Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Infrared responsive

Subclass of:

250 - Radiant energy

250336100 - INVISIBLE RADIANT ENERGY RESPONSIVE ELECTRIC SIGNALLING

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
250340000 Methods 383
250339010 With selection of plural discrete wavelengths or bands 319
250338400 Semiconducting type 248
250338300 Pyroelectric type 136
250349000 Plural signalling means 94
250353000 With beam deflector or focussing means 81
250343000 With means to transmission-test contained fluent material 46
250338500 With means to analyze uncontained fluent material 41
250347000 With movable beam deflector or focussing means 21
250352000 With temperature modifying means 21
250338200 Ferroelectric, ferromagnetic, photomagnetic types 5
20100051812METHOD AND APPARATUS FOR DETECTING TERAHERTZ WAVES - A terahertz wave detecting apparatus includes a semiconductor chip 03-04-2010
20130099121INFRARED RAY DETECTION ELEMENT AND INFRARED RAY DETECTION DEVICE HAVING THE SAME - An infrared ray detection element has a plurality of pyroelectric layers that are laminated in a same direction as an incident direction of infrared rays, one or more intermediate electrode layers laminated between the plurality of pyroelectric layers; a front side electrode layer that is laminated on a front side of the pyroelectric layer positioned at a top side; and a back side electrode layer that is laminated on a back side of the pyroelectric layer positioned at a bottom side. The two pyroelectric layers adjacent in a front and back direction are performed with a polarization process such that polarization directions thereof are set to reverse directions to each other.04-25-2013
20130126734PIN-COMPATIBLE INFRARED LIGHT DETECTOR HAVING IMPROVED THERMAL STABILITY - An infrared light detector including at least one sensor chip that has a layer element that is produced from a pyroelectrically sensitive material and further has a base electrode and a head electrode, to which the layer element is connected for tapping electric signals generated in the layer element by irradiation of the at least one sensor chip with light. The detector further includes a transimpedance amplifier for amplifying the signals with an operational amplifier, which is asymmetrically operated by a supply voltage source having a positive supply voltage and to the inverting input of which the base electrode is connected. At the voltage supply source, a voltage divider connected to ground is provided with a partial node, to which a partial voltage that is smaller than the supply voltage is applied and which is electrically coupled to the non-inverting input and to the head electrode.05-23-2013
20130181132INTRUSION DETECTION APPARATUS AND METHOD - Disclosed herein is an intrusion detection apparatus which includes an infrared emission unit for emitting infrared beams and an infrared reception unit for receiving the infrared beams. The infrared emission unit adjusts an emission direction in which the infrared beams are emitted based on information received from the infrared reception unit, and adjusts an optical axis which is formed with the infrared reception unit depending on whether infrared beam values corresponding to the adjusted emission direction fall within the normal range. The infrared reception unit adjusts a detection direction in which the infrared beams are detected based on information received from the infrared emission unit, and adjusts an optical axis which is formed with the infrared emission unit depending on whether infrared beam values corresponding to the adjusted detection direction fall within the normal range. The intrusion into a relevant region is detected using the optical axis.07-18-2013
20140264028SENSOR - A sensor includes a first electrode, a second electrode, a ferroelectric element that is disposed between the first electrode and the second electrode and that has a ferroelectric film formed of a ferroelectric substance, and a detector configured to read an electric charge generated in the ferroelectric element. The detector performs reading by applying a first voltage for aligning polarization directions of the ferroelectric film and a second voltage for reversing polarization of at least part of the ferroelectric film whose polarization directions have been aligned.09-18-2014
250351000 With periodic beam varying means 4
20090212219INFRARED IMAGING OPTICAL SYSTEM WITH VARYING FOCAL LENGTH ACROSS THE FIELD OF VIEW - Provided is an infrared imaging optical system with an advantageously varying focal length across the field of view. More specifically, in a particular embodiment, provided is an inverse telephoto lens group having a field of view on the order of at least two radians. The focal length of the lens group is structured and arranged to vary in a pre-determined fashion across the field of view. An IR detector is optically coupled to the inverse telephoto lens group. A pupil is disposed between the IR detector and the inverse telephoto lens group.08-27-2009
20100187421RANGEFINDER PIVOTABLE BETWEEN OBVERSE AND REVERSE POSITIONS - A rangefinder, for locating an object moving parallel to a planar surface, is rigidly attached to a carrier that is pivotably movable between an obverse position and a reverse position relative to a planar surface. Preferably, an orienting mechanism is provided for determining which position, obverse or reverse, the carrier and rangefinder are in. Preferably, a pivot, for pivoting the carrier and the rangefinder between the two positions, is rigidly attached either to the plane surface or to an attachment mechanism for reversibly attaching the carrier to the planar surface.07-29-2010
20100230599OPTICAL RANGING SENSOR AND ELECTRONIC DEVICE - An optical ranging sensor includes an infrared LED encapsulated in a first light-permeable resin section, a light receiving device encapsulated in a second light-permeable resin section, a light-shielding resin member in contact with the first and second resin sections, a drive circuit section for driving the LED, a light receiving device control section for controlling the light receiving device, and a control section for the drive circuit section and light receiving device control section. Under control of the control section, a driving time of the LED coincides with an exposure time of the light receiving device. Further, while the LED is not driven, the light receiving device is also exposed for a time identical to the exposure time. An output difference between outputs at the exposure with driving the LED and at the exposure without driving the LED is calculated, and ranging is performed based on the output difference.09-16-2010
20140239182INSPECTING DEVICE AND INSPECTING METHOD - An inspecting device inspects an inspecting target that is a semiconductor device or a photo device. The inspecting device includes: a stage for holding an inspecting target; a femtosecond laser for emitting pulsed light; a galvano mirror for obliquely irradiating the inspecting target with the pulsed light, while changing an optical path of the pulsed light, to scan the inspecting target with the pulsed light; and a detection part for detecting an electromagnetic wave emitted non-coaxially with the pulsed light from the inspecting target in accordance with the illumination with the pulsed light.08-28-2014
Entries
DocumentTitleDate
20080203305Image pickup apparatus including image pickup devices having sensitivity in infrared region - A plurality of first pixels receive both visible light and infrared light. A plurality of second pixels receive infrared light. A ratio calculation unit calculates the ratio of an output signal of another first pixel different from saturated first pixel and an output signal of a second pixel corresponding to the another first pixel. A signal estimation unit multiplies the output signal of a second pixel corresponding to the saturated first pixel, by the ratio calculated by the ratio calculation unit. A subtractor subtracts the output of a second pixel corresponding to the saturated first pixel, from a signal estimated as an output signal of the saturated first pixel.08-28-2008
20080224043Artifact scanning with infrared radiation generated within a cold cathode lamp - Visible and infrared radiation is generated from phosphors within a cold cathode lamp. At least partially transparent media is irradiated with the visible and infrared radiation from the cold cathode lamp. Infrared radiation that passes through the at least partially transparent media is sensed, and an artifact signal is generated from the sensed infrared radiation. The artifact signal corresponds to one or more unwanted artifacts on the at least partially transparent media.09-18-2008
20080224044Equipment for Non-Contact Temperature Measurement of Samples of Materials Arranged Under Vacuum - The invention concerns an equipment for non-contact temperature measurement (09-18-2008
20080230698Tunable Microcantilever Infrared Sensor - An electromagnetic radiation sensor that exhibits improved performance by virtue of an ability to tune its sensitivity is disclosed. The electromagnetic radiation sensor incorporates thermal actuators that act in opposition to one another, but which have a slight difference in responsivity. A temperature controller is used to tune the sensitivity of the electromagnetic radiation sensor by controlling the temperature of the substrate on which the sensor is formed.09-25-2008
20080230699Microcantilever Infrared Sensor Array - A radiation sensor array that exhibits improved fill factor is disclosed. The radiation sensor array incorporates sensors having support arms that are nested in vertical fashion with the support arms of neighboring sensors. This vertically-nested structure enables the radiation-sensing portions of the sensors to be more closely-packed.09-25-2008
20080251722INFRARED SENSOR AND ITS MANUFACTURING METHOD - An infrared sensor has a groove formed at a peripheral portion of an optical filter in a region opposed to a circumferential region of an opening of a package so as to be continuously located in the peripheral portion of the optical filter. The optical filter has a resistance of about 1 MΩ/cm or less. The package is mainly composed of a metal material. A conductive adhesive is used as an adhesive for joining the optical filter to the package. In a case where the optical filter has a filter body and a thin film made of an insulating material and provided on a surface of the filter body, the groove is formed to have a depth extending from the surface provided with the thin film made of the insulating material to the filter body.10-16-2008
20080315099DETECTOR OF INFRARED RADIATION HAVING A BI-MATERIAL TRANSDUCER - A representative embodiment of the invention provides an infrared (IR) detector having a movable plate supported at an offset distance from a substrate by a suspension arm. In response to a temperature difference between the plate and the substrate generated by the incident IR radiation, the suspension arm deforms and changes the offset distance for the plate. In one embodiment, the suspension arm has three rod-shaped bimorph transducers that lie within a plane that is parallel to the substrate. The transducers are also parallel to one another, with the transducer that is attached to an anchor of the suspension arm being located between the two transducers that are attached to the plate.12-25-2008
20090008554METHOD FOR INFRARED IMAGING OF LIVING OR NON-LIVING OBJECTS INCLUDING TERRAINS THAT ARE EITHER NATURAL OR MANMADE - An improved system for infrared (IR) imaging of terrain is disclosed wherein or or more IR cameras may be used at one or more locations to record images at multiple focal planes. The images are all taken of the same field of view but at varied focal planes. Global Positioning Satellite (GPS) may be used to track each camera location and each camera captures images of the object. Information regarding the orientation of the camera may also be measured. The digital information from the images from each camera at varying focal planes, the distance from the object to each camera, orientation of camera and the GPS location of each camera is transferred to a computer where the data is processed through the use of merging and photogrammetry software utilizing appropriate algorithms to convert the multiple images into a two-dimensional or three-dimensional image with improved depth of field.01-08-2009
20090008555DEVICE FOR DETECTING INFRARED RADIATION WITH BOLOMETRIC DETECTORS - A device for detecting infrared radiation comprising an array of bolometric detectors which are sensitive to incident radiation and are referred to as “active” and a bolometer which is insensitive to said radiation and is referred to as “blind” formed on a substrate in which a read circuit is produced for sequentially addressing each of the rows of detectors of the array, each of the active bolometers in a single row being biased simultaneously. The read circuit also comprises means of producing a reference current (I01-08-2009
20090008556DEVICE FOR DETECTING ELECTROMAGNETIC RADIATION, ESPECIALLY INFRARED RADIATION - A device for detecting electromagnetic radiation, especially infrared radiation, including an array of elementary bolometers which are sensitive to the incident radiation and are referred to as “active” bolometers and an additional row of bolometers which are substantially insensitive to the radiation and are referred to as “blind” bolometers. The active and blind bolometers are formed on a substrate in which a read circuit is produced for sequential addressing of each of the rows of the array and the row of blind bolometers, each of the bolometers in the same row being biased simultaneously. The read circuit includes a source for producing a reference current (I01-08-2009
20090014653BOLOMETER ARRAY COMPENSATION - A bolometer circuit has a substrate, bolometer detectors coupled to the substrate, a source of calibration data and a compensation circuit. Each bolometer detector has an associated calibration data. The compensation circuit is configured to generate a time varying compensation signal for each bolometer detector based on its associated calibration data.01-15-2009
20090020702ELECTROMAGNETIC RADIATION DETECTOR AND METHOD FOR MANUFACTURING SUCH A DETECTOR - This electromagnetic radiation detector comprises a reflecting substrate and at least one detection element comprising a membrane sensitive to said radiation and suspended above the substrate. The distance between the membrane and at least one detection element and the substrate is variable, said distance having a predefined spatial distribution suitable for minimizing the rapid variations of a response of the radiation detector in at least one predefined wavelength range.01-22-2009
20090039265Method and apparatus for attenuating a light beam - Attenuators used to regulate optical signals are disclosed. According to one aspect of the present invention, an assembly including an IR source and an IR sensor is provided to sense blockage of optical signals transmitted between two collimators via a fixed common light blocker. The movement of the light blocker is sensed by a sensing assembly including an IR source and IR sensor. By detecting the photocurrent from the IR sensor and a feedback circuit, the attenuation of the optical signals can be well controlled.02-12-2009
20090050807IMAGE PICKUP DEVICE AND IMAGE PICKUP CONTROL METHOD - An image in which a shade of a driver's face is certainly suppressed is to be obtained, while suppressing increases in a size and an electric power consumption of an illumination. An illumination pulse-lights an illumination light which is an infrared light whose peak wavelength is 940 nm, under a control of a synchronous control section. The illumination light is irradiated to a driver through a polarizing filter and a visible light interruption filter. Reflex lights of the illumination light and a disturbance light, which were reflected by the driver, enter to an infrared BPF, in which a center wavelength is 940 nm, through the visible light interruption filter, a polarizing filter 02-26-2009
20090072142Scanning system and techniques for medical and/or forensic assessment using the same - A data recording system for scanning tissues of human beings or other objects from crime scenes includes a hand-held scanner and computer. The scanner has a housing including a platen along the bottom surface of the housing, a scanning mechanism including an illumination source and sensor positioned within the housing under a platen, a control unit, memory for storing data files, and disposable spacers removably attached to the bottom surface of the housing that hold the scanner a predetermined distance from the tissue or object. The scanner is placed over the tissue or object and emits light from the illumination source there toward. A predetermined range of light wavelengths reflected by the object is sensed by sensors and sensor signals are generated corresponding thereto. The controller processes the sensor signals and stores them as a data file in the memory for use in medical and crime scene analysis.03-19-2009
20090078871OUTGASSING RATE DETECTION - A workpiece processing system includes a platen configured to support a workpiece, a source configured to provide an electromagnetic wave proximate a front surface of the workpiece, and a detector. The detector is configured to receive at least a portion of the electromagnetic wave and provide a detection signal representative of an outgassing rate from the workpiece of outgassing byproducts. A method of detecting an outgassing rate is also provided. The method includes providing an electromagnetic wave proximate a front surface of a workpiece, receiving at least a portion of the electromagnetic wave, and providing a detection signal representative of an outgassing rate from the workpiece of outgassing byproducts.03-26-2009
20090084956EXTERNAL VARIABLE APERTURE AND RELAY FOR INFRA-RED CAMERAS - An external optical relay assembly to allow an infrared camera with a fixed aperture to be used with a variety of fore optics, including refractive compound lenses, reflective telescopes, and reflective/refractive lenses, by providing an external, cooled aperture, that can be adjusted to provide effective f-number matching to the fore optic, allowing any f-number fore optic to be used with the infrared camera. This allows users of large families of similar telescopes, for example, to use their inventory of infrared Ritchie-Chrétien telescopes with a single infrared camera, regardless of f-numbers.04-02-2009
20090095906IMAGE CAPTURING - A portable electronic device comprising an image capturing unit adapted to capture at least one image of an object. Also, the portable electronic device may include at least one light emitting element adapted to emit infrared light. Further, the image capturing unit may reside within the portable electronic device and be configured to capture an image of the object illuminated with infrared light. The present invention provides a method for illuminating an object, a computer program product and an accessory unit to a portable electronic device.04-16-2009
20090108201Calibration source infrared assembly for an infrared detector - Provided is a calibration source IR assembly for an IR detector including an IR focal plane. The calibration assembly includes a rotatable spectral filter wheel optically coupled to an IR focal plane of the detector, the filter wheel having a plurality of areas each of at least a minimum size. At least one area being a calibration area, the calibration area including: a substrate having a first side facing the IR focal plane and a second side opposite from the first side; a light transmitting edge section disposed between the first side and the second side; and at least one light redirector disposed at least partially within the substrate, the light redirector structured and arranged to receive light from the edge and to redirect the light out the first side. A light source optically coupled to the edge section. An IR detector including the improvement of such a calibration source IR assembly is also provided.04-30-2009
20090108202Antenna-coupled-into-rectifier infrared sensor elements and infrared sensors - An infrared sensor element having an antenna coupled directly into a rectifier. Infrared radiation impinging the antenna induces an alternating current. The rectifier converts the alternating current into a rectified signal. The rectified signal corresponds to a magnitude of the incident infrared radiation impinging the antenna, and can be used for detection and imaging operations. Coupling the antenna directly into the rectifier eliminates the need for a photodetector. The wavelength of sensor elements can be separately tuned. A sensor made up of a plurality of such sensor elements can operate in a time-division multiplexed mode sensing different infrared bandwidths in separate time segments. Two or more sensors each made up of a plurality of sensor elements can be co-located in a single focal plane and operated separately to detect infrared radiation in different bandwidths. A sensor element can also operate in bandwidths other than infrared.04-30-2009
20090108203Multiple-band detector using frequency selective slots - An optical detector pixel element. The novel pixel element includes a metallic substrate having a plurality of resonant apertures, each aperture adapted to resonantly transmit electromagnetic energy in a distinct frequency band, and a plurality of detectors adapted to detect the energy transmitted by the apertures. Each aperture is adapted to collect energy incident on an area larger than the aperture and focus the energy into a smaller, localized region in which one or more of the detectors is placed. The plural apertures are positioned such that they collect energy incident on a substantially common area, but are of different sizes such that they are resonant to different frequencies. Energy in different frequency bands are therefore funneled through different apertures. In an illustrative embodiment, several identical pixel elements are joined together to form an array.04-30-2009
20090121137MICROBOLOMETER INFRARED SECURITY SENSOR - An infrared sensor, comprising a focal plane array (FPA) of resistance microbolometer infrared detectors connected in such a manner to produce different pixel formats to meet specific detection requirements. Typically each imaging pixel may be a mosaic comprising a number of sub-pixels connected in parallel (although other configurations are possible), resulting in enhanced performance and ease of manufacture by micro-fabrication methods. The FPA may be integrated with a readout microcircuit on the same substrate so that with appropriate signal processing one is capable of forming an image of the field of view of interest, facilitating target recognition and very low false alarm rate.05-14-2009
20090127461APPARATUS AND METHOD FOR DISPLAY CONTROL USING AMBIENT LIGHT MEASUREMENT SIGNAL FROM AN INFRARED RECEIVER - A system having an infrared receiver is shown, where the system includes an infrared receiver circuit configured to receive an infrared data signal using a receive photodiode and compensate for an ambient light level incident on the receive photodiode by generating a DC ambient current signal, where the DC ambient current signal is accessible external to the infrared receiver circuit. The system also includes a control circuit configured to receive the DC ambient current signal and, responsive thereto, determine the ambient light level and generate a display illumination control signal accordingly.05-21-2009
20090134329Detection apparatus for detecting electromagnetic wave passed through object - A detection apparatus for detecting electromagnetic waves that have passed through an object is provided which includes a transmission line for transmitting electromagnetic waves therethrough and a detector for detecting electromagnetic waves that have passed through an object, the transmission line having a gap for disposing the object therein.05-28-2009
20090134330CONCEPT FOR DETERMINING A MEASUREMENT VALUE AT A COMPONENT - In an evaluation device for determining a measurement value at a component, power is supplied to the component during readout of the measurement value. A controller serves to determine the power supplied to the component during the readout. The measurement value determined by the reader is corrected by a compensator while using the power determined by the controller, so as to obtain a corrected measurement value freed from any effects caused by the power supplied.05-28-2009
20090140144Tuning D* with Modified Thermal Detectors - Disclosed is apparatus and methodology for producing thermal detectors with spectral responsivities that mimic the absorptions of chemical analytes, and whose detector characteristics approach those of conventional broad-band thermal detectors. In an exemplary arrangement, the methodology provides for modification of a known Si-based thermal detector by adding a near-infrared dye absorbing film above a reflector deposited directly on the thermal detector element. The method is general to all types of thermal detectors that can be divided into separate absorber and thermal sensor components.06-04-2009
20090140145Electromagnetic radiation detector with nanowire connection and method for producing same - The electromagnetic radiation detector compromises at least one radiation absorption membrane transforming the absorbed energy into heat transmitted to at least one resistive thermometer having a resistance varying with temperature. Each absorption membrane is suspended above a substrate by a nanowire connected to the central area of the membrane. The nanowire comprises an electrically conducting core and an electrically conducting external layer electrically insulated from one another and respectively connected to measuring areas of said thermometer. The nanowire serves the purpose both of support for the membrane and of electrical connection between the measuring areas and a circuit arranged at the level of the substrate.06-04-2009
20090140146VACUUM PACKAGE AND MANUFACTURING PROCESS THEREOF - A vacuum package has a chamber in which pressure is reduced to less than the atmospheric pressure, a functional component sealed in the chamber, and a material forming at least a part of the chamber. The material has at least one through hole to evacuate the chamber. In a cross section perpendicular to the material taken along the through hole, an edge portion of the material forming the through hole has an obtuse angle. The through hole is sealed with a sealing material.06-04-2009
20090146058RESISTIVE MATERIALS FOR MICROBOLOMETER, METHOD FOR PREPARATION OF RESISTIVE MATERIALS AND MICROBOLOMETER CONTAINING THE RESISTIVE MATERIALS - Provided are resistive materials for a microbolometer, a method for preparation of resistive materials and a microbolometer containing the resistive materials. The resistive materials for the microbolometer include an alloy of silicon and antimony or an alloy of silicon, antimony and germanium, which has a high TCR and a low resistance.06-11-2009
20090152465DEVICE FOR DETECTING INFRARED RADIATION COMPRISING A RESISTIVE IMAGING BOLOMETER, A SYSTEM COMPRISING AN ARRAY OF SUCH BOLOMETERS AND A METHOD FOR READING AN IMAGING BOLOMETER INTEGRATED INTO SUCH A SYSTEM - A device for detecting infrared radiation comprising a resistive imaging bolometer intended to be electrically connected to a circuit for measuring a resistance of the bolometer. It comprises means of controlling the resistance of the imaging bolometer by injecting current into the bolometer.06-18-2009
20090159799COLOR INFRARED LIGHT SENSOR, CAMERA, AND METHOD FOR CAPTURING IMAGES - A light sensor may include an array of light sensitive elements and an array of transmissive filters provided over the array of light sensitive elements and in substantial registration therewith. The array of transmissive filters comprises an infrared transmissive filter that substantially transmits infrared light and substantially blocks visible light as well as at least one non-infrared transmissive filter that substantially transmits non-infrared light.06-25-2009
20090166537LIGHT RECEIVING APPARATUS, ELECTRONIC APPARATUS AND IMAGE DISPLAY APPARATUS - Disclosed herein is a light receiving apparatus, including: a light receiving section including a light receiving element; a transparent part; and a light guiding part inserted in the groove; the groove having, on the front face side, a side face formed as an arcuately curved face convex toward the front face side and having the same shape in any cross section perpendicular to the front face and also to the depthwise direction of the groove; the light guiding part having a side face opposing to the side face of the groove on the front face side and formed as an arcuately curved face which is convex toward the front face side in a state wherein the light guiding part is inserted in the groove and which has the same shape in any cross section perpendicular to the front face and also to the depthwise direction of the groove.07-02-2009
20090194696Method and System for Determining the Rate of Non Uniformity of Bolometer Based Systems - A focal plan array system of the bolometer type having means for determining the rate of non-uniformity which comprises: (a) an array of i×j pixel detectors of the bolometer type for sensing scenery radiation; (b) a case which accommodates said array of detectors, said case having a front window that provides exposure to the sensing element of all the i×j pixel detectors to radiation coming from the scenery; (c) at least a portion of column j+1 of blind detectors that are shielded from the scenery by a homogeneous reference surface; (d) reading circuitry for reading indication for the scenery radiation as sensed by each of the i×j detectors of the array, and for reading indication for the non uniformity as sensed by said detectors in column (j+1); (e) a register for recording the radiation values as read from all the detectors within column (j+1); and (f) a processing unit for finding the standard deviation a of all the values in said register, and for comparing the same to a predetermined threshold Q, wherein a standard deviation above Q being an indication for a non uniformity above the allowed level.08-06-2009
20090194697APPARATUS FOR USE IN OPERATOR TRAINING WITH, AND THE TESTING AND EVALUATION OF, INFRARED SENSORS WHICH ARE FOR MISSILE DETECTION - Apparatus (08-06-2009
20090194698THERMAL INFRARED DETECTING DEVICE - A thermal infrared imaging device includes a diode, a power supply for supplying a constant power supply voltage to an anode of the diode through a first interconnection, a voltage setting circuit for setting a voltage across the diode, and a current read circuit which is connected to a cathode of the diode through a second interconnection and the voltage setting circuit, for reading a current of the diode. The voltage setting circuit controls a voltage of a connection point of the second interconnection and the voltage setting circuit to a voltage obtained by subtracting a voltage drop from a predetermined bias voltage. The voltage drop is generated by resistances of the first and second interconnections, and the diode current.08-06-2009
20090200469ALTERNATING ROW INFRARED FILTER FOR AN IMAGE SENSOR - An image sensor includes near-infrared cut filters formed over an array of photosensitive elements in a predetermined pattern. The near-infrared cut filters may be formed over one half of a photosensitive element in a split pixel arrangement, over one half the photosensitive elements in the array, over every other photosensitive element in the array, and/or in a checkerboard pattern.08-13-2009
20090200470Radiation detection apparatus and radiation image capturing system - A radiation detection apparatus includes a casing, and a radiation detection device accommodated inside the casing, which detects radiation emitted from a radiation source and having passed through a subject, and converts the radiation into radiation image information. The radiation detection apparatus further includes a data compression circuit, which compresses the radiation image information to thereby create compressed radiation image information, and an infrared light communication unit which converts the compressed radiation image information into an infrared light signal and outputs the infrared light signal.08-13-2009
20090206262TERAHERTZ DETECTOR - A detector for electromagnetic radiation in the range 80 GHz to 4 THz comprises a laser light source (08-20-2009
20090212218INFRARED SENSOR - A small infrared sensor has a wide infrared light-receiving area (viewing angle), high electromagnetic shielding characteristics, and excellent electromagnetic-wave resistance characteristics. In the infrared sensor, supporting portions are disposed at four corners of a substantially rectangular opening in a package. The supporting portions support an optical filter, disposed so as to cover the opening, at positions that are lower than an upper end of an inner peripheral wall defining the opening. While the optical filter is supported by the supporting portions as a result of inserting a portion of a surface side of the optical filter facing the supporting portions into the opening, the optical filter is secured to the package. The optical filter and the package are joined and secured, and electrically connected to each other through a conductive adhesive.08-27-2009
20090236524OPTICAL ANALYSIS DEVICE - An optical analysis device that operates according to the principle of radiation absorption, has a housing (09-24-2009
20090278047Electronic device - A transportable electronic cassette and an image reading device carry out communication by laser light between themselves, with the separation distance to the casing of the opposing device detected by separation distance sensors provided respectively to the electronic cassette and the image reading device. The value of the separation distance detected is monitored to see whether or not the separation distance exceeds a reference value of the detected value at the start of communication by a specific value or more. Conclusion can be made that there has been a relatively large change in the relative position of the electronic cassette and the image reading device if the detected value of the separation distance becomes greater than the reference value by the specific value or more, and consequently emission is halted of the laser light from the electronic cassette and the image reading device.11-12-2009
20090283679REFLECTIVE COLLECTION-TYPE LIGHT RECEIVING UNIT AND LIGHT RECEIVING APPARATUS FOR SPATIAL LIGHT COMMUNICATIONS - The reflective collection-type light receiving unit of the present invention is a reflective collection-type light receiving unit having a light receiving element which receives spatial light on which an information signal is superimposed after being reflected and collected via a concave mirror. The light receiving element is arranged approximately at the center inside the concave mirror, with the light receiving plane thereof facing to the reflection plane of the concave mirror. A pair of electrode leads connected to both electrodes of the light receiving element are extended so as to be opened from the center on the front plane of the concave mirror to both sides and connected to a light receiving circuit by way of the lateral plane of the concave mirror.11-19-2009
20090294670Microwave sensor - One embodiment is provided with a movement distance measuring means (12-03-2009
20090294671Target brightness - An infrared measurement method and device is described having light projecting target sighting means. Changing the sighting display controls brightness of the sighted target. Automatic brightness control of the target is provided by a light sensor and/or according to target distance. Switching the display light into different patterns changes brightness, which is also changed by changing the electrical supply to the sighting light and by optical attenuation of the sighting light.12-03-2009
20090309026Optical sensor device having a lens system at least partially integrated into the unit housing - An optical unit, having a sensor device in particular, including a housing enclosing same, a radiation-sensitive sensor surface, designed for detecting electromagnetic radiation from a frequency section, having a predefined width and position, of the spectral range including the near infrared range and/or the visible range, and a lens system. In order to reduce the cost and complexity for mounting a lens on the housing and to obtain a uniform housing surface on the object side, a part of the lens system acting as a lens on the object side or the entire lens system of the unit is designed as an integral component of the housing of the unit.12-17-2009
20090321639Process and Apparatus for the Measurement of Thermal Radiation Using Regular Glass Optics and Short-Wave Infrared Detectors - An infrared measurement apparatus and method to detect and view ambient-temperature objects using short-wave infrared (“SWIR”) detectors which operate in a wavelength region from 2.0 μm to 2.5 μm.12-31-2009
20090321640PHOTODETECTOR, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC APPARATUS - An photodetector includes: a first light receiving element that receives light including ambient light; a second light receiving element that receives light including the ambient light; and a red color filter disposed on an optical path through which the ambient light is incident on the second light receiving element.12-31-2009
20100025583Multiband infrared imaging device - A multiband infrared imaging intensifier device which includes an infrared radiation transmitting lens, for transmitting infrared radiation from an object scene onto a quantum ferroelectric copolymer detector with a chopper between them, with the detector responsive to the infrared detection to generate signal electrons which are pulled off and accelerated by an electric field onto a phosphor surface which produces photons to provide an image.02-04-2010
20100038540IMAGE SENSOR FOR DETECTING WIDE SPECTRUM AND METHOD OF MANUFACTURING THE SAME - Provided are an image sensor for detecting a wide spectrum, including a plurality of infrared ray receiving layers which individually receive infrared rays having different wavelengths for each pixel, the plurality of infrared ray receiving layers stacked to each other, and a manufacturing method thereof. The image sensor, which is an integrated image sensor where at least two micro bolometers are stacked, acquires spectrum information about visible rays and near-infrared rays as well as two or more infrared rays applied on an object, without mechanical/thermal/optical distortion, and provides the spectrum information to a silicon-based semiconductor such as a photodiode, thereby improving photoelectric conversion efficiency.02-18-2010
20100038541Monolithicallly integrated IR imaging using rare-earth up conversion materials - Infrared imaging at wavelengths longer than the silicon bandgap energy (>1100 nm) typically require expensive focal plane arrays fabricated from compound semiconductors (InSb or HgCdTe) or use of slower silicon microbolometer technology. Furthermore, these technologies are available in relatively small array sizes, whereas silicon focal plane arrays are easily available with 10 megapixels or more array size. A new technique is disclosed to up convert infrared light to wavelengths detectable by silicon focal plane arrays, or other detector technologies, thereby enabling a low-cost, high pixel count infrared imaging system.02-18-2010
20100051810MICROMECHANICAL COMPONENT AND CORRESPONDING PRODUCTION METHOD - A micromechanical component and a corresponding production method. The micromechanical component includes a first component and a second component, with which the first component is connected by an alloy region; the first and second components enclosing a vacuum region or residual gas region, which is sealed by the alloy region.03-04-2010
20100051811Photoconductive Element and Sensor Device - There is provided a photoconductive element capable of generating and detecting broadband electromagnetic waves such as terahertz waves at a comparatively high efficiency by decreasing or avoiding the absorption of electromagnetic waves into a substrate. A photoconductive element 03-04-2010
20100059679Tomography arrangement and method for monitoring persons - The invention relates to a tomography arrangement with a tubular measuring chamber and a monitoring facility. This monitoring facility includes at least one first video camera focusing on the measuring chamber and at least partially optically recording the same, said first video camera operating in the non-visible light wave range, in order to record moving images and an image output unit for outputting the moving images as well as a first illumination facility focusing on the measuring chamber, which, during operation, illuminates the measuring chamber in the same light wave region, in which light wave range the first video camera operates. The invention also relates to a method for monitoring persons.03-11-2010
20100078558Infra-red light stimulated cdZnTe spectroscopic semiconductor x-ray and gamma-ray radiation detector - A method of detecting radiation by which residence time of charge carriers is dramatically reduced by an external optical energy source and the occupancy of deep-level defects is maintained close to the thermal equilibrium of the un-irradiated device at any temperature. The energy of an infra-red light source is tuned within a predetermined band gap energy range and crystals are transparent to the infra-red light of the energy. Thus, other than the one associated with the ionization of the target deep-level defects, no other absorption occurs. Because of this low absorption, infra-red irradiation can be performed through any surface of the crystal that is transparent to the infra-red light which allows irradiation geometry from any side surface(s) of the detector crystals.04-01-2010
20100102229COMBINED SENSOR FOR PORTABLE COMMUNICATION DEVICES - The invention relates to a sensor adapted for a portable communication device, consisting of a first layer of a light absorbing material configured to absorb photons of a first wavelength range and being transparent to photons of a second wavelength range, a second layer of a light absorbing material configured to absorb photons of a second wavelength range and being transparent to photons of said first wavelength range. The sensor is characterized by that the first and the second light absorbing material are arranged on a substrate housing electronic components of the portable communication device, whereby the first and the second light absorbing material are arranged on top of each other, and wherein at least one of the light absorbing materials is adapted to detect the level of ambient light.04-29-2010
20100108885IMAGING SYSTEM WITH AN OPTICAL MIRROR ARRANGEMENT AND SELF RIGHTING HOUSING - A multi-wavelength band imaging system including a beam splitter is provided, allowing image capturing means adapted to specific wavelength bands to be used such as from visible to near infrared, intermediate infrared and far infrared. The system may have a field of view of substantially (360) degrees about an optical axis of the system and may fit into a golf ball sized housing. The imaging system includes a first convex mirror and a second concave mirror. Some embodiments for imaging single or close wavelength bands and not requiring a beam splitter are equally provided. Also provided is a self-righting housing for an imaging system, for example as described above, which self-rights under the action of gravity, thereby disposing the imaging system in an appropriate orientation.05-06-2010
20100148067BOLOMETER STRUCTURE, INFRARED DETECTION PIXEL EMPLOYING BOLOMETER STRUCTURE, AND METHOD OF FABRICATING INFRARED DETECTION PIXEL - Provided are a bolometer structure, an infrared detection pixel employing the bolometer structure, and a method of fabricating the infrared detection pixel.06-17-2010
20100187419THERMO-OPTIC INFRARED PIXEL AND FOCAL PLANE ARRAY - A surface plasmon polariton (SPP) pixel structure is provided. The SPP pixel structure includes a coupling structure that couples the probing light into the SPP mode by matching the in-plane wave vector by changing the refractive index of the coupling structure using thermo-optic effects to vary the coupling strength of the probing light into the SPP mode. An absorber layer is positioned on the coupling structure for absorbing incident infrared/thermal radiation being detected.07-29-2010
20100193688RADIOMETRIC ELECTRICAL LINE SENSOR IN COMBINATION WITH MECHANICAL ROTATING MIRROR FOR CREATING 2D IMAGE - The present invention relates to the field of two dimensional (2D) radiometric imaging. The present invention especially relates to a sensor unit. The sensor unit according to the present invention comprises a reflecting element mounted so as to be rotatable around an axis of rotation and a line sensor operating in the microwave, millimeter wave and/or terahertz frequency range and having its field of view directed towards the reflecting element, whereby the axis of rotation intersects with a reflection plane of the reflecting element.08-05-2010
20100200753Directable Light - The present invention provides a lighting apparatus having a directable beam and comprising: 08-12-2010
20100200754MACHINE TOOL MONITORING DEVICE - The invention relates to a machine tool monitoring device having a detection device (08-12-2010
20100243896MICROBOLOMETER PIXEL AND FABRICATION METHOD UTILIZING ION IMPLANTATION - A microbolometer pixel and a reduced-step process for manufacturing it comprising the step of ion implantation of vanadium oxide whereby VO09-30-2010
20100294934LIGHT MEASUREMENT APPARATUS AND A TRIGGER SIGNAL GENERATOR - The present invention can restrain a jitter from being generated in a measurement result of light such as terahertz light which has transmitted through a device under test. A trigger signal generation device includes a first photoelectric conversion unit that applies photoelectric conversion to a probe light pulse, a second photoelectric conversion unit that applies photoelectric conversion to a pump light pulse, a first amplification unit that amplifies an output from the first photoelectric conversion unit, a second amplification unit that amplifies an output from the second photoelectric conversion unit, a trigger signal output unit that outputs a cross-correlation of outputs of the first amplification unit and the second amplification unit as a trigger signal, and a period difference adjustment unit that adjusts a difference in period between a period T11-25-2010
20100301215PHYSIOLOGICAL SENSOR HAVING REDUCED SENSITIVITY TO INTERFERENCE - A physiological sensor having reduced sensitivity to interference includes a light source, a light detector in optical communication with the light source, and a sensor pad at least partially housing the light source and the light detector. The sensor pad is configured to be capacitively isolated from a patient. Moreover, the physiological sensor may be electrically connected to an amplifier having a signal ground and a monitor.12-02-2010
20100308222Multifunction Edge Device for Powered Doors - An edge device for an elevator door includes an elongate array of infrared transmitters and/or receivers and a proximate elongate array of illuminable elements, both arrays extending for a substantial part of the length of the door. The illuminable elements are adapted to be illuminated when the door is in motion. The two arrays are disposed in a common carrier structure, being either vertically interleaved or extending vertically in parallel with each other.12-09-2010
20100327164Optical Proximity Sensor Package with Molded Infrared Light Rejection Barrier and Infrared Pass Components - An optical proximity sensor is provided that comprises an infrared light emitter an infrared light detector, a first molded optically transmissive infrared light pass component disposed over and covering the light emitter and a second molded optically transmissive infrared light pass component disposed over and covering the light detector. Located in-between the light emitter and the first molded optically transmissive infrared light pass component, and the light detector and the second molded optically transmissive infrared light pass component is a substantially optically non-transmissive infrared light barrier component. The infrared light barrier component substantially attenuates or blocks the transmission of undesired direct, scattered or reflected light between the light emitter and the light detector, and thereby minimizes optical crosstalk and interference between the light emitter and the light detector.12-30-2010
20100327165RADIATION DETECTOR AND RADIATION DETECTION METHOD - The present invention provides a radiation detector with high detection sensitivity. The radiation detector according to the present invention includes an Al12-30-2010
20100327166INFRARED SENSOR - An infrared sensor includes a substrate including an insulating layer formed thereon, a thermoelectric conversion element mounted on the substrate through the insulating layer, and an infrared absorbing layer mounted on the thermoelectric conversion element. The thermoelectric conversion element includes at least one single element having a heating surface defined as one side face and a cooling surface defined as the opposite face of the heating surface, for generating an electric power from the temperature difference made between the heating surface and the cooling surface. The single element includes a sintered cell including a composite metallic oxide, a pair of electrodes formed on the heating surface and the cooling surface of the sintered cell, and lead wires connecting the electrode on the heating surface and the electrode on the cooling surface electrically in series.12-30-2010
20110006211DEVICE HAVING A MEMBRANE STRUCTURE FOR DETECTING THERMAL RADIATION, AND METHOD FOR PRODUCTION THEREOF - In a device for detecting thermal radiation, at least one membrane is provided on which at least one thermal detector element is mounted for the conversion of the thermal radiation into an electric signal and at least one circuit support for carrying the membrane and for carrying at least one readout circuit for reading out the electrical signal, the detector element and the readout circuit being connected together electrically by an electric contact which passes through the membrane. In addition, a method of producing the device with the following method steps is provided: a) provision of the membrane with the detector element and of at least one electrical through-connection and provision of the circuit support and b) bringing together the membrane and the circuit support in such a manner that the detector element and the readout circuit are connected together electrically by an electrical contact passing through the membrane. Production activity is preferably carried out at wafer level: functionalised silicon substrates are stacked upon one another, firmly bonded to one another and then divided into individual elements. Preferably, the detector elements comprise of pyro-electrical detector elements. The device finds application in motion detectors, presence detectors and in thermal imaging cameras.01-13-2011
20110024626TRACE SAMPLING - A trace sampling detection system includes a gathering device configured to gather particles through a handle-bar, a gate and an air-stream gatherer. The handle-bar includes collection holes positioned to be adjacent to a user's hand when the user grips the handle-bar, and is configured to dislodge and capture particles from the user's hand when the user grips and moves the handle-bar. The gate includes a series of collection holes, is positioned to be adjacent to the user's clothing when the user traverses the gate, and is configured to dislodge and capture particles from the user's clothing in response to pressure applied from the user. The air-stream gatherer includes an outward vent and an in-drawing vent, and is positioned to enable objects, such as the user's feet, to be placed between the outward and in-drawing vents. The air stream is configured to dislodge and capture particles from objects, such as the user's feet, that block the air-stream between the vents. A collection tube is configured to deposit gathered particles from the gathering device onto a portion of a sample media. A carousel wheel that includes the sample media is configured to rotate the sample wheel such that the portion of the sample media including the gathered particles is presented to an exothermic decomposition detector that detects, through an infrared sensor, the decomposition of the gathered particles.02-03-2011
20110036983IDENTIFICATION SYSTEM AND METHOD USING HIGHLY COLLIMATED SOURCE OF ELECTROMAGNETIC RADIATION - An identification system and method comprising a beacon unit using a highly collimated source of electromagnetic radiation, which emits towards a thermal imaging unit highly directional radiation. In this manner, improved visual identification of the beacon unit and the carrier associated therewith through the imaging unit can be achieved over both short and long distances. In particular, detection of the beacon unit is aided by emitting highly collimated radiation with high power density at great distances. When detected by the sensor array, an image of the emitted radiation is indeed displayed as a bright spot of light on the display, thus eliciting the attention of a viewer observing a scene through the imaging unit. Blooming of an array of sensing elements provided in the imaging unit may further be fostered by delivering a great amount of power to the imaging unit, thus improving detection of the beacon unit.02-17-2011
20110057102Multiple Transfer Molded Optical Proximity Sensor and Corresponding Method - Various embodiments of a multiple-stage-molded optical proximity sensor and method of making same are disclosed. According to one embodiment, the method comprises mounting an infrared light emitter atop a first portion of a substrate, and mounting an infrared light detector, an ambient light detector and an integrated circuit atop a second portion of the substrate. In a first molding step, an infrared light pass component is molded over the substrate and the infrared light emitter, the infrared light detector, the ambient light detector, and the integrated circuit. The infrared light pass component is then cured, followed by forming a slot in the cured infrared light pass component between the first and second portions of the substrate. In a second molding step, an infrared light cut component is molded over the slot, the integrated circuit, the ambient light detector, and over portions of the infrared light emitter and the infrared light detector.03-10-2011
20110057103CONTAINER, CONTAINER POSITIONING METHOD, AND MEASURING METHOD - A container according to the present invention contains at least a part of a device under test to be measured by a terahertz wave measurement device. The container includes a gap portion that internally disposes at least a part of the device under test, and an enclosure portion that includes a first flat surface portion and a second flat surface portion, and disposes the gap portion between the first flat surface portion and the second flat surface portion, thereby enclosing the gap portion. Moreover, a relationship n03-10-2011
20110057104Miniaturized Optical Proximity Sensor - Various embodiments of a miniaturized optical proximity sensor are disclosed. In one embodiment, an ambient light sensor and a light detector are mounted on first and second spacers, which in turn are mounted to a top surface of an integrated circuit die-attached to a substrate. An optically-transmissive infrared pass compound is molded over the ambient light sensor, the light detector, the integrated circuit, alight emitter and peripheral portions of the substrate. Next, an optically non-transmissive infrared cut compound is molded to over the optically-transmissive infrared pass compound to provide a miniaturized optical proximity sensor having no metal shield but exhibiting very low crosstalk characteristics.03-10-2011
20110062335DETECTING ELECTROMAGNETIC RADIATION - According to the present invention, there is provided an apparatus comprising a sensor for detecting electromagnetic radiation from an object, focussing means arranged to focus said electromagnetic radiation onto the sensor, and a configurable element disposed between the focussing means and the sensor. The configurable element is switchable between a plurality of configurations, each configuration providing a different transfer function between the object and the sensor. As the configurable element is located between the focussing means and the sensor, the transfer function associated with each configuration contains information from both the Fourier and image domains, allowing a high resolution image to be reconstructed.03-17-2011
20110068270APPARATUS FOR GENERATING/DETECTING THZ WAVE AND METHOD OF MANUFACTURING THE SAME - Provided are an apparatus for generating/detecting terahertz wave and a method of manufacturing the same. The apparatus includes a substrate, a photo conductive layer, a first electrode and a second electrode, and a lens. The photo conductive layer is formed on an entire surface of the substrate. The first electrode and a second electrode are formed on the photo conductive layer. The first and second electrodes are spaced from each other by a certain gap. The lens is formed on the first and second electrodes. The lens is filled in the gap between the first and second electrodes.03-24-2011
20110079716PHTHALOCYANINE, NAPHTHALOCYANINE, AND BRIDGED PHTHALOCYANINE/NAPHTHALOCYANINE DYES AND INKS CONTAINING THE SAME - Phthalocyanine dyes, naphthalocyanine dyes, and/or bridged phthalocyanine/naphthalocyanine dyes represented by one of the general structures I to XVII, inkjet ink formulation comprising said dyes, and detection systems using said dyes are disclosed and described.04-07-2011
20110114840ENCAPSULATING PACKAGE, PRINTED CIRCUIT BOARD, ELECTRONIC DEVICE AND METHOD FOR MANUFACTURING ENCAPSULATING PACKAGE - The present invention is: a package main body section having a hollow section; and an electronic device provided in the hollow section in the package main body section, in the package main body section, there being formed a through hole, through which the hollow section communicates with outside of the package main body section, and in the through hole, there being provided a sealing section in which a vicinity of the through hole is partly heated and a constituent material of the package main body section is melted to thereby block the through hole.05-19-2011
20110121181Infrared Proximity Sensor Package with Improved Crosstalk Isolation - Disclosed are various embodiments of an infrared proximity sensor package comprising an infrared transmitter die, an infrared receiver die, a housing comprising sidewalls, a first recess, a second recess, a partitioning divider disposed between the first and second recesses, and an overlying shield comprising an infrared-absorbing material. The transmitter die is positioned in the first recess, and the receiver die is positioned within the second recess. The partitioning divider comprises liquid crystal polymer (LCP) such that the partitioning divider and the infrared-absorbing material of the shield cooperate together to substantially attenuate and absorb undesired infrared light that might otherwise become internally-reflected within the housing or incident upon the receiver as a false proximity or object detection signal.05-26-2011
20110127430Stabilization of Coldshield Bodies - According to one embodiment, an optical device comprises a housing. A structure is disposed within the housing. The structure has an optical entrance whereby radiation may enter. An aperture is located between the optical entrance and a radiation detector. At least one brace is rigidly coupled to the structure and the housing.06-02-2011
20110133086White LED For Illumination With Additional Light Source For Analysis - An improved combination light source (06-09-2011
20110155910INFRARED DETECTION CIRCUIT, SENSOR DEVICE, AND ELECTRONIC INSTRUMENT - An infrared detection circuit includes a charge transferring transistor, a gate control circuit and a negative potential generating circuit. The charge transferring transistor is disposed between a read node configured to be connected to one end of an infrared detection element and a tank node to transfer an electric charge from the infrared detection element to the tank node. The gate control circuit is connected to a gate of the charge transferring transistor. The negative potential generating circuit is connected to the tank node to set the tank node to a negative electric potential when the charge transferring transistor transfers the electric charge.06-30-2011
20110180709SERIAL-CHAINING PROXIMITY SENSORS FOR GESTURE RECOGNITION - A system and method for identifying a position of a moving object, utilizing a serial chain of sensors is provided. The serial chain reduces the power needed for the motion detection system, allowing implementation of the motion detection system on a low-power computing device, such as a microcontroller. The serial chain can provide automatic address assignment without dedicated pins. The serial chain can also provide automatic sequencing of access to a shared LED. The serial chain can also provide automatic time correlation of data from multiple sensors in the motion detection system.07-28-2011
20110204231THERMAL DETECTION AND IMAGING OF ELECTROMAGNETIC RADIATION - The current invention provides a method for improving the sensitivity of bolometric detection by providing improved electromagnetic power/energy absorption. In addition to its role in significantly improving the performance of conventional conducting-film bolometric detection elements, the method suggests application of plasmon resonance absorption for efficient thermal detection and imaging of far-field radiation using the Surface Plasmon Resonance (SPR) and the herein introduced Cavity Plasmone Resonance (CPR) phenomena. The latter offers detection characteristics, including good frequency sensitivity, intrinsic spatial (angular) selectivity without focusing lenses, wide tunability over both infrared and visible light domains, high responsivity and miniaturization capabilities. As compared to SPR, the CPR-type devices offer an increased flexibility over wide ranges of wavelengths, bandwidths, and device dimensions. Both CPR and SPR occur in metallic films, which are characterized by high thermal diffusivity essential for fast bolometric response.08-25-2011
20110204232DETERMINING THE AMOUNT OF STARCH - The invention relates to a method and arrangement for determining the amount of starch used in surface-sizing a cellulose product. In the solution according to the invention, the amount of starch is determined with a transmission method utilizing IR spectroscopy by using absorption wavelengths of cellulose. Absorption values are measured before adding a coating and after it, whereby the amount of starch is determined from the difference between these absorption values.08-25-2011
20110210252PULSE LASER APPARATUS, TERAHERTZ MEASURING APPARATUS, AND TERAHERTZ TOMOGRAPHIC APPARATUS - A pulse laser apparatus includes a laser configured to generate a pulse of a laser beam, a fiber amplifier, and a pulse compressor. The fiber amplifier includes a rare-earth doped fiber that exhibits normal dispersion at a wavelength of the laser beam generated from the laser. The pulse laser apparatus further includes a unit configured to give a loss to energy portions in a wavelength region corresponding to a zero-dispersion wavelength of the rare-earth doped fiber and/or a wavelength region longer than the zero-dispersion wavelength within a wavelength spectrum of the laser beam having been chirped in the fiber amplifier.09-01-2011
20110220799NANOGAP DEVICE FOR FIELD ENHANCEMENT AND A SYSTEM FOR NANOPARTICLE DETECTION USING THE SAME - Disclosed are a nanogap device for field enhancement, which includes: a film made of an electrically conductive material; and a nanogap formed on the film and having a gap-width between a Thomas-Fermi screening length and a skin depth, the Thomas-Fermi screening length and the skin depth being determined by an electromagnetic wave and the electrically conductive material, and system for nanoparticle detection using the same.09-15-2011
20110226952Reflection Sensing System - A reflection sensing system comprises a body, an illuming module and a detecting module. The body is made by low temperature co-fired ceramic (LTCC) technology or other plasticity colloids and disposed a plurality of electronic connecting points. The illuming module includes a first accommodating space and a light emitted diode (LED), and the detecting module includes a light detector. The first accommodating space is disposed on the body and having a first open at one side. The cross-section of the first accommodating space is parabolic. The LED is disposed at the site of the focus of the first accommodating space, connected to the electronic connecting points and facing to the first open. The light detector is disposed on the body, connected to the electronic connecting points and providing sensing signals after receiving light.09-22-2011
20110233406MULTI-CHANNEL OPTICAL CELL - An apparatus is provided that includes a field reflector and a plurality of pairs of object reflectors. The apparatus also includes a plurality of source and detector port pairs, where each source port is configured to pass a beam of radiation, and each detector port is configured to receive a beam of radiation. The source and detector ports of each pair are positioned proximate an outer edge of the field reflector such that an optical axis of the field reflector lies between the respective source port and detector port. The object reflectors and source and detector port pairs are arranged such that each source and detector port pair is associated with a respective pair of object reflectors forming a distinct channel, where the source and detector port pair, and centers of the associated pair of object reflectors, of each channel lie in a distinct plane.09-29-2011
20110233407ELECTRONIC DEVICE WITH LOCK FUNCTION AND METHOD FOR LOCKING ELECTRONIC DEVICE - An electronic device includes a processing unit, a first sensor, and a second sensor. The first and the second sensors are configured to generate signals if an object is within their detection zone. The processing unit is configured to receive the signals from the first sensor and the second sensor, and determine whether to lock or unlock the electronic device according to a sequence of the signals it receives from the first sensor and the second sensor within a predetermined time period.09-29-2011
20110248167Bolometric sensor with high TCR and tunable low resistivity - The present invention provides a novel way of operating sensing elements or bolometers in the resistive hysteresis region of a phase-transitioning VO10-13-2011
20110253895Variable Aperture Mechanism Retention Device - According to one embodiment, an optical device includes a variable aperture mechanism configured on a structure having a radiation detector that receives radiation through an aperture of the variable aperture mechanism. The aperture is selectively movable from a first position to a second position in which the aperture has a different size relative to the aperture in the first position. The structure is configured with one or more magnets that function with one or more magnetically permeable members configured on the variable aperture mechanism to hold the variable aperture mechanism in at least one position using a magnetic force between the magnets and magnetically permeable members.10-20-2011
20110266442Electronic Whiteboard with Mosaic Structure - The invention discloses a mosaic structure of the electronic white board, including infra-red rectangular box and back board formed infrared matrix. The infra-red rectangular box is mainly composed of matching combination of infrared transmitter and infrared receiving unit connected and fixed to back board. The infrared transmitter includes several splicing of electrical infrared emission units, and the infrared emission units involve PCB and linear array of infrared emission heads. The infrared receiving unit includes several electrical splicing of infrared receiving modules. The infrared receiving module involves PCB and linear array of infrared receiving heads corresponding with emission heads. The electronic whiteboard rectangular box can be standardized in production, increasing efficiency and reduces costs. You can splice the corresponding size according to the projector requirements. It is convenient and practical. For transportation, you can uninstall the infra-red whiteboard with infra-red rectangular box, which is easy to transport with small space.11-03-2011
20110272579ANALYZING APPARATUS - An analyzing apparatus includes a first optical unit that causes a terahertz wave generated by a generation unit to be condensed at a first position in an object; a second optical unit that causes the terahertz wave from the object to be condensed at a second position; a third optical unit that causes the terahertz wave condensed at the second position to be condensed at a third position; and a detection unit that detects the terahertz wave condensed at the third position. The analyzing apparatus selectively detects the terahertz wave from the first position in the object from among terahertz waves from the object.11-10-2011
20110278456OPTICAL POSITION DETECTION DEVICE AND EQUIPMENT WITH POSITION DETECTION FUNCTION - An optical position detection device includes a first detection light source unit that outputs a detection light from one side to the other side in a first direction, a second detection light source unit that is separated from the first detection light source unit along a second direction crossing the first direction, and outputs a detection light from the one side to the other side in the first direction, a light detection unit having sensitivity toward the other side in the first direction, and a position detection unit that detects the position of the object based on the light reception in the light detection unit.11-17-2011
20110278457DEVICE FOR FTIR ABSORPTION SPECTROSCOPY - The invention relates to a device (11-17-2011
20110291013PHOTODETECTOR - Influence of external light is suppressed. With a photodetector including a photodetector circuit which generates a data signal in accordance with illuminance of incident light and a light unit which overlaps with the photodetector circuit, a first data signal is generated by the photodetector circuit when the light unit is in an ON state, a second data signal is formed by the photodetector circuit when the light unit is in an OFF state, and the first data signal and the second data signal are compared, so that a difference data signal that is data of a difference between the two compared data signals is generated.12-01-2011
20110297830ULTRA-LOW-POWER OCCUPANCY SENSOR - Passive IR sensor detection circuitry is provided that consumes eighty to ninety percent less power than conventional PIR sensor detection circuitry. Whereas prior art PIR sensor detection circuitry employs multiple amplification stages, to boost the power of the weak sensor signal, and a window comparator to determine whether an occupancy condition exists, the present invention uses, at most, a single amplification stage and no window comparator. In place of multiple amplification stages and a window comparators, the PIR sensor circuitry of the present invention uses a sensitive microcontroller to both detect and process the signal. A peak detector can be added just before the signal—whether amplified or not—is received by the microcontroller. Decay time of the peak detector is adjusted so that the signal will not substantially decay between measurements.12-08-2011
20110309246Antenna For Use in THz Transceivers - A high frequency radiation transceiver is presented. The transceiver comprises an electrodes' arrangement, comprising two or more electrodes, where two of said electrodes are accommodated in a spaced-apart relationship defining a cavity for free space propagation of electrons between them. One of said two electrodes is configured to be responsive to an external input optical signal to emit an electron flux towards the other electrode. Said two or more electrodes are configured to define first and second electrode portions, the first portion having at least a region thereof exposed to said electron flux and operable as an antenna feeding port causing an electric current in said second portion and the second portion being configured and operable as an antenna radiating portion.12-22-2011
20120006988PASSIVE INFRARED RAY SENSOR - A passive infrared ray sensor of the present invention includes a plurality of detecting elements 01-12-2012
20120018634METHOD AND APPARATUS FOR DETECTING ORGANIC MATERIALS AND OBJECTS FROM MULTISPECTRAL REFLECTED LIGHT - The present invention is a method of determining the presence of keratin, particularly hard keratin, such as exists in mammalian hair and feathers, and objects comprising such materials. The method of the present invention also includes displaying information derived from such a determination, as well as a measurement method followed by transmission of data to a remote processing site for analysis or display. The invention also includes devices for carrying out the determination, display and/or transmission.01-26-2012
20120037803ELECTROMAGNETIC INTERFERENCE SHIELD - An improved EMI shielded detection system. The disclosed system may include features configured to increase radio wave and microwave absorbance while retaining significant transparency at visible and/or infrared wavelengths, thus increasing EMI shielding efficiency. This may be accomplished through the use of a conductive mesh having appropriately chosen dimensions and spacing, and embedded in a transparent medium. To minimize the impact of the mesh on the effective aperture of the medium, the strands of the mesh may be made relatively narrow, and to provide sufficient shielding despite the narrow strand width, the mesh may be embedded relatively deeply in the medium.02-16-2012
20120056089SWITCH MODULE, ELECTRONIC DEVICE USING THE SAME AND METHOD FOR MANUFACTURING THE SAME - A switch module, an electronic device using the same and a method for manufacturing the same are provided. The switch module includes a circuit board, an infrared (IR) light receiver, at least one light emitting unit and a cover. The IR light receiver is disposed on the circuit board for receiving an infrared light. The light emitting unit is disposed on the circuit board for emitting a visible light. The cover includes a first casing and a second casing, and covers the IR light receiver. The first casing shields the IR light receiver. The second casing is connected to the second casing. The transparency of the second casing is larger than that of the first casing. The second casing receives the visible light and then the visible light is emitted to the outside of the second casing.03-08-2012
20120061568METHOD AND APPARATUS FOR MOTION RECOGNITION - A motion recognizing apparatus and method are provided. According to an aspect, a motion recognizing apparatus may include: an optical sensor configured to sense at least a portion of a subject where a motion occurs and to output one or more events in response thereto; a motion tracing unit configured to trace a motion locus of the portion where the motion occurs based on the one or more outputted events; and a motion pattern determining unit configured to determine a motion pattern of the portion where the motion occurs based on the traced motion locus.03-15-2012
20120068069AUTOMATED FRACTION COLLECTION SYSTEM - A system for separating a sample and collecting the separated sample. The system includes an ultracentrifuge having a cylindrical rotor. The system includes a gradient delivery assembly for delivering a gradient solution to the ultracentrifuge rotor, and a sample delivery assembly for delivering the solution containing the sample to the ultracentrifuge rotor. The system includes a fraction collection assembly for collecting discrete volumes of the separated sample. The system includes a processor for controlling operation of the ultracentrifuge, as well as the gradient delivery assembly, the sample delivery assembly, and/or the fraction collection assembly.03-22-2012
20120085908BIDIRECTIONAL OPTICAL SCANNER ASSISTING IN MAMMOGRAPHY - A bidirectional optical scanner assisting in mammography is revealed. The optical scanner that calculates functional images obtained by diffuse optical tomography, used in combination with a mammography machine can reduce the number of mammograms taken and the dose exposure. The bidirectional optical scanner includes a compression module, a first optical detection module, and a second optical detection module. The same test position of the tested breast can be detected twice in different directions by the first and the second optical detection modules. No matter where the tumor is located, the tumor can be detected. Besides structural images provided by the mammography machine, functional tomographic images of the breast are obtained by the bidirectional optical scanner. Thus diagnostic accuracy in the detection of breast cancer is improved.04-12-2012
20120085909MILLIMETER-WAVE INSPECTION APPARATUS - The present invention discloses a millimeter-wave inspection apparatus. The millimeter-wave inspection apparatus comprises: optics devices, configured to receive millimeter-wave energy radiated from an object to be inspected and focus the received millimeter-wave energy; a radiometer receiving device configured to receive the focused millimeter-wave energy and transform the millimeter-wave energy into electrical signal; and an imaging device configured to generate a temperature image of the object to be inspected based on the electrical signal. Compared with the prior art, the millimeter-wave inspection apparatus of the present invention has a simple and compact structure; it would not be harmful to the human health by employing the passive millimeter-wave human body security inspection technology. With the above configuration, the contraband items to be concealed within the human clothing can be efficiently and effectively detected.04-12-2012
20120112069FIBER OPTICAL ASSSEMBLY FOR FLUORESCENCE SPECTROMETRY - System is provided for detecting the presence of an analyte of interest in a sample, said system comprising an elongated, transparent container for a sample; an excitation source in optical communication with the sample, wherein radiation from the excitation source is directed along the length of the sample, and wherein the radiation induces a signal which is emitted from the sample; and, at least two linear arrays disposed about the sample holder, each linear array comprising a plurality of optical fibers having a first end and a second end, wherein the first ends of the fibers are disposed along the length of the container and in proximity thereto; the second ends of the fibers of each array are bundled together to form a single end port.05-10-2012
20120132806SENSOR ARRAY MICROCHIP - A sensor array microchip apparatus includes a substrate and a lens positioned over the substrate. A plurality of radiation sensor elements are formed on the substrate in an array format and spatially separated from each other. The substrate further includes power supply circuitry (generating power for the radiation sensor elements) and processing circuitry (operable to control and process information from the radiation sensor elements). The power supply circuitry and said processing circuitry are positioned on the substrate within the array between two or more of the radiation sensor elements. The lens, in combination with the spatial separation of the radiation sensor elements in the array format, defines a relatively wide (30-80 degrees) field of regard for the sensor.05-31-2012
20120153149Single-Sided Infrared Sensor for Thickness or Weight Measurement of Products Containing a Reflective Layer - An optical, non-contact sensor for measuring the thickness or weight of layered products and particularly those that contain a light-reflective substrate incorporates a reflective surface to cause incident radiation from a light source to plurality of time within the layered products before being detected in a receiver. A diffusing element can be incorporated as a diffuse source of illumination. The Lambertian-type light scattering generated by the diffuse element causes the incident light to interact multiple times with the layered product resulting in enhanced sensor sensitivity to selected components in the layered product and measurement error induced by specular reflection of the light from the reflective substrate is minimized.06-21-2012
20120153150HUMAN INFRARED RECIPIENT PROCESSOR - An IP processing technology, and more particularly to a human infrared recipient processor, which comprising: an amplifying circuit, a switch control circuit for output of switching signals, a PIR for obtaining human IR signals, a PHOT for obtaining brightness signals, a main controller IC06-21-2012
20120153151INFRARED DETECTOR BASED ON SUSPENDED BOLOMETRIC MICRO-PLATES - This bolometric array detector for detecting electromagnetic radiation in a predetermined range of infrared or terahertz wavelengths comprises a substrate and an array of bolometric micro-plates for detecting said radiation that are suspended above the substrate by support arms. It comprises a metallic membrane located above and around each micro-plate and in which openings are formed; said openings in metallic membrane are periodically located in it along at least one predetermined axis with a period equal to or less than06-21-2012
20120153152OPTICAL MEASURING DEVICE - In an optical measuring device, the visual observation section includes: a white light source which emits white light; a first objective lens arranged between the white light source and measurement object, through which the white light emitted from the white light source and return light from the measurement object transmit; a plurality of tube lenses which change a magnification of the return light passing through the first objective lens to a predetermined magnification; and a lens switching mechanism which can selectively switch the tube lenses so as to select one of the tube lenses to be arranged on the return light, and the special observation section includes: a special light source which emits special light; and a second objective lens arranged between the special light source and measurement object, through which the special light emitted from the special light source and return light from the measurement object transmit.06-21-2012
20120153153Integrated Ambient Light Sensor and Distance Sensor - An integrated proximity and light sensor includes a first light-emitting device, a second light-emitting device, and a light sensing circuit configured as a single package. The light sensing circuit is configured to control the first light-emitting device and the second light-emitting device to emit light therefrom. Further, the light sensing circuit is configured to detect an ambient light level and to detect a reflection of the light emitted by the first light-emitting device from a surface for proximity detection. The light sensing circuit is also configured to control the second light-emitting device to stop emitting light therefrom for one or more of the ambient light level detection and the proximity detection.06-21-2012
20120175520SYSTEM AND METHOD REDUCING FIBER STRETCH INDUCED TIMING ERRORS IN FIBER OPTIC COUPLED TIME DOMAIN TERAHERTZ SYSTEMS - A system for reducing effects relating to stretching of an optical fiber includes an optical control source, the optical source outputting an optical signal, a terahertz transmitter and receiver both being optically coupled to the optical source, and a means for providing the optical signal to both the terahertz transmitter and terahertz receiver such that the terahertz receiver is synchronized to the terahertz transmitter by the optical signal. The means prevents the stretching of an fiber carrying the optical signal provided to the terahertz transmitter or terahertz receiver or allows for the stretching an optical fiber such that the terahertz receiver will still be synchronized to the terahertz transmitter by the optical signal.07-12-2012
20120181429ELECTRON EMISSION DEVICE OF HIGH CURRENT DENSITY AND HIGH OPERATIONAL FREQUENCY - An electric device operable with a THz-range frequency of the device output is presented. The device comprises a photocathode installed in either one of a diode, triode and tetrode configuration, and is exposed to illumination. In some embodiments of the invention, the device is configured as a diode and photomixing is used for illumination of the photocathode with light in the THz range, the diode converting this input light signal into an electrical output in the THz range, which operates a signal transmitter/receiver. In some other embodiments of the invention, the device is configured as a triode or tetrode, where the electrodes have small dimensions (about 1 micron or less) and are spaced from one another a distance not exceeding 1 micron. The photocathode is kept under certain illumination, and electrical signal applied to one of the electrodes results in the THz output at one of the other electrodes.07-19-2012
20120199741MINIMALLY INVASIVE CYTOMETRY SYSTEM USING QCL VIBRATIONAL SPECTROSCOPY FOR DIFFERENTIATION OF PLURIPOTENT STEM CELLS FROM FUNCTIONALLY DIFFERENTIATED CELLS BASED ON INSPECTION OF SINGLE CELLS - This disclosure concerns a minimally invasive cytometry system including a handling system that presents single cells to at least one QCL laser source. The QCL laser source is configured to deliver light to a cell within the cells in order to induce vibrational bond absorption in one or more analytes within the cell. The cytometry system also includes a detection facility that detects the transmitted mid-infrared wavelength light, wherein the transmitted mid-infrared wavelength light is used to identify the differentiation status of the cell as either pluripotent or functionally differentiated.08-09-2012
20120199742SINGLE PARTICLE QCL-BASED MID-IR SPECTROSCOPY SYSTEM WITH ANALYSIS OF SCATTERING - This disclosure concerns a system with scattering analysis including a handling system that presents a single particle to at least one quantum cascade laser (QCL) source. The QCL laser source is configured to deliver light to the single particle in order to induce resonant mid-infrared absorption in the particle or an analyte within the particle. A mid-infrared detection facility detects the mid-infrared wavelength light scattered by the single particle, wherein a wavelength and angle analysis of the scattered mid-IR wavelength light is used to determine analyte-specific structural and concentration information.08-09-2012
20120211656MOBILE DEVICE WITH PROXIMITY SENSOR - A mobile device including a source for emitting electromagnetic radiation, an enclosure having a side wall, and a detector for detecting electromagnetic radiation emitted by the source is described. At least a portion of the sidewall is adapted to transmit electromagnetic radiation from the source. The source and detector are positioned inside the enclosure. The detector is spaced from the source, and is arranged to detect electromagnetic radiation from the source that is reflected from an object outside the enclosure and passes through the portion of the side wall.08-23-2012
20120211657DEVICE AND METHOD FOR DETECTING INFRARED RADIATION THROUGH A RESISTIVE BOLOMETER MATRIX - An infrared radiation detection device comprising: a substrate; a matrix of at least one line of elements for detecting said radiation, each comprising a resistive imaging bolometer, said matrix being formed above the substrate; means for reading the bolometers of the matrix, means for measuring the temperature in at least one point of the substrate; and means for correcting the signal formed from each bolometer as a function of the temperature measured in at least one point of the substrate. The correcting means are capable of correcting the signal formed from the imaging bolometer by means of a predetermined physical model of the temperature behaviour of said signal.08-23-2012
20120217396FLEXIBLE AND CONVENIENT IR EMITTER DEVICE - Added functionality and convenience is provided for integrator of automation systems due to the design of an IR emitter component that can be easily positioned in front of IR receivers, while also being IR transparent. The IR emitter component includes a holder designed for easy attachment to many different surfaces. The holder is also configured for removably coupling to an IR emitter device, thus allowing the holder to remain attached to the related component. The IR emitter component is also IR transparent, thus allowing additional IR signals to be passed through the device.08-30-2012
20120217397LOW PROFILE LIGHT COLLIMATOR MICRO BAFFLE AND METHOD - A light sensor including a substrate and one or more low profile baffle plates, the baffle plates including collimator holes to allow intended light to strike the light detector of the substrate while preventing extraneous light from striking the detector. The baffle plates are disposed above the substrate, on a shroud, which covers a portion of the substrate but allows intended light to pass through the collimator holes onto the light detector. By stacking baffle plates having a thin, low profile, one on top of another upon the shroud, extraneous light striking the material at an angle between the collimator holes cannot enter the sensor while intended light in the substantial front of the sensor enters the sensor through the collimator holes and can be detected by the light detector.08-30-2012
20120217398ELECTRONIC DEVICE AND INFRARED RECEIVING DEVICE THEREOF - An exemplary infrared receiving device is adapted for mounting on a printed circuit board. The infrared receiving device includes an infrared receiver and a supporting seat configured to be mounted on the printed circuit board. The infrared receiver is attached to the supporting seat with the supporting seat supporting and protecting the infrared receiver. An electronic device includes a main body, a flip cover pivotably attached to the main body, and a display screen embedded in the flip cover. The main body includes a printed circuit board, an infrared receiver mounted on the printed circuit board, and a supporting seat mounted on the printed circuit board. The supporting seat holds the infrared receiver to support and protect the infrared receiver.08-30-2012
20120217399Ultra Broad Spectral Band Detection - An embodiment of a sensing apparatus can comprise a sensor and a controller. The sensor can be configured to detect broadband electromagnetic (EM) radiation and generate electrical signals in response to the detected broadband EM radiation. The controller is coupled to the sensor and configured to receive the electrical signals and process the electrical signals to segment the sensor response to broadband EM radiation into a plurality of digitized pixels.08-30-2012
20120223231PROXIMITY SENSOR HAVING ELECTRO-LESS PLATED SHIELDING STRUCTURE - The instant disclosure relates to a proximity sensor having an electro-less plated optical shielding structure. The sensor includes a substrate panel having an emitter region and a receiver region; an emitter unit disposed on the emitter region and configured to emit electromagnetic signals at a particular wavelength; a receiver unit disposed on the receiver region and configured to respond to electromagnetic signals emitted by the emitter unit; a transparent molding unit disposed on the emitter region and the receiver region of the substrate panel; and an optical shielding layer selectively disposed on the external surfaces of the substrate panel and the transparent molding unit. The shielding layer has corresponding sensor ports for the emitter and the receiver units arranged toward a designated detection region. The electro-less plated optical shielding layer is highly configurable through proper masking and small in thickness, enabling further miniaturization of the sensor unit.09-06-2012
20120228500ELECTROMAGNETIC WAVE RECEIVING ANTENNA - An electromagnetic wave receiving antenna includes a spiral element configured to selectively attenuate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths, and to concentrate electromagnetic waves having a predetermined wavelength, selected wavelengths, or range of wavelengths other than the attenuated wavelengths.09-13-2012
20120228501Single-shot pulse contrast measuring device based on non-harmonic long-wavelength sampling pulse - A single-shot pulse contrast measuring device based on non-harmonic long-wavelength sampling pulse includes a long-wavelength sampling light generation unit, a large-angle non-collinear sum-frequency cross-correlation unit and a high sensitivity signal receiving unit. The long-wavelength sampling light sum-frequency cross-correlator can allow that the beams are interacted with each other at the large non-collinear angle in the quasi-phase matching crystal, match the measuring window of the high sensitivity signal receiving system, and is in favor of eliminating the scattered light noise, thereby achieving the single measurement of the pulse contrast with large temporal window and high dynamic range. The single-shot pulse contrast measuring device of the present invention has good extensibility at the temporal window and dynamic range, and is adapted for measuring the contrast of the high-power laser with various wavelengths.09-13-2012
20120228502CIRCUIT AND METHOD FOR CONTROLLING AN IR SOURCE FOR AN ANALYTICAL INSTRUMENT - A pulse-width-modulated voltage is applied to an IR emitter during the on-time of a primary drive voltage having a frequency of about 2.5 Hz in order to control the power to a predetermined desired level. The secondary modulation is at about 800 Hz. The lower response time of the emitter will, in effect, filter the higher frequency, and it will appear that an average power is being applied to the emitter during the on-time.09-13-2012
20120235037Optical identification module device and optical reader having the same - An optical identification module device has a light pipe integrally formed with transparent material, a lens holder, a lens, a sensing circuit board and a light emitting diode. A light source container and a guiding recess are arranged on one side of the light pipe. A first light channel is defined in the light pipe. An engaging bump and a separating bump aligned with the engaging bump are arranged on one side of the lens holder. The engaging bump engages with the guiding recess. A second light channel corresponding to the first light channel is defined in the lens holder, and the lens is arranged in the second light channel. The sensing circuit board with a receiver soldered at a position corresponding to the second light channel is arranged at the bottom of the lens holder. The light emitting diode is placed in the light source container.09-20-2012
20120241617DEVICE FOR INSPECTING SMALL PHARMACEUTICAL PRODUCTS - The device for inspecting separately conveyed tablets or capsules has a guide device for guiding the separately conveyed tablets or capsules, which defines a predetermined tablet pathway, and a heating element designed as a hotplate, which is arranged in an area of the guide device. The device further has an IR sensor for detecting radiation in an infrared range arranged opposite the heating element such that the tablet pathway passes between the heating element and the IR sensor, and an evaluation unit connected to the IR sensor and adapted to compare actual measurement values of the IR sensor with at least one predetermined nominal measurement value.09-27-2012
20120241618OPTICAL SENSOR CAPABLE OF DETECTING IR LIGHT AND VISIBLE LIGHT SIMULTANEOUSLY - An optical sensor includes an image sensor, a proximity sensor and a visible light sensor. The image sensor includes a first pixel and a second pixel. The first pixel is coated with a first optical film for blocking light whose wavelength is outside a first predetermined range and a second optical film for blocking light whose wavelength is outside a second predetermined range. The proximity sensor generates an IR signal according to a first exposure value. The visible light sensing unit generates a visible light signal according to the difference between the first exposure and a second exposure value or according to a ratio of the first exposure value to the second exposure value. The first exposure value represents an incident light quantity which is absorbed by the first pixel. The second exposure value represents an incident light quantity which is absorbed by the second pixel.09-27-2012
20120241619SPECIMEN IDENTIFICATION SYSTEM AND SPECIMEN IDENTIFICATION DEVICE - In a specimen identification system, an oscillator directs a THz wave toward a channel that accommodates a specimen. A receiver detects the THz wave transmitted through the specimen. A first controller controls the oscillator to sweep the oscillation frequency of the THz wave within a frequency band. A receiver generates a receiving signal by sweeping the receiving frequency of the THz wave within the frequency band. A specimen identification unit specifies the specimen based on the waveform of the receiving signal within the frequency band.09-27-2012
20120241620OPTICAL CONTROL DEVICE, CONTROL DEVICE, AND OPTICAL SCOPE - An optical control device is provided in a scanning optical device that applies light emitted from a light source to an observation target as spot light, and detects return light from the observation target while scanning the spot light, and includes an irradiation section that applies white light and special light to the observation target, an irradiation time control section that performs a control process so that an irradiation time of the special light is longer than an irradiation time of the white light, and a light detection section that detects first return light from the observation target when the white light for which the irradiation time is controlled has been applied to the observation target, and detects second return light from the observation target when the special light for which the irradiation time is controlled has been applied to the observation target.09-27-2012
20120256089SENSING DEVICE AND ELECTRONIC APPARATUS - A light emitting unit is positioned to the subject side than a light receiving unit in a sensing device. The light emitting unit includes a light emitting layer, a first electrode, a second electrode which has an opening, and an insulating layer that is provided at a position that corresponds to the opening portion of the second electrode and that partially insulates the first electrode and the second electrode. The light receiving unit includes a light receiving element that receives reflected light. The light blocking layer is provided at a position that corresponds to the opening portion, and an opening portion is formed thereon. In a case when viewed in a plan view, the light blocking layer overlaps the opening portion, and a light receiving face of the light receiving element is positioned within the opening.10-11-2012
20120261576TERAHERTZ WAVE GENERATING DEVICE, CAMERA, IMAGING DEVICE, AND MEASURING DEVICE - A terahertz wave generating device includes a plurality of light sources and an antenna. The light sources are configured to generate pulsed light. The antenna is configured to generate terahertz waves by being irradiated with the pulsed light generated by the light sources. The antenna has a plurality of pairs of electrodes with the electrodes in each of the pairs facing each other across a gap portion with a predetermined distance. The light sources is configured to irradiate the gap portions between the electrodes in the pairs with the pulsed light such that the gap portions between the electrodes of at least two of the pairs are irradiated with the pulsed light at mutually different timings.10-18-2012
20120280127TWO COLOR SPREAD SPECTRUM OPTICAL ENCODER - An optical encoder includes a first signal diode that emits light at an infrared wavelength, and a second signal diode that emits a light at a visible blue wavelength. The optical encoder further includes a first sensor diode having an optical wavelength filter for filtering out light having a wavelength outside the infrared wavelength, and a second sensor diode having an optical wavelength filter for filtering out light having a wavelength outside the visible blue wavelength spectrum. A slotted wheel defining a plurality of radially extending slots rotates past the signal diodes and the sensor diodes such that the sensor diodes may sense the light passing through the slots in the slotted wheel.11-08-2012
20120280128APPARATUS AND METHOD FOR MEASURING ELECTROMAGNETIC WAVE - The present invention provides an apparatus and a method for transforming a time waveform of an electromagnetic wave into a time waveform suited for signal processing and the like so as to measure the time waveform.11-08-2012
20120326036TERAHERTZ WAVE GENERATING DEVICE, CAMERA, IMAGING DEVICE, AND MEASUREMENT DEVICE - A terahertz wave generating device includes a first light source, a second light source and an antenna. The first light source and a second light source are configured and arranged to generate pulsed lights. The antenna is configured and arranged to generate terahertz waves when irradiated by the pulsed lights generated by the first light source and the second light source. The antenna has a pair of electrodes arranged opposite each other with a gap being formed therebetween. The first light source and the second light source are configured and arranged to irradiate the pulsed lights between the electrodes at timings that are offset from each other.12-27-2012
20120326037COATING FILM INSPECTION APPARATUS AND INSPECTION METHOD - The coating film inspection apparatus according to one embodiment of the present invention comprises a terahertz-wave generator that generates a terahertz-wave; an irradiation optical system that irradiates, with the terahertz-wave, a sample with a film formed thereon; a terahertz-wave detector that detects a terahertz-wave reflected at the sample; and a control unit that shows an electric field intensity of the detected terahertz-wave in wave form data on a time axis to detect a plurality of peaks from the wave form data, and also calculates film thickness on the basis of time difference between peaks.12-27-2012
20130001422Apparatus And Method For Monitoring The Condition Of A Living Subject - A method and apparatus for monitoring the condition of a living subject may be self-adjusting or adjustable to accommodate different end uses. Adjustments might be made, for example, based on characteristics of the subject to be monitored (such as species, age, health, etc.), environment (such as home or industrial setting, room size, room contents, spurious signals in the environment), and set-up conditions (such as distance between the apparatus and living subject, alignment of the apparatus with the subject, etc.).01-03-2013
20130009059DEVICE FOR INCREASED EYE PROTECTION - Device with at least one filter, in particular for a relieving and preventive eye protection as glasses, sun glasses or pane, wherein the device comprises at least one filter for influencing and filtering UV, blue light and infrared radiation, wherein the at least one filter is characterized by specific limit values defined in their combination.01-10-2013
20130009060ADHESIVE FASTENING ELEMENTS FOR HOLDING A WORKPIECE AND METHODS OF DE-BONDING A WORKPIECE FROM AN ADHESIVE FASTENING ELEMENT - An adhesive fastening element for holding a workpiece, the adhesive fastening element including: a light source for providing light to an exterior surface of the adhesive fastening element so as to cure an adhesive; and a light meter for receiving light from the exterior surface of the adhesive fastening element; wherein the light source is controlled in response to the amount of light received by the light meter.01-10-2013
20130026365TESTING SYSTEM FOR EXAMINING TURBINE BLADES - A testing system for examining the coating and open cooling-air holes of turbine blades includes a positioning device for an infrared camera with two degrees of freedom, a rotating-pivoting device for positioning the turbine blade, and a rotatable air duct arranged on the rotating-pivoting device. The rotatable air duct is configured for introducing into the turbine blade air at a temperature higher or lower in comparison with the turbine blade.01-31-2013
20130032717INFRARED DETECTING ELEMENT AND ELECTRONIC DEVICE - The infrared detecting element has a first base plate that has a first front surface, a first back surface, a first recessed portion, and an infrared detecting section for detecting infrared rays provided in an area of the first front surface that opposes the first recessed portion; a second base plate that has a second front surface, a second back surface on the opposite side of the second front surface, and a second recessed portion provided in an area of the second back surface that faces the first recessed portion; and an adhesion film that bonds the first back surface and the second back surface, wherein a second outer peripheral portion where the second recessed portion intersects with the second back surface surrounds a first outer peripheral portion where the first recessed portion intersects with the first back surface.02-07-2013
20130043390CALIBRATION SYSTEM FOR DETECTOR - A calibration system for a detector includes a base member, a plurality of radiation sources fixedly attached to the base member, and a positioning mechanism attached to the base member. Each radiation source is maintained at a different temperature and is configured to emit electromagnetic radiation. The positioning mechanism includes a movable member having a single degree of freedom with respect to the base member, and a plurality of optical elements arranged on the movable member. Each optical element corresponds to one of the radiation sources and each optical element is configured to at least be movable between a calibration position and a non-calibration position. When the optical element is in the calibration position, the optical element is configured to receive the electromagnetic radiation from its corresponding radiation source and to reflect the electromagnetic radiation to a detector.02-21-2013
20130048856DISPLAY DEVICE - A display device a display and a front panel. The front panel is made of plastic and is at least partly provided with a metallic coating. The coating is applied by means of physical vapor deposition. The metallic coating is electrically grounded when the display device is placed in operation.02-28-2013
20130048857OPERATING DEVICE - The invention relates to an operating device for a motor vehicle having a movable activation element for activating at least one switch element for generating a switch signal. The operating device comprises a sensor face which is arranged on the activation element and an optical reflection sensor device, which has at least one light emitting diode and at least one photodiode for optical radiation. A signal can be generated when the sensor face is approached and/or the sensor face is touched, in particular by means of a finger of a user.02-28-2013
20130062521ELECTRONIC DEVICE AND METHOD OF PRODUCTION OF INFRARED LIGHT SHIELD PLATE MOUNTED IN ELECTRONIC DEVICE - An electronic device which is provided with a liquid crystal display device which includes an edge light type of light source, a light guide plate, and a liquid crystal panel, for detecting proximity of an object to the liquid crystal panel by an optical type object detector comprising two infrared light LEDs which are arranged aligned with the light source and which emit infrared light inside the light guide plate, an infrared light shield plate which blocks infrared light which strikes the liquid crystal panel from the light guide plate except for at predetermined regions, infrared light LEDs which are arranged at positions separated from the predetermined regions and emit infrared light in a direction vertical to the liquid crystal panel, a proximity sensor which detects reflection of infrared light by an object, and a control device, so that the housing thereof does not become larger in size.03-14-2013
20130075610High-fidelity device for single-shot pulse contrast measurement based on quasi-phase-matching (QPM) - A high-fidelity device for single-shot pulse contrast measurement based on quasi-phase-matching includes a generating unit of sampling pulse, a high-fidelity cross-correlation unit of nonlinear SFG and a high-sensitivity signal detecting unit. An innovatively designed dot-mirror or dot-attenuator and correlating crystal. The dot-mirror or dot-attenuator is adopted to suppress the scattering noise, which is mainly induced by air scattering of the main peak of the correlation beam, to a level below the real pulse background. While the crystal is introduced into the device as a nonlinear correlation crystal to move two kinds of artifacts introduced by a correlation process respectively out of the temporal window and behind the main pulse, so that effects of the artifacts on measurement results are removed and the single-shot measurement of the contrast in a pulse leading edge is accomplished, without obviously affecting other parameters. The device is also fit for measuring contrasts of high-power lasers of various wavelengths.03-28-2013
20130075611ANTENNA FOR USE IN THZ TRANSCEIVERS - A high frequency radiation transceiver is presented. The transceiver includes an electrodes' arrangement, including two or more electrodes, where two of said electrodes are accommodated in a spaced-apart relationship defining a cavity for free space propagation of electrons between them. One of said two electrodes is configured to be responsive to an external input optical signal to emit an electron flux towards the other electrode. Said two or more electrodes are configured to define first and second electrode portions, the first portion having at least a region thereof exposed to said electron flux and operable as an antenna feeding port causing an electric current in said second portion and the second portion being configured and operable as an antenna radiating portion.03-28-2013
20130075612CARRIER AND ADHESION AMOUNT MEASURING APPARATUS, AND MEASURING METHOD, PROGRAM, AND RECORDING MEDIUM OF THE SAME - A carrier includes attachment holes to which a catalyst attaches, and non-attachment holes to which the catalyst does not attach. An attachment quantity measurement device includes an electromagnetic wave output device that outputs a terahertz wave toward the carrier, an electromagnetic wave detector that detects the terahertz wave which has transmitted through the carrier, a reference value obtainer that obtains, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the terahertz wave in the non-attachment holes, and an attachment quantity obtainer that obtains, based on the result detected by the electromagnetic wave detector and the result obtained by the reference value obtainer, a weight or a density of the catalyst present in the attachment holes.03-28-2013
20130075613HIDDEN SENSORS IN AN ELECTRONIC DEVICE - An electronic device having one or more sensors is provided. The sensors may include any suitable type of sensor that emits or receives radiation (e.g., light waves) from the environment. The electronic device may include openings through which radiation may reach the sensors while keeping the sensors hidden from view. In some embodiments, the sensors may be placed underneath an opening used for an audio receiver such that radiation is piped to the sensors using a light path or a chamfered surface along the opening. In some embodiments, the sensors may be embedded in a screen such that the radiation emitted by the sensors exits the screen instead of being reflected on the screen. In some embodiments, the sensors may be placed along the periphery of the display, such that access to the sensors is provided via discontinuities in a gasket used to couple the display to the electronic device.03-28-2013
20130099120SYSTEMS AND METHODS FOR COUNTING CELLS AND BIOMOLECULES - The invention generally relates to analytical and monitoring systems useful for analyzing and measuring cells and biological samples. More particularly, the invention relates to systems and methods for imaging, measuring, counting, analyzing, and monitoring microscopic particles such as cells and biological molecules in solution samples.04-25-2013
20130112876INFRARED DETECTORS - In some example embodiments, an infrared detector may comprise a substrate; a resonator spaced apart from the substrate, the resonator absorbing incident infrared light; a thermoelectric material layer contacting the resonator and having a variable resistance according to temperature variation due to the absorbed incident infrared light; a lead wire electrically connecting the thermoelectric material layer and the substrate; a heat separation layer between the substrate and the thermoelectric material layer, the heat separation layer preventing heat from being transferred from the thermoelectric material layer to the substrate; and/or a ground plane layer preventing the incident infrared light from proceeding toward the substrate. The heat separation layer may at least reduce heat transfer from the thermoelectric material layer to the substrate. The ground plane layer may at least reduce an amount of the incident infrared light that reaches the substrate.05-09-2013
20130112877BATTERY-OPERATED OBJECT DETECTING DEVICE - A battery-operated object detecting device (D) includes a detecting unit (U) adapted to be driven by an electric cell (05-09-2013
20130146768ELECTROMAGNETIC WAVE GENERATING DEVICE, ELECTROMAGNETIC WAVE DETECTING DEVICE, AND TIME-DOMAIN SPECTROSCOPY APPARATUS - An electromagnetic wave generating device is provided which includes an optical waveguide including a plurality of waveguide segments such that the main lobe of a combined electromagnetic wave has a substantially single large directivity.06-13-2013
20130146769OPTICAL PULSE GENERATING APPARATUS, TERAHERTZ SPECTROSCOPY APPARATUS, AND TOMOGRAPHY APPARATUS - An optical pulse generating apparatus that supplies pump light and probe light includes a light source and a modulation unit configured to modulate light emitted from the light source, thereby dividing the light into the pump light and the probe light. The modulation unit is configured such that a frequency for modulating the light is variable. The modulation unit changes a difference between a moment of the pump light incident on an object and a moment of the probe light incident on the object by changing the frequency.06-13-2013
20130153767Wavelength-Selective, Integrated resonance Detector for Electromagnetic Radiation - Embodiments of the invention are directed to integrated resonance detectors and arrays of integrated resonance detectors and to methods for making and using the integrated resonance detectors and arrays. Integrated resonance detectors comprise a substrate, a conducting mirror layer, an active layer, and a patterned conducting layer. Electromagnetic radiation is detected by transducing a specific resonance-induced field enhancement in the active layer to a detection current that is proportional to the incident irradiance.06-20-2013
20130153768SYSTEM AND METHOD FOR USING A PORTABLE NEAR IR LED LIGHT SOURCE AND PHOTOGRAMMETRY FOR BORESIGHT HARMONIZATION OF AIRCRAFT AND GROUND VEHICLE COMPONENTS - Disclosed is a system and method for using a portable near (infrared light emitting diode) IR LED light source and photogrammetry for boresight harmonization of aircraft and ground vehicle components. In one embodiment, orientation and positional parameters of two or more fixed points and distances between the two or more fixed points are measured using the portable near IR LED light source with a photogrammetric system. The two or more fixed points are reference points within the aircraft or the land vehicle. Further, the measured orientation and positional parameters of the two or more fixed points and the distances between the two or more fixed points on the aircraft or the land vehicle are compared with specified design parameters of the component in the aircraft or the land vehicle. Furthermore, the component in the aircraft or the land vehicle is harmonized based on an outcome of the comparison.06-20-2013
20130153769DEWAR ASSEMBLY FOR IR DETECTION SYSTEMS - A dewar assembly is presented for use in an optical IR detection system defining a light collecting region. The dewar assembly comprises a warm shield unit configured as an enclosure for optically enclosing the light collection region and having an optical window through which incident light enters the dewar. The warm shield defines a reflective inner surface configured such that light portions of the incident light propagating through said optical window onto said inner surface are reflected by the inner surface towards regions outside said light collecting region.06-20-2013
20130161515INFRARED RAY DETECTOR AND METHOD OF DETECTING INFRARED RAYS BY USING THE SAME - A infrared ray detector includes a first metal layer; a second metal layer on the first metal layer and configured to absorb infrared rays; a thermistor layer below the second metal layer, the thermistor layer having a resistance that changes according to infrared rays absorbed in the second metal layer; a thermal leg below the thermistor layer and separated from the first metal layer; and a control unit configured to control a gap between the first metal layer and the thermal leg.06-27-2013
20130161516OPTICAL PULSE TESTER USING LIGHT EMITTING DEVICE - To provide a small and high-performance optical pulse tester using a light emitting device including semiconductor light emitting element capable of emitting light beams with wavelengths in a plurality of wavelength ranges with a high optical output. An optical pulse tester includes: a light emitting device including a semiconductor light emitting element having first and second light emitting end facets formed by cleavage respectively, and a light emitting element driving circuit which applies a driving current to each of a plurality of active layers; a light receiving section which converts returned light of the optical pulse from the optical fiber to be measured into an electric signal; and a signal processor which analyzes a loss distribution characteristic of the optical fiber to be measured on the basis of the electric signal converted by the light receiving section.06-27-2013
20130168551Apparatus and Methods for Controlling a Laser Output and Improving Laser Safety Using a Proximity Sensor - A laser output control method and a laser output control device, including a luminous source in the optical interface of an optical transceiver, a proximity detector configured to detect and capture reflection intensity of a luminous beam from the luminous source, an optical processing circuit electrically connected to the proximity detector and configured to receive and process the reflection intensity, and a microcontroller configured to capture parametric information of the reflection intensity, are disclosed. The microcontroller is also electrically connected to a laser driver, to receive parametric information of the optical processing circuit and to regulate the laser and/or laser driver activity based on the parametric information. The laser output control device may effectively restrict the laser output activity and the total laser output energy, which may prevent exposing human eyes to relatively strong laser energy and enhance the security of laser usage and protection for the human body.07-04-2013
20130181131REFLECTIVE PROXIMITY SENSOR WITH IMPROVED SMUDGE RESISTANCE AND REDUCED CROSSTALK - An electronic device includes a protective layer above a proximity sensor having a radiation emitter and a radiation detector. A groove, which may be wedge shaped, is formed in the bottom surface of the protective layer. A radiation barrier, which may be reflective or absorptive material, is placed in the groove in the bottom surface of the protective layer. A light blocking coating may be applied to the bottom surface and the groove of the protective layer to prevent the passage of visible radiation and permit the passage of infrared radiation. A radiation shield may be positioned between the emitter and the detector directly below the radiation barrier. Alignment features may be formed on the mating surfaces of the radiation barrier and radiation shield to align the protective layer with respect to the radiation shield and proximity sensor.07-18-2013
20130187048INFRARED DETECTOR HAVING AT LEAST ONE SWITCH FOR MODULATION AND/OR BYPASS - An infrared (IR) detector including a plurality of thermal sensing elements for generating an image of an object is provided. The IR detector comprises a first thermal sensing element and includes a thermopile and a first switch. The thermopile is configured to receive at least a portion of a thermal output from the object and to provide a modulated electrical output indicative of at least a portion of the received thermal output. The first switch is operatively coupled to the thermopile and is configured to provide a bypass in the event the thermopile is damaged such that remaining thermal sensing elements of the plurality of thermal sensing elements are capable of providing an electrical output therefrom.07-25-2013
20130187049SPECTRAL FILTER HAVING A STRUCTURED MEMBRANE AT THE SUB-WAVELENGTH SCALE, AND METHOD FOR MANUFACTURING SUCH A FILTER - According to a first aspect, the present invention relates to a spectral filter suitable for filtering an incident wave at at least a first given central wavelength λ07-25-2013
20130193323INFRARED SECURITY SENSOR - An infrared security sensor device includes a light projector 08-01-2013
20130206989Radiation Sensor - A radiation sensor is provided. The radiation sensor includes a substrate; a diaphragm positioned over the substrate; an absorbing layer which is configured to absorb infrared radiation; a supporting element arranged between the absorbing layer and the diaphragm such that a spacing gap is formed between the absorbing layer and the diaphragm; wherein the size of the spacing gap is in a range of about 3.6 micrometer to about 100 micrometer.08-15-2013
20130214158PASSIVE DETECTORS FOR IMAGING SYSTEMS - Passive detector structures for imaging systems are provided which implement unpowered, passive front-end detector structures with direct-to-digital measurement data output for detecting incident photonic radiation in various portions (e.g., thermal (IR), near IR, UV and visible light) of the electromagnetic spectrum.08-22-2013
20130221219ELECTROMAGNETIC INTERFERENCE PROTECTION STRUCTURE - A detector structure having a sensor for detecting energy impinging on the structure in the infrared and/or optical frequency band; an electronics section disposed behind the sensor for processing electrical signal produced by the sensor in response to the sensor detecting the infrared and/or optical energy; and an electrically conductive layer for inhibiting electromagnetic energy outside of the visible and infrared portions of the spectrum, such electrically conductive layer being disposed between impinging energy and the electronics section, such layer having a transmissivity greater than 90 percent in the visible and infrared portions of the spectrum and being reflective and/or dissipative to portions of the impinging energy outside of the visible and infrared portions of the spectrum. In one embodiment an electrically conductive layer having a substantially constant absorptivity to electromagnetic energy within the visible and infrared portions of the spectrum. In one embodiment, the layer is graphene.08-29-2013
20130240733MODULAR MULTI-USE THERMAL IMAGING SYSTEM - A modular multi-use thermal imaging system is disclosed. In one embodiment, the modular multi-user thermal imaging system includes a modular mounting structure and a modular multi-use thermal imaging device configured to attach to one or more structures via the modular mounting structure.09-19-2013
20130248712NANOWIRE THERMOELECTRIC INFRARED DETECTOR - A thermoelectric infrared detector. The detector includes an absorption platform comprising a material that increases in temperature in response to incident infrared radiation, the platform covering substantially an entire area of the detector. The detector includes a thermocouple substantially suspended from contact with a substrate by at least one arm connected to the substrate and a thermal connection between the absorption platform and the thermocouple.09-26-2013
20130277557OPTICAL POSITION DETECTION DEVICE AND EQUIPMENT WITH POSITION DETECTION FUNCTION - An optical position detection device includes a first detection light source unit that outputs a detection light from one side to the other side in a first direction, a second detection light source unit that is separated from the first detection light source unit along a second direction crossing the first direction, and outputs a detection light from the one side to the other side in the first direction, a light detection unit having sensitivity toward the other side in the first direction, and a position detection unit that detects the position of the object based on the light reception in the light detection unit.10-24-2013
20130284927INFRARED DETECTOR HAVING AT LEAST ONE SWITCH POSITIONED THEREIN FOR MODULATION AND/OR BYPASS - In at least one embodiment, a sensing apparatus is provided. The sensing apparatus comprises a substrate, a thermopile, and a readout circuit. The thermopile includes an absorber positioned above the substrate for receiving thermal energy and for generating an electrical output indicative of the thermal energy. The readout circuit is positioned below the absorber and includes at least one first switch positioned therein for being electrically coupled to the thermopile to provide a bypass in the event the thermopile is damaged.10-31-2013
20130306868INFRARED RAY SENSOR PACKAGE, INFRARED RAY SENSOR MODULE, AND ELECTRONIC DEVICE - According to the present invention, the gas adsorption capability of a getter can be maintained while the characteristics of an infrared ray sensor element are prevented from being deteriorated. An infrared ray sensor package has an infrared ray sensor element, a base substrate, a housing, an infrared ray transmission window, and a getter. The infrared ray sensor element is vacuum-sealed in a space surrounded by the base substrate, the housing, and the infrared ray transmission window. A spacer is disposed between the infrared ray sensor element and the base substrate to form a gap between the infrared ray sensor element and the base substrate. The getter is arranged in the gap formed between the infrared ray sensor element and the base substrate. A heat shielding member is disposed between the infrared ray sensor element and the getter. The heat shielding member is a heater for heating the infrared ray sensor element or an element formed of alloy containing Ni or heat-resistant glass.11-21-2013
20130327941WIDE ANGLE OPTICAL SYSTEM - A system for diverting wide angle incident electromagnetic radiation to parallel to an optical axis of a wide FOV lens. The system includes a wide FOV lens system including at least one wide FOV lens and an electromagnetic radiation sensitive device. The wide FOV lens system includes at least one wide FOV lens, the wide FOV lens includes a smooth outer surface that is transparent to the incident electromagnetic radiation. The wide FOV lens system is superposed over an outer surface of the electromagnetic radiation sensitive device, the electromagnetic radiation sensitive device is capable of interacting with the incident electromagnetic radiation.12-12-2013
20130341510OVERHEAD OCCUPANCY SENSOR - An overhead occupancy sensor assembly includes a housing, a lens disposed in the housing, a sensing element disposed behind the lens and configured to detect light, and a light blocking element, the light blocking element being configured to block light from reaching the sensing element. The light blocking element is a re-shapeable filter element or a rejection pattern of the lens. A continuous range of motion extension adapter may be included to allow optimal positioning of the sensor device for improved detection.12-26-2013
20140001362OCCUPANCY SENSOR WITH MULTI-POSITION ROTARY SWITCH01-02-2014
20140014837MOTION DETECTOR CAMERA - A motion detector camera includes a housing, viewing electronics mounted within the housing, an IR emitter exposed on a surface of the housing, a motion detector exposed on a surface of the housing, and a controller operatively coupled to the viewing electronics, the IR emitter, and the motion detector, wherein the controller is adapted to send an activation signal to the IR emitter and to the viewing electronics when the controller receives a triggering signal from the motion detector01-16-2014
20140014838OPTICAL FILTER AND SENSOR SYSTEM - An optical filter having a passband at least partially overlapping with a wavelength range of 800 nm to 1100 nm is provided. The optical filter includes a filter stack formed of hydrogenated silicon layers and lower-refractive index layers stacked in alternation. The hydrogenated silicon layers each have a refractive index of greater than 3 over the wavelength range of 800 nm to 1100 nm and an extinction coefficient of less than 0.0005 over the wavelength range of 800 nm to 1100 nm.01-16-2014
20140027638REGENERATIVE RECEIVER ARCHITECTURES FOR MILLIMETER-WAVE AND SUB-MILLIMETER-WAVE IMAGING AND COMMUNICATION - A millimeter and sub-millimeter wavelength receiver imaging apparatus and method which directly generates a time encoded digital signal for an imaging pixel in response to interoperation of a digital quench circuit, an envelope detector, and a regenerative oscillator coupled to an antenna. The device utilizes the fact that oscillator startup time in a regenerative oscillator is inversely proportional to injected pixel image power. A digital quench circuit, such as a latch, is coupled for activating and deactivating the regenerative oscillator in response to receiving an output from an envelope threshold circuit, and for generating a time encoded digital signal in response to pixel amplitude during millimeter and sub-millimeter wavelength imaging. Receiver embodiments are described for both fundamental frequency operation (DRR) and for multi-frequency imaging (IRR).01-30-2014
20140027639CTIA for IR Readout Integrated Circuits Using Single Ended OPAMP With In-Pixel Voltage Regulator - A circuit for an image sensor pixel receives photogenerated information from an image sensor, such as infrared sensor. The circuit includes a single ended operational amplifier, they can have a simple circuit such as for example 4 transistors. An additional transistor is used in the pixel to regulate the voltage that is used to drive the operational amplifier, to maintain that voltage relative to a bias level. This prevents voltage fluctuations, which would otherwise be passed to the pixel output.01-30-2014
20140048708BOLOMETRIC DETECTOR OF AN ELECTROMAGNETIC RADIATION IN THE TERAHERTZ RANGE AND ARRAY DETECTION DEVICE COMPRISING SUCH DETECTORS - A terahertz detection device comprises at least one terahertz antenna, a detection microbridge suspended above a substrate comprising a resistive load coupled to the antenna and a resistive bolometric clement coupled to the resistive load, a bias circuit for biasing the bolometric element. The device further comprises a skimming microbridge suspended above the substrate, comprising a resistive bolometric element, and substantially identical to the detection microbridge, a reflective metal layer opposite to the skimming microbridge to obtain a destructive interference at the level of the skimming microbridge for a terahertz wavelength, a bias circuit to electrically bias the bolometric element of the skimming microbridge and a read circuit for measuring a difference between the electric signals of the microbridges.02-20-2014
20140054459APPARATUS AND METHOD FOR MONITORING A CARD SLOT - An apparatus and method for monitoring a card slot is provided. The apparatus is for monitoring a card slot for the presence of unauthorised objects or devices and comprises a photon coupled interrupter having a light source configured for placement at a first side of the card slot to be monitored, the light source being configured to emit light across the card slot; a light sensor configured for placement at a side of the card slot opposite to the first side, the light sensor being configured to sense light from the light source that has propagated across the card slot; and control circuitry for controlling the light source to emit light and for determining the presence of an object or device in the card slot from a signal output from the light sensor.02-27-2014
20140054460Device For Emitting And Guiding An Infrared Radiation - Device for emitting and guiding an infrared radiation comprising a waveguide (02-27-2014
20140061466CONTROLLING ASSEMBLY AND ELECTRONIC DEVICE - A controlling assembly is disclosed, which is adapted to be disposed at a casing, in which the casing has an opening. The controlling assembly includes an infrared transmission module (IR transmission module), a pressing switch and a button. The IR transmission module is adapted to be disposed in the casing and corresponding to the opening. The pressing switch is adapted to be disposed in the casing. The button is adapted to be movably disposed on the casing and shield the opening, in which the button has transparency. The IR transmission module is adapted to transmit or receive infrared light via the opening and passing through the button and the pressing switch is able to be triggered by pressing the button. The invention also discloses an electronic device which includes a casing and a controlling assembly.03-06-2014
20140061467VARIABLE APERTURE MECHANISM FOR USE IN VACUUM AND CRYOGENICALLY-COOLED ENVIRONMENTS - A variable aperture mechanism (VAM) comprises a cam assembly, a single motor capable of rotating the cam assembly, and a pair of aperture members which are coupled to the cam assembly and arranged to affect the size of an aperture, with the size of the aperture varying with the position of the cam assembly. The VAM would typically be used with a sensor having an associated optical field-of-view (FOV), with the aperture members moving in and out of the FOV with the rotation of the cam assembly such that the aperture can be set to multiple f-numbers. A thermal link between the aperture members and a cryogenically-cooled surface ensures that the aperture members are also cryogenically-cooled.03-06-2014
20140061468INFRARED SENSOR - Provided is a lightweight infrared sensor which is readily and stably erected to a substrate. The infrared sensor includes an insulating film; a first and a second heat sensitive element are disposed on one surface of the insulating film separately; a first and second conductive film on one surface of the insulating film and are respectively connected to the first and the second heat sensitive element; and an infrared reflection film on the other surface of the insulating film so as to face the second heat sensitive element. The infrared sensor further includes a reinforcing plate on which a sensor part window corresponding to a sensor part is formed and which is adhered to the insulating film; and a first and a second terminal electrode are respectively connected to the first and the second wiring film, are formed on the edge of the insulating film.03-06-2014
20140070100SENSING DEVICE AND ELECTRONIC APPARATUS - A sensing device includes a first electrode, a second electrode with a first opening portion, a light blocking layer with a second opening portion, an organic EL layer including a light emitting unit and being formed between the first electrode and the second electrode, and a light receiving unit. The light blocking layer is positioned in the first electrode or between the first electrode and the second electrode, and in plan view from the subject side, the light blocking layer overlaps the first opening portion and the second opening portion is positioned within the first opening portion, and the light receiving unit is positioned further from the subject side than the second electrode, and in plan view from the subject side, the light receiving unit is positioned within the second opening portion.03-13-2014
20140077081INSPECTION APPARATUS FOR SHEET - An inspection apparatus for a sheet of paper subjected to a process to impart a translucent property such as a “watermark” or a “security window” includes: an inspection cylinder in which a surface facing the sheet of paper is provided with a blackened portion; IR-LED illuminators which irradiate the sheet of paper with light containing infrared rays; an IR monochrome camera which images the sheet of paper; an IR filter which eliminates visible light in the light emitted from the IR-LED illuminators and reflected off the sheet of paper as well as the inspection cylinder and makes only the infrared rays incident on the IR monochrome camera; and a control device which determines appropriateness of a processed portion on the sheet of paper having the translucent property on the basis of the infrared rays emitted from the IR-LED illuminators, reflected off the sheet of paper as well as the inspection cylinder, and made incident on the IR monochrome camera.03-20-2014
20140084163TERAHERTZ-WAVE GENERATING APPARATUS AND MEASURING UNIT EQUIPPED WITH THE SAME - Provided is a compact terahertz-wave generating apparatus that generates terahertz waves at high output and high efficiency. A terahertz-wave generating apparatus includes an electromagnetic-wave resonator including a hollow fiber in which an electromagnetic-wave gain medium is disposed, the electromagnetic-wave gain medium generating terahertz waves when exciting energy is supplied thereto, wherein the terahertz waves are amplified in the electromagnetic-wave resonator and are taken from the electromagnetic-wave resonator, wherein the diameter of the hollow fiber is set at one or more times and ten times or less as large as the inside diameter of the hollow fiber, in which the electromagnetic-wave gain medium is disposed, at which a cutoff frequency in a terahertz-wave propagation mode TE11 is provided.03-27-2014
20140103209TERAHERTZ-WAVE ELEMENT, TERAHERTZ-WAVE DETECTING DEVICE, TERAHERTZ TIME-DOMAIN SPECTROSCOPY SYSTEM, AND TOMOGRAPHY APPARATUS - A terahertz-wave element includes a waveguide (04-17-2014
20140110580SENSOR UNIT - The present disclosure provides a sensor unit that includes a mounting portion fixed on one side of the sensor unit; an elastic member including a first end and a second end, the first end being disposed on the mounting portion; a transmission portion configured to transmit a detectable signal, the transmission portion disposed on the second end of the elastic member; a reception portion configured to receive a reflection of the detectable signal; and a controller that determines whether the reflected signal indicates an impact, motion, or impending impact.04-24-2014
20140117236SUSPENDED WIDEBAND PLANAR SKIRT ANTENNA HAVING LOW THERMAL MASS FOR DETECTION OF TERAHERTZ RADIATION - A novel and useful THz radiation detector comprising a suspended wideband planar skirt antenna for achieving low thermal mass and high electrical performance. The antenna comprises only the perimeter or “skirt” of the antenna. The antenna has multiple loops where each loop comprises a conductor that covers the perimeter or skirt and includes multiple inner and outer arms. The total length of each loop has a length substantially one wavelength. One or more ports or load impedances are connected at the center of the antenna and shared by one or more loops. A thermal sensor detects the heat generated in the load resister and converts the heat energy to an electrical signal which is transmitted to read out circuitry via signal lines that run together with a holding arm. The holding arm functions as both a path for the read out signals as well as providing mechanical support for and effectively suspending the antenna.05-01-2014
20140117237HIGH RESPONSIVITY DEVICE FOR THERMAL SENSING IN A TERAHERTZ RADIATION DETECTOR - There is provided a novel and useful a high responsivity device for thermal sensing in a Terahertz (THz) radiation detector. A load impedance connected to an antenna heats up due to the incident THz radiation received by the antenna. The heat generated by the load impedance is sensed by a thermal sensor such as a transistor. To increase the responsivity of the sense device without increasing the thermal mass, the device is located underneath a straight portion of an antenna arm. The transistor runs substantially the entire length of the antenna arm alleviating the problem caused by placing large devices on the side of the antenna and the resulting large additional thermal mass that must be heated. This boosts the responsivity of the pixel while retaining an acceptable level of noise and demanding a dramatically smaller increase in the thermal time constant.05-01-2014
20140131576Illuminance and Proximity Sensor - An illuminance and proximity sensor includes a first sensing unit that senses infrared light and green light, and forwards a first sensing signal corresponding to a result of the sensing, a second sensing unit that filters visible light, senses the infrared light, and forwards a second sensing signal corresponding to a result of the sensing, and a control unit that produces an illuminance using a first difference value from subtracting the second sensing signal from the first sensing signal, and a proximity using a second difference value from subtracting the first difference value from the second sensing signal.05-15-2014
20140138543Techniques for Tiling Arrays of Pixel Elements - Sub-arrays such as tiles or chips having pixel elements arranged on a routing layer or carrier to form a larger array. Through-chip vias or the like to the backside of the chip are used for connecting with the pixel elements. Edge features of the tiles may provide for physical alignment, mechanical attachment and chip-to-chip communication. Edge damage tolerance with minimal loss of function may be achieved by moving unit cell circuitry and the electrically active portions of a pixel element away from the tile edge(s) while leaving the optically active portion closer to the edge(s) if minor damage will not cause a complete failure of the pixel. The pixel elements may be thermal emitter elements for IR image projectors, thermal detector elements for microbolometers, LED-based emitters, or quantum photon detectors such as those found in visible, infrared and ultraviolet FPAs (focal plane arrays), and the like. Various architectures are disclosed.05-22-2014
20140151557PHOTONIC SENSOR AND A METHOD OF MANUFACTURING SUCH A SENSOR - A photonic sensor, comprising: a platform, a temperature sensor on the platform; and a structure formed on or as part of the platform.06-05-2014
20140151558OCCUPANCY SENSOR - An occupancy sensor with the following components is disclosed: a sensing probe to detect occupancy of a space monitored by the sensor and to produce a corresponding sensing signal; a comparator, including a voltage divider defining a comparison value, against which the sensing signal is compared to detect occupancy; and a voltage sensing means to sense a feed voltage applied to the sensor, where changes in the feed voltage to the sensor induce a change in the comparison value.06-05-2014
20140166881TERAHERTZ WAVE GENERATING MODULE AND TERAHERTZ WAVE DETECTING DEVICE INCLUDING THE SAME - A terahertz wave generating module includes a bidirectional light source which provides a first dual-mode beam in a first direction and a second dual-mode beam in a second direction; a forward lens unit which focuses the first dual-mode beam; a photomixer unit which converts the first dual-mode beam focused by the forward lens unit into a terahertz wave; a backward lens unit which focuses the second dual-mode beam; and a light output unit which uses the second dual-mode beam focused by the backward lens unit as a light signal, wherein the bidirectional light source, the forward lens unit, the photomixer unit, the backward lens unit, and the light output unit are integrated in a housing.06-19-2014
20140175280INFANT STIMULATION AND ENVIRONMENT STERILIZING DEVICE - A cognitive stimulating sterilizing device for providing visual, tactile and, or audible stimulation for infants that also selectively sterilizes select items and the surrounding ambient. This including a housing adapted for removable connection to cribs, changing tables and similar furniture, an ultraviolet light source in the housing for sanitizing items in the housing when closed and the ambient when opened, audio source and compartments for holding and storing select items. The housing may include reflective and/or transparent surfaces for directing and/or passing ultraviolet light. A sensor, such as an infrared sensor, detects the presence of a human in the surrounding area in a motion-independent manner, such as by detecting fluctuations in infrared energy emitted by the human. A microcontroller receives data from the sensor and directs the activation and/or deactivation of the ultraviolet light source according to whether a human is detected.06-26-2014
20140175281MULITPLE CONTROLLED ELECTROCHROMIC DEVICES FOR VISIBLE AND IR MODULATION - An electrochromic device (ECD) includes an electrochromic cell and, optionally, one or more additional electrochromic cells where all cells are parallel, and where at least one of the electrodes of one of the cells comprises a single-walled carbon nanotube (SWNT) film The electrochromic cells allow the control of transmittance of two or more different portions of the electro-magnetic spectrum through the ECD. One cell can control the transmittance of visible radiation while the other cell can control the transmittance of IR radiation. The ECD can be employed as a “smart window” to control the heat and light transmission through the window. The ECD can be in the form of a laminate that can be added to an existing window.06-26-2014
20140175282OPTICAL FREQUENCY FILTER AND A DETECTOR INCLUDING SUCH A FILTER - An optical frequency filter comprises a support layer having reflective elements formed thereon, the reflective elements defining at least one periodic grid of substantially parallel slits, the period P, the height, and the width of the slits being selected in such a manner that the reflective elements form a wavelength-selective structure for a wavelength lying in a determined range of wavelengths. The support layer material has a refractive index n06-26-2014
20140183360Long-distance polarization and phase-sensitive optical time-domain reflectometry based on random laser amplification - A long-distance polarization and phase-sensitive reflectometry based on random laser amplification for extending a sensing distance includes a long-distance polarization and phase-sensitive reflectometry of a distributed Raman amplification based on optical fiber random lasers generated by unilateral pumps, a long-distance polarization and phase-sensitive reflectometry of a distributed Raman amplification based on optical fiber random lasers generated by bilateral pumps, and a long-distance polarization and phase-sensitive reflectometry of a Raman amplification based on a combination of optical fiber random lasers generated by unilateral pumps and a common Raman pump source, which are applied in optical fiber perturbation sensing and have a capability of greatly improving a working distance of a sensing system and a high practicability.07-03-2014
20140197314METHOD AND APPARATUS FOR GENERATING AN INFRARED ILLUMINATION BEAM WITH A VARIABLE ILLUMINATION PATTERN - A method for generating an infrared (IR) beam for illuminating a scene to be imaged comprises providing at least two IR emitters, including a first IR emitter operable to emit a wide beam component of the IR beam, and a second IR emitter operable to emit a narrow beam component of the IR beam, wherein the wide beam component has a linear profile that has a lower standard deviation than a linear profile of the narrow beam component. The method also comprises selecting a desired linear profile for the IR beam, and selecting a power ratio of power directed to the first IR emitter and power directed to the second IR emitter that produces the IR beam with the desired linear profile when the narrow beam component and wide beam component are combined; and directing power to the first and second IR emitters at the selected power ratio to generate the wide and narrow beam components, and combining the generated wide and narrow beam components to produce the IR beam.07-17-2014
20140217286DETECTION SYSTEM FOR DROPPING OBJECTS - A system for the detection of fast-moving dropping objects includes a submitting plate, a receiving plate, and a microcontroller. The submitting plate includes a first submitting pipe, a second submitting pipe, and a third submitting pipe. The first, second, and third submitting pipes emit infrared rays in turn. The receiving plate includes a first receiving pipe, a second receiving pipe, and a third receiving pipe. An object passage is defined between the receiving plate and the submitting plate, and the activation of the submitting pipes in turn detects individual objects even if one of a number of the falling objects obscures another falling object.08-07-2014
20140217287Semiconductor Device and Method of Driving the Same - To provide a semiconductor device and a driving method of the same that is capable of enlarging a signal amplitude value as well as increasing a range in which a linear input/output relationship operates while preventing a signal writing-in time from becoming long. The semiconductor device having an amplifying transistor and a biasing transistor and the driving method thereof, wherein an electric discharging transistor is provided and pre-discharge is performed.08-07-2014
20140239178OBJECT DETECTION DEVICE - To provide an object detection device that requires neither the optical adjustment nor the detection area adjustment after the replacement of the battery, the object detection device includes a sensor body, inclusive of a detection element, and a storage enclosure positioned in part or in its entirety in a rear surface of the sensor body, and has a transmitter accommodation portion for accommodating therein a transmitter for wirelessly transmitting an output signal from the sensor body, a battery holding portion for holding a battery for providing the sensor body and the transmitter with an electric power, in which the battery holding portion includes a holding portion opening unit to open the battery holding portion to thereby enable a replacement of the battery, then retained in the battery holding portion, in a condition in which the sensor body is not separated from the storage enclosure.08-28-2014
20140252231SPECIMEN INSPECTION APPARATUS - A specimen inspection apparatus includes: a terahertz wave generation unit which generates a terahertz wave; a transportation unit which includes a transportation surface on which specimens as inspection objects are loaded and is configured so as to transport the specimens in an in-plane direction of the transportation surface; an irradiation direction changing unit which changes an irradiation direction of a terahertz wave which is emitted from the terahertz wave generation unit and is emitted to the specimens loaded on the transportation surface; and a terahertz wave detection unit which detects a terahertz wave which is emitted to the specimens loaded on the transportation surface to transmit therethrough or be reflected thereby, wherein the irradiation direction changing unit changes the irradiation direction by changing a position of the terahertz wave generation unit.09-11-2014
20140252232DEVICE FOR THE CONTACTLESS AND NONDESTRUCTIVE TESTING OF SURFACES - A device for the contactless and nondestructive testing of a surface by measuring the infrared radiation thereof has one or more incoherent electromagnetic radiation sources (09-11-2014
20140264022INFRARED SENSOR OF REAR SURFACE IRRADIATION TYPE - A rear-surface-irradiation-type infrared sensor includes a substrate having a through hole passing through between an upper surface and a lower surface; an infrared absorption part on the substrate on a side of the upper surface separate from the substrate by the through hole; and a temperature sensor part detecting a change in a temperature of the infrared absorption part. The through hole includes a first through hole part having an opening on the upper surface and one or more second through hole parts having shapes different from the first through hole constituent part. The first through hole part and the second through hole part(s) communicate with each other. In a cross-sectional shape of the through hole on a plane perpendicular to the upper surface, an inside wall of the first through hole part is outside an inside wall of the of second through hole part(s).09-18-2014
20140264023LOBED APERTURE RADIANT SENSOR - A radiant sensor includes a modified, e.g. lobed, aperture for modifying the sensor response to heat sources with its field of view to achieve a mean radiant temperature measurement.09-18-2014
20140264024SPECIMEN INSPECTION APPARATUS - A specimen inspection apparatus includes: a transportation unit which includes a transportation surface on which a specimen as an inspection object is loaded and is configured so as to transport the specimen; a terahertz wave generation unit which is positioned on the transportation surface side of the transportation unit and generates a terahertz wave; and a terahertz wave detection unit which is positioned on a side of a surface opposite the transportation surface of the transportation unit, and detects a terahertz wave which is emitted from the terahertz wave generation unit and transmits through the specimen loaded on the transportation surface, wherein the transportation unit includes a hole portion through which the transportation surface and the surface opposite the transportation surface communicate with each other, and is configured so that the specimen can be loaded on the hole portion.09-18-2014
20140264025SYSTEMS, APPARATUSES AND METHODS FOR CONVERTING LIGHT WAVELENGTHS - In one aspect, an apparatus for converting light having a first wavelength to a light having a second wavelength is provided. The apparatus includes an interband light detector configured to detect light with the first wavelength, a light emitting device configured to emit light with the second wavelength, and a connector connecting the light detector to the light emitting device. In another aspect, an apparatus includes an absorber layer configured to absorb light having a first wavelength, a barrier and trap layer adjacent the absorber layer, an injector layer adjacent the barrier and trap layer, and an emitting device configured to emit light having a second wavelength. In a further aspect, a method is provided and includes absorbing an input light having a first wavelength, converting the first wavelength to a second wavelength different in size than the first wavelength, and emitting an output light having the second wavelength.09-18-2014
20140264026CROSS ANTENNAS FOR SURFACE-ENHANCED INFRARED ABSORPTION (SEIRA) SPECTROSCOPY OF CHEMICAL MOIETIES - A device for Surface Enhanced Infrared Absorption (SEIRA) that includes at least one pair of metallic antennas deposited on a substrate, wherein the pair of metallic antennas are collinear. The length, width, and height of the metallic antenna determines an infrared absorption of the pair of metallic antennas. The device also includes a gap located between the pair of metallic antennas. A chemical moiety is disposed on at least a portion of the metallic antennas such that the infrared absorption of the chemical moiety is enhanced by the at least one pair of metallic antennas.09-18-2014
20140264027GAS ANALYSERS AND A METHOD OF MAKING A GAS ANALYSER - A method of making a measuring instrument, such as a gas analyser (09-18-2014
20140284480INFRARED SENSOR AND HEAT SENSING ELEMENT - An infrared sensor includes a heat sensing element, the heat sensing element includes a first electrode, a second electrode and a dielectric film formed between the first electrode and the second electrode. The heat sensing element senses heat based on a change of a resistance value. The dielectric film includes at least Bi and Fe.09-25-2014
20140284481POSITION DETECTION SYSTEM AND PROJECTION DISPLAY SYSTEM - An optical position detection system includes a light output unit that outputs lights toward a first detection target and a second detection target, and a first light receiving unit that receives a first reflected light from the first detection target and a second light receiving unit that receives a second reflected light from the second detection target having different wavelengths, wherein the first detection target has a first reflection filter that reflects the first reflected light and the second detection target has a second reflection filter that reflects the second reflected light.09-25-2014
20140299770Infrared Light Sensor Chip with High Measurement Accuracy and Method for Producing the Infrared Light Sensor Chip - An infrared light sensor chip comprises a substrate (10-09-2014
20140306111Low Temperature Co-Fired Ceramic System on Package for Millimeter Wave Optical Receiver and Method of Fabrication - The present disclosure relates to a multi-layered low temperature co-fired ceramic (LTCC) system on package (SoP) for a millimeter wave optical receiver comprising a top layer, a plurality of first intermediate layers, a plurality of second intermediate layers, and a bottom layer. The top layer further comprises a matching network, passive components, and a signal line disposed on a substrate material, the plurality of first intermediate layers further comprises active amplification components, via holes and a plurality of inner grounding planes that are respectively disposed on a first plurality of LTCC substrates, the plurality of second intermediate layers further comprises a plurality of grounding planes that are respectively disposed on a second plurality of LTCC substrates; and the bottom layer further comprises a grounding plane that is disposed on the bottom surface of the second plurality of LTCC substrates. A method of fabricating the multi-layered LTCC SoP is also described.10-16-2014
20140312229POSITION MEASUREMENT - A measurement fixture has a plurality of optically-detectable elements, preferably infrared LEDs. In use, an object is attached in fixed spatial relationship to the fixture, and an optical measuring device detects the elements to provide relative tracking of the object relative to a reference. This allows for improved control and accuracy, particularly in machining operations and in the control of robots.10-23-2014
20140319348Motion Sensing Device and Packaging Method thereof - A motion sensing device for sensing infrared rays, the motion sensing device includes a substrate; a sensing unit, configured on the substrate for sensing the infrared rays; a stabilizing layer, covering on the sensing unit for fixing and protecting the sensing unit, wherein the stabilizing layer has an opening; a protection layer, formed on the opening; and a coating layer, covering the stabilizing layer for absorbing infrared rays, wherein the coating layer does not cover the opening.10-30-2014
20140326882Electrically Insulated Screen and Method of Erecting an Electrically Insulated Screen - The invention is a sensor device comprising a carrier element (11-06-2014
20140326883NANOWIRE THERMOELECTRIC INFRARED DETECTOR - A thermoelectric infrared detector. The detector has an absorption platform comprising a material that increases in temperature in response to incident infrared radiation and the platform covering substantially an entire area of the detector. The detector includes a thermocouple substantially suspended from contact with a substrate by at least one arm connected to the substrate.11-06-2014
20140374596INFRARED SENSOR - Provided is an infrared sensor which is capable of measuring a temperature of an object to be measured with high accuracy even when lead wires are connected to one side thereof. The infrared sensor includes an insulating film; a first and a second heat sensitive element which are provided on one face of the insulating film; a first and a second wiring film that are respectively connected to the first and the second heat sensitive element; an infrared reflecting film; a plurality of terminal electrodes; and a thermal resistance adjusting film which is provided on the other face of the insulating film, is in opposition to at least a portion of the longer one of the first or the second wiring film in wiring distance from the terminal electrodes, and is formed of a material with greater heat dissipation than the insulating film.12-25-2014
20150008325DETECTOR - Embodiments of the present invention relate to a detector (01-08-2015
20150014534SWITCHABLE READOUT DEVICE - A readout device is adapted for dual-band sensing, and includes an amplifier, two direct injection (DI) readout circuits to be respectively connected to two sensors, and a switching module. Through operation of the switching module, one of the DI readout circuits can be electrically connected to the amplifier, and cooperate with the other DI readout circuit to achieve a dual-band sensing feature.01-15-2015
20150021477DETECTION DEVICE COMPRISING AN IMPROVED COLD FINGER - The detection device comprises a cold finger which performs the thermal connection between a detector and a cooling system. The cold finger comprises at least one side wall at least partially formed by an area made from the amorphous metal alloy. Advantageously, the whole of the cold finger is made from the amorphous metal alloy.01-22-2015
20150028206DISPLAY APPARATUS - A display apparatus including an optical component and an optical fiber component is provided. The display may include an optical component including a sensor, and an optical fiber component configured to transmit the electromagnetic transmission being incident on a front frame, to the sensor. A display apparatus may transmit light being incident from the outside to a sensor of an optical unit through an optical fiber unit, and transmits light being outputted from the sensor of the optical unit to the outside through the optical fiber unit.01-29-2015
20150028207Infrared Sensor with Acceleration Sensor and Method for Operating an Infrared Sensor - A sensor arrangement includes an infrared sensor and at least one acceleration sensor. The infrared sensor is configured to detect infrared radiation, and to output infrared image data. The at least one acceleration sensor is configured to detect an instantaneous acceleration of the sensor arrangement, and to output acceleration data. The output of the infrared image data from the infrared sensor is blocked when the instantaneous acceleration of the sensor arrangement exceeds a preprogrammed threshold value.01-29-2015
20150041653SAMPLE COLLECTING DEVICE FOR DROPLET AND GAS SAMPLING IN NARROW DUCTS OF A GAS TURBINE OR ANY OTHER DEVICE WITH AN OIL BREATHER - An analysing arrangement for analysing a composition of a fluid, such as oil mist of an engine, e.g. a gas turbine is provided. The analysing arrangement includes a breather pipe coupleable to the gas turbine such that at least a part of the fluid is flowing through the breather pipe, a first collecting device for collecting a first sample of the fluid, wherein the first collecting device is configured for providing a first composition analysis of the first sample and a second collecting device for collecting a second sample of the fluid, wherein the second collecting device is configured for providing a second composition analysis of the second sample. The first collecting device and the second collecting device are arranged inside the breather pipe such that the first collecting device and the second collecting device are exposed to a common flow characteristic of the fluid inside the breather pipe.02-12-2015
20150053858Bolometric Detector With A Compensation Bolometer Having An Enhanced Thermalization - A bolometric detector includes a substrate; bolometric detection microbridges suspended above the substrate and thermally insulated from the substrate; bolometric compensation microbridges suspended above the substrate and thermalized to the substrate; and a read circuit formed in the substrate to apply a biasing to the detection microbridges and to the compensation microbridges and to form differences between signals generated by detection microbridges and signals generated by compensation microbridges under the effect of the applied biasing. Each detection microbridge and each compensation microbridge includes electrically-conductive anchoring nails connected to the read circuit, a membrane attached to the anchoring nails above the substrate, and a thermometric element arranged in the membrane. The detector further includes thermal short-circuit elements between the membrane of each compensation microbridge and the substrate.02-26-2015
20150069240TERAHERTZ ELECTROMAGNETIC WAVE GENERATOR, TERAHERTZ SPECTROMETER AND METHOD OF GENERATING TERAHERTZ ELECTROMAGNETIC WAVE - A terahertz electromagnetic wave generator according to the present disclosure includes: a thermoelectric material layer; and a light source system which is configured to irradiate the thermoelectric material layer with pulsed light and generate a terahertz wave from the thermoelectric material layer. The thermoelectric material layer includes a gradient portion in which transmittance of the pulsed light varies in a certain direction. And the light source system is configured to irradiate the gradient portion of the thermoelectric material layer with the pulsed light.03-12-2015
20150069241Multi-Spectral Defect Inspection for 3D Wafers - Multi-spectral defect inspection for 3D wafers is provided. One system configured to detect defects in one or more structures formed on a wafer includes an illumination subsystem configured to direct light in discrete spectral bands to the one or more structures formed on the wafer. At least some of the discrete spectral bands are in the near infrared (NIR) wavelength range. Each of the discrete spectral bands has a bandpass that is less than 100 nm. The system also includes a detection subsystem configured to generate output responsive to light in the discrete spectral bands reflected from the one or more structures. In addition, the system includes a computer subsystem configured to detect defects in the one or more structures on the wafer using the output.03-12-2015
20150083914RAILWAY REFERENCE MACHINE HAVING A COLLAPSIBLE PROJECTOR ASSEMBLY - A railway reference machine is provided for surveying and aligning a railroad track, and includes a collapsible projector assembly having a pusher buggy assembly, and a lifting device. A plurality of projectors is mounted to a projector cart. The pusher buggy assembly has extendable and retractable linkage sections such that the linkage sections are stackable and nestable within a space defined by the lifting device and the projector cart. At one end, the pusher buggy assembly is connected to the projector cart and at an opposite end is connected to the lifting device such that the projector cart pivots upwardly about a pivot point to rest the projector assembly in a space defined by a chassis being dimensional for supporting the reference machine, and pivots downwardly about the pivot point to lower the projector assembly on the railroad track.03-26-2015
20150083915OPTICAL SENSOR DEVICE - An optical sensor device includes at least two light receiving units in which a plurality of types of light receiving elements is integrated in the same vertical structure. In addition, the optical sensor device further includes a switch unit configured to select at least one of the light receiving elements in each of the light receiving units in a time-division manner.03-26-2015
20150097117PHOTOVOLTAIC POWER GENERATION SYSTEM - According to an embodiment, a solar cell string 04-09-2015
20150102222PHOTOMIXER FOR GENERATING AND DETECTING TERAHERTZ CONTINUOUS WAVE AND METHOD OF MANUFACTURING THE SAME - Disclosed is a photomixer for generating and detecting a terahertz continuous wave, including: an optical conductor to which beating light is incident; and a plurality of antenna feeding electrodes formed on both side surfaces of the optical conductor, and configured to receive a current of a terahertz frequency.04-16-2015
20150115158PHOTOELECTRIC-TYPE CONTINUOUS LIQUID LEVEL MEASUREMENT METHOD AND DEVICE - A photoelectric-type continuous liquid level measurement method is applied to a photoelectric-type continuous liquid level measurement device which comprises at least one sensor module formed by cascading a plurality of sensors, and comprises: driving the sensors one by one from bottom to top to take a liquid level measurement; after detecting the light intensity of a detection light returned from the position where the sensors are located, the sensors which are currently in a driving state conducting analogue-to-digital conversion on a voltage value corresponding to the detected light intensity to obtain current analogue-to-digital conversion data; according to the correlation between a preset liquid level and the analogue-to-digital conversion data, determining the liquid level of the position where the sensors are located; and summarizing to a transmitter module the liquid level measured by each of the sensors to obtain the total liquid level of a currently measured.04-30-2015
20150122995SOLID-STATE IMAGING DEVICE, METHOD OF MANUFACTURING THE SAME, AND ELECTRONIC APPARATUS - A solid-state imaging device includes an Si substrate in which a photoelectric conversion unit that photoelectrically converts visible light incident from a back surface side is formed, and a lower substrate provided under the Si substrate and configured to photoelectrically convert infrared light incident from the back surface side.05-07-2015
20150122996Apparatus with sensor functionality and power management and associated methods - In an exemplary embodiment, an apparatus includes a sensor integrated circuit (IC) that is adapted for ambient light sensing (ALS) and/or proximity detection. The sensor integrated circuit (IC) includes an integrated analog-to-digital converter (ADC) that is adapted to convert at least one signal related to ambient light sensing (ALS) and/or proximity detection to at least one digital signal, and an integrated light emitting diode (LED) driver that is adapted to drive at least one LED. The sensor IC also includes an integrated power management unit (PMU) that is adapted to reduce power dissipation of the sensor IC by running at a low duty cycle the integrated LED driver and the integrated ADC.05-07-2015
20150122997Non-Invasive Identification Of Solutions - A fluid identification assembly is provided to determine the presence or absence of multiple components within a fluid in a conduit. The assembly includes a light source and a light detector positioned to receive a portion of light from the light source reflected by the conduit and fluid. A dual-band bandpass filter may be associated with the light detector to allow multiple wavelengths of light to be monitored, thereby monitoring the composition of the fluid based on the amount of light of each wavelength absorbed by the fluid. Rather than a dual-band bandpass filter, a second light detector may be provided, along with a beam splitter to separate light from a single source for receipt of light of different wavelengths by the light detectors. The dual-band bandpass filter may also be replaced by a second light source and detector pair for analyzing fluid using multiple wavelengths of light.05-07-2015
20150129764SAMPLING DEVICE AND METHODS OF USING SAME - sampling device including a Near-Infrared Spectroscopy (NIRS) fiber optic probe and methods of using the device are provided. The sampling device performs both NIRS data collection and physical sample collection. The sampling device operates by inserting the device into a powder or blend to be sampled, collecting a sample within the sample chamber in the device, and performing NIRS analysis of the sample within the sample chamber.05-14-2015
20150136983INFRARED DETECTING ELEMENT, METHOD FOR MANUFACTURING INFRARED DETECTING ELEMENT, AND ELECTRONIC DEVICE - An infrared detecting element includes a recessed portion, a supporting section, and an infrared detecting section. A supporting section is located above the recessed portion such that a hollow space stands between the supporting section and the recessed portion. The infrared detecting section is provided on the supporting section and detects infrared rays. The recessed portion is covered with a water repellent film, and the supporting section is made of a material that has high rigidity compared to silicon and silicon oxide.05-21-2015
20150303321INFRARED SENSOR AND METHOD FOR MANUFACTURING SAME, FILTER MEMBER FOR INFRARED SENSOR, AND PHOTOCOUPLER - A filter member includes a first lead terminal, an optical filter, and a first mold member, and a light incidence surface and a light emission surface of the optical filter is exposed from the first mold member. A sensor member includes an IR sensor element, a second lead terminal and a second mold member. A light-receiving surface of the IR sensor element is exposed from the second mole member. The filter member is disposed on the sensor member so that the light emission surface of the optical filter faces the light-receiving surface of the IR sensor element in the sensor member.10-22-2015
20150316832TERAHERTZ-WAVE GENERATION DEVICE AND MEASUREMENT APPARATUS INCLUDING THE SAME - At least one terahertz-wave generation device configured to generate a terahertz wave includes a polarization control unit configured to control a polarization direction of light from a light source, and a waveguide including a nonlinear optical crystal disposed such that the light having the polarization direction controlled by the polarization control unit is incident on the nonlinear optical crystal. The nonlinear optical crystal emits a terahertz wave upon the light being incident thereon. The polarization control unit is further configured to control an electric-field intensity of the light to be incident on the nonlinear optical crystal in a direction of a Z-axis of the nonlinear optical crystal.11-05-2015
20150323388PERSON SUPPORT APPARATUS WITH POSITION MONITORING - A person support apparatus includes one or more thermal image sensors whose outputs are analyzed to perform one or more functions. Such functions include automatically turning on a brake, automatically turning on one or more lights, detecting when a patient associated with the person support apparatus has fallen, enabling a propulsion system of the patient support apparatus to be used, automatically controlling one or more environmental controls, and/or automatically arming an exit detection system after entry of a patient onto the person support apparatus. Multiple thermal images may be generated from multiple sensors to generate stereoscopic thermal images of portions of the person support apparatus and its surroundings.11-12-2015
20150338341A THREE-DIMENSIONAL DISPERSIBLE NANORESONATOR STRUCTURE FOR BIOLOGICAL, MEDICAL AND ENVIRONMENTAL APPLICATIONS AND METHOD FOR MANUFACTURE THEREOF - A three-dimensional nanoresonator structure has a stack of laterally confined layers including at least a first layer and a second layer of different conductive materials between which a dielectric layer is interposed. The layers have at least a respective accessible surface area exposed to an environment in which the structure is immersed. Multiple three-dimensional nanoresonators that can be dispersed in an environment are formed from an array of nanoresonators fixed to a sacrificial substrate. The nanoresonators are subsequently separated from the substrate and conjugated with a chemical agent adapted to promote the formation of a stable colloidal suspension of nanoresonators in a liquid medium.11-26-2015
20150346329ULTRALIGHT LASER INFRARED COUNTERMEASURE (IRCM) SYSTEM - An ultralight laser infrared countermeasure (IRCM) system is disclosed. In One embodiment, the system includes an ultra light housing. The system further includes a laser or an infrared missile warning sensor to provide imagery data upon detecting a threat infrared surface to air missile (IRSAM). The ultralight housing is further configured to include at ultralight laser infrared assembly, which includes a laser, and laser pointer assembly. The ultralight housing is furthermore configured to include a missile warning processing module to produce a track point for the laser and to produce a modulation signal based on the imagery data, wherein the ultralight laser infrared assembly to modulate the laser pointer assembly based on modulation signal for a predetermined length of time to provide multiple simultaneous IRSAM engagement protection.12-03-2015
20150377775DEVICE - A device includes a light emitting element, a light receiving element, an electronic part capable of processing a signal output from the light receiving element, an optical member covering the light emitting element and the light receiving element, and a board on which the light emitting element, the light receiving element, the electronic part, and the optical member are mounted. The board includes conductor wiring electrically connected to the light receiving element.12-31-2015
20160010972MOTION SENSOR01-14-2016
20160011056CALIBRATION OF PHOTOELECTROMAGNETIC SENSOR IN A LASER SOURCE01-14-2016
20160011057CALIBRATION OF PHOTOELECTROMAGNETIC SENSOR IN A LASER SOURCE01-14-2016
20160018322APPARATUS FOR ANALYZING PHASES OF MULTIPHASE MIXTURES - The invention relates to an apparatus comprising: a measuring head (01-21-2016
20160025571THERMOPILE INFRARED SENSOR STRUCTURE WITH A HIGH FILLING LEVEL - Thermopile infrared sensor structure with a high filling level in a housing filled with a medium (01-28-2016
20160025625METAMATERIAL SENSOR PLATFORMS FOR TERAHERTZ DNA SENSING - A sensor platform is provided for interrogating a sample with an electromagnetic (EM) wave. The platform includes: a dielectric material having opposing first and second planar surfaces; a first array of loop elements embedded in the first planar surface of the dielectric material, wherein slots are formed between the loop elements in the first array of loop elements and configured to host a sample material therein; and a second array of loop elements embedded in the second planar surface of the dielectric material and formed symmetrically with respect to the first array of loop elements, wherein slots are also formed between the loop elements of the second array of loop elements. The loop elements in the first array and the second array are comprised of a conductive material.01-28-2016
20160033404PACKAGE INSPECTION SYSTEM - A package inspection system is provided, where an electromagnetic-wave detection part is hardly affected by illumination light for optical detection. Below a gap 02-04-2016
20160036122ELECTROMAGNETIC WAVE DETECTION/GENERATION DEVICE AND METHOD FOR MANUFACTURING SAME - An electromagnetic wave detection/generation device including a substrate, and a plurality of reception/radiation elements provided on the substrate. In the electromagnetic wave detection/generation device, the plurality of reception/radiation elements each include an antenna and an electronic device, at least two of the reception/radiation elements are coated at least partially with dielectric layers, the dielectric layers each having a function of adjusting a frequency response characteristic of the antenna of the corresponding one of the reception/radiation elements, and at least two of the dielectric layers are different with respect to each other in at least either one of thickness, material, shape, and coating ratio.02-04-2016
20160041038NON-CONTACT THERMAL SENSOR MODULE - Compact thermal sensor modules, which in some implementations can be manufactured in wafer-level fabrication processes, include features composed of or coated with a low-emissivity material to reduce or prevent detection by a sensor of radiation emitted by other parts of the module. For example, spacers that separate an optics substrate and a sensor package from one another can be composed of or coated with such a low emissivity material. In some cases, the low emissivity material has an emissivity of no more than 0.1.02-11-2016
20160041044TEMPERATURE MEASUREMENT HEAD STRUCTURE AND CLINICAL THERMOMETER - A temperature measurement head structure comprises a shell (02-11-2016
20160041091OSCILLATION ELEMENT, OSCILLATOR, AND IMAGING APPARATUS USING THE SAME - An oscillation element includes an antenna for oscillation configured to oscillate electromagnetic waves, and multiple negative resistance elements electrically connected to the antenna in parallel, and the multiple negative resistance elements are disposed in only a place where the phases of electromagnetic waves oscillated therefrom are the common phase or opposite phase.02-11-2016
20160054219Compact Size Explosives Detector with Ultra Fast Response and High Sensitivity and Method for Detecting Explosives - A system and methodology for semi-selective Infra-Red sampling and detection of explosive traces is described. The detection system combines the advanced Infra-Red sampling technique, capable to sample even non-volatile explosives in vapor mode with sensitive and interfering compounds extremely resistant analytical unit for reliable detection of all explosive compounds. All presented technology is designed to create ultra-miniature pocket-sized, ultra-fast detection system.02-25-2016
20160054496CIRCULARLY POLARIZED LIGHT SEPARATION FILM, METHOD FOR PRODUCING CIRCULARLY POLARIZED LIGHT SEPARATION FILM, INFRARED SENSOR, AND SENSING SYSTEM AND SENSING METHOD UTILIZING LIGHT - The invention provides: a circularly polarized light separation film which selectively allows the transmission of any one of right circularly polarized light and left circularly polarized light in at least a part of a near infrared light wavelength range and includes a visible light shielding layer which reflects or absorbs light in at least a part of a visible light wavelength range and a circularly polarized light separation layer which selectively allows the transmission of any one of right circularly polarized light and left circularly polarized light in at least a part of a near infrared light wavelength range; a manufacturing method of the circularly polarized light separation film; an infrared sensor including the circularly polarized light separation film; and a sensing system and a sensing method utilizing the circularly polarized light separation film or a combination of the circularly polarized light separation film and a film including the visible light shielding layer. The sensing system and the sensing method provides high sensitivity regardless of the surrounding environment and causing fewer sensing errors.02-25-2016
20160103015CIRCULAR POLARIZATION FILTER AND APPLICATION THEREFOR - Provided are a circular polarization filter including a circularly-polarized light separating layer (preferably, a layer having a cholesteric liquid crystalline phase fixed therein or a laminate including a reflective linear polarizer and a λ/4 phase difference layer), in which the circularly-polarized light separating layer selectively transmits either right-handed circularly polarized light or left-handed circularly polarized light in a specific wavelength region, a transparent medium which is transparent with respect to light in the specific wavelength region is provided at least on one surface side of the circularly-polarized light separating layer, and the transparent medium has an inclined surface which forms an angle of 1° to 30° relative to the surface on the transparent medium side of the circularly-polarized light separating layer, and sensor system using the circular polarization filter. The circular polarization filter of the invention is capable of providing circularly polarized light with a high circular polarizance, or improving sensitivity in the sensor system using circularly polarized light.04-14-2016
20160103242SYSTEMS AND METHODS FOR ATTACHING AND POSITIONING A SENSOR ON A LUMINAIRE FIXTURE - Provided is a detection system for a luminaire fixture including a sensor and a laser meter to allow positioning of a sensor for precise positioning toward a viewing area. The sensor includes a sensor mount to attach the detection system to an existing luminaire, a sensor lens to perceive a viewing area, and a sensor housing to protect the sensor lens. The laser meter includes a laser to project a focused light path for positioning, and a laser housing to protect the laser. The sensor lens is positioned with respect to the laser, causing the sensor lens to move with respect to the laser. Also provided is a method for configuring an adjustable detection system for a luminaire.04-14-2016
20160109360INSPECTION APPARATUS, INSPECTION METHOD, AND STORAGE MEDIUM - An inspection apparatus to inspect a plurality of inspection objects includes first and second measuring units, a determining portion, and a separating unit. The first measuring unit measures terahertz waves transmitted through, or reflected by, the plurality of respective inspection objects. The determining portion determines whether a predetermined condition is satisfied by using a measurement result of the first measuring unit. The separating unit separates the plurality of inspection objects into an inspection object that satisfies the predetermined condition and an inspection object that does not satisfy the predetermined condition based on a determination result of the determining portion. The second measuring unit measures a time waveform of a terahertz-wave pulse transmitted through an inspection object that does not satisfy the predetermined condition separated by the separating unit or a terahertz-wave pulse reflected by the inspection object that does not satisfy the predetermined condition separated by the separating unit.04-21-2016
20160109630POLARIZATION FILTER AND SENSOR SYSTEM - According to the present invention, there are provided a polarization filter and a sensor system. The polarization filter includes a circularly polarized light-separating layer having a cholesteric liquid crystalline phase fixed therein, in which the circularly polarized light-separating layer is a layer which selectively transmits one of the left-hand circularly polarized light and the right-hand circularly polarized light in the specific wavelength band, a λ/4 phase difference layer for light in the specific wavelength band is disposed on one of the surfaces of the circularly polarized light-separating layer, and the λ/4 phase difference layer includes a first phase difference region and a second phase difference region of which slow axis directions are orthogonal to each other. The sensor system includes the polarization filter, a light source which emits light having a wavelength in the specific wavelength band, and a light-receiving element which can detect light having a wavelength in the specific wavelength band. The polarization filter of the present invention can improve the sensitivity of a sensor system using polarized light, and the sensor system of the present invention has high sensitivity and is extremely cost effective.04-21-2016
20160131889OPTICAL DEVICE FOR USE WITH COHERENT TERAHERTZ LIGHT - [Object] To provide an optical device for use with coherent terahertz light, which enables to reduce and remove an unwanted interference pattern, and to acquire a terahertz image of high image quality.05-12-2016
20160138976DUAL ELEMENT PYROELECTRIC MOTION AND PRESENCE DETECTOR - An apparatus configured to sense presence and motion in a monitored space is presented. The apparatus includes a dual-element assembly with a first thermal sensing element and a second thermal sensing element configured to produce a direct current output that is sustained at a level substantially proportional to an amount of thermal energy being received at the thermal sensing elements. A lens array (or equivalent optics) is coupled to the elements, having a plurality of lenses directing incident thermal energy from a plurality of optically-defined spatial zones onto the sensing elements. An electronic circuitry is configured to read a resulting signal of the dual-element assembly and an individual output signal of each the first thermal sensing element and the second thermal sensing element.05-19-2016
20160153836OPTICAL TRANSMISSION DEVICE, LIGHT GUIDE PLUG, OPTICAL FIBER PLUG, LIGHT RECEPTION DEVICE, AND PORTABLE APPARATUS06-02-2016
20160161329DETECTING LIGHT - The present invention relates to a mobile device for detecting light. The mobile device (06-09-2016
20160161676Uncooled Operation of Microresonator Devices - This invention removes the need to provide temperature control for an optical time delay chip, which is usually provided by a thermo-electric-cooler, in order to significantly reduce the power dissipation of the device and allow ‘uncooled’ operation. Uncooled operation is achieved by monitoring the temperature of the chip, and changing the tuning of each microresonator within the device in order to continue providing the required time delay as the temperature is varied. This invention takes advantage of the fact that microresonators provide a series of resonant wavelengths over a wide wavelength range, so that the closest resonance wavelength below the operating wavelength can always be tuned up to that wavelength. When the device temperature changes, this is accounted for by both the choice of resonance wavelengths and the tuning for each of the microresonators in the device, in order to keep the correct tunable delay.06-09-2016
20160169744DETECTOR SYSTEM PREVENTING FOOD BOIL OVER FOR STOVES06-16-2016
20160169746SENSOR AND INFORMATION ACQUISITION APPARATUS USING SENSOR06-16-2016
20160178433METHODS AND SYSTEMS FOR FLASH DETECTION06-23-2016
20160187202Non-Contact Infrared Temperature Sensor with Wireless Functionality - An infrared (IR) temperature sensor includes a detector element, a wireless communication element, a memory, and a processor. The detector element detects IR radiation emitted from an object and generates an electrical signal proportional to the detected IR radiation. The memory is configured to store command instructions. The processor is operably connected to the detector element, the wireless communication element, and the memory. The processor is configured to execute the command instructions to transform the electrical signal into an output signal proportional to a temperature of the object and transmit the output signal with the wireless communication element. The IR sensor further includes a body that encloses the detector element, the wireless communication element, the memory, and the processor. The body defines an aperture that extends between the detector element and a mounting surface of the body and faces the object.06-30-2016
20160195434LIGHT FIXTURE WITH INTEGRATED SENSOR07-07-2016
20160377696Portable Electronic Device Proximity Sensors with Multi-Directional Functionality - An electronic device includes a housing, one or more processors, and one or more proximity sensor components, each having an infrared signal receiver to receive an infrared emission from an object external to the housing. The proximity sensor component is disposed by a first aperture and a second aperture, the first aperture having a first axis oriented in a first direction and the second aperture having a second axis oriented in a second direction. Attenuation of infrared emissions can occur through one of the first aperture or the second aperture. The one or more processors can determine whether a received infrared emission is attenuated to detect whether the received infrared emission was received from the first direction or the second direction.12-29-2016
20170232178A BLOOD PROCESSING APPARATUS COMPRISING A MEASUREMENT DEVICE08-17-2017
20170234680BACKLIGHT SOURCE FLATNESS DETECTION SYSTEM AND BACKLIGHT SOURCE FLATNESS DETECTION METHOD08-17-2017
20170234807INSPECTION APPARATUS USING THzBAND08-17-2017
20170234974RANGE FINDER AND OPTICAL DEVICE08-17-2017
20170234975RANGE FINDER AND OPTICAL DEVICE08-17-2017
20190145830INFRARED DETECTOR PIXEL STRUCTURE AND MANUFACTUREING METHOD THEREOF05-16-2019

Patent applications in class Infrared responsive

Patent applications in all subclasses Infrared responsive

Website © 2023 Advameg, Inc.