Class / Patent application number | Description | Number of patent applications / Date published |
257289000 | Significant semiconductor chemical compound in bulk crystal (e.g., GaAs) | 6 |
20080237663 | FABRICATION OF SELF-ALIGNED GALLIUM ARSENIDE MOSFETS USING DAMASCENE GATE METHODS - A method for fabricating a gallium arsenide MOSFET device is presented. A dummy gate is formed over a gallium arsenide substrate. Source-drain extensions are implanted into the substrate adjacent the dummy gate. Dummy spacers are formed along dummy gate sidewalls and over a portion of the source-drain extensions. Source-drain regions are implanted. Insulating spacers are formed on dummy oxide spacer sidewalls. A conductive layer is formed over the source-drain regions. The conductive layer is annealed to form contacts to the source-drain regions. The dummy gate and the dummy oxide spacers are removed to form a gate opening. A passivation layer is in-situ deposited in the gate opening. The surface of the passivation layer is oxidized to create an oxide layer. A dielectric layer is ex-situ deposited over the oxide layer. A gate metal is deposited over the dielectric layer to form a gate stack in the gate opening. | 10-02-2008 |
20080277699 | Recess Etch for Epitaxial SiGe - A PMOS transistor and a method for fabricating a PMOS transistor. The method may include providing a semiconductor wafer having a PMOS transistor gate stack, source/drain extension regions, and active regions. The method may also include forming epi sidewalls, performing a ex-situ recess etch, and performing an in-situ recess etch. The ex-situ recess etch and the in-situ recess etch form recessed active regions. The PMOS transistor is formed by a method using ex-situ and in-situ etch and has epitaxial SiGe regions with a greatest width at the surface of the semiconductor wafer. | 11-13-2008 |
20090179236 | Recess Etch for Epitaxial SiGe - A PMOS transistor and a method for fabricating a PMOS transistor. The method may include providing a semiconductor wafer having a PMOS transistor gate stack, source/drain extension regions, and active regions. The method may also include forming epi sidewalls, performing a ex-situ recess etch, and performing an in-situ recess etch. The ex-situ recess etch and the in-situ recess etch form recessed active regions. The PMOS transistor is formed by a method using ex-situ and in-situ etch and has epitaxial SiGe regions with a greatest width at the surface of the semiconductor wafer. | 07-16-2009 |
20100072523 | SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME - A semiconductor device includes a first MIS transistor and a second MIS transistor. The first MIS transistor includes a first gate electrode includes a second metal film formed on a first gate insulating film, and an insulating film formed, extending over side surfaces of the first gate electrode and upper surfaces of regions located in the first active region laterally outside the first gate electrode. The second MIS transistor includes a second gate electrode including a first metal film formed on a second gate insulating film and a conductive film formed on the first metal film, and the insulating film formed, extending over side surfaces of the second gate electrode and upper surfaces of regions located in the second active region laterally outside the second gate electrode. The first and second metal films are made of different metal materials. | 03-25-2010 |
20140117427 | STACKED STRUCTURE, SPIN TRANSISTOR, AND RECONFIGURABLE LOGIC CIRCUIT - A stacked structure according to an embodiment includes: a semiconductor layer; a first layer formed on the semiconductor layer, the first layer containing at least one element selected from Zr, Ti, and Hf, the first layer being not thinner than a monoatomic layer and not thicker than a pentatomic layer; a tunnel barrier layer formed on the first layer; and a magnetic layer formed on the tunnel barrier layer. | 05-01-2014 |
20140145250 | LOCALLY ISOLATED PROTECTED BULK FINFET SEMICONDUCTOR DEVICE - A semiconductor device includes a bulk substrate having a plurality of trenches formed therein. The trenches define a plurality of semiconductor fins that are integral with the bulk semiconductor substrate. A local dielectric material is disposed in each trench and between each pair of semiconductor fins among the plurality of semiconductor fins. The semiconductor device further includes an etch resistant layer formed on the local dielectric material. | 05-29-2014 |