Entries |
Document | Title | Date |
20080197394 | METHODS OF MANUFACTURING SEMICONDUCTOR STRUCTURES - A method of manufacturing semiconductor structures is disclosed. In one embodiment, a first mask is provided above a substrate. The first mask includes first mask lines extending along a first axis. A second mask is provided above the first mask. The second mask includes second mask lines extending along a second axis that intersects the first axis. At least one of the first and second masks is formed by a pitch fragmentation method. Structures may be formed in the substrate, wherein the first and the second mask are effective as a combined mask. The structures may be equally spaced at a pitch in the range of a minimum lithographic feature size for repetitive line structures. | 08-21-2008 |
20080197395 | Semiconductor device - In order to effectively miniaturize elements of a semiconductor device while improving the characteristics of each semiconductor element on a single chip of a silicon substrate or without impairing the characteristics, at least three different silicon surface directions are applied to the elements. Accordingly, at least the characteristics required for each element, on which the surface directions have influence, can be determined as the best characteristics. | 08-21-2008 |
20080237674 | SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor substrate and a metal-oxide semiconductor transistor. A first dielectric layer of the metal oxide semiconductor transistor overlaps source and drain electrodes and a channel region of the transistor. A first drain region is away from the channel region and the first dielectric layer. A second drain region is between the first drain region and the channel region. A gate electrode is on the first dielectric layer and connected to a gate wire, and includes first and second gate layers and a dielectric layer therebetween. The first gate layer has one edge laterally spaced from the first drain region and resting over the second drain region, and is isolated from the gate wire. The second gate layer is over the first gate layer and is connected to the gate wire. | 10-02-2008 |
20080290387 | Semiconductor device having reduced sub-threshold leakage - A semiconductor device fabricated in the semiconductor substrate includes a FinFET transistor having opposed source and drain pillars, and a fin interposed between the source and drain pillars. A cavity is formed in the semiconductor substrate extending at least partially between the fin and the semiconductor substrate. The cavity may be formed within a shallow trench isolation structure, and it may also extend at least partially between the semiconductor substrate and one or both of the pillars. The cavities increase the impedance between the semiconductor substrate and the fin and/or pillars to decrease the sub-threshold leakage of the FinFET transistor. | 11-27-2008 |
20080290388 | Semiconductor contructions - The invention includes a method in which a semiconductor substrate is provided to have a memory array region, and a peripheral region outward of the memory array region. Paired transistors are formed within the memory array region, with such paired transistors sharing a source/drain region corresponding to a bitline contact location, and having other source/drain regions corresponding to capacitor contact locations. A peripheral transistor gate is formed over the peripheral region. Electrically insulative material is formed over the peripheral transistor gate, and also over the bitline contact location. The insulative material is patterned to form sidewall spacers along sidewalls of the peripheral transistor gate, and to form a protective block over the bitline contact location. Subsequently, capacitors are formed which extend over the protective block, and which electrically connect with the capacitor contact locations. The invention also includes semiconductor constructions. | 11-27-2008 |
20080296648 | FIN MEMORY STRUCTURE AND METHOD FOR FABRICATION THEREOF - A semiconductor fin memory structure and a method for fabricating the semiconductor fin memory structure include a semiconductor fin-channel within a finFET structure that is contiguous with and thinner than a conductor fin-capacitor node within a fin-capacitor structure that is integrated with the finFET structure. A single semiconductor layer may be appropriately processed to provide the semiconductor fin-channel within the finFET structure that is contiguous with and thinner than the conductor fin-capacitor node within the fin-capacitor structure. | 12-04-2008 |
20080296649 | SEMICONDUCTOR DEVICE EMPLOYING BURIED INSULATING LAYER AND METHOD OF FABRICATING THE SAME - A semiconductor device employs an asymmetrical buried insulating layer, and a method of fabricating the same. The semiconductor device includes a lower semiconductor substrate. An upper silicon pattern is located on the lower semiconductor substrate. The upper silicon pattern includes a channel region, and a source region and a drain region spaced apart from each other by the channel region. A gate electrode is electrically insulated from the upper silicon pattern and intersects over the channel region. A bit line and a cell capacitor are electrically connected to the source region and the drain region, respectively. A buried insulating layer is interposed between the drain region and the lower semiconductor substrate. The buried insulating layer has an extension portion partially interposed between the channel region and the lower semiconductor substrate. | 12-04-2008 |
20090001437 | Integrated Circuit Devices Including Recessed Conductive Layers and Related Methods - An integrated circuit device may include a first insulating layer on a substrate with an opening through the first insulating layer. A conductive layer may be on the first insulating layer with the first insulating layer between the conductive layer and the substrate and with the conductive layer set back from the opening. A second insulating layer may be on the conductive layer with the conductive layer between the first and second insulating layers. The second insulating layer may be set back from the opening, and a sidewall of the conductive layer adjacent the opening may be recessed relative to a sidewall of the second insulating layer adjacent the opening. An insulating spacer on portions of the first insulating layer may surround the opening, and the insulating spacer may be on the sidewall of the second insulating layer adjacent the opening so that the insulating spacer is between the sidewall of the second conductive layer and the opening. A conductive contact may be in the opening through the first insulating layer and on portions of the insulating spacer so that the insulating spacer is between the conductive contact and the conductive layer. Related methods are also discussed. | 01-01-2009 |
20090108313 | REDUCING SHORT CHANNEL EFFECTS IN TRANSISTORS - Microelectronic structures and associated methods for reducing short channel effects in transistors are generally described. In one example, an apparatus includes a semiconductor channel, one or more transistor gates coupled with the semiconductor channel, a spacer film coupled to the one or more transistor gates, and a semiconductor material epitaxially grown (epi-growth) on the semiconductor channel wherein the epi-growth is coupled to the to the spacer film to reduce short channel effects of the one or more transistor gates by effectively increasing the transistor gate length. | 04-30-2009 |
20090140311 | Method of fabricating semiconductor device having storage capacitor and higher voltage resistance capacitor and semiconductor device fabricated using the same - Provided are a method of fabricating a semiconductor device having different kinds of capacitors, and a semiconductor device formed using the same. In a fabrication process, after preparing a substrate including a storage capacitor region and a higher voltage resistance capacitor region, a lower electrode layer may be formed on the storage capacitor region and the higher voltage resistance capacitor region. A first dielectric film may be formed on the lower electrode layer, and the first dielectric film of the storage capacitor region may be selectively removed to expose the lower electrode layer of the storage capacitor region. After forming a second dielectric film on the first dielectric film and the exposed lower electrode layer of the storage capacitor region, an upper electrode layer may be formed on the second dielectric film. | 06-04-2009 |
20090152613 | SEMICONDUCTOR MEMORY DEVICE HAVING A FLOATING BODY CAPACITOR AND METHOD OF MANUFACTURING THE SAME - A semiconductor memory device having a floating body capacitor. The semiconductor memory device can perform a memory operation using the floating body capacitor. The semiconductor memory device includes an SOI substrate having a staked structure in which a base substrate having a conducting surface, a buried insulating layer and a device-forming layer are staked, a transistor formed in a portion of the device-forming layer, having a gate, a source region and a drain region, and a capacitor formed by the buried insulating layer, the conducting surface of the base substrate, and accumulated holes generated in the device-forming layer when the transistor is driven. | 06-18-2009 |
20090206381 | Anti-fuse and method for forming the same, unit cell of nonvolatile memory device with the same - An anti-fuse includes a gate dielectric layer formed over a substrate, a gate electrode including a body portion and a plurality of protruding portions extending from the body portion, wherein the body portion and the protruding portions are formed to contact on the gate dielectric layer, and a junction region formed in a portion of the substrate exposed by sidewalls of the protruding portions. | 08-20-2009 |
20090242952 | INTEGRATED CIRCUIT INCLUDING A CAPACITOR AND METHOD - An integrated circuit including a capacitor and a method of fabricating an integrated circuit. The capacitor has a first electrode. A plurality of conductive lines is separated from each other and is configured to be held at a potential being the same for all conductive lines. A second electrode encloses individual ones of the conductive lines at a top side and at least one lateral side and is separated from the first electrode by a dielectric layer. The second electrode includes a polycrystalline semiconductor material, a metal or a metal-semiconductor compound. | 10-01-2009 |
20090267125 | SEMICONDUCTOR DEVICE AND METHOD OF MANUFACTURING THE SAME - An isolation region comprises a step structure comprising a step surface that is perpendicular to a depth direction, an upper isolation region and a lower isolation region. An RC transistor is enclosed by the isolation region. | 10-29-2009 |
20090273012 | High Voltage Tolerant Metal-Oxide-Semiconductor Device - A method for increasing a voltage tolerance of a MOS device having a first capacitance value associated therewith is provided. The method includes the steps of: connecting at least a first capacitor in series with the MOS device, the first capacitor having a first capacitance value associated therewith, the first capacitor having a first terminal coupled to a gate of the MOS device and a second terminal adapted to receive a first signal; and adjusting a ratio of the first capacitance value and a second capacitance value associated with the MOS device such that a second signal present at the gate of the MOS device will be an attenuated version of the first signal. An amount of attenuation of the first signal is a function of the ratio of the first and second capacitance values. | 11-05-2009 |
20090289290 | NON-VOLATILE MEMORY WITH PROGRAMMABLE CAPACITANCE - Non-volatile memory with programmable capacitance is disclosed. Illustrative data memory units include a substrate including a source region and a drain region. A first insulating layer is over the substrate. A second insulating layer is over the substrate and between the source region and drain region. A solid electrolyte layer is between the first insulating layer and second insulating layer. The solid electrolyte layer has a capacitance that is controllable between at least two states. A first electrode is electrically coupled to a first side of the solid electrolyte layer and is electrically coupled to a voltage source. A second electrode is electrically coupled to a second side of the solid electrolyte layer and is electrically coupled to the voltage source. Multi-bit memory units are also disclosed. | 11-26-2009 |
20090321804 | SEMICONDUCTOR COMPONENT INCLUDING A DRIFT ZONE AND A DRIFT CONTROL ZONE - A semiconductor component including a drift zone and a drift control zone. One embodiment provides a transistor component having a drift zone, a body zone, a source zone and a drain zone. The drift zone is arranged between the body zone and the drain zone. The body zone is arranged between the source zone and the drift zone. | 12-31-2009 |
20100109063 | Semiconductor device having MOS gate capacitor - To provide a PMOS transistor that is arranged within an N-well formed in a P-type semiconductor substrate and that is connected to an external terminal; and an MOS gate capacitor that is positioned adjacent to the PMOS transistor and of which one end and the other end are supplied with a power supply potential and a ground potential, respectively. An N-type diffusion layer that becomes a cathode of a PNPN parasitic thyristor configured by the PMOS transistor and the MOS gate capacitor is fixed to the power supply potential. This structure does not permit turning on of the PNPN parasitic thyristor, and thus a problem that a device is broken by a latch-up phenomenon is eliminated. | 05-06-2010 |
20100117131 | Transistor for Preventing or Reducing Short Channel Effect and Method for Manufacturing the Same - A transistor for preventing or reducing short channel effect includes a substrate; a gate stack disposed over the substrate; a first junction region disposed on the substrate at a first side surface of the gate stack, said first junction layer being formed of an epitaxial layer; a trench formed within the substrate at a second side surface of the gate stack; and a second junction region disposed below the trench, said second junction layer being lower than the first junction region. | 05-13-2010 |
20100181606 | Semiconductor Device - Provided is a semiconductor device having a high switching speed. A semiconductor device ( | 07-22-2010 |
20100187586 | SOI DEVICE AND METHOD FOR ITS FABRICATION - A silicon on insulator (SOI) device is provided. The device includes an MOS capacitor coupled between voltage busses and formed in a monocrystalline semiconductor layer overlying an insulator layer and a semiconductor substrate. The device includes at least one electrical discharge path for discharging potentially harmful charge build up on the MOS capacitor. The MOS capacitor has a conductive electrode material forming a first plate of the MOS capacitor and an impurity doped region in the monocrystalline silicon layer beneath the conductive electrode material forming a second plate. A first voltage bus is coupled to the first plate of the capacitor and to an electrical discharge path through a diode formed in the semiconductor substrate and a second voltage bus is coupled to the second plate of the capacitor. | 07-29-2010 |
20100224923 | Semiconductor memory device and method of manufacturing the same - Provided are a semiconductor memory device and a method of manufacturing the same. The semiconductor memory device may include a plurality of active pillars projecting from a semiconductor substrate, a gate pattern disposed on at least a portion of each of the active pillars with a gate insulator interposed therebetween, and a conductive line disposed on each of the active pillars and below the corresponding gate pattern, the conductive line may be insulated from the semiconductor substrate and the gate pattern, wherein each of the active pillars may include a drain region above the corresponding gate pattern, a body region adjacent to the corresponding gate pattern, and a source region that is in contact with the conductive line below the gate pattern. | 09-09-2010 |
20100224924 | TECHNIQUES FOR FORMING A CONTACT TO A BURIED DIFFUSION LAYER IN A SEMICONDUCTOR MEMORY DEVICE - Techniques for forming a contact to a buried diffusion layer in a semiconductor memory device are disclosed. In one particular exemplary embodiment, the techniques may be realized as a semiconductor memory device. The semiconductor memory device may comprise a substrate comprising an upper layer. The semiconductor memory device may also comprise an array of dummy pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the dummy pillars may extend upward from the upper layer and have a bottom contact that is electrically connected with the upper layer of the substrate. The semiconductor memory device may also comprise an array of active pillars formed on the upper layer of the substrate and arranged in rows and columns. Each of the active pillars may extend upward from the upper layer and have an active first region, an active second region, and an active third region. Each of the active pillars may also be electrically connected with the upper layer of the substrate. | 09-09-2010 |
20100230734 | SEMICONDUCTOR DEVICE AND ARRANGEMENT METHOD OF COMPENSATION CAPACITOR OF SEMICONDUCTOR DEVICE - A semiconductor device comprises a circuit cell and a basic end cell. The circuit cell includes a plurality of elements aligned in a first direction, and the basic end cell is arranged adjacent to the circuit cell in the first direction and has a compensation capacitor capable of being connected to a supply voltage of the circuit cell. In the semiconductor device, a diffusion layer forming the compensation capacitor extends along the first direction in a predetermined region of the circuit cell. | 09-16-2010 |
20100237395 | SEMICONDUCTOR DEVICE WITH GATE DIELECTRIC CONTAINING MIXED RARE EARTH ELEMENTS - A semiconductor device, such as a transistor or capacitor, is provided. The device includes a substrate, a gate dielectric over the substrate, and a conductive gate electrode film over the gate dielectric. The gate dielectric includes a mixed rare earth nitride or oxynitride film containing at least two different rare earth metal elements. | 09-23-2010 |
20100295110 | DEVICE AND MANUFACTURING METHOD THEREOF - A device manufacturing method includes forming a first insulation film on a semiconductor substrate. A first mask is formed on the first insulation film to extend in a first direction and have a linear pattern. The first insulation film is etched using the first mask as mask to process the insulation film into a linear body. A second mask is formed on the linear body to extend in a second direction different from the first direction and have a linear pattern. The linear body is etched using the second mask as mask to process the linear body into a pillar element. A first conductive film is formed to cover the pillar body. The first conductive film is etched to form a first electrode of the first conductive film on side surfaces of the pillar body. | 11-25-2010 |
20100308390 | MEMORY CELL SUITABLE FOR DRAM MEMORY - The present invention relates to a memory cell with a memory capacitor ( | 12-09-2010 |
20100314675 | Power Semiconductor Device and Method for Manufacturing the Same - Disclosed are a power semiconductor device and a method for manufacturing the same. The power semiconductor device has a PIP capacitor and an LDMOS transistor, the LDMOS transistor having second and third gate electrodes separate from a first gate electrode, which may be formed in the process of forming the upper electrode of the PIP capacitor, so it is possible to realize an LDMOS having a higher breakdown voltage and lower Ron and Rsp without additional processing. A drain voltage, which may be different from a voltage applied to the first gate electrode, may be applied to the third gate electrode, so it is possible to realize an LDMOS having a high breakdown voltage and low Ron and Rsp. | 12-16-2010 |
20100320520 | DIELECTRIC, CAPACITOR USING DIELECTRIC, SEMICONDUCTOR DEVICE USING DIELECTRIC, AND MANUFACTURING METHOD OF DIELECTRIC - To make it possible to significantly suppress the leakage current in a semiconductor device having a capacitor structure using a dielectric film. There is provided a composite oxide dielectric which is mainly composed of Zr, Al and O, and which has a composition ratio of Zr and Al in a range of (1−x):x where 0.01≦x≦0.15, and has a crystal structure. When the dielectric is set to have the Al composition in the above described range and is crystallized, the relative dielectric constant of the dielectric can be significantly increased. When the dielectric is used as a dielectric film of a capacitor of a semiconductor device, the leakage current of the capacitor can be significantly reduced. | 12-23-2010 |
20100327335 | METHOD OF BUILDING COMPENSATED ISOLATED P-WELL DEVICES - Electrical device structures constructed in an isolated p-well that is wholly contained within a core n-well. Methods of forming electrical devices within an isolated p-well that is wholly contained within a core n-well using a baseline CMOS process flow. | 12-30-2010 |
20110006353 | DRAM DEVICES - A DRAM device includes a plug on a substrate, a conductive plate electrically connected to the plug and overlapping the substrate, at least one capacitor on the substrate and spaced apart from the plug, and at least one word line under the conductive plate and spaced apart from the conductive plate. The DRAM device further includes at least one first conductive pad under the conductive plate, the at least one first conductive pad being spaced apart from the conductive plate in a first state and being electrically connected to the conductive plate in a second state, the at least one first conductive pad being disposed between the plug and an adjacent word line of the at least one word line, and the at least one first conductive pad being electrically connected to a respective capacitor of the at least one capacitor. | 01-13-2011 |
20110049598 | MANUFACTURING METHOD OF FLEXIBLE SEMICONDUCTOR DEVICE AND FLEXIBLE SEMICONDUCTOR DEVICE - A layered film of a three-layer clad foil formed with a first metal layer | 03-03-2011 |
20110156117 | SEMICONDUCTOR DEVICE - An object of the present invention is to provide a semiconductor device having a novel structure in which in a data storing time, stored data can be stored even when power is not supplied, and there is no limitation on the number of writing. A semiconductor device includes a first transistor including a first source electrode and a first drain electrode; a first channel formation region for which an oxide semiconductor material is used and to which the first source electrode and the first drain electrode are electrically connected; a first gate insulating layer over the first channel formation region; and a first gate electrode over the first gate insulating layer. One of the first source electrode and the first drain electrode of the first transistor and one electrode of a capacitor are electrically connected to each other. | 06-30-2011 |
20110204428 | IMPLEMENTING EDRAM STACKED FET STRUCTURE - A method and circuit for implementing an embedded dynamic random access memory (eDRAM), and a design structure on which the subject circuit resides are provided. The embedded dynamic random access memory (eDRAM) circuit includes a stacked field effect transistor (FET) and capacitor. The capacitor is fabricated directly on top of the FET to build the eDRAM. | 08-25-2011 |
20110233632 | SEMICONDUCTOR SEAL-RING STRUCTURE AND THE MANUFACTURING METHOD THEREOF - A seal-ring structure includes a substrate, a source/drain layer, a first dielectric layer, a first lower metal layer, a gate layer and a second lower metal layer. The source/drain layer is disposed within the substrate. The first dielectric layer is disposed over the substrate. The first lower metal layer is disposed over the first dielectric layer and coupled to the source/drain layer via a first contact. The gate layer is disposed within the first dielectric layer. The second lower metal layer is disposed over the first dielectric layer and coupled to the gate layer via a second contact. | 09-29-2011 |
20110233633 | Semiconductor Device and Electronic Apparatus Having the Same - With an offset circuit including transistors of the same conductivity type, offset of an input signal is performed. Then, the input signal after the offset is supplied to a logic circuit including transistors of the same conductivity type as that of the offset circuit, thereby H and L levels of the input signal can be shifted at the same time. Further, since the offset circuit and the logic circuit are formed using the transistors of the same conductivity type, a display device can be manufactured at a low cost. | 09-29-2011 |
20110248326 | STRUCTURE AND METHOD TO INTEGRATE EMBEDDED DRAM WITH FINFET - A transistor includes a first fin structure and at least a second fin structure formed on a substrate. A deep trench area is formed between the first and second fin structures. The deep trench area extends through an insulator layer of the substrate and a semiconductor layer of the substrate. A high-k metal gate is formed within the deep trench area. A polysilicon layer is formed within the deep trench area adjacent to the metal layer. The polysilicon layer and the high-k metal layer are recessed below a top surface of the insulator layer. A poly strap in the deep trench area is formed on top of the high-k metal gate and the polysilicon material. The poly strap is dimensioned to be below a top surface of the first and second fin structures. The first fin structure and the second fin structure are electrically coupled to the poly strap. | 10-13-2011 |
20110291169 | REDUCED CORNER LEAKAGE IN SOI STRUCTURE AND METHOD - A structural alternative to retro doping to reduce transistor leakage is provided by providing a liner in a trench, undercutting a conduction channel region in an active semiconductor layer, etching a side, corner and/or bottom of the conduction channel where the undercut exposes semiconductor material in the active layer and replacing the removed portion of the conduction channel with insulator. This shaping of the conduction channel increases the distance to adjacent circuit elements which, if charged, could otherwise induce a voltage and cause a change in back-channel threshold in regions of the conduction channel and narrows and reduces cross-sectional area of the channel where the conduction in the channel is not well-controlled; both of which effects significantly reduce leakage of the transistor. | 12-01-2011 |
20110291170 | Semiconductor Device Comprising a Buried Capacitor Formed in the Contact Level - In a semiconductor device, capacitors may be formed so as to be in direct contact with a transistor by using a shared transistor region, such as a drain region or a source region of closely spaced transistors, as one capacitor electrode, while the other capacitor electrode is provided in the form of a buried electrode in the dielectric material of the contact level. To this end, dielectric material may be deposited so as to reliably form a void, wherein, at any appropriate manufacturing stage, a capacitor dielectric material may be provided so as to separate the capacitor electrodes. | 12-01-2011 |
20110316061 | STRUCTURE AND METHOD TO CONTROL BOTTOM CORNER THRESHOLD IN AN SOI DEVICE - Semiconductor structures and methods to control bottom corner threshold in a silicon-on-insulator (SOI) device. A method includes doping a corner region of a semiconductor-on-insulator (SOI) island. The doping includes tailoring a localized doping of the corner region to reduce capacitive coupling of the SOI island with an adjacent structure. | 12-29-2011 |
20120037972 | SEMICONDUCTOR DEVICE - It is an object to give excellent data retention characteristics to a semiconductor device in which stored data is judged in accordance with the potential of a gate of a specified transistor, by achieving both reduction in variation of the threshold voltage of the transistor and data retention for a long time. Charge is held (data is stored) in a node electrically connected only to a source or a drain of a transistor whose channel region is formed using an oxide semiconductor. There may be a plurality of transistors whose sources or drains are electrically connected to the node. The oxide semiconductor has a wider band gap and a lower intrinsic carrier density than silicon. By using such an oxide semiconductor for the channel region of the transistor, the transistor with an extremely low off-state current (leakage current) can be realized. | 02-16-2012 |
20120043598 | POWER FET WITH A RESONANT TRANSISTOR GATE - A semiconductor FET provides a resonant gate and source and drain electrodes, wherein the resonant gate is electromagnetically resonant at one or more predetermined frequencies. | 02-23-2012 |
20120056257 | Non-Volatile Memory System with Modified Memory Cells - A method and system in which an embedded memory is fabricated in accordance with a conventional logic process includes one or more non-volatile memory cells, each having an access transistor and a capacitor, which share a common floating gate electrode. The coupling capacitor is provided with a dielectric layer having a thickness greater than the dielectric layer of the access transistor. Regions under the capacitor are implanted with a high dose implant to form an electrically shorted doped area in the channel region of the capacitor. The high dose implant improves the coupling ratio of the capacitor and enhances the uniformity of the capacitor's oxide layer. | 03-08-2012 |
20120086062 | SWITCHING POWER SUPPLY DEVICE AND A SEMICONDUCTOR INTEGRATED CIRCUIT - In a switching power source which controls a current which flows in an inductor through a switching element which performs a switching operation in response to a PWM signal, and forms an output voltage by a capacitor which is provided in series in the inductor, a booster circuit which is constituted of a bootstrap capacity and a MOSFET is provided between an output node of the switching element and a predetermined voltage terminal. The boosted voltage is used as an operational voltage of a driving circuit of the switching element, another source/drain region and a substrate gate are connected with each other such that when the MOSFET is made to assume an OFF state, and a junction diode between one source/drain region and the substrate gate is inversely directed with respect to the boosted voltage which is formed by the bootstrap capacity. | 04-12-2012 |
20120086063 | SEMICONDUCTOR DEVICE - A semiconductor device includes a semiconductor substrate having a memory cell region and a peripheral circuit region; a bit line extending over the memory cell region and the peripheral circuit region, the bit line including a first portion in the peripheral circuit region; and a sense amplifier in the peripheral circuit region. The sense amplifier includes a transistor having a gate electrode which includes the first portion of the bit line. | 04-12-2012 |
20120119276 | MEMORY DEVICE AND METHOD OF FABRICATING THE SAME - A memory device includes a mesa structure and a word line. The mesa structure, having two opposite side surfaces, includes at least one pair of source/drain regions and at least one channel base region corresponding to the pair of source/drain regions formed therein. The word line includes two linear sections and at least one interconnecting portion. Each linear section extends on the respective side surface of the mesa structure, adjacent to the channel base region. The at least one interconnecting portion penetrates through the mesa structure, connecting the two linear sections. | 05-17-2012 |
20120119277 | MEMORY DEVICE AND METHOD OF FABRICATING THE SAME - A memory device includes a plurality of isolations and trench fillers arranged in an alternating manner in a direction, a plurality of mesa structures between the isolations and trench fillers, and a plurality of word lines each overlying a side surface of the respective mesa. In one embodiment of the present invention, the width measured in the direction of the trench filler is smaller than that of the isolation, each mesa structure includes at least one paired source/drain regions and at least one channel base region corresponding to the paired source/drain regions, and each of the word lines is on a side surface of the mesa structure, adjacent the respective isolation, and is arranged adjacent the channel base region. | 05-17-2012 |
20120292680 | SEMICONDUCTOR INTEGRATED CIRCUIT - To reduce power consumption of a memory device. To reduce the area of a memory device. To reduce the number of transistors included in a memory device. The memory device includes a comparator comparing a first output signal with a second output signal, a first memory portion including a first oxide semiconductor transistor and a first silicon transistor, a second memory portion including a second oxide semiconductor transistor and a second silicon transistor, and an output potential determiner determining a potential of the first output signal and a potential of the second output signal. One of a source and a drain of the first oxide semiconductor transistor is electrically connected to a gate of the first silicon transistor. One of a source and a drain of the second oxide semiconductor transistor is electrically connected to a gate of the second silicon transistor. | 11-22-2012 |
20120299074 | SEMICONDUCTOR DEVICE - A semiconductor device in which light leakage due to misalignment is prevented even when a black matrix layer is not expanded to a designed value or more is provided. In a semiconductor device including a dual-gate thin film transistor in which a semiconductor layer is sandwiched between a bottom gate electrode and a top gate electrode, the top gate electrode is formed of a first black matrix layer, and the top gate electrode overlaps with the semiconductor layer. | 11-29-2012 |
20130001664 | DECOUPLING CAPACITOR CIRCUITRY - Integrated circuits with decoupling capacitor circuitry are provided. The decoupling capacitor circuitry may include density-compliance structures. The density-compliance structures may be strapped to metal paths driven by power supply lines. Strapping density-compliance dummy structures in this way may increase the capacitance per unit area of the decoupling capacitor circuitry. Strapping density-compliance dummy structures in this way may shield the decoupling capacitor from nearby noisy signal sources. | 01-03-2013 |
20130009227 | SEMICONDUCTOR DEVICE WITH A DYNAMIC GATE-DRAIN CAPACITANCE - A semiconductor device with a dynamic gate drain capacitance. One embodiment provides a semiconductor device. The device includes a semiconductor substrate, a field effect transistor structure including a source region, a first body region, a drain region, a gate electrode structure and a gate insulating layer. The gate insulating layer is arranged between the gate electrode structure and the body region. The gate electrode structure and the drain region partially form a capacitor structure including a gate-drain capacitance configured to dynamically change with varying reverse voltages applied between the source and drain regions. The gate-drain capacitance includes at least one local maximum at a given threshold or a plateau-like course at given reverse voltage. | 01-10-2013 |
20130020623 | STRUCTURE AND METHOD FOR SINGLE GATE NON-VOLATILE MEMORY DEVICE - The present disclosure provides an integrated circuit. The integrated circuit includes a semiconductor substrate having a periphery region and a memory region; a field effect transistor disposed in the periphery region and having silicide features; and a single floating gate non-volatile memory device disposed in the memory region, free of silicide and having a first gate electrode and a second gate electrode laterally spaced from each other. | 01-24-2013 |
20130105874 | SEMICONDUCTOR DEVICE, MEMORY CARD, DATA PROCESSING SYSTEM, AND METHOD OF MANUFACTURING SEMICONDUCTOR DEVICE | 05-02-2013 |
20130146956 | FIELD EFFECT TRANSISTORS (FETS) AND METHODS OF MANUFACTURE - An improved field effect transistors (FETs) and methods of manufacturing the field effect transistors (FETs) are provided. The method of manufacturing a zero capacitance random access memory cell (ZRAM) includes comprises forming a finFET on a substrate and enhancing a storage capacitance of the finFET. The enhancement can be by either adding a storage capacity to the finFET or altering a portion of the finFET after formation of a fin body of the finFET. | 06-13-2013 |
20130228839 | SEMICONDUCTOR MEMORY DEVICE - To provide a highly integrated semiconductor memory device. To provide a semiconductor memory device which can hold stored data even when power is not supplied. To provide a semiconductor memory device which has a large number of write cycles. The degree of integration of a memory cell array is increased by forming a memory cell including two transistors and one capacitor which are arranged three-dimensionally. The electric charge accumulated in the capacitor is prevented from being leaking by forming a transistor for controlling the amount of electric charge of the capacitor in the memory cell using a wide-gap semiconductor having a wider band gap than silicon. Accordingly, a semiconductor memory device which can hold stored data even when power is not supplied can be provided. | 09-05-2013 |
20130277725 | SEMICONDUCTOR MEMORY DEVICES AND METHODS OF MANUFACTURING THE SAME - A semiconductor memory device includes a substrate, a well region in the substrate, a patterned first dielectric layer on the substrate extending over the well region, a patterned first gate structure on the patterned first dielectric layer, a patterned second dielectric layer on the patterned first gate structure, and a patterned second gate structure on the patterned second dielectric layer. The patterned first gate structure includes a first section extending in a first direction and a second section extending in a second direction orthogonal to the first section, the first section and the second section intersecting each other in a cross pattern. The patterned second gate structure includes at least one of a first section extending in the first direction over the first section of the patterned first gate structure or a second section extending in the second direction over the second section of the patterned first gate structure. | 10-24-2013 |
20130292753 | VARIABLE GATE FIELD-EFFECT TRANSISTOR AND ELECTRICAL AND ELECTRONIC APPARATUS INCLUDING THE SAME - Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature. | 11-07-2013 |
20130292754 | CAPACITOR AND METHOD OF FORMING SAME - A device comprises a substrate having at least one active region, an insulating layer above the substrate, and an electrode in a gate electrode layer above the insulating layer, forming a metal-oxide-semiconductor (MOS) capacitor. A first contact layer is provided on the electrode, having an elongated first pattern extending in a first direction parallel to the electrode. A contact structure contacts the substrate. The contact structure has an elongated second pattern extending parallel to the first pattern. A dielectric material is provided between the first and second patterns, so that the first and second patterns and dielectric material form a side-wall capacitor connected in parallel to the MOS capacitor. | 11-07-2013 |
20140001528 | SEMICONDUCTOR COMPONENT WITH A DRIFT REGION AND A DRIFT CONTROL REGION | 01-02-2014 |
20140042510 | CAPACITORS POSITIONED AT THE DEVICE LEVEL IN AN INTEGRATED CIRCUIT PRODUCT AND METHODS OF MAKING SUCH CAPACITORS - One illustrative integrated circuit product disclosed herein includes a metal-1 metallization layer positioned above a semiconducting substrate, a capacitor positioned between a surface of the substrate and a bottom of the metal-1 metallization layer, wherein the capacitor includes a plurality of conductive plates that are oriented in a direction that is substantially normal relative to the surface of the substrate, and at least one region of insulating material positioned between the plurality of conductive plates. | 02-13-2014 |
20140042511 | SEMICONDUCTOR DEVICE - An object of the present invention is to provide a semiconductor device combining transistors integrating on a same substrate transistors including an oxide semiconductor in their channel formation region and transistors including non-oxide semiconductor in their channel formation region. An application of the present invention is to realize substantially non-volatile semiconductor memories which do not require specific erasing operation and do not suffer from damages due to repeated writing operation. Furthermore, the semiconductor device is well adapted to store multivalued data. Manufacturing methods, application circuits and driving/reading methods are explained in details in the description. | 02-13-2014 |
20140061744 | FinFET CIRCUIT - A capacitor includes a semiconductor substrate. The capacitor also includes a first terminal having a fin disposed on a surface of the semiconductor substrate. The capacitor further includes a dielectric layer disposed onto the fin. The capacitor still further includes a second terminal having a FinFET compatible high-K metal gate disposed proximate and adjacent to the fin. | 03-06-2014 |
20140183609 | COMPOUND SEMICONDUCTOR ESD PROTECTION DEVICES - The present invention relates to compound semiconductor ESD protection devices using plural compound semiconductor E-FETs or compound semiconductor multi-gate E-FETs. The device comprises plural compound semiconductor E-FETs or multi-gate E-FETs, in which each of the gates is DC-connected to the source, drain, or an inter-gate region between two adjacent gates in the multi-gate E-FET through at least one first resister, and at least one of the gates is AC-connected to the source, drain, or an inter-gate region between two adjacent gates in the multi-gate E-FET through a gate capacitor. | 07-03-2014 |
20140183610 | Decoupling Capacitor for FinFET Compatible Process - A decoupling capacitor formed from a fin field-effect transistor (FinFET) and method of using the same are provided. An embodiment decoupling capacitor includes a fin field-effect transistor (FinFET) having a semiconductor substrate supporting a gate stack, a source, and a drain, a first terminal coupled to the semiconductor substrate and to the gate stack, the first terminal configured to couple with a first power rail, and a second terminal coupled to the source and to the drain, the second terminal configured to couple with a second power rail having a higher potential than the first power rail. | 07-03-2014 |
20140231893 | CAPACITOR AND PREPARATION METHOD THEREOF - A capacitor and a method of fabricating thereof are provided. A structure of low pressure tetraethyl orthosilicate-low pressure silicon nitride-low pressure tetraethyl orthosilicate is used in the capacitor to replace the oxide-nitride-oxide structure of the existing capacitor; the capacitor has a relatively high unit capacitance value. Furthermore, the structure of low pressure tetraethyl orthosilicate—low pressure silicon nitride—low pressure tetraethyl orthosilicate is fabricaited by low pressure chemical vapor deposition method at relatively low temperature; thus the heat produced in the whole process is relatively low, which is insufficient to make the semiconductor device shift or make the gate metal layer or the metallized silicon layer peel off. Accordingly, the capacitor and the method of fabricating the capacitor of the present invention can be well applied in the process of the 0.5 μm PIP capacitor or below 0.5 μm. | 08-21-2014 |
20140231894 | METHOD OF FORMING A DRAM ARRAY OF DEVICES WITH VERTICALLY INTEGRATED RECESSED ACCESS DEVICE AND DIGITLINE - A method is disclosed for forming a memory device having buried access lines (e.g., wordlines) and buried data/sense lines (e.g., digitlines) disposed below vertical cell contacts. The buried wordlines may be formed trenches in a substrate extending in a first direction, and the buried digitlines may be formed from trenches in a substrate extending in a second direction perpendicular to the first direction. The buried digitlines may be coupled to a silicon sidewall by a digitline contact disposed between the digitlines and the silicon substrate. | 08-21-2014 |
20140246715 | DECOUPLING CAPACITOR FOR INTEGRATED CIRCUIT - An integrated circuit includes a capacitor having first, second and third nodes. The first and second nodes of the first transistor are connected together and the first and second nodes of the second transistor are connected together. The third node of the first transistor is connected to the third node of the second transistor. Each of the third nodes is constructed so that each node comprises a width and a length that is at least ten percent of the width. | 09-04-2014 |
20140264520 | INTEGRATED CIRCUIT STRUCTURE AND METHOD FOR PROTECTION FROM DAMAGE TO GATE DIELECTRIC - An integrated circuit device comprises a common-gated dual-oxide MOSFET including a protective device and a MOSFET. A common gate electrode serves as a gate electrode of the protective device and as a gate of the MOSFET. The protective device comprises a first gate dielectric having a first thickness over a first channel region and the MOSFET comprises a second gate dielectric thicker than the first gate dielectric over a second channel region. During a plasma process, a first current can flow through the first dielectric that is higher than a second current through the second dielectric. | 09-18-2014 |
20140264521 | SEMICONDUCTOR DEVICE - A semiconductor device in which stored data can be held even when power is not supplied and there is no limitation on the number of writing operations is provided. A semiconductor device is formed using a material which can sufficiently reduce the off-state current of a transistor, such as an oxide semiconductor material that is a wide-gap semiconductor. When a semiconductor material which can sufficiently reduce the off-state current of a transistor is used, the semiconductor device can hold data for a long period. In addition, by providing a capacitor or a noise removal circuit electrically connected to a write word line, a signal such as a short pulse or a noise input to a memory cell can be reduced or removed. Accordingly, a malfunction in which data written into the memory cell is erased when a transistor in the memory cell is instantaneously turned on can be prevented. | 09-18-2014 |
20140367756 | CAPACITOR OF NONVOLATILE MEMORY DEVICE - The capacitor of a nonvolatile memory device includes first and second electrodes formed in the capacitor region of a semiconductor substrate to respectively have consecutive concave and convex shape of side surfaces formed along each other and a dielectric layer formed between the first and the second electrodes. | 12-18-2014 |
20150008497 | CAPACITOR - A capacitor includes an active layer, a gate insulation layer on the active layer, a gate electrode on the gate insulation layer, an interlayer insulating layer on the gate electrode, and a first electrode on the interlayer insulating layer and connected to the active layer through at least one contact hole. | 01-08-2015 |
20150028407 | 3D HIGH VOLTAGE CHARGE PUMP - A capacitor and method of forming a capacitor are presented. The capacitor includes a substrate having a capacitor region in which the capacitor is disposed. The capacitor includes first, second and third sub-capacitors (C1, C2 and C3). The C1 comprises a metal oxide semiconductor (MOS) capacitor which includes a gate on the substrate. The gate includes a gate electrode over a gate dielectric. A first C1 plate is served by the gate electrode, a second C1 plate is served by the substrate of the capacitor region and a C1 capacitor dielectric is served by the gate dielectric. The C2 includes a back-end-of-line (BEOL) vertical capacitor disposed in ILD layers with metal levels and via levels. A plurality of metal lines are disposed in the metal levels. The metal lines of a metal level are grouped in alternating first and second groups, the first group serves as first C2 plates and second group serves as second. C2 plates and the dielectric layers between the first and second groups serve as C2 capacitor dielectrics. The C3 includes a first C3 plate served by the gate electrode, a second C3 plate served by second group lines in the first metal level of the ILD layers, and a C3 capacitor dielectric is served by the first via level dielectric below M1 and above the gate electrode. A first capacitor terminal is coupled to first capacitor plates of C1, C2 and C3 and a second capacitor terminal is coupled to second capacitor plates of C1, C2 and C3. | 01-29-2015 |
20150060971 | NONVOLATILE SEMICONDUCTOR MEMORY DEVICE AND METHOD OF MANUFACTURING THE SAME - According to one embodiment, a nonvolatile semiconductor memory device including a memory cell transistor having a stacked gate structure including a tunnel insulating film, a charge accumulation layer, a memory cell insulating film, and a control gate electrode film are orderly stacked above a semiconductor substrate, and a capacitor in which a first insulating film, a first electrode film, a second insulating film, a second electrode film, a third insulating film, and a third electrode film are orderly stacked above the semiconductor substrate is provided. A material of the second electrode film is same as the charge accumulation layer of the memory cell transistor. The third electrode film includes a material same as the control gate electrode film of the memory cell transistor. | 03-05-2015 |
20150076578 | NONVOLATILE SEMICONDUCTOR STORAGE DEVICE - A nonvolatile semiconductor storage device is provided with a memory-cell region; a peripheral-circuit region disposed adjacent to the memory-cell region a first memory-cell unit disposed in a first layer located in the memory-cell region; a second memory-cell unit disposed in a k-th layer of the memory-cell region where k is an integer equal to or greater than 2, the second memory-cell unit having an element region extending in a first direction and having a first width in a second direction crossing the first direction; and a peripheral-circuit element disposed in the first layer located in the peripheral-circuit region. Two or more dummy element each having a second width 2n+1 times greater than the first width in the second direction are disposed in the k-th layer located in the peripheral-circuit region where n is an integer equal to or greater than 0. | 03-19-2015 |
20150084107 | CAPACITOR DEVICE - In some embodiments, a capacitor device includes a metal-oxide-metal (MOM) capacitor array and a varactor array configured overlapping with the MOM capacitor array. The MOM capacitor array includes a first MOM capacitor unit. The first MOM capacitor unit includes a first electrode pattern and a second electrode pattern in a first metallization layer. The first electrode pattern includes a plurality of first fingers and a first bus interconnecting the plurality of first fingers. The second electrode pattern includes a plurality of second fingers and a second bus interconnecting the plurality of second fingers. The varactor array includes a first varactor unit. The first varactor unit includes a first electrode contacting region and a second electrode contacting region. The first electrode pattern contacts the first electrode contacting region. The second electrode pattern contacts the second electrode contacting region. | 03-26-2015 |
20150091069 | SEMICONDUCTOR DEVICE AND FABRICATING METHOD THEREOF - Provided are a semiconductor device and a fabricating method thereof. The semiconductor device includes a storage electrode having a cylinder shape, a dielectric film formed on the storage electrode, and a plate electrode formed on the dielectric film, wherein the plate electrode includes a first semiconductor compound layer and a second semiconductor compound layer sequentially stacked one on the other, and the first semiconductor compound layer has a crystallinity different from that of the second semiconductor compound layer. | 04-02-2015 |
20150108557 | METAL-INSULATOR-METAL CAPACITOR STRUCTURE - A capacitor structure in a semiconductor device includes a semiconductor substrate having a top surface and a bottom surface opposite the top surface, an isolation region having a top surface and a bottom surface, opposite the top surface, the bottom surface of the isolation region being disposed on the top surface of the semiconductor substrate. The capacitor structure also includes a gate terminal structure disposed on the top surface of the isolation region and a diffusion contact structure disposed on the top surface of the isolation region and arranged parallel to the gate terminal structure. In some aspects, the gate terminal structure is connected to a first contact node and the diffusion contact structure is connected to a second contact node, in which the first and second contact nodes form opposing nodes of the capacitor structure. | 04-23-2015 |
20150108558 | SCALABLE INTEGRATED MIM CAPACITOR USING GATE METAL - According to one embodiment, a scalable integrated MIM capacitor in a semiconductor die includes a high-k dielectric segment over a substrate and a metal segment over the high-k dielectric segment, where the metal segment forms a capacitor terminal of the integrated MIM capacitor. The capacitor further includes a filler laterally separating consecutive capacitor terminals, where the filler can be used as a capacitor dielectric of the integrated MIM capacitor. In one embodiment, the metal segment comprises a gate metal. In another embodiment, the integrated MIM capacitor is formed substantially concurrently with one or more transistors without requiring additional fabrication process steps. | 04-23-2015 |
20150123181 | CAPACITORS POSITIONED AT THE DEVICE LEVEL IN AN INTEGRATED CIRCUIT PRODUCT AND METHODS OF MAKING SUCH CAPACITORS - One illustrative integrated circuit product disclosed herein includes a metal-1 metallization layer positioned above a semiconducting substrate, a capacitor positioned between a surface of the substrate and a bottom of the metal-1 metallization layer, wherein the capacitor includes a plurality of conductive plates that are oriented in a direction that is substantially normal relative to the surface of the substrate, and at least one region of insulating material positioned between the plurality of conductive plates. | 05-07-2015 |
20150303208 | NONVOLATILE MEMORY DEVICE - A nonvolatile memory device includes a first active region and a second active region separated from each other; a floating gate crossing the first active region, and disposed such that an end thereof overlaps with the second active region; a selection gate crossing the first active region, and disposed side by side with and coupled to the floating gate; a dielectric layer disposed between the floating gate and the selection gate, wherein a stack of the dielectric layer, the floating gate and the selection gate forms a first capacitor in a horizontal structure; a well region disposed in the second active region and coupled to the floating gate, wherein a stack of the well region and the floating gate forms a second capacitor in a vertical structure; and a contact commonly coupled to the well region and the selection gate. | 10-22-2015 |
20150309380 | STRUCTURE OF PIXEL - The present invention provides a structure of a pixel, which has a simple structure and employs an arrangement where a terminal of the storage capacitor C | 10-29-2015 |
20150311219 | Non-Volatile Semiconductor Storage Device - To propose a non-volatile semiconductor memory device capable of injecting charge into a floating gate by source side injection even in a single-layer gate structure. In a non-volatile semiconductor memory device ( | 10-29-2015 |
20150333080 | INTEGRATED CIRCUITS AND METHODS FOR OPERATING INTEGRATED CIRCUITS WITH NON-VOLATILE MEMORY - Integrated circuits and methods for fabricating integrated circuits are provided. In an exemplary embodiment, an integrated circuit includes a semiconductor substrate doped with a first conductivity-determining impurity. The semiconductor substrate has formed therein a first well doped with a second conductivity-determining impurity that is different from the first conductivity-determining impurity, a second well, formed within the first well, and doped with the first conductivity-determining impurity, and a third well spaced apart from the first and second wells and doped with the first conductivity-determining impurity. The integrated circuit further includes a floating gate structure formed over the semiconductor substrate. The floating gate structure includes a first gate element disposed over the second well and being separated from the second well with a dielectric layer, a second gate element disposed over the third well and being separated from the third well with the dielectric layer, and a conductive connector. | 11-19-2015 |
20150364426 | DECOUPLING CAPACITOR FOR SEMICONDUCTORS - Embodiments of the present invention provide an improved decoupling capacitor structure. A contact region is disposed over a source/drain region of the decoupling capacitor structure. Each contact region is formed as a plurality of segments, wherein an inter-segment gap separates a segment of the plurality of segments from an adjacent segment of the plurality of segments. Embodiments may include multiple contact regions between two gate regions. Arrays of decoupling capacitors may arranged as an alternating “checkerboard” pattern of P-well and N-well structures, and may be oriented at a diagonal angle to a metallization layer to facilitate connections of multiple decoupling capacitors within the array. | 12-17-2015 |
20150364534 | NON-PLANAR CAPACITORS WITH FINELY TUNED CAPACITANCE VALUES AND METHODS OF FORMING THE NON-PLANAR CAPACITORS - Disclosed are non-planar capacitors with finely tuned capacitances and methods of forming them. The capacitors each incorporate one or more semiconductor bodies and one or more gate stacks traversing the one or more semiconductor bodies. At least one first semiconductor body is etched so that it is shorter in length than the others, which are incorporated into other non-planar devices and/or into the same non-planar capacitor. Additionally, at least one gate stack can be formed so that it traverses a first portion and, particularly, an end portion of the shortened semiconductor body and further so that it extends laterally some distance beyond that first portion. In such capacitors, the length of the first portion of the shorted semiconductor body, which corresponds to a capacitor conductor and which is traversed by the gate stack, which corresponds to a capacitor dielectric and another capacitor conductor, is predetermined to achieve a desired capacitance. | 12-17-2015 |
20150371945 | SEMICONDUCTOR DEVICE WITH CONTACTS AND METAL INTERCONNECTS AND METHOD OF MANUFACTURING THE SEMICONDUCTOR DEVICE - A semiconductor device includes a substrate, an interlayer insulation layer, first transistors, a multilayered interconnect layer, capacitance devices, metal interconnects, and first contacts. Interlayer insulation films are disposed over the substrate. The first transistors are disposed to the substrate and buried in the interlayer insulation layer. The first transistor has at least a gate electrode and a diffusion electrode. A multilayered interconnect layer is disposed over the interlayer insulation film. The capacitance devices are disposed in the multilayered interconnect layer. The metal interconnect is in contact with the upper surface of the gate electrode and buried in the interlayer insulation layer. The first contact is coupled to the diffusion layer of the first transistor and buried in the interlayer insulation layer. The metal interconnect includes a material identical with that of the first contact. | 12-24-2015 |
20160005731 | GATE STRUCTURE WITH HARD MASK STRUCTURE FORMED THEREON AND METHOD FOR FORMING THE SAME - A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a first capacitor structure. The first capacitor structure includes a fin structure formed over a substrate and a first gate structure formed over the substrate. In addition, a first portion of the first gate structure overlaps with a portion of the fin structure. The first capacitor structure further includes a first hard mask structure formed over the first portion of the first gate structure and a first conductive structure formed on the first hard mask structure over the first portion of the first gate structure. The first capacitor structure further includes a first contact formed on a second portion of the first gate structure. In addition, the first contact is in direct contact with the second portion of the first gate structure. | 01-07-2016 |
20160005740 | MEMORY DEVICE AND MANUFACTURING METHOD THE SAME - A semiconductor device that can transmit and receive data without contact is popular partly as some railway passes, electronic money cards, and the like; however, it has been a prime task to provide an inexpensive semiconductor device for further popularization. In view of the above current conditions, a semiconductor device of the present invention includes a memory with a simple structure for providing an inexpensive semiconductor device and a manufacturing method thereof. A memory element included in the memory includes a layer containing an organic compound, and a source electrode or a drain electrode of a TFT provided in the memory element portion is used as a conductive layer which forms a bit line of the memory element. | 01-07-2016 |
20160064471 | EMBEDDED CAPACITOR - A method of manufacturing a semiconductor device is provided, including forming a gate electrode of a dummy transistor device on a semiconductor substrate, forming a high-k material layer over and adjacent to the gate electrode and forming a metal layer on the high-k material layer over and adjacent to the gate electrode to form a capacitor. | 03-03-2016 |
20160104711 | NON-VOLATILE MEMORY - A non-volatile memory including a substrate, a floating gate transistor, a select transistor and a stress-releasing transistor. The floating gate transistor, the select transistor and the stress-releasing transistor are disposed on the substrate and coupled in series with each other. The stress-releasing transistor is located between the floating gate transistor and the select transistor. | 04-14-2016 |
20160163694 | SEMICONDUCTOR DEVICE INCLUDING FIN CAPACITORS - A semiconductor device with fin capacitors is disclosed. The device includes a substrate including a first region and a second region; first and second active fins at the first and second regions, respectively, of the substrate; a device isolation layer in a first trench between the first active fins; first and second gate electrodes that cross the first and second active fins, respectively; a first dielectric layer between the first active fins and the first gate electrode to extend along the first gate electrode, and a second dielectric layer between the second active fins and the second gate electrode to extend along the second gate electrode. The first dielectric layer is spaced apart from a bottom surface of the first trench by the device isolation layer between the bottom surface of the first trench and the first dielectric layer. The second dielectric layer is in direct contact with a bottom surface of a second trench between the second active fins. | 06-09-2016 |
20160379988 | METHOD FOR MANUFACTURING A FINGER TRENCH CAPACITOR WITH A SPLIT-GATE FLASH MEMORY CELL - A method for forming a split-gate flash memory cell, and the resulting integrated circuit, are provided. A semiconductor substrate having memory cell and capacitor regions are provided. The capacitor region includes one or more sacrificial shallow trench isolation (STI) regions. A first etch is performed into the one or more sacrificial STI regions to remove the one or more sacrificial STI regions and to expose one or more trenches corresponding to the one or more sacrificial STI regions. Dopants are implanted into regions of the semiconductor substrate lining the one or more trenches. A conductive layer is formed filling the one or more trenches. A second etch is performed into the conductive layer to form one of a control gate and a select gate of a memory cell over the memory cell region, and to form an upper electrode of a finger trench capacitor over the capacitor region. | 12-29-2016 |