Entries |
Document | Title | Date |
20080272442 | N+ POLY ON HIGH-K DIELECTRIC FOR SEMICONDUCTOR DEVICES - The present invention facilitates semiconductor fabrication by providing methods of fabrication that employ high-k dielectric layers. An n-type well region ( | 11-06-2008 |
20090026553 | Tunnel Field-Effect Transistor with Narrow Band-Gap Channel and Strong Gate Coupling - A semiconductor device and the methods of forming the same are provided. The semiconductor device includes a low energy band-gap layer comprising a semiconductor material; a gate dielectric on the low energy band-gap layer; a gate electrode over the gate dielectric; a first source/drain region adjacent the gate dielectric, wherein the first source/drain region is of a first conductivity type; and a second source/drain region adjacent the gate dielectric. The second source/drain region is of a second conductivity type opposite the first conductivity type. The low energy band-gap layer is located between the first and the second source/drain regions. | 01-29-2009 |
20090079013 | MOS TRANSISTOR AND METHOD FOR MANUFACTURING THE TRANSISTOR - A MOS transistor and a method for manufacturing the transistor are disclosed. The method for manufacturing the MOS transistor may include successively stacking a pad oxide layer and a mask layer on a semiconductor substrate, patterning the pad oxide layer and the mask layer, to expose a trench forming region of the semiconductor substrate, forming a trench in the semiconductor substrate by etching the exposed trench forming region, and forming an anti-diffusion layer and an oxide layer over the entire surface of the semiconductor substrate including the trench. This method can reduce leakage current, among other things, resulting in improved characteristics of transistor products. | 03-26-2009 |
20090085129 | DEFECT-FREE SOURCE/DRAIN EXTENSIONS FOR MOSFETS HAVING GERMANIUM BASED CHANNEL REGIONS - A process for forming defect-free source and drain extensions for a MOSFET built on a germanium based channel region deposits a first silicon germanium layer on a semiconductor substrate, deposits a gate dielectric layer on the silicon germanium layer, and deposits a gate electrode layer on the gate dielectric layer. A dry etch chemistry etches those layers to form a gate electrode, a gate dielectric, and a silicon germanium channel region on the semiconductor substrate. Next, an ion implantation process forms halo implant regions that consume portions of the silicon germanium channel region and the semiconductor substrate. Finally, an in-situ doped epitaxial deposition process grows a pair of silicon germanium layers having LDD regions. The silicon germanium layers are adjacent to the silicon germanium channel region and the halo implant regions do not damage any portion of the silicon germanium layers. | 04-02-2009 |
20090127636 | Diffusion Variability Control and Transistor Device Sizing Using Threshold Voltage Implant - A transistor is defined to include a substrate portion and a diffusion region defined in the substrate portion so as to provide an operable transistor threshold voltage. An implant region is defined within a portion of the diffusion region so as to transform the operable transistor threshold voltage of the diffusion region portion into an inoperably high transistor threshold voltage. A gate electrode is defined to extend over both the diffusion region and the implant region. A first portion of the gate electrode defined over the diffusion region forms a first transistor segment having the operable transistor threshold voltage. A second portion of the gate electrode defined over the implant region forms a second transistor segment having the inoperably high transistor threshold voltage. Therefore, a boundary of the implant region defines a boundary of the operable first transistor segment. | 05-21-2009 |
20090134474 | Constant Current Source Device and Method for Manufacturing The Same - The present invention discloses a constant current source device with over current and over voltage protection function that can be directly applied to AC power and DC power, and a method for manufacturing the constant current source device is also disclosed. The device includes a silicon substrate ( | 05-28-2009 |
20090134475 | Transistor Providing Different Threshold Voltages and Method of Fabrication Thereof - A transistor includes a channel region with a first portion and a second portion. A length of the first portion is smaller than a length of the second portion. The first portion has a higher threshold voltage than the second portion. The lower threshold voltage of the second portion allows for an increased ON current. Despite the increase attained in the ON current, the higher threshold voltage of the first portion maintains or lowers a relatively low OFF current for the transistor. | 05-28-2009 |
20090159987 | SEMICONDUCTOR DEVICE FOR REDUCING INTERFERENCE BETWEEN ADJOINING GATES AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes a semiconductor substrate having an active region having a plurality of recessed channel areas extending across the active region and a plurality of junction areas also extending across the active region. Gates are formed in and over the recessed channel areas of the active region. A device isolation structure is formed in the semiconductor substrate to delimit the active region, and the device isolation structure has recessed portions, each of which is formed near a junction area of the active region. Landing plugs are formed over each junction area in the active region and extend to fill the recessed portion of the device isolation structure outside the active region. The semiconductor device suppresses interference caused by an adjoining gate leading to a decrease in leakage current from a cell transistor. | 06-25-2009 |
20090184380 | Metal oxide semiconductor (MOS) transistors with increased break down voltages and methods of making the same - A transistor comprises a substrate of a first conductivity type, a drain region and a source region of a second conductivity type, a gate, a gate oxide layer, an adjustment implant region of the first conductivity type and a planar junction. The drain region and the source region are disposed in the substrate. The gate is placed over the substrate between the source region and the drain region. The gate is separated from the substrate by the gate oxide layer. The adjustment implant region is disposed under the gate oxide layer and in the substrate. A second doping concentration of the adjustment implant region is higher than a first doping concentration of the substrate. The adjustment implant region and the drain region in a predetermined shape form the planar junction with a surface curvature pointing towards the drain region to relax electrical field intensity at a location of the planar junction. | 07-23-2009 |
20090189228 | SEMICONDUCTOR TRANSISTOR WITH P TYPE RE-GROWN CHANNEL LAYER - The invention is a device for controlling conduction across a semiconductor body with a P type channel layer between active semiconductor regions of the device and the controlling gate contact. The device, often a MOSFET or an IGBT, includes at least one source, well, and drift region. The P type channel layer may be divided into sections, or divided regions, that have been doped to exhibit N type conductivity. By dividing the channel layer into regions of different conductivity, the channel layer allows better control over the threshold voltage that regulates current through the device. Accordingly, one of the divided regions in the channel layer is a threshold voltage regulating region. The threshold-voltage regulating region maintains its original P type conductivity and is available in the transistor for a gate voltage to invert a conductive zone therein. The conductive zone becomes the voltage regulated conductive channel within the device. | 07-30-2009 |
20090218637 | NON-VOLATILE SEMICONDUCTOR MEMORY DEVICE AND DEPLETION-TYPE MOS TRANSISTOR - A peripheral circuit includes at least a first transistor. The first transistor comprises a gate electrode formed on a surface of a semiconductor layer via a gate insulating film. A channel region of a first conductivity type having a first impurity concentration is formed on a surface of the semiconductor layer directly below and in the vicinity of the gate electrode. | 09-03-2009 |
20090250771 | Mosfet and production method of semiconductor device - To provide a MOSFET which is increased in substrate bias effect γ without increasing parasitic capacitance and junction leak current, the MOSFET includes: a gate electrode ( | 10-08-2009 |
20090267161 | INCREASING BODY DOPANT UNIFORMITY IN MULTI-GATE TRANSISTOR DEVICES - Techniques and structures for increasing body dopant uniformity in multi-gate transistor devices are generally described. In one example, an electronic device includes a semiconductor substrate, a multi-gate fin coupled with the semiconductor substrate, the multi-gate fin comprising a source region, a drain region, and a gate region wherein the gate region is disposed between the source region and the drain region, the gate region being body-doped after a sacrificial gate structure is removed from the multi-gate fin and before a subsequent gate structure is formed, a dielectric material coupled with the source region and the drain region of the multi-gate fin, and the subsequent gate structure coupled to the gate region of the multi-gate fin. | 10-29-2009 |
20090273040 | HIGH PERFORMANCE SCHOTTKY-BARRIER-SOURCE ASYMMETRIC MOSFETS - The present invention, in one embodiment, provides a semiconductor device including a semiconducting body including a schottky barrier region at a first end of the semiconducting body, a drain dopant region at the second end of the semiconducting body, and a channel positioned between the schottky barrier region and the drain dopant region. The semiconducting device may further include a gate structure overlying the channel of the semiconducting body. Further, a drain contact may be present to the drain dopant region of the semiconducting body, the drain contact being composed of a conductive material and in direct physical contact with a portion of a sidewall of the semiconducting body having a dimension that is less than a thickness of the semiconducting body in which the drain dopant region is positioned. | 11-05-2009 |
20100019330 | DEVICE STRUCTURES WITH A SELF-ALIGNED DAMAGE LAYER AND METHODS FOR FORMING SUCH DEVICE STRUCTURES - Device structures with a self-aligned damage layer and methods of forming such device structures. The device structure first and second doped regions of a first conductivity type defined in the semiconductor material of a substrate. A third doped region of opposite conductivity type laterally separates the first doped region from the second doped region. A gate structure is disposed on a top surface of the substrate and has a vertically stacked relationship with the third doped region. A first crystalline damage layer is defined within the semiconductor material of the substrate. The first crystalline damage layer has a first plurality of voids surrounded by the semiconductor material of the substrate. The first doped region is disposed vertically between the first crystalline damage layer and the top surface of the substrate. The first crystalline damage layer does not extend laterally into the third doped region. | 01-28-2010 |
20100025777 | METHOD FOR SUPPRESSING LATTICE DEFECTS IN A SEMICONDUCTOR SUBSTRATE - A method for suppressing the formation of leakage-promoting defects in a crystal lattice following dopant implantation in the lattice. The process provides a compressive layer of atoms, these atoms having a size greater than that of the lattice member atoms. The lattice is then annealed for a time sufficient for interstitial defect atoms to be emitted from the compressive layer, and in that manner energetically stable defects are formed in the lattice at a distance from the compressive layer. | 02-04-2010 |
20100065923 | III-NITRIDE DEVICE WITH BACK-GATE AND FIELD PLATE AND PROCESS FOR ITS MANUFACTURE - A III-Nitride device has a back-gate disposed in a trench and under and in close proximity to the 2 DEG layer and in lateral alignment with the main gate of the device. A laterally disposed trench is also disposed in a trench and under and in close proximity to the drift region between the gate and drain electrodes of the device. The back-gate is connected to the main gate and the field plate is connected to the source electrode. The back-gate can consist of a highly conductive silicon substrate. | 03-18-2010 |
20100102399 | Methods of Forming Field Effect Transistors and Devices Formed Thereby - Methods of forming field effect transistors include forming a first gate electrode on a semiconductor substrate and forming insulating spacers on sidewalls of the first gate electrode. At least a portion of the first gate electrode is then removed from between the insulating spacers to thereby expose inner sidewalls of the insulating spacers. Threshold-voltage adjusting impurities are then implanted into the semiconductor substrate, using the insulating spacers as an implant mask. These threshold-voltage adjusting impurities are selected from a group consisting of alkali metals from Group 1 of the periodic chart and halogens from Group 17 of the periodic chart. A second gate electrode is then formed between the inner sidewalls of the insulating spacers. | 04-29-2010 |
20100123203 | Tunnel Field-Effect Transistor with Metal Source - A semiconductor device includes a channel region; a gate dielectric over the channel region; and a gate electrode over the gate dielectric. A first source/drain region is adjacent the gate dielectric, wherein the first source/drain region is a semiconductor region and of a first conductivity type. A second source/drain region is on an opposite side of the channel region than the first source/drain region, wherein the second source/drain region is a metal region. A pocket region of a second conductivity type opposite the first conductivity type is horizontally between the channel region and the second source/drain region. | 05-20-2010 |
20100155858 | ASYMMETRIC EXTENSION DEVICE - The present invention discloses a semiconductor device with an asymmetric channel extension structure capable of storing charges, improving gate oxide reliability, reducing parasitic capacitance and adjusting its channel extension current or turn-on resistance. A gate dielectric is formed on the semiconductor substrate. A gate is formed on the gate dielectric. A first isolation layer is formed over the sidewall of the gate. Dielectric spacers are formed on the sidewall of the first isolation layer. And at least one of the p-n junctions of source and drain regions is formed under the dielectric spacers. A fringing field induced extension region formed adjacent to asymmetric channel under gate dielectric and close to at least one of said doped regions. A threshold voltage adjustment implantation region formed under gate dielectric An anti-punch-through implantation region formed under threshold voltage adjustment implantation region. A pocket ion implantation region formed adjacent or near to at least one of said doped regions. Silicide layer is formed on the gate or the doped regions. | 06-24-2010 |
20100164016 | ADJUSTING OF STRAIN CAUSED IN A TRANSISTOR CHANNEL BY SEMICONDUCTOR MATERIAL PROVIDED FOR THRESHOLD ADJUSTMENT - The threshold voltage of a sophisticated transistor may be adjusted by providing a specifically designed semiconductor alloy in the channel region of the transistor, wherein a negative effect of this semiconductor material with respect to inducing a strain component in the channel region may be reduced or over-compensated for by additionally incorporating a strain-adjusting species. For example, a carbon species may be incorporated in the channel region, the threshold voltage of which may be adjusted on the basis of a silicon/germanium alloy of a P-channel transistor. Consequently, sophisticated metal gate electrodes may be formed in an early manufacturing stage. | 07-01-2010 |
20100164017 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - The semiconductor device of the present invention includes: a gate insulating film formed on a semiconductor region of a first conductivity type; a gate electrode formed on the gate insulating film; and a channel doped layer of the first conductivity type formed in the semiconductor region beneath the gate electrode. The channel doped layer contains carbon as an impurity. | 07-01-2010 |
20100181629 | METHOD OF FORMING AN INTEGRATED CIRCUIT - A method includes forming a source, a drain, and a disposable gate ( | 07-22-2010 |
20100193881 | REDUCTION OF THICKNESS VARIATIONS OF A THRESHOLD SEMICONDUCTOR ALLOY BY REDUCING PATTERNING NON-UNIFORMITIES PRIOR TO DEPOSITING THE SEMICONDUCTOR ALLOY - The growth rate in a selective epitaxial growth process for depositing a threshold adjusting semiconductor alloy, such as a silicon/germanium alloy, may be enhanced by performing a plasma-assisted etch process prior to performing the selective epitaxial growth process. For example, a mask layer may be patterned on the basis of the plasma-assisted etch process, thereby simultaneously providing superior device topography during the subsequent growth process. Hence, the threshold adjusting material may be deposited with enhanced thickness uniformity, thereby reducing overall threshold variability. | 08-05-2010 |
20100200934 | FIELD EFFECT DEVICE INCLUDNG RECESSED AND ALIGNED GERMANIUM CONTAINING CHANNEL - A field effect structure and a method for fabricating the field effect structure include a germanium containing channel interposed between a plurality of source and drain regions. The germanium containing channel is coplanar with the plurality of source and drain regions, and the germanium containing channel includes a germanium containing material having a germanium content greater than the germanium content of the plurality of source and drain regions. | 08-12-2010 |
20110012208 | FIELD-EFFECT TRANSISTOR WITH LOCAL SOURCE/DRAIN INSULATION AND ASSOCIATED METHOD OF PRODUCTION - A method for fabricating a field-effect transistor with local source/drain insulation. The method includes forming and patterning a gate stack with a gate layer and a gate dielectric on a semiconductor substrate; forming source and drain depressions at the gate stack in the semiconductor substrate; forming a depression insulation layer at least in a bottom region of the source and drain depressions; and filling the at least partially insulated source and drain depressions with a filling layer for realizing source and drain regions. | 01-20-2011 |
20110042757 | INTEGRATED CIRCUIT SYSTEM WITH BAND TO BAND TUNNELING AND METHOD OF MANUFACTURE THEREOF - A method of manufacture of an integrated circuit system includes: providing a semiconductor substrate; implanting a well region, having a first conductivity, on the semiconductor substrate; patterning a gate oxide layer on the well region; implanting a source, having a second conductivity, at an angle for implanting under the gate oxide layer; selectively implanting a dopant pocket, having a third conductivity that is opposite the second conductivity, at the angle for forming the dopant pocket under the gate oxide layer; and implanting a drain, having the third conductivity, for forming a transistor channel asymmetrically positioned under the gate oxide layer. | 02-24-2011 |
20110079860 | TUNNEL FIELD EFFECT TRANSISTOR WITH IMPROVED SUBTHRESHOLD SWING - The present disclosure provides a tunnel field effect transistor (TFET) device comprising at least following segments: a highly doped drain region, a lowly doped up to undoped channel region being in contact with the drain region, the channel region having a longitudinal direction, a highly doped source region in contact with the channel region, the contact between the source region and the channel region forming a source-channel interface, a gate dielectric and a gate electrode covering along the longitudinal direction at least part of the source and channel regions, the gate electrode being situated onto the gate dielectric, not extending beyond the gate dielectric, wherein the effective gate dielectric thickness t | 04-07-2011 |
20110079861 | Advanced Transistors with Threshold Voltage Set Dopant Structures - An advanced transistor with threshold voltage set dopant structure includes a gate with length Lg and a well doped to have a first concentration of a dopant. A screening region is positioned between the well and the gate and has a second concentration of dopant greater than 5×10 | 04-07-2011 |
20110095379 | SCALING OF METAL GATE WITH ALUMINUM CONTAINING METAL LAYER FOR THRESHOLD VOLTAGE SHIFT - A method of forming a p-type semiconductor device is provided, which in one embodiment employs an aluminum containing threshold voltage shift layer to produce a threshold voltage shift towards the valence band of the p-type semiconductor device. The method of forming the p-type semiconductor device may include forming a gate structure on a substrate, in which the gate structure includes a gate dielectric layer in contact with the substrate, an aluminum containing threshold voltage shift layer present on the gate dielectric layer, and a metal containing layer in contact with at least one of the aluminum containing threshold voltage shift layer and the gate dielectric layer. P-type source and drain regions may be formed in the substrate adjacent to the portion of the substrate on which the gate structure is present. A p-type semiconductor device provided by the above-described method is also provided. | 04-28-2011 |
20110101468 | Method of manufacturing semiconductor device and semiconductor device - A semiconductor device according to the embodiments comprises a gate insulator formed on a substrate, the gate insulator including a high-dielectric film in whole or part, a reaction film including a first metal on the gate insulator; a metal film including a second metal on the reaction film; and a film including Si formed on the metal film. | 05-05-2011 |
20110127617 | PERFORMANCE ENHANCEMENT IN TRANSISTORS COMPRISING HIGH-K METAL GATE STACK BY AN EARLY EXTENSION IMPLANTATION - In sophisticated transistor elements, integrity of sensitive gate materials may be enhanced while, at the same time, the lateral offset of extension regions may be reduced. To this end, at least a portion of the extension regions may be implanted at an early manufacturing stage, i.e., in the presence of a protective liner material, which may, after forming the extension regions, be patterned into a protective spacer structure used for preserving integrity of the sensitive gate electrode structure. | 06-02-2011 |
20110127618 | PERFORMANCE ENHANCEMENT IN PFET TRANSISTORS COMPRISING HIGH-K METAL GATE STACK BY INCREASING DOPANT CONFINEMENT - In a P-channel transistor comprising a high-k metal gate electrode structure, a superior dopant profile may be obtained, at least in the threshold adjusting semiconductor material, such as a silicon/germanium material, by incorporating a diffusion blocking species, such as fluorine, prior to forming the threshold adjusting semiconductor material. Consequently, the drain and source extension regions may be provided with a high dopant concentration as required for obtaining the target Miller capacitance without inducing undue dopant diffusion below the threshold adjusting semiconductor material, which may otherwise result in increased leakage currents and increased risk of punch through events. | 06-02-2011 |
20110156171 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device includes a channel layer formed over a substrate, a gate formed over the channel layer, junction regions formed on both sides of the channel layer to protrude from the substrate, and a buried barrier layer formed between the channel layer and the junction regions. | 06-30-2011 |
20110156172 | ENHANCING DEPOSITION UNIFORMITY OF A CHANNEL SEMICONDUCTOR ALLOY BY FORMING A RECESS PRIOR TO THE WELL IMPLANTATION - When forming sophisticated gate electrode structures requiring a threshold adjusting semiconductor alloy for one type of transistor, a recess is formed in the corresponding active region, thereby providing superior process uniformity during the deposition of the semiconductor material. Moreover, the well dopant species is implanted after the recessing, thereby avoiding undue dopant loss. Due to the recess, any exposed sidewall surface areas of the active region may be avoided during the selective epitaxial growth process, thereby significantly contributing to enhanced threshold stability of the resulting transistor including the high-k metal gate stack. | 06-30-2011 |
20110156173 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - A semiconductor device includes a first pocket region and a second pocket region. The source region includes a first extension region having a concentration peak located at a first depth from a surface of the semiconductor substrate, and the first pocket region has a concentration peak located deeper than the first depth, and the drain region includes a second extension region having a concentration peak located at a second depth from the surface of the semiconductor substrate, and the second pocket region has a concentration peak located shallower than the second depth. | 06-30-2011 |
20110180883 | METHOD AND STRUCTURE TO IMPROVE BODY EFFECT AND JUNCTION CAPACITANCE - A method and structure implant a first-type impurity within a substrate to form a channel region within the substrate adjacent a top surface of the substrate; form a gate stack on the top surface of the substrate above the channel region; and implant a second-type impurity within the substrate to form source and drain regions within the substrate adjacent the top surface. The channel region is positioned between the source and drain regions. The second-type impurity has an opposite polarity with respect to the first-type impurity. The method and structure implant a greater concentration of the first-type impurity, relative to a concentration of the first-type impurity within the channel region, to form a primary body doping region within the substrate below (relative to the top surface) the channel region; and to form secondary body doping regions within the substrate below (relative to the top surface) the source and drain regions. | 07-28-2011 |
20110186937 | ADJUSTMENT OF TRANSISTOR CHARACTERISTICS BASED ON A LATE WELL IMPLANTATION - A self-aligned well implantation process may be performed so as to adjust threshold voltage and/or body resistance of transistors. To this end, after removing a placeholder material of gate electrode structures, the implantation process may be performed on the basis of appropriate process parameters to obtain the desired transistor characteristics. Thereafter, any appropriate electrode metal may be filled in, thereby providing gate electrode structures having superior performance. For example, high-k metal gate electrode structures may be formed on the basis of a replacement gate approach, while the additional late well implantation may provide a high degree of flexibility in providing different transistor versions of the same basic configuration. | 08-04-2011 |
20110193177 | ELECTRONIC DEVICE INCLUDING A DOPED REGION DISPOSED UNDER AND HAVING A HIGHER DOPANT CONCENTRATION THAN A CHANNEL REGION AND A PROCESS OF FORMING THE SAME - An electronic device can include a drain region of a transistor, a channel region of the transistor, and a doped region that is disposed under substantially all of the channel region, is not disposed under substantially all of a heavily doped portion of the drain region, and has a higher dopant concentration compared to the channel region. A process of forming an electronic device can include forming a drain region, a channel region, and a doped region, wherein the drain region has a conductivity type opposite that of the channel and doped region. After forming the drain, channel, and doped regions, the doped region is disposed under substantially all of the channel region, the doped region is not disposed under substantially all of a heavily doped portion of the drain region, and the drain region is laterally closer to the doped region than to the channel region. | 08-11-2011 |
20110215421 | METHOD OF FABRICATING SEMICONDUCTOR DEVICE - A method of fabricating a semiconductor device includes forming a gate dielectric layer comprising an oxide, and at least one conductive layer on a substrate, forming a mask on the conductive layer and patterning the at least one conductive layer by etching the at least one conductive layer using the mask as an etch mask to thereby form a gate electrode, wherein the oxide of the gate dielectric layer and the material of the at least one conductive layer are selected such that a byproduct of the etching of the at least one conductive layer, formed on the mask during the etching of the at least one conductive layer, comprises an oxide having a higher etch rate with respect to an etchant than the oxide of the gate dielectric layer. | 09-08-2011 |
20110215422 | PENETRATING IMPLANT FOR FORMING A SEMICONDUCTOR DEVICE - A semiconductor device and method to form a semiconductor device is described. The semiconductor includes a gate stack disposed on a substrate. Tip regions are disposed in the substrate on either side of the gate stack. Halo regions are disposed in the substrate adjacent the tip regions. A threshold voltage implant region is disposed in the substrate directly below the gate stack. The concentration of dopant impurity atoms of a particular conductivity type is approximately the same in both the threshold voltage implant region as in the halo regions. The method includes a dopant impurity implant technique having sufficient strength to penetrate a gate stack. | 09-08-2011 |
20110233687 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - A semiconductor device manufacturing method includes forming a channel dope layer having a first electric conductive-type inside of a semiconductor substrate, the channel dope layer being formed in a region except for a drain impurity region where dopant impurities for forming a low-concentration drain region are introduced, and the channel dope layer being separated from the drain impurity region; forming a gate electrode on the semiconductor substrate via a gate insulating film; and forming a low-concentration source region inside of the semiconductor substrate on a first side of the gate electrode, and forming a low-concentration drain region in the drain impurity region of the semiconductor substrate on a second side of the gate electrode, by introducing second electric conductive dopant impurities inside of the semiconductor substrate with the gate electrode as a mask. | 09-29-2011 |
20110241127 | Well implant through dummy gate oxide in gate-last process - The present disclosure relates to methods for fabricating a field-effect transistor. The method includes performing a pocket implantation to a semiconductor substrate; thereafter forming a polysilicon layer on the semiconductor substrate; and patterning the polysilicon layer to form a polysilicon gate. | 10-06-2011 |
20110303990 | Semiconductor Device and Method Making Same - A FET comprising an LDD region having a high overlap extension beneath the gate thereof and a pit region on the surface of the substrate immediately below the gate and entirely surrounded by said LDD region. The surface dopant concentration is in the vicinity of the gate corner so as to reduce the local field strength, and thereby decrease the GIDL, whilst keeping high overlap extension so a to maintain a high Ion current. More particularly a region under the gate corner but enclosed by the conventional LDD is counterdoped. Counter-doping of the LDD is performed with a sufficiently low energy, a specific dose and a low angle that the counter-doped region is enclosed into the LDD (at the substrate/gate-oxide interface and keeping high overlap extension between the gate oxide and the non-counter-doped LDD). As an optimum, the counter-doped region is under the gate corner. In that way, high Ion current is ensure with a overlap length is not altered. | 12-15-2011 |
20120007194 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME IN WHICH VARIATIONS ARE REDUCED AND CHARACTERISTICS ARE IMPROVED - A method of manufacturing N-type MOSFET includes: implanting a p-type dopant into in a surface layer of a semiconductor substrate to form a channel region; forming a gate insulating film including High-k material and a gate electrode on said channel region; implanting a p-type dopant into both ends of said channel region in an inner portion of said semiconductor substrate to form halo regions; implanting a p-type dopant into both ends of said channel region in a surface layer of said semiconductor substrate to form extension regions. One of said step of forming said channel region and said step of forming halo regions includes: implanting C into one of said channel region and said halo regions. An inclusion amount of said High-k material is an amount that increase of a threshold voltage caused by said High-k material being included in said gate insulating film compensates for decrease of said threshold voltage caused by said C being implanted. | 01-12-2012 |
20120038006 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - The present application discloses a semiconductor device comprising a fin of semiconductive material formed from a semiconductor layer over a semiconductor substrate and having two opposing sides perpendicular to the main surface of the semiconductor substrate; a source region and a drain region provided in the semiconductor substrate adjacent to two ends of the fin and being bridged by the fin; a channel region provided at the central portion of the fin; and a stack of gate dielectric and gate conductor provided at one side of the fin, where the gate conductor is isolated from the channel region by the gate dielectric, and wherein the stack of gate dielectric and gate conductor extends away from the one side of the fin in a direction parallel to the main surface of the semiconductor substrate, and insulated from the semiconductor substrate by an insulating layer. The semiconductor device has an improved short channel effect and a reduced parasitic capacitance and resistance, which contributes to an improved electrical property and facilitates scaling down of the transistor. | 02-16-2012 |
20120056275 | HIGH PERFORMANCE LOW POWER BULK FET DEVICE AND METHOD OF MANUFACTURE - A method of forming a semiconductor device includes: forming a channel of a field effect transistor (FET) in a substrate; forming a heavily doped region in the substrate; and forming recesses adjacent the channel and the heavily doped region. The method also includes: forming an undoped or lightly doped intermediate layer in the recesses on exposed portions of the channel and the heavily doped region; and forming source and drain regions on the intermediate layer such that the source and drain regions are spaced apart from the heavily doped region by the intermediate layer. | 03-08-2012 |
20120080759 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE - A first transistor includes a first impurity layer of a first conduction type formed in a first region of a semiconductor substrate, a first epitaxial semiconductor layer formed above the first impurity layer, a first gate insulating film formed above the first epitaxial semiconductor layer, a first gate electrode formed above the first gate insulating film, and first source/drain regions of a second conduction type formed in the first epitaxial semiconductor layer and in the semiconductor substrate in the first region. A second transistor includes a second impurity layer of the first conduction type formed in a second region of the semiconductor substrate, a second epitaxial semiconductor layer formed above the second impurity layer and being thinner than the first epitaxial semiconductor layer, a second gate insulating film formed above the second epitaxial semiconductor layer, a second gate electrode formed above the second gate insulating film, and second source/drain regions of the second conduction type formed in the second epitaxial semiconductor layer and in the semiconductor substrate in the second region. | 04-05-2012 |
20120098072 | Semiconductor Devices Having Lightly Doped Channel Impurity Regions - Semiconductor devices are provided including a gate across an active region of a substrate; a source region and a drain region in the active region on either side of the gate and spaced apart from each other; a main channel impurity region in the active region between the source and drain regions and having a first channel impurity concentration; and a lightly doped channel impurity region in the active region adjacent to the drain region. The lightly doped channel impurity region has the same conductivity type as the main channel impurity region and a second channel impurity concentration, lower than the first channel impurity concentration. The lightly doped channel impurity region and the main channel impurity region contain a first element. The lightly doped channel impurity region also contains a second element, which is a different Group element from the first element. | 04-26-2012 |
20120126340 | CMOS Devices With Reduced Short Channel Effects - An MOS transistor includes a doping profile that selectively increases the dopant concentration of the body region. The doping profile has a shallow portion that increases the dopant concentration of the body region just under the surface of the transistor under the gate, and a deep portion that increases the dopant concentration of the body region under the source and drain regions. The doping profile may be formed by implanting dopants through the gate, source region, and drain region. The dopants may be implanted in a high energy ion implant step through openings of a mask that is also used to perform another implant step. The dopants may also be implanted through openings of a dedicated mask. | 05-24-2012 |
20120126341 | USING LOW PRESSURE EPI TO ENABLE LOW RDSON FET - A method for forming an epitaxial layer on a substrate may have the steps of: forming a heavily doped silicon substrate; depositing an epitaxial layer at sub atmospheric pressure on the heavily doped silicon substrate; and implanting dopant into the epitaxial layer by ion implantation to form a lightly doped epitaxial layer. | 05-24-2012 |
20120153404 | ANTI-FUSE DEVICE AND SEMICONDUCTOR DEVICE AND SYSTEM INCLUDING THE SAME - An anti-fuse device includes a gate electrode on a semiconductor substrate, a gate insulating layer between the semiconductor substrate and the gate electrode, junction regions in the semiconductor substrate adjacent the gate electrode, and at least one anti-breakdown material layer between the junction regions, the gate insulating layer being between the gate electrode and the anti-breakdown material layer. | 06-21-2012 |
20120161249 | Reduction of Defect Rates in PFET Transistors Comprising a Silicon/Germanium Semiconductor Material by Providing a Graded Germanium Concentration - When forming sophisticated gate electrode structures in an early manufacturing stage, the threshold voltage characteristics may be adjusted on the basis of a semiconductor alloy, which may be formed on the basis of low pressure CVD techniques. In order to obtain a desired high band gap offset, for instance with respect to a silicon/germanium alloy, a moderately high germanium concentration may be provided within the semiconductor alloy, wherein, however, at the interface formed with the semiconductor base material, a low germanium concentration may significantly reduce the probability of creating dislocation defects. | 06-28-2012 |
20120235249 | REDUCING DEFECT RATE DURING DEPOSITION OF A CHANNEL SEMICONDUCTOR ALLOY INTO AN IN SITU RECESSED ACTIVE REGION - When forming sophisticated high-k metal gate electrode structures on the basis of a threshold voltage adjusting semiconductor alloy, a highly efficient in situ process technique may be applied in order to form a recess in dedicated active regions and refilling the recess with a semiconductor alloy. In order to reduce or avoid etch-related irregularities during the recessing of the active regions, the degree of aluminum contamination during the previous processing, in particular during the formation of the trench isolation regions, may be controlled. | 09-20-2012 |
20120267724 | MOS SEMICONDUCTOR DEVICE AND METHODS FOR ITS FABRICATION - An MOS device having a selectively formed channel region and methods for its fabrication are provided. One such method includes forming a mask defining a gate region overlying a surface of a semiconductor substrate. Source and drain regions are formed in the semiconductor substrate in alignment with the gate region and an enhanced doping sub-surface impurity region is formed in the semiconductor substrate using the mask as a doping mask. A gate electrode is then formed overlying the semiconductor substrate in alignment with the gate region by using the mask as a gate alignment mask. | 10-25-2012 |
20120267725 | SEMICONDUCTOR STRUCTURE AND METHOD FOR MANUFACTURING THE SAME - Semiconductor structures and methods for manufacturing the same are disclosed. The semiconductor structure comprises: a gate stack formed on a semiconductor substrate; a super-steep retrograde island embedded in said semiconductor substrate and self-aligned with said gate stack; and a counter doped region embedded in said super-steep retrograde island, wherein said counter doped region has a doping type opposite to a doping type of said super-steep retrograde island. The semiconductor structures and the methods for manufacturing the same facilitate alleviating short channel effects. | 10-25-2012 |
20120273900 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - The high voltage transistor includes a first impurity layer, a second impurity layer formed inside the first impurity layer, so as to put the second impurity layer between them, a pair of third impurity layers and fourth impurity layers formed inside the first impurity layer, a fifth impurity layer formed from the uppermost surface of the first impurity layer to the inside of the first impurity layer so as to protrude along the main surface in the direction where the second impurity layer is disposed, and a conductive layer formed above the uppermost surface of the second impurity layer. The concentration of the impurity in the fourth impurity layer is higher than the concentration of the impurity in the third and the fifth impurity layers, and the concentration of the impurity in the fifth impurity layer is higher than the concentration of the impurity in the third impurity layer. | 11-01-2012 |
20130009255 | FIELD EFFECT TRANSISTOR WITH SUPPRESSED CORNER LEAKAGE THROUGH CHANNEL MATERIAL BAND-EDGE MODULATION, DESIGN STRUCTURE AND METHOD - Disclosed are embodiments of field effect transistors (FETs) having suppressed sub-threshold corner leakage, as a function of channel material band-edge modulation. Specifically, the FET channel region is formed with different materials at the edges as compared to the center. Different materials with different band structures and specific locations of those materials are selected in order to effectively raise the threshold voltage (Vt) at the edges of the channel region relative to the Vt at the center of the channel region and, thereby to suppress of sub-threshold corner leakage. Also disclosed are design structures for such FETs and method embodiments for forming such FETs. | 01-10-2013 |
20130009256 | SEMICONDUCTOR DEVICE - The semiconductor device according to the present invention includes a semiconductor layer of a first conductivity type, body regions of a second conductivity type plurally formed on a surface layer portion of the semiconductor layer at an interval, a source region of the first conductivity type formed on a surface layer portion of each body region, a gate insulating film provided on the semiconductor layer to extend between the body regions adjacent to each other, a gate electrode provided on the gate insulating film and opposed to the body regions, and a field relaxation portion provided between the body regions adjacent to each other for relaxing an electric field generated in the gate insulating film. | 01-10-2013 |
20130056835 | TRANSISTOR STRUCTURES AND METHODS OF FABRICATION THEREOF - An electronic device is presented, such as a thin film transistor. The device comprises a patterned electrically-conductive layer associated with an active element of the electronic device. The electrically-conductive layer has a pattern defining an array of spaced-apart electrically conductive regions. This technique allows for increasing an electric current through the device. | 03-07-2013 |
20130105914 | STRUCTURE OF FIELD EFFECT TRANSISTOR WITH FIN STRUCTURE AND FABRICATING METHOD THEREOF | 05-02-2013 |
20130105915 | METAL OXIDE SEMICONDUCTOR DEVICE HAVING A PREDETERMINED THRESHOLD VOLTAGE AND A METHOD OF MAKING | 05-02-2013 |
20130113050 | BLANKET SHORT CHANNEL ROLL-UP IMPLANT WITH NON-ANGLED LONG CHANNEL COMPENSATING IMPLANT THROUGH PATTERNED OPENING - A method that forms a structure implants a well implant into a substrate, patterns a mask on the substrate (to have at least one opening that exposes a channel region of the substrate) and forms a conformal dielectric layer on the mask and to line the opening. The conformal dielectric layer covers the channel region of the substrate. The method also forms a conformal gate metal layer on the conformal dielectric layer, implants a compensating implant through the conformal gate metal layer and the conformal dielectric layer into the channel region of the substrate, and forms a gate conductor on the conformal gate metal layer. Additionally, the method removes the mask to leave a gate stack on the substrate, forms sidewall spacers on the gate stack, and then forms source/drain regions in the substrate partially below the sidewall spacers. | 05-09-2013 |
20130113051 | HIGH PERFORMANCE LOW POWER BULK FET DEVICE AND METHOD OF MANUFACTURE - A method of forming a semiconductor device includes: forming a channel of a field effect transistor (FET) in a substrate; forming a heavily doped region in the substrate; and forming recesses adjacent the channel and the heavily doped region. The method also includes: forming an undoped or lightly doped intermediate layer in the recesses on exposed portions of the channel and the heavily doped region; and forming source and drain regions on the intermediate layer such that the source and drain regions are spaced apart from the heavily doped region by the intermediate layer. | 05-09-2013 |
20130113052 | METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING THE SAME - A Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) is disclosed. The MOSFET includes a substrate, a well region formed in the substrate, a shallow channel layer, a channel, a gate oxide layer, a gate region, a source region, and a drain region. The shallow channel layer is formed on a portion of the well region and includes a first shallow channel region and a second shallow channel region. The channel is arranged between the first shallow channel region and the second shallow channel region and connects the first shallow channel region and the second shallow channel region. Further, the gate oxide layer is formed on a portion of the well region between the first shallow channel region and the second shallow channel region and includes a first gate oxide region and a second gate oxide region arranged on different sides of the channel. The gate region is formed on the channel and the gate oxide layer; the source region is formed in the first shallow channel region and vertically extends into the well region under the first shallow channel region; and the drain region is formed in the second shallow channel region and vertically extends into the well region under the second shallow channel region. | 05-09-2013 |
20130126983 | Semiconductor Architecture Having Field-effect Transistors Especially Suitable for Analog Applications - An insulated-gate field-effect transistor ( | 05-23-2013 |
20130146992 | DEEP TRENCH EMBEDDED GATE TRANSISTOR - A semiconductor device includes a source extending into a surface of a substrate, a drain extending into the surface of the substrate, and an embedded gate in the substrate extending from the source to the drain. | 06-13-2013 |
20130154029 | EMBEDDED STRESSORS FOR MULTIGATE TRANSISTOR DEVICES - Multigate transistor devices and methods of their fabrication are disclosed. In accordance with one method, a fin and a gate structure that is disposed on a plurality of surfaces of the fin are formed. In addition, at least a portion of an extension of the fin is removed to form a recessed portion that is below the gate structure, is below a channel region of the fin, and includes at least one angled indentation. Further, a terminal extension is grown in the at least one angled indentation below the channel region and along a surface of the channel region such that the terminal extension provides a stress on the channel region to enhance charge carrier mobility in the channel region. | 06-20-2013 |
20130168779 | MOS P-N JUNCTION DIODE WITH ENHANCED RESPONSE SPEED AND MANUFACTURING METHOD THEREOF - A MOS P-N junction diode includes a semiconductor substrate, a mask layer, a guard ring, a gate oxide layer, a polysilicon structure, a central conductive layer, a silicon nitride layer, a metal diffusion layer, a channel region, and a metal sputtering layer. For manufacturing the MOS P-N junction diode, a mask layer is formed on a semiconductor substrate. A gate oxide layer is formed on the semiconductor substrate, and a polysilicon structure is formed on the gate oxide layer. A guard ring, a central conductive layer and a channel region are formed in the semiconductor substrate. A silicon nitride layer is formed on the central conductive layer. A metal diffusion layer is formed within the guard ring and the central conductive layer. Afterwards, a metal sputtering layer is formed, and the mask layer is partially exposed. | 07-04-2013 |
20130175640 | STRESS ENHANCED MOS TRANSISTOR AND METHODS FOR FABRICATION - A stress enhanced MOS transistor and methods for its fabrication are provided. In one embodiment the transistor includes a channel region at a surface of a semiconductor substrate. The method includes etching first recesses into the semiconductor substrate adjacent the channel region to define adjacent regions in the semiconductor substrate between the first recesses and the channel region. A first layer of SiGe is epitaxially grown in the first recesses. The method includes etching second recesses through the first layer of SiGe and into the adjacent regions of the semiconductor substrate. Further, a second layer of SiGe is epitaxially grown in the second recesses. | 07-11-2013 |
20130221449 | MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE AND SEMICONDUCTOR MANUFACTURING DEVICE - According to one embodiment, a manufacturing method of a semiconductor device includes forming a monolayer that includes organic compounds that contain conductive type dopants on a semiconductor layer, applying a bias voltage to the semiconductor layer, and injecting plasma inactive gas ions against the monolayer, so that conductive type dopants included in the monolayer are impacted by the ions to form the dopant layer injected with the conductive type dopants in a semiconductor layer. This manufacturing method controls the density of the conductive type dopants in the dopant layer by changing a size of functional group. | 08-29-2013 |
20130241006 | SEMICONDUCTOR LAYER STRUCTURE - This invention relates to a semiconductor layer structure. The semiconductor layer structure described includes a substrate and a buffer layer deposited onto the substrate. The semiconductor layer structure is characterized in that a drain voltage threshold lower than the breakdown voltage threshold is determined by isolating ions that are selectively implanted in just one region of the substrate into the substrate, wherein charge can dissipate from the one contact through the buffer layer towards a substrate region without isolating ions, if the one potential deviates from the other at least by the drain voltage threshold, and wherein the substrate region without isolating ions is located underneath the one contact. The semiconductor layer structure described allows dissipation of currents induced by induction in blocking active structures without damaging the active structures. | 09-19-2013 |
20130249019 | FinFET with Metal Gate Stressor - A gate stressor for a fin field effect transistor (FinFET) device is provided. The gate stressor includes a floor, a first stressor sidewall, and a second stressor sidewall. The floor is formed on a first portion of a gate layer. The gate layer is disposed above a shallow trench isolation (STI) region. The first stressor sidewall formed on a second portion of the gate layer. The second portion of the gate layer is disposed on sidewalls of a fin. The second stressor sidewall formed on the third portion of the gate layer. The third portion of the gate layer is disposed on sidewalls of a structure spaced apart from the fin. The first stressor side wall and the second stressor sidewall do not exceed a height of the fin. | 09-26-2013 |
20130264656 | Memory Device Having Electrically Floating Body Transistor - A semiconductor memory cell includes a floating body region configured to be charged to a level indicative of a state of the memory cell selected from at least first and second states. A first region of the memory cell is in electrical contact with the floating body region. A second region of the memory cell is spaced apart from the first region and is also in electrical contact with the floating body region. A gate is positioned between the first and second regions. A back-bias region is configured to generate impact ionization when the memory cell is in one of the first and second states, and the back-bias region is configured so as not to generate impact ionization when the memory cell is in the other of the first and second states. | 10-10-2013 |
20130264657 | SEMICONDUCTOR DEVICE - A semiconductor device includes a gate electrode formed on a nitride semiconductor layer, and a source electrode and a drain electrode provided on the nitride semiconductor layer so as to interpose the gate electrode therebetween, a first silicon nitride film that covers the gate electrode and the silicon nitride film and has a composition ratio of silicon to nitrogen equal to or larger than 0.75, the first silicon nitride film having compressive stress solely, and a second. silicon nitride film that is formed on the first silicon nitride film and has a composition ratio of silicon to nitrogen equal to or larger than 0.75 solely, a whole stacked layer structure of the first and second silicon nitride films having tensile stress. | 10-10-2013 |
20130299918 | Semiconductor Device and Fabricating Method Thereof - A semiconductor device includes an interlayer insulating film formed on a substrate and including a trench, a gate insulating film formed in the trench, a work function adjusting film formed on the gate insulating film in the trench along sidewalls and a bottom surface of the trench, and including an inclined surface having an acute angle with respect to the sidewalls of the trench, and a metal gate pattern formed on the work function adjusting film in the trench to fill up the trench. | 11-14-2013 |
20130307090 | ADJUSTING OF STRAIN CAUSED IN A TRANSISTOR CHANNEL BY SEMICONDUCTOR MATERIAL PROVIDED FOR THE THRESHOLD ADJUSTMENT - The threshold voltage of a sophisticated transistor may be adjusted by providing a specifically designed semiconductor alloy in the channel region of the transistor, wherein a negative effect of this semiconductor material with respect to inducing a strain component in the channel region may be reduced or over-compensated for by additionally incorporating a strain-adjusting species. For example, a carbon species may be incorporated in the channel region, the threshold voltage of which may be adjusted on the basis of a silicon/germanium alloy of a P-channel transistor. Consequently, sophisticated metal gate electrodes may be formed in an early manufacturing stage. | 11-21-2013 |
20130313655 | SEMICONDUCTOR DEVICE AND A METHOD FOR MANUFACTURING THE SAME - A semiconductor device comprises a substrate; a shallow trench isolation embedded in the substrate and forms at least one opening region; a channel region located in the opening region; a gate stack including a gate dielectric layer and a gate electrode layer, located above said channel region; a source/drain region located on both sides of the channel region, including a stress layer which provides strain for the channel region. A liner layer is provided between the shallow trench isolation and the stress layer, which serves as a crystal seed layer of the stress layer. A liner layer and a pad oxide layer are provided between the substrate and the shallow trench isolation. The liner layer is inserted between the STI and the stress layer of the source/drain region as a crystal seed layer or nucleating layer for epitaxial growth, thereby eliminating the STI edge effect during the source/drain strain engineering. | 11-28-2013 |
20140077312 | ELECTRONIC DEVICES AND SYSTEMS, AND METHODS FOR MAKING AND USING THE SAME - Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced σV | 03-20-2014 |
20140084385 | DEEPLY DEPLETED MOS TRANSISTORS HAVING A SCREENING LAYER AND METHODS THEREOF - A semiconductor transistor structure fabricated on a silicon substrate effective to set a threshold voltage, control short channel effects, and control against excessive junction leakage may include a transistor gate having a source and drain structure. A highly doped screening region lies is embedded a vertical distance down from the surface of the substrate. The highly doped screening region is separated from the surface of the substrate by way of a substantially undoped channel layer which may be epitaxially formed. The source/drain structure may include a source/drain extension region which may be raised above the surface of the substrate. The screening region is preferably positioned to be located at or just below the interface between the source/drain region and source/drain extension portion. The transistor gate may be formed below a surface level of the silicon substrate and either above or below the heavily doped portion of the source/drain structure. | 03-27-2014 |
20140138780 | FINFET HAVING UNIFORM DOPING PROFILE AND METHOD OF FORMING THE SAME - An embodiment fin field effect transistor (FinFET) device and method of forming the same. An embodiment method of forming a fin field effect transistor (FinFET) includes forming fins from a semiconductor substrate, forming a field oxide between the fins, forming a sacrificial gate over a channel region of the fins projecting from the field oxide, and implanting ions through the sacrificial gate to provide the channel region of the fins with a uniform doping profile. | 05-22-2014 |
20140239415 | STRESS MEMORIZATION IN RMG FINFETS - Transistors with memorized stress and methods for making such transistors. The methods include forming a transistor structure having a channel region, a source and drain region, and a gate dielectric; depositing a stressor over the channel region of the transistor structure, wherein the stressor provides a stress to the channel region; removing the stressor metal after the stress is memorized within the channel region; and depositing a work function metal over the channel region of the transistor structure, where the work function metal applies less stress to the channel region than the stress applied by the stressor. A transistor with memorized stress includes a source and drain region on a substrate; a stress-memorized channel region on the substrate that retains an externally applied stress; and a gate structure including a work function gate metal that applies less stress to the stress-memorized channel region than the externally applied stress. | 08-28-2014 |
20140252498 | METHOD FOR FABRICATING A FIELD EFFECT TRANSISTOR, AND FIELD EFFECT TRANSISTOR - In a method for fabricating a field effect transistor, a first source/drain region and a second source/drain region are formed in a substrate. A channel region is formed between the first source/drain region and the second source/drain region. A gate region is formed on the channel region. Micro-cavities are formed in the substrate at least below the channel region, and the micro-cavities are oxidized. | 09-11-2014 |
20140264633 | FINFET DEVICES HAVING A BODY CONTACT AND METHODS OF FORMING THE SAME - Fin field-effect transistor devices and methods of forming the fin field-effect transistor devices are provided herein. In an embodiment, a fin field-effect transistor device includes a semiconductor substrate that has a fin. A gate electrode structure overlies the fin. Source and drain halo and/or extension regions and epitaxially-grown source regions and drain regions are formed in the fin and are disposed adjacent to the gate electrode structure. A body contact is disposed on a contact surface of the fin, and the body contact is spaced separately from the halo and/or extension regions and the epitaxially-grown source regions and drain regions. | 09-18-2014 |
20140299944 | GRAPHENE DEVICES AND METHODS OF FABRICATING THE SAME - A graphene device includes: a semiconductor substrate having a first region and a second region; a graphene layer on the first region, but not on the second region of the semiconductor substrate; a first electrode on a first portion of the graphene layer; a second electrode on a second portion of the graphene layer; an insulating layer between the graphene layer and the second electrode; and a third electrode on the second region of the semiconductor substrate. The semiconductor substrate has a tunable Schottky barrier formed by junction of the first electrode, the graphene layer, and the semiconductor substrate. | 10-09-2014 |
20140319625 | TRANSISTORS AND FABRICATION METHOD THEREOF - A method is provided for fabricating a transistor. The method includes providing a semiconductor substrate; and forming a trench in the semiconductor substrate by etching the semiconductor substrate. The methods also includes forming a threshold-adjusting layer doped with a certain type of threshold-adjusting ions to adjust the threshold voltage of the transistor on the semiconductor substrate in the trench; and forming a carrier drifting layer on the threshold-adjusting layer. Further the method includes forming a gate structure on the carrier drifting layer corresponding to the trench. | 10-30-2014 |
20140332905 | METHOD OF FABRICATING SEMICONDUCTOR DEVICE - A method of fabricating a semiconductor device includes forming a gate dielectric layer comprising an oxide, and at least one conductive layer on a substrate, forming a mask on the conductive layer and patterning the at least one conductive layer by etching the at least one conductive layer using the mask as an etch mask to thereby form a gate electrode, wherein the oxide of the gate dielectric layer and the material of the at least one conductive layer are selected such that a byproduct of the etching of the at least one conductive layer, formed on the mask during the etching of the at least one conductive layer, comprises an oxide having a higher etch rate with respect to an etchant than the oxide of the gate dielectric layer. | 11-13-2014 |
20140367800 | SEMICONDUCTOR DEVICE WITH STRAIN TECHNIQUE - The present disclosure provides a semiconductor device. The semiconductor device includes a substrate, a fin structure disposed over the substrate in the gate region. The fin structure includes a first semiconductor material layer as a lower portion of the fin structure, a semiconductor oxide layer as a middle portion of the fin structure and a second semiconductor material layer as an upper portion of the fin structure. The semiconductor device also includes a dielectric feature disposed between two adjacent fin structures over the substrate. A top surface of the dielectric feature located, in a horizontal level, higher than the semiconductor oxide layer with a distance d. The semiconductor device also includes a high-k (HK)/metal gate (MG) stack disposed in the gate region, including wrapping over a portion of the fin structure. | 12-18-2014 |
20150008536 | SEMICONDUCTOR DEVICE STRUCTURE AND METHOD FOR FORMING A SEMICONDUCTOR DEVICE STRUCTURE - The present disclosure provides for semiconductor device structures and methods for forming semiconductor device structures, wherein a field-inducing structure is provided lower than an active portion of a fin along a height dimension of that fin, the height dimension extending in parallel to a normal direction of a semiconductor substrate surface in which the fin is formed. The field-inducing structure hereby implements a permanent field effect below the active portion. The active portion of the fin is to be understood as a portion of the fin covered by a gate dielectric. | 01-08-2015 |
20150021712 | HIGHLY CONFORMAL EXTENSION DOPING IN ADVANCED MULTI-GATE DEVICES - The present disclosure provides in various aspects methods of forming a semiconductor device, methods for forming a semiconductor device structure, a semiconductor device and a semiconductor device structure. In some illustrative embodiments herein, a gate structure is formed over a non-planar surface portion of a semiconductor material provided on a surface of a substrate. A doped spacer-forming material is formed over the gate structure and the semiconductor material and dopants incorporated in the doped spacer-forming material are diffused into the semiconductor material close to a surface of the semiconductor material so as to form source/drain extension regions. The fabricated semiconductor devices may be multi-gate devices and, for example, comprise finFETs and/or wireFETs. | 01-22-2015 |
20150035082 | SEMICONDUCTOR DEVICE STRUCTURES INCLUDING ENERGY BARRIERS, AND RELATED METHODS - A semiconductor device structure includes a transistor with an energy barrier beneath its transistor channel. The energy barrier prevents leakage of stored charge from the transistor channel into a bulk substrate. Methods for fabricating semiconductor devices that include energy barriers are also disclosed. | 02-05-2015 |
20150076622 | REDUCING GATE EXPANSION AFTER SOURCE AND DRAIN IMPLANT IN GATE LAST PROCESS - A semiconductor structure includes a semiconductor substrate, an active region and a dummy gate structure disposed over the active region. A sacrificial conformal layer, including a bottom oxide layer and a top nitride layer are provided over the dummy gate structure and active region to protect the dummy gate during source and drain implantation. The active region is implanted using dopants such as, a n-type dopant or a p-type dopant to create a source region and a drain region in the active region, after which the sacrificial conformal layer is removed. | 03-19-2015 |
20150084136 | MOS P-N JUNCTION DIODE WITH ENHANCED RESPONSE SPEED AND MANUFACTURING METHOD THEREOF - A MOS P-N junction diode includes a semiconductor substrate, a mask layer, a guard ring, a gate oxide layer, a polysilicon structure, a polysilicon oxide layer, a central conductive layer, ion implantation layer, a channel region, and a metallic sputtering layer. For manufacturing the MOS P-N junction diode, a mask layer is formed on a semiconductor substrate. A gate oxide layer is formed on the semiconductor substrate, and a polysilicon structure is formed on the gate oxide layer, and a polysilicon oxide layer formed on the polysilicon structure. A guard ring, a central conductive layer and a channel region are formed in the semiconductor substrate. An ion implantation layer is formed within the guard ring and the central conductive layer. Afterwards, a metallic sputtering layer is formed, and the mask layer is partially exposed. | 03-26-2015 |
20150108586 | TRANSISTOR DEVICE WITH IMPROVED SOURCE/DRAIN JUNCTION ARCHITECTURE AND METHODS OF MAKING SUCH A DEVICE - One illustrative device disclosed herein includes a plurality of source/drain regions positioned in an active region on opposite sides of a gate structure, each of the source/drain regions having a lateral width in a gate length direction of the transistor and a plurality of halo regions, wherein each of the halo regions is positioned under a portion, but not all, of the lateral width of one of the plurality of source/drain regions. A method disclosed herein includes forming a plurality of halo implant regions in an active region, wherein an outer edge of each of the halo implant regions is laterally spaced apart from an adjacent inner edge of an isolation region. | 04-23-2015 |
20150137268 | NON-PLANAR SIGE CHANNEL PFET - Systems and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a channel layer formed of a Germanium compound having a Germanium concentration B formed on a semiconductor substrate having a Germanium concentration of A, the Germanium concentration of the substrate A being less than the Germanium concentration of the channel layer B. The structure further includes a capping layer formed to separate the channel layer from a metal gate, the capping layer having a Germanium concentration of C, the Germanium concentration of the channel layer B being greater than the Germanium concentration of the capping layer C. | 05-21-2015 |
20150295033 | APPARATUS AND METHOD FOR MANUFACTURING SAME - This apparatus is composed of an insulating film having a high dielectric constant and an electrode film including a metal material, layered in that order on a substrate divided into an active region and an element separation region surrounding the active region, and has a gate structure extending from the active region to the element separation region. The element separation region is provided with: a groove formed in the substrate; a first insulating film covering the side wall face of the groove and embedded in the bottom part of the groove; and a second insulating film covering the first insulating film embedded in the bottom part of the groove and embedded in the top part of the groove. | 10-15-2015 |
20150295045 | SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREOF - The high voltage transistor includes a first impurity layer, a second impurity layer formed inside the first impurity layer, so as to put the second impurity layer between them, a pair of third impurity layers and fourth impurity layers formed inside the first impurity layer, a fifth impurity layer formed from the uppermost surface of the first impurity layer to the inside of the first impurity layer so as to protrude along the main surface in the direction where the second impurity layer is disposed, and a conductive layer formed above the uppermost surface of the second impurity layer. The concentration of the impurity in the fourth impurity layer is higher than the concentration of the impurity in the third and the fifth impurity layers, and the concentration of the impurity in the fifth impurity layer is higher than the concentration of the impurity in the third impurity layer. | 10-15-2015 |
20150318177 | LATERAL OXIDATION OF NFET HIGH-K GATE STACKS - A method for fabricating a semiconductor circuit includes obtaining a semiconductor structure having a gate stack of material layers including a high-k dielectric layer; oxidizing in a lateral manner the high-k dielectric layer, such that oxygen content of the high-k dielectric layer is increased first at the sidewalls of the high-k dielectric layer; and completing fabrication of a n-type field effect transistor from the gate stack after laterally oxidizing the high-k dielectric layer of the gate stack. | 11-05-2015 |
20150340502 | FINFET WITH UNDOPED BODY BULK - Systems and methods are provide to achieve undoped body bulk silicon based devices, such as field effect transistors (FETS) and Fin Field Effect Transistors (FinFETs). In an embodiment, an epitaxial growth technique is used to form the silicon of an active region of a fin of a FinFET once a punchthrough stop (PTS) layer has been formed. In an embodiment, the epitaxial growth technique according to embodiments of the present disclosure produces a fin with a small notch in the active region. | 11-26-2015 |
20160049476 | Semiconductor devices with germanium-rich active layers & doped transition layers - Semiconductor device stacks and devices made there from having Ge-rich device layers. A Ge-rich device layer is disposed above a substrate, with a p-type doped Ge etch suppression layer (e.g., p-type SiGe) disposed there between to suppress etch of the Ge-rich device layer during removal of a sacrificial semiconductor layer richer in Si than the device layer. Rates of dissolution of Ge in wet etchants, such as aqueous hydroxide chemistries, may be dramatically decreased with the introduction of a buried p-type doped semiconductor layer into a semiconductor film stack, improving selectivity of etchant to the Ge-rich device layers. | 02-18-2016 |
20160064560 | PROCESS DESIGN TO IMPROVE TRANSISTOR VARIATIONS AND PERFORMANCE - The present disclosure relates to a transistor device having an epitaxial carbon layer and/or a carbon implantation region that provides for a low variation of voltage threshold, and an associated method of formation. In some embodiments, the transistor device has an epitaxial region arranged within a recess within a semiconductor substrate. The epitaxial region has a carbon doped silicon epitaxial layer and a silicon epitaxial layer disposed onto the carbon doped silicon epitaxial layer. A gate structure is arranged over the silicon epitaxial layer. The gate structure has a gate dielectric layer disposed onto the silicon epitaxial layer and a gate electrode layer disposed onto the gate dielectric layer. A source region and a drain region are arranged on opposing sides of a channel region disposed below the gate structure. | 03-03-2016 |
20160086805 | METAL-GATE WITH AN AMORPHOUS METAL LAYER - A particular semiconductor device includes a substrate, a source contact, a drain contact, and a metal-gate. The substrate includes a source region, a drain region, and a channel. The source contact is coupled to the source region. The drain contact is coupled to the drain region. The metal-gate is coupled to the channel. The metal-gate includes an amorphous metal layer. | 03-24-2016 |
20160086954 | Memory Device Having Electrically Floating Body Transistor - A semiconductor memory cell includes a floating body region configured to be charged to a level indicative of a state of the memory cell selected from at least first and second states. A first region of the memory cell is in electrical contact with the floating body region. A second region of the memory cell is spaced apart from the first region and is also in electrical contact with the floating body region. A gate is positioned between the first and second regions. A back-bias region is configured to generate impact ionization when the memory cell is in one of the first and second states, and the back-bias region is configured so as not to generate impact ionization when the memory cell is in the other of the first and second states. | 03-24-2016 |
20160126108 | METHOD OF REDUCING GATE LEAKAGE IN A MOS DEVICE BY IMPLANTING GATE LEAKAGE REDUCING SPECIES INTO THE EDGE OF THE GATE - In a MOS device, gate leakage is reduced by implanting gate oxide leakage reduction species such as nitrogen into the gate oxide along the edges of the gate to reduce gate leakage and hence reduce data retention fails in SRAM devices and allow low Vdd SRAM operation without increasing gate oxide thickness. By implanting nitrogen along the edges of the gate it simultaneously replaces lost gate oxide nitrogen to further reduce gate leakage. | 05-05-2016 |
20160133696 | FIN-FET STRUCTURE AND METHOD OF MANUFACTURING SAME - A method for fabricating a FinFET DEVICE is provided in the invention, comprising: a. providing a substrate ( | 05-12-2016 |
20160155806 | Structure and Method for Semiconductor Device | 06-02-2016 |
20160163881 | THIN-FILM TRANSISTOR - Disclosed is a thin-film transistor. The thin-film transistor includes: a substrate; a first gate, a first gate insulation layer, a semiconductor layer, an etching stop layer, and the second gate stacked on a surface of the substrate, in which the semiconductor layer has a thickness of 200 nm-2000 nm; the etching stop layer includes a first via and a second via formed therein; and the first via and the second via are arranged to each correspond to the semiconductor layer; and a source and a drain respectively extending through the first via and the second via to connect to the semiconductor layer. The thin-film transistor has an increased ON-state current and switching speed. | 06-09-2016 |
20190148381 | Memory Device Having Electrically Floating Body Transistor | 05-16-2019 |
20220140080 | P-TYPE FIELD EFFECT TRANSISTOR AND METHOD FOR FABRICATING THE SAME - A method for fabricating p-type field effect transistor (FET) includes the steps of first providing a substrate, forming a pad layer on the substrate, forming a well in the substrate, performing an ion implantation process to implant germanium ions into the substrate to form a channel region, and then conducting an anneal process to divide the channel region into a top portion and a bottom portion. After removing the pad layer, a gate structure is formed on the substrate and a lightly doped drain (LDD) is formed adjacent to two sides of the gate structure. | 05-05-2022 |