Entries |
Document | Title | Date |
20080201925 | ULTRACAPACITOR ELECTRODE WITH CONTROLLED SULFUR CONTENT - Particles of active electrode material are made by blending mixing a mixture of activated carbon and binder. In selected implementations, sulfur level in the activated carbon is relatively low and the binder is inert. For example, sulfur content of the activated carbon and the resultant mixture is below 300 ppm and in other implementations, below 50 ppm. The electrode material may be attached to a current collector to obtain an electrode for use in various electrical devices, including a double layer capacitor. The electrode decreases current leakage of the capacitor. | 08-28-2008 |
20080201926 | Method of manufacturing conductive polymer electrolytic capacitor - A method of manufacturing a conductive polymer electrolytic capacitor comprising the step of aging a capacitor element including an electrolyte containing a conductive polymer and an ionic liquid by applying an aging voltage y (V) to the capacitor element to satisfy the following formula (1) or the following formula (2) is provided. In the following formulas (1) and (2), x represents a forming voltage for a valve metal. An electrolytic capacitor having a high withstand voltage is implemented by this method. | 08-28-2008 |
20080216296 | THIN SOLID ELECTROLYTIC CAPACITOR EMBEDDABLE IN A SUBSTRATE - An improved method for forming a capacitor. The method includes the steps of: providing a metal foil; forming a dielectric on the metal foil; applying a non-conductive polymer dam on the dielectric to isolate discrete regions of the dielectric; forming a cathode in at least one discrete region of the discrete regions on the dielectric; and cutting the metal foil at the non-conductive polymer dam to isolate at least one capacitor comprising one cathode, one discrete region of the dielectric and a portion of the metal foil with the discrete region of the dielectric. | 09-11-2008 |
20080222862 | METHOD FOR MANUFACTURING SOLID ELECTROLYTIC CAPACITOR AND SOLID ELECTROLYTIC CAPACITOR - A method for manufacturing a solid electrolytic capacitor having a solid electrolyte layer containing an electrically conductive polymer layer formed by electrolytic oxidative polymerization, comprising: forming a dielectric layer on a surface of an anode element containing a valve metal; forming an electrically conductive precoat layer on the dielectric layer; and performing electrolytic oxidative polymerization in an electrolytic polymerization solution containing a monomer, a dopant agent and a chelating agent to form the electrically conductive polymer layer on the electrically conductive precoat layer. | 09-18-2008 |
20080222863 | SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURING METHOD THEREFOR - A solid electrolytic capacitor of the present invention includes a capacitor element having an anode member, a dielectric member, and a cathode member; an anode terminal attached to the anode member; a cathode terminal attached to the cathode member; and a housing for covering an outer periphery of the capacitor element, the anode terminal and the cathode terminal being each at least partly exposed from an undersurface of the solid electrolytic capacitor, the anode terminal having a projection formed by rolling using a roll having a large diameter portion and a small diameter portion, and being connected to the anode member at the projection. | 09-18-2008 |
20080229565 | METHOD OF PRODUCING A CAPACITOR - A method of making an electrolytic capacitor includes providing a first electrode that includes a metal substrate, a carbide layer, and a carbonaceous material. The metal substrate includes a metal selected from the group consisting of titanium, aluminum, tantalum, niobium, zirconium, silver, steel, and alloys and combinations thereof. The method further includes providing a second electrode and an electrolyte. | 09-25-2008 |
20080250620 | Process for manufacturing low ESR conductive polymer based solid electrolytic capacitors - A method for maintaining quality of monomer during a coating process for intrinsically conductive polymer which suppresses unwanted by-products. A neutralization process using a base or anion exchange resin is used batch-wise or continuous. | 10-16-2008 |
20080250621 | Solid Electrolytic Capacitor Element, Method for Manufacturing Same, and Solid Electrolytic Capacitor - The invention produces a solid electrolytic capacitor using a solid electrolytic capacitor element by a method comprising forming a dielectric layer on the surface of an electric conductor, forming a semiconductor layer containing electrically conducting polymer on the dielectric layer and forming an electrode layer thereon, wherein the dielectric layer is formed by chemical formation in an electrolytic solution containing a dopant. | 10-16-2008 |
20080307620 | Thin-film capacitor, laminated structure and methods of manufacturing the same - Disclosed are an embedded capacitor and a printed circuit board including the same that can minimize the oxidization of a metal layer. A thin-film capacitor can include a first metal electrode film; a barrier layer, formed on the first metal electrode film to include a conductive oxide; a dielectric film, formed on the barrier layer; and a second metal electrode film, formed on the dielectric film. With the present invention, the outstanding characteristic of a ferroelectric thin film can be provided by minimizing the oxidization of a copper film in the heat treatment after forming the ferroelectric thin film on the copper film. | 12-18-2008 |
20080307621 | Method of Sealing a capacitor fill port - An apparatus comprising a capacitor stack, including one or more substantially planar anode layers, and one or more substantially planar cathode layers. Additionally, the capacitor has a case having a first opening and a second opening, the first opening sized for passage of the capacitor stack, and a cover substantially conforming to the first opening and sealingly connected to the first opening. Also, the capacitor includes a plate substantially conforming to the second opening and sealingly connected to the second opening, the plate defining an aperture. Additionally, the capacitor includes a plug substantially conforming to the aperture in the plate, the plug sealingly connected to the plate. The capacitor stack is disposed in the case, and the terminal is in electrical connection with the case and at least one capacitor electrode. | 12-18-2008 |
20090000090 | METHOD FOR INSULATIVE FILM FOR CAPACITOR COMPONENTS - The present subject matter includes an apparatus including a capacitor stack, including at least one substantially planar anode layer arranged in stacked alignment adjacent at least one substantially planar cathode layer, with at least one separator layer disposed therebetween. In this embodiment, the present subject matter includes at least one conformed film at least partially enveloping the capacitor stack in a bound state and adapted to electrically isolate the capacitor stack. | 01-01-2009 |
20090025195 | Method of manufacturing capacitor-embedded PCB - A method of manufacturing a capacitor-embedded PCB is disclosed. The method may include fabricating a capacitor substrate having at least one inner electrode formed on one side of a dielectric layer; aligning a semi-cured insulation layer with one side of a core layer, and aligning the capacitor substrate with the semi-cured insulation layer such that the inner electrode faces the semi-cured insulation layer; and collectively stacking the core layer, the semi-cured insulation layer, and the capacitor substrate. | 01-29-2009 |
20090044389 | METHOD OF MANUFACTURING A CURRENT COLLECTOR FOR A DOUBLE ELECTRIC LAYER CAPACITOR - A method of manufacturing a current collector for use in a capacitor (e.g., a DEL capacitor) having an aqueous or non-aqueous electrolyte, such as an aqueous sulfuric acid electrolyte. The conductive basis of the current collector is preferably, but not necessarily, comprised of lead or a lead alloy. The portion of the conductive basis that will be in contact with the electrolyte is provided with a protective layer that is created by deposition of one or more layers of one or more protective coating materials thereto. Each protective coating material is comprised of at least a conductive carbon powder and a polymer binder that is resistant to the electrolyte. Preferably, but not essentially, the protective coating material(s) are applied to the conductive basis in the form of a paste, which is subsequently subjected to a solvent evaporation step and a thermal treatment step. | 02-19-2009 |
20090056093 | METHOD FOR MANUFACTURING A SOLID ELECTROLYTIC CAPACITOR - A method for manufacturing a solid electrolytic capacitor has the steps of: mixing valve metal powders with organic binder for granulation, press-molding granulated powders embedded with a valve metal lead, sintering a press-molded compact in vacuum to produce a sintered body, and anodizing the sintered body to form a dielectric oxide film layer. The method further has a step of performing a cathode electrolytic cleaning to the sintered body before the step of forming the dielectric oxide film layer. The cathode electrolytic cleaning is performed in an acid solution, which is a mixed acid solution of hydrofluoric acid, nitric acid, and sulfuric acid. | 03-05-2009 |
20090089990 | METHOD FOR MANUFACTURING SOLID ELECTROLYTIC CAPACITOR - A method for manufacturing a solid electrolytic capacitor comprising: successively forming a dielectric layer and a solid electrolytic layer on an anode body made of a valve metal; and forming a carbon layer on the solid electrolytic layer, wherein the carbon layer is formed by adhering a carbon solution to the solid electrolytic layer and drying the carbon solution, wherein the carbon solution contains an electrically conductive carbon, a binder resin, and a solvent and the total solid concentration of the electrically conductive carbon and the binder resin in the carbon solution is 36% by weight or more and 52% by weight or less. | 04-09-2009 |
20090126172 | Production Method For Electric Double Layer Capacitor - A method for manufacturing an electric double layer capacitor comprising polarizable electrodes formed from a carbon material having graphite-like microcrystalline carbon, wherein said carbon material is stored for a predetermined period of time while holding said carbon material in contact with an electrolytic solution, and thereafter, at a temperature higher than room temperature, said capacitor is charged at least once with an end-of-charge voltage higher than an expected operating voltage of said capacitor, while applying to said electrodes, at the start of said charging, a pressure that is necessary to keep said carbon material from expanding in a thickness direction thereof during said charging. | 05-21-2009 |
20090126173 | Method of manufacturing a capacitor and memory device including the same - In a capacitor of a semiconductor device, a method of manufacturing the same and a memory device including the capacitor, the capacitor includes a lower electrode, a dielectric film on the lower electrode, an upper electrode on the dielectric film, and a first reaction barrier film for preventing a reaction between the lower electrode and the dielectric film, the first reaction barrier film being interposed between the lower electrode and the dielectric film. | 05-21-2009 |
20090144954 | MANUFACTURING METHOD OF ELECTROLYTIC CAPACITOR - An capacitor element is fabricated by winding an anode foil having a dielectric oxide film formed thereon, and a cathode foil subjected to a treatment of enlarging surface area in a manner that a separator is interposed therebetween. The capacitor element is immersed in a fluid dispersion containing conductive polymer fine particles dispersed therein. Thereafter, it is depressurized and dried so that the conductive polymer fine particles adhere to surfaces of fibers of the separator, fill between the fibers of the separator, and adhere to surfaces of the anode foil and the cathode foil in a manner that the adhesion and filling of the conductive polymer fine particles are such that an amount of the fine particles decreases from ends toward a center of the capacitor element. Then, it is impregnated with an electrolytic solution. | 06-11-2009 |
20090158565 | Method for a partially etched capacitor layer including a connection member - The present subject matter includes a method that includes joining a first connection member to an unetched connection area, the unetched connection area located on a single major surface of a first planar anode, forming a capacitor stack by aligning the first planar anode with at least a second planar anode, the second planar anode including at least a second connection member, the first connection member and the second connection member for electrical connection of the first planar anode to the second planar anode, aligning the first connection member and the second connection member to define an anode connection surface and joining the first planar anode and the second planar anode. | 06-25-2009 |
20090199378 | SOLID ELECTROLYTIC CAPACITOR WITH IMPROVED VOLUMETRIC EFFICIENCY METHOD OF MAKING - A method of forming a capacitor includes the steps of:
| 08-13-2009 |
20090235499 | TANTALUM CAPACITOR - A tantalum capacitor includes: sintered bodies which are disposed at intervals and respectively have first surfaces forming the same surface; and electrode rods which respectively extend into the tantalum sintered bodies and project from the first surfaces of the tantalum sintered bodies. The tantalum capacitor further includes: layers composed of an oxide film layer, a functional polymer layer or a manganese layer, and a carbon layer which are sequentially laminated on surfaces of each of the tantalum sintered bodies excluding the first surface; a conductive layer which covers outside surfaces of the tantalum sintered bodies excluding the first surfaces; and an electrode plate having openings respectively formed at positions corresponding to the first surfaces of the tantalum sintered bodies so that the electrode rods are exposed through the openings. The electrode plate is connected to the conductive layer and spreads across the first surfaces of the tantalum sintered bodies. | 09-24-2009 |
20090241312 | Capacitor and Method for Producing the Same - A low-profile capacitor that can be bent and that has excellent interlayer adhesion strength. The capacitor includes a dielectric layer, a first capacitor electrode formed on a first main surface of the dielectric layer, a second capacitor electrode formed on a second main surface of the dielectric layer, and a lead electrode formed on the first main surface of the dielectric layer and electrically connected to the second capacitor electrode. The dielectric layer has a thickness of 5 μm or less. The sum of the thicknesses of the first and second capacitor electrodes is 5 μm or more and at least twice the thickness of the dielectric layer. The first and second capacitor electrodes and the lead electrode are formed of a malleable metal. The dielectric layer and the first and second capacitor electrodes are formed by being simultaneously sintered. | 10-01-2009 |
20090271961 | METHOD FOR PRETREATING ELECTROCHEMICAL CAPACITOR NEGATIVE ELECTRODE, METHOD FOR MANUFACTURING THE ELECTROCHEMICAL CAPACITOR NEGATIVE ELECTORDE, AND METHOD FOR MANUFACTURING ELECTROCHEMICAL CAPACITOR USING THE METHOD FOR MANUFACTURING THE ELECTROCHEMICAL CAPACITOR NEGATIVE ELECTRODE - A negative electrode of an electrochemical capacitor includes an electrode layer using a material capable of reversibly absorbing and releasing a lithium ion. A method for pretreating the negative electrode includes forming a lithium layer on a substrate by a gas phase method or a liquid phase method, and transferring the lithium layer onto a surface of the electrode layer of the negative electrode. | 11-05-2009 |
20090320253 | Electrode Stack For Capacitive Device - Capacitive devices are described having electrical interconnects of electrodes which possess efficient electrical contact between current collectors, electrical isolation of electrodes, and/or electrochemical stability, while minimizing the mechanical stress and strain applied to the electrodes. The capacitive devices are adaptable to a wide range of electrode dimensions and electrode stack heights. | 12-31-2009 |
20090320254 | METHOD OF MANUFACTURING SOLID ELECTROLYTIC CAPACITOR - A solid electrolytic capacitor having excellent heat resistance is provided without using a transition metal salt as a dopant and oxidant. In a method of manufacturing a solid electrolytic capacitor including a solid electrolyte made of a conductive polymer, the conductive polymer is formed by performing an oxidative polymerization reaction by brining a monomer and a dopant into contact with each other. The dopant contains an imidazolium salt of sulfonic acid. | 12-31-2009 |
20100058567 | High Capacity Anode Preparation Apparatus - A high capacity anode preparation apparatus is provided which allows for the processing of raw anodes at production rates of up to, or exceeding, 600 anodes per hour. The processed anodes are suitable for use in the electrorefining of various metal materials, but in particular, in the electrorefining of copper. The apparatus is preferably part of a system which utilizes high speed industrial robots to supply, and remove, anodes to or from the apparatus, and provides the anodes in a horizontal orientation. The apparatus is equipped with a variety of treatment stations which are adapted to treat the raw anode while it is held in a horizontal orientation. The horizontal orientation allows the center of gravity for the apparatus to be kept close to the center of gravity for the apparatus, and thus allows the apparatus to rotate more rapidly than prior art device. Faster processing of the raw anodes is provided | 03-11-2010 |
20100095496 | METHOD FOR A CAPACITOR WITH A FLEXIBLE INTERCONNECT - The present subject matter includes a first capacitor stack including a first plurality of anode layers and a first plurality of cathode layers and a second capacitor stack including a second plurality of anode layers and a second plurality of cathode layers. In various embodiments, a flexible bus is welded to the first capacitor stack and to the second capacitor stack. The flexible bus is adapted to conduct electricity between the first capacitor stack and the second capacitor stack. Also, the present subject matter includes embodiments where the first capacitor stack and the second capacitor stack are disposed in a case filled with an electrolyte. | 04-22-2010 |
20100107386 | METHOD OF MANUFACTURING SOLID ELECTROLYTIC CAPACITOR - Provided is a method of manufacturing a solid electrolytic capacitor including a capacitor element, the capacitor element having an anode body with a dielectric coating film formed on a surface thereof and a solid electrolyte made of a conductive polymer. The method includes the steps of: forming the capacitor element having the anode body with the dielectric coating film formed on the surface thereof; preparing a polymerization liquid A containing one of a monomer as a precursor of the conductive polymer and an oxidant, and a silane compound; preparing a polymerization liquid B by adding the other of the monomer and the oxidant that is not contained in polymerization liquid A, to polymerization liquid A; and performing polymerization after impregnating the capacitor element with polymerization liquid B. | 05-06-2010 |
20100115746 | SOLID ELECTROLYTIC CAPACITOR AND METHOD OF MANUFACTURING THE SAME - Provided is a solid electrolytic capacitor including a capacitor element with a positive polarity; an anode wire of which one side is inserted into the capacitor element and the other side projects outward from the capacitor element; a cathode extraction layer formed on the capacitor element; a plurality of conductive bumps formed on the cathode extraction layer; an anode lead frame fixed to the side of the capacitor element, where the anode wire projects outward, and having an insertion portion into which the projecting end of the anode wire is inserted; a molding portion formed to surround the capacitor element and exposing the projecting end of the anode wire, the outer surface of the anode lead frame, and ends of the conductive bumps; an anode lead terminal provided on the molding portion so as to be electrically connected to the exposed end of the anode wire and the anode lead frame; and a cathode lead terminal provided on the molding portion so as to be electrically connected to the exposed ends of the conductive bumps. | 05-13-2010 |
20100170070 | METHOD OF MANUFACTURING ELECTROLYTIC CAPACITOR - As to each of a capacitor element employing an anode foil having a matrix made of a metal and a film, provided on the surface of the matrix, made of an oxide of a metal different from the metal of the matrix and a capacitor element employing an anode foil having a matrix made of a prescribed metal and a film of an oxide of the metal and a cathode foil having a matrix made of another metal different from the metal, formation treatment is performed on an end face of the anode foil exposing the surface of the metal forming the matrix by applying a positive voltage to an anode lead wire and applying a negative voltage to a cathode lead wire. Thus, an electrolytic capacitor resistant against corrosion or the like is obtained. | 07-08-2010 |
20100175235 | SEPARATOR FILLED WITH ELECTROLYTE - Methods are provided to suitably impregnate low surface energy separator materials with polar electrolyte in an electrolytic capacitor. Backfilling methods overcome the high contact angles exhibited by polar electrolytes on porous hydrophobic separators, forcing the electrolyte into the separator pores, thereby sufficiently impregnating the separator disposed between two electrodes within the capacitor assembly. Methods enable use of separators sans surfactant or surface modifications to improve wetting. | 07-15-2010 |
20100229361 | Laser-Welded Solid Electrolytic Capacitor - A solid electrolytic capacitor that is capable of withstanding laser welding without a significant deterioration in its electrical performance is provided. The capacitor contains an anode body, dielectric layer overlying the anode body, and a solid organic electrolyte layer overlying the dielectric layer. Furthermore, the capacitor of the present invention also employs a light reflective layer that overlies the solid organic electrolyte layer. The present inventors have discovered that such a light reflective layer may help reflect any light that inadvertently travels toward the capacitor element during laser welding. This results in reduced contact of the solid organic electrolyte with the laser and thus minimizes defects in the electrolyte that would have otherwise been formed by carbonization. The resultant laser-welded capacitor is therefore characterized by such performance characteristics as relatively low ESR and low leakage currents. | 09-16-2010 |
20100306979 | ELECTRODE STACK FOR CAPACITIVE DEVICE - Capacitive devices are described having electrical interconnects of electrodes which possess efficient electrical contact between current collectors, electrical isolation of electrodes, and/or electrochemical stability, while minimizing the mechanical stress and strain applied to the electrodes. The capacitive devices are adaptable to a wide range of electrode dimensions and electrode stack heights. | 12-09-2010 |
20100325853 | METHOD FOR FABRICATING CAPACITOR - A method for fabricating a capacitor includes forming an etch stop layer, a first isolating insulation layer, and a floating layer over a substrate including storage node contact plugs to form a resulting substrate structure; etching the floating layer, the first isolating insulation layer, and the etch stop layer to form a plurality of open regions; forming a conductive layer over the substrate structure; forming a second isolating insulation layer over the conductive layer, the second isolating insulation layer filling upper portions of the open regions; etching portions of the remaining floating layer to form a floating pattern; performing a storage node isolation process in a manner that the floating pattern is exposed to form a plurality of storage nodes having sidewalls supported by the floating pattern; and removing the etched first isolating insulation layer. | 12-30-2010 |
20110005050 | MANUFACTURING METHOD AND MANUFACTURING APPARATUS FOR FILM-COVERED ELECTRICAL DEVICE - In a vacuum container ( | 01-13-2011 |
20110154632 | METHOD FOR MANUFACTURING NIOBIUM SOLID ELECTROLYTIC CAPACITOR - The present invention relates to a method for producing a niobium solid electrolytic capacitor using niobium as an anode body, which comprises a step of chemically converting the anode, wherein the chemical conversion step comprises a first chemical conversion step of forming a chemical conversion coating of the anode, a step of heating the anode body having been subjected to the first chemical conversion step, and a second chemical conversion step of once again chemically converting the heated anode body; wherein electrolytic chemical conversion is performed in the first chemical conversion step and the second chemical conversion step using a chemical conversion liquid, which contains a metal nitrate salt as an electrolyte, at a temperature from 40° C. to the boiling point of the solvent; and wherein the heating step is performed at a temperature of 150 to 300° C. The method for producing a niobium solid electrolytic capacitor of the present invention can increase the stability of an oxide film which functions as a dielectric body and prevent increase in leakage current, thereby improving the yield and reliability in the method for producing a niobium solid electrolytic capacitor. | 06-30-2011 |
20110162180 | MULTILAYER ELECTRONIC COMPONENT AND METHOD FOR MANUFACTURING MULTILAYER ELECTRONIC COMPONENT - A method for manufacturing a laminated ceramic capacitor includes a step of preparing a laminate which has a first principal surface, a second principal surface, a first end surface, a second end surface, a first side surface, and a second side surface and which includes insulating layers and internal electrodes having end portions exposed at the first or second end surface; a step of forming external electrodes on the first and second end surfaces such that plating deposits are formed on the exposed end portions of the internal electrodes so as to be connected to each other; and a step of forming thick end electrodes electrically connected to the external electrodes such that a conductive paste is applied onto edge portions of the first and second principal surfaces and first and second side surfaces of the laminate and then baked. | 07-07-2011 |
20110197408 | Methods of manufacturing electric double layer capacitor cell and electric double layer capacitor and apparatus for manufacturing electric double layer capacitor cell - There are provided methods of manufacturing an electric double layer capacitor cell and an electric double layer capacitor and an apparatus for manufacturing an electric double layer capacitor cell. The method of manufacturing the electric double layer capacitor cell includes preparing first and second electrode sheets by printing electrode material onto conductive sheets, respectively, with the exception of regions to be provided as first and second terminal lead-out portions in the conductive sheets; punching the first and second electrode sheets so as to form a plurality of first and second unit electrodes, respectively, each first unit electrode having the first terminal lead-out portion and each second unit electrode having the second terminal lead-out portion; stacking the first and second electrode sheets with a separator interposed therebetween in order that the plurality of first and second unit electrodes are overlapped; and cutting the first and second electrode sheets being stacked into the first and second unit electrodes. | 08-18-2011 |
20110232055 | METHOD OF MANUFACTURING ELECTROLYTIC CAPACITOR - A method of manufacturing an electrolytic capacitor according to the present invention includes the steps of: forming a capacitor element by winding an anode foil having a roughened surface on which a dielectric film is formed, a cathode foil, and a separator containing a synthetic fiber and a water-soluble binder; immersing the capacitor element in a chemical conversion solution containing water as a main solvent for re-chemical conversion; subjecting the capacitor element subjected to re-chemical conversion to first heat treatment at a temperature of not less than 60° C. and less than 100° C.; and subjecting the capacitor element subjected to the first heat treatment to second heat treatment at a temperature of not less than 150° C. and less than a melting point of the synthetic fiber. | 09-29-2011 |
20120042490 | METHOD OF PRE-DOPING LITHIUM ION INTO ELECTRODE AND METHOD OF MANUFACTURING ELECTROCHEMICAL CAPACITOR USING THE SAME - The present invention provides a method of pre-doping lithium ions into an electrode, and a method of manufacturing an electrochemical capacitor using the same. The method for pre-doping lithium ions into an electrode includes the steps of: immersing a positive electrode, a negative electrode, and a lithium metal electrode into an electrolyte solution; performing a first pre-doping for directly doping lithium ions into the negative electrode from the lithium metal electrode; and performing a second pre-doping which includes a charging process for applying currents between the positive electrode and the negative electrode to charged with the applied currents, and a releasing process for releasing lithium ions from the lithium metal electrode, and a method for manufacturing the electrochemical capacitor using the same. | 02-23-2012 |
20120060335 | SOLID ELECTROLYTIC CONDENSER AND APPARATUS AND METHOD FOR FORMING INSULATING LAYER OF THE SOLID ELECTROLYTIC CONDENSER - The present invention provides a solid electrolytic condenser including a condenser element with anode polarity; an anode wire with one side inserted inside the condenser element and the other side projected outside the condenser element; and an insulating layer formed by coating one surface of the condenser element and an exposed region of the anode wire adjacent to the one surface of the condenser element with a liquid insulating material through a non-contact scattering method and an apparatus and a method for forming the insulating layer of the solid electrolytic condenser. | 03-15-2012 |
20120084954 | METHOD OF MANUFACTURING SOLID ELECTROLYTIC CAPACITOR - There is provided a method of manufacturing a solid electrolytic capacitor including: forming a conductive polymer layer on a surface of a metal pellet; and forming a dielectric layer between the metal pellet and the conductive polymer layer. Because the conductive polymer layer is directly formed on the surface of the metal pellet, the conductive polymer layer can be uniformly formed, and because there is no need to form an electrode on the surface of the dielectric layer, the process can be reduced. In addition, because the uniform polymer film is formed irrespective of the size of metal pores and the shape of the capacitor, a capacity of the capacitor can be maximized. | 04-12-2012 |
20120137482 | METHOD FOR PRODUCING SOLID ELECTROLYTIC CAPACITOR - A surface layer of an anode body containing niobium is converted into a dielectric layer by a method for a chemical formation, which comprises step I of electrolytically forming an anode body comprising niobium in a chemical forming solution containing nitric acid and phosphoric acid at a temperature within a range from 40° C. to a boiling point of the chemical forming solution, step II of heat-treating the electrolytically formed anode body at a temperature within a range from 150° C. to 300° C., and step III of electrolytically forming the heat-treated anode body in a chemical forming solution containing nitric acid and phosphoric acid at a temperature within a range from 40° C. to a boiling point of the chemical forming solution. A cathode is formed on the dielectric layer to obtain a solid electrolytic capacitor element, and the element is sheathed to obtain a solid electrolytic capacitor. | 06-07-2012 |
20120151725 | METHOD AND APPARATUS FOR HIGH VOLTAGE ALUMINUM CAPACITOR DESIGN - The present subject matter includes a method of producing an apparatus for use in a patient, the method including etching an anode foil, anodizing the anode foil, assembling the anode foil, at least one cathode foil and one or more separators into a capacitor stack adapted to deliver from about 5.3 joules per cubic centimeter of capacitor stack volume to about 6.3 joules per cubic centimeter of capacitor stack volume at a voltage of between about 465 volts to about 620 volts, inserting the stack into a capacitor case, inserting the capacitor case into a device housing adapted for implant in a patient, connecting the capacitor to a component and sealing the device housing. | 06-21-2012 |
20120233827 | METHOD OF MANUFACTURING SOLID ELECTROLYTIC CAPACITOR - A method of manufacturing a solid electrolytic capacitor includes the steps of forming an anode element by sintering powders of a valve metal, washing the anode element with a first wash solution, forming a dielectric film on the anode element after the washing step, and forming a solid electrolytic layer on the dielectric film. The first wash solution is an aqueous solution containing ammonia and hydrogen peroxide. | 09-20-2012 |
20120260478 | METHOD FOR MANUFACTURING POSITIVE ELECTRODE AND POWER STORAGE DEVICE - To suppress decomposition of lithium cobalt oxide and formation of a decomposition product. To suppress the reaction between oxygen in lithium cobalt oxide and a current collector. To obtain a power storage device having high charge and discharge capacity. In a method for manufacturing a power storage device, in forming a lithium cobalt oxide layer over a positive electrode current collector by a sputtering method using a target containing lithium cobalt oxide and a sputtering gas containing Ar, the positive electrode current collector is heated at a temperature at which c-axes of crystals of lithium cobalt oxide are aligned and cobalt oxide is not formed. The heating temperature of the positive electrode current collector is higher than or equal to 400° C. and lower than 600° C. | 10-18-2012 |
20120284978 | METHOD OF MANUFACTURING SOLID ELECTROLYTIC CAPACITOR - Provided is a method of manufacturing a solid electrolytic capacitor including a capacitor element, the capacitor element having an anode body with a dielectric coating film formed on a surface thereof and a solid electrolyte made of a conductive polymer. The method includes the steps of: forming the capacitor element having the anode body with the dielectric coating film formed on the surface thereof; preparing a polymerization liquid A containing one of a monomer as a precursor of the conductive polymer and an oxidant, and a silane compound; preparing a polymerization liquid B by adding the other of the monomer and the oxidant that is not contained in polymerization liquid A, to polymerization liquid A; and performing polymerization after impregnating the capacitor element with polymerization liquid B. | 11-15-2012 |
20120297594 | METHOD OF MANUFACTURING CHIP-TYPE ELECTRIC DOUBLE LAYER CAPACITOR - A method of manufacturing a chip-type electric double layer capacitor, including: forming a lower case having an opened housing space and first and second external terminals buried therein, the first and second external terminals having first surfaces exposed to the housing space, respectively, and second surfaces exposed to an outer region of the lower case, respectively; mounting an electric double layer capacitor cell in the housing space such that the electric double layer capacitor cell is electrically connected to the first surfaces of the first and second external terminals exposed to the housing space; and mounting an upper cap on the lower case so as to cover the housing space. | 11-29-2012 |
20120311833 | SOCKET, AND CAPACITOR ELEMENT PRODUCING JIG USING SOCKET - The present invention provides a socket by which a capacitor element can be produced without causing contamination of chemical conversion treatment liquid or semiconductor layer forming liquid even if the chemical conversion treatment liquid or the semiconductor layer forming liquid has a corrosive property, and a lead wire of a positive electrode can be stably retained even if diameters of the lead wires are difference. The socket ( | 12-13-2012 |
20130125358 | METHOD FOR REDUCING SELF DISCHARGE IN AN ELECTROCHEMICAL CELL - A method for reducing the self discharge rate and the variability in the self discharge rate of an electrochemical cell.wherein a porous separator is inserted between a cathode and an anode of the cell and the porous separator contains a nanoweb that comprises a plurality of nanofibers that may contain a fully aromatic polyimide and the fully aromatic polyimide has a degree of imidization of greater than 0.51 where degree of imidization is the ratio of the height of the imide C—N absorbance at 1375 cm | 05-23-2013 |
20130133166 | Method for Reducing Self Discharge in an Electrochemical Cell - A method for reducing the self discharge rate and the variability in the self discharge rate of an electrochemical cell, wherein a porous separator is inserted between a cathode and an anode of the cell and the porous separator contains a nanoweb that comprises a plurality of nanofibers that may contain a fully aromatic polyimide and the fully aromatic polyimide has a degree of imidization of greater than 0.51 where degree of imidization is the ratio of the height of the imide C—N absorbance at 1375 cm | 05-30-2013 |
20130152350 | GAS SENSOR ELEMENT, GAS SENSOR, AND PRODUCTION METHOD THEREOF - A gas sensor element includes an insulating ceramic base, a solid electrolyte body, and a heating element. The solid electrolyte body is disposed in an opening of the insulating ceramic base and has a measuring electrode affixed to one of major surfaces thereof and a reference electrode affixed to the other major surface. The measuring electrode is exposed to gas to be measured. The reference electrode is exposed to a reference gas. The heating element works to activate the solid electrolyte body and is mounted on one of opposed surfaces of the insulating ceramic base on the same side as the major surface of the solid electrolyte body on which the reference electrode is disposed. Specifically, the insulating ceramic base is located between the solid electrolyte body and the heating element, thereby ensuring a desired degree of electric insulation between the heating element and the reference electrode. | 06-20-2013 |
20130174393 | METHOD FOR DRYING ELECTRODE PAIR, METHOD FOR MANUFACTURING LITHIUM-ION SECONDARY BATTERY, METHOD FOR MANUFACTURING ELECTRIC DOUBLE-LAYER CAPACITOR, AND METHOD FOR MANUFACTURING LITHIUM-ION CAPACITOR - A method for drying an electrode pair is disclosed. In at least one embodiment, the method includes preparing a positive electrode by applying a positive electrode material to a current collector; preparing a negative electrode by applying a negative electrode material to a current collector; preparing one set of an electrode pair made up of a positive electrode, a separator, and a negative electrode which are laminated in this order or preparing sets of electrode pairs, the sets being laminated, a separator being provided between the respective sets, each of the electrode pairs being made up of a positive electrode, a separator, and a negative electrode which are laminated in this order; accommodating the electrode pair(s) in a container; and drying the container in which the electrode pair(s) has been accommodated by use of the freeze-drying method. | 07-11-2013 |
20130180091 | ELECTRODE FOR ELECTRIC DOUBLE LAYER CAPACITOR AND METHOD FOR PRODUCING THE SAME - An electrical double-layer capacitor electrode with excellent capacitance characteristics is obtained together with a manufacturing method therefor. Paper-molded sheet of carbon nanotubes is integrated with etched foil constituting a collector, by means of bumps and indentations formed on the surface of etched foil to prepare an electrical double-layer capacitor electrode. Alternatively, carbon nanotubes grown around core catalyst particles on substrate are integrated with etched foil by means of humps and indentations formed on the surface of etched foil to prepare all electrical double-layer capacitor electrode. To manufacture these electrodes, this carbon nanotube sheet or substrate with carbon nanotubes grown thereon is laid over bumps and indentations on the surface of etched foil, and the sheet or substrate and the foil are pressed under 0.01 to 100 t/cm2 of pressure to integrate the carbon nanotubes with the etched foil. | 07-18-2013 |
20130283580 | ELECTRICAL DOUBLE LAYER CAPACITOR WITH ENHANCED WORKING VOLTAGE - The present invention relates to the method of increasing the working voltage of electrical double layer capacitor with enhanced working voltage, which has electrodes fabricated from porous carbon powder in which the pore sizes and the specific surface are created by extracting the non-carbon atoms from the carbon-rich organic or mineral compounds. The method is performed by step-by-step treatment of supercapacitor with the conditioning voltage (Uc), which is increased gradually up to the working voltage (Uw) by the voltage step (ΔUc) which is less or equal to 0.3 V. | 10-31-2013 |
20130298363 | METHOD OF MANUFACTURING HETEROGENEOUS ELECTROCHEMICAL CAPACITORS HAVING A DOUBLE ELECTRIC LAYER AND OF MANUFACTURING AND BALANCING THE COULOMBIC CAPACITIES OF ELECTRODES FOR USE THEREIN - Manufacturing methods for the formation of positive electrodes and the balancing of Coulombic capacities of positive and negative electrodes for use in a heterogeneous electrochemical capacitor (HES) having a PbO | 11-14-2013 |
20130305504 | GANG SOCKET AND JIG FOR MANUFACTURING CAPACITOR ELEMENT THAT USES SAID GANG SOCKET - Provided is a gang socket with which capacitor elements can be manufactured without contaminating chemical conversion treatment liquids or semiconductor layer forming liquids even when the chemical conversion treatment liquids and semiconductor layer forming liquids are corrosive and with which heat treatment can be carried out without obstacles even when heat treatment is carried out during the manufacture of the capacitor elements. This gang socket ( | 11-21-2013 |
20130326849 | ALUMINUM FOIL FOR ALUMINUM ELECTROLYTIC CAPACITOR ELECTRODE AND METHOD FOR MANUFACTURING THE SAME - A fluid dispersion obtained by mixing oxide particles and water is sprayed to a raw aluminum foil from a direction opposite to a travelling direction of the raw aluminum foil while the raw aluminum foil is allowed to travel. In this way, a roll-pressed mark of the raw aluminum foil is eliminated, and thus aluminum foil for aluminum electrolytic capacitor electrode is produced. Pyramidal-shaped recesses each having an acute angle tip are present all over a surface of the aluminum foil. | 12-12-2013 |
20140059820 | IONIC GEL ELECTROLYTE, ENERGY STORAGE DEVICES, AND METHODS OF MANUFACTURE THEREOF - An electrochemical cell includes solid-state, printable anode layer, cathode layer and non-aqueous gel electrolyte layer coupled to the anode layer and cathode layer. The electrolyte layer provides physical separation between the anode layer and the cathode layer, and comprises a composition configured to provide ionic communication between the anode layer and cathode layer by facilitating transmission of multivalent ions between the anode layer and the cathode layer. | 03-06-2014 |
20140068903 | Ultracapacitors Employing Phase Change Materials - Implementations and techniques for employing phase change materials in ultracapacitor devices or systems are generally disclosed. | 03-13-2014 |
20140090221 | SOLID ELECTROLYTIC CAPACITOR AND METHOD FOR PRODUCING SOLID ELECTROLYTIC CAPACITOR - A solid electrolytic capacitor element having a solid electrolyte layer provided on a dielectric layer formed on a surface of an anode body comprising a valve acting metal including a pore, wherein the anode body is configured in such a way that multiple plate-shaped anode bodies are directly piled and integrated with a solid electrolyte, and adjacent piled anode bodies are joined at a section thereof, and a method for producing the solid electrolytic capacitor element. | 04-03-2014 |
20140123452 | SOLID ELECTROLYTIC CAPACITOR AND METHOD OF MANUFACTURING THE SAME - A method of manufacturing a solid electrolytic capacitor includes steps (a) and (b). In the step (a), an element body is placed on a surface of a first terminal component part after applying a first conductive adhesive to the surface of the first terminal component part. The element body is placed with a third side surface of the element body facing the surface of the first terminal component part such that the first conductive adhesive is interposed between the third side surface of the element body and the first terminal component part. The step (b) is performed after the step (a). In the step (b), a second conductive adhesive is applied to fill space between a second terminal component part and a second side surface of the element body such that an opening is not filled with the second conductive adhesive. | 05-08-2014 |
20140182099 | Method of and Printable Compositions for Manufacturing a Multilayer Carbon Nanotube Capacitor - Multilayer carbon nanotube capacitors, and methods and printable compositions for manufacturing multilayer carbon nanotubes (CNTs) are disclosed. A first capacitor embodiment comprises: a first conductor; a plurality of fixed CNTs in an ionic liquid, each fixed CNT comprising a magnetic catalyst nanoparticle coupled to a carbon nanotube and further coupled to the first conductor; and a first plurality of free CNTs dispersed and moveable in the ionic liquid. Another capacitor embodiment comprises: a first conductor; a conductive nanomesh coupled to the first conductor; a first plurality of fixed CNTs in an ionic liquid and further coupled to the conductive nanomesh; and a plurality of free CNTs dispersed and moveable in the ionic liquid. Various methods of printing the CNTs and other structures, and methods of aligning and moving the CNTs using applied electric and magnetic fields, are also disclosed. | 07-03-2014 |
20140230208 | ELECTRIC DOUBLE LAYER CAPACITOR, LITHIUM ION CAPACITOR AND MANUFACTURING METHOD THEREOF - A thin energy storage device having high capacity is obtained. An energy storage device having high output is obtained. A current collector and an active material layer are formed in the same manufacturing step. The number of manufacturing steps of an energy storage device is reduced. The manufacturing cost of an energy storage device is suppressed. One embodiment of the present invention relates to an electric double layer capacitor which includes a pair of electrodes including a porous metal material, and an electrolyte provided between the pair of electrodes; or a lithium ion capacitor which includes a positive electrode that is a porous metal body functioning as a positive electrode current collector and a positive electrode active material layer, a negative electrode including a negative electrode current collector and a negative electrode active material layer, and an electrolyte provided between the positive electrode and the negative electrode. | 08-21-2014 |
20140237785 | ELECTROLYTIC CAPACITOR AND METHOD OF MANUFACTURING THE SAME - An electrolytic capacitor includes a capacitor element and an electrolyte solution impregnated in the capacitor element. The capacitor element includes an anode foil, cathode foil, separator, and a solid electrolytic layer. The anode foil has a dielectric layer on its surface, and the cathode foil confronts the anode foil. The separator is interposed between the anode foil and the cathode foil. The solid electrolytic layer is formed on the surfaces of the anode foil, cathode foil, and separator as an aggregate of fine particles of conductive polymer. The separator has an air-tightness not greater than 2.0 s/100 ml. Sizes of the fine particles measure not greater than 100 nm in diameter, and an amount of the fine particles contained falls within a range from 0.3 mg/cm | 08-28-2014 |
20140259580 | METHOD FOR FABRICATING SOLID ELECTROLYTIC CAPACITORS - The instant disclosure relates to an improved method for the production of solid electrolytic capacitor, comprising the following steps. First, provide an insulating substrate. Next, form a plurality of conducting gels including aluminum powder on the insulating substrate. Thirdly, execute a high-temperature sintering process to metalize the conducting gels to form a plurality of aluminum plates. Next, form a dielectric layer on every aluminum plate. Then form an isolation layer on every dielectric layer to define an anodic region and a cathodic region. Lastly, form a conductive layer on the dielectric layer of every cathodic region, thus defining a solid electrolytic capacitor unit. | 09-18-2014 |
20140290018 | SOLID ELECTROLYTIC CAPACITOR, AND METHOD OF MANUFACTURING THE SAME - Provided is a method of manufacturing a solid electrolytic capacitor that suppresses spreading up of a solution. The method includes forming a porous sintered body made of a valve metal and having an anode wire sticking out therefrom; forming an insulating layer made of a fluorine resin, so as to surround the anode wire; and forming a dielectric layer on the porous sintered body; forming a solid electrolyte layer on the dielectric layer, after forming the insulating layer. The process of forming the insulating layer includes melting granular particles made of a fluorine resin. | 10-02-2014 |
20140325807 | METHOD FOR ASSEMBLING A HYBRID LITHIUM SUPERCAPACITOR - The invention relates to a method for developing a hybrid supercapacitor, said method including: at least a step of assembling together a negative electrode, made of at least one non-porous carbon material, and a positive electrode, made of at least one porous carbon material, said electrodes being separated from each other by means of at least one separator impregnated with a liquid electrolyte containing at least one lithium salt dissolved in at least one solvent; and then at least one first charging step, wherein said method is characterized in that: a) the lithium-ion concentration in the liquid electrolyte, before the first charging step, is greater than or equal to 1.6 mol/L; b) at least 50 wt % of the lithium salt of the liquid electrolyte contains a salt released from among LiTPSI and the derivatives there of; c) at least 80 vol % of the solvent of the liquid electrolyte contains a solvent selected from among cyclic alkyl carbonates, acyclic alkyl carbonates, lactones, esters, oxalenes, and the mixtures thereof, it being understood then at least 20 vol % of said solvent contains ethylene carbonate; d) the porous carbon material of the positive electrode is selected from among materials, the mean size of the pores of which is greater than 0.7 nm and which has a specific surface area of more than 700 m | 11-06-2014 |
20140366350 | JIG FOR MANUFACTURING CAPACITOR ELEMENT AND METHOD FOR MANUFACTURING CAPACITOR ELEMENT - A jig for manufacturing a capacitor element is provided in which the productive efficiency is excellent due to a larger number of anode bodies that can be processed, and an immersion position (height) of the anode body with respect to the processing liquid can be controlled with high accuracy. A jig | 12-18-2014 |
20150059138 | ALL SOLID-STATE ELECTROCHEMICAL DOUBLE LAYER SUPERCAPACITOR - A method for fabricating a supercapacitor-like electronic battery includes the following steps. A first current collector is formed on a substrate. A first electrode is formed on the first current collector. A first electrode is formed from a first solid state electrolyte and a first conductive material where the first conductive material is irreversible to the mobile ions contained in the first solid state electrolyte and the first conductive material exceeds the percolation limit. An electrolyte is formed on the first electrode. A second electrode is formed on the electrolyte. The second electrode is formed from a second solid state electrolyte and a second conductive material where the second conductive material is irreversible to the mobile ions contained in the second solid state electrolyte and the second conductive material exceeds the percolation limit. A second current collector is formed on the second electrode. | 03-05-2015 |
20150068001 | HIGH PERFORMANCE CARBON NANOTUBE ENERGY STORAGE DEVICE - Embodiments of the present invention are directed to an energy storage device and a method for manufacturing the energy storage device. The method includes accessing a metal substrate and forming plurality of carbon nanotubes (CNTs) directly on a metal substrate. The method further includes removing substantially all amorphous carbon from said plurality of CNTs and coupling the plurality of CNTs to an electrolytic separator. | 03-12-2015 |
20150121671 | SUPER CAPACITOR STRUCTURE AND THE MANUFACTURE THEREOF - Disclosed is a super capacitor and method of manufacture thereof. This invention relates to a solid state super capacitor comprising a solid state polymer electrolyte and a modified carbonaceous electrode. Said modified carbonaceous electrode comprises a conductive carbonaceous material covered with active ingredients. Said modified carbonaceous electrode and said solid state polymer electrolyte are layered on top of each other to form a sandwich-like structure. Said super capacitor performs much better than known super capacitor comprising liquid or gel-form electrolytes. Said super capacitor has higher conductivity, therefore can be manufactured without a current collector. Since said super capacitor contains solid state polymer electrolyte, the method of manufacturing said super capacitor is more environmentally friendly and has a higher safety level. | 05-07-2015 |
20150121672 | METHOD OF MANUFACTURING A STACKED-TYPE SOLID ELECTROLYTIC CAPACITOR PACKAGE STRUCTURE HAVING A PLURALITY OF NEGATIVE LEAD PINS - A stacked-type solid electrolytic capacitor package structure includes a capacitor unit, a package unit and a conductive unit. The conductive unit includes a plurality of stacked-type capacitors stacked on top of one another and electrically connected with each other, and each stacked-type capacitor has a positive portion and a negative portion. The package unit includes a package body for enclosing the capacitor unit. The conductive unit includes a first conductive terminal and a second conductive terminal. The first conductive terminal has a first embedded portion electrically connected to the positive portion and enclosed by the package body and a first lateral exposed portion connected to the first embedded portion. The second conductive terminal has a second lateral exposed portion, a second front exposed portion, a second rear exposed portion, and a second embedded portion electrically connected to the negative portion and enclosed by the package body. | 05-07-2015 |
20150135496 | Materials and Method for Improving Corner and Edge Coverage of Solid Electrolytic Capacitors - A process for preparing a solid electrolytic capacitor comprising application of coverage enhancing catalyst followed by application of a conducting polymer layer. Coverage enhancing catalyst is removed after coating and curing. | 05-21-2015 |
20150143679 | METHOD FOR MANUFACTURING CAPACITOR, AND CAPACITOR - A method for manufacturing a capacitor, includes: accelerating conductor particles by ejecting the conductor particles together with gas, each surface of the conductor particles covered with a dielectric entirety; fixing the conductor particles to a substrate with the surface of the conductor particles still covered with the dielectric entirely by colliding the conductor particles with the substrate; and sandwiching a deposited film formed of the conductor particles fixed to the substrate between electrodes. | 05-28-2015 |
20150294803 | ENERGY STORAGE DEVICES WITH AT LEAST ONE POROUS POLYCRYSTALLINE SUBSTRATE - In one embodiment, a structure for a energy storage device may include at one polycrystalline substrate. The grain size may be designed to be at least a size at which phonon scattering begins to dominate over grain boundary scattering in the polycrystalline substrate. The structure also includes a porous structure containing multiple channels within the polycrystalline substrate. | 10-15-2015 |
20150302989 | MULTILAYER CERAMIC CAPACITOR AND METHOD OF MANUFACTURING THE SAME - A multilayer ceramic capacitor may include a capacitance forming layer including dielectric layers and internal electrodes disposed on the dielectric layers; a lower cover layer disposed below the capacitance forming layer; an upper cover layer disposed above the capacitance forming layer; and a plurality of crack inducing air gaps disposed in the lower cover layer. | 10-22-2015 |
20150330939 | METHOD FOR MANUFACTURING SENSOR INTERMEDIATE PRODUCT AND METHOD FOR MANUFACTURING SENSOR - A method for manufacturing a sensor intermediate product includes: disposing a tubular holder and a tubular compact in a tubular metallic shell, and inserting a metallic pin into a first insertion hole of the holder and a second insertion hole of the compact; compressing the compact so as to form a filling member intermediate having a shape which brings the filling member intermediate into pressure contact with the inner wall surface of the metallic shell and allows removal of the metallic pin from the second insertion hole; pulling out the metallic pin from the first insertion hole and the second insertion hole; inserting a sensor element into the first insertion hole and the second insertion hole; and compressing the filling member intermediate to thereby form a filling member which fixes the sensor element inside of the metallic shell. | 11-19-2015 |
20150364262 | METHOD OF MANUFACTURING A WINDING-TYPE SOLID ELECTROLYTIC CAPACITOR PACKAGE STRUCTURE USING A LEAD FRAME - A winding-type solid electrolytic capacitor package structure includes a winding capacitor unit, a package body and a conductive unit. The winding capacitor has a winding body enclosed by the package body, a positive conductive lead pin having a cutting surface, and a negative conductive lead pin having a grinding surface. The conductive unit includes a positive conductive terminal electrically connected to the positive conductive lead pin and a negative conductive terminal electrically connected to the negative conductive lead pin. The positive conductive terminal has a first embedded portion enclosed by the package body and a first exposed portion exposed outside the package body. The negative conductive terminal has a second embedded portion enclosed by the package body and a second exposed portion exposed outside the package body. The first and the second exposed portions are extended along the outer surface of the package body. | 12-17-2015 |
20150371783 | METHOD OF MANUFACTURING A WINDING-TYPE SOLID ELECTROLYTIC CAPACITOR PACKAGE STRUCTURE WITHOUT USING A LEAD FRAME - A winding-type solid electrolytic capacitor package structure without using any lead frame includes a winding capacitor and a package body. The winding capacitor has a winding body enclosed by the package body, a positive conductive lead pin extended from a first lateral side of the winding body, and a negative conductive lead pin extended from a second lateral side of the winding body. The positive conductive lead pin has a first embedded portion enclosed by the package body and a first exposed portion exposed outside the package body and extended along the first lateral surface and the bottom surface of the package body. The negative conductive lead pin has a second embedded portion enclosed by the package body and a second exposed portion exposed outside the package body and extended along the second lateral surface and the bottom surface of the package body. | 12-24-2015 |
20150371784 | METHOD FOR MANUFACTURING TUNGSTEN CAPACITOR ELEMENT - A method for manufacturing a tungsten capacitor element, which includes: a sintering process for forming an anode body by sintering a tungsten powder or a molded body thereof, a chemical conversion process for forming a dielectric layer on the surface layer of the anode body, a process for forming a semiconductor layer on the dielectric layer, a post-chemical conversion process for repairing the defects generated on the dielectric layer, a non-aqueous electrolysis process for conducting electrolysis operation by immersing the anode body in a solution of a non-aqueous solvent containing an oxidizing agent, and a process of forming a conductor layer on the anode body, in this order. | 12-24-2015 |
20160012971 | METHOD OF PRODUCING CONDUCTIVE POLYMER PARTICLE DISPERSION, AND METHOD OF PRODUCING ELECTROLYTIC CAPACITOR USING SAID CONDUCTIVE POLYMER PARTICLE DISPERSION | 01-14-2016 |
20160012979 | HIGH ENERGY DENSITY ELECTROCHEMICAL CAPACITORS | 01-14-2016 |
20160064149 | METHOD OF PRODUCING A SUPER-CAPACITOR - A method of fabricating a super-capacitor provides a substrate, and then adds an electrode and electrolyte template film, having a well for receiving the electrode, to the substrate. The method also adds a second electrolyte to the electrode and electrolyte template. | 03-03-2016 |
20160118197 | METHOD FOR MAKING SOLID ELECTROLYTIC CAPACITOR PACKAGE STRUCTURE WITH IMPROVED CONDUCTIVE TERMINALS - The instant disclosure relates to a method for making solid electrolytic capacitor package structure with improved conductive terminals. The first step is to provide at least one conductive terminal having an electrical contact portion and a lead-out portion. The next step is to remove a portion of mantle layer from the surface of the core layer of at least one conductive terminal by a dry-type process. The next step is to sequentially stack together a plurality of stacked-type capacitors to form a capacitor unit and then electrically connect the capacitor unit to at least one conductive terminal. The next step is to form a package body to encapsulate the capacitor unit and the electrical contact portion of at least one conductive terminal. The last step is to bend the lead-out portion of at least one conductive terminal to an axis that extends along the surface of the package body. | 04-28-2016 |
20160141108 | METHOD FOR DRYING ELECTRODE PAIR, METHOD FOR MANUFACTURING LITHIUM-ION SECONDARY BATTERY, METHOD FOR MANUFACTURING ELECTRIC DOUBLE-LAYER CAPACITOR, AND METHOD FOR MANUFACTURING LITHIUM-ION CAPACITOR - A method for drying an electrode pair is disclosed. In at least one embodiment, the method includes preparing a positive electrode by applying a positive electrode material to a current collector; preparing a negative electrode by applying a negative electrode material to a current collector; preparing one set of an electrode pair made up of a positive electrode, a separator, and a negative electrode which are laminated in this order or preparing sets of electrode pairs, the sets being laminated, a separator being provided between the respective sets, each of the electrode pairs being made up of a positive electrode, a separator, and a negative electrode which are laminated in this order; accommodating the electrode pair(s) in a container; and drying the container in which the electrode pair(s) has been accommodated by use of the freeze-drying method. | 05-19-2016 |
20160163471 | REDOX POLYMER ENERGY STORAGE SYSTEM - An energy storage system includes, in an exemplary embodiment, a first current collector having a first surface and a second surface, a first electrode including a plurality of carbon nanotubes on the second surface of the first current collector. The plurality of carbon nanotubes include a polydisulfide applied onto a surface of the plurality of nanotubes. The energy storage system also includes an ionically conductive separator having a first surface and a second surface, with first surface of the ionically conductive separator positioned on the first electrode, a second current collector having a first surface and a second surface, and a second electrode including a plurality of carbon nanotubes positioned between the first surface of the second current collector and the second surface of the ionically conductive separator. | 06-09-2016 |
20160189871 | METHOD FOR MANUFACTURING CHEMICAL CONVERSION TREATED TUNGSTEN ANODE BODY, SOLID ELECTROLYTIC CAPACITOR ELEMENT AND SOLID ELECTROLYTIC CAPACITOR - Disclosed is a method for manufacturing a chemical conversion treated tungsten anode body includes a chemical conversion treatment step of subjecting the surface of a tungsten anode body to a chemical conversion treatment to form a dielectric layer, and a high-temperature treatment step of exposing the tungsten anode body with the dielectric layer formed thereon to an atmosphere having a temperature of 270° C. or more and 370° C. or less for a period of 3 to 8 minutes. | 06-30-2016 |
20160254097 | Electronic Component Termination and Assembly by Means of Transient Liquid Phase Sintering Metallurgical Bond | 09-01-2016 |
20160379761 | METHOD FOR FABRICATING SOLID ELECTROLYTIC CAPACITORS - The instant disclosure relates to an improved method for the production of solid electrolytic capacitor, comprising the following steps. First, provide an insulating substrate. Next, form a plurality of conducting gels including aluminum powder on the insulating substrate. Thirdly, execute a high- temperature sintering process to metalize the conducting gels to form a plurality of aluminum plates. Next, form a dielectric layer on every aluminum plate. Then form an isolation layer on every dielectric layer to define an anodic region and a cathodic region. Lastly, form a conductive layer on the dielectric layer of every cathodic region, thus defining a solid electrolytic capacitor unit. | 12-29-2016 |
20180025846 | METHOD FOR MANUFACTURING HIGH-VOLTAGE SOLID-ELECTROLYTE ALUMINUM ELECTROLYTIC CAPACITOR | 01-25-2018 |