Class / Patent application number | Description | Number of patent applications / Date published |
117223000 | Shape defined by a solid member other than seed or product (e.g., Bridgman-Stockbarger) | 19 |
20090188427 | Device for making monocrystalline or multicrystalline materials, in particular multicrystalline silicon - The device for production of a monocrystalline or a multicrystalline material blank, especially a silicon multicrystalline blank, using the VGF method has a crucible with a rectangular or square cross section. A flat heating device, especially a jacket heater, which generates an inhomogeneous temperature profile, is arranged around the crucible. This temperature profile corresponds to the temperature gradient formed in the center of the crucible. The heat output of the flat heating device decreases from the top to the bottom end of the crucible. The flat heating device includes parallel heating webs, which extend in a meandering course. The heat outputs from the heating webs differ according to their different conductor cross sections. To avoid local overheating in corner areas of the crucible, constrictions of the cross sections of the heating webs are provided at inversion zones of their meandering course. | 07-30-2009 |
20090249999 | REUSABLE CRUCIBLES AND METHOD OF MANUFACTURING THEM - This invention relates to reusable crucibles for production of ingots of semiconductor grade silicon made of nitride bonded silicon nitride (NBSN). The crucibles may be made by mixing silicon nitride powder with silicon powder, forming a green body of the crucible, and then heating the green body in an atmosphere containing nitrogen such that the silicon powder is nitrided forming the NBSN-crucible. Alternatively the crucibles may assembled by plate elements of NBSN-material that are to be the bottom and walls of a square cross-section crucible, and optionally sealing the joints by applying a paste comprising silicon powder and optionally silicon nitride particles, followed by a second heat treatment in a nitrogen atmosphere. | 10-08-2009 |
20100294198 | CRYSTAL GROWING SYSTEM HAVING MULTIPLE ROTATABLE CRUCIBLES AND USING A TEMPERATURE GRADIENT METHOD - A crystal growing system having multiple rotatable crucibles and using a temperature gradient method comprises a crystal furnace, a plurality of crucibles, a supporting device, and a temperature control device. The crystal furnace includes a furnace body, a heater, and a hearth, wherein the furnace body from outer to inner includes an outer shell, a fiber insulation layer, an insulation brick layer, and a refractory layer. The crucible supporting device includes an elevator, a plurality of crucible guiding tubes, and a plurality of tube holders each capable of supporting a crucible guiding tube, a moving device that is connected to the elevator, a motor with electrical power that is connected to the moving device, wherein there is an affixing device between each pair of guiding tube and guiding tube holder. Each crucible is located in a corresponding crucible guiding tube. The crucible supporting device is a rotatable device. The refractory layer is ⅔-⅚ of the total height of the hearth, and the heater, is located at ¼-½ of the height of the hearth. The present invention promotes doping of crystal and makes doping more uniform. | 11-25-2010 |
20110239933 | DEVICE AND METHOD FOR THE PRODUCTION OF SILICON BLOCKS - Device for the production of silicon blocks, the device comprising a vessel for receiving a silicon melt with a bottom, an inside, an outside and a central longitudinal axis and at least one support plate which is at least partially in direct contact with the bottom, and which forms a base together with the bottom, and means for generating an inhomogeneous temperature field on the inside of the bottom. | 10-06-2011 |
20110271901 | REMOVAL OF A SHEET FROM A PRODUCTION APPARATUS - A melt of a material is cooled and a sheet of the material is formed in the melt. This sheet is transported, cut into at least one segment, and cooled in a cooling chamber. The material may be Si, Si and Ge, Ga, or GaN. The cooling is configured to prevent stress or strain to the segment. In one instance, the cooling chamber has gas cooling. | 11-10-2011 |
20120085279 | CRYSTAL GROWTH APPARATUS AND MANUFACTURING METHOD OF GROUP III NITRIDE CRYSTAL - A crystal growth apparatus comprises a reaction vessel holding a melt mixture containing an alkali metal and a group III metal, a gas supplying apparatus supplying a nitrogen source gas to a vessel space exposed to the melt mixture inside the reaction vessel, a heating unit heating the melt mixture to a crystal growth temperature, and a support unit supporting a seed crystal of a group III nitride crystal inside the melt mixture. | 04-12-2012 |
20120090537 | METHODS AND APPARATUS FOR MANUFACTURING MONOCRYSTALLINE CAST SILICON AND MONOCRYSTALLINE CAST SILICON BODIES FOR PHOTOVOLTAICS - Methods and apparatuses are provided for casting silicon for photovoltaic cells and other applications. With such methods and apparatuses, a cast body of monocrystalline silicon may be formed that is free of, or substantially free of, radially-distributed impurities and defects and having at least two dimensions that are each at least about 35 cm is provided. | 04-19-2012 |
20120174860 | TEMPLATE FOR THREE-DIMENSIONAL THIN-FILM SOLAR CELL MANUFACTURING AND METHODS OF USE - A template | 07-12-2012 |
20120174861 | THREE-DIMENSIONAL SEMICONDUCTOR TEMPLATE FOR MAKING HIGH EFFICIENCY THIN-FILM SOLAR CELLS - A semiconductor template having a top surface aligned along a (100) crystallographic orientation plane and an inverted pyramidal cavity defined by a plurality of walls aligned along a (111) crystallographic orientation plane. A method for manufacturing a semiconductor template by selectively removing silicon material from a silicon template to form a top surface aligned along a (100) crystallographic plane of the silicon template and a plurality of walls defining an inverted pyramidal cavity each aligned along a (111) crystallographic plane of the silicon template. | 07-12-2012 |
20130133569 | Crystal Growth Device - A crystal growth device includes a crucible and a heater setting. The crucible has a bottom and a top opening. The heater setting surrounds the crucible and is movable relative to the crucible along a top-bottom direction of the crucible and between first and second positions. The heater setting includes a first temperature heating zone and a second temperature heating zone higher in temperature than the first temperature heating zone. The heater setting is in the first position when the crucible is in the second temperature heating zone and in the second position when the crucible is in the first temperature heating zone. | 05-30-2013 |
20130160704 | CRUCIBLE SUPPORT STRUCTURE - A crystal growth furnace comprising at least three support pedestals supporting a crucible block and at least one means for stabilizing at least two of the support pedestals is disclosed. The stabilizing means can include support pedestals having a carbon-carbon composite outer layer recessed into the crucible block, a pedestal support system comprising at least one brace for securing at least two of the support pedestals to each other, or both. | 06-27-2013 |
20130192518 | METHOD FOR PRODUCING A SINGLE CRYSTAL OF SEMICONDUCTOR MATERIAL - A single crystal of semiconductor material is produced by a method of melting semiconductor material granules by means of a first induction heating coil on a dish with a run-off tube consisting of the semiconductor material, forming a melt of molten granules which extends from the run-off tube in the form of a melt neck and a melt waist to a phase boundary, delivering heat to the melt by means of a second induction heating coil which has an opening through which the melt neck passes, crystallizing the melt at the phase boundary, and delivering a cooling gas to the run-off tube and to the melt neck in order to control the axial position of an interface between the run-off tube and the melt neck. | 08-01-2013 |
20130239882 | COATED CRUCIBLE AND METHOD OF MAKING A COATED CRUCIBLE - A crucible for forming a boule in a portion of an interior volume of the crucible. The crucible has a crucible base material forming the interior volume. The crucible base material is separated from the boule by a barrier coat disposed between the boule and the crucible base material. The barrier coat has a pin free conformal thickness conforming to a surface of the crucible base material regardless of a shape of a surface feature on the surface, the barrier coat having a melting point higher than that of the boule. | 09-19-2013 |
20140123892 | ARRANGEMENT FOR MANUFACTURING CRYSTALLINE SILICON INGOTS - The present invention relates to an arrangement for manufacturing crystalline silicon ingots by directional solidification, where the melt and carbonaceous structural parts of the crystallisation furnace is protected from the fumes of the melt by applying a gas conduit which leads the fumes directly out of the directional solidification compartment of the furnace. | 05-08-2014 |
20140150717 | DEVICE FOR MANUFACTURING SEMICONDUCTOR OR METALLIC OXIDE INGOT - Provided is an apparatus for manufacturing a semiconductor or metal oxide ingot by sequentially inducing a liquid-to-solid phase transition of a liquid raw material following a solidification direction, the apparatus including: a crucible containing a semiconductor or metal oxide raw material; a cooling unit spaced apart from the crucible at a predetermined distance in a vertical direction, when a height direction of the crucible is designated by the vertical direction and a direction perpendicular to the vertical direction is designated by a horizontal direction; a first heating unit spaced apart from the crucible at a predetermined distance in the horizontal direction and surrounding a circumferential surface of the crucible; and an insulating member provided between the crucible and the cooling unit in the horizontal direction, a position of the insulating member being shifted by a shifting unit. | 06-05-2014 |
20150090181 | AUTOMATED HEAT EXCHANGER ALIGNMENT - According to the disclosed embodiments, a repeatable interface in a crystalline material growth system is achieved through an automated heat exchanger alignment apparatus and method. In one embodiment, a furnace chamber including a bottom wall and side walls that define an interior portion is provided. A crucible is disposed in the interior portion of the furnace chamber and configured to contain a crystalline material growth process. Also, a heat exchanger includes an elongated shaft that extends in a vertical direction and traverses the bottom wall of the furnace chamber, whereby a first end portion of the heat exchanger shaft is coupled to the crucible. Furthermore, an automated lifting device is configured to be actuated to adjust a position of the heat exchanger shaft in the vertical direction, whereby a second end portion of the heat exchanger shaft is coupled to the automated lifting device. | 04-02-2015 |
20150299895 | STIRRING APPARATUS OF INGOT CASTING FURNACE - A stirring apparatus of an ingot casting furnace includes a rotating shaft and at least one fin. The fin is provided onto the rotating shaft, and has a first edge, a second edge of unequal length provided correspondingly, and a third edge connecting the first and the second edges. The rotating shaft can be driven to rotate, which consequently drives the at least one fin to stir materials in a crucible. The length of the first edge is different from that of the second edge in order for the materials in the crucible can be mixed with dopants more uniformly during the stirring process to produce ingots of stable quality. | 10-22-2015 |
20150337454 | CONTROLLED DIRECTIONAL SOLIDIFICATION OF SILICON - The present invention relates to an apparatus and method for directional solidification of silicon. The apparatus can use a cooling platform to cool a portion of a bottom of a directional solidification crucible. The apparatus and method of the present invention can be used to make silicon crystals for use in solar cells. | 11-26-2015 |
20160122896 | SYSTEMS AND METHODS FOR CRYSTAL GROWTH - A system for growing a crystal is provided that includes a crucible, a furnace, and a heat transfer device. The crucible has a first volume to receive therein a material for growing a crystal. The furnace has an ampoule configured to receive the crucible within the ampoule. The furnace is configured to produce a lateral thermal profile combined with a vertical thermal gradient. The heat transfer device is disposed under the crucible and configured to produce a leading edge of growth of the crystal at a bottom of the crucible. The heat transfer device includes at least one elongate member disposed beneath the crucible and extending along a length of the crucible. | 05-05-2016 |