Class / Patent application number | Description | Number of patent applications / Date published |
204403150 | Electrode containing free carbon | 12 |
20080283397 | Electrochemical Transducer Array and Use Thereof - Electrochemical transducer arrays are already known from the prior art. According to the invention, the transducer array is provided with at least one flexible, planar metal substrate on which at least one flexible insulator having a firm connection between the metal surface and the insulator surface is disposed. The metal substrate and the insulator disposed thereon are structured in such a manner as to give metal areas which are electrically insulated the one from the other and which serve as sensor areas. The metal substrate used is self-contained so that the structured metal areas can be contacted from the lower side. | 11-20-2008 |
20090065357 | Assay Cartridges and Methods of Using the Same - Assay modules, preferably assay cartridges, are described as are reader apparatuses which may be used to control aspects of module operation. The modules preferably comprise a detection chamber with integrated electrodes that may be used for carrying out electrode induced luminescence measurements. Methods are described for immobilizing assay reagents in a controlled fashion on these electrodes and other surfaces. Assay modules and cartridges are also described that have a detection chamber, preferably having integrated electrodes, and other fluidic components which may include sample chambers, waste chambers, conduits, vents, bubble traps, reagent chambers, dry reagent pill zones and the like. In certain preferred embodiments, these modules are adapted to receive and analyze a sample collected on an applicator stick. | 03-12-2009 |
20100044225 | NANO-STRUCTURE WITH CAPS - A nano-structure is provided. In some embodiments, the nano-structure includes a carbon nanotube with a carbon nanotube body. The carbon nanotube body has at least one cap at one end of the nanotube body. Also provided are methods of making the nano-structures described herein. | 02-25-2010 |
20100133102 | SENSORS EMPLOYING COMBINATORIAL ARTIFICIAL RECEPTORS - The present invention relates to sensors and sensor systems that utilize combinational artificial receptors. Embodiments of the present invention employ combinational artificial receptors in electromagnetic (e.g. optical) and electrochemical sensors. | 06-03-2010 |
20110162962 | BIOLOGICAL SENSOR MEASURING ELECTROCHEMICAL AND / OR ELECTRICAL AND DIAMOND ELECTRODE AND ELECTRONIC INTEGRATED CIRCUIT - A biological sensor for electrochemical and/or electrical measurement, including at least:
| 07-07-2011 |
20110180405 | Analyte Sensors, Systems, Testing Apparatus and Manufacturing Methods - In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor may include one or more conductors received in a hollow portion of a hollow member. The first conductor may be made, at least in part, of a semiconductor material and an active region may be provided in contact with at least the first conductor. The analyte sensor may, in one aspect, include a lancet and an integrated sensor. Manufacturing methods and apparatus and systems utilizing the analyte sensors are provided, as are numerous other aspects. | 07-28-2011 |
20120255860 | CARBON-BASED ELECTRODES WITH GRAPHENE MODIFICATION - Certain embodiments of the present application describe a carbon-based electrode with graphene platelets. The addition of graphene platelets is intended to improve properties of the electrode. These properties include, but are not limited to, physical, electrical, and biochemical properties of the electrode. Enhanced reproducibility of these properties can also result from the addition of the graphene platelets. | 10-11-2012 |
20140124368 | ELECTROCHEMICAL BIOSENSOR STRIP - An electrochemical biosensor strip is disclosed in the present invention. The electrochemical biosensor strip includes a substrate, an electrode system and a test reagent. The electrode system is disposed on the substrate and is composed of a hydrophilic carbon layer. The test reagent is laid on the substrate and in contact with a portion of the hydrophilic carbon layer. In such a manner, the test reagent can contact the carbon layer without interference, and the dissolved test reagent, the analyte-containing fluid and the product of the interaction of the test reagent and the analyte, while in use, can spread on the hydrophilic carbon layer spontaneously and uniformly, which makes contribution to a better detection performance. | 05-08-2014 |
20140190824 | NANOGAP TRANSDUCERS WITH SELECTIVE SURFACE IMMOBILIZATION SITES - Embodiments of the invention provide transducers capable of functioning as electronic sensors and redox cycling sensors. Transducers comprise two electrodes separated by a nanogap. Molecular binding regions proximate to and within the nanogap are provided. Methods of fabricating nanogap transducers and arrays of nanogap transducers are also provided. Arrays of individually addressable nanogap transducers can be disposed on integrated circuit chips and operably coupled to the integrated circuit chip. | 07-10-2014 |
20140299468 | High-Performance Analytical Instrument and Method - Apparatus and methods are provided for improving sensitivity, throughput, and efficiency of multi-analyte analytical testing. Specifically, an improved Electrochemiluminescence (ECL) analytical apparatus is provided for analytical chemistry, diagnostics, and environmental applications. The ECL apparatus comprises a 96 or more-well plate, where a microarray of working electrodes is placed in each well for high throughput and multi-analyte testing. The microarray of working electrodes connects with a counter electrode forming a two-electrode electrochemical system. Each well is electrically addressable, thereby controlling ECL reactions in flexible modes. The ECL apparatus further comprises a detector of ECL signals, and the detector employs a CCD-chip assembling matrix. Also provided are methods for high-throughput multi-analyte testing. The methods according to this disclosure are applied in various embodiments to test a broad range of analytes, including chemical compounds, proteins, peptides, DNAs, RNAs, antigens, antibodies, pathogens, contaminants, and derivatives thereof. | 10-09-2014 |
20160029935 | ANALYTE SENSORS, SYSTEMS, TESTING APPARATUS AND MANUFACTURING METHODS - In some aspects, an analyte sensor is provided for detecting an analyte concentration level in a bio-fluid sample. The analyte sensor may include one or more conductors received in a hollow portion of a hollow member. The first conductor may be made, at least in part, of a semiconductor material and an active region may be provided in contact with at least the first conductor. The analyte sensor may, in one aspect, include a lancet and an integrated sensor. Manufacturing methods and apparatus and systems utilizing the analyte sensors are provided, as are numerous other aspects. | 02-04-2016 |
20160187282 | DEVICE FOR SINGLE MOLECULE DETECTION AND FABRICATION METHODS THEREOF - Disclosed herein is a device comprising an electrode pair comprising a first electrode and a second electrode; a nanogap channel; wherein a portion of the nanogap channel is sandwiched between the first electrode and the second electrode; wherein at least a portion of the first electrode directly faces at least a portion of the second electrode, across the nanogap channel; wherein the portion of the first electrode and the portion of the second electrode are exposed to an interior of the nanogap channel; and wherein the first electrode or the second electrode comprises doped diamond, silicon carbide or a combination thereof. Also disclosed herein is a method comprising forming on a carrier substrate a first material layer comprising doped diamond, silicon carbide or a combination thereof; bonding the first material layer onto an electrical circuit. | 06-30-2016 |