Entries |
Document | Title | Date |
20080265358 | Method for patterning a detector crystal, and a semiconductor detector having a patterned crystal - A semiconductor radiation detector crystal is patterned by using a Q-switched laser to selectively remove material from a surface of said semiconductor radiation detector crystal, thus producing a groove in said surface that penetrates deeper than the thickness of a diffused layer on said surface. | 10-30-2008 |
20080308893 | IMAGERS WITH CONTACT PLUGS EXTENDING THROUGH THE SUBSTRATES THEREOF AND IMAGER FABRICATION METHODS - Methods for fabricating photoimagers, such as complementary metal-oxide-semiconductor (CMOS) imagers, include fabricating image sensing elements, transistors, and other low-elevation features on an active surface of a fabrication substrate, and fabricating contact plugs, conductive lines, external contacts, and other higher-elevation features on the back side of the fabrication substrate. Imagers with image sensing elements and transistors on the active surface and contact plugs that extend through the substrate are also disclosed, as are electronic devices including such imagers. | 12-18-2008 |
20080308894 | Electro-Optical Apparatus and a Circuit Bonding Detection Device and Detection Method Thereof - This invention provides a circuit bonding detection device, a detection method thereof and an electro-optical apparatus incorporating the circuit bonding detection device. The circuit bonding detection device includes a substrate, a circuit module, a set of sensors, and a detection unit. A plurality of contact pads is disposed on the substrate. The circuit module includes a plurality of conductive bumps corresponding to the contact pads. The sensors are disposed on two sides of at least one of contact pads or of the corresponding conductive bumps. The detection unit is electrically coupled with the set of sensors and transmits a fault signal when at least one of the contact pads and the corresponding conductive bumps deforms and contacts the sensors. | 12-18-2008 |
20090020842 | EMBEDDED BONDING PAD FOR BACKSIDE ILLUMINATED IMAGE SENSOR - The present disclosure provide a microelectronic device. The microelectronic device includes a sensing element formed in the semiconductor substrate; a trench isolation feature formed in the semiconductor substrate; a bonding pad formed at least partially in the trench isolation feature; and interconnect features formed over the sensing element and the trench isolation feature, being coupled to the sensing element and the bonding pad, and isolated from each other by interlayer dielectric. | 01-22-2009 |
20090065886 | SOLID-STATE IMAGE PICKUP DEVICE AND METHOD FOR MANUFACTURING THE SAME - In a solid-state image pickup device, a thickness of an insulating film, a width and a thickness of wirings, a length of the wirings, or a diameter of bump portions formed on the wirings is formed so that a capacitance of a capacitor structure generated between a solid-state image sensor chip, and the wirings and the bump portions is not more than a desired value. Thereby, sensitivity of the solid-state image pickup device is not lowered at high-frequency driving. | 03-12-2009 |
20090079021 | LOW OHMIC THROUGH SUBSTRATE INTERCONNECTION FOR SEMICONDUCTOR CARRIERS - It is described a low ohmic Through Wafer Interconnection (TWI) for electronic chips formed on a semiconductor substrate ( | 03-26-2009 |
20090085143 | Image sensor and method of manufacturing the same - Image sensors and methods of fabricating the same are provided. An image sensor may include a substrate, a first pad provided on a front side of the substrate, a second pad provided on a backside of the substrate, one or more contacts, each of the contacts passing through the substrate and electrically connecting the first pad with the second pad, and one or more guard rings, each of the guard rings surrounding one or more contacts and having insulating characteristics. | 04-02-2009 |
20090146239 | PHOTODIODE - A photodiode balanced in increased sensitivity and speed. The photodiode includes a semiconductor substrate, an active region formed on the semiconductor substrate, and a comb electrode connected to the active region. The comb electrode includes a plurality of electrode fingers, and each of the electrode fingers includes a transparent electrode contacting the active region, and an opaque electrode formed on the transparent electrode. Here, the width of the opaque electrode is set smaller than the width of the transparent electrode. | 06-11-2009 |
20090166788 | IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME - Provided is an image sensor and a method for manufacturing the same. In the image sensor, a semiconductor substrate has a readout circuitry formed thereon. An interlayer insulating layer including a lower metal line is on the semiconductor substrate, the lower metal line being electrically connected with the readout circuitry. A buffer insulating layer is on the interlayer insulating layer. A lower electrode penetrates the buffer insulating layer to be connected with the lower metal line. A crystalline semiconductor layer is on the buffer insulating layer, the crystalline semiconductor layer being partially connected with the lower electrode. A photodiode is in the crystalline semiconductor layer. | 07-02-2009 |
20090166789 | IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME - An image sensor includes a first substrate and a photodiode. A circuitry including a metal interconnection is formed over the first substrate. The photodiode is formed over a first substrate, and contacts the metal interconnection. The circuitry of the first substrate includes a transistor over the first substrate, an electrical junction region at a side of the transistor, and a first conduction type region. The first conduction type region is connected to the metal interconnection and contacts the electrical junction region. | 07-02-2009 |
20090194835 | IMAGE SENSOR - An image sensor capable of reducing crosstalk between pixels is provided. The image sensor includes a photoelectric converter formed in a semiconductor substrate, an interlayer insulating layer formed on the semiconductor substrate, a plurality of structures formed on the interlayer insulating layer, each of the plurality of structures including an insulating pillar, a metal interconnection formed on the insulating pillar, and a spacer formed at both sides of the metal interconnection and both sides of the insulating pillar. The plurality of structures are spaced a predetermined interval apart from each other in a longitudinal direction. The image sensor further includes an intermetal insulating layer filling spaces between the plurality of structures and covering top surfaces of the plurality of structures. | 08-06-2009 |
20090200632 | IMAGE SENSOR HAVING THROUGH VIA - One embodiment exemplarily described herein can be characterized as an image sensor including a substrate having a front surface and a rear surface; a photoelectric converting portion on the front surface of the substrate; a through via extending through the substrate, wherein the through via is electrically connected to the photoelectric converting portion; an external connection terminal on the rear surface of the substrate, wherein the external connection terminal is connected to the through via; and a light shading layer formed on a portion of the rear surface of the substrate, wherein the light shading layer is substantially opaque with respect to an external light. In some embodiments, the portion of the rear surface of the substrate on which the light shading layer is formed is not overlapped by the through via or the external connection terminal. | 08-13-2009 |
20090218651 | COMPOSITE SUBSTRATES FOR THIN FILM ELECTRO-OPTICAL DEVICES - An electro-optic device includes at least one electro-optic module having first and second conductive layers and at least first and second semiconductor layers disposed between the conductive layers. At least one optically transparent, electrically insulating base substrate is disposed on the module. The base substrate has a plurality of grooves disposed therein and an electrically conducting material filling the grooves. Electrical contact is established between the conducting material and at least one of the conducting layers of the module. | 09-03-2009 |
20090218652 | DEVICE COMPRISING ELECTRODE PAD - A pad structure | 09-03-2009 |
20090243024 | WIRING BOARD AND SOLID-STATE IMAGING DEVICE - Provided are a wiring board capable of mounting either a frontside incident type solid-state imaging element and a backside incident type solid-state imaging element and a solid-state imaging device. The wiring board | 10-01-2009 |
20090261444 | SEMICONDUCTOR DEVICE - A wiring electrically connected to a terminal to which a high power supply potential is applied and a wiring electrically connected to a terminal to which a low power supply potential is applied are formed adjacent to each other and are formed so as to surround the integrated circuit. Thus, wiring resistance can be added between the terminals and the integrated circuit and capacitance can be added between the two wirings. Even if overvoltage is applied to the terminals due to ESD or the like, the energy of the overvoltage is consumed by the wiring resistance and the added capacitor, so that damage of the integrated circuit can be suppressed. | 10-22-2009 |
20100025800 | Image Sensor and Manufacturing Method Thereof - An image sensor having greatly improved physical and electrical bonding forces between a photodiode and a substrate, and a manufacturing method thereof. The image sensor includes a semiconductor substrate and readout circuitry, a dielectric layer on the semiconductor substrate, a metal line in the dielectric layer, electrically connected with the readout circuitry, an image sensing device including first and second impurity regions on the dielectric layer, a via hole through the dielectric layer and the image sensing device, a hard mask in the via hole, and a lower electrode in the via hole to connect the first impurity region with the metal line. | 02-04-2010 |
20100038741 | SEMICONDUCTOR APPARATUS, MANUFACTURING METHOD OF SEMICONDUCTOR APPARATUS, AND CAMERA MODULE - A semiconductor apparatus includes, a semiconductor substrate having first and second main surfaces and a thought hole connecting the first and second main surfaces; a first insulation layer arranged on the first main surface, and having an opening corresponding to the thought hole; a first conductive layer arranged on the first insulation layer, and covering the thought hole; a second insulation layer arranged on an inner wall of the thought hole and the second surface; a second conductive layer arranged in the thought hole and on the second insulation layer, the second conductive layer contacting the first conductive layer; and a filling member arranged on the second conductive layer in the through hole, and having a gap between the second conductive layer on the first main surface side. | 02-18-2010 |
20100059848 | IMAGE SENSOR AND METHOD FOR MANUFACTURING THE SAME - Embodiments provide an image sensor. The image sensor includes readout circuitry, an interlayer dielectric, an interconnection, and an image sensing device. The interconnection includes a lower barrier metal and a nitride barrier formed under the lower barrier metal. A contact plug electrically connecting the lower barrier metal to a lower interconnect is formed passing through the nitride barrier. | 03-11-2010 |
20100078751 | IMAGE SENSOR AND MANUFACTURING METHOD OF IMAGE SENSOR - Disclosed are an image sensor and a method for manufacturing the same. The image sensor can include a readout circuitry on a first substrate; an interlayer dielectric layer including at least one metal and contact plug electrically connected to the readout circuitry; and an image sensing device formed on a second substrate, bonded to the interlayer dielectric layer, and provided with a first conductive type conduction layer and a second conductive type conduction layer. An uppermost contact plug in the interlayer dielectric layer has a wall structure extending from an uppermost metal in the interlayer dielectric layer. The top surface of the uppermost contact plug makes contact with the image sensing device and is connected to an image sensing device and an uppermost metal of an adjacent pixel. | 04-01-2010 |
20100078752 | Image Sensor and Method for Manufacturing the Same - An image sensor and manufacturing method thereof are provided. The image sensor includes a readout circuitry, an electrical junction region, an interconnection, and an image sensing device. The readout circuitry can be disposed at a first substrate, and the electrical junction region can be electrically connected to the readout circuitry at the first substrate. The interconnection can be disposed in an interlayer dielectric on the first substrate and electrically connected to the electrical junction region. The image sensing device can include a first conductive type layer and a second conductive type layer on the interconnection. | 04-01-2010 |
20100084730 | Front Illuminated Back Side Contact Thin Wafer Detectors - The present invention is directed toward a detector structure, detector arrays, a method of detecting incident radiation, and a method of manufacturing the detectors. The present invention comprises several embodiments that provide for reduced radiation damage susceptibility, decreased affects of cross-talk, and increased flexibility in application. In one embodiment, the present invention comprises a plurality of front side illuminated photodiodes, optionally organized in the form of an array, with both the anode and cathode contact pads on the back side. The front side illuminated, back side contact photodiodes have superior performance characteristics, including less radiation damage, less crosstalk using a suction diode, and reliance on reasonably thin wafers. Another advantage of the photodiodes of the present invention is that high density with high bandwidth applications can be effectuated. | 04-08-2010 |
20100090305 | IMAGE SENSOR AND METHOD FOR MANUFACTURING THEREOF - An image sensor and a method for manufacturing an image sensor. An image sensor may include a readout circuitry which may be formed on and/or over a first substrate. An image sensor may include an interlayer dielectric layer formed on and/or over a first substrate. An image sensor may include a metal line formed on and/or over an interlayer dielectric layer, and may include a top plug. An image sensor may include an image sensing device formed on and/or over a top plug. An image sensor may include a first conductive type ion implantation area formed on and/or over an area of an image sensing device corresponding to a top plug. Methods of manufacturing an image sensor are disclosed. | 04-15-2010 |
20100133640 | PACKAGING METHOD AND PACKAGING STRUCTURE - The invention discloses a packaging structure and packaging method. The packaging structure includes a solder bump, a pad located on a front side of a chip, and an intermediate metal layer which connects the solder bump and the pad, wherein a through hole passing from a back side of the chip to the pad is provided on the chip, and the intermediate metal layer is connected to the pad within the through hole. In the packaging structure, a through hole is formed on the back side of the chip to expose the pad on the front side of the chip and the intermediate metal layer is connected to the pad within the through hole. This provides a relatively large contacting area therebetween. The connection thus formed is more reliable and stable, compared with the prior art structure. | 06-03-2010 |
20100133641 | Image Sensor and Method for Manufacturing the Same - Provided are an image sensor and a method for manufacturing the same. The image sensor comprises a semiconductor substrate, an interconnection and an interlayer dielectric, a lower electrode layer, an image sensing device, a first via hole, a barrier pattern, a second via hole, and a metal contact. The semiconductor substrate comprises a readout circuitry. The interconnection and the interlayer dielectric are formed on the semiconductor substrate. The lower electrode layer is disposed over the interlayer dielectric. The image sensing device is disposed on the lower electrode layer. The first via hole is formed through the image sensing device. The barrier pattern is formed on a sidewall of the first via hole. The second via hole is formed through the lower electrode layer and the interlayer dielectric under the first via hole. The metal contact is formed in the first and second via holes. | 06-03-2010 |
20100133642 | SYSTEM AND METHOD FOR FORMING METAL INTERCONNECTION IN IMAGE SENSOR - A method for forming a metal interconnection in an image sensor includes forming a first interlayer dielectric (ILD) layer having a contact plug over a substrate, forming a diffusion barrier layer over the first ILD layer, performing a forming gas annealing, forming a second ILD layer over the diffusion barrier layer, etching the second ILD layer and the diffusion barrier layer to form a trench, forming a conductive layer to fill the trench, and planarizing the conductive layer to form a metal interconnection electrically connected to the contact plug | 06-03-2010 |
20100171192 | Reflowable Camera Module With Improved Reliability Of Solder Connections - A reflowable camera module has a set of solder joints formed on a bottom surface of the camera module that provide electrical signal and power connections between the camera module and a printed circuit substrate. The solder joints are susceptible to failure caused by shear forces, particularly in corner regions. Additional localized mechanical supports are provided to protect those solder joints carrying power and electrical signals for the camera module. The localized mechanical supports are formed outside of a region containing the solder joints carrying power and electrical signals. The localized mechanical supports may include dummy solder joints formed in corner regions and/or dummy leads used to support the camera module. Solder joint reliability is enhanced without requiring the use of an underfill encapsulant. | 07-08-2010 |
20100181637 | SOLID-STATE IMAGE PICKUP DEVICE AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a solid-state image pickup device according to an embodiment includes forming first and second holes in a semiconductor substrate, forming insulating films on surfaces of the first and second holes, forming a contact and an alignment mark by embedding a conducting material in the first and second holes, forming a photodiode in the semiconductor substrate, forming a wiring layer including a connecting part for connecting to the contact and a wiring for connecting to the connecting part, bonding a supporting substrate on the wiring layer, exposing the contact and the alignment mark on the surface of the semiconductor substrate by reducing the semiconductor substrate in thickness, and forming a filter and a lens on the photodiode based on the alignment mark. | 07-22-2010 |
20100213567 | METHOD FOR MANUFACTURING SOLID-STATE IMAGE SENSOR AND SOLID-STATE IMAGE SENSOR - There is provide a divided exposure technology capable of restraining deterioration in the performance of a solid-state image sensor. A photoresist is formed over a semiconductor substrate and subjected to divided exposure. A dividing line for divided exposure is located at least over a region of a semiconductor substrate in which an active region in which a pixel is to be formed is defined. The photoresist is then developed and patterned. By utilizing the patterned photoresist, an element isolation structure for defining the active region in the semiconductor substrate is formed in the semiconductor substrate. | 08-26-2010 |
20100224951 | Solid-state imaging device, method for producing the same, and electronic apparatus - A solid-state imaging device includes: a peripheral circuit element formed on a semiconductor substrate having an image sensing area where an image sensing element that captures an image of an object is provided and a peripheral area located on the periphery of the image sensing area, the peripheral circuit element being in the peripheral area; a plurality of insulation films formed to cover at least the peripheral circuit element; and a contact plug formed in a contact hole through the plurality of insulation films and above the peripheral circuit element in such a manner that the contact plug is electrically connected to the peripheral circuit element; the plurality of insulation films including a first insulation film, and a second insulation film formed to cover the first insulation film, the contact hole being formed by etching the second insulation film so as to remove a portion thereof where the contact hole is to be formed, and then etching the first insulation film so as to remove a portion thereof where the contact hole is to be formed, the first insulation film being formed to serve as an etching stopper layer during etching of the second insulation film, the first insulation film also being formed to cover a portion where the contact hole is to be formed above the peripheral circuit element, with portions other than the portion where the contact hole is to be formed above the peripheral circuit element being exposed. | 09-09-2010 |
20100230773 | SOLID-STATE IMAGE PICKUP DEVICE AND A METHOD OF MANUFACTURING THE SAME - A solid-state image pickup device includes: a silicon layer; a pixel portion formed in the silicon layer for processing and outputting signal charges obtained by carrying out photoelectric conversion for incident lights; an alignment mark formed in a periphery of the pixel portion and in the silicon layer; and a contact portion through which a first electrode within a wiring layer formed on a first surface of the silicon layer, and a second electrode formed on a second surface opposite to the first surface of the silicon layer through an insulating film are connected, wherein the alignment mark and the contact portion are formed from conductive layers made of the same conductive material and formed within respective holes each extending completely through the silicon layer through respective insulating layers made of the same material. | 09-16-2010 |
20100244175 | Image sensor and method of fabricating the same - The image sensor includes a substrate; a wiring structure formed on a front side of the substrate and including a plurality of wiring layers and a plurality of insulating films; a first well formed within the substrate and having a first conductivity type; and a first metal wiring layer directly contacting a backside of the substrate and configured to apply a first well bias to the first well. | 09-30-2010 |
20100252903 | PHOTOELECTRIC TRANSDUCER AND MANUFACTURING METHOD THEREFOR - The surrounding length of a junction separation portion can be shortened to improve an insulating resistance in order to provide a solar cell with highly efficiency. | 10-07-2010 |
20100258896 | PASSIVATED OPTICAL DETECTORS WITH FULL PROTECTION LAYER - In one example, an optoelectronic transducer includes a first contact, a second contact, a passivation layer, and a protection layer. The passivation layer is formed on top of the first contact and the second contact and is configured to substantially minimize dark current in the optoelectronic transducer. The protection layer is formed on top of the passivation layer and substantially covers the passivation layer. The protection layer is configured to protect the passivation layer from external factors and prevent degradation of the passivation layer. | 10-14-2010 |
20100289104 | PHOTOSENSOR PACKAGE - A photosensor package includes a substrate assembly, a photosensor chip mounted at the substrate assembly, a solder ball to electrically connect the photosensor chip, the substrate assembly and a printed circuit board, and a passive device mounted at the substrate assembly. | 11-18-2010 |
20100308430 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device comprises a semiconductor substrate, and a multilayer wiring structure arranged on the semiconductor substrate, the multilayer wiring structure including a plurality of first electrically conductive lines, an insulating film covering the plurality of first electrically conductive lines, and a second electrically conductive line arranged on the insulating film so as to intersect the plurality of first electrically conductive lines, wherein the insulating film has gaps in at least some of a plurality of regions where the plurality of first electrically conductive lines and the second electrically conductive line intersect each other, and a width of the gap in a direction along the second electrically conductive line is not larger than a width of the first electrically conductive line. | 12-09-2010 |
20100308431 | Mechanical Isolation For MEMS Electrical Contacts - In accordance with the disclosure, a MEMS substrate is provided that includes: a central planar portion configured to support a MEMS device; and a first electrical pad coplanar with the central planar portion, the first pad being connected to the central planar portion through a first flexure, wherein the first flexure is configured to substantially mechanically isolate the first electrical pad from the central planar portion. | 12-09-2010 |
20110024866 | CMOS IMAGE SENSOR BIG VIA BONDING PAD APPLICATION FOR AICu PROCESS - An integrated circuit includes a substrate having a bonding pad region and a non-bonding pad region. A relatively large via, called a “big via,” is formed on the substrate in the bonding region. The big via has a first dimension in a top view toward the substrate. The integrated circuit also includes a plurality of vias formed on the substrate in the non-bonding region. The plurality of vias each have a second dimension in the top view, the second dimension being substantially less than the first dimension. | 02-03-2011 |
20110024867 | CMOS IMAGE SENSOR BIG VIA BONDING PAD APPLICATION FOR AlCu PROCESS - An integrated circuit includes a substrate having a bonding pad region and a non-bonding pad region. A relatively large via, called a “big via,” is formed on the substrate in the bonding region. The big via has a first dimension in a top view toward the substrate. The integrated circuit also includes a plurality of vias formed on the substrate in the non-bonding region. The plurality of vias each have a second dimension in the top view, the second dimension being substantially less than the first dimension. | 02-03-2011 |
20110049665 | IMAGE PICKUP DEVICE AND IMAGE PICKUP APPARATUS - An image pickup device includes a plurality of first electrodes, a second electrode, a third electrode, a photoelectric conversion layer, a plurality of signal reading portions, at least one of electric potential adjusting portions. The plurality of first electrodes is arranged on an upper side of a substrate in two dimensions with a predetermined gap interposed between one of the first electrodes and another first electrode adjacent to the one of the first electrode. The second electrode is arranged next to the first electrodes arranged on an outermost side of the first electrodes with the predetermined gap interposed between the first electrodes arranged on the outermost side and the second electrode. The third electrode faces both of the plurality of first electrodes and the second electrode. The photoelectric conversion layer is disposed between the plurality of first electrodes and the second electrode and the third electrode. | 03-03-2011 |
20110057284 | CMOS IMAGE SENSOR HAVING A CURVED SEMICONDUCTOR CHIP - A digital image sensor includes a planar substrate with one or more bonding pads on one side and a silicon chip with one or more bonding pads. The silicon chip is attached on the planar substrate through the one or more bonding pads. The attachment of the silicon chip to the planar substrate is performed in a manner such that the silicon chip, when attached, has a curved shape. | 03-10-2011 |
20110062541 | HIGH MOLECULAR EXTINCTION COEFFICIENT METAL DYES - The present invention relates to novel compounds that are useful as ligands in organometallic dyes. More particularly, the invention relates to dyes comprising the compounds, said dyes being sensitizing dyes useful in solar cell technology. According to an embodiment, the present invention discloses new ruthenium dyes and their application in dye-sensitized solar cells (DSC). The referred ruthenium dyes with new structural features can be easily synthesized, show more than 85% light-to-electricity conversion efficiency and a higher than 9% cell efficiency. | 03-17-2011 |
20110073980 | LIGHT DETECTING APPARATUS - A light detecting apparatus is provided with a semiconductor substrate, a first electrode layer, and a second electrode layer. The semiconductor substrate has a first conductivity type first semiconductor region, and a second conductivity type second semiconductor region formed on the first semiconductor region and constituting a photodiode based on a pn junction formed between the first semiconductor region and the second semiconductor region. The first electrode layer is arranged above the second semiconductor region so as to be opposed to the second semiconductor region and is electrically connected to the second semiconductor region. The second electrode layer is arranged above the first electrode layer so as to be opposed to the first electrode layer and forms a capacitance component connected to the photodiode, between the first electrode layer and the second electrode layer. | 03-31-2011 |
20110073981 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present invention provides a semiconductor device formed over an insulating substrate, typically a semiconductor device having a structure in which mounting strength to a wiring board can be increased in an optical sensor, a solar battery, or a circuit using a TFT, and which can make it mount on a wiring board with high density, and further a method for manufacturing the same. According to the present invention, in a semiconductor device, a semiconductor element is formed on an insulating substrate, a concave portion is formed on a side face of the semiconductor device, and a conductive film electrically connected to the semiconductor element is formed in the concave portion. | 03-31-2011 |
20110169122 | SEMICONDUCTOR DEVICE HAVING BACKSIDE REDISTRIBUTION LAYERS AND METHOD FOR FABRICATING THE SAME - Present embodiments relate to a semiconductor device having a backside redistribution layer and a method for forming such a layer. Specifically, one embodiment includes providing a substrate comprising a via formed therein. The substrate has a front side and a backside. The embodiment may further include forming a trench on the backside of the substrate, disposing an insulating material in the trench, and forming a trace over the insulating material in the trench. | 07-14-2011 |
20110180895 | METHOD OF MANUFACTURING A CMOS IMAGE SENSOR - Disclosed is a method of manufacturing a CMOS image sensor, capable of preventing hillock-type defects caused by the delamination of interconnections from occurring in the CMOS image sensor. The method of manufacturing the CMOS image sensor includes preparing a substrate having a first metal interconnection, forming an interlayer insulation layer over the first metal interconnection, forming a contact hole to expose a part of the first metal interconnection by etching the interlayer insulation layer, forming a buffer layer on the interlayer insulation layer along an inner surface of the contact hole, performing an annealing process, forming a spacer on an inner sidewall of the contact hole by etching the buffer layer, forming a barrier metal layer along a top surface of the interlayer insulation layer including the spacer, forming a contact plug on the barrier metal layer such that the contact hole is filled with the contact plug, and forming a second metal interconnection on the interlayer insulation layer such that the second metal interconnection makes contact with the contact plug. | 07-28-2011 |
20110198719 | ELECTRONIC DEVICE COMPRISING A PLURALITY OF ELECTRONIC COMPONENTS LAID DOWN ON A SUBSTRATE AND ASSOCIATED INFRARED SENSOR - An electronic device having a plurality of electronic components placed on a substrate, each component being constituted by a portion of a layer of active material joined mechanically to the substrate by an electrically conductive joining element pertinent to it, the layer of active material having at least one trench delimiting, at least in part, groups of electronic components each having at least two components and forming successive strips, two successive strips having a common boundary. | 08-18-2011 |
20120061790 | Structure and Method of Fabricating a CZTS Photovoltaic Device by Electrodeposition - Techniques for using electrodeposition to form absorber layers in diodes (e.g., solar cells) are provided. In one aspect, a method for fabricating a diode is provided. The method includes the following steps. A substrate is provided. A backside electrode is formed on the substrate. One or more layers are electrodeposited on the backside electrode, wherein at least one of the layers comprises copper, at least one of the layers comprises zinc and at least one of the layers comprises tin. The layers are annealed in an environment containing a sulfur source to form a p-type CZTS absorber layer on the backside electrode. An n-type semiconductor layer is formed on the CZTS absorber layer. A transparent conductive layer is formed on the n-type semiconductor layer. A diode is also provided. | 03-15-2012 |
20120104536 | Imaging device package, method of manufacturing the imaging device package, and electronic apparatus - An imaging device package includes: an imaging device chip; a substrate on which the imaging device chip is mounted; a wire that electrically connects the imaging device chip and the substrate at a peripheral edge of the substrate around the imaging device chip; a supporting body that supports an optical member with respect to the substrate; and a bonding section that bonds the supporting body to the substrate while sealing the wire and a bonding terminal of the wire at the peripheral edge of the substrate. | 05-03-2012 |
20120211855 | SEMICONDUCTOR APPARATUS, MANUFACTURING APPARATUS, AND MANUFACTURING METHOD - A semiconductor apparatus includes: a first sheet-like member having a light receiving surface of an imaging device and a first connection terminal disposed thereon, the imaging device generating an image by receiving incident light from a light collecting section for collecting external light disposed thereon; a second sheet-like member having a second connection terminal to be connected to the first connection terminal provided thereon; a conductive bonding portion made of a conductive material and bonded with the first connection terminal; and a bonding wire connecting the conductive bonding portion and the second connection terminal, wherein the bonding wire is disposed along the plane of the first sheet-like member such that reflected light from the bonding wire does not impinge on the light receiving surface. | 08-23-2012 |
20120211856 | PHOTOVOLTAIC CELL CONDUCTOR CONSISTING OF TWO, HIGH-TEMPERATURE AND LOW-TEMPERATURE, SCREEN-PRINTED PARTS - Method for formation of at least one electrical conductor on a semiconductor material ( | 08-23-2012 |
20120256286 | PHOTOELECTRIC CONVERSION DEVICE AND ELECTRONIC DEVICE, AND METHOD FOR MANUFACTURING PHOTOELECTRIC CONVERSION DEVICE - A photoelectric conversion device includes: a first substrate of which end portions are cut off so as to slope or with a groove shape; a photodiode and an amplifier circuit over the first substrate; a first electrode electrically connected to the photodiode and provided over one end portion of the first substrate; a second electrode electrically connected to the amplifier circuit and provided over an another end portion of the first substrate; and a second substrate having third and fourth electrodes thereon. The first and second electrodes are attached to the third and fourth electrodes, respectively, with a conductive material provided not only at the surfaces of the first, second, third, and fourth electrodes facing each other but also at the side surfaces of the first and second electrodes to increase the adhesiveness between a photoelectric conversion device and a member on which the photoelectric conversion device is mounted. | 10-11-2012 |
20130009270 | BACKSIDE ILLUMINATION SENSOR HAVING A BONDING PAD STRUCTURE AND METHOD OF MAKING THE SAME - The present disclosure provides one embodiment of a semiconductor structure. The semiconductor structure comprises a device substrate having a front side and a back side; an interconnect structure disposed on the front side of the device substrate; and a bonding pad connected to the interconnect structure. The bonding pad comprises a recessed region in a dielectric material layer; a dielectric mesa of the dielectric material layer interposed between the recessed region; and a metal layer disposed in the recessed region and on the dielectric mesa. | 01-10-2013 |
20130147003 | PHOTOVOLTAIC DEVICE - A photovoltaic device includes a substrate, the substrate having a base region and an emitter region, the base region having a first width and the emitter region having a second width, a first electrode in contact with and electrically connected to the base region, the first electrode having a third width where it overlies the base region, the third width being greater than the first width such that the first electrode overhangs the base region at at least one side thereof, and a second electrode in contact with and electrically connected to the emitter region, the second electrode having a fourth width where it overlies the emitter region, a ratio of the third width to the fourth width being about 0.3 to about 3.4. | 06-13-2013 |
20130181317 | SEMICONDUCTOR UNIT, METHOD OF MANUFACTURING THE SEMICONDUCTOR UNIT, SOLID-STATE IMAGE PICKUP UNIT, AND ELECTRONIC APPARATUS - A semiconductor unit includes: a first device substrate including a first semiconductor substrate and a first wiring layer, in which the first wiring layer is provided on one surface side of the first semiconductor substrate; a second device substrate including a second semiconductor substrate and a second wiring layer, in which the second device substrate is bonded to the first device substrate, and the second wiring layer is provided on one surface side of the second semiconductor substrate; a through-electrode penetrating the first device substrate and a part or all of the second device substrate, and electrically connecting the first wiring layer and the second wiring layer to each other; and an insulating layer provided in opposition to the through-electrode, and penetrating one of the first semiconductor substrate and the second semiconductor substrate. | 07-18-2013 |
20130214375 | PAD AND CIRCUIT LAYOUT FOR SEMICONDUCTOR DEVICES - An apparatus includes an image sensor with a frontside and a backside. The image sensor includes an active circuit region and bonding pads. The active circuit region has a first shape that is substantially rectangular. The substantially rectangular first shape has first chamfered corners. A perimeter of the frontside of the image sensor has a second shape that is substantially rectangular. The second substantially rectangular shape has second chamfered corners. The bonding pads are disposed on the frontside of the image sensor. The bonding pads are disposed between the first chamfered corners and the second chamfered corners. The first shape is disposed inside the second shape. | 08-22-2013 |
20130214376 | APPARATUS COMBINING BYPASS DIODE AND WIRE - The present invention relates to an apparatus combining bypass diode and wire. According to the present invention, the bypass diode can connect with the wire directly. It is not necessary to reserve an extra region on the substrate of the solar cell as the wire soldering area. Thereby, the required area of the ceramic substrate is reduced, and hence lowering the manufacturing cost of the solar cell substantially. | 08-22-2013 |
20130249042 | STRUCTURE OF STACKING CHIPS AND METHOD FOR MANUFACTURING THE SAME - A structure of stacking chips and a method for manufacturing the structure of stacking chips are provided. A wafer with optical chips and a glass substrate with signal processing chips are stacked with each other, and then subjected to ball mounting and die sawing to form the stacked packaging structure. The optical chips and the signal processing chips form the electrical connection on the surface of the glass substrate via the through holes thereof. | 09-26-2013 |
20130256824 | SOLID-STATE IMAGING DEVICE, METHOD OF MANUFACTURING SOLID-STATE IMAGING DEVICE, APPARATUS FOR MANUFACTURING SEMICONDUCTOR DEVICE, METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, AND ELECTRONIC DEVICE - There is provided a solid-state imaging device including a sensor substrate having a sensor-side semiconductor layer including a pixel region in which a photoelectric conversion section is provided and a sensor-side wiring layer provided on an opposite surface side from a light receiving surface of the sensor-side semiconductor layer, a circuit substrate having a circuit-side semiconductor layer and a circuit-side wiring layer and provided on a side of the sensor-side wiring layer of the sensor substrate, a connection unit region in which a connection section is provided, the connection section having a first through electrode, a second through electrode, and a connection electrode connecting the first through electrode and the second through electrode, and an insulating layer having a step portion which has the connection electrode embedded therein and has a film thickness that gradually decreases from the connection unit region to the pixel region. | 10-03-2013 |
20140035089 | PAD DESIGN FOR CIRCUIT UNDER PAD IN SEMICONDUCTOR DEVICES - Embodiments of a semiconductor device that includes a semiconductor substrate and a cavity disposed in the semiconductor substrate that extends at least from a first side of the semiconductor substrate to a second side of the semiconductor substrate. The semiconductor device also includes an insulation layer disposed over the first side of the semiconductor substrate and coating sidewalls of the cavity. A conductive layer including a bonding pad is disposed over the insulation layer. The conductive layer extends into the cavity and connects to a metal stack disposed below the second side of the semiconductor substrate. A through silicon via pad is disposed below the second side of the semiconductor substrate and connected to the metal stack. The through silicon via pad is position to accept a through silicon via. | 02-06-2014 |
20140054739 | SEMICONDUCTOR DEVICE AND ELECTRONIC DEVICE - There is provided a semiconductor device including a substrate made from a semiconductor material, and layers that are made from plural kinds of materials and formed over the substrate. An opening portion that is formed to penetrate at least a layer formed as an insulating film among the layers formed over the substrate and expose a surface of an electrode pad is filled with aluminum or an aluminum alloy. | 02-27-2014 |
20140054740 | CMOS BOLOMETER - A method of manufacturing a semiconductor device includes forming at least one sacrificial layer on a substrate during a complementary metal-oxide-semiconductor (CMOS) process. An absorber layer is deposited on top of the at least one sacrificial layer. A portion of the at least one sacrificial layer beneath the absorber layer is removed to form a gap over which a portion of the absorber layer is suspended. The sacrificial layer can be an oxide of the CMOS process with the oxide being removed to form the gap using a selective hydrofluoric acid vapor dry etch release process. The sacrificial layer can also be a polymer layer with the polymer layer being removed to form the gap using an O | 02-27-2014 |
20140070353 | SEMICONDUCTOR PACKAGE AND METHOD OF FORMING SEMICONDUCTOR PACKAGE - A semiconductor package includes a semiconductor substrate which includes a first connection terminal electrically connected to a wiring for signal transfer. The semiconductor package may include a semiconductor support substrate which may be bonded to the semiconductor substrate such that a second connection terminal and the first connection terminal are connected to face each other, and has a through via exposing the second connection terminal. | 03-13-2014 |
20140091421 | SOLID-STATE IMAGE PICKUP ELEMENT AND SOLID-STATE IMAGE PICKUP ELEMENT MOUNTING STRUCTURE - A solid-state image pickup element is provided with a semiconductor substrate having a photosensitive region, a plurality of first electrode pads arrayed on a principal face of the semiconductor substrate, a plurality of second electrode pads arrayed in a direction along a direction in which the plurality of first electrode pads are arrayed, on the principal face of the semiconductor substrate, and a plurality of interconnections connecting the plurality of first electrode pads and the plurality of second electrode pads in one-to-one correspondence. The plurality of interconnections connect the first and second electrode pads so that each interconnection connects the first electrode pad and the second electrode pad in a positional relation of line symmetry with respect to a center line perpendicular to the array directions of the plurality of first and second electrode pads. | 04-03-2014 |
20140131828 | SOLID-STATE IMAGING APPARATUS AND METHOD FOR MANUFACTURING SAME - An insulating layer is layered above a substrate, and a plurality of pixel electrodes are formed above the insulating layer in a matrix with intervals therebetween. A photoelectric conversion layer and an opposing electrode are formed in respective order above the pixel electrodes. A dummy layer is formed above the insulating layer in a region that in plan-view is more peripheral than a pixel region in which the pixel electrodes are formed. The dummy layer is formed from the same material as the pixel electrodes. The dummy layer is composed of a plurality of dummy layer portions that are each equal to each of the pixel electrodes in terms of size in plan-view. The dummy layer functions as a support layer for planarization during polishing by chemical mechanical polishing. | 05-15-2014 |
20140183686 | AUTONOMOUS INTEGRATED CIRCUITS - An autonomous integrated circuit (IC) includes a solar cell formed on a bottom substrate of a silicon-on-insulator (SOI) substrate as a handle substrate; an insulating layer of the SOI substrate located on top of the solar cell; and a device layer formed on a top semiconductor layer of the SOI substrate located on top of the insulating layer, wherein a top contact of the device layer is electrically connected to a bottom contact of the solar cell such that the solar cell is enabled to power the device layer. | 07-03-2014 |
20140203392 | SEMICONDUCTOR RADIATION DETECTOR - A semiconductor radiation detector having a semiconductor substrate and first and second metal layers. The semiconductor substrate has substantially planar upper and lower opposing surfaces which have respective first and second surface areas. The first and second surface areas are defined by prospective dice lines. The first metal layer is on the substantially planar upper surface such that the first metal layer will have a surface area less than the first surface area of the substantially planar upper surface as defined by spaces on the substantially planar upper surface between the first metal layer and the prospective dice lines which define the first surface area. The second metal layer is on the substantially planar lower opposing surface. | 07-24-2014 |
20140231950 | METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE, AND ELECTRONIC APPARATUS - A method of manufacturing a semiconductor device, includes: forming a first circuit substrate having a first interconnection; forming a second circuit substrate having a second interconnection; bonding the first circuit substrate to the top surface of the second circuit substrate so as to be stacked facing each other; and performing an etching process of simultaneously removing parts formed on the first interconnection and the second interconnection in a stacked body of the first circuit substrate and the second circuit substrate so as to form a first opening in the top surface of the first interconnection and to form a second opening in the top surface of the second interconnection. The forming of the first circuit substrate includes forming an etching stopper layer on the surface of the first interconnection out of a material having an etching rate lower than that of the first interconnection in the etching process. | 08-21-2014 |
20140264709 | Interconnect Structure for Connecting Dies and Methods of Forming the Same - A structure includes a first chip having a first substrate, and first dielectric layers underlying the first substrate, with a first metal pad in the first dielectric layers. A second chip includes a second substrate, second dielectric layers over the second substrate and bonded to the first dielectric layers, and a second metal pad in the second dielectric layers. A conductive plug includes a first portion extending from a top surface of the first substrate to a top surface of the first metal pad, and a second portion extending from the top surface of the first metal pad to a top surface of the second metal pad. An edge of the second portion is in physical contact with a sidewall of the first metal pad. A dielectric layer spaces the first portion of the conductive plug from the first plurality of dielectric layers. | 09-18-2014 |
20140264710 | SEAL RING STRUCTURE WITH ROUNDED CORNERS FOR SEMICONDUCTOR DEVICES - Seal ring structures are provided with rounded corner junctions or corner junctions that include polygons. The seal rings surround generally rectangular semiconductor devices such as integrated circuits, image sensors and other devices. The seal ring includes a configuration of two sets of generally parallel opposed sides and the corner junctions are the junctions at which adjacent orthogonal seal ring sides are joined. The seal rings are trench structures or filled trench structures in various embodiments. The rounded corner junctions are formed by a curved arc or multiple line segments joined together at various angles. The corner junctions that include one or more enclosed polygons include polygons with at least one polygon side being formed by one of the seal ring sides. | 09-18-2014 |
20140291795 | CABLE CONNECTING STRUCTURE AND CABLE CONNECTING METHOD - The embodiments provide a cable connecting structure and a cable connecting method that can downsize a head unit. | 10-02-2014 |
20140291796 | IMAGING DEVICE, IMAGING APPARATUS, PRODUCTION APPARATUS AND METHOD, AND SEMICONDUCTOR DEVICE - There is provided an imaging device including a semiconductor having a light-receiving portion that performs photoelectric conversion of incident light, electrically conductive wirings, and a contact group including contacts that have different sizes and connect the semiconductor and the electrically conductive wirings. | 10-02-2014 |
20150054113 | SOLID-STATE IMAGE SENSING DEVICE AND PRODUCTION METHOD FOR SAME - A solid-state image sensing device includes a substrate provided with an impurity region, an insulating film formed on the substrate, and a contact electrode penetrating the insulating film to be connected to the impurity region. The contact electrode is made of polysilicon containing boron, and has a lower electrode part buried in the insulating film and an upper electrode part protruding from a top surface of the insulating film. The polysilicon constituting the contact electrode has a maximum grain size of 2 nm or more and 30 nm or less. Silicide is formed in at least a surface portion of the upper electrode part. | 02-26-2015 |
20150084150 | BALL GRID ARRAY PACKAGED CAMERA DEVICE SOLDERED TO A SUBSTRATE - An assembly that attaches a ball grid array (BGA) packaged camera device to a printed circuit board (PCB) substrate is provided. The assembly includes a spacer between the device and the substrate. The spacer is configured to prevent excessive collapse of solder balls located between the device and the substrate during reflow of the solder balls. The spacer includes one of solder mask, tape, and/or legend ink. | 03-26-2015 |
20150091124 | Dual Facing BSI Image Sensors with Wafer Level Stacking - A device includes two BSI image sensor elements and a third element. The third element is bonded in between the two BSI image sensor elements using element level stacking methods. Each of the BSI image sensor elements includes a substrate and a metal stack disposed over a first side of the substrate. The substrate of the BSI image sensor element includes a photodiode region for accumulating an image charge in response to radiation incident upon a second side of the substrate. The third element also includes a substrate and a metal stack disposed over a first side of the substrate. The metal stacks of the two BSI image sensor elements and the third element are electrically coupled. | 04-02-2015 |
20150102449 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - Provided is a semiconductor device that can suppress a leakage current more than has been achieved before. A semiconductor device | 04-16-2015 |
20150102450 | STRUCTURE AND METHOD FOR FORMING INTEGRAL NITRIDE LIGHT SENSORS ON SILICON SUBSTRATES - A semiconductor integrated circuit has one or more integral nitride-type sensors. In one embodiment, an integral nitride-type sensor and a coplanar supplemental circuit are formed from a common silicon substrate base. In another embodiment, an integral nitride-type sensor and a supplemental circuit are integrated in a vertical orientation. | 04-16-2015 |
20150145094 | CHIP PACKAGE AND METHOD FOR FORMING THE SAME - A chip package including a first substrate is provided. A plurality of first conductive pads is disposed on a first side of the first substrate. A second substrate is attached onto a second side opposite to the first side of the first substrate. The second substrate includes a micro-electric element and has a plurality of second conductive pads corresponding to the plurality of first conductive pads, disposed on a first side of the second substrate and between the first substrate and the second substrate. A redistribution layer is disposed on a second side opposite to the first side of the second substrate. The redistribution layer penetrates the second substrate, second conductive pads and the first substrate and extends into the first conductive pads to electrically connect the first and second conductive pads. | 05-28-2015 |
20150145095 | FREE-STANDING TWO-SIDED DEVICES - Devices having features deposited on two sides of a device substrate and methods for making the same. The devices are useful, for example, as the components in a macroelectronic system. In a preferred embodiment, the devices are photosensors having a plurality of electrodes patterned on a first side of the device and an electromagnetic interference filter patterned on a second side of the device. The method facilitates the fabrication of two-sided devices through the use of an immobilizing layer deposited on top of devices patterned on a first side of a device substrate; flipping the device substrate; processing the second side of the device substrate to produce patterned features on the second side of the device substrate; and releasing the devices having patterned elements on two sides of each device. | 05-28-2015 |
20150295118 | INDUCTIVE OPTICAL SENSOR UTILIZING FRONTSIDE PROCESSING OF PHOTO SENSITIVE MATERIAL - A photodetector detects the absence or presence of light by detecting a change in the inductance of a coil. The magnetic field generated when a current flows through the coil passes through an electron-hole generation region. Charged particles in the electron-hole generation region come under the influence of the magnetic field, and generate eddy currents whose magnitudes depend on whether light is absent or present. The eddy currents generate a magnetic field that opposes the magnetic field generated by current flowing through the coil. | 10-15-2015 |
20150333096 | LAMINATED SEMICONDUCTOR DEVICE - A laminated semiconductor device includes: a first semiconductor element provided with a photoelectric conversion region on its main surface; an extended portion extended outwardly from a side end surface of the first semiconductor element; a redistribution layer formed on a first surface of the extended portion; a second semiconductor element provided on the main surface of the first semiconductor element so as to extend to the extended portion from an outside of the photoelectric conversion region, the second semiconductor element being electrically connected to the first semiconductor element and the redistribution layer; and a first electrode pad formed on the redistribution layer and electrically connected to the second semiconductor element via the redistribution layer. | 11-19-2015 |
20150333097 | VERY SMALL PIXEL PITCH FOCAL PLANE ARRAY AND METHOD FOR MANUFACTURING THEREOF - A method for manufacturing an imaging device is provided. The method comprises forming a contact pad over a semiconductor substrate. The contact pad has a malleable metal. The method further comprises providing a readout circuit having a first side and a contact plug. The contact plug has a base affixed to the first side of the readout circuit and a plurality of prongs extending from the base away from the first side. The first side of the readout circuit is moved towards the substrate so that the prongs of the contact plug are pressed into the pad and displace a portion of the pad into a space defined by and between a first and a second of the prongs. Stop elements formed over the substrate are aligned with and contact stop elements provided on the readout circuit so that the prongs are inhibited from passing completely through the contact pad. | 11-19-2015 |
20150340398 | ELECTRONIC COMPONENT DEVICE - An electronic component device includes a first electronic component on which a first electrode pad is disposed, a second electronic component on which a second electrode pad having a first pad portion and a second pad portion is disposed, a first bonding wire having one end connected to the first electrode pad and the other end connected to the first pad portion, and a second bonding wire having one end connected to a connection portion between the first pad portion and the first bonding wire and the other end connected to the second pad portion. The second electrode pad is disposed on the second electronic component so that the first pad portion and the second pad portion are laid along a direction intersecting with an extending direction of the first bonding wire. The extending direction of the first bonding wire intersects with an extending direction of the second bonding wire. | 11-26-2015 |
20150349183 | MICROWAVE SIGNAL SWITCHING DEVICE, PARTICULARLY OF NANOMETRIC SIZE, AND ELECTRONIC COMPONENT INCORPORATING SUCH A DEVICE - A device for switching an electrical signal, controlled by an optical wave and having an on state and an off state, which can be inserted into a microwave transmission line, comprises a semiconductor substrate on which two conductive tracks are formed, these tracks being separated by a gap providing electrical insulation between the two tracks and each being connected to an input port and an output port, in the on state the electrical contact between the two tracks being established by illuminating the substrate in the region of the gap by means of the optical wave, the input impedance and the output impedance of said switching device being mismatched to the impedance of the transmission line in the off state and are matched to the impedance of the transmission line in the on state. | 12-03-2015 |
20160027833 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - According to one embodiment, a semiconductor device includes a semiconductor layer including a first plane and a second plane facing the first plane. A semiconductor element is formed in the semiconductor layer. The semiconductor layer includes a separation region formed to extend from the first plane to the second plane. The separation region surrounds a region where the semiconductor element is formed. The separation region includes a first separation region formed from the first plane of the semiconductor layer toward an interior of the semiconductor layer, and a second separation region formed from the second plane of the semiconductor layer to the first separation region. | 01-28-2016 |
20160126279 | SEMICONDUCTOR DEVICE AND METHOD FOR PRODUCTION OF SEMICONDUCTOR DEVICE - A semiconductor device with a connection pad in a substrate, the connection pad having an exposed surface made of a metallic material that diffuses less readily into a dielectric layer than does a metal of a wiring layer connected thereto. | 05-05-2016 |
20160126280 | SOLID-STATE IMAGE SENSOR AND IMAGING SYSTEM - At least one exemplary embodiment is directed to a solid state image sensor including at least one antireflective layer and/or non rectangular shaped wiring layer cross section to reduce dark currents and 1/f noise. | 05-05-2016 |
20160163755 | IMAGE SENSOR CHIP SIDEWALL INTERCONNECTION - An image sensor chip having a sidewall interconnect structure to bond and/or electrically couple the image sensor chip to a package substrate is provided. The image sensor chip includes a substrate supporting an integrated circuit (IC) configured to sense incident light. The sidewall interconnect structure is arranged along a sidewall of the substrate and electrically coupled with the IC. A method for manufacturing the image sensor chip and an image sensor package including the image sensor chip are also provided. | 06-09-2016 |
20160172403 | Backside Through Vias in a Bonded Structure | 06-16-2016 |
20160172404 | IMAGE SENSOR ILLUMINATED AND CONNECTED ON ITS BACK SIDE | 06-16-2016 |
20160172406 | SEMICONDUCTOR DEVICE AND SOLID-STATE IMAGING DEVICE | 06-16-2016 |
20160172407 | SOLID-STATE IMAGING DEVICE, IMAGING APPARATUS, AND METHOD OF DRIVING THE SOLID-STATE IMAGING DEVICE | 06-16-2016 |
20160181303 | SEMICONDUCTOR DEVICE AND SEMICONDUCTOR-DEVICE MANUFACTURING METHOD | 06-23-2016 |
20160190196 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device includes a first substrate, a second substrate, a plurality of through vias (TVs), and a plurality of conductive caps. The first substrate has at least one electrical component disposed thereon. The second substrate is stacked on the first substrate. The TVs extend through the second substrate to be electrically connected to the at least one electrical component of the first substrate. The conductive caps respectively cover the TVs, and the conductive caps are electrically isolated from each other. | 06-30-2016 |
20160204154 | 3DIC Interconnect Apparatus and Method | 07-14-2016 |
20160204158 | COMPLEMENTARY METAL OXIDE SEMICONDUCTOR IMAGE SENSOR DEVICE AND METHOD OF FORMING THE SAME | 07-14-2016 |
20160379962 | BOND PAD STRUCTURE FOR BONDING IMPROVEMENT - Some embodiments relate to a three-dimensional (3D) integrated circuit (IC). The 3DIC includes a first substrate including a photodetector which is configured to receive light in a first direction from a light source. An interconnect structure is disposed over the first substrate, and includes a plurality of metal layers and insulating layers that are over stacked over one another in alternating fashion. One of the plurality of metal layers is closest to the light source and another of the plurality of metal layers is furthest from the light source. A bond pad recess extends into the interconnect structure from an opening in a surface of the 3DIC which is nearest the light source and terminates at a bond pad. The bond pad is spaced apart from the surface of the 3DIC and is in direct contact with the one of the plurality of metal layers that is furthest from the light source. | 12-29-2016 |