when the member is driven are different. | 10-24-2013 |
20130300255 | PIEZOELECTRIC VIBRATION MODULE - Disclosed herein is a piezoelectric vibration module including a vibration plate that is surrounded by an upper case and a lower case, and includes a first stopper capable of preventing direct collision between a piezoelectric element and an internal constituent member, for example, an upper plate while vibrating linearly therein. In particular, the piezoelectric vibration module may further include a second stopper in the lower case. | 11-14-2013 |
20130342075 | OPTIMIZED DEVICE FOR CONVERTING MECHANICAL ENERGY INTO ELECTRICAL ENERGY - An apparatus for converting vibratory mechanical energy into electrical energy includes a mobile mass, a support, first and second beams, the second being piezoelectric, and a junction element. The first beam extends longitudinally between the support and the mass, each of which has a beam end embedded therein. The second beam links the support and the mobile mass. Its elongation stiffness is lower than that of the first beam. The junction element extends between the beams. A first assembly, with a first bending stiffness, comprises the first beam, the second beam, and the junction element. A second assembly consists of the first assembly minus the second beam. Its bending stiffness is less than or equal to half of that of the first assembly. | 12-26-2013 |
20140015376 | PIEZOELECTRIC LINEAR MOTOR - A piezoelectric motor with improved efficiency and improved specific power is disclosed. The piezoelectric motor has two frictionally engaged components mounted in such a way that they can move relative to each other. One component is a piezoelectric element in the form of a rectangular plate with metal coatings on its main planar surfaces. This component defines electrodes, where either some or all of the electrodes have leads for connection to a source of alternating voltage. The piezoelectric element is pressed by either its peripheral surfaces or by some parts of its peripheral surfaces at least by one of its sides or a section of one of its side against a cylindrical or planar surface of the other frictionally engaged component. The shape of the piezoelectric element, the arrangement and the number of the electrodes are configured to satisfy the condition of resonant excitation in the piezoelement of the first order mode of bending vibration along the length in the plane of the piezoelement during operation of the motor in one direction, and resonant excitation of the first order mode of longitudinal vibrations along the length during operation of the motor in the opposite direction. | 01-16-2014 |
20140145560 | PIEZOELECTRIC VIBRATION MODULE - Disclosed herein is a piezoelectric vibration module including: a vibration plate mounted with a piezoelectric device and including at least one first elastic member; a lower case spaced apart from the vibration plate by a predetermined interval, disposed to be in parallel with the vibration plate, and including at least one second elastic member protruded toward the vibration plate; and an upper case having a shape of a box and including at least one third elastic member protruded toward an inner portion of the box. | 05-29-2014 |
20140292146 | PIEZOELECTRIC VIBRATION MODULE - Disclosed herein is a piezoelectric vibration module capable of improving adhesion between a piezoelectric element and an external electrode disposed on the piezoelectric element, the piezoelectric vibration module, including: a piezoelectric element printing patterns of a first internal electrode and a second internal electrode therein and having a first external electrode electrically connected to the first internal electrode and a second external electrode electrically connected to the second internal electrode on an external surface thereof, wherein the first external electrode and the second external electrode are made of silver (Ag) and are formed on the external surface of the piezoelectric element. | 10-02-2014 |
20140306576 | Surface Vibration Using Compliant Mechanical Amplifier - A displacement amplifier receives an actuation displacement signal from a piezoelectric actuator. The displacement signal is amplified by one or more stages of compliant elements, and a corresponding force is applied to a load. Wide frequency response is achieved in response to the resilience characteristics of the compliant elements that are formed from any of several materials, illustratively aluminum, steel, titanium, plastics, composites, etc., and are produced by any of several manufacturing techniques, illustratively extrusion, die casting, forging, etc. The compliant elements can be configured as plural compliant mechanical displacement amplifier stages. In bilateral arrangements displacement signals from distal ends of the motive source are applied to symmetrical, or mirror image, arrangements of compliant elements. The motive source, which may be a piezoelectric actuator, delivers its displacement signal at one end thereof to one or more compliant elements. The other end of the piezoelectric actuator can be grounded. | 10-16-2014 |
20140306577 | VIBRATION GENERATING APPARATUS - There is provided a vibration generating apparatus including: a bracket having a circular plate shape; a vibration member having a lower edge portion of a central portion fixed to the bracket and having a closed curved line shape; a piezoelectric element fixed to a lower surface of the vibration member among inner surfaces of the vibration member and deformed when power is applied thereto; and a mass body fixed to the inner surfaces of the vibration member and disposed to face the piezoelectric element. | 10-16-2014 |
20140333178 | Piezoelectric Vibrator - Disclosed is piezoelectric vibrator including a piezoelectric vibrator unit. The piezoelectric vibrator has a vibrating portion, a mass attached on the vibrating portion and having an connecting portion attached on the vibrating portion and at least one extending portion extending from the connecting portion and away from the vibrating portion, and a holder having a stopping portion disposed between the extending portion of the mass and the vibrating portion. A distance from the extending portion to the at least one stopping portion is less than the amplitude of the vibration portion for limiting the vibrating portion and avoiding excessive amplitude of the vibrating portion. | 11-13-2014 |
20140333179 | VIBRATION GENERATING APPARATUS - There is provided a vibration generating apparatus including: a piezoelectric element fixedly attached to a vibration transfer member and expanded and contracted in a direction from an inner surface thereof toward an outer surface thereof or in a direction from the outer surface thereof toward the inner surface thereof when power is applied thereto; and a vibration element connected to the piezoelectric element to vibrate. | 11-13-2014 |
20140346926 | VIBRATION GENERATING APPARATUS AND ELECTRONIC APPARATUS INCLUDING THE SAME - A vibration generating apparatus may include a housing having an internal space, an elastic member mounted in the internal space, a piezoelectric element having one surface thereof mounted on the elastic member, and a mass body fixed to the other surface of the piezoelectric element by a buffering adhesive. | 11-27-2014 |
20150008793 | VIBRATOR - There is provided a vibrator including: a housing including an internal space; an elastic member mounted within the internal space so as to be elastically deformed; and a piezo actuator mounted on one surface of the elastic member, wherein the elastic member includes a reinforcement emboss protruding toward a surface opposite to a surface on which the piezo actuator is mounted in a portion on which the piezo actuator is mounted. | 01-08-2015 |
20150015116 | ELECTROMECHANICAL POLYMER-BASED LINEAR RESONANT ACTUATOR - A linear resonant actuator includes: (a) an electromechanical polymer (EMP) actuator; (b) a substrate having a first surface and a second surface, the EMP actuator being mounted on the first surface of the substrate; (c) clamping structure provided on two sides of the substrate so as to allow the substrate to vibrate freely between the two sides of the substrate, in response to an electrical stimulation of the EMP actuator; and (d) an inertial mass element having a contact surface for attaching to the substrate at the second surface of the substrate. The inertial mass element may include contact structures provided to attach to the substrate along thin parallel lines. In one embodiment, the inertial mass element may have a “T” shape, or any suitable shape for stability. | 01-15-2015 |
20150295520 | POWER GENERATOR - A power generator including: a vibration system configured to be attached to a vibrating member; and a power generating element attached to the vibration system. The vibration system is a multiple-degree-of-freedom vibration system that includes a first vibration system having a first mass member elastically supported by a first spring member, and a second vibration system having a second mass member elastically connected to the first mass member by a second spring member. The power generating element is arranged between the first and second mass members, and vibration applied from the vibrating member causes relative displacement of the first and second mass members so that vibration energy of the vibrating member is input to the power generating element. A natural frequency of the first vibration system is different from that of the second vibration system. | 10-15-2015 |
20150303370 | PIEZOELECTRIC ACTUATOR AND APPARATUS FOR GENERATING VIBRATIONS INCLUDING THE SAME - An apparatus for generating vibrations, the apparatus including in particular a piezoelectric actuator having positive electrode layers and negative electrode layers iteratively alternately vertically laminated; piezoelectric element layers interposed between the positive electrode layers and the negative electrode layers, respectively; a positive electrode connection pillar provided in a position corresponding to less than 50% of maximum displacement in the event of driving and penetrating the electrode layers and the piezoelectric element layers to connect the positive electrode layers; and a negative electrode connection pillar provided in a position corresponding to less than 50% of maximum displacement in the event of driving and penetrating the electrode layers and the piezoelectric element layers to connect the negative electrode layers. | 10-22-2015 |
20150328664 | VIBRATOR - A vibrator is configured by fixing a vibrating member provided to be bent multiple times to be vibratable to a housing having an internal space and coupling a mass body and a piezoelectric element to the vibrating member. A natural frequency of the vibrator may be maintained and the vibrator may be miniaturized. | 11-19-2015 |
20160030978 | VIBRATION GENERATING DEVICE - There is provided a vibration generating device including: a housing having an internal space and including installation bars; a vibration member having through holes which are formed in both end portions thereof and which is fixedly attached to the installation bars by allowing upper end portions of the installation bars to penetrate through the through holes; a piezoelectric element installed on the vibration member; and a fixing unit fixing the vibration member to the installation bars. | 02-04-2016 |
20160111627 | VIBRATION DEVICE - A vibration device that includes a vibration portion, a support portion connected to the vibration portion, a bending-vibrating portion connected to the support portion, and a frame-shaped base portion connected to the bending-vibration portion and disposed so as to surround the vibration portion. The base portion defines a slit that extends in a first direction crossing a second direction in which the support portion extends from the vibration portion, the slit defining first and second fixed ends of the bending-vibrating portion and which are continuous with the base portion. A length between a portion of the bending-vibrating portion connected to the support portion to one of the first and second fixed ends of the bending-vibrating portion is in a range of λ/8 to 3λ/8, where λ denotes a wavelength of a bending vibration corresponding to a frequency of a characteristic vibration of the vibration portion. | 04-21-2016 |