Class / Patent application number | Description | Number of patent applications / Date published |
257438000 | Avalanche junction | 65 |
20080283953 | Negative Feedback Avalanche Diode - A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor. | 11-20-2008 |
20080303112 | IMAGING DEVICE, METHOD OF DRIVING IMAGING DEVICE, AND METHOD OF MANUFACTURING IMAGING DEVICE - An imaging device is provided and includes: a photoelectric conversion layer that has a silicon crystal structure and generates signal charges upon incidence of light; a multiplication and accumulation layer that multiplies the signal charges by a phenomenon of avalanche electron multiplication; and a wiring substrate that reads the signal charges from the multiplication and accumulation layer and transmits the read signal charges. The photoelectric conversion layer includes: a first conductive impurity layer containing first impurities in an impurity concentration; an electron acceleration layer containing the first impurities in a lower impurity concentration than the first conductive impurity layer; and a second conductive impurity layer to which a voltage is applied, the second conductive impurity layer containing second impurities and disposed on a side opposite a light incidence side of the electron acceleration layer, and an insulating layer is disposed between the electron acceleration layer and the multiplication and accumulation layer. | 12-11-2008 |
20090008738 | AVALANCHE PHOTODIODE DETECTOR - An avalanche photodiode detector is provided. The avalanche photodiode detector comprises an absorber region having an absorption layer for receiving incident photons and generating charged carriers; and a multiplier region having a multiplication layer; wherein the multiplier region is on a mesa structure separate from the absorber region and is coupled to the absorber region by a bridge for transferring charged carriers between the absorber region and multiplier region. | 01-08-2009 |
20090121306 | Photodiode Array - The present invention provides a photodiode array which can secure a sufficient aperture ratio with respect to light to be detected while restraining crosstalk between photodetecting channels even during operation in Geiger mode. In a photodiode array | 05-14-2009 |
20090146238 | CMOS-BASED PLANAR TYPE SILICON AVALANCHE PHOTO DIODE USING SILICON EPITAXIAL LAYER AND METHOD OF MANUFACTURING THE SAME - A complementary metal-oxide semiconductor (CMOS)-based planar type avalanche photo diode (APD) using a silicon epitaxial layer and a method of manufacturing the APD, the photo diode including: a substrate; a well layer of a first conductivity type formed in the substrate; an avalanche embedded junction formed in the well layer of the first conductivity type by low energy ion implantation; the silicon epitaxial layer formed in the avalanche embedded junction; a doping area of a second conductivity type opposite to the first conductive type, formed from a portion of a surface of the well layer of the first conductivity type in the avalanche embedded junction and forming a p-n junction; positive and negative electrodes formed on the doping area of the second conductivity type and the well layer of the first conductivity type separated from the doping area of the second conductivity type, respectively; and an oxide layer formed on an overall surface excluding a window where the positive and negative electrodes are formed. | 06-11-2009 |
20090206436 | SEMICONDUCTOR APPARATUS - An improved semiconductor apparatus that comprises an elongated structure that extends into the substrate. The apparatus comprises a collection contact, a resistive path, a bias connection that creates along the length of the elongated structure, an electric field component that drives signal charge carriers in a direction perpendicular to the elongated structure, and a second bias that generates a current flow that creates within the substrate a constant electric field component to drive signal charge carriers towards the collection contact on the first surface. | 08-20-2009 |
20090261441 | OPTICAL SEMICONDUCTOR DEVICE - An optical semiconductor device includes a light-receiving element on a semiconductor substrate of a first conductivity type, the light-receiving element including a light-receiving portion for converting incident light to an electrical current signal and performing a current amplification. The light-receiving portion includes: a semiconductor layer formed on the semiconductor substrate and having an impurity concentration substantially equal to or less than that of the semiconductor substrate; a first semiconductor region of a second conductivity type formed on the semiconductor layer and having an impurity concentration higher than that of the semiconductor layer; and a second semiconductor region of the first conductivity type selectively formed between the semiconductor substrate and the semiconductor layer and having an impurity concentration higher than those of the semiconductor substrate and the semiconductor layer. | 10-22-2009 |
20090283848 | Photodiode Assembly With Improved Electrostatic Discharge Damage Threshold - A photodiode with an improved electrostatic damage threshold is disclosed. A Zener or an avalanche diode is connected in parallel to a photodiode. Both diodes are integrated into the same photodiode housing. The diodes can be mounted on a common header or onto each other. An avalanche photodiode and an avalanche diode can be fabricated on a common semiconductor substrate. A regular p-n diode connected in series, cathode-to-cathode or anode-to-anode, to a Zener diode, forms a protection circuit which, when connected in parallel to a photodiode, provides a smaller electrical capacity increase as compared to a simpler circuit consisting just of a Zener or an avalanche diode. | 11-19-2009 |
20090315135 | Shallow-Trench-Isolation (STI)-Bounded Single-Photon CMOS Photodetector - Techniques and apparatus for using single photon avalanche diode (SPAD) devices in various applications. | 12-24-2009 |
20100025798 | Apparatus Comprising a Single Photon Photodetector Having Reduced Afterpulsing and Method Therefor - A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse. | 02-04-2010 |
20100065937 | Photonic power switch and method of controlling current flow in the photonic power switch and use of such photonic power switch - Photonic power switch and method of controlling current flow in the photonic power switch, the photonic power switch comprising an avalanche photo diode installed on a switch element, the switch element comprising a carrier donor layer and a channel layer. Photons are injected in the avalanche photo diode for generating electrical charge carriers by photoeffect, and the generated charge carriers are accelerated the by an electric field so as to produce an avalanche effect and are injected from the avalanche photo diode into the carrier donor layer of the switch element. A conduction layer built between the donor layer and the channel layer of the switch element is modulated, thereby modulating a current flow between a drain and a source of the power switch through said conduction layer. | 03-18-2010 |
20100133636 | SINGLE PHOTON DETECTOR AND ASSOCIATED METHODS FOR MAKING THE SAME - A semiconductor device includes a semiconductor substrate, a photon avalanche detector in the semiconductor substrate. The photon avalanche detector includes an anode of a first conductivity type and a cathode of a second conductivity type. A guard ring is in the semiconductor substrate and at least partially surrounds the photon avalanche detector. A passivation layer of the first conductivity type is in contact with the guard ring to reduce an electric field at an edge of the photon avalanche detector. | 06-03-2010 |
20100133637 | AVALANCHE PHOTODIODE - An avalanche photodiode comprises: a substrate; a semiconductor layer of a first conductivity type on the substrate; and an avalanche multiplication layer, a light absorption layer, and a window layer which are sequentially formed on the semiconductor layer, wherein apart of the window layer is a region of a second conductivity type, and the light absorption layer includes a first light absorption layer, and a second light absorption layer which has higher electric conductivity than electric conductivity of the first light absorption layer. | 06-03-2010 |
20100176477 | Negative Feedback Avalanche Diode - A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor. | 07-15-2010 |
20100276775 | SEMICONDUCTOR LIGHT RECEIVING ELEMENT - The semiconductor light receiving element | 11-04-2010 |
20100327387 | Avalanche Photodiode - A photodiode may include a first region comprising substantially intrinsic semiconductor material, the region having a first side and a second side opposite to the first side. The photodiode may also include a second region comprising highly-doped p-type semiconductor material formed proximate to the first side of the first region. The photodiode may additionally include a third region comprising highly-doped n-type semiconductor material formed proximate to the second side of the first region. The photodiode may further include a fourth region comprising one of: (i) highly-doped p-type semiconductor formed between the first region and the third region, or (ii) highly-doped n-type semiconductor formed between the first region and the second region. | 12-30-2010 |
20110018086 | LOW-LEVEL SIGNAL DETECTION BY SEMICONDUCTOR AVALANCHE AMPLIFICATION - A system and method providing for the detection of an input signal, either optical or electrical, by using a single independent discrete amplifier or by distributing the input signal into independent signal components that are independently amplified. The input signal can either be the result of photoabsorption process in the wavelengths greater than 950 nm or a low-level electrical signal. The discrete amplifier is an avalanche amplifier operable in a non-gated mode while biased in or above the breakdown region, and includes a composite dielectric feedback layer monolithically integrated with input signal detection and amplification semiconductor layers. | 01-27-2011 |
20110024863 | Mesa photodiode and method for manufacturing the same - A mesa photodiode which includes a mesa, the side wall of the mesa (a light-receiving region mesa) and at least a shoulder portion of the mesa in an upper face of the mesa are continuously covered with a semiconductor layer of a first conductivity type, a second conductivity type, a semi-insulating type, or an undoped type (an undoped InP layer, for example) that is grown on the side wall and the upper face of the mesa. In the semiconductor layer, a layer thickness D | 02-03-2011 |
20110068428 | Semiconductor photodetector and method for manufacturing the same - In order to improve reliability by preventing an edge breakdown in a semiconductor photodetector having a mesa structure such as a mesa APD, the semiconductor photodetector comprises a mesa structure formed on a first semiconductor layer of the first conduction type formed on a semiconductor substrate, the mesa structure including a light absorbing layer for absorbing light, an electric field buffer layer for dropping an electric field intensity, an avalanche multiplication layer for causing avalanche multiplication to occur, and a second semiconductor layer of the second conduction type, wherein the thickness of the avalanche multiplication layer at the portion in the vicinity of the side face of the mesa structure is made thinner than the thickness at the central portion of the mesa structure. | 03-24-2011 |
20110121423 | Concentric Ring Mask for Controlling The Shape of a Planar PN Junction - A mask for use in making a planar PN junction in a semiconductor device includes a central mask opening and a plurality of spaced apart concentric mask openings surrounding the central mask opening. The concentric mask openings each have a width less than a maximum dimension of the central mask opening. The central mask opening can be circular and the concentric mask openings can have a ring-shape. The mask can be used to form openings in a wafer layer for introducing an impurity to dope that wafer layer. | 05-26-2011 |
20110180894 | NANOSTRUCTURED PHOTODIODE - The present invention provides a photodiode comprising a p-i-n or pn junction at least partly formed by first and second regions ( | 07-28-2011 |
20110241149 | GEIGER-MODE AVALANCHE PHOTODIODE WITH HIGH SIGNAL-TO-NOISE RATIO, AND CORRESPONDING MANUFACTURING PROCESS - An embodiment of a geiger-mode avalanche photodiode includes: a body of semiconductor material, having a first surface and a second surface; a cathode region of a first type of conductivity, which extends within the body; and an anode region of a second type of conductivity, which extends within the cathode region and faces the first surface, the anode and cathode regions defining a junction. The anode region includes at least two subregions, which extend at a distance apart within the cathode region starting from the first surface, and delimit at least one gap housing a portion of the cathode region, the maximum width of the gap and the levels of doping of the two subregions and of the cathode region being such that, by biasing the junction at a breakdown voltage, a first depleted region occupies completely the portion of the cathode region within the gap. | 10-06-2011 |
20110241150 | AVALANCHE PHOTODIODE - An electron injected APD with an embedded n electrode structure in which edge breakdown can be suppressed without controlling the doping profile of an n-type region of the embedded n electrode structure with high precision. The APD comprising a buffer layer with a low ionization rate is inserted between an n electrode connecting layer and an avalanche multiplication layer. Specifically, the APD is an electron injected APD in which an n electrode layer, the n electrode connecting layer, the buffer layer, the avalanche multiplication layer, an electric field control layer, a band gap gradient layer, a low-concentration light absorbing layer, a p-type light absorbing layer, and a p electrode layer are sequentially stacked, and a light absorbing portion that includes at least the low-concentration light absorbing layer and the p-type light absorbing layer forms a mesa shape. | 10-06-2011 |
20110260277 | METHOD FOR MANUFACTURING A PHOTODIODE AND CORRESPONDING PHOTODIODE AND ELECTROMAGNETIC RADIATION DETECTOR - A photodiode capable of interacting with incident photons includes at least: a stack of three layers including an intermediate layer placed between a first semiconductor layer and a second semiconductor layer having a first conductivity type; and a region that is in contact with at least the intermediate layer and the second layer and extends transversely relative to the planes of the three layers, the region having a conductivity type that is opposite to the first conductivity type. The intermediate layer is made of a semiconductor material having a second conductivity type and is capable of having a conductivity type that is opposite to the second conductivity type so as to form a P-N junction with the region, inversion of the conductivity type of the intermediate layer being induced by dopants of the first conductivity type that are present in the first and second layers. | 10-27-2011 |
20120133014 | Avalanche Photodiode Having Controlled Breakdown Voltage - Avalanche photodiodes and methods for forming them are disclosed. The breakdown voltage of an avalanche photodiode is controlled through the inclusion of a diffusion sink that is formed at the same time as the device region of the photodiode. The device region and diffusion sink are formed by diffusing a dopant into a semiconductor to form a p-n junction in the device region. The dopant is diffused through a first diffusion window to form the device region and a second diffusion window to form the diffusion sink. The depth of the p-n junction is based on an attribute of the second diffusion window. | 05-31-2012 |
20120139071 | SILICON PHOTOMULTIPLIER AND METHOD FOR FABRICATING THE SAME - Provided are a silicon photomultiplier and method for fabricating silicon photomultiplier. The silicon photomultiplier includes a first conductive type semiconductor layer; a first conductive type buried layer disposed in a lower portion of the first conductive type semiconductor layer, and having a higher impurity concentration than the first conductive type semiconductor layer; quench resistors spaced from each other and disposed on the first conductive type semiconductor layer; a transparent insulator formed on the first conductive type semiconductor layer, and exposing the quench resistors; second conductive type doped layers disposed under the quench resistors to contact the first conductive type semiconductor layer; and a transparent electrode commonly connected to the quench resistors electrically. | 06-07-2012 |
20120199932 | LOW NOISE, STABLE AVALANCHE PHOTODIODE - Quantum avalanche photodiodes are disclosed. An avalanche photodiode in accordance with one or more embodiments of the present invention comprises an absorption region having a first dopant type, a collection region, having a second dopant type, and a multiplication region, coupled between the absorption region and the collection region, wherein a distance of the multiplication region between the absorption region and the collection region is a plurality of avalanche lengths. | 08-09-2012 |
20120248562 | Semiconductor Photodetector and Radiation Detector System - Semiconductor photodetectors are provided that may enable optimized usage of an active detector array. The semiconductor photodetectors may have a structure that can be produced and/or configured as simply as possible. A radiation detector system is also provided. | 10-04-2012 |
20120267746 | PHOTO DETECTOR ARRAY OF GEIGER MODE AVALANCHE PHOTODIODES FOR COMPUTED TOMOGRAPHY SYSTEMS - The photo detector array is configured to generate pulses with short rise and fall times because each Geiger mode avalanche photodiode includes an anode contact, a cathode contact, an output contact electrically insulated from the anode and cathode contacts, a semiconductor layer, and at least one shield or metal structure in the semiconductor layer capacitively coupled to the semiconductor layer and coupled to the output contact. The output contacts of all Geiger mode avalanche photodiodes are connected in common and are configured to provide for detection of spikes correlated to avalanche events on any avalanche photodiode of the array. | 10-25-2012 |
20120326259 | Avalanche Photodiode with Special Lateral Doping Concentration - Avalanche photodiodes having special lateral doping concentration that reduces dark current without causing any loss of optical signals and method for the fabrication thereof are described. In one aspect, an avalanche photodiode comprises: a substrate, a first contact layer coupled to at least one metal contract of a first electrical polarity, an absorption layer, a doped electric control layer having a central region and a circumferential region surrounding the central region, a multiplication layer having a partially doped central region, and a second contract layer coupled to at least one metal contract of a second electrical polarity. Doping concentration in the central section is lower than that of the circumferential region. The absorption layer can be formed by selective epitaxial growth. | 12-27-2012 |
20130009265 | PHOTON COUNTING UV-APD - An avalanche photodiode (APD) has a first semiconductor substrate having a first doping type. A first semiconductor layer is on top of the first semiconductor substrate. The first semiconductor layer is doped with the first doping type. A second epitaxial layer is on top of the first semiconductor layer. The second epitaxial layer is in-situ doped with the first doping type at a concentration higher than a concentration of the first doping type in the first semiconductor layer. A third epitaxial layer is on top of the second epitaxial layer. The third epitaxial layer is in-situ doped with a second doping type. The doping of the third epitaxial region forms a first p-n junction with the doping of the second epitaxial layer, wherein a carrier multiplication region includes the first p-n junction, and wherein the third epitaxial layer forms an absorption region for photons. A first implanted region is within the third epitaxial layer. The implanted region is doped with the second doping type. | 01-10-2013 |
20130009266 | PHOTODIODE ARRAY, METHOD FOR DETERMINING REFERENCE VOLTAGE, AND METHOD FOR DETERMINING RECOMMENDED OPERATING VOLTAGE - A reverse bias voltage is applied to a photodiode array provided with a plurality of avalanche photodiodes operated in Geiger mode and with quenching resistors connected in series to the respective avalanche photodiodes. Electric current is measured with change of the reverse bias voltage applied, and the reverse bias voltage at an inflection point in change of electric current measured is determined as a reference voltage. A voltage obtained by adding a predetermined value to the determined reference voltage is determined as a recommended operating voltage. | 01-10-2013 |
20130056843 | PHOTOMULTIPLIER AND MANUFACTURING METHOD THEREOF - Provided are a photomultiplier and a manufacturing method thereof. The manufacturing method thereof may include forming a mask layer on an active region of a substrate doped with a first conductive type, ion implanting a second conductive type impurity opposite to the first conductive type into the substrate to form a first doped region in the active region under the mask layer and an non-active region exposed from the mask layer, forming a device isolation layer on the non-active region, removing the mask layer, and ion implanting the second conductive type impurity having a concentration higher than that of the first doped region into an upper portion of the first doped region in the active region to form a second doped region shallower than the first doped region. | 03-07-2013 |
20130154044 | Single-Photon Avalanche Diode Assembly - A single-photon avalanche diode assembly, the diode including a central terminal and a peripheral terminal, the peripheral terminal being connected to an input of a comparator and to a first power supply terminal by a first resistor, the central terminal being connected by a conductive track to a second power supply terminal, a second resistor being arranged in series on said conductive track. | 06-20-2013 |
20130154045 | AVALANCHE PHOTODIODE - An APD is provided with a semi-insulating substrate, a first mesa having a first laminate constitution in which a p-type electrode layer, a p-type light absorbing layer, a light absorbing layer with a low impurity concentration, a band gap inclined layer, a p-type electric field control layer, an avalanche multiplier layer, an n-type electric field control layer, and an electron transit layer with a low impurity concentration are stacked in this order on a surface of the semi-insulating substrate, a second mesa having an outer circumference provided inside an outer circumference of the first mesa as viewed from the laminating direction and having a second laminate constitution in which an n-type electrode buffer layer and an n-type electrode layer are stacked in this order on a surface on the electron transit layer side of the first mesa, and in the APD, a total donor concentration of the n-type electric field control layer is lower than a total acceptor concentration of the p-type electric field control layer in a range of 2×10 | 06-20-2013 |
20130168793 | AVALANCHE PHOTODIODE - An APD is provided with the semi-insulating substrate, a first mesa having a first laminate constitution in which a p-type electrode layer, a p-type light absorbing layer, a light absorbing layer with a low impurity concentration, a band gap inclined layer, a p-type electric field control layer, an avalanche multiplier layer, an n-type electric field control layer, and an electron transit layer with a low impurity concentration are stacked in this order on a surface of the semi-insulating substrate, a second mesa having an outer circumference provided inside an outer circumference of the first mesa as viewed from the laminating direction and having a second laminate constitution in which an n-type electrode buffer layer and an n-type electrode layer are stacked in this order on a surface on the electron transit layer side, and a depletion control region that is provided in layers on the second mesa side relative to the p-type electric field control layer, formed in an encircling portion provided inside an outer circumference of the first mesa and encircling an outer circumference of the second mesa, and prevents the encircling portion of the p-type electric field control layer from being depleted when bias is applied. | 07-04-2013 |
20130187251 | PHOTODIODE ARRAY - A photodiode array has a plurality of photodetector channels formed on an n-type substrate having an n-type semiconductor layer, with a light to be detected being incident to the photodetector channels. The array comprises: a p | 07-25-2013 |
20130193546 | SINGLE PHOTON AVALANCHE DIODE FOR CMOS CIRCUITS - A single photon avalanche diode for use in a CMOS integrated circuit includes a deep n-well region formed above a p-type substrate and an n-well region formed above and in contact with the deep n-well region. A cathode contact is connected to the n-well region via a heavily doped n-type implant. A lightly doped region forms a guard ring around the n-well and deep n-well regions. A p-well region is adjacent to the lightly doped region. An anode contact is connected to the p-well region via a heavily doped p-type implant. The junction between the bottom of the deep n-well region and the substrate forms a multiplication region when an appropriate bias voltage is applied between the anode and cathode and the guard ring breakdown voltage is controlled with appropriate control of the lateral doping concentration gradient such that the breakdown voltage is higher than that of the multiplication region. | 08-01-2013 |
20130207216 | SEMICONDUCTOR STRUCTURE FOR A RADIATION DETECTOR AND A RADIATION DETECTOR - A semiconductor structure for a radiation detector, comprising a substrate composed of a semiconductor material of a first conductivity type, a semiconductor substrate, wherein the semiconductor substrate is provided with a semiconductor layer provided on the substrate and having a higher resistance in comparison to the substrate, of the first conductivity type, and electrically doped with a doping concentration, a plurality of doped regions, wherein the plurality of doped regions are provided in the semiconductor substrate and separated from each other, of a second conductivity type that is opposite from the first conductivity type, and electrically doped with a doping concentration that is higher than the doping concentration in the semiconductor substrate, at least one further doping region, and a cover layer is provided. | 08-15-2013 |
20130207217 | METHOD FOR FORMING A BURIED P-N JUNCTION AND ARTICLES FORMED THEREBY - Methods for forming a buried p-n junction and avalanche photodiodes incorporating same are disclosed. The method includes forming a well in a semiconductor layer, wherein a depth of the well is selected as a function of the desired shape of the p-n junction in the edge region of the avalanche photodiode. A diffusion mask is then formed on the semiconductor layer, wherein the diffusion mask includes at least two openings per APD formed, wherein one opening is a diffusion window and the other is a diffusion sink. The depth of the p-n junction in the active region of the APD is based, in part, on an attribute of the diffusion mask relating to the diffusion sink. | 08-15-2013 |
20130270666 | PHOTODIODE ARRAY - This photodiode array | 10-17-2013 |
20130328150 | ADJUSTABLE AVALANCHE DIODE IN AN INTEGRATED CIRCUIT - An avalance diode including, between two heavily-doped regions of opposite conductivity types arranged at the surface of a semiconductor region, a lightly-doped region, with length L of the lightly-doped region between the heavily-doped regions approximately ranging between 50 and 200 nm. | 12-12-2013 |
20140042581 | AVALANCHE PHOTODIODE WITH A GUARD RING STRUCTURE AND METHOD THEREOF - Disclosed are an avalanche photodiode with a guard ring structure that relieves edge breakdown by an external voltage which is applied through a metal pad which is attached to the guard ring and a manufacturing method thereof. An avalanche photodiode with a guard ring structure includes a plurality of semiconductor layers laminated on a substrate; an active region partially formed above the semiconductor layers; a guard ring which is formed above the semiconductor layers and disposed so as to be spaced apart from the active region and have a ring shape that encloses the active region; and a connecting unit formed on the semiconductor layers to be electrically connected to the guard ring so as to apply an external voltage to the guard ring region. Therefore, the external voltage is applied to the guard ring of the avalanche diode through the connecting unit to relieve the edge breakdown. | 02-13-2014 |
20140117484 | PHOTODIODE ARRAY - Each light detecting unit includes a semiconductor region that outputs a carrier, and a surface electrode. In a photodiode array, a read wire is positioned between neighboring avalanche photodiodes. When a plane including a surface of the semiconductor region is set as a reference plane, a distance tb from the reference plane to the read wire is larger than a distance to from the reference plane to the surface electrode. | 05-01-2014 |
20140131827 | AVALANCHE PHOTODIODE AND METHOD OF MANUFACTURE THEREOF - An i-type AlInAs avalanche multiplication layer is grown on an n-type InP substrate. A p-type AlInAs electric field reduction layer is grown on the i-type AlInAs avalanche multiplication layer. Transition layers are grown to cover the top surface of the electric field reduction layer. After the covering of the top surface of the electric field reduction layer by the transition layers, the temperature of the growth process is increased and an n | 05-15-2014 |
20140151839 | AVALANCHE PHOTODIODE WITH LOW BREAKDOWN VOLTAGE - An Si/Ge SACM avalanche photo-diodes (APD) having low breakdown voltage characteristics includes an absorption region and a multiplication region having various layers of particular thicknesses and doping concentrations. An optical waveguide can guide infrared and/or optical signals or energy into the absorption region. The resulting photo-generated carriers are swept into the i-Si layer and/or multiplication region for avalanche multiplication. The APD has a breakdown bias voltage of well less than 12 V and an operating bandwidth of greater than 10 GHz, and is therefore suitable for use in consumer electronic devices, high speed communication networks, and the like. | 06-05-2014 |
20140183682 | AVALANCHE PHOTODIODE-TYPE SEMICONDUCTOR STRUCTURE WITH LOW RESPONSE TIME AND PROCESS FOR PRODUCING SUCH A STRUCTURE - The invention relates to an avalanche photodiode-type semiconductor structure ( | 07-03-2014 |
20140183683 | AVALANCHE PHOTODIODE-TYPE SEMICONDUCTOR STRUCTURE AND PROCESS FOR PRODUCING SUCH A STRUCTURE - Avalanche diode-type semiconductor structure ( | 07-03-2014 |
20140252528 | SEMICONDUCTOR PHOTODETECTOR AND METHOD FOR MANUFACTURING THE SAME - In order to improve reliability by preventing an edge breakdown in a semiconductor photodetector having a mesa structure such as a mesa APD, the semiconductor photodetector comprises a mesa structure formed on a first semiconductor layer of the first conduction type formed on a semiconductor substrate, the mesa structure including a light absorbing layer for absorbing light, an electric field buffer layer for dropping an electric field intensity, an avalanche multiplication layer for causing avalanche multiplication to occur, and a second semiconductor layer of the second conduction type, wherein the thickness of the avalanche multiplication layer at the portion in the vicinity of the side face of the mesa structure is made thinner than the thickness at the central portion of the mesa structure. | 09-11-2014 |
20140291794 | MICROCHANNEL AVALANCHE PHOTODIODE (VARIANTS) - The invention is directed to an avalanche photodiode containing a substrate and semiconductor layers with various electro-physical properties having common interfaces both between themselves and with the substrate. The avalanche photodiode may be characterized by the presence in the device of at least one matrix consisting of separate solid-state areas with enhanced conductivity surrounded by semiconductor material with the same type of conductivity. The solid-state areas are located between two additional semiconductor layers, which have higher conductivity in comparison to the semiconductor layers with which they have common interfaces. The solid-state areas are generally made of the same material as the semiconductor layers surrounding them but with conductivity type that is opposite with respect to them. The solid-state areas may be made of a semiconductor with a narrow forbidden zone with respect to the semiconductor layers with which they have common interfaces. | 10-02-2014 |
20140312448 | Integrated Avalanche Photodiode Arrays - The present disclosure includes devices for detecting photons, including avalanche photon detectors, arrays of such detectors, and circuits including such arrays. In some aspects, the detectors and arrays include a virtual beveled edge mesa structure surrounded by resistive material damaged by ion implantation and having side wall profiles that taper inwardly towards the top of the mesa structures, or towards the direction from which the ion implantation occurred. Other aspects are directed to masking and multiple implantation and/or annealing steps. Furthermore, methods for fabricating and using such devices, circuits and arrays are disclosed. | 10-23-2014 |
20140312449 | LATERAL AVALANCHE PHOTODIODE DEVICE AND METHOD OF PRODUCTION - A lateral avalanche photodiode device comprises a semiconductor substrate ( | 10-23-2014 |
20140319638 | AVALANCHE PHOTODIODE - According to one aspect, there is provided an avalanche photodiode comprising a first semiconductor layer that absorbs photons of a first wavelength range and having a first energy bandgap; a second semiconductor layer that absorbs photons of a second wavelength range and having a second energy bandgap, the second energy bandgap being different from the first energy bandgap; and a control layer between the first semiconductor layer and the second semiconductor layer, the control layer having a third energy bandgap engineered to suppress carriers created from dark current. | 10-30-2014 |
20140327100 | LIGHT DETECTION DEVICE - A semiconductor light detection element has a plurality of channels, each of which consists of a photodiode array including a plurality of avalanche photodiodes operating in Geiger mode, quenching resistors connected in series to the respective avalanche photodiodes, and signal lines to which the quenching resistors are connected in parallel. A mounting substrate is configured so that a plurality of electrodes corresponding to the respective channels are arranged on a third principal surface side and so that a signal processing unit for processing output signals from the respective channels is arranged on a fourth principal surface side. In a semiconductor substrate, through-hole electrodes electrically connected to the signal lines are formed for the respective channels. The through-hole electrodes and the electrodes are electrically connected through bump electrodes. | 11-06-2014 |
20150028443 | A Ge-Si Avalanche Photodiode With Silicon Buffer Layer And Edge Electric Field Buffer Region - Various embodiments of a germanium-on-silicon (Ge—Si) avalanche photodiode are provided. In one aspect, the Ge—Si avalanche photodiode utilizes a silicon buffer layer to reduce the energy of holes drifting into absorption layer where the absorption material has lower ionization threshold, thereby suppressing multiplication noise and increasing the gain-bandwidth product of the avalanche photodiode. In another aspect, the Ge—Si avalanche photodiode utilizes an edge electric field buffer layer region to reduce the electric field along the sidewall of multiplication layer, where high electric field is applied for avalanche, thereby reducing probability of sidewall breakdown and enhancing reliability of the avalanche photodiode. | 01-29-2015 |
20150048472 | MULTI-PIXEL AVALANCHE PHOTODIODE - Semiconductor avalanche photo transistors and methods of manufacturing the same, operable for internal amplification of a photo signal and for use in detection of weak light signals, gamma rays and nuclear particles. The multi-pixel avalanche photo transistor devices can comprise a semiconductor layer, a plurality of semiconductor areas (pixels) forming a p-n-junction with the semiconductor layer, a common conductive grid separated from the semiconductor layer by a dielectric layer and individual micro-resistors connected said semiconductor areas with the common conductive grid. Systems and methods described can be operable to decrease optical crosstalk at high signal amplification and the special capacity of the multi-pixel avalanche photo transistor, as well as improve speed its photo response. | 02-19-2015 |
20150054111 | SINGLE PHOTON AVALANCHE DIODE - A first semiconductor layer serves as a first implanted layer of a first conductivity type. A second semiconductor layer of a second conductivity type is provided under the first semiconductor layer. The second conductivity type is opposite to the first conductivity type. The second semiconductor layer is buried in an epitaxial layer grown above a substrate. The second semiconductor layer becomes fully depleted when an appropriate bias voltage is applied to the device. | 02-26-2015 |
20150076647 | GALLIUM ARSENIDE AVALANCHE PHOTODIODE - An avalanche photodiode can include: an avalanche region having one or more layers prepared from GaAs; an N | 03-19-2015 |
20150333210 | LATERAL SINGLE-PHOTON AVALANCHE DIODE AND METHOD OF PRODUCING A LATERAL SINGLE-PHOTON AVALANCHE DIODE - A semiconductor body of a first type of conductivity is formed including a base layer, a first further layer on the base layer and a second further layer on the first further layer. The base layer and the second further layer have an intrinsic doping or a doping concentration that is lower than the doping concentration of the first further layer. A doped region of an opposite second type of conductivity is arranged in the semiconductor body, penetrates the first further layer and extends into the base layer and into the second further layer. Anode and cathode terminals are electrically connected to the first further layer and the doped region, respectively. The doped region can be produced by filling a trench with doped polysilicon. | 11-19-2015 |
20150340390 | SEMICONDUCTOR PHOTOMULTIPLIER - The present disclosure relates to photon detectors. In particular, the present disclosure relates to high sensitivity photon detectors such as semiconductor photomultipliers. A semiconductor photomultiplier is described which comprises an array of interconnected photosensitive microcells; and at least one dark count rate (DCR) suppression element associated with the array. | 11-26-2015 |
20150340537 | AVALANCHE PHOTODIODE SEMICONDUCTOR STRUCTURE HAVING A HIGH SIGNAL-TO-NOISE RATIO AND METHOD FOR MANUFACTURING SUCH A PHOTODIODE - A semiconductor structure, and method for manufacturing, of avalanche photodiode type for receiving electromagnetic radiation in a given wavelength range and including a first semiconductor area configured for absorption of the electromagnetic radiation, a second area configured for providing a multiplication of carriers, and a third semiconductor area in contact with the second semiconductor area. The second area includes at least two subparts with the second subpart configured to have a mean carrier multiplication rate that is more substantial than that of the first subpart. | 11-26-2015 |
20160093648 | SILICON PHOTOELECTRIC MULTIPLIER WITH VERY LOW OPTICAL CROSS-TALK AND FAST READOUT - The silicon-based photomultiplier device comprises a substrate ( | 03-31-2016 |
20160141439 | LIGHT DETECTION DEVICE - A semiconductor light detection element includes a plurality of avalanche photodiodes operating in Geiger mode and formed in a semiconductor substrate, quenching resistors connected in series to the respective avalanche photodiodes and arranged on a first principal surface side of the semiconductor substrate, and a plurality of through-hole electrodes electrically connected to the quenching resistors and formed so as to penetrate the semiconductor substrate from the first principal surface side to a second principal surface side. A mounting substrate includes a plurality of electrodes arranged corresponding to the respective through-hole electrodes on a third principal surface side. The through-hole electrodes and the electrodes are electrically connected through bump electrodes, and a side surface of the semiconductor substrate and a side surface of a glass substrate are flush with each other. | 05-19-2016 |
20160181302 | SEMICONDUCTOR PHOTOMULTIPLIER | 06-23-2016 |
20170236852 | Semiconductor Photomultiplier | 08-17-2017 |