Class / Patent application number | Description | Number of patent applications / Date published |
257373000 | With pn junction to collect injected minority carriers to prevent parasitic bipolar transistor action | 16 |
257374000 | Dielectric isolation means (e.g., dielectric layer in vertical grooves) | 14 |
20080203492 | METHODS FOR FABRICATING SEMICONDUCTOR DEVICE STRUCTURES WITH REDUCED SUSCEPTIBILITY TO LATCH-UP AND SEMICONDUCTOR DEVICE STRUCTURES FORMED BY THE METHODS - Semiconductor methods and device structures for suppressing latch-up in bulk CMOS devices. The method comprises forming a trench in the semiconductor material of the substrate with first sidewalls disposed between a pair of doped wells, also defined in the semiconductor material of the substrate. The method further comprises forming an etch mask in the trench to partially mask the base of the trench, followed by removing the semiconductor material of the substrate exposed across the partially masked base to define narrowed second sidewalls that deepen the trench. The deepened trench is filled with a dielectric material to define a trench isolation region for devices built in the doped wells. The dielectric material filling the deepened extension of the trench enhances latch-up suppression. | 08-28-2008 |
20080230843 | Isolation Structure for MOS Transistor and Method for Forming the Same - A method for forming isolation structure for MOS transistor is disclosed, which includes forming a first photoresist layer over a sacrificed oxide layer of a semiconductor substrate, patterning the first photoresist layer to define a PMOS active region and a PMOS isolation region; implanting nitrogen ions into the PMOS isolation region through the sacrificed oxide layer by using the first photoresist layer as a mask; removing the first photoresist layer; forming a second photoresist layer over the sacrificed oxide layer, patterning the second photoresist layer to define a NMOS active region and a NMOS isolation region; implanting oxygen ions into the NMOS isolation region through the sacrificed oxide layer by using the second photoresist layer as a mask; removing the second photoresist layer and the sacrificed oxide layer; and annealing the semiconductor substrate to form isolation structures of PMOS and NMOS, respectively. | 09-25-2008 |
20080237733 | STRUCTURE AND METHOD TO ENHANCE CHANNEL STRESS BY USING OPTIMIZED STI STRESS AND NITRIDE CAPPING LAYER STRESS - The embodiments of the invention provide a structure and method to enhance channel stress by using optimized STI stress and nitride capping layer stress. More specifically, a transistor structure is provided comprising a substrate having a first transistor region and a second transistor region, different than the first transistor region. Moreover, first transistors are provided over the first transistor region and second transistors, different than the first transistors, are provided over the second transistors region. The first transistor comprises an NFET and the second transistor comprises a PFET. The structure further includes STI regions in the substrate adjacent sides of the first transistors and the second transistors, wherein the STI regions comprise stress producing regions. Recesses are within at least two of the STI regions, such that portions of at least one of said first stress liner and said second stress liner are positioned within said recesses. | 10-02-2008 |
20080237734 | COMPLEMENTARY METAL-OXIDE-SEMICONDUCTOR TRANSISTOR AND METHOD OF FABRICATING THE SAME - A complementary metal-oxide-semiconductor (CMOS) transistor comprising a substrate, a first conductive type MOS transistor, a second conductive type MOS transistor, a buffer layer, a first stress layer and a second stress layer is provided. The substrate has a device isolation structure therein that defines a first active area and a second active area. The first conductive type MOS transistor and the second conductive type MOS transistor are respectively disposed in the first active area and the second active area of the substrate. A first nitride spacer of the first conductive type MOS transistor has a thickness greater than that of a second nitride spacer of the second conductive type MOS transistor. The buffer layer is disposed on the first conductive type MOS transistor. The first stress layer is disposed on the buffer layer. The second stress layer is disposed on the second conductive type MOS transistor. | 10-02-2008 |
20080251854 | SEMICONDUCTOR DEVICE - In one aspect of the present invention, semiconductor device, may include a p-channel semiconductor active region, an n-channel semiconductor active region, an element isolation insulating layer which electrically isolates the p-channel semiconductor active region from the n-channel semiconductor active region, and an insulating layer made of a material different from that of the element isolation insulating layer, and being in contact with both ends, in its channel length direction, of the p-channel semiconductor active region to apply a compression stress in the channel length direction to a channel of the p-channel semiconductor active region, wherein the p-channel semiconductor active region is surrounded by the insulating layer, which is in contact with the both ends, in the channel length direction, of the p-channel semiconductor active region, and the p-channel semiconductor active region is surrounded by the element isolation insulating layer, which is in contact with the side surfaces, approximately parallel to the channel length direction, of the p-channel semiconductor active region, and the n-channel semiconductor active region is surrounded by the element isolation insulating layer. | 10-16-2008 |
20080290420 | SiGe or SiC layer on STI sidewalls - A semiconductor structure includes a semiconductor substrate; an opening in the semiconductor substrate; a semiconductor layer in the opening and covering a bottom and sidewalls of the opening, wherein the semiconductor layer and the semiconductor substrate comprise different materials; and a dielectric material over the semiconductor layer and filling a remaining portion of the opening. | 11-27-2008 |
20080303101 | DUAL STRESS MEMORIZATION TECHNIQUE FOR CMOS APPLICATION - A stress-transmitting dielectric layer is formed on the at least one PFET and the at least one NFET. A tensile stress generating film, such as a silicon nitride, is formed on the at least one NFET by blanket deposition and patterning. A compressive stress generating film, which may be a refractive metal nitride film, is formed on the at least one PFET by a blanket deposition and patterning. An encapsulating dielectric film is deposited over the compress stress generating film. The stress is transferred from both the tensile stress generating film and the compressive stress generating film into the underlying semiconductor structures. The magnitude of the transferred compressive stress from the refractory metal nitride film may be from about 5 GPa to about 20 GPa. The stress is memorized during an anneal and remains in the semiconductor devices after the stress generating films are removed, | 12-11-2008 |
20090026551 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME - A semiconductor device includes: an isolation region formed in a semiconductor substrate; active regions surrounded by the isolation region and including p-type and n-type regions, respectively; an NMOS transistor formed in the active region including the p-type region and including an n-type gate electrode; a PMOS transistor formed in the active region including the n-type region and including a p-type gate electrode; and a p-type resistor formed on the isolation region. The p-type resistor has an internal stress greater than that of the p-type gate electrode. | 01-29-2009 |
20090045468 | TRENCH ISOLATION AND METHOD OF FABRICATING TRENCH ISOLATION - Trench isolation structure and method of forming trench isolation structures. The structures includes a trench in a silicon region of a substrate, the trench extending from a top surface of the substrate into the silicon region; an ion implantation stopping layer over sidewalls of the trench; a dielectric fill material filling remaining space in the trench, the dielectric fill material not including any materials found in the stopping layer; an N-type dopant species in a first region of the silicon region on a first side of the trench; the N-type dopant species in a first region of the dielectric material adjacent to the first side of the trench; a P-type dopant species in a second region of the silicon region on a second side of the trench; and the P-type dopant species in a second region of the dielectric material adjacent to the second side of the trench. | 02-19-2009 |
20090057777 | SEMICONDUCTOR DEVICE - A semiconductor device comprises a semiconductor substrate, a plurality of transistors provided in the semiconductor substrate, and an isolation region for isolating the plurality of transistors to one another, the isolation region being comprised of an isolating insulation film, wherein a crystal structure of at least a part of the isolating insulation film is broken. | 03-05-2009 |
20090236667 | SEMICONDUCTOR DEVICE COMPRISING ISOLATION TRENCHES INDUCING DIFFERENT TYPES OF STRAIN - By forming isolation trenches of different types of intrinsic stress on the basis of separate process sequences, the strain characteristics of adjacent active semiconductor regions may be adjusted so as to obtain overall device performance. For example, highly stressed dielectric fill material including compressive and tensile stress may be appropriately provided in the respective isolation trenches in order to correspondingly adapt the charge carrier mobility of respective channel regions. | 09-24-2009 |
20090250764 | STRESSED DIELECTRIC LAYER WITH STABLE STRESS - An integrated circuit is provided having a substrate and a transistor in an active region of the substrate. The substrate also has an isolation region having a dielectric material. In one embodiment, a pre-metal dielectric layer is disposed over the substrate and the transistor. At least one of the isolation region or the pre-metal dielectric layer includes a O | 10-08-2009 |
20090289308 | SEMICONDUCTOR DEVICE WITH A TRANSISTOR HAVING DIFFERENT SOURCE AND DRAIN LENGTHS - A cell includes a plurality of diffusion region pairs, each of the diffusion region pairs being formed by a first impurity diffusion region which is a constituent of a transistor and a second impurity diffusion region such that the first and second impurity diffusion regions are provided side-by-side in a gate length direction with a device isolation region interposed therebetween. In each of the diffusion region pairs, the first and second impurity diffusion regions have an equal length in the gate width direction and are provided at equal positions in the gate width direction, and a first isolation region portion, which is part of the device isolation region between the first and second impurity diffusion regions, has a constant separation length. In the diffusion region pairs, the first isolation region portions have an equal separation length. | 11-26-2009 |
20110309453 | ELEVATION OF TRANSISTOR CHANNELS TO REDUCE IMPACT OF SHALLOW TRENCH ISOLATION ON TRANSISTOR PERFORMANCE - Roughly described, transistor channel regions are elevated over the level of certain adjacent STI regions. Preferably the STI regions that are transversely adjacent to the diffusion regions are suppressed, as are STI regions that are longitudinally adjacent to N-channel diffusion regions. Preferably STI regions that are longitudinally adjacent to P-channel diffusions are not suppressed; preferably they have an elevation that is at least as high as that of the diffusion regions. | 12-22-2011 |
257376000 | With barrier region of reduced minority carrier lifetime (e.g., heavily doped P+ region to reduce electron minority carrier lifetime, or containing deep level impurity or crystal damage), or with region of high threshold voltage (e.g., heavily doped channel stop region) | 2 |
20090278206 | High-Frequency Switching Transistor and High-Frequency Circuit - A switching transistor includes a substrate having a substrate dopant concentration and a barrier region bordering on the substrate, having a first conductivity type and having a barrier region dopant concentration that is higher than the substrate dopant concentration. A source region is embedded in the barrier region, and has a second conductivity type and has a dopant concentration that is higher than the barrier region dopant concentration. A drain region is embedded in the barrier region and is offset from the source region. The draining region has the second conductivity type and a dopant concentration that is higher than the barrier region dopant concentration. A channel region extends between the source region and the drain region, wherein the channel region comprises a subregion of the barrier region. An insulation region covers the channel region and is disposed between the channel region and a gate electrode. The barrier region dopant concentration and the substrate dopant concentration are chosen for generating a space-charge region around the source region and the drain region and for depleting the barrier region. | 11-12-2009 |
20170236822 | SEMICONDUCTOR DEVICE AND METHOD FOR FABRICATING THE SAME | 08-17-2017 |