Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


With semipermeable membrane

Subclass of:

204 - Chemistry: electrical and wave energy

204193000 - APPARATUS

204194000 - Electrolytic

204400000 - Analysis and testing

204403010 - Biological material (e.g., microbe, enzyme, antigen, etc.) analyzed, tested, or included in apparatus

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
204403060 With semipermeable membrane 52
20080230383DEHYDRATION/REHYDRATION OF DERIVATIZED, MARKER-LOADED LIPOSOMES ON A TEST DEVICE AND METHOD OF USE THEREOF - The present invention relates to a method for making a test device for detecting or quantifying an analyte in a sample. This method involves contacting a membrane with a mixture including derivatized, marker-loaded liposomes, and substantially dehydrating the mixture on the membrane under vacuum pressure at a temperature of from about 4° C. to about 80° C., wherein said mixture further includes one or more sugars in an amount sufficient to promote the stability of the liposomes during dehydration and rehydration. The present invention also relates to a test device and method for detecting or quantifying an analyte in a sample. The test device includes a membrane which includes an immobilized liposome zone, wherein the immobilized liposome zone has bound thereto dehydrated, derivatized, marker-loaded liposomes dehydrated under vacuum pressure at a temperature of from about 4° C. to about 80° C. from a mixture which includes one or more sugars in an amount sufficient to promote the stability of the liposomes during dehydration and rehydration.09-25-2008
20080245665BIOSENSOR - A biosensor for determining the concentration of an analyte in a biological sample. The biosensor comprises a support, a reference electrode or a counter electrode or both disposed on the support, a working electrode disposed on the support, the working electrode spaced apart from the other electrode or electrodes on the support, a covering layer defining a sample chamber over the electrodes, an aperture in the covering layer for receiving a sample, and at least one layer of mesh in the sample chamber between the covering layer and the electrodes. The at least one layer of mesh has coated thereon a silicone surfactant. Certain silicone surfactants are as effective as fluorinated surfactants with respect to performance of biosensors. These surfactants, when coated onto the mesh layer of the biosensor, are effective in facilitating the transport of aqueous test samples, such as blood, in the sample chamber.10-09-2008
20080277276Photopolymerizable Silicone Materials Forming Semipermeable Membranes for Sensor Applications - A method for preparing sensing devices (biosensors) includes the steps of: (1) applying a photopatternable silicone composition to a surface in a sensing device to form a film, (2) photopatterning the film by a process comprising exposing the film to radiation through a photomask without the use of a photoresist to produce an exposed film; (3) removing regions of the non-exposed film with a developing solvent to form a patterned film, which forms a permselective layer or an analyte attenuation layer covering preselected areas of the sensing device.11-13-2008
20080277277BIOSENSOR MEMBRANES COMPOSED OF POLYMERS CONTAINING HETEROCYCLIC NITROGENS - Novel membranes comprising various polymers containing heterocyclic nitrogen groups are described. These membranes are usefully employed in electrochemical sensors, such as amperometric biosensors. More particularly, these membranes effectively regulate a flux of analyte to a measurement electrode in an electrochemical sensor, thereby improving the functioning of the electrochemical sensor over a significant range of analyte concentrations. Electrochemical sensors equipped with such membranes are also described.11-13-2008
20090050477Disposable sensor for liquid samples - The present invention provides a disposable electrochemical sensor which can measure redox species in a liquid sample02-26-2009
20090071824Integrated Sensing Array for Producing a BioFingerprint of an Analyte - An integrated array of electronic sensing elements outputs a bio-fingerprint of an analyte. System is preferably constructed of as a series of three layers but need not be so arranged. An upper layer defines a fluid volume or analyte chamber; a middle layer contains the sensing elements; and a third layer contains electronic readout elements. The analyte chamber contains an electrolyte and the analyte to be detected. The sensing elements are optimized for maximum detection sensitivity in the minimum response time. The response of each sensing element is read out by a dedicated sensing electrode. Around each electrode is a control ring. The potential of the control ring is set to attract analytes of interest to the sensing elements.03-19-2009
20090178924Conductor/Insulator/Porous Film-Device and Its Use With the Electrochemiluminescence-Based Analytical Methods - A conductor/insulator/porous film device is provided which is used in electrochemiluminescence methods and instrumentation based on the chemical excitation of label molecules with subsequent measurement of the luminescence in order to quantitate analyte concentrations especially in bioaffinity assays.07-16-2009
20090321255Drug-meter: Multiwell membrane-based potentiometric sensor for high throughput tests of drugs - Multiwell membrane-based potentiometric sensor for high throughput tests. The sensor includes a reference element under the bottom of the multiwell plate, where the bottoms of the wells have sensitive potentiometric membranes. The plate is made with the electrically nonconductive polymer. The output of the chemical sensor is a transmembrane voltage between additional reference element inserted into the test solution in a well and the first reference element. Potentials correspond to the chemical activity present in test solutions added into the wells. In one embodiment the membrane is a drug sensitive biomimetic membrane, made of porous nitrocellulose polymer support impregnated with lipids or lipid-like substances. Sensitivity for some drugs can be as good as 1 ppm. In other embodiments the membrane is an ion selective glass or polymer membrane, including PVC with ionophores or redox active electroconductive polymer membranes to characterize redox processes in the test solutions.12-31-2009
20100155239PLANAR SENSOR06-24-2010
20110017594ANALYTE SENSOR FABRICATION - A biosensor fabrication process comprising transferring one or more layers (e.g., conductive ink and/or membrane layers) from a surface to the biosensor substrate and biosensors produced therefrom. Layers are transferred from the surface to the biosensor substrate using a deposition device, such as a pick and place machine or a printing pad/plate.01-27-2011
20110048939High Throughput Screen - The present invention relates to a structure comprising a biological membrane and a porous or perforated substrate, a biological membrane, a substrate, a high throughput screen, methods for production of the structure membrane and substrate, and a method for screening a large number of test compounds in a short period. More particularly it relates to a structure comprising a biological membrane adhered to a porous or perforated substrate, a biological membrane capable of adhering with high resistance seals to a substrate such as perforated glass and the ability to form sheets having predominantly an ion channel or transporter of interest, a high throughput screen for determining the effect of test compounds on ion channel or transporter activity, methods for manufacture of the structure, membrane and substrate, and a method for monitoring ion channel or transporter activity in a membrane.03-03-2011
20110120865Analyte Sensors Comprising High-Boiling Point Solvents - Generally, embodiments of the present disclosure relate to analyte determining methods and devices (e.g., electrochemical analyte monitoring systems) that have improved uniformity of distribution of the sensing layer by inclusion of a high-boiling point solvent, where the sensing layer is disposed proximate to a working electrode of in vivo and/or in vitro analyte sensors, e.g., continuous and/or automatic in vivo monitoring using analyte sensors and/or test strips. Also provided are systems and methods of using the, for example electrochemical, analyte sensors in analyte monitoring.05-26-2011
20110139616Photoformed Silicone Sensor Membrane - A sensing device includes a sensing surface, and a matrix overlaying the sensing surface. The sensing device includes a photoformed membrane overlaying at least a portion of the matrix. The photoformed membrane includes a directly photoformed organosiloxane polymer that is substantially permeable to gaseous molecules and substantially impermeable to non-gaseous molecules and ions.06-16-2011
20110253533DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS - Devices and methods for determining analyte levels are described. The devices and methods allow for the implantation of analyte-monitoring devices, such as glucose monitoring devices, that result in the delivery of a dependable flow of blood to deliver sample to the implanted device. The devices comprise a unique microarchitectural arrangement in the sensor region that allows accurate data to be obtained over long periods of time.10-20-2011
20120043203SENSORS FOR LONG-TERM AND CONTINUOUS MONITORING OF BIOCHEMICALS - The disclosed subject matter relates to a sensor or system for monitoring a target analyte by using a polymer solution that is capable of binding to the analyte. The sensor of the disclosed subject matter includes a viscosity-based sensor or a permittivity-based sensor. The viscosity-based sensor contains a semi-permeable membrane, a substrate, and a microchamber including a vibrational element. The permittivity-based sensor contains a semi-permeable membrane, a substrate, and a microchamber. The sensor discussed herein provides excellent reversibility and stability as highly desired for long-term analyte monitoring.02-23-2012
20120090994BIOSENSOR SUPPORT - The invention relates to a biosensor support comprising a cylinder (04-19-2012
20120138458CELL-BASED TRANSPARENT SENSOR CAPABLE OF REAL-TIME OPTICAL OBSERVATION OF CELL BEHAVIOR, METHOD FOR MANUFACTURING THE SAME AND MULTI-DETECTION SENSOR CHIP USING THE SAME - The present invention relates to a cell-based transparent sensor capable of the real-time optical observation of cell behavior, to a method for manufacturing same, and to a multi-detection sensor chip using same. More particularly, the present invention relates to a cell-based transparent sensor capable of the real-time optical observation of cell behavior, to a method for manufacturing same, and to a multi-detection sensor chip using same, wherein the sensor can sense the ionic concentration of an electrolyte in accordance with the variation in the metabolic activity of cells using an ion-selective field effect transistor (ISFET) sensor and an electrochemical sensor, and the sensor is made of a transparent material which enables real-time observations of optical phenomenon for measurement of cell behavior.06-07-2012
20120160677DETACHABLE DISSOLVED OXYGEN SENSOR FOR SINGLE USE BIOREACTOR/MIXER - A dissolved oxygen sensor for use with a single use-bioreactor/container is provided. The bioreaction vessel includes a plastic wall defining a bioreaction chamber therein, and having an aperture therethrough. A membrane holder is attached to an inner surface of the plastic wall. The membrane holder has a cylindrical portion passing through the aperture. A sensor window membrane is coupled to the membrane holder proximate the aperture. The sensor window membrane has a high oxygen permeability, but forms a water-tight seal with the membrane holder.06-28-2012
20120261257LOW COST ELECTROCHEMICAL DISPOSABLE SENSOR FOR MEASURING GLYCATED HEMOGLOBIN - Design of a disposable screen printed electrode (SPE) for sensing percentage glycated hemoglobin using electrochemistry is disclosed. SPE has four electrodes, one working electrode for the detection of glycated hemoglobin, one working electrode for the detection of hemoglobin and the other two electrodes are counter and reference electrodes that are common for both detection schemes. It also has a cellulose acetate membrane with lysis agents and surfactant embedded in it. Lysis agents lyse erythrocytes and release hemoglobin. Surfactants modify hemoglobin structure and enhance the rate the electron transfer and thereby the output signal during the electrochemical analysis. The SPE is low cost and user friendly. The only input from the user is a drop of blood.10-18-2012
20140083850ELECTROCHEMICAL CELL - Devices and methods are provided for determining the concentration of a reduced form of a redox species. For example, a device can include a working electrode and a counter electrode spaced by a predetermined distance so that reaction produces from the counter electrode arrive at the working electrode. An electric potential difference can be applied between the electrodes, and the potential of the working electrode can be selected such that the rate of electro-oxidation of the reduced form of the species is diffusion controlled. Current as a function of time can be determined, the magnitude of the steady state current can be estimated, and a value indicative of the diffusion coefficient and/or of the concentration of the reduced form of the species can be obtained from the change in current with time and the magnitude of the steady state current. Other embodiments of apparatuses, devices, and methods are also provided.03-27-2014
20140144776POTENTIOMETRIC PROBE FOR MEASURING A MEASURED VARIABLE OF A MEDIUM IN A CONTAINER - A potentiometric probe comprising: a housing, which has a first chamber, in which a reference half-cell is formed, which is in communication with a medium surrounding the housing via an electrolytic contact location arranged in a wall of the housing. The housing has a second chamber, in which a measuring half cell is formed, wherein the second chamber is closed on one end by a measuring membrane, such that a surface area of the measuring membrane facing away from the second chamber is in contact with the medium surrounding the housing, and wherein the measuring half cell has a lengthwise extension between the measuring membrane and a closure element bounding the measuring half cell on an end lying opposite the measuring membrane. A quotient of a separation of the measuring membrane from the closure element and an outer diameter of the housing amounts to less than 5, especially less than 2.05-29-2014
20140367257BIOCHIP AND BIODEVICE USING SAME - A biochip including a plate-like diaphragm part provided with a through-hole, a wall part provided at an outer periphery of the diaphragm part, and a reinforcing part formed in a portion other than the through-hole in the diaphragm part.12-18-2014
20150300978MEMBRANE ELECTROCHEMICAL SIGNAL DETECTION SYSTEM - The present invention is related to a membrane electrochemical signal detection system, which comprises a detection platform and a probe, wherein the detection platform comprises a substrate having a cavity; a hydrogel layer disposed in the cavity of the substrate; and a carrier film disposed above the substrate and the hydrogel layer with at least one through hole corresponding to the cavity of the substrate as a sample slot. The surface of the probe is covered by an insulating layer and a metal for detection is exposed at a tip portion of the probe.10-22-2015
204403070 For blocking passage of macromolecules (molecular weight greater than or equal to 8,000) 2
20090308744ELECTROCHEMICAL DETERMINATION SYSTEM OF GLYCATED PROTEINS - Disclosed relates to an electrochemical determination system of glycated proteins, the system comprising: a filtering means for filtering labeled compounds bound to glycated proteins and non-glycated proteins after adding labeling compounds, capable of selectively binding to the glycated proteins to a solution, in which glycated/non-glycated proteins coexist, to be bound all to the glycated proteins; and a quantifying means for quantifying the filtered labeling compounds, not bound to the glycated proteins. The system of the present invention filters the residual labeled compounds left after binding to glycated proteins to quantify, instead of directly quantifying glycated proteins via the known glycated protein determination methods, thus simplifying the configuration of the system that can provide exact determinations with a low cost. Moreover, the electrochemical determination system of glycated proteins of the present invention minimizes the interference that the proteins are absorbed to an analysis device and a sensor in the system, not using immune antibodies that are expensive and have limited lives and, furthermore, not modifying the electrodes of the electrode sensor with antibodies or enzymes, thus facilitating mass production, quality control and circulation of the products.12-17-2009
20100243442ELECTROCHEMICAL SENSING TEST PIECE WITHOUT HEMOCYTE INTERFERENCE - The present invention provides an electrochemical sensing test piece without hemocyte interference, including a main body, electrode unit, reaction tank and chemical reaction zone. The detection zone of the electrode unit corresponds to the inserting end of the main body, and the reaction zone of the electrode unit corresponds to the sensing end of the main body. The reaction tank is arranged onto the sensing end correspondingly to the reaction zone of the electrode unit. The reaction tank is provided with a porous filter layer, whose aperture must be less than 6 μm for or separation of hemocyte in the blood sample. A chemical reaction zone is arranged between the porous filter layer and the reaction zone of the electrode unit. The hemocyte of the blood sample can be blocked and filtered by the porous filter layer, ensuring that the serum of blood sample can enter into the chemical reaction zone.09-30-2010
204403100 Enzyme included in apparatus 25
20090159442FORMATION OF IMMOBILIZED BIOLOGICAL LAYERS FOR SENSING - The invention is directed to enzyme immobilization compositions comprising: one or more enzymes, a humectant, an acrylic-based monomer, a water-soluble organic photo-initiator and a water-soluble acrylic-based cross-linker in a substantially homogeneous aqueous mixture. The invention is also directed to methods for forming sensors comprising such compositions and to apparati for forming arrays of immobilized layers on an array of sensors by dispensing such compositions onto a substrate.06-25-2009
20090159443BLOOD UREA NITROGEN (BUN) SENSOR - A BUN (blood urea nitrogen) sensor containing immobilized carbonic anhydrase and immobilized urease for the in vitro detection of urea nitrogen in blood and biological samples with improved performance and precision characteristics.06-25-2009
20090242399ANALYTE SENSOR - Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.10-01-2009
20090250342MONITORING TARGET ENDOGENOUS SPECIES - An electrode comprising a conducting substrate for detecting species such as nitric oxide (NO), carbon monoxide (CO), oxygen (O10-08-2009
20090308742Flexible Apparatus and Method for Monitoring and Delivery - The present invention generally relates to a system and method that co-locates in a small flexible, configurable system and multi-level substrate sampling, rapid analysis, bio-sample storage and delivery functions to be performed on living tissues or matter obtained from living organisms. The types of the sampling may include chemical, biochemical, biological, thermal, mechanical, electrical, magnetic and optical sampling. In general, the analysis performed at the point of sampling measures the sample taken and records its value. The bio-sample storage function encapsulates a small sample of analyte and preserves it for subsequent examination or analysis, either on the organism by the system or at a remote location by an independent analysis system. Once stored, the sample can provide a record of a biological state at the precise time of sampling. The delivery at the point of sampling can include chemical, biochemical, thermal, mechanical, electrical, magnetic and optical stimuli.12-17-2009
20090308743Electrodes with Multilayer Membranes and Methods of Using and Making the Electrodes - A sensor including a sensing layer is disposed over an electrode or an optode and a layer-by-layer assembled mass transport limiting membrane disposed over the sensing layer. The membrane includes at least one layer of a polyanionic or polycationic material. The assembled layers of the membrane are typically disposed in an alternating manner. The sensor also optionally includes a biocompatible membrane.12-17-2009
20100133101CROSS-LINKED ENZYME MATRIX AND USES THEREOF - An electrochemical sensor system and membrane and method thereof for increased accuracy and effective life of electrochemical and enzyme sensors.06-03-2010
20100175991Enzyme Electrode and Enzyme Sensor - An enzyme electrode having excellent sensitivity, excellent stability, and a longer operating life, and an enzyme sensor using the enzyme electrode are provided. The enzyme electrode includes an electrode 07-15-2010
20110011739ELECTROCHEMICAL BIOSENSOR WITH SAMPLE INTRODUCTION CHANNEL CAPABLE OF UNIFORM INTRODUCTION OF SMALL AMOUNT OF SAMPLE - Disclosed is an electrochemical biosensor having a sample introduction channel in which an insulator is employed to introduce a small amount of a sample uniformly and accurately and to adjust an area of a working electrode, thereby guaranteeing the accurate quantitative analysis of a sample. Provided with a sample collection barrier at a sample entrance, the biosensor allows a sample to be introduced at higher accuracy and to be analyzed with higher reproducibility and reliability.01-20-2011
20120228134ELECTRODE SYSTEMS FOR ELECTROCHEMICAL SENSORS - The present invention relates generally to systems and methods for improved electrochemical measurement of analytes. The preferred embodiments employ electrode systems including an analyte-measuring electrode for measuring the analyte or the product of an enzyme reaction with the analyte and an auxiliary electrode configured to generate oxygen and/or reduce electrochemical interferants. Oxygen generation by the auxiliary electrode advantageously improves oxygen availability to the enzyme and/or counter electrode; thereby enabling the electrochemical sensors of the preferred embodiments to function even during ischemic conditions. Interferant modification by the auxiliary electrode advantageously renders them substantially non-reactive at the analyte-measuring electrode, thereby reducing or eliminating inaccuracies in the analyte signal due to electrochemical interferants.09-13-2012
20130299350SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICES - The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.11-14-2013
20140001042ELECTRODE SYSTEMS FOR ELECTROCHEMICAL SENSORS01-02-2014
20140209459MEMBRANE SYSTEM WITH SUFFICIENT BUFFERING CAPACITY - Electrochemical sensors for measurement of an analyte comprising an analyte sensing membrane comprising at least one salt of acetate ion, carbonate ion, bicarbonate ion, or mixtures thereof. Sensor testing methods comprising contacting an electrochemical sensor with an aqueous solution comprising at least one salt of acetate ion, carbonate ion, bicarbonate ion, or mixtures thereof and contacting the electrochemical sensor with one or more concentrations of analyte, the one or more concentrations of analyte being in the clinical concentration range of the analyte.07-31-2014
20150090589DEVICES, SYSTEMS, AND METHODS TO COMPENSATE FOR EFFECTS OF TEMPERATURE ON IMPLANTABLE SENSORS - Systems and methods for compensating for effects of temperature on implantable sensors are provided. In some embodiments, systems and methods are provided for measuring a temperature to determine a change in temperature in a sensor environment. In certain embodiments, a temperature compensation factor is determined based on a change in temperature of the sensor environment. The temperature compensation factor can be used in processing raw data of an analyte signal to report a more accurate analyte concentration.04-02-2015
204403110 Glucose oxidase 11
20080296155LOW OXYGEN IN VIVO ANALYTE SENSOR - The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous and subcutaneous measurement of glucose in a host.12-04-2008
20090045055SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICES - The present invention provides a sensor head for use in an implantable device that measures the concentration of an analyte in a biological fluid which includes: a non-conductive body; a working electrode, a reference electrode and a counter electrode, wherein the electrodes pass through the non-conductive body forming an electrochemically reactive surface at one location on the body and forming an electronic connection at another location on the body, further wherein the electrochemically reactive surface of the counter electrode is greater than the surface area of the working electrode; and a multi-region membrane affixed to the nonconductive body and covering the working electrode, reference electrode and counter electrode. In addition, the present invention provides an implantable device including at least one of the sensor heads of the invention and methods of monitoring glucose levels in a host utilizing the implantable device of the invention.02-19-2009
20090101498GLUCOSE SENSORS AND METHODS OF MANUFACTURE THEREOF - Disclosed herein is a device that functions as a glucose sensor. The device has a reference electrode; a counter electrode, a working electrode; an electrically conducting membrane; an enzyme layer; a semi-permeable membrane; a first layer of a first hydrogel in operative communication with the working electrode; the first layer of the first hydrogel being operative to store oxygen; wherein the amount of stored oxygen is proportional to the number of freeze-thaw cycles that the hydrogel is subjected to; and a second layer of the second hydrogel. Disclosed too is a method that comprises using periodically biased amperometry towards interrogation of implantable glucose sensors to improve both sensor's sensitivity and linearity while at the same time enable internal calibration against sensor drifts that originate from changes in either electrode activity or membrane permeability as a result of fouling, calcification and/or fibrosis.04-23-2009
20100072062Membrane For Use With Amperometric Sensors - Membranes useful for amperometric sensors are described. The membranes allow continuous and real time in vivo measurements of a variety of redox active chemical species present in a fluid sample. In some embodiments, the membrane comprises a redox mediator, a redox reactive species, and conductive nano structures, such as carbon nanotubes. The membrane can be provided on a working electrode of the sensor. Amperometric sensors incorporating the membranes and methods of treatment using the sensors are also described.03-25-2010
20100288633Electrodes with Multilayer Membranes and Methods of Using and Making the Electrodes - A sensor including a sensing layer is disposed over an electrode or an optode and a layer-by-layer assembled mass transport limiting membrane disposed over the sensing layer. The membrane includes at least one layer of a polyanionic or polycationic material. The assembled layers of the membrane are typically disposed in an alternating manner. The sensor also optionally includes a biocompatible membrane.11-18-2010
20140262775GLUCOSE SENSORS AND METHODS OF MANUFACTURE THEREOF - Disclosed herein is a device that functions as a glucose sensor. The device has a reference electrode; a counter electrode, a working electrode; an electrically conducting membrane; an enzyme layer; a semi-permeable membrane; a first layer of a first hydrogel in operative communication with the working electrode; the first layer of the first hydrogel being operative to store oxygen; wherein the amount of stored oxygen is proportional to the number of freeze-thaw cycles that the hydrogel is subjected to; and a second layer of the second hydrogel. Disclosed too is a method that comprises using periodically biased amperometry towards interrogation of implantable glucose sensors to improve both sensor's sensitivity and linearity while at the same time enable internal calibration against sensor drifts that originate from changes in either electrode activity or membrane permeability as a result of fouling, calcification and/or fibrosis.09-18-2014
20150323487Heterocyclic Nitrogen Containing Polymer Coated Analyte Monitoring Device and Methods of Use - The present invention is directed to membranes composed of heterocyclic nitrogen groups, such as vinylpyridine and to electrochemical sensors equipped with such membranes. The membranes are useful in limiting the diffusion of an analyte to a working electrode in an electrochemical sensor so that the sensor does not saturate and/or remains linearly responsive over a large range of analyte concentrations. Electrochemical sensors equipped with membranes described herein demonstrate considerable sensitivity and stability, and a large signal-to-noise ratio, in a variety of conditions.11-12-2015
204403120 With diverse enzyme or catalyst (e.g., bienzyme or coenzyme system, glucose oxidase with Pt catalyst, etc.) 4
20110186429ANALYTE SENSOR - Electrochemical sensors for measuring an analyte in a subject are described. More particularly, devices for measurement of an analyte incorporating a sensor comprising a hydrophilic polymer-enzyme composition covering an electroactive surface providing rapid and accurate analyte levels upon deployment are disclosed.08-04-2011
20130112558FORMATION OF IMMOBILIZED BIOLOGICAL LAYERS FOR SENSING - The invention is directed to enzyme immobilization compositions comprising: one or more enzymes, a humectant, an acrylic-based monomer, a water-soluble organic photo-initiator and a water-soluble acrylic-based cross-linker in a substantially homogeneous aqueous mixture. The invention is also directed to methods for forming sensors comprising such compositions and to apparati for forming arrays of immobilized layers on an array of sensors by dispensing such compositions onto a substrate.05-09-2013
20130126349BIOSENSOR MEMBRANE COMPOSITION, BIOSENSOR, AND METHODS FOR MAKING SAME - Selectively permeable membranes for biosensors are provided. In one embodiment, the membrane includes a polymer mixture that includes a polyurethane component, a siloxane component, and a hydrogel component, the components in the mixture in amounts of about 60 to about 80 wt % polyurethane, about 10 to about 20 wt % siloxane, and about 10 to about 20 wt % hydrogel. The membrane has a surface restructured to be hydrophilic, with the restructured surface being crosslinked ed via reactive end groups on at least one of the polyurethane, the siloxane, and the hydrogel components. In another embodiment, the membrane includes a solvent cast film which includes a mixture of a first polyether-based thermoplastic polyurethane copolymer, a polyether-based polyurethane copolymer, and, optionally, a second polyether-based thermoplastic polyurethane copolymer.05-23-2013
20130284596Direct-transfer biopile - The invention relates to a biopile electrode or biosensor electrode intended to be immersed in a liquid medium containing a target and an oxidizer, respectively a reducer, in which the anode comprises an enzyme able to catalyse the oxidation of a target, and the cathode comprises an enzyme able to catalyse the reduction of the oxidizer, and in which each of the anode electrode and cathode electrode consists of a solid agglomeration of carbon nanotubes mixed with the enzyme, and is secured to an electrode wire10-31-2013
204403130 And microelectrode (i.e., at least one electrode dimension is less than 500 microns) 2
20100044224BIOLOGICAL FLUID ANALYSIS SYSTEM - A system apparatus (02-25-2010
20150027885DEVICES, SYSTEMS AND METHODS FOR HIGH-THROUGHPUT ELECTROPHYSIOLOGY - Electrophysiology culture plates are provided and are formed from a transparent microelectrode array (MEA) plate. The MEA plate comprises a substrate, a first layer and a first insulating layer. The substrate has a plurality of vias extending from an upper to a lower surface, each via being in electrical contact with each of a plurality of contact pads disposed on the lower surface. The first layer is disposed on the upper surface of the substrate and has a plurality of MEA arrays in in electrical communication with at least a first routing layer. Each MEA array comprises a plurality of reference electrodes and a plurality of microelectrodes and the first routing layer is in electrical communication with a select number of the plurality of vias. A first insulating layer is disposed on the first layer. The MEA plate is joined to a biologic culture plate having a plurality of culture wells such that each culture well defines an interior cavity having a bottom surface that is at least partially transparent and in positioned in registration with a select optical port. The MEA plate is coupled to the biologic culture well plate such that each MEA array is operatively coupled to one culture well wherein each microelectrode and each reference electrode are in electrical communication with the interior cavity through the bottom surface of the culture well.01-29-2015

Patent applications in class With semipermeable membrane

Patent applications in all subclasses With semipermeable membrane

Website © 2025 Advameg, Inc.