Patent application title: BIOFUEL PRODUCTION
Inventors:
Yasuo Yoshikuni (Seattle, WA, US)
Yuki Kashiyama (Seattle, WA, US)
Assignees:
BIO ARCHITECTURE LAB, INC.
IPC8 Class: AC10L118FI
USPC Class:
44307
Class name: Fuel and related compositions liquid fuels (excluding fuels that are exclusively mixtures of liquid hydrocarbons) plant or animal extract mixtures or extracts of indeterminate structure containing
Publication date: 2009-06-04
Patent application number: 20090139134
Claims:
1. A method for converting a polysaccharide to a commodity chemical,
comprising:(a) contacting the polysaccharide, wherein the polysaccharide
is optionally derived from biomass, with a polysaccharide degrading or
depolymerizing metabolic system, wherein the metabolic system is selected
from;(i) enzymatic or chemical catalysis, and(ii) a microbial system,
wherein the microbial system comprises a recombinant microorganism,
wherein the recombinant microorganism comprises one or exogenous genes
that allow it to grow on the polysaccharide as a sole source of
carbon,thereby converting the polysaccharide to a suitable monosaccharide
or oligosaccharide; and(b) contacting the suitable monosaccharide or
oligosaccharide with commodity chemical biosynthesis pathway, wherein the
commodity chemical biosynthesis pathway comprises an aldehyde or ketone
biosynthesis pathway,thereby converting the polysaccharide to the
commodity chemical
2. The method of claim 1, wherein the biomass is selected from marine biomass and vegetable/fruit/plant biomass.
3. The method of claim 2, wherein the marine biomass is selected from kelp, giant kelp, sargasso, seaweed, algae, marine microflora, microalgae, and sea grass.
4. The method of claim 2, wherein the vegetable/fruit/plant biomass comprises plant peel or pomace.
5. The method of claim 2, wherein the vegetable/fruit/plant biomass is selected from citrus, potato, tomato, grape, gooseberry, carrot, mango, sugar-beet, apple, switchgrass, wood, and stover.
6. The method of claim 1, wherein the polysaccharide is selected from alginate, agar, carrageenan, fucoidan, pectin, polygalacturonate, cellulose, hemicellulose, xylan, arabinan, and mannan.
7. The method of claim 1, wherein the suitable monosaccharide or oligosaccharide is selected from 2-keto-3-deoxy D-gluconate (KDG), D-mannitol, guluronate, mannuronate, mannitol, lyxose, glycerol, xylitol, glucose, mannose, galactose, xylose, arabinose, glucuronate, galacturonates, and rhamnose.
8. The method of claim 1, wherein the commodity chemical is selected from methane, methanol, ethane, ethene, ethanol, n-propane, 1-propene, 1-propanol, propanal, acetone, propionate, n-butane, 1-butene, 1-butanol, butanal, butanoate, isobutanal, isobutanol, 2-methylbutanal, 2-methylbutanol, 3-methylbutanal, 3-methylbutanol, 2-butene, 2-butanol, 2-butanone, 2,3-butanediol, 3-hydroxy-2-butanone, 2,3-butanedione, ethylbenzene, ethenylbenzene, 2-phenylethanol, phenylacetaldehyde, 1-phenylbutane, 4-phenyl-1-butene, 4-phenyl-2-butene, 1-phenyl-2-butene, 1-phenyl-2-butanol, 4-phenyl-2-butanol, 1-phenyl-2-butanone, 4-phenyl-2-butanone, 1-phenyl-2,3-butandiol, 1-phenyl-3-hydroxy-2-butanone, 4-phenyl-3-hydroxy-2-butanone, 1-phenyl-2,3-butanedione, n-pentane, ethylphenol, ethenylphenol, 2-(4-hydroxyphenyl)ethanol, 4-hydroxyphenylacetaldehyde, 1-(4-hydroxyphenyl) butane, 4-(4-hydroxyphenyl)-1-butene, 4-(4-hydroxyphenyl)-2-butene, 1-(4-hydroxyphenyl)-1-butene, 1-(4-hydroxyphenyl)-2-butanol, 4-(4-hydroxyphenyl)-2-butanol, 1-(4-hydroxyphenyl)-2-butanone, 4-(4-hydroxyphenyl)-2-butanone, 1-(4-hydroxyphenyl)-2,3-butandiol, 1-(4-hydroxyphenyl)-3-hydroxy-2-butanone, 4-(4-hydroxyphenyl)-3-hydroxy-2-butanone, 1-(4-hydroxyphenyl)-2,3-butanonedione, indolylethane, indolylethene, 2-(indole-3-)ethanol, n-pentane, 1-pentene, 1-pentanol, pentanal, pentanoate, 2-pentene, 2-pentanol, 3-pentanol, 2-pentanone, 3-pentanone, 4-methylpentanal, 4-methylpentanol, 2,3-pentanediol, 2-hydroxy-3-pentanone, 3-hydroxy-2-pentanone, 2,3-pentanedione, 2-methylpentane, 4-methyl-1-pentene, 4-methyl-2-pentene, 4-methyl-3-pentene, 4-methyl-2-pentanol, 2-methyl-3-pentanol, 4-methyl-2-pentanone, 2-methyl-3-pentanone, 4-methyl-2,3-pentanediol, 4-methyl-2-hydroxy-3-pentanone, 4-methyl-3-hydroxy-2-pentanone, 4-methyl-2,3-pentanedione, 1-phenylpentane, 1-phenyl-1-pentene, 1-phenyl-2-pentene, 1-phenyl-3-pentene, 1-phenyl-2-pentanol, 1-phenyl-3-pentanol, 1-phenyl-2-pentanone, 1-phenyl-3-pentanone, 1-phenyl-2,3-pentanediol, 1-phenyl-2-hydroxy-3-pentanone, 1-phenyl-3-hydroxy-2-pentanone, 1-phenyl-2,3-pentanedione, 4-methyl-1-phenylpentane, 4-methyl-1-phenyl-1-pentene, 4-methyl-1-phenyl-2-pentene, 4-methyl-1-phenyl-3-pentene, 4-methyl-1-phenyl-3-pentanol, 4-methyl-1-phenyl-2-pentanol, 4-methyl-1-phenyl-3-pentanone, 4-methyl-1-phenyl-2-pentanone, 4-methyl-1-phenyl-2,3-pentanediol, 4-methyl-1-phenyl-2,3-pentanedione, 4-methyl-1-phenyl-3-hydroxy-2-pentanone, 4-methyl-1-phenyl-2-hydroxy-3-pentanone, 1-(4-hydroxyphenyl) pentane, 1-(4-hydroxyphenyl)-1-pentene, 1-(4-hydroxyphenyl)-2-pentene, 1-(4-hydroxyphenyl)-3-pentene, 1-(4-hydroxyphenyl)-2-pentanol, 1-(4-hydroxyphenyl)-3-pentanol, 1-(4-hydroxyphenyl)-2-pentanone, 1-(4-hydroxyphenyl)-3-pentanone, 1-(4-hydroxyphenyl)-2,3-pentanediol, 1-(4-hydroxyphenyl)-2-hydroxy-3-pentanone, 1-(4-hydroxyphenyl)-3-hydroxy-2-pentanone, 1-(4-hydroxyphenyl)-2,3-pentanedione, 4-methyl-1-(4-hydroxyphenyl) pentane, 4-methyl-1-(4-hydroxyphenyl)-2-pentene, 4-methyl-1-(4-hydroxyphenyl)-3-pentene, 4-methyl-1-(4-hydroxyphenyl)-1-pentene, 4-methyl-1-(4-hydroxyphenyl)-3-pentanol, 4-methyl-1-(4-hydroxyphenyl)-2-pentanol, 4-methyl-1-(4-hydroxyphenyl)-3-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2,3-pentanediol, 4-methyl-1-(4-hydroxyphenyl)-2,3-pentanedione, 4-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-pentanone, 1-indole-3-pentane, 1-(indole-3)-1-pentene, 1-(indole-3)-2-pentene, 1-(indole-3)-3-pentene, 1-(indole-3)-2-pentanol, 1-(indole-3)-3-pentanol, 1-(indole-3)-2-pentanone, 1-(indole-3)-3-pentanone, 1-(indole-3)-2,3-pentanediol, 1-(indole-3)-2-hydroxy-3-pentanone, 1-(indole-3)-3-hydroxy-2-pentanone, 1-(indole-3)-2,3-pentanedione, 4-methyl-1-(indole-3-)pentane, 4-methyl-1-(indole-3)-2-pentene, 4-methyl-1-(indole-3)-3-pentene, 4-methyl-1-(indole-3)-1-pentene, 4-methyl-2-(indole-3)-3-pentanol, 4-methyl-1-(indole-3)-2-pentanol, 4-methyl-1-(indole-3)-3-pentanone, 4-methyl-1-(indole-3)-2-pentanone, 4-methyl-1-(indole-3)-2,3-pentanediol, 4-methyl-1-(indole-3)-2,3-pentanedione, 4-methyl-1-(indole-3)-3-hydroxy-2-pentanone, 4-methyl-1-(indole-3)-2-hydroxy-3-pentanone, n-hexane, 1-hexene, 1-hexanol, hexanal, hexanoate, 2-hexene, 3-hexene, 2-hexanol, 3-hexanol, 2-hexanone, 3-hexanone, 2,3-hexanediol, 2,3-hexanedione, 3,4-hexanediol, 3,4-hexanedione, 2-hydroxy-3-hexanone, 3-hydroxy-2-hexanone, 3-hydroxy-4-hexanone, 4-hydroxy-3-hexanone, 2-methylhexane, 3-methylhexane, 2-methyl-2-hexene, 2-methyl-3-hexene, 5-methyl-1-hexene, 5-methyl-2-hexene, 4-methyl-1-hexene, 4-methyl-2-hexene, 3-methyl-3-hexene, 3-methyl-2-hexene, 3-methyl-1-hexene, 2-methyl-3-hexanol, 5-methyl-2-hexanol, 5-methyl-3-hexanol, 2-methyl-3-hexanone, 5-methyl-2-hexanone, 5-methyl-3-hexanone, 2-methyl-3,4-hexanediol, 2-methyl-3,4-hexanedione, 5-methyl-2,3-hexanediol, 5-methyl-2,3-hexanedione, 4-methyl-2,3-hexanediol, 4-methyl-2,3-hexanedione, 2-methyl-3-hydroxy-4-hexanone, 2-methyl-4-hydroxy-3-hexanone, 5-methyl-2-hydroxy-3-hexanone, 5-methyl-3-hydroxy-2-hexanone, 4-methyl-2-hydroxy-3-hexanone, 4-methyl-3-hydroxy-2-hexanone, 2,5-dimethylhexane, 2,5-dimethyl-2-hexene, 2,5-dimethyl-3-hexene, 2,5-dimethyl-3-hexanol, 2,5-dimethyl-3-hexanone, 2,5-dimethyl-3,4-hexanediol, 2,5-dimethyl-3,4-hexanedione, 2,5-dimethyl-3-hydroxy-4-hexanone, 5-methyl-1-phenylhexane, 4-methyl-1-phenylhexane, 5-methyl-1-phenyl-1-hexene, 5-methyl-1-phenyl-2-hexene, 5-methyl-1-phenyl-3-hexene, 4-methyl-1-phenyl-1-hexene, 4-methyl-1-phenyl-2-hexene, 4-methyl-1-phenyl-3-hexene, 5-methyl-1-phenyl-2-hexanol, 5-methyl-1-phenyl-3-hexanol, 4-methyl-1-phenyl-2-hexanol, 4-methyl-1-phenyl-3-hexanol, 5-methyl-1-phenyl-2-hexanone, 5-methyl-1-phenyl-3-hexanone, 4-methyl-1-phenyl-2-hexanone, 4-methyl-1-phenyl-3-hexanone, 5-methyl-1-phenyl-2,3-hexanediol, 4-methyl-1-phenyl-2,3-hexanediol, 5-methyl-1-phenyl-3-hydroxy-2-hexanone, 5-methyl-1-phenyl-2-hydroxy-3-hexanone, 4-methyl-1-phenyl-3-hydroxy-2-hexanone, 4-methyl-1-phenyl-2-hydroxy-3-hexanone, 5-methyl-1-phenyl-2,3-hexanedione, 4-methyl-1-phenyl-2,3-hexanedione, 4-methyl-1-(4-hydroxyphenyl)hexane, 5-methyl-1-(4-hydroxyphenyl)-1-hexene, 5-methyl-1-(4-hydroxyphenyl)-2-hexene, 5-methyl-1-(4-hydroxyphenyl)-3-hexene, 4-methyl-1-(4-hydroxyphenyl)-1-hexene, 4-methyl-1-(4-hydroxyphenyl)-2-hexene, 4-methyl-1-(4-hydroxyphenyl)-3-hexene, 5-methyl-1-(4-hydroxyphenyl)-2-hexanol, 5-methyl-1-(4-hydroxyphenyl)-3-hexanol, 4-methyl-1-(4-hydroxyphenyl)-2-hexanol, 4-methyl-1-(4-hydroxyphenyl)-3-hexanol, 5-methyl-1-(4-hydroxyphenyl)-2-hexanone, 5-methyl-1-(4-hydroxyphenyl)-3-hexanone, 4-methyl-1-(4-hydroxyphenyl)-2-hexanone, 4-methyl-1-(4-hydroxyphenyl)-3-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2,3-hexanediol, 4-methyl-1-(4-hydroxyphenyl)-2,3-hexanediol, 5-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-hexanone, 4-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-hexanone, 4-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2,3-hexanedione, 4-methyl-1-(4-hydroxyphenyl)-2,3-hexanedione, 4-methyl-1-(indole-3-)hexane, 5-methyl-1-(indole-3)-1-hexene, 5-methyl-1-(indole-3)-2-hexene, 5-methyl-1-(indole-3)-3-hexene, 4-methyl-1-(indole-3)-1-hexene, 4-methyl-1-(indole-3)-2-hexene, 4-methyl-1-(indole-3)-3-hexene, 5-methyl-1-(indole-3)-2-hexanol, 5-methyl-1-(indole-3)-3-hexanol, 4-methyl-1-(indole-3)-2-hexanol, 4-methyl-1-(indole-3)-3-hexanol, 5-methyl-1-(indole-3)-2-hexanone, 5-methyl-1-(indole-3)-3-hexanone, 4-methyl-1-(indole-3)-2-hexanone, 4-methyl-1-(indole-3)-3-hexanone, 5-methyl-1-(indole-3)-2,3-hexanediol, 4-methyl-1-(indole-3)-2,3-hexanediol, 5-methyl-1-(indole-3)-3-hydroxy-2-hexanone, 5-methyl-1-(indole-3)-2-hydroxy-3-hexanone, 4-methyl-1-(indole-3)-3-hydroxy-2-hexanone, 4-methyl-1-(indole-3)-2-hydroxy-3-hexanone, 5-methyl-1-(indole-3)-2,3-hexanedione, 4-methyl-1-(indole-3)-2,3-hexanedione, n-heptane, 1-heptene, 1-heptanol, heptanal, heptanoate, 2-heptene, 3-heptene, 2-heptanol, 3-heptanol, 4-heptanol, 2-heptanone, 3-heptanone, 4-heptanone, 2,3-heptanediol, 2,3-heptanedione, 3,4-heptanediol, 3,4-heptanedione, 2-hydroxy-3-heptanone, 3-hydroxy-2-heptanone, 3-hydroxy-4-heptanone, 4-hydroxy-3-heptanone, 2-methylheptane, 3-methylheptane, 6-methyl-2-heptene, 6-methyl-3-heptene, 2-methyl-3-heptene, 2-methyl-2-heptene, 5-methyl-2-heptene, 5-methyl-3-heptene, 3-methyl-3-heptene, 2-methyl-3-heptanol, 2-methyl-4-heptanol, 6-methyl-3-heptanol, 5-methyl-3-heptanol, 3-methyl-4-heptanol, 2-methyl-3-heptanone, 2-methyl-4-heptanone, 6-methyl-3-heptanone, 5-methyl-3-heptanone, 3-methyl-4-heptanone, 2-methyl-3,4-heptanediol, 2-methyl-3,4-heptanedione, 6-methyl-3,4-heptanediol, 6-methyl-3,4-heptanedione, 5-methyl-3,4-heptanediol, 5-methyl-3,4-heptanedione, 2-methyl-3-hydroxy-4-heptanone, 2-methyl-4-hydroxy-3-heptanone, 6-methyl-3-hydroxy-4-heptanone, 6-methyl-4-hydroxy-3-heptanone, 5-methyl-3-hydroxy-4-heptanone, 5-methyl-4-hydroxy-3-heptanone, 2,6-dimethylheptane, 2,5-dimethylheptane, 2,6-dimethyl-2-heptene, 2,6-dimethyl-3-heptene, 2,5-dimethyl-2-heptene, 2,5-dimethyl-3-heptene, 3,6-dimethyl-3-heptene, 2,6-dimethyl-3-heptanol, 2,6-dimethyl-4-heptanol, 2,5-dimethyl-3-heptanol, 2,5-dimethyl-4-heptanol, 2,6-dimethyl-3,4-heptanediol, 2,6-dimethyl-3,4-heptanedione, 2,5-dimethyl-3,4-heptanediol, 2,5-dimethyl-3,4-heptanedione, 2,6-dimethyl-3-hydroxy-4-heptanone, 2,6-dimethyl-4-hydroxy-3-heptanone, 2,5-dimethyl-3-hydroxy-4-heptanone, 2,5-dimethyl-4-hydroxy-3-heptanone, n-octane, 1-octene, 2-octene, 1-octanol, octanal, octanoate, 3-octene, 4-octene, 4-octanol, 4-octanone, 4,5-octanediol, 4,5-octanedione, 4-hydroxy-5-octanone, 2-methyloctane, 2-methyl-3-octene, 2-methyl-4-octene, 7-methyl-3-octene, 3-methyl-3-octene, 3-methyl-4-octene, 6-methyl-3-octene, 2-methyl-4-octanol, 7-methyl-4-octanol, 3-methyl-4-octanol, 6-methyl-4-octanol, 2-methyl-4-octanone, 7-methyl-4-octanone, 3-methyl-4-octanone, 6-methyl-4-octanone, 2-methyl-4,5-octanediol, 2-methyl-4,5-octanedione, 3-methyl-4,5-octanediol, 3-methyl-4,5-octanedione, 2-methyl-4-hydroxy-5-octanone, 2-methyl-5-hydroxy-4-octanone, 3-methyl-4-hydroxy-5-octanone, 3-methyl-5-hydroxy-4-octanone, 2,7-dimethyloctane, 2,7-dimethyl-3-octene, 2,7-dimethyl-4-octene, 2,7-dimethyl-4-octanol, 2,7-dimethyl-4-octanone, 2,7-dimethyl-4,5-octanediol, 2,7-dimethyl-4,5-octanedione, 2,7-dimethyl-4-hydroxy-5-octanone, 2,6-dimethyloctane, 2,6-dimethyl-3-octene, 2,6-dimethyl-4-octene, 3,7-dimethyl-3-octene, 2,6-dimethyl-4-octanol, 3,7-dimethyl-4-octanol, 2,6-dimethyl-4-octanone, 3,7-dimethyl-4-octanone, 2,6-dimethyl-4,5-octanediol, 2,6-dimethyl-4,5-octanedione, 2,6-dimethyl-4-hydroxy-5-octanone, 2,6-dimethyl-5-hydroxy-4-octanone, 3,6-dimethyloctane, 3,6-dimethyl-3-octene, 3,6-dimethyl-4-octene, 3,6-dimethyl-4-octanol, 3,6-dimethyl-4-octanone, 3,6-dimethyl-4,5-octanediol, 3,6-dimethyl-4,5-octanedione, 3,6-dimethyl-4-hydroxy-5-octanone, n-nonane, 1-nonene, 1-nonanol, nonanal, nonanoate, 2-methylnonane, 2-methyl-4-nonene, 2-methyl-5-nonene, 8-methyl-4-nonene, 2-methyl-5-nonanol, 8-methyl-4-nonanol, 2-methyl-5-nonanone, 8-methyl-4-nonanone, 8-methyl-4,5-nonanediol, 8-methyl-4,5-nonanedione, 8-methyl-4-hydroxy-5-nonanone, 8-methyl-5-hydroxy-4-nonanone, 2,8-dimethylnonane, 2,8-dimethyl-3-nonene, 2,8-dimethyl-4-nonene, 2,8-dimethyl-5-nonene, 2,8-dimethyl-4-nonanol, 2,8-dimethyl-5-nonanol, 2,8-dimethyl-4-nonanone, 2,8-dimethyl-5-nonanone, 2,8-dimethyl-4,5-nonanediol, 2,8-dimethyl-4,5-nonanedione, 2,8-dimethyl-4-hydroxy-5-nonanone, 2,8-dimethyl-5-hydroxy-4-nonanone, 2,7-dimethylnonane, 3,8-dimethyl-3-nonene, 3,8-dimethyl-4-nonene, 3,8-dimethyl-5-nonene, 3,8-dimethyl-4-nonanol, 3,8-dimethyl-5-nonanol, 3,8-dimethyl-4-nonanone, 3,8-dimethyl-5-nonanone, 3,8-dimethyl-4,5-nonanediol, 3,8-dimethyl-4,5-nonanedione, 3,8-dimethyl-4-hydroxy-5-nonanone, 3,8-dimethyl-5-hydroxy-4-nonanone, n-decane, 1-decene, 1-decanol, decanoate, 2,9-dimethyldecane, 2,9-dimethyl-3-decene, 2,9-dimethyl-4-decene, 2,9-dimethyl-5-decanol, 2,9-dimethyl-5-decanone, 2,9-dimethyl-5,6-decanediol, 2,9-dimethyl-6-hydroxy-5-decanone, 2,9-dimethyl-5,6-decanedionen-undecane, 1-undecene, 1-undecanol, undecanal, undecanoate, n-dodecane, 1-dodecene, 1-dodecanol, dodecanal, dodecanoate, n-dodecane, 1-decadecene, 1-dodecanol, ddodecanal, dodecanoate, n-tridecane, 1-tridecene, 1-tridecanol, tridecanal, tridecanoate, n-tetradecane, 1-tetradecene, 1-tetradecanol, tetradecanal, tetradecanoate, n-pentadecane, 1-pentadecene, 1-pentadecanol, pentadecanal, pentadecanoate, n-hexadecane, 1-hexadecene, 1-hexadecanol, hexadecanal, hexadecanoate, n-heptadecane, 1-heptadecene, 1-heptadecanol, heptadecanal, heptadecanoate, n-octadecane, 1-octadecene, 1-octadecanol, octadecanal, octadecanoate, n-nonadecane, 1-nonadecene, 1-nonadecanol, nonadecanal, nonadecanoate, eicosane, 1-eicosene, 1-eicosanol, eicosanal, eicosanoate, 3-hydroxy propanal, 1,3-propanediol, 4-hydroxybutanal, 1,4-butanediol, 3-hydrxy-2-butanone, 2,3-butandiol, 1,5-pentane diol, homocitrate, homoisocitorate, b-hydroxy adipate, glutarate, glutarsemialdehyde, glutaraldehyde, 2-hydroxy-1-cyclopentanone, 1,2-cyclopentanediol, cyclopentanone, cyclopentanol, (S)-2-acetolactate, (R)-2,3-Dihydroxy-isovalerate, 2-oxoisovalerate, isobutyryl-CoA, isobutyrate, isobutyraldehyde, 5-amino pentaldehyde, 1,10-diaminodecane, 1,10-diamino-5-decene, 1,10-diamino-5-hydroxydecane, 1,10-diamino-5-decanone, 1,10-diamino-5,6-decanediol, 1,10-diamino-6-hydroxy-5-decanone, phenylacetoaldehyde, 1,4-diphenylbutane, 1,4-diphenyl-1-butene, 1,4-diphenyl-2-butene, 1,4-diphenyl-2-butanol, 1,4-diphenyl-2-butanone, 1,4-diphenyl-2,3-butanediol, 1,4-diphenyl-3-hydroxy-2-butanone, 1-(4-hydeoxyphenyl)-4-phenylbutane, 1-(4-hydeoxyphenyl)-4-phenyl-1-butene, 1-(4-hydeoxyphenyl)-4-phenyl-2-butene, 1-(4-hydeoxyphenyl)-4-phenyl-2-butanol, 1-(4-hydeoxyphenyl)-4-phenyl-2-butanone, 1-(4-hydeoxyphenyl)-4-phenyl-2,3-butanediol, 1-(4-hydeoxyphenyl)-4-phenyl-3-hydroxy-2-butanone, 1-(indole-3)-4-phenylbutane, 1-(indole-3)-4-phenyl-1-butene, 1-(indole-3)-4-phenyl-2-butene, 1-(indole-3)-4-phenyl-2-butanol, 1-(indole-3)-4-phenyl-2-butanone, 1-(indole-3)-4-phenyl-2,3-butanediol, 1-(indole-3)-4-phenyl-3-hydroxy-2-butanone, 4-hydroxyphenylacetoaldehyde, 1,4-di(4-hydroxyphenyl)butane, 1,4-di(4-hydroxyphenyl)-1-butene, 1,4-di(4-hydroxyphenyl)-2-butene, 1,4-di(4-hydroxyphenyl)-2-butanol, 1,4-di(4-hydroxyphenyl)-2-butanone, 1,4-di(4-hydroxyphenyl)-2,3-butanediol, 1,4-di(4-hydroxyphenyl)-3-hydroxy-2-butanone, 1-(4-hydroxyphenyl)-4-(indole-3-)butane, 1-(4-hydroxyphenyl)-4-(indole-3)-1-butene, 1-di(4-hydroxyphenyl)-4-(indole-3)-2-butene,
1-(4-hydroxyphenyl)-4-(indole-3)-2-butanol, 1-(4-hydroxyphenyl)-4-(indole-3)-2-butanone, 1-(4-hydroxyphenyl)-4-(indole-3)-2,3-butanediol, 1-(4-hydroxyphenyl-4-(indole-3)-3-hydroxy-2-butanone, indole-3-acetoaldehyde, 1,4-di(indole-3-)butane, 1,4-di(indole-3)-1-butene, 1,4-di(indole-3)-2-butene, 1,4-di(indole-3)-2-butanol, 1,4-di(indole-3)-2-butanone, 1,4-di(indole-3)-2,3-butanediol, 1,4-di(indole-3)-3-hydroxy-2-butanone, succinate semialdehyde, hexane-1,8-dicarboxylic acid, 3-hexene-1,8-dicarboxylic acid, 3-hydroxy-hexane-1,8-dicarboxylic acid, 3-hexanone-1,8-dicarboxylic acid, 3,4-hexanediol-1,8-dicarboxylic acid, 4-hydroxy-3-hexanone-1,8-dicarboxylic acid, fucoidan, iodine, chlorophyll, carotenoid, calcium, magnesium, iron, sodium, potassium, and phosphate.
9. A method for converting a polysaccharide to a suitable monosaccharide or oligosaccharide, comprising:(a) contacting the polysaccharide, wherein the polysaccharide is optionally obtained from biomass, with a microbial system for a time sufficient to convert the polysaccharide to a suitable monosaccharide or oligosaccharide, wherein the microbial system comprises,(i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase, wherein the lyase and/or hydrolase optionally comprises at least one signal peptide or at least one autotransporter domain;(ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, a polysaccharide transporter, and a superchannel; and(iii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase,thereby converting the polysaccharide to a suitable monosaccharide or oligosaccharide.
10. A method for converting a polysaccharide to a suitable monosaccharide or oligosaccharide, comprising:(a) contacting the polysaccharide, wherein the polysaccharide is optionally obtained from biomass, with a chemical or enzymatic catalysis pathway for a time sufficient to convert the polysaccharide to a first monosaccharide or oligosaccharide; and(b) contacting the first monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert the first monosaccharide or oligosaccharide to the suitable monosaccharide or oligosaccharide, wherein the microbial system comprises,(i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase(ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, a polysaccharide transporter, and a superchannel; and(ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase,thereby converting the polysaccharide to the suitable monosaccharide or oligosaccharide.
11. The method of claim 9, wherein the lyase is selected from an alginate lyase, a pectate lyase, a polymannuronate lyase, a polygluronate lyase, a polygalacturonate lyase and a rhamnogalacturonate lyase.
12. The method of claim 9, wherein the hydrolase is selected from an alginate hydrolase, a rhamnogalacturonate hydrolase, a polymannuronate hydrolase, a pectin hydrolase, and a polygalacturonate hydrolase.
13. The method of claim 9, wherein the transporter is selected from an ABC transporter, a symporter, and an outer membrane porin.
14. The method of claim 13, wherein the ABC transporter is selected from Atu3021, Atu3022, Atu3023, Atu3024, algM1, algM2, AlgQ1, AlgQ2, AlgS, OG2516.sub.--05558, OG2516.sub.--05563, OG2516.sub.--05568, OG2516.sub.--05573, TogM, TogN, TogA, TogB, and functional variants thereof.
15. The method of claim 13, wherein the symporter is selected from V12B01.sub.--24239 (SEQ ID NO:26), V12B01.sub.--24194 (SEQ ID NO:8), and TogT, and functional variants thereof.
16. The method of claim 13, wherein the outermembrane porin comprises a porin selected from V12B01.sub.--24269, KdgM, and KdgN, and functional variants thereof.
17. A recombinant microorganism that is capable of growing on a polysaccharide as a sole source of carbon, wherein the polysaccharide is selected from alginate, pectin, tri-galacturonate, di-galacturonate, cellulose, and hemi-cellulose.
18. The recombinant microorganism of claim 17, wherein the polysaccharide is alginate.
19. The recombinant microorganism of claim 17, wherein the polysaccharide is pectin.
20. The recombinant microorganism of claim 17, wherein the polysaccharide is tri-galacturonate.
21. A recombinant microrganism, comprising (i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase, wherein the lyase or hydrolase optionally comprises at least one signal peptide or at least one autotransporter domain; (ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, a polysaccharide transporter, and a superchannel; and (iii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase.
22. The recombinant microorganism of claim 21, wherein the microorganism is capable of growing on a polysaccharide as a sole source of carbon.
23. The recombinant microorganism of claim 22, wherein the polysaccharide is selected from alginate, pectin, and tri-galacturonate.
24. A method for converting a suitable monosaccharide or oligosaccharide to a first commodity chemical comprising,(a) contacting the suitable monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide or oligosaccharide to the commodity chemical, wherein the microbial system comprises a recombinant microorganism, wherein the microorganism comprises a commodity chemical biosynthesis pathway,thereby converting the suitable monosaccharide or oligosaccharide to the first commodity chemical.
25. The method of claim 24, wherein the commodity chemical pathway comprises one or more genes encoding an aldehyde or ketone biosynthesis pathway.
26. The method of claim 25, wherein the aldehyde or ketone biosynthesis pathway is selected from one or more of an acetoaldehyde, a propionaldehyde, a butyraldehyde, an isobutyraldehyde, a 2-methyl-butyraldehyde, a 3-methyl-butyraldehyde, a 2-phenyl acetaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, a 2-Indole-3-acetoaldehyde, a glutaraldehyde, a 5-amino-pentaldehyde, a succinate semialdehyde, and a succinate 4-hydroxyphenyl acetaldehyde biosynthesis pathway.
27. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises an acetoaldehyde biosynthesis pathway and a biosynthesis pathway selected from a propionaldehyde, butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl) acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
28. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises a propionaldehyde biosynthesis pathway and a biosynthesis pathway selected from a butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, and phenylacetoaldehyde biosynthesis pathway.
29. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises a butyraldehyde biosynthesis pathway and a biosynthesis pathway selected from an isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
30. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises an isobutyraldehyde biosynthesis pathway and a biosynthesis pathway selected from a 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
31. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises a 2-methyl-butyraldehyde biosynthesis pathway and a biosynthesis pathway selected from a 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
32. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises a 3-methyl-butyraldehyde biosynthesis pathway and a biosynthesis pathway selected from a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl) acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
33. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises a 2-phenyl acetoaldehyde biosynthesis pathway and a biosynthesis pathway selected from a 2-(4-hydroxyphenyl)acetaldehyde and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
34. The method of claim 26, wherein the aldehyde or ketone biosynthesis pathway comprises a 2-(4-hydroxyphenyl)acetaldehyde biosynthesis pathway and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
35. The method of claim 24, wherein the first commodity chemical is further enzymatically and/or chemically reduced and dehydrated to a second commodity chemical.
36. A method for converting a suitable monosaccharide or oligosaccharide to a commodity chemical comprising,(a) contacting the suitable monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide or oligosaccharide to the commodity chemical, wherein the microbial system comprises;(i) one or more genes encoding and expressing an aldehyde biosynthesis pathway, wherein the aldehyde biosynthesis pathway comprises one or more genes encoding and expressing a decarboxylase enzyme; and(ii) one or more genes encoding and expressing an aldehyde reductase,thereby converting the suitable monosaccharide or oligosaccharide to the commodity chemical.
37. The method of claim 36, wherein the decarboxylase enzyme is an indole-3-pyruvate decarboxylase (IPDC).
38. The method of claim 37, wherein the IPDC comprises an amino acid sequence that is at least 80%, 90%, 95%, 98%, or 99% identical to the amino acid sequence set forth in SEQ ID NO: 312
39. The method of claim 36, wherein the aldehyde reductase enzyme is a phenylacetaldehyde reductase (PAR).
40. The method of claim 39, wherein the PAR comprises an amino acid sequence that is at least 80%, 90%, 95%, 98%, or 99% identical to the amino acid sequence set forth in SEQ ID NO: 313.
41. The method of claim 36, wherein the commodity chemical is selected from 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol.
42. A recombinant microorganism, comprising (i) one or more genes encoding and expressing an aldehyde biosynthesis pathway, wherein the aldehyde biosynthesis pathway comprises one or more genes encoding and expressing a decarboxylase enzyme; and (ii) one or more genes encoding and expressing an aldehyde reductase.
43. The recombinant microorganism of claim 42, wherein the aldehyde biosynthesis pathway further comprises one or more genes encoding and expressing an enzyme selected from a CoA-linked aldehyde dehydrogenase, an aldehyde dehydrogenase, and an alcohol dehydrogenase.
44. The recombinant microorganism of claim 42, wherein the decarboxylase enzyme is an indole-3-pyruvate decarboxylase (IPDC).
45. The recombinant microorganism of claim 42, wherein the aldehyde reductase enzyme is a phenylacetoaldehyde reductase (PAR).
46. The recombinant microorganism of claim 42, wherein the microorganism is capable of converting a suitable monosaccharide or oligosaccharide to a commodity chemical.
47. The recombinant microorganism of claim 46, wherein the commodity chemical is selected from 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol.
48. The recombinant microorganism of claim 17, wherein the microorganism comprises reduced ethanol production capability compared to a wild-type microorganism.
49. The recombinant microorganism of claim 48, wherein the microorganism comprises a reduction or inhibition in the conversion of acetyl-coA to ethanol.
50. The recombinant microorganism of claim 48, wherein the recombinant microorganism comprises a reduction of an ethanol dehydrogenase, thereby providing a reduced ethanol production capability.
51. The recombinant microorganism of claim 50, wherein the ethanol dehydrogenase is an adhE, homolog or variant thereof.
52. The recombinant microorganism of claim 50, wherein the microorganism comprises a deletion or knockout of an adhE, homolog or variant thereof.
53. The recombinant microorganism of claim 17 or 42, wherein the recombinant microorganism comprises one or more deletions or knockouts in a gene encoding an enzyme selected from an enzyme that catalyzes the conversion of acetyl-coA to ethanol, an enzyme that catalyzes the conversion of pyruvate to lactate, an enzyme that catalyzes the conversion of fumarate to succinate, an enzyme that catalyzes the conversion of acetyl-coA and phosphate to coA and acetyl phosphate, an enzyme that catalyzes the conversion of acetyl-coA and formate to coA and pyruvate, and an enzyme that catalyzes the conversion of alpha-keto acid to branched chain amino acids.
54. The microbial system or recombinant microorganism of claim 1, wherein the recombinant microorganism or microbial system comprises a microorganism selected from Acetobacter aceti, Achromobacter, Acidiphilium, Acinetobacter, Actinomadura, Actinoplanes, Aeropyrum pernix, Agrobacterium, Alcaligenes, Ananas comosus (M), Arthrobacter, Aspargillus niger, Aspargillus oryze, Aspergillus melleus, Aspergillus pulverulentus, Aspergillus saitoi, Aspergillus sojea, Aspergillus usamii, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus lentus, Bacillus licheniformis, Bacillus macerans, Bacillus stearothermophilus, Bacillus subtilis, Bifidobacterium, Brevibacillus brevis, Burkholderia cepacia, Candida cylindracea, Candida rugosa, Carica papaya (L), Cellulosimicrobium, Cephalosporium, Chaetomium erraticum, Chaetomium gracile, Clostridium, Clostridium butyricum, Clostridium acetobutylicum, Clostridium thermocellum, Corynebacterium (glutamicum), Corynebacterium efficiens, Escherichia coli, Enterococcus, Erwina chrysanthemi, Gliconobacter, Gluconacetobacter, Haloarcula, Humicola insolens, Humicola nsolens, Kitasatospora setae, Klebsiella, Klebsiella oxytoca, Kluyveromyces, Kluyveromyces fragilis, Kluyveromyces lactis, Kocuria, Lactlactis, Lactobacillus, Lactobacillus fermentum, Lactobacillus sake, Lactococcus, Lactococcus lactis, Leuconostoc, Methylocystis, Methanolobus siciliae, Methanogenium organophilum, Methanobacterium bryantii, Microbacterium imperiale, Micrococcus lysodeikticus, Microlunatus, Mucor javanicus, Mycobacterium, Myrothecium, Nitrobacter, Nitrosomonas, Nocardia, Papaya carica, Pediococcus, Pediococcus halophilus, Penicillium, Penicillium camemberti, Penicillium citrinum, Penicillium emersonii, Penicillium roqueforti, Penicillum lilactinum, Penicillum multicolor, Paracoccus pantotrophus, Propionibacterium, Pseudomonas, Pseudomonas fluorescens, Pseudomonas denitrificans, Pyrococcus, Pyrococcus furiosus, Pyrococcus horikoshii, Rhizobium, Rhizomucor miehei, Rhizomucor pusillus Lindt, Rhizopus, Rhizopus delemar, Rhizopus japonicus, Rhizopus niveus, Rhizopus oryzae, Rhizopus oligosporus, Rhodococcus, Sccharomyces cerevisiae, Sclerotina libertina, Sphingobacterium multivorum, Sphingobium, Sphingomonas, Streptococcus, Streptococcus thermophilus Y-1, Streptomyces, Streptomyces griseus, Streptomyces lividans, Streptomyces murinus, Streptomyces rubiginosus, Streptomyces violaceoruber, Streptoverticillium mobaraense, Tetragenococcus, Thermus, Thiosphaera pantotropha, Trametes, Trichoderma, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Trichosporon penicillatum, Vibrio alginolyticus, Xanthomonas, yeast, Zygosaccharomyces rouxii, Zymomonas, and Zymomonus mobilis.
55. A commodity chemical produced by the method of claim 1.
56. A blended commodity chemical comprising the commodity chemical of claim 55 and a refinery-produced petroleum product.
57. The blended commodity chemical of claim 56, wherein the commodity chemical is selected from a C10-C12 hydrocarbon, 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol.
58. The blended commodity chemical of claim 57, wherein the C10-C12 hydrocarbon is selected from 2,7-dimethyloctane and 2,9-dimethyldecane.
59. The blended commodity chemical of claim 56, wherein the refinery-produced petroleum product is selected from jet fuel and diesel fuel.
60. A method of producing a commodity chemical enriched refinery-produced petroleum product, comprising(a) blending the refinery-produced petroleum product with the commodity chemical produced by the method of claim 1,thereby producing the commodity chemical enriched refinery-produced petroleum product.
Description:
CROSS-REFERENCE TO RELATED APPLICATION
[0001]This application claims the benefit under 35 U.S.C. ยง 119(e) of U.S. Provisional Patent Application No. 60/977,628 filed Oct. 4, 2007, which application is incorporated herein by reference in its entirety.
STATEMENT REGARDING SEQUENCE LISTING
[0002]The Sequence Listing associated with this application is provided in text format in lieu of a paper copy, and is hereby incorporated by reference into the specification. The name of the text file containing the Sequence Listing is 150097--40101_SEQUENCE_LISTING.txt. The text file is 519 KB, was created on Oct. 3, 2008, and is being submitted electronically via EFS-Web.
TECHNICAL FIELD
[0003]The present application relates generally to the use of microbial and chemical systems to convert biomass to commodity chemicals, such as biofuels/biopetrols.
BACKGROUND
[0004]Petroleum is facing declining global reserves and contributes to more than 30% of greenhouse gas emissions driving global warming. Annually 800 billion barrels of transportation fuel are consumed globally. Diesel and jet fuels account for greater than 50% of global transportation fuels.
[0005]Significant legislation has been passed, requiring fuel producers to cap or reduce the carbon emissions from the production and use of transportation fuels. Fuel producers are seeking substantially similar, low carbon fuels that can be blended and distributed through existing infrastructure (e.g., refineries, pipelines, tankers).
[0006]Due to increasing petroleum costs and reliance on petrochemical feedstocks, the chemicals industry is also looking for ways to improve margin and price stability, while reducing its environmental footprint. The chemicals industry is striving to develop greener products that are more energy, water, and CO2 efficient than current products. Fuels produced from biological sources, such as biomass, represent one aspect of process.
[0007]Presents method for converting biomass into biofuels focus on the use of lignocellulolic biomass, and there are many problems associated with using this process. Large-scale cultivation of lignocellulolic biomass requires substantial amount of cultivated land, which can be only achieved by replacing food crop production with energy crop production, deforestation, and by recultivating currently uncultivated land. Other problems include a decrease in water availability and quality and an increase in the use of pesticides and fertilizers.
[0008]The degradation of lignocellulolic biomass using biological systems is a very difficult challenge due to its substantial mechanistic strength and the complex chemical components. Approximately thirty different enzymes are required to fully convert lignocellulose to monosaccharides. The only available alternate to this complex approach requires a substantial amount of heat, pressure, and strong acids. The art therefore needs an economic and technically simple process for converting biomass into hydrocarbons for use as biofuels or biopetrols.
BRIEF DESCRIPTION OF THE DRAWINGS
[0009]FIG. 1 shows the Vibrio splendidus genomic region of the fosmid clone described in Example 1. Genes are indicated with orange arrows. Labels show the numerical gene indices and the predicted function of the proteins.
[0010]FIG. 2 illustrates the pathways involved in certain embodiment in which E. coli may be engineered to grow on alginate as a sole source of carbon.
[0011]FIG. 3 illustrates the pathways involved in certain embodiment in which E. coli may be engineered to grow on pectin as a sole source of carbon.
[0012]FIG. 4 shows the results of engineered or recombinant E. coli growing on alginate as a sole source of carbon (see solid circles). Agrobacterium tumefaciens cells provide a positive control (see hatched circles). The well to the immediate left of the of the A. tumefaciens positive control contains DH10B E. coli cells, which provide a negative control.
[0013]FIG. 5 shows the growth of recombinant strain of E. coli on galacturonates and pectin. FIG. 5A shows the growth of E. coli on various lengths of galacturonate after 24 hr. The recombinant strain in FIG. 5A is the E. coli BL21(DE3) strain harboring pTrlogl-kdgR+pBBRGal3P, and the control strain is the BL21(DE3) strain harboring pTrc99A+pBBR1MCS-2, as described in Example 2. FIG. 5B shows the growth of recombinant E. coli on pectin after 3-4 days. The recombinant strain in FIG. 5B is E. coli DH5a strain containing pPEL74 (Ctrl) and pPEL74 and pROU2, as described in Example 2.
[0014]FIG. 6 shows the degradation of alginate to form pyruvate. FIG. 6A illustrates a simplified metabolic pathway for alginate degradation and metabolism. FIG. 6B shows the results of in vitro degradation of alginate to form pyruvate by an enzymatic degradation route. FIG. 6c shows the results of in vitro degradation of alginate to form pyruvate by a chemical degradation route.
[0015]FIG. 7 shows the biological activity of various alcohol dehydrogenases isolated from Agrobacterium tumefaciens C58. FIG. 7A shows DEHU hydrogenase activity as monitored by NADPH consumption, and FIG. 7B shows mannuronate hydrogenase activity as monitored by NADPH consumption.
[0016]FIG. 8 shows the GC-MS chromatogram results for the control sample (FIG. 8A) and for isobutyraldehyde, 3-methylpentanol, and 2-methylpentanal production from pBADalsS-ilvCD-leuABCD2 and pTrcBALK (FIG. 8B).
[0017]FIG. 9 shows the GC-MS chromatogram results for the control sample (FIG. 9A) and for 4-hydroxyphenylethanol and indole-3-ethanol production from pBADtyrA-aroLAC-aroG-tktA-aroBDE and pTrcBALK (FIG. 9B).
[0018]FIG. 10 shows the mass spectrometry results for isobutanal (FIG. 10A), 3-methylpentanol (FIG. 10B), and 2-methylpentanol (FIG. 10c).
[0019]FIG. 11 shows the mass spectrometry results for phenylethanol (FIG. 11A), 4-hydroxyphenylethanol (FIG. 11B), and indole-3-ethanol (FIG. 11C).
[0020]FIG. 12 shows the biological activity of diol dehydratases. FIG. 12A shows the reduction of butyroin by ddh1, ddh2, and ddh3 as monitored by NADH consumption. FIG. 12B shows the oxidation activity of ddh3 towards 1,2-cyclopentanediol and 1,2-cyclohexanediol as measured by NADH production.
[0021]FIG. 13 summarizes the results of kinetic studies for various substrates in the oxidation reactions catalyzed by the DDH polypeptides. These reactions were NAD+dependent.
[0022]FIG. 14 shows the nucleotide sequence (FIG. 14A) (SEQ ID NO:97) and polypeptide sequence (FIG. 14B) (SEQ ID NO:98) of diol dehydrogenase DDH1 isolated from Lactobaccilus brevis ATCC 367.
[0023]FIG. 15 shows the nucleotide sequence (FIG. 15A) (SEQ ID NO:99) and polypeptide sequence (FIG. 15B) (SEQ ID NO:100) of diol dehydrogenase DDH2 isolated from Pseudomonas putida KT2440.
[0024]FIG. 16 shows the nucleotide sequence (FIG. 16A) (SEQ ID NO:101) and polypeptide sequence (FIG. 16B) (SEQ ID NO:102) of diol dehydrogenase DDH3 isolated from Kiebsiella pneumoniae MGH78578.
[0025]FIG. 17 shows the sequential in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This reaction illustrates the sequential conversion of butanal into 5-hydroxy-4-octanone and then 4,5-octanonediol. FIG. 17A shows the detection of butyroin (5-hydroxy-4-octanone) at 5.36 minutes, and FIG. 17B shows the detection of 4,5-octanediol at 6.49 and 6.65 minutes.
[0026]FIG. 18 shows the sequential in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the sequential conversion of n-pentanal into 6-hydroxy-5-decanone and then 5,6-decanediol. FIG. 18A shows the detection of valeroin (6-hydroxy-5-decanone) at 8.22 minutes, and FIG. 18B shows the detection of 5,6 decanediol at 9.22 and 9.35 minutes.
[0027]FIG. 19 shows the sequential in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the sequential conversion of 3-methylbutanal into 2,7-dimethyl-5-hydroxy-4-octanone and then 2,7-dimethyl-4,5-octanediol. FIG. 19A shows the detection of isoveraloin (2,7-dimethyl-5-hydroxy-4-octanone) at 6.79 minutes, and FIG. 19B shows the detection of 2,7-dimethyl-4,5-octanediol at 7.95 and 8.15 minutes.
[0028]FIG. 20 shows the sequential in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the sequential conversion of n-hexanal into 7-hydroxy-6-dodecanone and then 6,7-dodecanediol. FIG. 20A shows the detection of hexanoin (7-hydroxy-6-decanone) at 10.42 minutes, and FIG. 20B shows the detection of 6,7 dodecanediol at 10.89 and 10.95 minutes.
[0029]FIG. 21 shows the sequential in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the sequential conversion of 4-methylpentanal into 2,9-dimethyl-6-hydroxy-5-decanone and then 2,9-dimethyl-5,6-decanediol. FIG. 21A shows the detection of isohexanoin (2,9-Dimethyl-6-hydroxy-5-decanone) at 9.45 minutes, and FIG. 21B shows the detection of 2,9-dimethyl-5,6-decanediol at 10.38 and 10.44 minutes.
[0030]FIG. 22 shows the in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the conversion of n-octanal into 9-hydroxy-8-hexadecanone by showing the detection of detection of octanoin (9-hydroxy-8-hexadecanone) at 12.35 minutes.
[0031]FIG. 23 shows the in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the conversion of acetaldehyde into 3-hydroxy-2-butanone by showing the detection of acetoin (3-hydroxy-2-butanone) at rt=0.91 minutes.
[0032]FIG. 24 shows the sequential in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the sequential conversion of n-propanal into 4-hydroxy-3-hexanone and then 3,4-hexanediol. FIG. 24A shows the detection of propioin (4-hydroxy-3-hexanone) at rt=2.62 minutes, and FIG. 24B shows the detection of 3,4-hexanediol at rt=3.79 minutes.
[0033]FIG. 25 the in vivo biological activity of a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and a ddh gene isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (DDH3). This Figure illustrates the conversion of phenylacetoaldehyde into 1,4-diphenyl-3-hydroxy-2-butanone by showing the detection of 1,4-diphenyl-3-hydroxy-2-butanone at rt=13.66 minutes.
[0034]FIG. 26 shows the sequential biological activity of a diol dehydrogenase ddh from Kiebsiella pneumoniae MGH 78578 (DDH3) and a diol dehydratase pduCDE from Kiebsiella pneumoniae MGH 78578. FIG. 26A shows GC-MS data which confirms the presence of 4,5-octanediol in the sample extraction, which is the expected product resulting from the reduction of butyroin by ddh3. FIG. 26B shows GC-MS data confirming the presence of 4-octanone in the sample extraction, which is the expected product resulting from the sequential dehydrogenation of butyroin and dehydration of 4,5-octanediol by ddh3 and pduCDE, respectively.
[0035]FIG. 27 shows the sequential biological activity of a diol dehydrogenase ddh from Kiebsiella pneumoniae MGH 78578 (DDH3) and a diol dehydratase pduCDE from Kiebsiella pneumoniae MGH 78578. FIGS. 27A and 27B show comparisons between the sample extraction gas chromatograph/mass spectrum and the 4-octanone standard gas chromatograph/mass spectrum, confirming that 4-octanone was produced from butyroin using the enzymes diol dehydrogenase (ddh3) and a diol dehydratase (pduCDE).
[0036]FIG. 28 shows the nucleotide sequence (FIG. 28A) (SEQ ID NO:103) and polypeptide sequence (FIG. 28B) (SEQ ID NO:104) of a diol dehydratase large subunit (pduC) isolated from Klebsiella pneumoniae MGH78578.
[0037]FIG. 29 shows the nucleotide sequence (FIG. 29A) (SEQ ID NO:105) and polypeptide sequence (FIG. 29B) (SEQ ID NO:106) of a diol dehydratase medium subunit isolated from Klebsiella pneumoniae MGH78578 (pduD), in addition to the nucleotide sequence (FIG. 29C) (SEQ ID NO:107) and polypeptide sequence (FIG. 29D) (SEQ ID NO:108) of a diol dehydratase small subunit isolated from Klebsiella pneumoniae MGH78578 (pduE).
[0038]FIG. 30 shows the oxidation of 4-octanol by secondary alcohol dehydrogenases as monitored by NADH production (FIG. 30A) and NADPH production (FIG. 30B).
[0039]FIG. 31 shows the oxidation of 4-octanol by secondary alcohol dehydrogenases as monitored by NADH production (FIG. 31A) and NADPH production (FIG. 31B).
[0040]FIG. 32 shows the oxidation of 2,7-dimethyl octanol by secondary alcohol dehydrogenases as monitored by NADH production (FIG. 32A) and NADPH production (FIG. 32B).
[0041]FIG. 33 shows the oxidation and reduction activity of 2ADH11 and 2ADH16. FIG. 33A shows the reduction of 2,7-dimethyl-4-octanone as measured by NADPH consumption. FIG. 33B shows the reduction of 2,7-dimethyl-4-octanone, 4-octanone, and cyclolypentanone.
[0042]FIG. 34 shows the oxidation and reduction of cyclopentanol by secondary alcohol dehydrogenases. FIG. 34A shows the oxidation of cyclopentanol as monitored by NADH or NADPH formation. FIG. 34B shows the reduction of cyclopentanol as monitored by NADPH consumption.
[0043]FIG. 35 shows the calculated rate constants for the illustrated reduction reactions for each substrate catalyzed by secondary alcohol dehydrogenase ADH-16 (SEQ ID NO:138).
[0044]FIG. 36 shows the calculated rate constants for the illustrated oxidation reactions for each substrate catalyzed by secondary alcohol dehydrogenase ADH-16 (SEQ ID NO:138).
[0045]FIG. 37 shows a list of alginate lyases genes/proteins that may be utilized according to the methods and recombinant microorganisms described herein.
[0046]FIG. 38 shows a list of pectate lyase genes/proteins that may be utilized according to the methods and recombinant microorganisms described herein.
[0047]FIG. 39A shows a list of rhamnogalacturonan lyase genes/proteins that may be utilized according to the methods and recombinant microorganisms described herein. FIG. 39B shows a list of rhamnogalacturonate hydrolase genes/proteins that may be utilized according to the methods and recombinant microorganisms described herein.
[0048]FIG. 40 shows a list of pectin methyl esterase genes/proteins that may be utilized according to the methods and recombinant microorganisms described herein.
[0049]FIG. 41 shows a list of pectin acetyl esterase genes/proteins that may be utilized according to the methods and recombinant microorganisms described herein.
[0050]FIG. 42 shows the production of 2-phenyl ethanol (FIG. 42A), 2-(4-hydroxyphenyl)ethanol (FIG. 42B), and 2-(indole-3-)ethanol (FIG. 42C) at 24 hours from the recombinant microorganisms described in Example 4, which comprise functional 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and 2-(indole-3-)ethanol biosynthesis pathways.
[0051]FIG. 43 shows the GC-MS chromatogram results that confirm the production of 2-phenyl ethanol (FIG. 43B) at one week from the recombinant microorganisms described in Example 4 (pBADpheA-aroLAC-aroG-tktA-aroBDE and pTrcBALK). FIG. 43A shows the negative control cells (pBAD33 and pTrc99A).
[0052]FIG. 44 shows the GC-MS chromatogram results that confirm the production of 2-(4-hydroxyphenyl)ethanol (9.36 min) and 2-(indole-3) ethanol (10.32 min) at one week from the recombinant microorganisms described in Example 4 (pBADtyrA-aroLAC-aroG-tktA-aroBDE and pTrcBALK).
[0053]FIG. 45 confirms both the formation of 1-propanal from 1,2-propanediol (FIG. 45A), and the formation of 2-butanone from meso-2,3-butanediol (FIG. 45B), both of which were catalyzed in vitro by an isolated B12 independent diol dehydratase, as described in Example 9.
[0054]FIG. 46A shows the in vivo production of 1-propanol from 1,2-propanediol. FIG. 46B shows the in vivo production of 2-butanol from meso-2,3 butanediol. FIG. 46C shows the in vivo production of cyclopentanone from trans-1,2-cyclopentanediol. These experiments were performed as described in Example 9.
[0055]FIG. 47 shows the results of the TBA assay, as performed in Example 10. The left tube in FIG. 47 represents media taken from an overnight culture of cells expressing Vs24254, showing secretion of an alginate lyase, while the right hand tube shows the TBA reaction using media from cells expressing Vs24259 (negative control). The lack of pink coloration in the negative control indicates that little or no cleavage of the alginate polymer has occurred.
[0056]FIG. 48 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized benzaldehyde lyase (BAL) catalyzed the in vivo production of 3-hydroxy-2-pentanone and 2-hydroxy-3-pentanone from a ligation reaction between acetaldehyde and propionaldehyde (FIG. 48A), and catalyzed the in vivo production of 4-hydroxy-3-heptanone and 3-hydroxy-4-heptanone from a ligation reaction between propionaldehyde and butyraldehyde (FIG. 48B).
[0057]FIG. 49 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized BAL catalyzed the in vivo production of 3-hydroxy-2-heptanone from a ligation reaction between acetaldehyde and pentanal (FIG. 49A), and catalyzed the in vivo production of 4-hydroxy-3-octanone and 3-hydroxy-4-octanone from a ligation reaction between pentanal and propionaldehyde (FIG. 49B).
[0058]FIG. 50 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized BAL catalyzed the in vivo production of 5-hydroxy-4-nonanone from ligation reaction between butyraldehyde and pentanal (FIG. 50A), and catalyzed the in vivo production of 2-methyl-5-hydroxy-4-decanone and 2-methyl-4-hydroxy-5-decanone from ligation reaction between hexanal and 3-methylbutyraldehyde (FIG. 50B).
[0059]FIG. 51 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized BAL catalyzed the in vivo production of 6-methyl-3-hydroxy-2-heptanone from ligation reaction between acetaldehyde and 4-methylhexanal (FIG. 51A), and catalyzed the in vivo production of 7-methyl-4-hydroxy-3-octanone from a ligation reaction between 4-methylhexanal and propionaldehyde (FIG. 51B).
[0060]FIG. 52 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized BAL catalyzed the in vivo production of 8-methyl-5-hydroxy-4-nonanone from ligation reaction between 4-methylhexanal and butyraldehyde (FIG. 52A), and catalyzed the in vivo production of 3-hydroxy-2-decanone from a ligation reaction between acetaldehyde and octanal (FIG. 52B).
[0061]FIG. 53 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized BAL catalyzed the in vivo production of 4-hydroxy-3-undecanone from ligation reaction between octanal and propionaldehyde (FIG. 53A), and catalyzed the in vivo production of 5-hydroxy-4-dodecanone from a ligation reaction between octanal and butyraldehyde (FIG. 53B).
[0062]FIG. 54 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized BAL catalyzed the in vivo production of 6-hydroxy-5-tridecanone (FIG. 54A) from ligation reaction between octanal and pentanal, and catalyzed the in vivo production of 2-methyl-5-hydroxy-4-dodecanone and 2-methyl-4-hydroxy-5-decanone from a ligation reaction between octanal and 3-methylbutyraldehyde (FIG. 54B).
[0063]FIG. 55 shows the in vivo biological activity of a C--C ligase isolated from Pseudomonas fluorescens and cloned into E. coli. The GC-MS chromatogram results show that codon-optimized BAL catalyzed the in vivo production of 2-methyl-6-hydroxy-5-tridecanone from a ligation reaction between octanal and 4-methylpentanal.
[0064]FIG. 56 shows the growth of recombinant E. coli on alginate as a sole source of carbon (FIG. 56A), as described in Example 10. Growth on glucose (FIG. 56B) provides a positive control. The cells were transformed with either no plasmid (BL21--negative control), one plasmid (e.g., Da or 3a), or two plasmids (e.g., Dk3a and Da3k). The plasmids are indicated by the lower case letter: "a" refers to the pET-DEST42 plasmid backbone and "k" refers to the pENTR/D/TOPO backbone. "D" indicates that the plasmid contains the genomic region Vs24214-24249, while "3" indicates that the plasmid contains the genomic region Vs24189-24209. Thus, Da would be pET-DEST42-Vs24214-24249, Da3k would be pET-DEST42-Vs24214-24249 and pENTR/D/TOPO-Vs24189-24209 and so on. These results show that the combined genomic regions Vs24214-24249 and Vs24189-24209 are sufficient to confer on E. coli the ability to grow on alginate as a sole source of carbon.
[0065]FIG. 57 shows the production of ethanol by E. coli growing on alginate, as performed in Example 11. E. coli was transformed with either pBBRPdc-AdhA/B or pBBRPdc-AdhA/B+1.5 FOS and allowed to grow in m9 media containing alginate.
BRIEF SUMMARY
[0066]Embodiments of the present invention include methods for converting a polysaccharide to a commodity chemical, comprising (a) contacting the polysaccharide, wherein the polysaccharide is optionally derived from biomass, with a polysaccharide degrading or depolymerizing metabolic system, wherein the metabolic system is selected from; (i) enzymatic or chemical catalysis, and (ii) a microbial system, wherein the microbial system comprises a recombinant microorganism, wherein the recombinant microorganism comprises one or exogenous genes that allow it to grow on the polysaccharide as a sole source of carbon, thereby converting the polysaccharide to a suitable monosaccharide or oligosaccharide; and (b) contacting the suitable monosaccharide or oligosaccharide with commodity chemical biosynthesis pathway, wherein the commodity chemical biosynthesis pathway comprises an aldehyde or ketone biosynthesis pathway, thereby converting the polysaccharide to the commodity chemical.
[0067]In certain aspects, the biomass is selected from marine biomass and vegetable/fruit/plant biomass. In certain aspects, the marine biomass is selected from kelp, giant kelp, sargasso, seaweed, algae, marine microflora, microalgae, and sea grass. In certain aspects, the vegetable/fruit/plant biomass comprises plant peel or pomace. In certain aspects, the vegetable/fruit/plant biomass is selected from citrus, potato, tomato, grape, gooseberry, carrot, mango, sugar-beet, apple, switchgrass, wood, and stover.
[0068]In certain aspects, the polysaccharide is selected from alginate, agar, carrageenan, fucoidan, pectin, polygalacturonate, cellulose, hemicellulose, xylan, arabinan, and mannan. In certain aspects, the suitable monosaccharide or oligosaccharide is selected from 2-keto-3-deoxy D-gluconate (KDG), D-mannitol, guluronate, mannuronate, mannitol, lyxose, glycerol, xylitol, glucose, mannose, galactose, xylose, arabinose, glucuronate, galacturonates, and rhamnose.
In certain aspects, the commodity chemical is selected from methane, methanol, ethane, ethene, ethanol, n-propane, 1-propene, 1-propanol, propanal, acetone, propionate, n-butane, 1-butene, 1-butanol, butanal, butanoate, isobutanal, isobutanol, 2-methylbutanal, 2-methylbutanol, 3-methylbutanal, 3-methylbutanol, 2-butene, 2-butanol, 2-butanone, 2,3-butanediol, 3-hydroxy-2-butanone, 2,3-butanedione, ethylbenzene, ethenylbenzene, 2-phenylethanol, phenylacetaldehyde, 1-phenylbutane, 4-phenyl-1-butene, 4-phenyl-2-butene, 1-phenyl-2-butene, 1-phenyl-2-butanol, 4-phenyl-2-butanol, 1-phenyl-2-butanone, 4-phenyl-2-butanone, 1-phenyl-2,3-butandiol, 1-phenyl-3-hydroxy-2-butanone, 4-phenyl-3-hydroxy-2-butanone, 1-phenyl-2,3-butanedione, n-pentane, ethylphenol, ethenylphenol, 2-(4-hydroxyphenyl)ethanol, 4-hydroxyphenylacetaldehyde, 1-(4-hydroxyphenyl) butane, 4-(4-hydroxyphenyl)-1-butene, 4-(4-hydroxyphenyl)-2-butene, 1-(4-hydroxyphenyl)-1-butene, 1-(4-hydroxyphenyl)-2-butanol, 4-(4-hydroxyphenyl)-2-butanol, 1-(4-hydroxyphenyl)-2-butanone, 4-(4-hydroxyphenyl)-2-butanone, 1-(4-hydroxyphenyl)-2,3-butandiol, 1-(4-hydroxyphenyl)-3-hydroxy-2-butanone, 4-(4-hydroxyphenyl)-3-hydroxy-2-butanone, 1-(4-hydroxyphenyl)-2,3-butanonedione, indolylethane, indolylethene, 2-(indole-3-)ethanol, n-pentane, 1-pentene, 1-pentanol, pentanal, pentanoate, 2-pentene, 2-pentanol, 3-pentanol, 2-pentanone, 3-pentanone, 4-methylpentanal, 4-methylpentanol, 2,3-pentanediol, 2-hydroxy-3-pentanone, 3-hydroxy-2-pentanone, 2,3-pentanedione, 2-methylpentane, 4-methyl-1-pentene, 4-methyl-2-pentene, 4-methyl-3-pentene, 4-methyl-2-pentanol, 2-methyl-3-pentanol, 4-methyl-2-pentanone, 2-methyl-3-pentanone, 4-methyl-2,3-pentanediol, 4-methyl-2-hydroxy-3-pentanone, 4-methyl-3-hydroxy-2-pentanone, 4-methyl-2,3-pentanedione, 1-phenylpentane, 1-phenyl-1-pentene, 1-phenyl-2-pentene, 1-phenyl-3-pentene, 1-phenyl-2-pentanol, 1-phenyl-3-pentanol, 1-phenyl-2-pentanone, 1-phenyl-3-pentanone, 1-phenyl-2,3-pentanediol, 1-phenyl-2-hydroxy-3-pentanone, 1-phenyl-3-hydroxy-2-pentanone, 1-phenyl-2,3-pentanedione, 4-methyl-1-phenylpentane, 4-methyl-1-phenyl-1-pentene, 4-methyl-1-phenyl-2-pentene, 4-methyl-1-phenyl-3-pentene, 4-methyl-1-phenyl-3-pentanol, 4-methyl-1-phenyl-2-pentanol, 4-methyl-1-phenyl-3-pentanone, 4-methyl-1-phenyl-2-pentanone, 4-methyl-1-phenyl-2,3-pentanediol, 4-methyl-1-phenyl-2,3-pentanedione, 4-methyl-1-phenyl-3-hydroxy-2-pentanone, 4-methyl-1-phenyl-2-hydroxy-3-pentanone, 1-(4-hydroxyphenyl) pentane, 1-(4-hydroxyphenyl)-1-pentene, 1-(4-hydroxyphenyl)-2-pentene, 1-(4-hydroxyphenyl)-3-pentene, 1-(4-hydroxyphenyl)-2-pentanol, 1-(4-hydroxyphenyl)-3-pentanol, 1-(4-hydroxyphenyl)-2-pentanone, 1-(4-hydroxyphenyl)-3-pentanone, 1-(4-hydroxyphenyl)-2,3-pentanediol, 1-(4-hydroxyphenyl)-2-hydroxy-3-pentanone, 1-(4-hydroxyphenyl)-3-hydroxy-2-pentanone, 1-(4-hydroxyphenyl)-2,3-pentanedione, 4-methyl-1-(4-hydroxyphenyl) pentane, 4-methyl-1-(4-hydroxyphenyl)-2-pentene, 4-methyl-1-(4-hydroxyphenyl)-3-pentene, 4-methyl-1-(4-hydroxyphenyl)-1-pentene, 4-methyl-1-(4-hydroxyphenyl)-3-pentanol, 4-methyl-1-(4-hydroxyphenyl)-2-pentanol, 4-methyl-1-(4-hydroxyphenyl)-3-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2,3-pentanediol, 4-methyl-1-(4-hydroxyphenyl)-2,3-pentanedione, 4-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-pentanone, 1-indole-3-pentane, 1-(indole-3)-1-pentene, 1-(indole-3)-2-pentene, 1-(indole-3)-3-pentene, 1-(indole-3)-2-pentanol, 1-(indole-3)-3-pentanol, 1-(indole-3)-2-pentanone, 1-(indole-3)-3-pentanone, 1-(indole-3)-2,3-pentanediol, 1-(indole-3)-2-hydroxy-3-pentanone, 1-(indole-3)-3-hydroxy-2-pentanone, 1-(indole-3)-2,3-pentanedione, 4-methyl-1-(indole-3-)pentane, 4-methyl-1-(indole-3)-2-pentene, 4-methyl-1-(indole-3)-3-pentene, 4-methyl-1-(indole-3)-1-pentene, 4-methyl-2-(indole-3)-3-pentanol, 4-methyl-1-(indole-3)-2-pentanol, 4-methyl-1-(indole-3)-3-pentanone, 4-methyl-1-(indole-3)-2-pentanone, 4-methyl-1-(indole-3)-2,3-pentanediol, 4-methyl-1-(indole-3)-2,3-pentanedione, 4-methyl-1-(indole-3)-3-hydroxy-2-pentanone, 4-methyl-1-(indole-3)-2-hydroxy-3-pentanone, n-hexane, 1-hexene, 1-hexanol, hexanal, hexanoate, 2-hexene, 3-hexene, 2-hexanol, 3-hexanol, 2-hexanone, 3-hexanone, 2,3-hexanediol, 2,3-hexanedione, 3,4-hexanediol, 3,4-hexanedione, 2-hydroxy-3-hexanone, 3-hydroxy-2-hexanone, 3-hydroxy-4-hexanone, 4-hydroxy-3-hexanone, 2-methylhexane, 3-methylhexane, 2-methyl-2-hexene, 2-methyl-3-hexene, 5-methyl-1-hexene, 5-methyl-2-hexene, 4-methyl-1-hexene, 4-methyl-2-hexene, 3-methyl-3-hexene, 3-methyl-2-hexene, 3-methyl-1-hexene, 2-methyl-3-hexanol, 5-methyl-2-hexanol, 5-methyl-3-hexanol, 2-methyl-3-hexanone, 5-methyl-2-hexanone, 5-methyl-3-hexanone, 2-methyl-3,4-hexanediol, 2-methyl-3,4-hexanedione, 5-methyl-2,3-hexanediol, 5-methyl-2,3-hexanedione, 4-methyl-2,3-hexanediol, 4-methyl-2,3-hexanedione, 2-methyl-3-hydroxy-4-hexanone, 2-methyl-4-hydroxy-3-hexanone, 5-methyl-2-hydroxy-3-hexanone, 5-methyl-3-hydroxy-2-hexanone, 4-methyl-2-hydroxy-3-hexanone, 4-methyl-3-hydroxy-2-hexanone, 2,5-dimethylhexane, 2,5-dimethyl-2-hexene, 2,5-dimethyl-3-hexene, 2,5-dimethyl-3-hexanol, 2,5-dimethyl-3-hexanone, 2,5-dimethyl-3,4-hexanediol, 2,5-dimethyl-3,4-hexanedione, 2,5-dimethyl-3-hydroxy-4-hexanone, 5-methyl-1-phenylhexane, 4-methyl-1-phenylhexane, 5-methyl-1-phenyl-1-hexene, 5-methyl-1-phenyl-2-hexene, 5-methyl-1-phenyl-3-hexene, 4-methyl-1-phenyl-1-hexene, 4-methyl-1-phenyl-2-hexene, 4-methyl-1-phenyl-3-hexene, 5-methyl-1-phenyl-2-hexanol, 5-methyl-1-phenyl-3-hexanol, 4-methyl-1-phenyl-2-hexanol, 4-methyl-1-phenyl-3-hexanol, 5-methyl-1-phenyl-2-hexanone, 5-methyl-1-phenyl-3-hexanone, 4-methyl-1-phenyl-2-hexanone, 4-methyl-1-phenyl-3-hexanone, 5-methyl-1-phenyl-2,3-hexanediol, 4-methyl-1-phenyl-2,3-hexanediol, 5-methyl-1-phenyl-3-hydroxy-2-hexanone, 5-methyl-1-phenyl-2-hydroxy-3-hexanone, 4-methyl-1-phenyl-3-hydroxy-2-hexanone, 4-methyl-1-phenyl-2-hydroxy-3-hexanone, 5-methyl-1-phenyl-2,3-hexanedione, 4-methyl-1-phenyl-2,3-hexanedione, 4-methyl-1-(4-hydroxyphenyl)hexane, 5-methyl-1-(4-hydroxyphenyl)-1-hexene, 5-methyl-1-(4-hydroxyphenyl)-2-hexene, 5-methyl-1-(4-hydroxyphenyl)-3-hexene, 4-methyl-1-(4-hydroxyphenyl)-1-hexene, 4-methyl-1-(4-hydroxyphenyl)-2-hexene, 4-methyl-1-(4-hydroxyphenyl)-3-hexene, 5-methyl-1-(4-hydroxyphenyl)-2-hexanol, 5-methyl-1-(4-hydroxyphenyl)-3-hexanol, 4-methyl-1-(4-hydroxyphenyl)-2-hexanol, 4-methyl-1-(4-hydroxyphenyl)-3-hexanol, 5-methyl-1-(4-hydroxyphenyl)-2-hexanone, 5-methyl-1-(4-hydroxyphenyl)-3-hexanone, 4-methyl-1-(4-hydroxyphenyl)-2-hexanone, 4-methyl-1-(4-hydroxyphenyl)-3-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2,3-hexanediol, 4-methyl-1-(4-hydroxyphenyl)-2,3-hexanediol, 5-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-hexanone, 4-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-hexanone, 4-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2,3-hexanedione, 4-methyl-1-(4-hydroxyphenyl)-2,3-hexanedione, 4-methyl-1-(indole-3-)hexane, 5-methyl-1-(indole-3)-1-hexene, 5-methyl-1-(indole-3)-2-hexene, 5-methyl-1-(indole-3)-3-hexene, 4-methyl-1-(indole-3)-1-hexene, 4-methyl-1-(indole-3)-2-hexene, 4-methyl-1-(indole-3)-3-hexene, 5-methyl-1-(indole-3)-2-hexanol, 5-methyl-1-(indole-3)-3-hexanol, 4-methyl-1-(indole-3)-2-hexanol, 4-methyl-1-(indole-3)-3-hexanol, 5-methyl-1-(indole-3)-2-hexanone, 5-methyl-1-(indole-3)-3-hexanone, 4-methyl-1-(indole-3)-2-hexanone, 4-methyl-1-(indole-3)-3-hexanone, 5-methyl-1-(indole-3)-2,3-hexanediol, 4-methyl-1-(indole-3)-2,3-hexanediol, 5-methyl-1-(indole-3)-3-hydroxy-2-hexanone, 5-methyl-1-(indole-3)-2-hydroxy-3-hexanone, 4-methyl-1-(indole-3)-3-hydroxy-2-hexanone, 4-methyl-1-(indole-3)-2-hydroxy-3-hexanone, 5-methyl-1-(indole-3)-2,3-hexanedione, 4-methyl-1-(indole-3)-2,3-hexanedione, n-heptane, 1-heptene, 1-heptanol, heptanal, heptanoate, 2-heptene, 3-heptene, 2-heptanol, 3-heptanol, 4-heptanol, 2-heptanone, 3-heptanone, 4-heptanone, 2,3-heptanediol, 2,3-heptanedione, 3,4-heptanediol, 3,4-heptanedione, 2-hydroxy-3-heptanone, 3-hydroxy-2-heptanone, 3-hydroxy-4-heptanone, 4-hydroxy-3-heptanone, 2-methylheptane, 3-methylheptane, 6-methyl-2-heptene, 6-methyl-3-heptene, 2-methyl-3-heptene, 2-methyl-2-heptene, 5-methyl-2-heptene, 5-methyl-3-heptene, 3-methyl-3-heptene, 2-methyl-3-heptanol, 2-methyl-4-heptanol, 6-methyl-3-heptanol, 5-methyl-3-heptanol, 3-methyl-4-heptanol, 2-methyl-3-heptanone, 2-methyl-4-heptanone, 6-methyl-3-heptanone, 5-methyl-3-heptanone, 3-methyl-4-heptanone, 2-methyl-3,4-heptanediol, 2-methyl-3,4-heptanedione, 6-methyl-3,4-heptanediol, 6-methyl-3,4-heptanedione, 5-methyl-3,4-heptanediol, 5-methyl-3,4-heptanedione, 2-methyl-3-hydroxy-4-heptanone, 2-methyl-4-hydroxy-3-heptanone, 6-methyl-3-hydroxy-4-heptanone, 6-methyl-4-hydroxy-3-heptanone, 5-methyl-3-hydroxy-4-heptanone, 5-methyl-4-hydroxy-3-heptanone, 2,6-dimethylheptane, 2,5-dimethylheptane, 2,6-dimethyl-2-heptene, 2,6-dimethyl-3-heptene, 2,5-dimethyl-2-heptene, 2,5-dimethyl-3-heptene, 3,6-dimethyl-3-heptene, 2,6-dimethyl-3-heptanol, 2,6-dimethyl-4-heptanol, 2,5-dimethyl-3-heptanol, 2,5-dimethyl-4-heptanol, 2,6-dimethyl-3,4-heptanediol, 2,6-dimethyl-3,4-heptanedione, 2,5-dimethyl-3,4-heptanediol, 2,5-dimethyl-3,4-heptanedione, 2,6-dimethyl-3-hydroxy-4-heptanone, 2,6-dimethyl-4-hydroxy-3-heptanone, 2,5-dimethyl-3-hydroxy-4-heptanone, 2,5-dimethyl-4-hydroxy-3-heptanone, n-octane, 1-octene, 2-octene, 1-octanol, octanal, octanoate, 3-octene, 4-octene, 4-octanol, 4-octanone, 4,5-octanediol, 4,5-octanedione, 4-hydroxy-5-octanone, 2-methyloctane, 2-methyl-3-octene, 2-methyl-4-octene, 7-methyl-3-octene, 3-methyl-3-octene, 3-methyl-4-octene, 6-methyl-3-octene, 2-methyl-4-octanol, 7-methyl-4-octanol, 3-methyl-4-octanol, 6-methyl-4-octanol, 2-methyl-4-octanone, 7-methyl-4-octanone, 3-methyl-4-octanone, 6-methyl-4-octanone, 2-methyl-4,5-octanediol, 2-methyl-4,5-octanedione, 3-methyl-4,5-octanediol, 3-methyl-4,5-octanedione, 2-methyl-4-hydroxy-5-octanone, 2-methyl-5-hydroxy-4-octanone, 3-methyl-4-hydroxy-5-octanone, 3-methyl-5-hydroxy-4-octanone, 2,7-dimethyloctane, 2,7-dimethyl-3-octene, 2,7-dimethyl-4-octene, 2,7-dimethyl-4-octanol, 2,7-dimethyl-4-octanone, 2,7-dimethyl-4,5-octanediol, 2,7-dimethyl-4,5-octanedione, 2,7-dimethyl-4-hydroxy-5-octanone, 2,6-dimethyloctane, 2,6-dimethyl-3-octene, 2,6-dimethyl-4-octene, 3,7-dimethyl-3-octene, 2,6-dimethyl-4-octanol, 3,7-dimethyl-4-octanol, 2,6-dimethyl-4-octanone, 3,7-dimethyl-4-octanone, 2,6-dimethyl-4,5-octanediol, 2,6-dimethyl-4,5-octanedione, 2,6-dimethyl-4-hydroxy-5-octanone, 2,6-dimethyl-5-hydroxy-4-octanone, 3,6-dimethyloctane, 3,6-dimethyl-3-octene, 3,6-dimethyl-4-octene, 3,6-dimethyl-4-octanol, 3,6-dimethyl-4-octanone, 3,6-dimethyl-4,5-octanediol, 3,6-dimethyl-4,5-octanedione, 3,6-dimethyl-4-hydroxy-5-octanone, n-nonane, 1-nonene, 1-nonanol, nonanal, nonanoate, 2-methylnonane, 2-methyl-4-nonene, 2-methyl-5-nonene, 8-methyl-4-nonene, 2-methyl-5-nonanol, 8-methyl-4-nonanol, 2-methyl-5-nonanone, 8-methyl-4-nonanone, 8-methyl-4,5-nonanediol, 8-methyl-4,5-nonanedione, 8-methyl-4-hydroxy-5-nonanone, 8-methyl-5-hydroxy-4-nonanone, 2,8-dimethylnonane, 2,8-dimethyl-3-nonene, 2,8-dimethyl-4-nonene, 2,8-dimethyl-5-nonene, 2,8-dimethyl-4-nonanol, 2,8-dimethyl-5-nonanol, 2,8-dimethyl-4-nonanone, 2,8-dimethyl-5-nonanone, 2,8-dimethyl-4,5-nonanediol, 2,8-dimethyl-4,5-nonanedione, 2,8-dimethyl-4-hydroxy-5-nonanone, 2,8-dimethyl-5-hydroxy-4-nonanone, 2,7-dimethylnonane, 3,8-dimethyl-3-nonene, 3,8-dimethyl-4-nonene, 3,8-dimethyl-5-nonene, 3,8-dimethyl-4-nonanol, 3,8-dimethyl-5-nonanol, 3,8-dimethyl-4-nonanone, 3,8-dimethyl-5-nonanone, 3,8-dimethyl-4,5-nonanediol, 3,8-dimethyl-4,5-nonanedione, 3,8-dimethyl-4-hydroxy-5-nonanone, 3,8-dimethyl-5-hydroxy-4-nonanone, n-decane, 1-decene, 1-decanol, decanoate, 2,9-dimethyldecane, 2,9-dimethyl-3-decene, 2,9-dimethyl-4-decene, 2,9-dimethyl-5-decanol, 2,9-dimethyl-5-decanone, 2,9-dimethyl-5,6-decanediol, 2,9-dimethyl-6-hydroxy-5-decanone, 2,9-dimethyl-5,6-decanedionen-undecane, 1-undecene, 1-undecanol, undecanal. undecanoate, n-dodecane, 1-dodecene, 1-dodecanol, dodecanal, dodecanoate, n-dodecane, 1-decadecene, 1-dodecanol, ddodecanal, dodecanoate, n-tridecane, 1-tridecene, 1-tridecanol, tridecanal, tridecanoate, n-tetradecane, 1-tetradecene, 1-tetradecanol, tetradecanal, tetradecanoate, n-pentadecane, 1-pentadecene, 1-pentadecanol, pentadecanal, pentadecanoate, n-hexadecane, 1-hexadecene, 1-hexadecanol, hexadecanal, hexadecanoate, n-heptadecane, 1-heptadecene, 1-heptadecanol, heptadecanal, heptadecanoate, n-octadecane, 1-octadecene, 1-octadecanol, octadecanal, octadecanoate, n-nonadecane, 1-nonadecene, 1-nonadecanol, nonadecanal, nonadecanoate, eicosane, 1-eicosene, 1-eicosanol, eicosanal, eicosanoate, 3-hydroxy propanal, 1,3-propanediol, 4-hydroxybutanal, 1,4-butanediol, 3-hydrxy-2-butanone, 2,3-butandiol, 1,5-pentane diol, homocitrate, homoisocitorate, b-hydroxy adipate, glutarate, glutarsemialdehyde, glutaraldehyde, 2-hydroxy-1-cyclopentanone, 1,2-cyclopentanediol, cyclopentanone, cyclopentanol, (S)-2-acetolactate, (R)-2,3-Dihydroxy-isovalerate, 2-oxoisovalerate, isobutyryl-CoA, isobutyrate, isobutyraldehyde, 5-amino pentaldehyde, 1,10-diaminodecane, 1,10-diamino-5-decene, 1,10-diamino-5-hydroxydecane, 1,10-diamino-5-decanone, 1,10-diamino-5,6-decanediol, 1,10-diamino-6-hydroxy-5-decanone, phenylacetoaldehyde, 1,4-diphenylbutane, 1,4-diphenyl-1-butene, 1,4-diphenyl-2-butene, 1,4-diphenyl-2-butanol, 1,4-diphenyl-2-butanone, 1,4-diphenyl-2,3-butanediol, 1,4-diphenyl-3-hydroxy-2-butanone, 1-(4-hydeoxyphenyl)-4-phenylbutane, 1-(4-hydeoxyphenyl)-4-phenyl-1-butene, 1-(4-hydeoxyphenyl)-4-phenyl-2-butene, 1-(4-hydeoxyphenyl)-4-phenyl-2-butanol, 1-(4-hydeoxyphenyl)-4-phenyl-2-butanone, 1-(4-hydeoxyphenyl)-4-phenyl-2,3-butanediol, 1-(4-hydeoxyphenyl)-4-phenyl-3-hydroxy-2-butanone, 1-(indole-3)-4-phenylbutane, 1-(indole-3)-4-phenyl-1-butene, 1-(indole-3)-4-phenyl-2-butene, 1-(indole-3)-4-phenyl-2-butanol, 1-(indole-3)-4-phenyl-2-butanone, 1-(indole-3)-4-phenyl-2,3-butanediol, 1-(indole-3)-4-phenyl-3-hydroxy-2-butanone, 4-hydroxyphenylacetoaldehyde, 1,4-di(4-hydroxyphenyl)butane, 1,4-di(4-hydroxyphenyl)-1-butene, 1,4-di(4-hydroxyphenyl)-2-butene, 1,4-di(4-hydroxyphenyl)-2-butanol, 1,4-di(4-hydroxyphenyl)-2-butanone, 1,4-di(4-hydroxyphenyl)-2,3-butanediol, 1,4-di(4-hydroxyphenyl)-3-hydroxy-2-butanone, 1-(4-hydroxyphenyl)-4-(indole-3-)butane, 1-(4-hydroxyphenyl)-4-(indole-3)-1-butene, 1-di(4-hydroxyphenyl)-4-(indole-3)-2-butene,
1-(4-hydroxyphenyl)-4-(indole-3)-2-butanol, 1-(4-hydroxyphenyl)-4-(indole-3)-2-butanone, 1-(4-hydroxyphenyl)-4-(indole-3)-2,3-butanediol, 1-(4-hydroxyphenyl-4-(indole-3)-3-hydroxy-2-butanone, indole-3-acetoaldehyde, 1,4-di(indole-3-)butane, 1,4-di(indole-3)-1-butene, 1,4-di(indole-3)-2-butene, 1,4-di(indole-3)-2-butanol, 1,4-di(indole-3)-2-butanone, 1,4-di(indole-3)-2,3-butanediol, 1,4-di(indole-3)-3-hydroxy-2-butanone, succinate semialdehyde, hexane-1,8-dicarboxylic acid, 3-hexene-1,8-dicarboxylic acid, 3-hydroxy-hexane-1,8-dicarboxylic acid, 3-hexanone-1,8-dicarboxylic acid, 3,4-hexanediol-1,8-dicarboxylic acid, 4-hydroxy-3-hexanone-1,8-dicarboxylic acid, fucoidan, iodine, chlorophyll, carotenoid, calcium, magnesium, iron, sodium, potassium, and phosphate.
[0070]Certain embodiments of the present invention include methods for converting a polysaccharide to a suitable monosaccharide or oligosaccharide, comprising: (a) contacting the polysaccharide, wherein the polysaccharide is optionally obtained from biomass, with a microbial system for a time sufficient to convert the polysaccharide to a suitable monosaccharide or oligosaccharide, wherein the microbial system comprises, (i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase, wherein the lyase and/or hydrolase optionally comprises at least one signal peptide or at least one autotransporter domain; (ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, a polysaccharide transporter, and a superchannel; and (iii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase, thereby converting the polysaccharide to a suitable monosaccharide or oligosaccharide.
[0071]Certain embodiments of the present invention include methods for converting a polysaccharide to a suitable monosaccharide or oligosaccharide, comprising: (a) contacting the polysaccharide, wherein the polysaccharide is optionally obtained from biomass, with a chemical or enzymatic catalysis pathway for a time sufficient to convert the polysaccharide to a first monosaccharide or oligosaccharide; and (b) contacting the first monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert the first monosaccharide or oligosaccharide to the suitable monosaccharide or oligosaccharide, wherein the microbial system comprises, (i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase, (ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, a polysaccharide transporter, and a superchannel; and (ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase, thereby converting the polysaccharide to the suitable monosaccharide or oligosaccharide.
[0072]In certain aspects, the lyase is selected from an alginate lyase, a pectate lyase, a polymannuronate lyase, a polygluronate lyase, a polygalacturonate lyase and a rhamnogalacturonate lyase. In certain aspects, the hydrolase is selected from an alginate hydrolase, a rhamnogalacturonate hydrolase, a polymannuronate hydrolase, a pectin hydrolase, and a polygalacturonate hydrolase. In certain aspects, the transporter is selected from an ABC transporter, a symporter, and an outer membrane porin. In certain aspects, the ABC transporter is selected from Atu3021, Atu3022, Atu3023, Atu3024, algM1, algM2, AlgQ1, AlgQ2, AlgS, OG2516--05558, OG2516--05563, OG2516--05568, OG2516--05573, TogM, TogN, TogA, TogB, and functional variants thereof. In certain aspects, the symporter is selected from V12B01--24239 (SEQ ID NO:26), V12B01--24194 (SEQ ID NO:8), and TogT, and functional variants thereof. In certain aspects, the outermembrane porin comprises a porin selected from V12B01--24269, KdgM, and KdgN, and functional variants thereof.
[0073]Certain embodiments include a recombinant microorganism that is capable of growing on a polysaccharide as a sole source of carbon, wherein the polysaccharide is selected from alginate, pectin, tri-galacturonate, di-galacturonate, cellulose, and hemi-cellulose. In certain aspects, the polysaccharide is alginate. In certain aspects, the polysaccharide is pectin. In certain aspects, the polysaccharide is tri-galacturonate.
[0074]Certain embodiments include a recombinant microrganism, comprising (i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase, wherein the lyase or hydrolase optionally comprises at least one signal peptide or at least one autotransporter domain; (ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, a polysaccharide transporter, and a superchannel; and (iii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase. In certain aspects, the microorganism is capable of growing on a polysaccharide as a sole source of carbon. In certain aspects, the polysaccharide is selected from alginate, pectin, and tri-galacturonate.
[0075]Certain embodiments include methods for converting a suitable monosaccharide or oligosaccharide to a first commodity chemical comprising, (a) contacting the suitable monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide or oligosaccharide to the commodity chemical, wherein the microbial system comprises a recombinant microorganism, wherein the microorganism comprises a commodity chemical biosynthesis pathway, thereby converting the suitable monosaccharide or oligosaccharide to the first commodity chemical. In certain aspects, the commodity chemical pathway comprises one or more genes encoding an aldehyde or ketone biosynthesis pathway.
[0076]In certain aspects, the aldehyde or ketone biosynthesis pathway is selected from one or more of an acetoaldehyde, a propionaldehyde, a butyraldehyde, an isobutyraldehyde, a 2-methyl-butyraldehyde, a 3-methyl-butyraldehyde, a 2-phenyl acetaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, a 2-Indole-3-acetoaldehyde, a glutaraldehyde, a 5-amino-pentaldehyde, a succinate semialdehyde, and a succinate 4-hydroxyphenyl acetaldehyde biosynthesis pathway. In certain aspects, the aldehyde or ketone biosynthesis pathway comprises an acetoaldehyde biosynthesis pathway and a biosynthesis pathway selected from a propionaldehyde, butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
[0077]In certain aspects, the aldehyde or ketone biosynthesis pathway comprises a propionaldehyde biosynthesis pathway and a biosynthesis pathway selected from a butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, and phenylacetoaldehyde biosynthesis pathway. In certain aspects, the aldehyde or ketone biosynthesis pathway comprises a butyraldehyde biosynthesis pathway and a biosynthesis pathway selected from an isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway. In certain aspects, the aldehyde or ketone biosynthesis pathway comprises an isobutyraldehyde biosynthesis pathway and a biosynthesis pathway selected from a 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
[0078]In certain aspects, the aldehyde or ketone biosynthesis pathway comprises a 2-methyl-butyraldehyde biosynthesis pathway and a biosynthesis pathway selected from a 3-methyl-butyraldehyde, a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway. In certain aspects, the aldehyde or ketone biosynthesis pathway comprises a 3-methyl-butyraldehyde biosynthesis pathway and a biosynthesis pathway selected from a 2-phenyl acetoaldehyde, a 2-(4-hydroxyphenyl)acetaldehyde, and a 2-Indole-3-acetoaldehyde biosynthesis pathway. In certain aspects, the aldehyde or ketone biosynthesis pathway comprises a 2-phenyl acetoaldehyde biosynthesis pathway and a biosynthesis pathway selected from a 2-(4-hydroxyphenyl)acetaldehyde and a 2-Indole-3-acetoaldehyde biosynthesis pathway.
[0079]In certain aspects, the aldehyde or ketone biosynthesis pathway comprises a 2-(4-hydroxyphenyl)acetaldehyde biosynthesis pathway and a 2-Indole-3-acetoaldehyde biosynthesis pathway. In certain aspects, the first commodity chemical is further enzymatically and/or chemically reduced and dehydrated to a second commodity chemical.
[0080]Certain embodiments include methods for converting a suitable monosaccharide or oligosaccharide to a commodity chemical comprising, (a) contacting the suitable monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide or oligosaccharide to the commodity chemical, wherein the microbial system comprises; (i) one or more genes encoding and expressing an aldehyde biosynthesis pathway, wherein the aldehyde biosynthesis pathway comprises one or more genes encoding and expressing a decarboxylase enzyme; and (ii)
[0081]one or more genes encoding and expressing an aldehyde reductase, thereby converting the suitable monosaccharide or oligosaccharide to the commodity chemical. In certain aspects, the decarboxylase enzyme is an indole-3-pyruvate decarboxylase (IPDC). In certain aspects, the IPDC comprises an amino acid sequence that is at least 80%, 90%, 95%, 98%, or 99% identical to the amino acid sequence set forth in SEQ ID NO: 312. In certain aspects, the aldehyde reductase enzyme is a phenylacetaldehyde reductase (PAR). In certain aspects, the PAR comprises an amino acid sequence that is at least 80%, 90%, 95%, 98%, or 99% identical to the amino acid sequence set forth in SEQ ID NO: 313. In certain aspects, the commodity chemical is selected from 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol.
[0082]Certain embodiments include a recombinant microorganism, comprising (i) one or more genes encoding and expressing an aldehyde biosynthesis pathway, wherein the aldehyde biosynthesis pathway comprises one or more genes encoding and expressing a decarboxylase enzyme; and (ii) one or more genes encoding and expressing an aldehyde reductase. In certain aspects, the aldehyde biosynthesis pathway further comprises one or more genes encoding and expressing an enzyme selected from a CoA-linked aldehyde dehydrogenase, an aldehyde dehydrogenase, and an alcohol dehydrogenase. In certain aspects, the decarboxylase enzyme is an indole-3-pyruvate decarboxylase (IPDC). In certain aspects, the aldehyde reductase enzyme is a phenylacetoaldehyde reductase (PAR). In certain aspects, the microorganism is capable of converting a suitable monosaccharide or oligosaccharide to a commodity chemical. In certain aspects, the commodity chemical is selected from 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol.
[0083]Certain embodiments include a recombinant microorganism, wherein the microorganism comprises reduced ethanol production capability compared to a wild-type microorganism. In certain aspects, the microorganism comprises a reduction or inhibition in the conversion of acetyl-coA to ethanol. In certain aspects, the recombinant microorganism comprises a reduction of an ethanol dehydrogenase, thereby providing a reduced ethanol production capability. In certain aspects, the ethanol dehydrogenase is an adhE, homolog or variant thereof. In certain aspects, the microorganism comprises a deletion or knockout of an adhE, homolog or variant thereof. In certain aspects, the recombinant microorganism comprises one or more deletions or knockouts in a gene encoding an enzyme selected from an enzyme that catalyzes the conversion of acetyl-coA to ethanol, an enzyme that catalyzes the conversion of pyruvate to lactate, an enzyme that catalyzes the conversion of fumarate to succinate, an enzyme that catalyzes the conversion of acetyl-coA and phosphate to coA and acetyl phosphate, an enzyme that catalyzes the conversion of acetyl-coA and formate to coA and pyruvate, and an enzyme that catalyzes the conversion of alpha-keto acid to branched chain amino acids.
[0084]Certain embodiments include wherein the microbial systems or recombinant microorganisms described herein comprise a microorganism selected from Acetobacter aceti, Achromobacter, Acidiphilium, Acinetobacter, Actinomadura, Actinoplanes, Aeropyrum pernix, Agrobacterium, Alcaligenes, Ananas comosus (M), Arthrobacter, Aspargillus niger, Aspargillus oryze, Aspergillus melleus, Aspergillus pulverulentus, Aspergillus saitoi, Aspergillus sojea, Aspergillus usamii, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus lentus, Bacillus licheniformis, Bacillus macerans, Bacillus stearothermophilus, Bacillus subtilis, Bifidobacterium, Brevibacillus brevis, Burkholderia cepacia, Candida cylindracea, Candida rugosa, Carica papaya (L), Cellulosimicrobium, Cephalosporium, Chaetomium erraticum, Chaetomium gracile, Clostridium, Clostridium butyricum, Clostridium acetobutylicum, Clostridium thermocellum, Corynebacterium (glutamicum), Corynebacterium efficiens, Escherichia coli, Enterococcus, Erwina chrysanthemi, Gliconobacter, Gluconacetobacter, Haloarcula, Humicola insolens, Humicola nsolens, Kitasatospora setae, Klebsiella, Klebsiella oxytoca, Kluyveromyces, Kluyveromyces fragilis, Kluyveromyces lactis, Kocuria, Lactlactis, Lactobacillus, Lactobacillus fermentum, Lactobacillus sake, Lactococcus, Lactococcus lactis, Leuconostoc, Methylocystis, Methanolobus siciliae, Methanogenium organophilum, Methanobacterium bryantii, Microbacterium imperiale, Micrococcus lysodeikticus, Microlunatus, Mucor javanicus, Mycobacterium, Myrothecium, Nitrobacter, Nitrosomonas, Nocardia, Papaya carica, Pediococcus, Pediococcus halophilus, Penicillium, Penicillium camemberti, Penicillium citrinum, Penicillium emersonii, Penicillium roqueforti, Penicillum lilactinum, Penicillum multicolor, Paracoccus pantotrophus, Propionibacterium, Pseudomonas, Pseudomonas fluorescens, Pseudomonas denitrificans, Pyrococcus, Pyrococcus furiosus, Pyrococcus horikoshii, Rhizobium, Rhizomucor miehei, Rhizomucor pusillus Lindt, Rhizopus, Rhizopus delemar, Rhizopus japonicus, Rhizopus niveus, Rhizopus oryzae, Rhizopus oligosporus, Rhodococcus, Sccharomyces cerevisiae, Sclerotina libertina, Sphingobacterium multivorum, Sphingobium, Sphingomonas, Streptococcus, Streptococcus thermophilus Y-1, Streptomyces, Streptomyces griseus, Streptomyces lividans, Streptomyces murinus, Streptomyces rubiginosus, Streptomyces violaceoruber, Streptoverticillium mobaraense, Tetragenococcus, Thermus, Thiosphaera pantotropha, Trametes, Trichoderma, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Trichosporon penicillatum, Vibrio alginolyticus, Xanthomonas, yeast, Zygosaccharomyces rouxii, Zymomonas, and Zymomonus mobilis.
[0085]Certain embodiments include a commodity chemical produced by the methods described herein. Certain aspects include a blended commodity chemical comprising a commodity chemical produced by the methods provided herein and a refinery-produced petroleum product. In certain aspects, the commodity chemical is selected from a C10-C12 hydrocarbon, 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol. In certain aspects, the C10-C12 hydrocarbon is selected from 2,7-dimethyloctane and 2,9-dimethyldecane. In certain aspects, the refinery-produced petroleum product is selected from jet fuel and diesel fuel.
[0086]Certain embodiments include methods of producing a commodity chemical enriched refinery-produced petroleum product, comprising (a) blending the refinery-produced petroleum product with the commodity chemical produced by the methods described herein, thereby producing the commodity chemical enriched refinery-produced petroleum product.
DETAILED DESCRIPTION
[0087]Embodiments of the present invention relate to the unexpected discovery that microorganisms which are otherwise incapable of growing on certain polysaccharides derived from biomass as a sole source of carbon, can be engineered to grow on these polysaccharides as a sole source of carbon. Such microorganisms can include both prokaryotic and eukaryotic microorganisms, such as bacteria and yeast. In some aspects, certain laboratory and/or wild-type strains of E. coli can be engineered to grow on biomass derived from either alginate or pectin as a sole source of carbon to produce suitable monosaccharides or other molecules. Among other uses apparent to a person skilled in the art, the monosaccharides and other molecules produced by the growth of these engineered or recombinant microorganisms on alginate or pectin may be utilized as feedstock in the production of various commodity chemicals, such as biofuels.
[0088]Alginate and pectin provide advantages over other biomass sources in the production of biofuel feedstocks. For example, large-scale aquatic-farming can generate a significant amount of biomass without replacing food crop production with energy crop production, deforestation, and recultivating currently uncultivated land, as most of hydrosphere including oceans, rivers, and lakes remains untapped. As one particular example, the Pacific coast of North America is abundant in minerals necessary for large-scale aqua-farming. Giant kelp, which lives in the area, grows as fast as 1 m/day, the fastest among plants on earth, and grows up to 50 m. Additionally, aqua-farming has other benefits including the prevention of a red tide outbreak and the creation of a fish-friendly environment.
[0089]As an additional advantage, and in contrast to lignocellulolic biomass, biomass derived from aquatic, fruit, plant and/or vegetable sources is easy to degrade. Such biomass typically lacks lignin and is significantly more fragile than lignocellulolic biomass and can thus be easily degraded using either enzymes or chemical catalysts (e.g., formate). As one example, aquatic biomass such as seaweed may be easily converted to monosaccharides using either enzymes or chemical catalysis, as seaweed has significantly simpler major sugar components (Alginate: 30%, Mannitol: 15%) as compared to lignocellulose (Glucose: 24.1-39%, Mannose: 0.2-4.6%, Galactose: 0.5-2.4%, Xylose: 0.4-22.1%, Arabinose 1.5-2.8%, and Uronic acids: 1.2-20.7%, and total sugar contents are corresponding to 36.5-70% of dried weight).
[0090]As an additional example, biomass from plants such as fruit and/or vegetable contains pectin, a heteropolysaccharide derived from the plant cell wall. The characteristic structure of pectin is a linear chain of ฮฑ-(1-4)-linked D-galacturonic acid that forms the pectin-backbone, a homogalacturonan. Pectin can be easily converted to oligosaccharides or suitable monosaccharides using either enzymes, chemical catalysis, and/or microbial systems designed to utilize pectin as a source of carbon, as described herein. Saccharification and fermentation using aquatic, fruit, and/or vegetable biomass is much easier than using lignocellulose.
[0091]In this regard, embodiments of the present invention also relate to the surprising discovery that certain microorganisms can be engineered to produce various commodity chemicals, such as biofuels. In certain aspects, these biofuels may include alkanes, such as medium to long chain alkanes, which provide advantages over ethanol based biofuels. In certain aspects, the monosaccharides (e.g., 2-keto-3-deoxy D-gluconate; KDG) and other molecules produced by the growth of various engineered or recombinant microorganisms (e.g., recombinant microorganisms growing on pectin or alginate as a source of carbon) may be useful in the production of commodity chemicals, such as biofuels. As one example, suitable monosaccharides such as KDG may be utilized by recombinant microorganisms to produce alkanes, such as medium to long chain alkanes, among other chemicals. In certain aspects, such recombinant microorganisms may be utilized to produce such commodity chemical as 2,7 dimethyl octane and 2,9 dimethyl decane, among others provided herein and known in the art.
[0092]Such processes produce biofuels with significant advantages over other biofuels. In particular, medium to long chain alkanes provide a number of important advantages over the existing common biofuels such as ethanol and butanol, and are attractive long-term replacements of petroleum-based fuels such as gasoline, diesels, kerosene, and heavy oils in the future. As one example, medium to long chain alkanes and alcohols are major components in all petroleum products and jet fuel in particular, and hence alkanes we produce can be utilized directly by existing engines. By way of further example, medium to long chain alcohols are far better fuels than ethanol, and have a nearly comparable energy density to gasoline.
[0093]As another example, n-alkanes are major components of all oil products including gasoline, diesels, kerosene, and heavy oils. Microbial systems or recombinant microorganisms may be used to produce n-alkanes with different carbon lengths ranging, for example, from C7 to over C20: C7 for gasoline (e.g., motor vehicles), C10-C15 for diesels (e.g., motor vehicles, trains, and ships), and C8-C16 for kerosene (e.g., aviations and ships), and for all heavy oils.
[0094]As one aspect of the invention, the commodity chemicals produced by the methods and recombinant microorganisms described herein may be utilized by existing petroleum refineries for the purposes of blending with petroleum products produced by traditional refinery methods. To this end, as noted above, fuel producers are seeking substantially similar, low carbon fuels that can be blended and distributed through existing infrastructure (refineries, pipelines, tankers). As hydrocarbons, the commodity chemicals produced according to the methods herein are substantially similar to petroleum derived fuels, reduce green house gas emissions by more than 80% from petroleum derived fuels, and are compatible with existing infrastructure in the oil and gas industry. For instance, certain of the commodity chemicals produced herein, including, for example, various C10-C12 hydrocarbons such as 2,7 dimethyloctane, 2,7 dimethyldecanone, among others, are blendable directly into refinery-produced petroleum products, such as jet and diesel fuels. By using such biologically produced commodity chemicals as a blendstock for jet and diesel fuels, refineries may reduce Green House Gas emissions by more than 80%.
[0095]Accordingly, certain embodiments of the present invention relate generally to methods for converting biomass to a commodity chemical, comprising obtaining a polysaccharide from biomass; contacting the polysaccharide with a polysaccharide degrading or depolymerizing pathway, thereby converting the polysaccharide to a suitable monosaccharide. The suitable monosaccharide obtained from such as process may be used for any desired purpose. For instance, in certain aspects, the suitable monosaccharide may then be converted to a commodity chemical (e.g., biofuel) by contacting the suitable monosaccharide with a biofuel biosynthesis pathway, whether as part of a recombinant microorganism, an in vitro enzymatic or chemical pathway, or a combination thereof, thereby converting the monosaccharide to a commodity chemical.
[0096]In other aspects, in producing a commodity chemical such as a biofuel, a suitable monosaccharide may be obtained directly from any available source and converted to a commodity chemical by contacting the suitable monosaccharide with a biofuel biosynthesis pathway, as described herein. Among other uses apparent to a person skilled in the art, such biofuels may then be blended directly with refinery produced petroleum products, such as jet and diesel fuels, to produce commodity chemical enriched, refinery-produced petroleum products.
DEFINITIONS
[0097]Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which the invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, preferred methods and materials are described. For the purposes of the present invention, the following terms are defined below. All references referred to herein are incorporated by reference in their entirety.
[0098]The articles "a" and "an" are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, "an element" means one element or more than one element.
[0099]By "about" is meant a quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length that varies by as much as 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1% to a reference quantity, level, value, number, frequency, percentage, dimension, size, amount, weight or length.
[0100]The term "biologically active fragment", as applied to fragments of a reference polynucleotide or polypeptide sequence, refers to a fragment that has at least about 0.1, 0.5, 1, 2, 5, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 100, 110, 120, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000% or more of the activity of a reference sequence.
[0101]The term "reference sequence" refers generally to a nucleic acid coding sequence, or amino acid sequence, of any enzyme having a biological activity described herein (e.g., saccharide dehydrogenase, alcohol dehydrogenase, dehydratase, lyase, transporter, decarboxylase, hydrolase, etc.), such as a "wild-type" sequence, including those reference sequences exemplified by SEQ ID NOS:1-144, and 308-313. A reference sequence may also include naturally-occurring, functional variants (i.e., orthologs or homologs) of the sequences described herein.
[0102]Included within the scope of the present invention are biologically active fragments of at least about 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 500, 600 or more contiguous nucleotides or amino acid residues in length, including all integers in between, which comprise or encode a polypeptide having an enzymatic activity of a reference polynucleotide or polypeptide. Representative biologically active fragments generally participate in an interaction, e.g., an intra-molecular or an inter-molecular interaction. An inter-molecular interaction can be a specific binding interaction or an enzymatic interaction. Examples of enzymatic interactions or activities include saccharide dehydrogenase activities, alcohol dehydrogenase activities, dehydratases activities, lyase activities, transporter activities, isomerase activities, kinase activities, among others described herein. Biologically active fragments typically comprise one or more active sites or enzymatic/binding motifs, as described herein and known in the art.
[0103]By "coding sequence" is meant any nucleic acid sequence that contributes to the code for the polypeptide product of a gene. By contrast, the term "non-coding sequence" refers to any nucleic acid sequence that does not contribute to the code for the polypeptide product of a gene.
[0104]Throughout this specification, unless the context requires otherwise, the words "comprise", "comprises" and "comprising" will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements.
[0105]By "consisting of," is meant including, and limited to, whatever follows the phrase "consisting of" Thus, the phrase "consisting of" indicates that the listed elements are required or mandatory, and that no other elements may be present.
[0106]By "consisting essentially of" is meant including any elements listed after the phrase, and limited to other elements that do not interfere with or contribute to the activity or action specified in the disclosure for the listed elements. Thus, the phrase "consisting essentially of" indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present depending upon whether or not they affect the activity or action of the listed elements.
[0107]The terms "complementary" and "complementarity" refer to polynucleotides (i.e., a sequence of nucleotides) related by the base-pairing rules. For example, the sequence "A-G-T," is complementary to the sequence "T-C-A." Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands.
[0108]By "corresponds to" or "corresponding to" is meant (a) a polynucleotide having a nucleotide sequence that is substantially identical or complementary to all or a portion of a reference polynucleotide sequence or encoding an amino acid sequence identical to an amino acid sequence in a peptide or protein; or (b) a peptide or polypeptide having an amino acid sequence that is substantially identical to a sequence of amino acids in a reference peptide or protein.
[0109]By "derivative" is meant a polypeptide that has been derived from the basic sequence by modification, for example by conjugation or complexing with other chemical moieties (e.g., pegylation) or by post-translational modification techniques as would be understood in the art. The term "derivative" also includes within its scope alterations that have been made to a parent sequence including additions or deletions that provide for functionally equivalent molecules.
[0110]By "enzyme reactive conditions" it is meant that any necessary conditions are available in an environment (i.e., such factors as temperature, pH, lack of inhibiting substances) which will permit the enzyme to function. Enzyme reactive conditions can be either in vitro, such as in a test tube, or in vivo, such as within a cell.
[0111]As used herein, the terms "function" and "functional" and the like refer to a biological or enzymatic function.
[0112]By "gene" is meant a unit of inheritance that occupies a specific locus on a chromosome and consists of transcriptional and/or translational regulatory sequences and/or a coding region and/or non-translated sequences (i.e., introns, 5' and 3' untranslated sequences).
[0113]"Homology" refers to the percentage number of amino acids that are identical or constitute conservative substitutions. Homology may be determined using sequence comparison programs such as GAP (Deveraux et al., 1984, Nucleic Acids Research 12, 387-395) which is incorporated herein by reference. In this way sequences of a similar or substantially different length to those cited herein could be compared by insertion of gaps into the alignment, such gaps being determined, for example, by the comparison algorithm used by GAP.
[0114]The term "host cell" includes an individual cell or cell culture which can be or has been a recipient of any recombinant vector(s) or isolated polynucleotide of the invention. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in total DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. A host cell includes cells transfected, transformed, or infected in vivo or in vitro with a recombinant vector or a polynucleotide of the invention. A host cell which comprises a recombinant vector of the invention is a recombinant host cell, recombinant cell, or recombinant microrganism.
[0115]By "isolated" is meant material that is substantially or essentially free from components that normally accompany it in its native state. For example, an "isolated polynucleotide", as used herein, refers to a polynucleotide, which has been purified from the sequences which flank it in a naturally-occurring state, e.g., a DNA fragment which has been removed from the sequences that are normally adjacent to the fragment. Alternatively, an "isolated peptide" or an "isolated polypeptide" and the like, as used herein, refer to in vitro isolation and/or purification of a peptide or polypeptide molecule from its natural cellular environment, and from association with other components of the cell, i.e., it is not associated with in vivo substances.
[0116]By "increased" or "increasing" is meant the ability of one or more recombinant microorganisms to produce a greater amount of a given product or molecule (e.g., commodity chemical, biofuel, or intermediate product thereof) as compared to a control microorganism, such as an unmodified microorganism or a differently modified microorganism. An "increased" amount is typically a "statistically significant" amount, and may include an increase that is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30 or more times (including all integers and decimal points in between, e.g., 1.5, 1.6, 1.7. 1.8, etc.) the amount produced by an unmodified microorganism or a differently modified microorganism.
[0117]By "obtained from" is meant that a sample such as, for example, a polynucleotide extract or polypeptide extract is isolated from, or derived from, a particular source, such as a desired organism, typically a microorganism. "Obtained from" can also refer to the situation in which a polynucleotide or polypeptide sequence is isolated from, or derived from, a particular organism or microorganism. For example, a polynucleotide sequence encoding a benzaldehyde lyase enzyme may be isolated from a variety of prokaryotic or eukaryotic microorganisms, such as Pseudomonas.
[0118]The term "operably linked" as used herein means placing a gene under the regulatory control of a promoter, which then controls the transcription and optionally the translation of the gene. In the construction of heterologous promoter/structural gene combinations, it is generally preferred to position the genetic sequence or promoter at a distance from the gene transcription start site that is approximately the same as the distance between that genetic sequence or promoter and the gene it controls in its natural setting; i.e. the gene from which the genetic sequence or promoter is derived. As is known in the art, some variation in this distance can be accommodated without loss of function. Similarly, the preferred positioning of a regulatory sequence element with respect to a heterologous gene to be placed under its control is defined by the positioning of the element in its natural setting; i.e., the genes from which it is derived. "Constitutive promoters" are typically active, i.e., promote transcription, under most conditions. "Inducible promoters" are typically active only under certain conditions, such as in the presence of a given molecule factor (e.g., IPTG) or a given environmental condition (e.g., CO2 concentration, nutrient levels, light, heat). In the absence of that condition, inducible promoters typically do not allow significant or measurable levels of transcriptional activity.
[0119]The recitation "polynucleotide" or "nucleic acid" as used herein designates mRNA, RNA, cRNA, rRNA, cDNA or DNA. The term typically refers to polymeric form of nucleotides of at least 10 bases in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide. The term includes single and double stranded forms of DNA.
[0120]As will be understood by those skilled in the art, the polynucleotide sequences of this invention can include genomic sequences, extra-genomic and plasmid-encoded sequences and smaller engineered gene segments that express, or may be adapted to express, proteins, polypeptides, peptides and the like. Such segments may be naturally isolated, or modified synthetically by the hand of man.
[0121]Polynucleotides may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention, and a polynucleotide may, but need not, be linked to other molecules and/or support materials.
[0122]Polynucleotides may comprise a native sequence (i.e., an endogenous sequence) or may comprise a variant, or a biological functional equivalent of such a sequence. Polynucleotide variants may contain one or more substitutions, additions, deletions and/or insertions, as further described below, preferably such that the enzymatic activity of the encoded polypeptide is not substantially diminished relative to the unmodified polypeptide, and preferably such that the enzymatic activity of the encoded polypeptide is improved (e.g., optimized) relative to the unmodified polypeptide. The effect on the enzymatic activity of the encoded polypeptide may generally be assessed as described herein.
[0123]The polynucleotides of the present invention, regardless of the length of the coding sequence itself, may be combined with other DNA sequences, such as promoters, polyadenylation signals, additional restriction enzyme sites, multiple cloning sites, other coding segments, and the like, such that their overall length may vary considerably. It is therefore contemplated that a polynucleotide fragment of almost any length may be employed, with the total length preferably being limited by the ease of preparation and use in the intended recombinant DNA protocol.
[0124]The terms "polynucleotide variant" and "variant" and the like refer to polynucleotides that display substantial sequence identity with any of the reference polynucleotide sequences or genes described herein, and to polynucleotides that hybridize with any polynucleotide reference sequence described herein, or any polynucleotide coding sequence of any gene or protein referred to herein, under low stringency, medium stringency, high stringency, or very high stringency conditions that are defined hereinafter and known in the art. These terms also encompass polynucleotides that are distinguished from a reference polynucleotide by the addition, deletion or substitution of at least one nucleotide. Accordingly, the terms "polynucleotide variant" and "variant" include polynucleotides in which one or more nucleotides have been added or deleted, or replaced with different nucleotides. In this regard, it is well understood in the art that certain alterations inclusive of mutations, additions, deletions and substitutions can be made to a reference polynucleotide whereby the altered polynucleotide retains the biological function or activity of the reference polynucleotide, or has increased activity in relation to the reference polynucleotide (i.e., optimized). Polynucleotide variants include, for example, polynucleotides having at least 50% (and at least 51% to at least 99% and all integer percentages in between) sequence identity with a reference polynucleotide described herein.
[0125]The terms "polynucleotide variant" and "variant" also include naturally-occurring allelic variants that encode these enzymes. Examples of naturally-occurring variants include allelic variants (same locus), homologs (different locus), and orthologs (different organism). Naturally occurring variants such as these can be identified and isolated using well-known molecular biology techniques including, for example, various polymerase chain reaction (PCR) and hybridization-based techniques as known in the art. Naturally occurring variants can be isolated from any organism that encodes one or more genes having a suitable enzymatic activity described herein (e.g., C--C ligase, diol dehyodrogenase, pectate lyase, alginate lyase, diol dehydratase, transporter, etc.).
[0126]Non-naturally occurring variants can be made by mutagenesis techniques, including those applied to polynucleotides, cells, or organisms. The variants can contain nucleotide substitutions, deletions, inversions and insertions. Variation can occur in either or both the coding and non-coding regions. In certain aspects, non-naturally occurring variants may have been optimized for use in a given microorganism (e.g., E. coli), such as by engineering and screening the enzymes for increased activity, stability, or any other desirable feature. The variations can produce both conservative and non-conservative amino acid substitutions (as compared to the originally encoded product). For nucleotide sequences, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of a reference polypeptide. Variant nucleotide sequences also include synthetically derived nucleotide sequences, such as those generated, for example, by using site-directed mutagenesis but which still encode a biologically active polypeptide. Generally, variants of a particular reference nucleotide sequence will have at least about 30%, 40% 50%, 55%, 60%, 65%, 70%, generally at least about 75%, 80%, 85%, 90% to 95% or more, and even about 97% or 98% or more sequence identity to that particular nucleotide sequence as determined by sequence alignment programs described elsewhere herein using default parameters.
[0127]As used herein, the term "hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions" describes conditions for hybridization and washing. Guidance for performing hybridization reactions can be found in Ausubel et al., "Current Protocols in Molecular Biology", John Wiley & Sons Inc, 1994-1998, Sections 6.3.1-6.3.6. Aqueous and non-aqueous methods are described in that reference and either can be used.
[0128]Reference herein to "low stringency" conditions include and encompass from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1 M to at least about 2 M salt for hybridization at 42ยฐ C., and at least about 1 M to at least about 2 M salt for washing at 42ยฐ C. Low stringency conditions also may include 1% Bovine Serum Albumin (BSA), 1 mM EDTA, 0.5 M NaHPO4 (pH 7.2), 7% SDS for hybridization at 65ยฐ C., and (i) 2รSSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO4 (pH 7.2), 5% SDS for washing at room temperature. One embodiment of low stringency conditions includes hybridization in 6ร sodium chloride/sodium citrate (SSC) at about 45ยฐ C., followed by two washes in 0.2รSSC, 0.1% SDS at least at 50ยฐ C. (the temperature of the washes can be increased to 55ยฐ C. for low stringency conditions).
[0129]"Medium stringency" conditions include and encompass from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5 M to at least about 0.9 M salt for hybridization at 42ยฐ C., and at least about 0.1 M to at least about 0.2 M salt for washing at 55ยฐ C. Medium stringency conditions also may include 1% Bovine Serum Albumin (BSA), 1 mM EDTA, 0.5 M NaHPO4 (pH 7.2), 7% SDS for hybridization at 65ยฐ C., and (i) 2รSSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO4 (pH 7.2), 5% SDS for washing at 60-65ยฐ C. One embodiment of medium stringency conditions includes hybridizing in 6รSSC at about 45ยฐ C., followed by one or more washes in 0.2รSSC, 0.1% SDS at 60ยฐ C.
[0130]"High stringency" conditions include and encompass from at least about 31% v/v to at least about 50% v/v formamide and from about 0.01 M to about 0.15 M salt for hybridization at 42ยฐ C., and about 0.01 M to about 0.02 M salt for washing at 55ยฐ C. High stringency conditions also may include 1% BSA, 1 mM EDTA, 0.5 M NaHPO4 (pH 7.2), 7% SDS for hybridization at 65ยฐ C., and (i) 0.2รSSC, 0.1% SDS; or (ii) 0.5% BSA, 1 mM EDTA, 40 mM NaHPO4 (pH 7.2), 1% SDS for washing at a temperature in excess of 65ยฐ C. One embodiment of high stringency conditions includes hybridizing in 6รSSC at about 45ยฐ C., followed by one or more washes in 0.2รSSC, 0.1% SDS at 65ยฐ C.
[0131]One embodiment of "very high stringency" conditions includes hybridizing in 0.5 M sodium phosphate, 7% SDS at 65ยฐ C., followed by one or more washes in 0.2รSSC, 1% SDS at 65ยฐ C.
[0132]Other stringency conditions are well known in the art and a skilled addressee will recognize that various factors can be manipulated to optimize the specificity of the hybridization. Optimization of the stringency of the final washes can serve to ensure a high degree of hybridization. For detailed examples, see Ausubel et al., supra at pages 2.10.1 to 2.10.16 and Sambrook et al., Current Protocols in Molecular Biology (1989), at sections 1.101 to 1.104.
[0133]While stringent washes are typically carried out at temperatures from about 42ยฐ C. to 68ยฐ C., one skilled in the art will appreciate that other temperatures may be suitable for stringent conditions. Maximum hybridization rate typically occurs at about 20ยฐ C. to 25ยฐ C. below the Tm for formation of a DNA-DNA hybrid. It is well known in the art that the Tm is the melting temperature, or temperature at which two complementary polynucleotide sequences dissociate. Methods for estimating Tm are well known in the art (see Ausubel et al., supra at page 2.10.8).
[0134]In general, the Tm of a perfectly matched duplex of DNA may be predicted as an approximation by the formula: Tm=81.5+16.6 (log10M)+0.41 (% G+C)-0.63 (% formamide)-(600/length) wherein: M is the concentration of Na.sup.+, preferably in the range of 0.01 molar to 0.4 molar; % G+C is the sum of guano sine and cytosine bases as a percentage of the total number of bases, within the range between 30% and 75% G+C; % formamide is the percent formamide concentration by volume; length is the number of base pairs in the DNA duplex. The Tm of a duplex DNA decreases by approximately 1ยฐ C. with every increase of 1% in the number of randomly mismatched base pairs. Washing is generally carried out at Tm-15ยฐ C. for high stringency, or Tm-30ยฐ C. for moderate stringency.
[0135]In one example of a hybridization procedure, a membrane (e.g., a nitrocellulose membrane or a nylon membrane) containing immobilized DNA is hybridized overnight at 42ยฐ C. in a hybridization buffer (50% deionizer formamide, 5รSSC, 5ร Reinhardt's solution (0.1% fecal, 0.1% polyvinylpyrollidone and 0.1% bovine serum albumin), 0.1% SDS and 200 mg/mL denatured salmon sperm DNA) containing a labeled probe. The membrane is then subjected to two sequential medium stringency washes (i.e., 2รSSC, 0.1% SDS for 15 min at 45ยฐ C., followed by 2รSSC, 0.1% SDS for 15 min at 50ยฐ C.), followed by two sequential higher stringency washes (i.e., 0.2รSSC, 0.1% SDS for 12 min at 55ยฐ C. followed by 0.2รSSC and 0.1% SDS solution for 12 min at 65-68ยฐ C.
[0136]Polynucleotides and fusions thereof may be prepared, manipulated and/or expressed using any of a variety of well established techniques known and available in the art. For example, polynucleotide sequences which encode polypeptides of the invention, or fusion proteins or functional equivalents thereof, may be used in recombinant DNA molecules to direct expression of a selected enzyme in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences that encode substantially the same or a functionally equivalent amino acid sequence may be produced and these sequences may be used to clone and express a given polypeptide.
[0137]As will be understood by those of skill in the art, it may be advantageous in some instances to produce polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce a recombinant RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence. Such nucleotides are typically referred to as "codon-optimized." Any of the nucleotide sequences described herein may be utilized in such a "codon-optimized" form. For example, the nucleotide coding sequence of the benzaldehyde lyase from Pseudomonas fluorescens may be codon-optimized for expression in E. coli.
[0138]Moreover, the polynucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter polypeptide encoding sequences for a variety of reasons, including but not limited to, alterations which modify the cloning, processing, expression and/or activity of the gene product.
[0139]In order to express a desired polypeptide, a nucleotide sequence encoding the polypeptide, or a functional equivalent, may be inserted into appropriate expression vector, i.e., a vector that contains the necessary elements for the transcription and translation of the inserted coding sequence. Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding a polypeptide of interest and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook et al., Molecular Cloning, A Laboratory Manual (1989), and Ausubel et al., Current Protocols in Molecular Biology (1989).
[0140]"Polypeptide," "polypeptide fragment," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues and to variants and synthetic analogues of the same. Thus, these terms apply to amino acid polymers in which one or more amino acid residues are synthetic non-naturally occurring amino acids, such as a chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally-occurring amino acid polymers. In certain aspects, polypeptides may include enzymatic polypeptides, or "enzymes," which typically catalyze (i.e., increase the rate of) various chemical reactions.
[0141]The recitation polypeptide "variant" refers to polypeptides that are distinguished from a reference polypeptide sequence by the addition, deletion or substitution of at least one amino acid residue. In certain embodiments, a polypeptide variant is distinguished from a reference polypeptide by one or more substitutions, which may be conservative or non-conservative. In certain embodiments, the polypeptide variant comprises conservative substitutions and, in this regard, it is well understood in the art that some amino acids may be changed to others with broadly similar properties without changing the nature of the activity of the polypeptide. Polypeptide variants also encompass polypeptides in which one or more amino acids have been added or deleted, or replaced with different amino acid residues.
[0142]The present invention contemplates the use in the methods described herein of variants of full-length polypeptides having any of the enzymatic activities described herein, truncated fragments of these full-length polypeptides, variants of truncated fragments, as well as their related biologically active fragments. Typically, biologically active fragments of a polypeptide may participate in an interaction, for example, an intra-molecular or an inter-molecular interaction. An inter-molecular interaction can be a specific binding interaction or an enzymatic interaction (e.g., the interaction can be transient and a covalent bond is formed or broken). Biologically active fragments of a polypeptide/enzyme an enzymatic activity described herein include peptides comprising amino acid sequences sufficiently similar to, or derived from, the amino acid sequences of a (putative) full-length reference polypeptide sequence. Typically, biologically active fragments comprise a domain or motif with at least one enzymatic activity, and may include one or more (and in some cases all) of the various active domains. A biologically active fragment of a an enzyme can be a polypeptide fragment which is, for example, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 220, 240, 260, 280, 300, 320, 340, 360, 380, 400, 450, 500, 600 or more contiguous amino acids, including all integers in between, of a reference polypeptide sequence. In certain embodiments, a biologically active fragment comprises a conserved enzymatic sequence, domain, or motif, as described elsewhere herein and known in the art. Suitably, the biologically-active fragment has no less than about 1%, 10%, 25%, 50% of an activity of the wild-type polypeptide from which it is derived.
[0143]The term "exogenous" refers generally to a polynucleotide sequence or polypeptide that does not naturally occur in a wild-type cell or organism, but is typically introduced into the cell by molecular biological techniques, i.e., engineering to produce a recombinant microorganism. Examples of "exogenous" polynucleotides include vectors, plasmids, and/or man-made nucleic acid constructs encoding a desired protein or enzyme. The term "endogenous" refers generally to naturally occurring polynucleotide sequences or polypeptides that may be found in a given wild-type cell or organism. For example, certain naturally-occurring bacterial or yeast species do not typically contain a benzaldehyde lyase gene, and, therefore, do not comprise an "endogenous" polynucleotide sequence that encodes a benzaldehyde lyase. In this regard, it is also noted that even though an organism may comprise an endogenous copy of a given polynucleotide sequence or gene, the introduction of a plasmid or vector encoding that sequence, such as to over-express or otherwise regulate the expression of the encoded protein, represents an "exogenous" copy of that gene or polynucleotide sequence. Any of the of pathways, genes, or enzymes described herein may utilize or rely on an "endogenous" sequence, or may be provided as one or more "exogenous" polynucleotide sequences, and/or may be utilized according to the endogenous sequences already contained within a given microorganism.
[0144]A "recombinant" microorganism typically comprises one or more exogenous nucleotide sequences, such as in a plasmid or vector.
[0145]The recitations "sequence identity" or, for example, comprising a "sequence 50% identical to," as used herein, refer to the extent that sequences are identical on a nucleotide-by-nucleotide basis or an amino acid-by-amino acid basis over a window of comparison. Thus, a "percentage of sequence identity" may be calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, I) or the identical amino acid residue (e.g., Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys and Met) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity.
[0146]Terms used to describe sequence relationships between two or more polynucleotides or polypeptides include "reference sequence", "comparison window", "sequence identity", "percentage of sequence identity" and "substantial identity". A "reference sequence" is at least 12 but frequently 15 to 18 and often at least 25 monomer units, inclusive of nucleotides and amino acid residues, in length. Because two polynucleotides may each comprise (1) a sequence (i.e., only a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window" refers to a conceptual segment of at least 6 contiguous positions, usually about 50 to about 100, more usually about 100 to about 150 in which a sequence is compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. The comparison window may comprise additions or deletions (i.e., gaps) of about 20% or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison window may be conducted by computerized implementations of algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Drive Madison, Wis., USA) or by inspection and the best alignment (i.e., resulting in the highest percentage homology over the comparison window) generated by any of the various methods selected. Reference also may be made to the BLAST family of programs as for example disclosed by Altschul et al., 1997, Nucl. Acids Res. 25:3389. A detailed discussion of sequence analysis can be found in Unit 19.3 of Ausubel et al., "Current Protocols in Molecular Biology", John Wiley & Sons Inc, 1994-1998, Chapter 15.
[0147]"Transformation" refers generally to the permanent, heritable alteration in a cell resulting from the uptake and incorporation of foreign DNA into the host-cell genome; also, the transfer of an exogenous gene from one organism into the genome of another organism.
[0148]By "vector" is meant a polynucleotide molecule, preferably a DNA molecule derived, for example, from a plasmid, bacteriophage, yeast or virus, into which a polynucleotide can be inserted or cloned. A vector preferably contains one or more unique restriction sites and can be capable of autonomous replication in a defined host cell including a target cell or tissue or a progenitor cell or tissue thereof, or be integrable with the genome of the defined host such that the cloned sequence is reproducible. Accordingly, the vector can be an autonomously replicating vector, i.e., a vector that exists as an extra-chromosomal entity, the replication of which is independent of chromosomal replication, e.g., a linear or closed circular plasmid, an extra-chromosomal element, a mini-chromosome, or an artificial chromosome. The vector can contain any means for assuring self-replication. Alternatively, the vector can be one which, when introduced into the host cell, is integrated into the genome and replicated together with the chromosome(s) into which it has been integrated. Such a vector may comprise specific sequences that allow recombination into a particular, desired site of the host chromosome. A vector system can comprise a single vector or plasmid, two or more vectors or plasmids, which together contain the total DNA to be introduced into the genome of the host cell, or a transposon. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced. In the present case, the vector is preferably one which is operably functional in a bacterial cell, such as a cyanobacterial cell. The vector can include a reporter gene, such as a green fluorescent protein (GFP), which can be either fused in frame to one or more of the encoded polypeptides, or expressed separately. The vector can also include a selection marker such as an antibiotic resistance gene that can be used for selection of suitable transformants.
[0149]The terms "wild-type" and "naturally occurring" are used interchangeably to refer to a gene or gene product that has the characteristics of that gene or gene product when isolated from a naturally occurring source. A wild type gene or gene product (e.g., a polypeptide) is that which is most frequently observed in a population and is thus arbitrarily designed the "normal" or "wild-type" form of the gene.
[0150]Examples of "biomass" include aquatic or marine biomass, fruit-based biomass such as fruit waste, and vegetable-based biomass such as vegetable waste, among others. Examples of aquatic or marine biomass include, but are not limited to, kelp, giant kelp, seaweed, algae, and marine microflora, microalgae, sea grass, and the like. In certain aspects, biomass does not include fossilized sources of carbon, such as hydrocarbons that are typically found within the top layer of the Earth's crust (e.g., natural gas, nonvolatile materials composed of almost pure carbon, like anthracite coal, etc).
[0151]Examples of fruit and/or vegetable biomass include, but are not limited to, any source of pectin such as plant peel and pomace including citrus, orange, grapefruit, potato, tomato, grape, mango, gooseberry, carrot, sugar-beet, and apple, among others.
[0152]Examples of polysaccharides, oligosaccharides, monosaccharides or other sugar components of biomass include, but are not limited to, alginate, agar, carrageenan, fucoidan, pectin, gluronate, mannuronate, mannitol, lyxose, cellulose, hemicellulose, glycerol, xylitol, glucose, mannose, galactose, xylose, xylan, mannan, arabinan, arabinose, glucuronate, galacturonate (including di- and tri-galacturonates), rhamnose, and the like.
[0153]Certain examples of alginate-derived polysaccharides include saturated polysaccharides, such as ฮฒ-D-mannuronate, ฮฑ-L-gluronate, dialginate, trialginate, pentalginate, hexylginate, heptalginate, octalginate, nonalginate, decalginate, undecalginate, dodecalginate and polyalginate, as well as unsaturated polysaccharides such as 4-deoxy-L-erythro-5-hexoseulose uronic acid, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-D-mannuronate or L-guluronate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-dialginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-trialginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-tetralginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-pentalginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-hexylginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-heptalginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-octalginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-nonalginate, 4-(4-deoxy-beta-D-mann-4-enuronosyl)-undecalginate, and 4-(4-deoxy-beta-D-mann-4-enuronosyl)-dodecalginate.
[0154]Certain examples of pectin-derived polysaccharides include saturated polysaccharides, such as galacturonate, digalacturonate, trigalacturonate, tetragalacturonate, pentagalacturonate, hexagalacturonate, heptagalacturonate, octagalacturonate, nonagalacturonate, decagalacturonate, dodecagalacturonate, polygalacturonate, and rhamnopolygalacturonate, as well as saturated polysaccharides such as 4-deoxy-L-threo-5-hexosulose uronate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-galacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-digalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-trigalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-tetragalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-pentagalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-hexagalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-heptagalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-octagalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-nonagalacturonate, 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-decagalacturonate, and 4-(4-Deoxy-alpha-D-gluc-4-enuronosyl)-D-dodecagalacturonate.
[0155]These polysaccharide or oligosaccharide components may be converted into "suitable monosaccharides" or other "suitable saccharides," such as "suitable oligosaccharides," by the microorganisms described herein which are capable of growing on such polysaccharides or other sugar components as a source of carbon (e.g., a sole source of carbon).
[0156]A "suitable monosaccharide" or "suitable saccharide" refers generally to any saccharide that may be produced by a recombinant microorganism growing on pectin, alginate, or other saccharide (e.g., galacturonate, cellulose, hemi-cellulose etc.) as a source or sole source of carbon, and also refers generally to any saccharide that may be utilized in a biofuel biosynthesis pathway of the present invention to produce hydrocarbons such as biofuels or biopetrols. Examples of suitable monosaccharides or oligosaccharides include, but are not limited to, 2-keto-3-deoxy D-gluconate (KDG), D-mannitol, gluronate, mannuronate, mannitol, lyxose, glycerol, xylitol, glucose, mannose, galactose, xylose, arabinose, glucuronate, galacturonates, and rhamnose, and the like. As noted herein, a "suitable monosaccharide" or "suitable saccharide" as used herein may be produced by an engineered or recombinant microorganism of the present invention, or may be obtained from commercially available sources.
[0157]The recitation "commodity chemical" as used herein includes any saleable or marketable chemical that can be produced either directly or as a by-product of the methods provided herein, including biofuels and/or biopetrols. General examples of "commodity chemicals" include, but are not limited to, biofuels, minerals, polymer precursors, fatty alcohols, surfactants, plasticizers, and solvents. The recitation "biofuels" as used herein includes solid, liquid, or gas fuels derived, at least in part, from a biological source, such as a recombinant microorganism.
Examples of commodity chemicals include, but are not limited to, methane, methanol, ethane, ethene, ethanol, n-propane, 1-propene, 1-propanol, propanal, acetone, propionate, n-butane, 1-butene, 1-butanol, butanal, butanoate, isobutanal, isobutanol, 2-methylbutanal, 2-methylbutanol, 3-methylbutanal, 3-methylbutanol, 2-butene, 2-butanol, 2-butanone, 2,3-butanediol, 3-hydroxy-2-butanone, 2,3-butanedione, ethylbenzene, ethenylbenzene, 2-phenylethanol, phenylacetaldehyde, 1-phenylbutane, 4-phenyl-1-butene, 4-phenyl-2-butene, 1-phenyl-2-butene, 1-phenyl-2-butanol, 4-phenyl-2-butanol, 1-phenyl-2-butanone, 4-phenyl-2-butanone, 1-phenyl-2,3-butandiol, 1-phenyl-3-hydroxy-2-butanone, 4-phenyl-3-hydroxy-2-butanone, 1-phenyl-2,3-butanedione, n-pentane, ethylphenol, ethenylphenol, 2-(4-hydroxyphenyl)ethanol, 4-hydroxyphenylacetaldehyde, 1-(4-hydroxyphenyl) butane, 4-(4-hydroxyphenyl)-1-butene, 4-(4-hydroxyphenyl)-2-butene, 1-(4-hydroxyphenyl)-1-butene, 1-(4-hydroxyphenyl)-2-butanol, 4-(4-hydroxyphenyl)-2-butanol, 1-(4-hydroxyphenyl)-2-butanone, 4-(4-hydroxyphenyl)-2-butanone, 1-(4-hydroxyphenyl)-2,3-butandiol, 1-(4-hydroxyphenyl)-3-hydroxy-2-butanone, 4-(4-hydroxyphenyl)-3-hydroxy-2-butanone, 1-(4-hydroxyphenyl)-2,3-butanonedione, indolylethane, indolylethene, 2-(indole-3-)ethanol, n-pentane, 1-pentene, 1-pentanol, pentanal, pentanoate, 2-pentene, 2-pentanol, 3-pentanol, 2-pentanone, 3-pentanone, 4-methylpentanal, 4-methylpentanol, 2,3-pentanediol, 2-hydroxy-3-pentanone, 3-hydroxy-2-pentanone, 2,3-pentanedione, 2-methylpentane, 4-methyl-1-pentene, 4-methyl-2-pentene, 4-methyl-3-pentene, 4-methyl-2-pentanol, 2-methyl-3-pentanol, 4-methyl-2-pentanone, 2-methyl-3-pentanone, 4-methyl-2,3-pentanediol, 4-methyl-2-hydroxy-3-pentanone, 4-methyl-3-hydroxy-2-pentanone, 4-methyl-2,3-pentanedione, 1-phenylpentane, 1-phenyl-1-pentene, 1-phenyl-2-pentene, 1-phenyl-3-pentene, 1-phenyl-2-pentanol, 1-phenyl-3-pentanol, 1-phenyl-2-pentanone, 1-phenyl-3-pentanone, 1-phenyl-2,3-pentanediol, 1-phenyl-2-hydroxy-3-pentanone, 1-phenyl-3-hydroxy-2-pentanone, 1-phenyl-2,3-pentanedione, 4-methyl-1-phenylpentane, 4-methyl-1-phenyl-1-pentene, 4-methyl-1-phenyl-2-pentene, 4-methyl-1-phenyl-3-pentene, 4-methyl-1-phenyl-3-pentanol, 4-methyl-1-phenyl-2-pentanol, 4-methyl-1-phenyl-3-pentanone, 4-methyl-1-phenyl-2-pentanone, 4-methyl-1-phenyl-2,3-pentanediol, 4-methyl-1-phenyl-2,3-pentanedione, 4-methyl-1-phenyl-3-hydroxy-2-pentanone, 4-methyl-1-phenyl-2-hydroxy-3-pentanone, 1-(4-hydroxyphenyl) pentane, 1-(4-hydroxyphenyl)-1-pentene, 1-(4-hydroxyphenyl)-2-pentene, 1-(4-hydroxyphenyl)-3-pentene, 1-(4-hydroxyphenyl)-2-pentanol, 1-(4-hydroxyphenyl)-3-pentanol, 1-(4-hydroxyphenyl)-2-pentanone, 1-(4-hydroxyphenyl)-3-pentanone, 1-(4-hydroxyphenyl)-2,3-pentanediol, 1-(4-hydroxyphenyl)-2-hydroxy-3-pentanone, 1-(4-hydroxyphenyl)-3-hydroxy-2-pentanone, 1-(4-hydroxyphenyl)-2,3-pentanedione, 4-methyl-1-(4-hydroxyphenyl) pentane, 4-methyl-1-(4-hydroxyphenyl)-2-pentene, 4-methyl-1-(4-hydroxyphenyl)-3-pentene, 4-methyl-1-(4-hydroxyphenyl)-1-pentene, 4-methyl-1-(4-hydroxyphenyl)-3-pentanol, 4-methyl-1-(4-hydroxyphenyl)-2-pentanol, 4-methyl-1-(4-hydroxyphenyl)-3-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2,3-pentanediol, 4-methyl-1-(4-hydroxyphenyl)-2,3-pentanedione, 4-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-pentanone, 4-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-pentanone, 1-indole-3-pentane, 1-(indole-3)-1-pentene, 1-(indole-3)-2-pentene, 1-(indole-3)-3-pentene, 1-(indole-3)-2-pentanol, 1-(indole-3)-3-pentanol, 1-(indole-3)-2-pentanone, 1-(indole-3)-3-pentanone, 1-(indole-3)-2,3-pentanediol, 1-(indole-3)-2-hydroxy-3-pentanone, 1-(indole-3)-3-hydroxy-2-pentanone, 1-(indole-3)-2,3-pentanedione, 4-methyl-1-(indole-3-)pentane, 4-methyl-1-(indole-3)-2-pentene, 4-methyl-1-(indole-3)-3-pentene, 4-methyl-1-(indole-3)-1-pentene, 4-methyl-2-(indole-3)-3-pentanol, 4-methyl-1-(indole-3)-2-pentanol, 4-methyl-1-(indole-3)-3-pentanone, 4-methyl-1-(indole-3)-2-pentanone, 4-methyl-1-(indole-3)-2,3-pentanediol, 4-methyl-1-(indole-3)-2,3-pentanedione, 4-methyl-1-(indole-3)-3-hydroxy-2-pentanone, 4-methyl-1-(indole-3)-2-hydroxy-3-pentanone, n-hexane, 1-hexene, 1-hexanol, hexanal, hexanoate, 2-hexene, 3-hexene, 2-hexanol, 3-hexanol, 2-hexanone, 3-hexanone, 2,3-hexanediol, 2,3-hexanedione, 3,4-hexanediol, 3,4-hexanedione, 2-hydroxy-3-hexanone, 3-hydroxy-2-hexanone, 3-hydroxy-4-hexanone, 4-hydroxy-3-hexanone, 2-methylhexane, 3-methylhexane, 2-methyl-2-hexene, 2-methyl-3-hexene, 5-methyl-1-hexene, 5-methyl-2-hexene, 4-methyl-1-hexene, 4-methyl-2-hexene, 3-methyl-3-hexene, 3-methyl-2-hexene, 3-methyl-1-hexene, 2-methyl-3-hexanol, 5-methyl-2-hexanol, 5-methyl-3-hexanol, 2-methyl-3-hexanone, 5-methyl-2-hexanone, 5-methyl-3-hexanone, 2-methyl-3,4-hexanediol, 2-methyl-3,4-hexanedione, 5-methyl-2,3-hexanediol, 5-methyl-2,3-hexanedione, 4-methyl-2,3-hexanediol, 4-methyl-2,3-hexanedione, 2-methyl-3-hydroxy-4-hexanone, 2-methyl-4-hydroxy-3-hexanone, 5-methyl-2-hydroxy-3-hexanone, 5-methyl-3-hydroxy-2-hexanone, 4-methyl-2-hydroxy-3-hexanone, 4-methyl-3-hydroxy-2-hexanone, 2,5-dimethylhexane, 2,5-dimethyl-2-hexene, 2,5-dimethyl-3-hexene, 2,5-dimethyl-3-hexanol, 2,5-dimethyl-3-hexanone, 2,5-dimethyl-3,4-hexanediol, 2,5-dimethyl-3,4-hexanedione, 2,5-dimethyl-3-hydroxy-4-hexanone, 5-methyl-1-phenylhexane, 4-methyl-1-phenylhexane, 5-methyl-1-phenyl-1-hexene, 5-methyl-1-phenyl-2-hexene, 5-methyl-1-phenyl-3-hexene, 4-methyl-1-phenyl-1-hexene, 4-methyl-1-phenyl-2-hexene, 4-methyl-1-phenyl-3-hexene, 5-methyl-1-phenyl-2-hexanol, 5-methyl-1-phenyl-3-hexanol, 4-methyl-1-phenyl-2-hexanol, 4-methyl-1-phenyl-3-hexanol, 5-methyl-1-phenyl-2-hexanone, 5-methyl-1-phenyl-3-hexanone, 4-methyl-1-phenyl-2-hexanone, 4-methyl-1-phenyl-3-hexanone, 5-methyl-1-phenyl-2,3-hexanediol, 4-methyl-1-phenyl-2,3-hexanediol, 5-methyl-1-phenyl-3-hydroxy-2-hexanone, 5-methyl-1-phenyl-2-hydroxy-3-hexanone, 4-methyl-1-phenyl-3-hydroxy-2-hexanone, 4-methyl-1-phenyl-2-hydroxy-3-hexanone, 5-methyl-1-phenyl-2,3-hexanedione, 4-methyl-1-phenyl-2,3-hexanedione, 4-methyl-1-(4-hydroxyphenyl)hexane, 5-methyl-1-(4-hydroxyphenyl)-1-hexene, 5-methyl-1-(4-hydroxyphenyl)-2-hexene, 5-methyl-1-(4-hydroxyphenyl)-3-hexene, 4-methyl-1-(4-hydroxyphenyl)-1-hexene, 4-methyl-1-(4-hydroxyphenyl)-2-hexene, 4-methyl-1-(4-hydroxyphenyl)-3-hexene, 5-methyl-1-(4-hydroxyphenyl)-2-hexanol, 5-methyl-1-(4-hydroxyphenyl)-3-hexanol, 4-methyl-1-(4-hydroxyphenyl)-2-hexanol, 4-methyl-1-(4-hydroxyphenyl)-3-hexanol, 5-methyl-1-(4-hydroxyphenyl)-2-hexanone, 5-methyl-1-(4-hydroxyphenyl)-3-hexanone, 4-methyl-1-(4-hydroxyphenyl)-2-hexanone, 4-methyl-1-(4-hydroxyphenyl)-3-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2,3-hexanediol, 4-methyl-1-(4-hydroxyphenyl)-2,3-hexanediol, 5-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-hexanone, 4-methyl-1-(4-hydroxyphenyl)-3-hydroxy-2-hexanone, 4-methyl-1-(4-hydroxyphenyl)-2-hydroxy-3-hexanone, 5-methyl-1-(4-hydroxyphenyl)-2,3-hexanedione, 4-methyl-1-(4-hydroxyphenyl)-2,3-hexanedione, 4-methyl-1-(indole-3-)hexane, 5-methyl-1-(indole-3)-1-hexene, 5-methyl-1-(indole-3)-2-hexene, 5-methyl-1-(indole-3)-3-hexene, 4-methyl-1-(indole-3)-1-hexene, 4-methyl-1-(indole-3)-2-hexene, 4-methyl-1-(indole-3)-3-hexene, 5-methyl-1-(indole-3)-2-hexanol, 5-methyl-1-(indole-3)-3-hexanol, 4-methyl-1-(indole-3)-2-hexanol, 4-methyl-1-(indole-3)-3-hexanol, 5-methyl-1-(indole-3)-2-hexanone, 5-methyl-1-(indole-3)-3-hexanone, 4-methyl-1-(indole-3)-2-hexanone, 4-methyl-1-(indole-3)-3-hexanone, 5-methyl-1-(indole-3)-2,3-hexanediol, 4-methyl-1-(indole-3)-2,3-hexanediol, 5-methyl-1-(indole-3)-3-hydroxy-2-hexanone, 5-methyl-1-(indole-3)-2-hydroxy-3-hexanone, 4-methyl-1-(indole-3)-3-hydroxy-2-hexanone, 4-methyl-1-(indole-3)-2-hydroxy-3-hexanone, 5-methyl-1-(indole-3)-2,3-hexanedione, 4-methyl-1-(indole-3)-2,3-hexanedione, n-heptane, 1-heptene, 1-heptanol, heptanal, heptanoate, 2-heptene, 3-heptene, 2-heptanol, 3-heptanol, 4-heptanol, 2-heptanone, 3-heptanone, 4-heptanone, 2,3-heptanediol, 2,3-heptanedione, 3,4-heptanediol, 3,4-heptanedione, 2-hydroxy-3-heptanone, 3-hydroxy-2-heptanone, 3-hydroxy-4-heptanone, 4-hydroxy-3-heptanone, 2-methylheptane, 3-methylheptane, 6-methyl-2-heptene, 6-methyl-3-heptene, 2-methyl-3-heptene, 2-methyl-2-heptene, 5-methyl-2-heptene, 5-methyl-3-heptene, 3-methyl-3-heptene, 2-methyl-3-heptanol, 2-methyl-4-heptanol, 6-methyl-3-heptanol, 5-methyl-3-heptanol, 3-methyl-4-heptanol, 2-methyl-3-heptanone, 2-methyl-4-heptanone, 6-methyl-3-heptanone, 5-methyl-3-heptanone, 3-methyl-4-heptanone, 2-methyl-3,4-heptanediol, 2-methyl-3,4-heptanedione, 6-methyl-3,4-heptanediol, 6-methyl-3,4-heptanedione, 5-methyl-3,4-heptanediol, 5-methyl-3,4-heptanedione, 2-methyl-3-hydroxy-4-heptanone, 2-methyl-4-hydroxy-3-heptanone, 6-methyl-3-hydroxy-4-heptanone, 6-methyl-4-hydroxy-3-heptanone, 5-methyl-3-hydroxy-4-heptanone, 5-methyl-4-hydroxy-3-heptanone, 2,6-dimethylheptane, 2,5-dimethylheptane, 2,6-dimethyl-2-heptene, 2,6-dimethyl-3-heptene, 2,5-dimethyl-2-heptene, 2,5-dimethyl-3-heptene, 3,6-dimethyl-3-heptene, 2,6-dimethyl-3-heptanol, 2,6-dimethyl-4-heptanol, 2,5-dimethyl-3-heptanol, 2,5-dimethyl-4-heptanol, 2,6-dimethyl-3,4-heptanediol, 2,6-dimethyl-3,4-heptanedione, 2,5-dimethyl-3,4-heptanediol, 2,5-dimethyl-3,4-heptanedione, 2,6-dimethyl-3-hydroxy-4-heptanone, 2,6-dimethyl-4-hydroxy-3-heptanone, 2,5-dimethyl-3-hydroxy-4-heptanone, 2,5-dimethyl-4-hydroxy-3-heptanone, n-octane, 1-octene, 2-octene, 1-octanol, octanal, octanoate, 3-octene, 4-octene, 4-octanol, 4-octanone, 4,5-octanediol, 4,5-octanedione, 4-hydroxy-5-octanone, 2-methyloctane, 2-methyl-3-octene, 2-methyl-4-octene, 7-methyl-3-octene, 3-methyl-3-octene, 3-methyl-4-octene, 6-methyl-3-octene, 2-methyl-4-octanol, 7-methyl-4-octanol, 3-methyl-4-octanol, 6-methyl-4-octanol, 2-methyl-4-octanone, 7-methyl-4-octanone, 3-methyl-4-octanone, 6-methyl-4-octanone, 2-methyl-4,5-octanediol, 2-methyl-4,5-octanedione, 3-methyl-4,5-octanediol, 3-methyl-4,5-octanedione, 2-methyl-4-hydroxy-5-octanone, 2-methyl-5-hydroxy-4-octanone, 3-methyl-4-hydroxy-5-octanone, 3-methyl-5-hydroxy-4-octanone, 2,7-dimethyloctane, 2,7-dimethyl-3-octene, 2,7-dimethyl-4-octene, 2,7-dimethyl-4-octanol, 2,7-dimethyl-4-octanone, 2,7-dimethyl-4,5-octanediol, 2,7-dimethyl-4,5-octanedione, 2,7-dimethyl-4-hydroxy-5-octanone, 2,6-dimethyloctane, 2,6-dimethyl-3-octene, 2,6-dimethyl-4-octene, 3,7-dimethyl-3-octene, 2,6-dimethyl-4-octanol, 3,7-dimethyl-4-octanol, 2,6-dimethyl-4-octanone, 3,7-dimethyl-4-octanone, 2,6-dimethyl-4,5-octanediol, 2,6-dimethyl-4,5-octanedione, 2,6-dimethyl-4-hydroxy-5-octanone, 2,6-dimethyl-5-hydroxy-4-octanone, 3,6-dimethyloctane, 3,6-dimethyl-3-octene, 3,6-dimethyl-4-octene, 3,6-dimethyl-4-octanol, 3,6-dimethyl-4-octanone, 3,6-dimethyl-4,5-octanediol, 3,6-dimethyl-4,5-octanedione, 3,6-dimethyl-4-hydroxy-5-octanone, n-nonane, 1-nonene, 1-nonanol, nonanal, nonanoate, 2-methylnonane, 2-methyl-4-nonene, 2-methyl-5-nonene, 8-methyl-4-nonene, 2-methyl-5-nonanol, 8-methyl-4-nonanol, 2-methyl-5-nonanone, 8-methyl-4-nonanone, 8-methyl-4,5-nonanediol, 8-methyl-4,5-nonanedione, 8-methyl-4-hydroxy-5-nonanone, 8-methyl-5-hydroxy-4-nonanone, 2,8-dimethylnonane, 2,8-dimethyl-3-nonene, 2,8-dimethyl-4-nonene, 2,8-dimethyl-5-nonene, 2,8-dimethyl-4-nonanol, 2,8-dimethyl-5-nonanol, 2,8-dimethyl-4-nonanone, 2,8-dimethyl-5-nonanone, 2,8-dimethyl-4,5-nonanediol, 2,8-dimethyl-4,5-nonanedione, 2,8-dimethyl-4-hydroxy-5-nonanone, 2,8-dimethyl-5-hydroxy-4-nonanone, 2,7-dimethylnonane, 3,8-dimethyl-3-nonene, 3,8-dimethyl-4-nonene, 3,8-dimethyl-5-nonene, 3,8-dimethyl-4-nonanol, 3,8-dimethyl-5-nonanol, 3,8-dimethyl-4-nonanone, 3,8-dimethyl-5-nonanone, 3,8-dimethyl-4,5-nonanediol, 3,8-dimethyl-4,5-nonanedione, 3,8-dimethyl-4-hydroxy-5-nonanone, 3,8-dimethyl-5-hydroxy-4-nonanone, n-decane, 1-decene, 1-decanol, decanoate, 2,9-dimethyldecane, 2,9-dimethyl-3-decene, 2,9-dimethyl-4-decene, 2,9-dimethyl-5-decanol, 2,9-dimethyl-5-decanone, 2,9-dimethyl-5,6-decanediol, 2,9-dimethyl-6-hydroxy-5-decanone, 2,9-dimethyl-5,6-decanedionen-undecane, 1-undecene, 1-undecanol, undecanal. undecanoate, n-dodecane, 1-dodecene, 1-dodecanol, dodecanal, dodecanoate, n-dodecane, 1-decadecene, 1-dodecanol, ddodecanal, dodecanoate, n-tridecane, 1-tridecene, 1-tridecanol, tridecanal, tridecanoate, n-tetradecane, 1-tetradecene, 1-tetradecanol, tetradecanal, tetradecanoate, n-pentadecane, 1-pentadecene, 1-pentadecanol, pentadecanal, pentadecanoate, n-hexadecane, 1-hexadecene, 1-hexadecanol, hexadecanal, hexadecanoate, n-heptadecane, 1-heptadecene, 1-heptadecanol, heptadecanal, heptadecanoate, n-octadecane, 1-octadecene, 1-octadecanol, octadecanal, octadecanoate, n-nonadecane, 1-nonadecene, 1-nonadecanol, nonadecanal, nonadecanoate, eicosane, 1-eicosene, 1-eicosanol, eicosanal, eicosanoate, 3-hydroxy propanal, 1,3-propanediol, 4-hydroxybutanal, 1,4-butanediol, 3-hydrxy-2-butanone, 2,3-butandiol, 1,5-pentane diol, homocitrate, homoisocitorate, b-hydroxy adipate, glutarate, glutarsemialdehyde, glutaraldehyde, 2-hydroxy-1-cyclopentanone, 1,2-cyclopentanediol, cyclopentanone, cyclopentanol, (S)-2-acetolactate, (R)-2,3-Dihydroxy-isovalerate, 2-oxoisovalerate, isobutyryl-CoA, isobutyrate, isobutyraldehyde, 5-amino pentaldehyde, 1,10-diaminodecane, 1,10-diamino-5-decene, 1,10-diamino-5-hydroxydecane, 1,10-diamino-5-decanone, 1,10-diamino-5,6-decanediol, 1,10-diamino-6-hydroxy-5-decanone, phenylacetoaldehyde, 1,4-diphenylbutane, 1,4-diphenyl-1-butene, 1,4-diphenyl-2-butene, 1,4-diphenyl-2-butanol, 1,4-diphenyl-2-butanone, 1,4-diphenyl-2,3-butanediol, 1,4-diphenyl-3-hydroxy-2-butanone, 1-(4-hydeoxyphenyl)-4-phenylbutane, 1-(4-hydeoxyphenyl)-4-phenyl-1-butene, 1-(4-hydeoxyphenyl)-4-phenyl-2-butene, 1-(4-hydeoxyphenyl)-4-phenyl-2-butanol, 1-(4-hydeoxyphenyl)-4-phenyl-2-butanone, 1-(4-hydeoxyphenyl)-4-phenyl-2,3-butanediol, 1-(4-hydeoxyphenyl)-4-phenyl-3-hydroxy-2-butanone, 1-(indole-3)-4-phenylbutane, 1-(indole-3)-4-phenyl-1-butene, 1-(indole-3)-4-phenyl-2-butene, 1-(indole-3)-4-phenyl-2-butanol, 1-(indole-3)-4-phenyl-2-butanone, 1-(indole-3)-4-phenyl-2,3-butanediol, 1-(indole-3)-4-phenyl-3-hydroxy-2-butanone, 4-hydroxyphenylacetoaldehyde, 1,4-di(4-hydroxyphenyl)butane, 1,4-di(4-hydroxyphenyl)-1-butene, 1,4-di(4-hydroxyphenyl)-2-butene, 1,4-di(4-hydroxyphenyl)-2-butanol, 1,4-di(4-hydroxyphenyl)-2-butanone, 1,4-di(4-hydroxyphenyl)-2,3-butanediol, 1,4-di(4-hydroxyphenyl)-3-hydroxy-2-butanone, 1-(4-hydroxyphenyl)-4-(indole-3-)butane, 1-(4-hydroxyphenyl)-4-(indole-3)-1-butene, 1-di(4-hydroxyphenyl)-4-(indole-3)-2-butene,
1-(4-hydroxyphenyl)-4-(indole-3)-2-butanol, 1-(4-hydroxyphenyl)-4-(indole-3)-2-butanone, 1-(4-hydroxyphenyl)-4-(indole-3)-2,3-butanediol, 1-(4-hydroxyphenyl-4-(indole-3)-3-hydroxy-2-butanone, indole-3-acetoaldehyde, 1,4-di(indole-3-)butane, 1,4-di(indole-3)-1-butene, 1,4-di(indole-3)-2-butene, 1,4-di(indole-3)-2-butanol, 1,4-di(indole-3)-2-butanone, 1,4-di(indole-3)-2,3-butanediol, 1,4-di(indole-3)-3-hydroxy-2-butanone, succinate semialdehyde, hexane-1,8-dicarboxylic acid, 3-hexene-1,8-dicarboxylic acid, 3-hydroxy-hexane-1,8-dicarboxylic acid, 3-hexanone-1,8-dicarboxylic acid, 3,4-hexanediol-1,8-dicarboxylic acid, 4-hydroxy-3-hexanone-1,8-dicarboxylic acid, fucoidan, iodine, chlorophyll, carotenoid, calcium, magnesium, iron, sodium, potassium, phosphate, and the like.
[0159]The recitation "optimized" as used herein refers to a pathway, gene, polypeptide, enzyme, or other molecule having an altered biological activity, such as by the genetic alteration of a polypeptide's amino acid sequence or by the alteration/modification of the polypeptide's surrounding cellular environment, to improve its functional characteristics in relation to the original molecule or original cellular environment (e.g., a wild-type sequence of a given polypeptide or a wild-type microorganism). Any of the polypeptides or enzymes described herein may be optionally "optimized," and any of the genes or nucleotide sequences described herein may optionally encode an optimized polypeptide or enzyme. Any of the pathways described herein may optionally contain one or more "optimized" enzymes, or one or more nucleotide sequences encoding for an optimized enzyme or polypeptide.
[0160]Typically, the improved functional characteristics of the polypeptide, enzyme, or other molecule relate to the suitability of the polypeptide or other molecule for use in a biological pathway (e.g., a biosynthesis pathway, a C--C ligation pathway) to convert a monosaccharide or oligosaccharide into a biofuel. Certain embodiments, therefore, contemplate the use of "optimized" biological pathways. An exemplary "optimized" polypeptide may contain one or more alterations or mutations in its amino acid coding sequence (e.g., point mutations, deletions, addition of heterologous sequences) that facilitate improved expression and/or stability in a given microbial system or microorganism, allow regulation of polypeptide activity in relation to a desired substrate (e.g., inducible or repressible activity), modulate the localization of the polypeptide within a cell (e.g., intracellular localization, extracellular secretion), and/or effect the polypeptide's overall level of activity in relation to a desired substrate (e.g., reduce or increase enzymatic activity). A polypeptide or other molecule may also be "optimized" for use with a given microbial system or microorganism by altering one or more pathways within that system or organism, such as by altering a pathway that regulates the expression (e.g., up-regulation), localization, and/or activity of the "optimized" polypeptide or other molecule, or by altering a pathway that minimizes the production of undesirable by-products, among other alterations. In this manner, a polypeptide or other molecule may be "optimized" with or without altering its wild-type amino acid sequence or original chemical structure. Optimized polypeptides or biological pathways may be obtained, for example, by direct mutagenesis or by natural selection for a desired phenotype, according to techniques known in the art.
[0161]In certain aspects, "optimized" genes or polypeptides may comprise a nucleotide coding sequence or amino acid sequence that is 50% to 99% identical (including all integeres in between) to the nucleotide or amino acid sequence of a reference (e.g., wild-type) gene or polypeptide. In certain aspects, an "optimized" polypeptide or enzyme may have about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100 (including all integers and decimal points in between e.g., 1.2, 1.3, 1.4, 1.5, 5.5, 5.6, 5.7, 60, 70, etc.), or more times the biological activity of a reference polypeptide.
[0162]Certain aspects of the invention also include a commodity chemical, such as a biofuel, that is produced according to the methods and recombinant microorganisms described herein. Such a biofuel (e.g., medium to long chain alkane) may be distinguished from other fuels, such as those fuels produced by traditional refinery from crude carbon sources, by radio-carbon dating techniques. For instance, carbon has two stable, nonradioactive isotopes: carbon-12 (12C), and carbon-13 (13C). In addition, there are trace amounts of the unstable isotope carbon-14 (14C) on Earth. Carbon-14 has a half-life of 5730 years, and would have long ago vanished from Earth were it not for the unremitting impact of cosmic rays on nitrogen in the Earth's atmosphere, which create more of this isotope. The neutrons resulting from the cosmic ray interactions participate in the following nuclear reaction on the atoms of nitrogen molecules (N2) in the atmospheric air:
n + 7 14 N โ 6 14 C + p ##EQU00001##
[0163]Plants and other photosynthetic organisms take up atmospheric carbon dioxide by photosynthesis. Since many plants are ingested by animals, every living organism on Earth is constantly exchanging carbon-14 with its environment for the duration of its existence. Once an organism dies, however, this exchange stops, and the amount of carbon-14 gradually decreases over time through radioactive beta decay.
[0164]Most hydrocarbon-based fuels, such as crude oil and natural gas derived from mining operations, are the result of compression and heating of ancient organic materials (i.e., kerogen) over geological time. Formation of petroleum typically occurs from hydrocarbon pyrolysis, in a variety of mostly endothermic reactions at high temperature and/or pressure. Today's oil formed from the preserved remains of prehistoric zooplankton and algae, which had settled to a sea or lake bottom in large quantities under anoxic conditions (the remains of prehistoric terrestrial plants, on the other hand, tended to form coal). Over geological time the organic matter mixed with mud, and was buried under heavy layers of sediment resulting in high levels of heat and pressure (known as diagenesis). This process caused the organic matter to chemically change, first into a waxy material known as kerogen which is found in various oil shales around the world, and then with more heat into liquid and gaseous hydrocarbons in a process known as catagenesis. Most hydrocarbon based fuels derived from crude oil have been undergoing a process of carbon-14 decay over geological time, and, thus, will have little to no detectable carbon-14. In contrast, certain biofuels produced by the living microorganisms of the present invention will comprise carbon-14 at a level comparable to all other presently living things (i.e., an equilibrium level). In this manner, by measuring the carbon-12 to carbon-14 ratio of a hydrocarbon-based biofuel of the present invention, and comparing that ratio to a hydrocarbon based fuel derived from crude oil, the biofuels produced by the methods provided herein can be structurally distinguished from typical sources of hydrocarbon based fuels.
[0165]Embodiments of the present invention include methods for converting a polysaccharide to a suitable monosaccharide comprising, (a) obtaining the polysaccharide; and (b) contacting the polysaccharide with a recombinant microorganism or microbial system comprising such a microorganism for a time sufficient to convert the polysaccharide to a suitable monosaccharide, wherein the microbial system comprises, (i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase, wherein the lyase and/or hydrolase optionally comprises at least one signal peptide or at least one autotransporter domain; (ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, and a polysaccharide transporter; and (iii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase, thereby converting the polysaccharide to a suitable monosaccharide.
[0166]Alternatively, certain aspects may include methods for converting a polysaccharide to a suitable monosaccharide comprising, (a) obtaining the polysaccharide; and (b) contacting the polysaccharide with a microbial system for a time sufficient to convert the polysaccharide to a suitable monosaccharide, wherein the microbial system comprises, (i) at least one gene encoding and expressing an enzyme selected from a lyase and a hydrolase; (ii) at least one gene encoding and expressing a superchannel; and (iii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase, thereby converting the polysaccharide to a suitable monosaccharide.
[0167]In certain embodiments, a microbial system or isolated microorganism is capable of growing using a polysaccharide (e.g., alginate, pectin, etc.) as a sole source of carbon and/or energy. A "sole source of carbon" refers generally to the ability to grow on a given carbon source as the only carbon source in a given growth medium.
[0168]With regard to alginate, approximately 50 percent of seaweed dry-weight comprises various sugar components, among which alginate and mannitol are major components corresponding to 30 and 15 percent of seaweed dry-weight, respectively. With regard to pectin, although microorganisms such as E. coli are generally considered as a host organisms in synthetic biology, and although such microorganism are able to metabolize mannitol, they completely lack the ability to degrade and metabolize alginate. In this regard, many laboratory or wild-type microorganisms, such as E. coli, are unable to grow on alginate as a sole source of carbon. Similarly, many organisms such as E. coli are unable to degrade and metabolize pectin, a polysaccharide found in many food waste products, and, thus are unable to grown on pectin as a sole source of carbon. Accordingly, embodiments of the present application include engineered microorganisms, such as E. coli, or microbial systems containing such engineered microorganisms, that are capable of using polysaccharides, such as alginate and pectin, as a sole source of carbon and/or energy.
[0169]Alginate is a block co-polymer of ฮฒ-D-mannuronate (M) and ฮฑ-D-gluronate (G) (M and G are epimeric about the C5-carboxyl group). Each alginate polymer comprises regions of all M (polyM), all G (polyG), and/or the mixture of M and G (polyMG). To utilize alginate to produce one or more suitable monosaccharides, certain aspects of the present invention provide an engineered or recombinant microorganism or microbial system that is able to degrade or de-polymerize alginate and to use it as a source of carbon and/or energy. As one means of accomplishing this purpose, such recombinant microorganisms may incorporate a set of polysaccharide degrading or depolymerizing enzymes such as alginate lyases (ALs) to the microbial system.
[0170]ALs are mainly classified into two distinctive subfamilies depending on their acts of catalysis: endo-(EC 4.2.2.3) and exo-acting (EC 4.2.2.-) ALs. Endo-acting ALs are further classified based on their catalytic specificity; M specific and G specific ALs. The endo-acting ALs randomly cleave alginate via a 1-elimination mechanism and mainly depolymerize alginate to di-, tri- and tetrasaccharides. The uronate at the non-reducing terminus of each oligosaccharide are converted to unsaturated sugar uronate, 4-deoxy-ฮฑ-L-erythro-hex-4-ene pyranosyl uronates. The exo-acting ALs catalyze further depolymerization of these oligosaccharides and release unsaturated monosaccharides, which may be non-enzymatically converted to monosaccharides, including ฮฑ-keto acid, 4-deoxy-ฮฑ-L-erythro-hexoselulose uronate (DEHU). Certain embodiments of an engineered microbial system or isolated, engineered microorganism may include endoM-, endoG- and exo-acting ALs to degrade or depolymerize aquatic or marine-biomass polysaccharides such as alginate to a monosaccharide such as DEHU.
[0171]Embodiments of the present invention may also include lyases such as alginate lyases isolated from various sources, including, but not limited to, marine algae, mollusks, and wide varieties of microbes such as genus Pseudomonas, Vibrio, and Sphingomonas. Many alginate lyases are endo-acting M specific, several are G specific, and few are exo-acting. For example, ALs isolated from Sphingomonas sp. strain Al include five endo-acting ALs, Al-I, Al-II, Al-II', Al-III, and Al-IV' and an exo-acting AL, Al-IV.
[0172]Typically, Al-I, Al-II, and Al-III have molecular weights of 66 kDa, 25 kDa, and 40 kDa, respectively. AI-II and AI-III are self-splicing products of Al-1. AI-II may be more specific to G and Al-III may be specific to M. Al-I may have high activity for both M and G. Al-IV has molecular weight of about 85 kDa and catalyzes exo-lytic depolymerization of oligoalginate. Although both Al-II' and Al-IV' are functional homologues of Al-II and Al-IV. AI-II' has endo-lytic activity and may have no preference to M or G. Al-IV has primarily endo-lytic activity. In addition to these ALs, exo-lytic AL Atu3025 derived from Agrobacterium tumefaciens has high activity for depolymerization of oligoalginate, and may be used in certain embodiments of the present invention. Certain embodiments may incorporate into the microbial system or isolated microorganism the genes encoding Al-I, Al-II', Al-IV, and Atu3025, and may include optimal codon usage for the suitable host organisms, such as E. coli.
[0173]Certain examples of alginate lyases or oligoalginate lyases that may be utilized herein include enzymes or polypeptides sharing at least 60%, 70%, 80%, 90%, 95%, 98%, or more sequence identity (including all integers in between) to SEQ ID NOS:67-68, which show the nucleotide (SEQ ID NO:67) and polyeptide (SEQ ID NO:68) sequences of oligoalginate lyase Atu3025 isolated from Agrobacterium tumefaciens. Certain examples of alginate lyases that may be utilized herein include enzymes or polypeptides sharing at least 60%, 70%, 80%, 90%, 95%, 98%, or more sequence identity (including all integers in between) to the alginate lyase enyzmes described in FIG. 37, as well as the secreted alginate lyase encoded by Vs24254 from Vibrio splendidus.
[0174]In certain embodiments, a microbial system or recombinant microorganism may be engineered to secrete or display the lyases or alginate lyases (ALs) to the culture media, such as by incorporating a signal peptide or autotransporter domain into the lyase. In this regard, it is typically understood that bacteria have at least four different types of protein secretion machinery (type I, II, III and IV). For example, in E. coli, the type II secretion machinery is used for the secretion of recombinant proteins. The type II secretion machinery may comprise a two-step process: the translocation of premature proteins tagged with signal peptides to the periplasm fraction and processing to the mature proteins followed by secretion to media.
[0175]The first process may proceed by any of three different pathways: secB-dependent pathway, signal recognition particle (SRP) pathway, or twin-arginine translocation (TAT) pathway. Recombinant proteins may be secreted into periplasm fraction. The fates of the mature proteins vary dependent on the type of proteins. For example, some proteins are secreted spontaneously by diffusion or passively by a secretion apparatus named secretion that consists of 12-16 proteins, and others stay in periplasm fraction and are eventually degraded.
[0176]Some proteins may also be secreted by an autotransporter apparatus, such as by utilizing an autotransporter domain. The proteins secreted by autotransporter domains typically comprise an N-terminal signal peptide that plays a role in translocation to the periplasm, which may be mediated by secB or SRP pathways, passenger domain, and/or C-terminal translocation unit (UT) having a characteristic ฮฒ-barrel structure. The ฮฒ-barrel portion of the UT builds an aqueous pore channel across the outer membrane and helps the transportation of passenger domain to media. Autodisplayed passenger proteins are often cleaved by the autotransporter and set free to media.
[0177]The type I secretion machinery may also be used for the secretion of recombinant proteins in E. coli. The type I secretion machinery may be used for the secretion of high-molecular-weight toxins and exoenzymes. The type I secretion machinery consist of two inner membrane proteins (HlyB and HlyD) that are the member of the ATP binding cassette (ABC) transporter family, and an endogenous outer membrane protein (TolC). The secretion of recombinant proteins based on type I secretion machinery may utilize the C-terminal region of ฮฑ-haemolysin (HlyA) as a signal sequence. The recombinant proteins may readily pass through the inner membrane, periplasm, and outer membrane through the type I secretion machinery.
[0178]Depending on the types of linker and signal peptides utilized by various embodiments of the present application, both autotransporter and type I secretion machinery can be altered to the cell surface display machinery. Alternatively, a system specific to cell surface display may be used. For example, in this system, target proteins may be fused to PgsA protein (a poly-ฮณ-glutamate synthetase complex) that is natively displayed on the surface of Bacillus subtilis.
[0179]Certain embodiments may include lyases such as alginate lyases fused with various signal peptides and/or autotransporter domains found in proteins secreted by both type I and type II secretion machinery. Other embodiments may include lyases such as alginate lyases fused with any combination of signal peptides and or autotransporter domains found in proteins secreted transport machinery as described herein or known to a person skilled in the art. Embodiments may also include signal peptides or autotransporter domains that are experimentally redesigned to maximize the secretion of lyases such as alginate lyases to the culture media, and may also include the use of many different linker sequences that fuse signal peptides, lyases, and autotransporters that improve the efficiency of secretion or the cell surface presentation of lyases.
[0180]Certain embodiments may include a microbial system or isolated microorganism that comprise saccharide transporters, which are able to transport monosaccharides (e.g., DEHU) and oligosaccharides from the media to the cytosol to efficiently utilize these monosaccharides as a source of carbon and/or energy. For instance, genes encoding monosaccharide permeases (i.e., monosaccharide transporters) such as DEHU permeases may be isolated from bacteria that grow on polysaccharides such as alginate as a source of carbon and/or energy, and may be incorporated into embodiments of the present microbial system or isolated microorganism. As an additional example, embodiments may also include redesigned native permeases or transporters with altered specificity for monosaccharide (e.g., DEHU) transportation.
[0181]In this regard, E. coli contains several permeases able to transport monosaccharides, which include, but are not limited to, KdgT for 2-keto-3-deoxy-D-gluconate (KDG) transporter, ExuT for aldohexuronates such as D-galacturonate and D-glucuronate transporter, GntT, GntU, GntP, and GntT for gluconate transporter, and KgtP for proton-driven ฮฑ-ketoglutarate transporter. Microbial systems or recombinant microorganisms described herein may comprise any of these permeases, in addition to those permeases known to a person of skill in the art and not mentioned herein, and may also include permease enzymes redesigned to transport other monosaccharides, such as DEHU.
[0182]A microbial system or recombinant microorganism according to the present invention may also comprise permeases/transporters/superchannels/porins that catalyze the transport of monosaccharides (e.g., D-mannuronate and D-lyxose) from media to the periplasm or cytosol of a microorganism. For example, genes encoding the permeases of D-mannuronate in soil Aeromonas may be incorporated into a microbial system as described herein.
[0183]As one alternative example, a microbial system or microorganism may comprise native permeases/transporters that are redesigned to alter their specificity for efficient monosaccharide transportation, such as for D-mannuronate and D-lyxose transportation. For instance, E. coli contains several permeases that are able to transport monosaccharides or sugars such as D-mannonate and D-lyxose, including KdgT for 2-keto-3-deoxy-D-gluconate (KDG) transporter, ExuT for aldohexuronates such as D-galacturonate and D-glucuronate transporter, GntPTU for gluconate/fructuronate transporter, uidB for glucuronide transporter, fucP for L-fucose transporter, galP for galactose transporter, yghK for glycolate transporter, dgoT for D-galactonate transporter, uhpT for hexose phosphate transporter, dctA for orotate/citrate transporter, gntUT for gluconate transporter, malEGF for maltose transporter: alsABC for D-allose transporter, idnT for L-idonate/D-gluconate transporter, KgtP for proton-driven ฮฑ-ketoglutarate transporter, lacY for lactose/galactose transporter, xylEFGH for D-xylose transporter, araEFGH for L-arabinose transporter, and rbsABC for D-ribose transporter. In certain embodiments, a microbial system or recombinant microorganism may comprise permeases or transporters as described above, including those that are re-designed or optimized for improvided transport of certain monosaccharides, such as D-mannuronate, DEHU, and D-lyxose.
[0184]Certain aspects may employ a recombinant microorganism that comprises a "superchannel," by which aquatic or marine-biomass polysaccharides such as alginate polymers, or fruit or vegetable biomass such as pectin polymers, may be directly incorporated into the cytosol and degraded inside the microbial system. For instance, a group of bacteria characterized as Sphingomonads have a wide range in capability of degrading environmentally hazardous compounds such as polychlorinated polycyclic aromatics (dioxin). These bacteria contain characteristic large pleat-like molecules on their cell surfaces. In this regard, certain Sphingomonads have structures characterized as "superchannels" that enable the bacteria to directly take up macromolecules.
[0185]As one particular example of a microorganism comprising a superchannel, Sphingomonas sp. strain Al directly incorporates polysaccharides such as alginate through a superchannel. Such superchannels may consist of a pit on the outer membrane (e.g., AlgR), alginate-binding proteins in the periplasm (e.g., AlgQ1 and Alg Q2), and an ATP-binding cassette (ABC) transporter (e.g., AlgM1, AlgM2, and AlgS). Incorporated polysaccharides such as alginate may be readily depolymerized by lyases such as alginate lyases produced in the cytosol. Thus, certain embodiments may incorporate genes encoding a superchannel (e.g., ccpA, algS, algM1, algM2, algQ1, algQ2) to introduce this ability to the microbial system or recombinant microorganism. Other embodiments may include microorganisms such as Sphingomonas subarctica IFO 16058T, which harbor the plasmid containing genes that encode a superchannel, and which have significantly improved ability to utilize marine or aquatic biomass polysaccharides such as alginate as a source of carbon and/or energy. Certain recombinant microorganisms may employ these superchannel encoding plasmid sequences contained within Sphingomonas subarctica IFO 16058T.
[0186]Certain examples of alginate ABC transporters that may be utilized herein, include ABC transporters Atu3021, Atu3022, Atu3023, Atu3024, algM1, algM2, AlgQ1, AlgQ2, AlgS, OG2516--05558, OG2516--05563, OG2516--05568, and OG2516--05573, including functional variants thereof. Certain examples of alginate symporters that may be utilized herein include symporters V12B01--24239 and V12B01--24194, among others, including functional variants thereof. One additional example of an alginate porin includes V12B01--24269, and variants thereof.
[0187]As noted above, certain embodiments may include recombinant microorganisms that comprise one or more monosaccharide dehydrogenases, isomerases, dehydratases, kinases, and aldolases. With regard to monosaccharide dehydrogenases, certain microbial systems or recombinant microorganism may incorporate enzymes that reduce various monosaccharides (e.g., DEHU, mannuronate) to a monosaccharide that is suitable for biofuel biosynthesis, such as 2-keto-3-deoxy-D-gluconate (KDG) or D-mannitol. Such exemplary enzymes, include, for example, DEHU hydrogenases and mannuronate hydrogenases, in addition to various alcohol dehydrogenases having DEHU hydrogenase and/or mannuronate dehydrogenase activity, such as the novel ADH1 through ADH12 enzymes isolated from Agrobacterium tumefaciens C58 (see, e.g., SEQ ID NOS:69-92).
[0188]For more detail on the ADH1 through ADH12 enzymes, SEQ ID NO:69 shows the nucleotide and SEQ ID NO:70 shows the polypeptide sequence of ADH1 Atu1557 isolated from Agrobacterium tumefaciens C58. SEQ ID NO:71 shows the nucleotide and SEQ ID NO:72 shows the polypeptide sequence of ADH2 Atu2022 isolated from Agrobacterium tumefaciens C58. SEQ ID NO:73 shows the nucleotide and SEQ ID NO:74 shows the polypeptide sequence of ADH3 Atu0626 isolated from Agrobacterium tumefaciens C58.
[0189]SEQ ID NO:75 shows the nucleotide and SEQ ID NO:76 shows the polypeptide sequence of ADH4 Atu5240 isolated from Agrobacterium tumefaciens C58. SEQ ID NO:77 shows the nucleotide and SEQ ID NO:78 shows the polypeptide sequence of ADH5 Atu3163 isolated from Agrobacterium tumefaciens C58. SEQ ID NO:79 shows the nucleotide and SEQ ID NO:80 shows the polypeptide sequence of ADH6 Atu2151 isolated from Agrobacterium tumefaciens C58.
[0190]SEQ ID NO:81 shows the nucleotide and SEQ ID NO:82 shows the polypeptide sequence of ADH7 Atu2814 isolated from Agrobacterium tumefaciens C58. SEQ ID NO:83 shows the nucleotide and SEQ ID NO:84 shows the polypeptide sequence of ADH8 Atu5447 isolated from Agrobacterium tumefaciens C58. SEQ ID NO:85 shows the nucleotide and SEQ ID NO:86 shows the polypeptide sequence of ADH9 Atu4087 isolated from Agrobacterium tumefaciens C58.
[0191]SEQ ID NO:87 shows the nucleotide and SEQ ID NO:88 shows the polypeptide sequence of ADH10 Atu4289 isolated from Agrobacterium tumefaciens C58.
[0192]SEQ ID NO:89 shows the nucleotide and SEQ ID NO:90 shows the polypeptide sequence of ADH11 Atu3027 isolated from Agrobacterium tumefaciens C58. SEQ ID NO:91 shows the nucleotide and SEQ ID NO:92 shows the polypeptide sequence of ADH12 Atu3026 isolated from Agrobacterium tumefaciens C58.
[0193]Further examples of enzymes having dehydrogenase activity include Atu3026, Atu3027, OG2516--05543, OG2516--05538 and V12B01--24244. The microorganisms and methods of the present invention may also utilize biologically active fragments and variants of these hydrogenase enzymes, including optimized variants thereof.
[0194]As a further example, Pseudomonas grown using alginate as a sole source of carbon and energy comprises a DEHU hydrogenase enzyme that uses NADPH as a co-factor, is more stable when NADP.sup.+ is present in the solution, and is active at ambient pH. Thus, certain embodiments of a microbial system or a recombinant microorganism as described herein may incorporate genes encoding hydrogenases such as DEHU or mannuronate hydrogenase derived or obtained from various microbes, in which these microbes may be capable of growing on polysaccharides such as alginate or pectin as a source of carbon and/or energy.
[0195]Certain embodiments may incorporate components of a microbial system or isolated microorganism that is capable of efficiently growing on monosaccharides such as D-mannuronate or D-lyxose as a source of carbon and energy. For instance, both Aeromonas and Aerobacter aerogenes PRL-R3 comprise genes encoding monosaccharide dehydrogenases such as D-mannuronate hydrogenase and D-lyxose isomerase. Thus, certain microbial systems or recombinant microorganisms may comprise monosaccharide dehydrogenases such as D-mannuronate hydrogenase and D-lyxose isomerase from Aeromonas, Aerobacter aerogenes PRL-R3, or various other suitable microorganisms, including those microorganisms capable of growing on D-mannuronate or D-lyxose as a source of carbon and energy.
[0196]Certain embodiments may include a microbial system or isolated microorganism with enhanced efficiency for converting monosaccharides such as D-mannonate and D-xylulose into monosaccharides suitable for a biofuel biosynthesis pathway such as KDG. Merely by way of explanation, D-mannonate and D-xylulose are metabolites in microbes such as E. coli. D-mannonate is converted by a D-mannonate dehydratase to KDG. D-xylulose enters the pentose phosphate pathway. Thus, to increase conversion of D-mannonate to KDG, an exogenous or endogenous D-mannonate dehydratase (e.g., uxuA) gene may be over-expressed an a recombinant microorganism of the invention. Similarly, in other embodiments, suitable endogenous or exogenous genes such as kinases (e.g., kdgK), nad, as well as KDG aldolases (e.g., kdgA and eda) may be either incorporated or overexpressed in a given recombinant microorganism (see SEQ ID NOS:93-96), including biologically active variants or fragments thereof, such as optimized variants of these genes. SEQ ID NO:93 shows the nucleotide sequence and SEQ ID NO:94 shows the polypeptide sequence of a 2-keto-deoxy gluconate kinase (KdgK) from Escherichia coli DH10B. SEQ ID NO:95 shows the nucleotide sequence and SEQ ID NO:96 shows the polypeptide sequence of a 2-keto-deoxy gluconate-6-phosphate aldorase (KdgA) from Escherichia coli DH10B.
[0197]In certain aspects, as noted above, a recombinant microorganism that is capable of growing on alginate or pectin as a sole source of carbon may utilize a naturally-occurring or endogenous copy of a dehyradratase, kinase, and/or aldolase. For instance, E. coli contains endogenous dehydratases, kinases, and aldolases that are capable of catalyzing the appropriate steps in the conversion of polysaccharides to a suitable monosaccharide. In these and other related aspects, the naturally-occurring dehydratase or kinase may also be over-expressed, such as by providing an exogenous copy of the naturally-occurring dehydratase, kinase or aldolase operable linked to a highly constitutive or inducible promoter.
[0198]As one exemplary source of enzymes for engineering a recombinant microorganism to grow on alginate as a sole source of carbon, Vibrio splendidus is known to be able to metabolize alginate to support growth. For example, SEQ ID NO:1 shows a secretome region carrying certain Vibrio splendidus genes (V12B01--02425 to V12B01--02480), which encodes a type II secretion apparatus. SEQ ID NO:2 shows the nucleotide sequence of an entire genomic region between V12B01--24189 to V12B01--24249, which was derived from Vibrio splendidus, and which when transformed into E. coli as a fosmid clone was sufficient to confer the ability to grow on alginate as a sole source of carbon. SEQ ID NOS:3-64 show the individual putative genes contained within SEQ ID NO:2. Thus, in certain aspects, a recombinant microorganism (e.g., E. coli) that is able to grow on alginate as a sole source of carbon and/or energy may comprise one or more nucleotide or polypeptide reference sequences described in SEQ ID NOS:1-64, including biologically active fragments or variants thereof, such as optimized variants.
[0199]In certain aspects, a recombinant microorganism that is able to grow on alginate as a sole source of carbon may contain certain coding nucleotide or polypeptide sequences contained within SEQ ID NO:2, such as the sequences in SEQ ID NOS:3-64, or biologically active fragments or variants thereof, including optimized variants. These sequences are described in further detail below.
[0200]SEQ ID NO:3 shows the nucleotide coding sequence of the putative protein V12B01--24184. This putative coding sequence is contained within the polynucleotide sequence of SEQ ID NO:2, and encodes a polypeptide that is similar to an autotransporter adhesion or type I secretion target ggxgxdxxx (SEQ ID NO:145) repeat. SEQ ID NO:4 shows the polypeptide sequence of putative protein V12B01--24184, encoded by the polynucleotide of SEQ ID NO:3. This putative polypeptide is similar to autotransporter adhesion or type I secretion target ggxgxdxxx (SEQ ID NO:145) repeat.
[0201]SEQ ID NO:5 shows the nucleotide sequence that encodes the putative protein V12B01--24189. SEQ ID NO:6 shows the polypeptide sequence of the putative protein V12B01--24189, which is similar to cyclohexadienyl dehydratase.
[0202]SEQ ID NO:7 shows the nucleotide sequence that encodes the putative protein V12B01--24194. SEQ ID NO:8 shows the polypeptide sequence of the putative protein V12B01--24194, which is similar to a Na/proline transporter.
[0203]SEQ ID NO:9 shows the nucleotide sequence that encodes the putative protein V12B01--24199. SEQ ID NO:10 shows the polypeptide sequence of the putative protein V12B01--24199, which is similar to a keto-deoxy-phosphogluconate aldolase.
[0204]SEQ ID NO:11 shows the nucleotide sequence that encodes the putative protein V12B01--24204. SEQ ID NO:12 shows the polypeptide sequence of the putative protein V12B01--24204, which is similar to 2-dehydro-3-deoxygluconokinase.
[0205]SEQ ID NO:13 shows the nucleotide sequence that encodes the putative protein V12B01--241209. SEQ ID NO:14 shows the polypeptide sequence of the putative protein V12B01--241209.
[0206]SEQ ID NO:15 shows the nucleotide sequence that encodes the putative protein V12B01--24214. SEQ ID NO:16 shows the polypeptide sequence of the putative protein V12B01--24214, which is similar to a chondroitin AC/alginate lyase.
[0207]SEQ ID NO:17 shows the nucleotide sequence that encodes the putative protein V12B01--24219. SEQ ID NO:18 shows the polypeptide sequence of the putative protein V12B01--24219, which is similar to a chondroitin AC/alginate lyase.
[0208]SEQ ID NO:19 shows the nucleotide sequence that encodes the putative protein V12B01--24224. SEQ ID NO:20 shows the polypeptide sequence of the putative protein V12B01--24224, which is similar to a 2-keto-4-pentenoate hydratase/2-oxohepta-3-ene-1,7-dioic acid hydratase.
[0209]SEQ ID NO:21 shows the nucleotide sequence that encodes the putative protein V12B01--24229. SEQ ID NO:22 shows the polypeptide sequence of the putative protein V12B01--24229, which is similar to a GntR-family transcriptional regulator.
[0210]SEQ ID NO:23 shows the nucleotide sequence that encodes the putative protein V12B01--24234. SEQ ID NO:24 shows the polypeptide sequence of the putative protein V12B01--24234, which is similar to a Na.sup.+/proline symporter.
[0211]SEQ ID NO:25 shows the nucleotide sequence that encodes the putative protein V12B01--24239. SEQ ID NO:26 shows the polypeptide sequence of the putative protein V12B01--24239, which is similar to an oligoalginate lyase.
[0212]SEQ ID NO:27 shows the nucleotide sequence that encodes the putative protein V12B01--24244. SEQ ID NO:28 shows the polypeptide sequence of putative protein V12B01--24244, which is similar to a 3-hydroxyisobutyrate dehydrogenase.
[0213]SEQ ID NO:29 shows the nucleotide sequence that encodes the putative protein V12B01--24249. SEQ ID NO:30 shows the polypeptide sequence of the putative protein V12B01--24249, which is similar to a methyl-accepting chemotaxis protein.
[0214]SEQ ID NO:31 shows the nucleotide sequence that encodes the putative protein V12B01--24254. SEQ ID NO:32 shows the polypeptide sequence of putative protein V12B01--24254, which is similar to an alginate lyase.
[0215]SEQ ID NO:33 shows the nucleotide sequence that encodes the putative protein V12B01--24259. SEQ ID NO:34 shows the polypeptide sequence of putative protein V12B01--24259, which is similar to an alginate lyase.
[0216]SEQ ID NO:35 shows the nucleotide sequence that encodes the putative protein V12B01--24264. SEQ ID NO:36 shows the polypeptide sequence of putative protein V12B01--24264.
[0217]SEQ ID NO:37 shows the nucleotide sequence that encodes the putative protein V12B01--24269. SEQ ID NO:38 shows the polypeptide sequence of putative protein V12B01--24269, which is similar to a putative oligogalacturonate specific porin.
[0218]SEQ ID NO:39 shows the nucleotide sequence that encodes the putative protein V12B01--24274. SEQ ID NO:40 shows the polypeptide sequence of putative protein V12B01--24274, which is similar to an alginate lyase.
[0219]FIG. 32 shows the nucleotide coding sequence and polypeptide sequence of putative protein V12B01--02425. FIG. 32A shows the nucleotide sequence that encodes the putative protein V12B01--02425 (SEQ ID NO:41). FIG. 32B shows the polypeptide sequence of putative protein V12B01--02425 (SEQ ID NO:42), which is similar to a type II secretory pathway component EpsC.
[0220]SEQ ID NO:43 shows the nucleotide sequence that encodes the putative protein V12B01--02430. SEQ ID NO:44 shows the polypeptide sequence of putative protein V12B01--02430, which is similar to a type II secretory pathway component EpsD.
[0221]SEQ ID NO:45 shows the nucleotide sequence that encodes the putative protein V12B01--02435. SEQ ID NO:46 shows the polypeptide sequence of putative protein V12B01--02435, which is similar to a type II secretory pathway component EpsE.
[0222]SEQ ID NO:47 shows the nucleotide sequence that encodes the putative protein V12B01--02440. SEQ ID NO:48 shows the polypeptide sequence of putative protein V12B01--02440, which is similar to a type II secretory pathway component EpsF.
[0223]SEQ ID NO:49 shows the nucleotide sequence that encodes the putative protein V12B01--02445. SEQ ID NO:50 shows the polypeptide sequence of putative protein V12B01--02445, which is similar to a type II secretory pathway component EpsG.
[0224]SEQ ID NO:51 shows the nucleotide sequence that encodes the putative protein V12B01--02450. SEQ ID NO:52 shows the polypeptide sequence of putative protein V12B01--02450, which is similar to a type II secretory pathway component EpsH.
[0225]SEQ ID NO:53 shows the nucleotide sequence that encodes the putative protein V12B01--02455. SEQ ID NO:54 shows the polypeptide sequence of putative protein V12B01--02455, which is similar to a type II secretory pathway component EpsI.
[0226]SEQ ID NO:55 shows the nucleotide sequence that encodes the putative protein V12B01--02460. SEQ ID NO:56 shows the polypeptide sequence of putative protein V12B01--02460, which is similar to a type II secretory pathway component EpsJ.
[0227]SEQ ID NO:57 shows the nucleotide sequence that encodes the putative protein V12B01--02465. SEQ ID NO:58 shows the polypeptide sequence of putative protein V12B01--02465, which is similar to a type II secretory pathway component EpsK.
[0228]SEQ ID NO:59 shows the nucleotide sequence that encodes the putative protein V12B01--02470. SEQ ID NO:60 shows the polypeptide sequence of putative protein V12B01--02470, which is similar to a type II secretory pathway component EpsL.
[0229]SEQ ID NO:61 shows the nucleotide sequence that encodes the putative protein V12B01--02475. SEQ ID NO:62 shows the polypeptide sequence of putative protein V12B01--02475, which is similar to a type II secretory pathway component EpsM.
[0230]SEQ ID NO:63 shows the nucleotide sequence that encodes the putative protein V12B01--02480. SEQ ID NO:64 shows the nucleotide sequence that encodes the putative protein V12B01--02480, which is similar to a type II secretory pathway component EpsC.
[0231]As a further exemplary source of enzymes for engineering a microorganism to grow on alginate, Agrobacterium tumefaciens C58 is able to metabolize relatively small sizes of alginate molecules (1000 mers) as a sole source of carbon and energy. Since A. tumefaciens C58 has long been used for plant biotechnology, the genetics of this organism has been relatively well studied, and many genetic tools are available and compatible with other gram-negative bacteria such as E. coli. Thus, certain aspects may employ this microbe, or the genes therein, for the production of suitable monosaccharides. For instance, as noted above, the present disclosure provides a series of novel ADH genes having both DEHU and mannuronate hydrogenase activity that were obtained from Agrobacterium tumefaciens C58 (see SEQ ID NOS: 67-92).
[0232]As noted above, certain aspects may include a recombinant microorganism or microbial system that is capable of growing on pectin as a sole source of carbon and/or energy. Pectin is a linear chain of ฮฑ-(1-4)-linked D-galacturonic acid that forms the pectin-backbone, a homogalacturonan. Into this backbone, there are regions where galacturonic acid is replaced by (1-2)-linked L-rhamnose. From rhamnose, side chains of various neutral sugars typically branch off. This type of pectin is called rhamnogalacturonan I. Over all, about up to every 25th galacturonic acid in the main chain is exchanged with rhamnose. Some stretches consisting of alternating galacturonic acid and rhamnose--"hairy regions", others with lower density of rhamnose--"smooth regions." The neutral sugars mainly comprise D-galactose, L-arabinose and D-xylose; the types and proportions of neutral sugars vary with the origin of pectin. In nature, around 80% of carboxyl groups of galacturonic acid are esterified with methanol. Some plants, like sugar-beet, potatoes and pears, contain pectins with acetylated galacturonic acid in addition to methyl esters. Acetylation prevents gel-formation but increases the stabilising and emulsifying effects of pectin. Certain pectin degradation and metabolic pathways are exemplified in FIG. 3.
[0233]In addition to the genes, enzymes, and biological pathways described above, certain recombinant microorganisms may incorporate features that are useful for growth on pectin as a sole source of carbon. For instance, to degrade and metabolize pectin as a sole source of carbon, pectin methyl and acetyl esterases first catalyze the hydrolysis of methyl and acetyl esters on pectin. Examples of pectin methyl esterases include, but are not limited to, pemA and pmeB. Examples of pectin acetyl esterases include, but are not limited to, PaeX and PaeY. Further examples of pectin methyl esterases that may be utilized herein include enzymes or polypeptides sharing at least 60%, 70%, 80%, 90%, 95%, 98%, or more sequence identity (including all integers in between) to the pectate methyl esterases in FIG. 40. Further examples of pectate acetyl esterases that may be utilized herein include enzymes or polypeptides sharing at least 60%, 70%, 80%, 90%, 95%, 98%, or more sequence identity (including all integers in between) to the pectate acetyl esterases described in FIG. 41.
[0234]Further to this end, pectate lyases and hydrolases may catalyze the endolytic cleavage of pectate via ฮฒ-elimination and hydrolysis, respectively, to produce oligopectates. Other enzymes that may be utilized to metabolize pectin include Examples of pectate lyases include, but are not limited to, PelA, PelB, PelC, PelD, PelE, Pelf, PelI, PelL, and PelZ. Examples of pectate hydrolases include, but are not limited to, PehA, PehN, PehV, PehW, and PehX. Further examples of pectate lyases include polypeptides or enzymes sharing at least 60%, 70%, 80%, 90%, 95%, 98%, or more sequence identity (including all integers in between) to the pectate lyases described in FIG. 38.
[0235]Polygalacturonases, rhamnogalacturonan lyases, and rhamnogalacturonan hydrolyases may also be utilized herein to degrade and metabolize pectin. Examples of rhamnogalacturonan lyases include polypeptides or enzymes sharing at least 60%, 70%, 80%, 90%, 95%, 98%, or more sequence identity (including all integers in between) to the rhamnoglacturonan lyases (i.e., rhamnogalacturonases) described in FIG. 39A. Examples of rhamnogalacturonate hydrolyases include polypeptides or enzymes sharing at least 60%, 70%, 80%, 90%, 95%, 98%, or more sequence identity (including all integers in between) to the rhamnogalacturonate hydrolases described in FIG. 39B.
[0236]Thus, to degrade and metabolize pectin, certain of the recombinant microorganisms and methods of the present invention may incorporate one or more of the above noted methy and acetyl esterases, lyases, and/or hydrolases, among others known in the art. These may enzymes may be encoded and expressed by endogenous or exogenous genes, and may also include biologically active fragments or variants thereof, such as homologs, orthologs, and/or optimized variants of these enzymes.
[0237]To further metabolize the degradation products of pectin, oligopectates may be transported into the periplasm fraction of gram-negative bacteria by outer membrane porins, where they are further degraded into such components as di- and tri-galactonurates. Examples of outer membrane porins include that can transport oligopectates into the periplasm include, but are not limited to, kdgN and kdgM. Certain recombinant microorganism may incorporate these or similar genes.
[0238]Di- and tri-galactonurates may then be transported into the cytosol for further degradation. Bacteria contain at least two different transporter systems responsible for di- and tri-galacturonate transportation, including symporter and ABC transporter (e.g., TogT and TogMNAB, respectively). Thus, certain of the recombinant microorganisms provided herein may comprise one or more a di- or tri-galacturonate transoporter systems, such as TogT and/or TogMNAB.
[0239]Once di- and trigalacturonate are incorporated into the cytosol, short pectate or galacturonate lyases, break them down to D-galacturonate and (4S)-4,6-dihydroxy-2,5-dioxohexuronate. Examples of short pectate or galacturonate lyases include, but are not limited to, PelW and Ogl, which genes may be either endogenously or exogenously incorporated into certain recombinant microorganisms provided herein. D-galacturonate and (4S)-4,6-dihydroxy-2,5-dioxohexuronate are then converted to 5-dehydro-4-deoxy-D-glucuronate and further to KDG, which steps may be catalyzed by KduI and KduD, respectively. The KduI enzyme has an isomerase activity, and the KduD enzyme has a dehydrogenase activity, such as a 2-deoxy-D-gluconate 3-dehydrogenase activity. Accordingly, certain recombinant microorgansms provided herein may comprise one or more short pectate or galacturonate lyases, such as PelW and/or Ogl, and may optionally comprise one or more isomerases, such as KduI, as well as one or more dehydrogenases, such as KduD, to convert di- and trigalacturonates into a suitable monosaccharide, such as KDG.
[0240]In certain aspects, a recombinant microorganism, such as E. coli, that is able to grown on pectin or tri-galacturonate as a sole source of carbon and/or energy may comprise one or more of the gene sequences contained within SEQ ID NOS:65 and 66, including biologically active fragments or variants thereof, such as optimized variants. SEQ ID NO:65 shows the nucleotide sequence of the kdgF-PaeX region from Erwinia carotovora subsp. Atroseptica SCRI1043. SEQ ID NO:66 shows the nucleotide sequence of ogl-kdgR from Erwinia carotovora subsp. Atroseptica SCRI1043.
[0241]In certain aspects, a recombinant microorganism, such as E. coli, that is able to grown on pectin or tri-galacturonate as a sole source of carbon and/or energy may comprise one or more genomic regions of Erwinia chrysanthemi, comprising several genes (kdgF, kduI, kduD, pelW, togM, togN, togA, togB, kdgM, paeX, ogl, and kdgR) encoding enzymes (kduI, kduD, ogl, pelW, and paeX), transporters (togM, togN, togA, togB, and kdgM), and regulatory proteins (kdgR) responsible for degradation of di- and trigalacturonate, as well as several genes (pelA, pelE, paeY, and pem) encoding pectate lyases (pelA and pelE), pectin acetylesterases (paeY), and pectin methylesterase (pem) (see Example 2).
[0242]Additional examples of isomerases that may be utilized herein include glucoronate isomerases, such as those in the family uxaC, as well as 4-deoxy-L-threo-5-hexylose uronate isomerases, such as those in the family KduI. Additional examples of reductases that may be utilized herein include tagaturonate reductases, such as those in the family uxaB. Additional examples of dehyadratases that may be utilized herein include altronate dehydratases, such as those in the family uxaA. Additional examples of dehydrogenases that may be utilized herein include 2-deoxy-D-gluconate 3-dehydrogenases, such as those in the family kduD.
[0243]Certain aspects my also utilize recombinant microorganisms engineered to enhance the efficiency of the KDG degradation pathway. For instance, in bacteria, KDG is a common metabolic intermediate in the degradation of hexuronates such as D-glucuronate and D-galacturonate and enters into Entner Doudoroff pathway where it is converted to pyruvate and glyceraldehyde-3-phosphate (G3P). In this pathway, KDG is first phosphorylated by KDG kinase (KdgK) followed by its cleavage into pyruvate and glyceraldehyde-3-phosphate (G3P) using 2-keto-3-deoxy-D-6-posphate-gluconate (KDPG) aldolase (KdgA). The expression of these enzymes concurrently with KDG permease (e.g., KdgT) is negatively regulated by KdgR and is almost none at basal level. The expression is dramatically (3-5-fold) induced upon the addition of hexuronates, and a similar result has been reported in Pseudomonas grown on alginate. Hence, to increase the conversion of KDG to pyruvate and G3P, the negative regulator KdgR may be removed. To further improve the pathway efficiency, exogenous copies of KdgK and KdgA may also be incorporated into a given recombinant microorganism.
[0244]In certain aspects, a recombinant microorganism that is able to grow on a polysaccharide (e.g., alginate, pectin, etc) as a sole source of carbon may be capable of producing an increased amount of a given commodity chemical (e.g., ethanol) while growing on that polysaccharide. For example, E. coli engineered to grown on alginate may be engineered to produced an increased amount of ethanol from alginate as compared to E. coli that is not engineered to grown on alginate (see Example 11). Thus, certain aspects include a recombinant microorganism that is capable of growing on alginate or pectin as a sole source carbon, and that is capable of producing an increased amount of ethanol, such as by comprising one or more genes encoding and expressing a pyruvate decarboxylase (pdc) and/or an alcohol dehydrogenase, including functional variants thereof. In certain aspects, such a recombinant microorganism may comprise a pyruvate decarboxylase (pdc) and two alcohol dehydrogenases (adhA and adhB) obtained from Zymomonas mobilis.
[0245]Embodiments of the present invention also include methods for converting polysaccharide to a suitable monosaccharide comprising, (a) obtaining a polysaccharide; (b) contacting the polysaccharide with a chemical catalysis or enzymatic pathway, thereby converting the polysaccharide to a first monosaccharide or oligosaccharide; and (c) contacting the first monosaccharide with a microbial system for a time sufficient to convert the first monosaccharide or oligosaccharide to the suitable monosaccharide, wherein the microbial system comprises, (i) at least one gene encoding and expressing an enzyme selected from a monosaccharide transporter, a disaccharide transporter, a trisaccharide transporter, an oligosaccharide transporter, and a polysaccharide transporter; and (ii) at least one gene encoding and expressing an enzyme selected from a monosaccharide dehydrogenase, an isomerase, a dehydratase, a kinase, and an aldolase, thereby converting the polysaccharide to a suitable monosaccharide.
[0246]In certain aspects of the present invention, aquatic or marine-biomass polysaccharides such as alginate may be chemically degraded using chemical catalysts such as acids. Similarly, biomass-derived pectin may be chemically degraded. For instance, the reaction catalyzed by chemical catalysts is typically through hydrolysis, as opposed to the ฮฒ-elimination type of reactions catalyzed by enzymatic catalysts. Thus, certain embodiments may include boiling alginate or pectin with strong mineral acids to liberate carbon dioxide from D-mannuronate, thereby forming D-lyxose, a common sugar metabolite utilized by many microorganisms. Such embodiments may use, for example, formate, hydrochloric acid, sulfuric acid, in addition to other suitable acids known in the art as chemical catalysts.
[0247]An enzymatic pathway may utilized one or more enzymes described herein that are capable of catalyzing the degradation of polysaccharides, such as alginate or pectin.
[0248]Other embodiments may use variations of chemical catalysis similar to those described herein or known to a person skilled in the art, including improved or redesigned methods of chemical catalysis suitable for use with biomass related polysaccharides. Certain embodiments include those wherein the resulting monosaccharide uronate is D-mannuronate.
[0249]As noted above, the suitable monosaccharides or suitable oligosaccharides produced by the recombinant microorganisms and microbial systems of the present invention may be utilized as a feedstock in the production of commodity chemicals, such as biofuels, as well as commodity chemical intermediates. Thus, certain embodiments of the present invention relate generally to methods for converting a suitable monosaccharide or oligosaccharide to a commodity chemical, such as a biofuel, comprising, (a) obtaining a suitable monosaccharide or oligosaccharide; (b) contacting the suitable monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide to the biofuel, thereby converting the suitable monosaccharide to the biofuel.
[0250]Certain aspects include methods for converting a suitable monosaccharide to a first commodity chemical such as a biofuel, comprising, (a) obtaining a suitable monosaccharide; (b) contacting the suitable monosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide to the first commodity chemical, wherein the microbial system comprises one or more genes encoding a aldehyde or ketone biosynthesis pathway, thereby converting the suitable monosaccharide to the first commodity chemical.
[0251]In these and other related aspects, depending on the particular ketone or aldehyde biosynthesis pathway employed, the first commodity chemical may be further enzymatically and/or chemically reduced and dehydrated to a second commodity chemical. Examples of such second commodity chemicals include, but are not limited to, butene or butane; 1-phenylbutene or 1-phenylbutane; pentene or pentane; 2-methylpentene or 2-methylpentane; 1-phenylpentene or 1-phenylpentane; 1-phenyl-4-methylpentene or 1-phenyl-4-methylpentane; hexene or hexane; 2-methylhexene or 2-methylhexane; 3-methylhexene or 3-methylhexane; 2,5-dimethylhexene or 2,5-dimethylhexane; 1-phenylhexene or 1-phenylhexane; 1-phenyl-4-methylhexene or 1-phenyl-4-methylhexane; 1-phenyl-5-methylhexene or 1-phenyl-5-methylhexane; heptene or heptane; 2-methylheptene or 2-methylheptane; 3-methylheptene or 3-methylheptane; 2,6-dimethylheptene or 2,6-dimethylheptane; 3,6-dimethylheptene or 3,6-dimethylheptane; 3-methyloctene or 3-methyloctane; 2-methyloctene or 2-methyloctane; 2,6-dimethyloctene or 2,6-dimethyloctane; 2,7-dimethyloctene or 2,7-dimethyloctane; 3,6-dimethyloctene or 3,6-dimethyloctane; and cyclopentane or cyclopentene.
[0252]Certain embodiments of the present invention may also include methods for converting a suitable monosaccharide or oligosaccharide to a commodity chemical comprising (a) obtaining a suitable monosaccharide or oligosaccharide; (b) contacting the suitable monosaccharide or oligosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide or oligosaccharide to the commodity chemical, wherein the microbial system comprises; (i) one or more genes encoding a biosynthesis pathway; (ii) one or more genes encoding and expressing a C--C ligation pathway; and (iii) one or more genes encoding and expressing a reduction and dehydration pathway, comprising a diol dehydrogenase, a diol dehydratase, and a secondary alcohol dehydrogenase, thereby converting the suitable monosaccharide or oligosaccharide to the commodity chemical.
[0253]Certain aspects also include recombinant microorganism that comprise (i) one or more genes encoding a biosynthesis pathway; (ii) one or more genes encoding and expressing a C--C ligation pathway; and (iii) one or more genes encoding and expressing a reduction and dehydration pathway, comprising a diol dehydrogenase, a diol dehydratase, and a secondary alcohol dehydrogenase. Certain aspects also include recombinant microorganisms that comprise the above pathways individually or in certain combinations, such as recombinant microorganism that comprises one or more genes encoding a biosynthesis pathway, as described herein. Certain aspects may also include recombinant microorganisms that comprise one or more genes encoding and expressing a C--C ligation pathway, as described herein. Certain aspects may also include recombinant microorganisms that comprise one or more genes encoding and expressing a reduction and dehydration pathway, comprising a diol dehydrogenase, a diol dehydratase, and a secondary alcohol dehydrogenase, as described herein.
[0254]As for recombinant microorganisms that comprise combinations of the above-noted pathways, certain aspects may include recombinant microorganisms that comprise (i) one or more genes encoding a biosynthesis pathway; and (ii) one or more genes encoding and expressing a C--C ligation pathway. Certain aspects may also include recombinant microorganisms that comprise (i) one or more genes encoding and expressing a C--C ligation pathway; and (ii) one or more genes encoding and expressing a reduction and dehydration pathway, comprising a diol dehydrogenase, a diol dehydratase, and a secondary alcohol dehydrogenase.
[0255]Certain aspects may also include recombinant microorganisms that comprise one or more individual components of a dehydration and reduction pathway, such as a recombinant microorganism that comprises a diol dehydrogenase, a diol dehydratase, or a secondary alcohol dehydrogenase. These and other microorganisms may be utilized, for example, to convert a suitable polysaccharide to a first commodity chemical, or an intermediate thereof, or to convert a first commodity chemical, or an intermediate thereof, to a second commodity chemical.
[0256]Merely by way of illustration, a recombinant microorganism comprising a C--C ligation pathway may be utilized to convert butanal into a first commodity chemical, or an intermediate thereof, such as 5-hydroxy-4-octanone, which can then be converted into a second commodity chemical, or intermediate thereof, by any suitable pathway. As a further example, a recombinant microorganism comprising a C--C ligation pathway and a diol hydrogenase may be utilized for the sequential conversion of butanal into 5-hydroxy-4-octanone and then 4,5-octanonediol. Examples of recombinant microorganisms that comprise these and other various combinations of the individual pathways described herein, as well as various combinations of the individual components of those pathways, will be apparent to those skilled in the art, and may also be found in the Examples.
[0257]Also included are methods of converting a polysaccharide to a first commodity chemical, or an intermediate thereof, such as by utilizing a recombinant microorganism that comprises an aldehyde or ketone biosynthesis pathway. Also included are methods of converting a first commodity chemical, or intermediate thereof, to a second commodity chemical, such as by utilizing a recombinant microorganism that optionally comprises a biosynthesis pathway, optionally comprises C--C ligation pathway and/or optionally comprises one or more of the individual components of a dehydration and reduction pathway. Merely by way of illustration, a recombinant microorganism comprising an exogenous C--C ligase (e.g., benzaldehyde lyase from Pseudomonas fluorescens) could be utilized in a method to convert a first commodity chemical such as 3-methylbutanal to a second commodity chemical such as 2,7-dimethyl-5-hydroxy-4-octanone. Along this line of illustration, the same or different recombinant microorganism comprising a diol dehydrogenase could be utilized in a method to convert 2,7-dimethyl-5-hydroxy-4-octanone to another commodity chemical such as 2,7-dimethyl-4,5-octanediol (see Table 2 for other examples). As an additional illustrative example, a recombinant microorganism comprising an exogenous secondary alcohol dehydrogenase could be utilized in a method to convert a first commodity chemical such as 2,7-dimethyl-4-octanone to a second commodity chemical such as 2,7-dimethyloctanol.
[0258]Embodiments of a microbial system or isolated microorganism of the present application may include a naturally-occurring biosynthesis pathway, and/or an engineered, reconstructed, or re-designed biosynthesis pathway that has been optimized for improved functionality.
[0259]Embodiments of a microbial system or recombinant microorganism of the present invention may include a natural or reconstructed biosynthesis pathway, such as a butyraldehyde biosynthesis pathway, as found in such microorganisms as Clostridium acetobutylicum and Streptomyces coelicolor. In explanation, butyrate and butanol are the common fermentation products of certain bacterial species such as Clostridia, in which the production of butyrate and butanol is mediated by a synthetic thiolase dependent pathway characteristically similar to fatty acid degradation pathway. Such pathways may be initiated with the condensation of two molecules of acetyl-CoA to acetoacetyl-CoA, which is catalyzed by thiolase. Acetoacetyl-CoA is then reduced to ฮฒ-hydroxy butyryl-CoA, which is catalyzed by NAD(P)H dependent ฮฒ-hydroxy butyryl-CoA dehydrogenase (HBDH). Crotonase catalyzes dehydration from ฮฒ-hydroxy butyryl-CoA to form crotonyl-CoA. Further reduction catalyzed by NADH-dependent butyryl-CoA dehydrogenase (BCDH) saturates the double bond at C2 of crotonyl-CoA to form butyryl-CoA.
[0260]In certain embodiments, thiolase, the first enzyme in this pathway, may be overexpressed to maximize production. In certain embodiments, thiolase may over-expressed in E. coli. In this regard, all three enzymes (e.g., HBDH, crotonase, and BCDH) catalyzing the following reaction steps are found in Clostridium acetobutylicum ATCC824. In certain embodiments, BDH, crotonase, and BCDH may be expressed or over-expressed in a suitable microorganism such as E. coli. Alternatively, a short-chain aliphatic acyl-CoA dehydrogenase derived from Pseudomonas putida KT2440 may be utilized in other embodiments of a microbial system or isolated microorganism of the present application.
[0261]Further to this end, butyryl-CoA in Clostridia may be readily converted to butanol and/or butyrate by at least a few different pathways. In one pathway, butyryl-CoA is directly reduced to butyraldehyde catalyzed by NADH dependent CoA-acylating aldehyde dehydrogenase (ALDH). Butyraldehyde may be further reduced to butanol by NADH-dependent butanol dehydrogenase. Although CoA-acylating ALDH catalyzes the one step reduction of butyryl-CoA to butyraldehyde, the incorporation of CoA-acylating ALDH to the microbial system may result in acetoaldehyde formation because of its promiscuous acetyl-CoA deacylating activity. In certain embodiments, the formation of acetoaldehyde may be minimized by functionally redesigning the relevant enzyme(s).
[0262]Butyryl-CoA in other biosynthesis pathways is deacylated to form butyryl phosphate catalyzed by phosphotransbutyrylase. Butyryl phosphate is then hydrolyzed by reversible butyryl phosphate kinase to form butyrate. This reaction is coupled with ATP generation from ADP. The butyrate formation through these enzymes is known to be significantly more specific. Certain embodiments may comprise phosphotransbutyrylase and butyryl phosphate kinase to the microbial system. In other embodiments, butyrate may be directly formed from butyryl-CoA by short chain acyl-CoA thioesterase.
[0263]Butyrate in Clostridia may also be sequentially reduced to butanol, which is catalyzed by a single alcohol/aldehyde dehydrogenase. Certain embodiments may comprise short chain aldehyde dehydrogenase from other bacteria such as Pseudomonas putida to complement the production of butyraldehyde in the microbial system. One potential concern in using short chain aldehyde dehydrogenase involves the possible formation of acetoaldehyde from acetate. Certain embodiments may be directed to minimizing the acetate formation in the microbial system, for example, by deleting several genes encoding enzymes involved in the acetate production.
[0264]Moreover, there are multiple routes in E. coli to form acetate, one of which is mediated by pyruvate oxygenase (POXB) from pyruvate, whereas another is mediated by phosphotransacetylase (PTA) and acetyl phosphate kinase (ACKA) from acetyl-CoA. The acetate production from E. coli mutant strains with poxB.sup.-, pta.sup.-, and acka.sup.- are significantly diminished. In addition, incorporation of acetyl-CoA synthase (ACS) which catalyses the acetyl-CoA formation from acetate is also known to significantly reduce the accumulation of acetate. Certain embodiments may comprise a microbial system or isolated microorganism with deleted POXB, PTA, and/or ACKA genes, and other embodiments may also comprise, separately or together with the deleted genes, one or more genes encoding and expressing ACS.
[0265]A microbial system or recombinant microorganism provided herein may also comprise a glutaraldehyde biosynthesis pathway. As one example, Saccharomyces cerevisiae has a lysine biosynthetic pathway in which acetyl-CoA is initially condensed to ฮฑ-ketoglutarate, a common metabolite in citric acid cycle, to form homocitorate. This reaction is catalyzed by homocitrate synthase derived from Yeast, Thermus thermophilus, or Deinococcus radiodurans. Homoaconitase derived from Yeast, Thermus thermophilus, or Deinococcus radiodurans catalyzes the conversion between homocitrate and homoisocitrate. Homoisocitrate is then oxidatively decarboxylated to form 2-ketoadipate, which is catalyzed by homoisocitrate dehydrogenase derived from Yeast, Thermus thermophilus, or Deinococcus radiodurans. Homoisocitrate is also oxidatively decarboxylated to form glutaryl-CoA, which may be catalyzed by homoisocitrate dehydrogenase. Thus, certain embodiments may comprise a homocitrate synthase, a homoaconitase, and/or a homoisocitrate dehydrogenase.
[0266]Further to this end, in synthesizing 2-keto-adipicsemialdehyde, 2-ketoadipate is reduced to 2-keto-adipicsemialdehyde. This reaction can be catalyzed by dialdehyde dehydrogenase, which, for example, may be isolated from Agrobacterium tumefaciens C58. Thus, certain embodiments may incorporate dialdehyde dehydrogenases into a microbial system or recombinant microorganism.
[0267]In synthesizing glutaraldehyde, Acyl-CoA thioesterases (ACOT) may also catalyze the hydrolysis of glutaryl-CoA. The genes encoding (ฮฒ-carboxylic acyl-CoA specific peroxisomal ACOTs are found in many mammalian species; both ACOT4 and ACOT8 derived from mice have been previously expressed in E. coli and shown that both enzymes are highly active on the hydrolysis of glutaryl-CoA to form glutarate. Certain embodiments may comprise one or more Acyl-CoA thioesterases.
[0268]Glutarate is sequentially reduced to glutaraldehyde. This reaction can be catalyzed by glutaraldehyde dehydrogenase (CpnE), which, for example, may be isolated from Comomonas sp. Strain NCIMB 9872. Certain embodiments may incorporate glutaraldehyde dehydrogenases such as CpnE into a microbial system or isolated microorganism. Other embodiments may comprise both ACOT and CpnE enzymes. Other embodiments may comprise CpnE enzymes redesigned to catalyze the reduction of 1-hydroxy propanoate and succinate to 1-hydroxy propanal and succinicaldehyde.
[0269]In certain aspects, the biosynthesis pathway may include an aldehyde biosynthesis pathway, a ketone biosynthesis pathway, or both. In certain aspects, the biosynthesis pathway may be include one or more of an acetoaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, 4-methylpentaldehyde, phenylacetoaldehyde, 2-phenyl acetoaldehyde, 2-(4-hydroxyphenyl)acetaldehyde, 2-Indole-3-acetoaldehyde, glutaraldehyde, 5-amino-pentaldehyde, succinate semialdehyde, and/or succinate 4-hydroxyphenyl acetaldehyde biosynthesis pathway, including various combinations thereof.
[0270]With regard to combinations of biosynthesis pathways, a biosynthesis pathway may comprise an acetoaldehyde biosynthesis pathway in combination with at least one of a propionaldehyde, butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, or phenylacetoaldehyde biosynthesis pathway. In certain aspects, a biosynthesis pathway may comprise a propionaldehyde biosynthesis pathway in combination with at least one of a butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, or phenylacetoaldehyde biosynthesis pathway. In certain aspects, a biosynthesis pathway may comprise a butyraldehyde biosynthesis pathway in combination with at least one of an isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, or phenylacetoaldehyde biosynthesis pathway. In certain aspects, a biosynthesis pathway may comprise an isobutyraldehyde biosynthesis pathway in combination with at least one of a 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, or phenylacetoaldehyde biosynthesis pathway. In certain aspects, a biosynthesis pathway may comprise a 2-methyl-butyraldehyde biosynthesis pathway in combination with at least one of a 3-methyl-butyraldehyde or a phenylacetoaldehyde biosynthesis pathway. In certain aspects, a biosynthesis pathway may comprise a 3-methyl-butyraldehyde biosynthesis pathway in combination with a phenylacetoaldehyde biosynthesis pathway.
[0271]In certain aspects, a propionaldehyde biosynthesis pathway may comprise a threonine deaminase (ilvA) gene from an organism such as Escherichia coli and a keto-isovalerate decarboxylase (kivd) gene from an organism such as Lactococcus lactis, and/or functional variants of these enzymes, including homologs or orthologs thereof, as well as optimized variants. These enzymes may be utilized generally to convert L-threonine to propionaldehyde.
[0272]In certain aspects, a butyraldehyde biosyntheis pathway may comprise at least one of a thiolase (atoB) gene from an organism such as E. coli, a ฮฒ-hydroxy butyryl-CoA dehydrogenase (hbd) gene, a crotonase (crt) gene, a butyryl-CoA dehydrogenase (bcd) gene, an electron transfer flavoprotein A (etfA) gene, and/or an electron transfer flavoprotein B (etfB) gene from an organism such as Clostridium acetobutyricum (e.g., ATCC 824), as well as a coenzyme A-linked butyraldehyde dehydrogenase (ald) gene from an organism such as Clostridium beijerinckii acetobutyricum ATCC 824. In certain aspects, a coenzyme A-linked alcohol dehydrogenase (adhE2) gene from an organism such as Clostridium acetobutyricum ATCC 824 may be used as an alternative to an ald gene.
[0273]In certain aspects, an isobutyraldehyde biosynthetic pathway may comprise an acetolactate synthase (alsS) from an organism such as Bacillus subtilis or an als gene from an organism such as Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (codon usage may be optimized for E. coli protein expression). Such a pathway may also comprise acetolactate reductoisomerase (ilvC) and/or 2,3-dihydroxyisovalerate dehydratase (ilvD) genes from an organism such as E. coli, as well as a keto-isovalerate decarboxylase (kivd) gene from an organism such as Lactococcus lactis.
[0274]In certain aspects, a 3-methylbutyraldehyde and 2-methylbutyraldehyde biosynthesis pathway may comprise an acetolactate synthase (alsS) gene from an organism such as Bacillus subtilis or an (als) gene from an organism such as Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (codon usage may be optimized for E. coli protein expression). Certain aspects of such a pathway may also comprise acetolactate reductoisomerase (ilvC), 2,3-dihydroxyisovalerate dehydratase (ilvD), isopropylmalate synthase (LeuA), isopropylmalate isomerase (LeuC and LeuD), and 3-isopropylmalate dehydrogenase (LeuB) genes from an organism such as E. coli, as well as a keto-isovalerate decarboxylase (kivd) from an organism such as Lactococcus lactis.
[0275]In certain aspects, a phenylacetoaldehyde and 4-hydroxyphenylacetoaldehyde biosynthesis pathway may comprise one or more of 3-deoxy-7-phosphoheptulonate synthase (aroF, aroG, and aroH), 3-dehydroquinate synthase (aroB), a 3-dehydroquinate dehydratase (aroD), dehydroshikimate reductase (aroE), shikimate kinase II (aroL), shikimate kinase I (aroK), 5-enolpyruvylshikimate-3-phosphate synthetase (aroA), chorismate synthase (aroC), fused chorismate mutase P/prephenate dehydratase (pheA), and/or fused chorismate mutase T/prephenate dehydrogenase (tyrA) genes from an organism such as E. coli, as well as a keto-isovalerate decarboxylase (kivd) from an organism such as Lactococcus lactis.
[0276]In certain aspects, such as for the ultimate production of 1,10-diamino-5-decanol and 1,10-dicarboxylic-5-decanol, a biosynthesis pathway may comprise one or more homocitrate synthase, homoaconitate hydratase, homoisocitrate dehydrogenase, and/or homoisocitrate dehydrogenase genes from an organism such as Deinococcus radiodurans and/or Thermus thermophilus, as well as a keto-adipate decarboxylase gene, a 2-aminoadipate transaminase gene, and a L-2-Aminoadipate-6-semialdehyde: NAD+6-oxidoreductase gene. Such a biosynthesis pathway would be able to convert ฮฑ-ketoglutarate to 5-aminopentaldehyde.
[0277]In certain aspects, such as for one step in cyclopentanol production, a ฮฑ-ketoadipate semialdehyde biosynthesis pathway may comprise homocitrate synthase (hcs), homoaconitate hydratase, and homoisocitrate dehydrogenase genes from an organism such as Deinococcus radiodurans and/or Thermus thermophilus, and an ฮฑ-ketoadipate semialdehyde dehydrogenase gene. Such a biosynthesis pathway would be able to convert acetyl-CoA and ฮฑ-ketoglutarate to ฮฑ-ketoadipate semialdehyde.
[0278]For the production of certain commodity chemicals, such as 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol, among other similar chemicals, a biosynthesis pathway (e.g., aldehyde biosynthesis pathway) may optionally or further comprise one or more genes encoding a carboxylase enzyme, such as an indole-3-pyruvate decarboxylase (IPDC). An IPDC may be obtained, for example, from such microorganisms as Azospirillum brasilense and Paenibacillus polymyxa E681. In this regard, an IPDC may be utilized to more efficiently catalyze the dexarboxylation of various carboxylic acids to form the corresponding aldehyde, which can be further converted to a commodity chemical by a reductase or dehydrogenase, as detailed herein.
[0279]In certain aspects, a 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and 2-(indole-3-)ethanol biosynthesis pathway may comprise a transketolase (tktA), a 3-deoxy-7-phosphoheptulonate synthase (aroF, aroG, and aroH), 3-dehydroquinate synthase (aroB), a 3-dehydroquinate dehydratase (aroD), a dehydroshikimate reductase (aroE), a shikimate kinase II (aroL), a shikimate kinase I (aroK), a 5-enolpyruvylshikimate-3-phosphate synthetase (aroA), a chorismate synthase (aroC, a fused chorismate mutase P/prephenate dehydratase (pheA), and a fused chorismate mutase T/prephenate dehydrogenase (tyrA) genes from E. coli, keto-isovalerate decarboxylase (kivd) from Lactococcus lactis, alcohol dehydrogenase (adh2) from Saccharomyces cerevisiae, Indole-3-pyruvate decarboxylase (ipdc) from Azospirillum brasilense, phenylethanol reductase (par) from Rhodococcus sp. ST-10, and abenzaldehyde lyase (bal) from Pseudomonas fluorescence.
[0280]As for all other pathways described herein, the components for each of the biosynthesis pathways described herein may be present in a recombinant microorganism either endogenously or exogenously. To improve the efficiency of a given biosynthesis pathway, endogenous genes, for example, may be up-regulated or over-expressed, such as by introducing an additional (i.e., exogenous) copy of that endogenous gene into the recombinant microorganism. Such pathways may also be optimized by altering via mutagenesis the endogenous version of a gene to improve functionality, followed by introduction of the altered gene into the microorganism. The expression of endogenous genes may be up or down-regulated, or even eliminated, according to known techniques in the art and described herein. Similarly, the expression levels of exogenously provided genes may be regulated as desired, such as by using various constitutive or inducible promoters. Such genes may also be "codon-optimized," as described herein and known in the art. Also included are functional naturally-occurring variants of the genes and enzymes described herein, including homologs or orthologs thereof.
[0281]Certain embodiments of a microbial system or isolated microorganism may comprise a CC-ligation pathway. In certain aspects, a CC-ligation pathway may comprise a ThDP-dependent enzyme, such as a C--C ligase, or an optimized C--C ligase. For example, eight-carbon unit molecules (butyroins) may be made from condensing together two four-carbon unit molecules (butyraldehydes). ThDP-dependent enzymes are a group of enzymes known to catalyze both breaking and formation of C--C bonds and have been utilized as catalysts in chemoenzymatic syntheses. The spectrum of chemical reactions that these enzymes catalyze ranges from decarboxylation of ฮฑ-keto acids, oxidative decarboxylation, carboligation, and to the cleavage of C--C bonds.
[0282]To provide a few examples, benzaldehyde lyase (BAL) from Pseudomonas fluorescens, benzoylformate decarboxylase (BFD) from Pseudomonas putida, and pyruvate decarboxylase (PDC) from Zymomonas mobilis may catalyze a carboligation reaction between two aldehydes. BAL accepts the broadest spectrum of aldehydes as substrates among these three enzymes ranging from substituted benzaldehyde to acetoaldehyde, among others, as shown herein. BAL catalyzes stereospecific carboligation reaction between two aldehydes and forms ฮฑ-hydroxy ketone swith over 99% ee for R-configuration. The benzoin formation from two benzaldehyde molecules is a favored reaction catalyzed by BAL and proceeds as fast as 320 ฮผmol (benzoin) mg (protein)-1 min-1. The formation of ฮฑ-hydroxy ketone may be carried out using many different aldehydes, including butyraldehyde.
[0283]BFD and PCD may also catalyze the carboligation reactions between two aldehyde molecules. BFD and PCD accept relatively larger and smaller aldehyde molecules, respectively. With the presence of benzaldehyde and acetoaldehyde, BFD catalyzes the formation of benzoin and (S)-ฮฑ-hydroxy phenylpropanone (2S-HPP), whereas PCD catalyzes the formation of (R)-ฮฑ-hydroxy phenylpropanone (2R-HPP) and (R)-ฮฑ-hydroxy 2-butanone (acetoin). As detailed below, certain microbial systems or isolated microorganisms of the present application may comprise natural or optimized C--C ligases (ThDP-dependent enzymes) selected from benzaldehyde lyase (BAL) from Pseudomonas fluorescens benzoylformate decarboxylase (BFD) from Pseudomonas putida, and pyruvate decarboxylase (PDC) from Zymomonas mobilis. Other embodiments may comprise a benzaldehyde lyase (BAL) from Pseudomonas fluorescens (see SEQ ID NOS:143-144, showing the nucleotide and polypeptide sequences, respectively) including biologically active variants thereof, such as optimized variants.
[0284]A C--C ligation pathway of the present invention typically comprises one or more C--C ligases, such as a lyase enzyme. Exemplary lyases include, but are not limited to, acetoaldehyde lyases, propionaldehyde lyases, butyraldehyde lyases, isobutyraldehyde lyases, 2-methyl-butyraldehyde lyases, 3-methyl-butyraldehyde lyases (isoveraldehyde), phenylacetaldehyde lyases, ฮฑ-keto adipate carboxylyases, pentaldehyde lyases, 4-methyl-pentaldehyde lyases, hexyldehyde lyases, heptaldehyde lyases, octaldehyde lyases, 4-hydroxyphenylacetaldehyde lyases, indoleacetaldehyde lyases, indolephenylacetaldehyde lyases. In certain aspects, a selected CC-ligase or lyase enzyme may have one or more of the above exemplified lyase activities, such as acetoaldehyde lyase activity, a propionaldehyde lyase activity, a butyraldehyde lyase activity, and/or an isobutyraldehyde lyase activity, among others.
[0285]As noted above, a C--C ligase may comprise a benzaldehyde lyase, such as a benzaldehyde lyase isolated from Pseudomonas fluorescens (SEQ ID NOS:143-144), as well as biologically active fragments or variants of this reference sequence, such as optimized variants of a benzaldehyde lyase. In this regard, certain aspects may comprise nucleotide sequences or polypeptide sequences having 80%, 85%, 90%, 95%, 97%, 98%, 99% sequence identity to SEQ ID NOS:143-144, and which are capable of catalyzing a carboligation reaction, or which possess C--C lyase activity, as described herein. In certain aspects, a BAL enzyme will comprise one or more conserved amino acid residues, including G27, E50, A57, G155, P162, P234, D271, G277, G422, G447, D448, and/or G512.
[0286]Pseudomonas fluorescens is able to grow on R-benzoin as the sole carbon and energy source because it harbours the enzyme benzaldehyde lyase that cleaves the acyloin linkage using thiamine diphosphate (ThDP) as a cofactor. In the reverse reaction, as utilized herein, benzaldehyde lyase catalyses the carboligation of two aldehydes with high substrate and stereospecificity. Structure-based comparisons with other proteins show that benzaldehyde lyase belongs to a group of closely related ThDP-dependent enzymes. The ThDP cofactors of these enzymes are fixed at their two ends in separate domains, suspending a comparatively mobile thiazolium ring between them. While the residues binding the two ends of ThDP are well conserved, the lining of the active centre pocket around the thiazolium moiety varies greatly within the group. The active sites for BAL have been described, for example, in Kneen et al (Biochimica et Biophysica Acta 1753:263-271, 2005) and Brandt et al. (Biochemistry 47:7734-43, 2008). Benzaldehyde lyase derived from Pseudomonas fluorescens has been demonstrated herein to at least have an acetoaldehyde lyase activity, a propionaldehyde lyase activity, a butyraldehyde lyase activity, a 3-methyl-butyraldehyde lyase activity, a pentaldehyde lyase activity, a 4-methylpentaldehyde lyase activity, a hexyldehyde lyase activity, a phenylacetoaldehyde lyase activity, and an octaldehyde lyase activity (see Table 2), among other in vivo lyase activities (see FIGS. 48-55).
[0287]In certain aspects, a C--C ligase, such as BAL derived from Pseudomonas fluorescens, BFD derived from Pseudomonas putida, or PDC derived from Zymomonas mobilis may comprise a lyase with a combination of lyase activities, such as a lyase having both a propionaldehyde lyase activity and a 3-methyl-butyraldehyde lyase activity, among other combinations and activities, such as those exemplary combinations detailed herein. Merely by way of illustration, a lyase having a combination of lyase activities may be referred to herein as a propionaldehyde/3-methyl-butyraldehyde lyase.
[0288]A dehydration and reduction pathway, comprising a diol dehydrogenase, a diol dehydratase, and a secondary alcohol dehydrogenase, may be utilized to further convert an aldehyde, ketone, or corresponding alcohol, to a commodity chemical, such as a biofuel.
[0289]To this end, a dehydration and reduction pathway may comprise one or more diol dehydrogenases. A "diol dehydrogenase" refers generally to an enzyme that catalyzes the reversible reduction and oxidation of a ฮฑ-hydroxy ketone and/or its corresponding diol. Certain embodiments of a microbial system or isolated microorganism may comprise genes encoding a diol dehydrogenase that specifically catalyzes the reduction of ฮฑ-hydroxy-ketones, including, for example, a 4, 5, octanediol dehydrogenase. Diol dehydrogenases, such as 4, 5, octanediol dehydrogenase, may be isolated from a variety of organisms and incorporated into a microbial system or isolated microorganism. A particular group of alcohol dehydrogenases has a characteristic ability to oxidize various ฮฑ-hydroxy alcohols and reduce various ฮฑ-hydroxy ketones and ฮฑ-keto ketones. As such, the recitation "diol dehydrogenase" may also encompass such alcohol dehydrogenases.
[0290]By way of example regarding diol dehydrogenases from exemplary organisms, glycerol dehydrogenase isolated from Hansenula ofunaensis has broad substrate specificity and is capable of catalyzing the oxidation of various ฮฑ-hydroxy alcohols, including 1,2-octane, as well as the reduction of various ฮฑ-hydroxy ketones and ฮฑ-keto ketones, including 3-hydroxy-2-butanone and 3,4-hexanedione, with the activity comparable to its native substrates, glycerol and dihydroxyaceton, respectively (40-200%). As one further example, glycerol dehydrogenase discovered in Hansenula polumorpha DI-1 works similarly. In certain embodiments, a microbial system or recombinant microorganism may comprise a glycerol dehydrogenase gene isolated from Hansenula ofunaensis, a glycerol dehydrogenase isolated from Hansenula polumorpha DI-1 and/or a meso-2,3-butane diol dehydrogenase from Klebsiella pneumoniae. In other embodiments, a microbial system or isolated microorganism may comprise a 4, 5, octanediol dehydrogenase, among others detailed herein. Diol dehyodregnases may also be obtained from Lactobaccilus brevis ATCC 367, Pseudomanas putida KT2440, and Klebsiella pneumoniae MGH78578), as described herein (see Example 5).
[0291]Exemplary diol dehydrogenases include, but are not limited to, 2,3-butanediol dehydrogenase, 3,4-hexanediol dehydrogenase, 4,5-octanediol dehydrogenase, 5,6-decanediol dehydrogenase, 6,7-dodecanediol dehydrogenase, 7,8-tetradecanediol dehydrogenase, 8,9-hexadecanediol dehydrogenase, 2,5-dimethyl-3,4-hexanediol dehydrogenase, 3,6-dimethyl-4,5-octanediol dehydrogenase, 2,7-dimethyl-4,5-octanediol dehydrogenase, 2,9-dimethyl-5,6-decanediol dehydrogenase, 1,4-diphenyl-2,3-butanediol dehydrogenase, bis-1,4-(4-hydroxyphenyl)-2,3-butanediol dehydrogenase, 1,4-diindole-2,3-butanediol dehydrogenase, 1,2-cyclopentanediol dehydrogenase, 2,3-pentanediol dehydrogenase, 2,3-hexanediol dehydrogenase, 2,3-heptanediol dehydrogenase, 2,3-octanediol dehydrogenase, 2,3-nonanediol dehydrogenase, 4-methyl-2,3-pentanediol dehydrogenase, 4-methyl-2,3-hexanediol dehydrogenase, 5-methyl-2,3-hexanediol dehydrogenase, 6-methyl-2,3-heptanediol dehydrogenase, 1-phenyl-2,3-butanediol dehydrogenase, 1-(4-hydroxyphenyl)-2,3-butanediol dehydrogenase, 1-indole-2,3-butanediol dehydrogenase, 3,4-heptanediol dehydrogenase, 3,4-octanediol dehydrogenase, 3,4-nonanediol dehydrogenase, 3,4-decanediol dehydrogenase, 3,4-undecanediol dehydrogenase, 2-methyl-3,4-hexanediol dehydrogenase, 5-methyl-3,4-heptanediol dehydrogenase, 6-methyl-3,4-heptanediol dehydrogenase, 7-methyl-3,4-octanediol dehydrogenase, 1-phenyl-2,3-pentanediol dehydrogenase, 1-(4-hydroxyphenyl)-2,3-pentanediol dehydrogenase, 1-indole-2,3-pentanediol dehydrogenase, 4,5-nonanediol dehydrogenase, 4,5-decanediol dehydrogenase, 4,5-undecanediol dehydrogenase, 4,5-dodecanediol dehydrogenase, 2-methyl-3,4-heptanediol dehydrogenase, 3-methyl-4,5-octanediol dehydrogenase, 2-methyl-4,5-octanediol dehydrogenase, 8-methyl-4,5-nonanediol dehydrogenase, 1-phenyl-2,3-hexanediol dehydrogenase, 1-(4-hydroxyphenyl)-2,3-hexanediol dehydrogenase, 1-indole-2,3-hexanediol dehydrogenase, 5,6-undecanediol dehydrogenase, 5,6-undecanediol dehydrogenase, 5,6-tridecanediol dehydrogenase, 2-methyl-3,4-octanediol dehydrogenase, 3-methyl-4,5-nonanediol dehydrogenase, 2-methyl-4,5-nonanediol dehydrogenase, 2-methyl-5,6-decanediol dehydrogenase, 1-phenyl-2,3-heptanediol dehydrogenase, 1-(4-hydroxyphenyl)-2,3-heptanediol dehydrogenase, 1-indole-2,3-heptanediol dehydrogenase, 6,7-tridecanediol dehydrogenase, 6,7-tetradecanediol dehydrogenase, 2-methyl-3,4-nonanediol dehydrogenase, 3-methyl-4,5-decanediol dehydrogenase, 2-methyl-4,5-decanediol dehydrogenase, 2-methyl-5,6-undecanediol dehydrogenase, 1-phenyl-2,3-octanediol dehydrogenase, 1-(4-hydroxyphenyl)-2,3-octanediol dehydrogenase, 1-indole-2,3-octanediol dehydrogenase, 7,8-pentadecanediol dehydrogenase, 2-methyl-3,4-decanediol dehydrogenase, 3-methyl-4,5-undecanediol dehydrogenase, 2-methyl-4,5-undecanediol dehydrogenase, 2-methyl-5,6-dodecanediol dehydrogenase, 1-phenyl-2,3-nonanediol dehydrogenase, 1-(4-hydroxyphenyl)-2,3-nonanediol dehydrogenase, 1-indole-2,3-nonanediol dehydrogenase, 2-methyl-3,4-undecanediol dehydrogenase, 3-methyl-4,5-dodecanediol dehydrogenase, 2-methyl-4,5-dodecanediol dehydrogenase, 2-methyl-5,6-tridecanediol dehydrogenase, 1-phenyl-2,3-decanediol dehydrogenase, 1-(4-hydroxyphenyl)-2,3-decanediol dehydrogenase, 1-indole-2,3-decanediol dehydrogenase, 2,5-dimethyl-3,4-heptanediol dehydrogenase, 2,6-dimethyl-3,4-heptanediol dehydrogenase, 2,7-dimethyl-3,4-octanediol dehydrogenase, 1-phenyl-4-methyl-2,3-pentanediol dehydrogenase, 1-(4-hydroxyphenyl)-4-methyl-2,3-pentanediol dehydrogenase, 1-indole-4-methyl-2,3-pentanediol dehydrogenase, 2,6-dimethyl-4,5-octanediol dehydrogenase, 3,8-dimethyl-4,5-nonanediol dehydrogenase, 1-phenyl-4-methyl-2,3-hexanediol dehydrogenase, 1-(4-hydroxyphenyl)-4-methyl-2,3-hexanediol dehydrogenase, 1-indole-4-methyl-2,3-hexanediol dehydrogenase, 2,8-dimethyl-4,5-nonanediol dehydrogenase, 1-phenyl-5-methyl-2,3-hexanediol dehydrogenase, 1-(4-hydroxyphenyl)-5-methyl-2,3-hexanediol dehydrogenase, 1-indole-5-methyl-2,3-hexanediol dehydrogenase, 1-phenyl-6-methyl-2,3-heptanediol dehydrogenase, 1-(4-hydroxyphenyl)-6-methyl-2,3-heptanediol dehydrogenase, 1-indole-6-methyl-2,3-heptanediol dehydrogenase, 1-(4-hydroxyphenyl)-4-phenyl-2,3-butanediol dehydrogenase, 1-indole-4-phenyl-2,3-butanediol dehydrogenase, 1-indole-4-(4-hydroxyphenyl)-2,3-butanediol dehydrogenase, 1,10-diamino-5,6-decanediol dehydrogenase, 1,4-di(4-hydroxyphenyl)-2,3-butanediol, 2,3-hexanediol-1,6-dicarboxylic acid dehydrogenase, and the like.
[0292]In certain aspects, a selected diol dehydrogenase enzyme may have one or more of the above exemplified diol dehydrogenase activities, such as a 2,3-butanediol dehydrogenase activity, a 3,4-hexanediol dehydrogenase activity, and/or a 4,5-octanediol dehydrogenase activity, among others.
[0293]In certain aspects, a recombinant microorganism may comprise a diol dehydrogenase encoded by a nucleotide reference sequence selected from SEQ ID NO:97, 99, and 101, or an enzyme having a polyeptide sequence selected from SEQ ID NO:98, 100, and 102, including biologically active fragments or variants thereof, such as optimized variants. Certain aspects may also comprises nucleotide sequences or polypeptide sequences having 80%, 85%, 90%, 95%, 97%, 98%, 99% sequence identity to SEQ ID NOS:97-102.
[0294]Other embodiments may comprise re-designed diol dehydrogenases for reduction of 1-hydroxy propanal, succinicaldehyde, and glutaraldehyde to 1,3-propanediol, 1,4-butanediol, and 1,5 pentanediol, respectively, among others.
[0295]A dehydration and reduction pathway, as described herein, may comprise one or more diol dehydratases. A "diol dehydratase" refers generally to an enzyme that catalyzes the irreversible dehydration of diols. For instance, this enzyme may serve to dehydrate octanediol to form 4-octane. It has been recognized that there are at least two different types of diol dehydratases: a group dependent on and independent of coenzyme B12 for its catalysis. Coenzyme B12 dependent diol dehydratases are known to catalyze a radical mediated dehydration reaction from ฮฑ-hydroxy alcohol to aldehydes or ketones. For example, a diol dehydratase from Klebsiella pneumoniae catalyzes the dehydration of glycerol to form ฮฒ-hydroxypropyl aldehyde, accepts 2,3-butanediol as a substrate, and catalyzes the dehydration reaction to form 2-butanone.
[0296]As a further example, Clostridium butylicum contains coenzyme B12 independent diol dehydratases. FIG. 46 shows the in vivo biological activity of coenzyme B12 independent diol dehydratase (dhaB1) and activator (dhaB2) isolated from Clostridium butylicum (see Example 9). 46A shows the in vivo production of 1-propanol from 1,2-propanediol, FIG. 46B shows the in vivo production of 2-butanol from meso-2,3 butanediol, and FIG. 46C shows the in vivo production of cyclopentanone from trans-1,2-cyclopentanediol.
[0297]Thus, certain embodiments of the present invention may comprise optimized or redesigned diol dehydratases that accommodate various substrates, such as 4,5-octanediol as a substrate, and may include diol dehydratases isolated and/or optimized from Klebsiella pneumoniae and Clostridium butylicum, among other organisms described herein and known in the art.
[0298]Exemplary diol dehydratases include, but are not limited to, 2,3-butanediol dehydratase, 3,4-hexanediol dehydratase, 4,5-octanediol dehydratase, 5,6-decanediol dehydratase, 6,7-dodecanediol dehydratase, 7,8-tetradecanediol dehydratase, 8,9-hexadecanediol dehydratase, 2,5-dimethyl-3,4-hexanediol dehydratase, 3,6-dimethyl-4,5-octanediol dehydratase, 2,7-dimethyl-4,5-octanediol dehydratase, 2,9-dimethyl-5,6-decanediol dehydratase, 1,4-diphenyl-2,3-butanediol dehydratase, bis-1,4-(4-hydroxyphenyl)-2,3-butanediol dehydratase, 1,4-diindole-2,3-butanediol dehydratase, 1,2-cyclopentanediol dehydratase, 2,3-pentanediol dehydratase, 2,3-hexanediol dehydratase, 2,3-heptanediol dehydratase, 2,3-octanediol dehydratase, 2,3-nonanediol dehydratase, 4-methyl-2,3-pentanediol dehydratase, 4-methyl-2,3-hexanediol dehydratase, 5-methyl-2,3-hexanediol dehydratase, 6-methyl-2,3-heptanediol dehydratase, 1-phenyl-2,3-butanediol dehydratase, 1-(4-hydroxyphenyl)-2,3-butanediol dehydratase, 1-indole-2,3-butanediol dehydratase, 3,4-heptanediol dehydratase, 3,4-octanediol dehydratase, 3,4-nonanediol dehydratase, 3,4-decanediol dehydratase, 3,4-undecanediol dehydratase, 2-methyl-3,4-hexanediol dehydratase, 5-methyl-3,4-heptanediol dehydratase, 6-methyl-3,4-heptanediol dehydratase, 7-methyl-3,4-octanediol dehydratase, 1-phenyl-2,3-pentanediol dehydratase, 1-(4-hydroxyphenyl)-2,3-pentanediol dehydratase, 1-indole-2,3-pentanediol dehydratase, 4,5-nonanediol dehydratase, 4,5-decanediol dehydratase, 4,5-undecanediol dehydratase, 4,5-dodecanediol dehydratase, 2-methyl-3,4-heptanediol dehydratase, 3-methyl-4,5-octanediol dehydratase, 2-methyl-4,5-octanediol dehydratase, 8-methyl-4,5-nonanediol dehydratase, 1-phenyl-2,3-hexanediol dehydratase, 1-(4-hydroxyphenyl)-2,3-hexanediol dehydratase, 1-indole-2,3-hexanediol dehydratase, 5,6-undecanediol dehydratase, 5,6-undecanediol dehydratase, 5,6-tridecanediol dehydratase, 2-methyl-3,4-octanediol dehydratase, 3-methyl-4,5-nonanediol dehydratase, 2-methyl-4,5-nonanediol dehydratase, 2-methyl-5,6-decanediol dehydratase, 1-phenyl-2,3-heptanediol dehydratase, 1-(4-hydroxyphenyl)-2,3-heptanediol dehydratase, 1-indole-2,3-heptanediol dehydratase, 6,7-tridecanediol dehydratase, 6,7-tetradecanediol dehydratase, 2-methyl-3,4-nonanediol dehydratase, 3-methyl-4,5-decanediol dehydratase, 2-methyl-4,5-decanediol dehydratase, 2-methyl-5,6-undecanediol dehydratase, 1-phenyl-2,3-octanediol dehydratase, 1-(4-hydroxyphenyl)-2,3-octanediol dehydratase, 1-indole-2,3-octanediol dehydratase, 7,8-pentadecanediol dehydratase, 2-methyl-3,4-decanediol dehydratase, 3-methyl-4,5-undecanediol dehydratase, 2-methyl-4,5-undecanediol dehydratase, 2-methyl-5,6-dodecanediol dehydratase, 1-phenyl-2,3-nonanediol dehydratase, 1-(4-hydroxyphenyl)-2,3-nonanediol dehydratase, 1-indole-2,3-nonanediol dehydratase, 2-methyl-3,4-undecanediol dehydratase, 3-methyl-4,5-dodecanediol dehydratase, 2-methyl-4,5-dodecanediol dehydratase, 2-methyl-5,6-tridecanediol dehydratase, 1-phenyl-2,3-decanediol dehydratase, 1-(4-hydroxyphenyl)-2,3-decanediol dehydratase, 1-indole-2,3-decanediol dehydratase, 2,5-dimethyl-3,4-heptanediol dehydratase, 2,6-dimethyl-3,4-heptanediol dehydratase, 2,7-dimethyl-3,4-octanediol dehydratase, 1-phenyl-4-methyl-2,3-pentanediol dehydratase, 1-(4-hydroxyphenyl)-4-methyl-2,3-pentanediol dehydratase, 1-indole-4-methyl-2,3-pentanediol dehydratase, 2,6-dimethyl-4,5-octanediol dehydratase, 3,8-dimethyl-4,5-nonanediol dehydratase, 1-phenyl-4-methyl-2,3-hexanediol dehydratase, 1-(4-hydroxyphenyl)-4-methyl-2,3-hexanediol dehydratase, 1-indole-4-methyl-2,3-hexanediol dehydratase, 2,8-dimethyl-4,5-nonanediol dehydratase, 1-phenyl-5-methyl-2,3-hexanediol dehydratase, 1-(4-hydroxyphenyl)-5-methyl-2,3-hexanediol dehydratase, 1-indole-5-methyl-2,3-hexanediol dehydratase, 1-phenyl-6-methyl-2,3-heptanediol dehydratase, 1-(4-hydroxyphenyl)-6-methyl-2,3-heptanediol dehydratase, 1-indole-6-methyl-2,3-heptanediol dehydratase, 1-(4-hydroxyphenyl)-4-phenyl-2,3-butanediol dehydratase, 1-indole-4-phenyl-2,3-butanediol dehydratase, 1-indole-4-(4-hydroxyphenyl)-2,3-butanediol dehydratase, 1,10-diamino-5,6-decanediol dehydratase, 1,4-di(4-hydroxyphenyl)-2,3-butanediol, 2,3-hexanediol-1,6-dicarboxylic acid dehydratase, and the like.
[0299]In certain aspects, a selected diol dehydratase enzyme may have one or more of the above exemplified diol dehydratase activities, such as a 2,3-butanediol dehydratase activity, a 3,4-hexanediol dehydratase activity, and/or a 4,5-octanediol dehydratase activity, among others.
[0300]In certain aspects, diol dehydratases may be obtained from Klebsiella pneumoniae MGH 78578, including from the pduCDE gene of this and other microorganisms. In certain aspects, a recombinant microorganism may comprise one or more diol dehydratases encoded by a nucleotide reference sequence selected from SEQ ID NO:103, 105, and 107, or an enzyme having a polyeptide sequence selected from SEQ ID NO:104, 106, and 108, including biologically active fragments or variants thereof, such as optimized variants. Certain aspects may also comprises nucleotide sequences or polypeptide sequences having 80%, 85%, 90%, 95%, 97%, 98%, 99% sequence identity to SEQ ID NOS:103-108. In certain aspects, polypeptides of SEQ ID NO:104 may comprise certain conserved amino acid residues, including those chosen from D149, P151, A155, A159, G165, E168, E170, A183, G189, G196, Q200, E208, G215, Y219, E221, T222, S224, Y226, G227, T228, F232, G235, D236, D237, T238, P239, S241, L245, Y249, S251, R252, G253, K255, R257, S260, E265, M268, G269, S275, Y278, L279, E280, C283, G291, Q293, G294, Q296, N297, G298, G312, E329, S341, R344, G356, D371, N372, F374, S377, R392, D393, R412, L477, A486, G499, D500, S516, N522, D523, Y524, G526, and G530.
[0301]In certain aspects, a diol dehydratase may include a polypeptide that comprises an amino acid sequence having 0%, 85%, 90%, 95%, 97%, 98%, 99% sequence identity to SEQ ID NOS:308-311. SEQ ID NO:308 shows the polypeptide sequence of PduG, a diol dehydratase reactivation large subunit derived from Klebsiella pneumoniae subsp. pneumoniae MGH 78578. SEQ ID NO:309 shows the polypeptide sequence of PduH, diol dehydratase reactivation small subunit derived from Klebsiella pneumoniae subsp. pneumoniae MGH 78578. SEQ ID NO:310 shows the polypeptide sequence of a B12-independent glycerol dehydratase from Clostridium Butyricum. SEQ ID NO:311 shows the polypeptide sequence of a glycerol dehydratase activator from Clostridium Butyricum. In certain aspects, a B12-independent glycerol dehydratase may comprise conserved amino acid residues, such as T36, G74, P87, E88, E97, W126, R221, A263, Q265, R287, D289, E309, R317, G335, G345, G346, N356, P374, R379, G399, G401, P403, D408, G432, C433, N452, C529, G533, G539, G540, S559, G603, N604, A654, G658, R659, D676, N702, Q735, N737, A747, P751, R760, V761, A762, G763, Q776, I780, and/or R782. In certain aspects, a B12-independent glycerol dehydratase activator may comprise certain conserved amino acid residues, including D19, G20, G22, R24, F28, G31, C32, C36, W38, C39, N41, P42, C58, C64, C96, G129, T132, G135, G136, D185, R187, N208, R222, and/or R264.
[0302]A dehydration and reduction pathway, as described herein, may comprise one or more alcohol dehydrogenases or secondary alcohol dehydrogenases. An "alcohol dehydrogenase" or "secondary alcohol dehydrogenase" that is part of a dehydration and reduction pathway refers generally to an enzyme that catalyzes the conversion of aldehyde or ketone substituents to alcohols. For instance, 4-octanone may be reduced to 4-octanol by a secondary alcohol dehydrogenase one enzymatic step for the conversion of butyroin to a biofuel. Pseudomonads express at least one secondary alcohol dehydrogenase that oxidizes 4-octanol to 4-octanone using NAD+ as a co-factor. As another example, Rhodococcus erythropolis ATCC4277 catalyzes oxidation of medium to long chain secondary fatty alcohols using NADH as a co-factor, using an enzyme that also catalyzes the oxidation of 3-decanol and 4-decanol. In addition, Norcadia fusca AKU2123 contains an (S)-specific secondary alcohol dehydrogenase.
[0303]Genes encoding secondary alcohol dehydrogenases may be isolated from these and other organisms according to known techniques in the art and incorporated into the microbial systems recombinant organisms as described herein. In certain embodiments, a microbial system or isolated microorganism may comprise natural or optimized secondary alcohol dehydrogenases from Pseudomonads, Rhodococcus erythropolis ATCC4277, Norcadia fusca AKU2123, or other suitable organisms.
[0304]Examples of secondary alcohol dehydrogenases include, but are not limited to, 2-butanol dehydrogenase, 3-hexanol dehydrogenase, 4-octanol dehydrogenase, 5-decanol dehydrogenase, 6-dodecanol dehydrogenase, 7-tetradecanol dehydrogenase, 8-hexadecanol dehydrogenase, 2,5-dimethyl-3-hexanol dehydrogenase, 3,6-dimethyl-4-octanol dehydrogenase, 2,7-dimethyl-4-octanol dehydrogenase, 2,9-dimethyl-4-decanol dehydrogenase, 1,4-diphenyl-2-butanol dehydrogenase, bis-1,4-(4-hydroxyphenyl)-2-butanol dehydrogenase, 1,4-diindole-2-butanol dehydrogenase, cyclopentanol dehydrogenase, 2(or 3)-pentanol dehydrogenase, 2(or 3)-hexanol dehydrogenase, 2(or 3)-heptanol dehydrogenase, 2(or 3)-octanol dehydrogenase, 2(or 3)-nonanol dehydrogenase, 4-methyl-2(or 3)-pentanol dehydrogenase, 4-methyl-2(or 3)-hexanol dehydrogenase, 5-methyl-2(or 3)-hexanol dehydrogenase, 6-methyl-2(or 3)-heptanol dehydrogenase, 1-phenyl-2(or 3)-butanol dehydrogenase, 1-(4-hydroxyphenyl)-2(or 3)-butanol dehydrogenase, 1-indole-2(or 3)-butanol dehydrogenase, 3(or 4)-heptanol dehydrogenase, 3(or 4)-octanol dehydrogenase, 3(or 4)-nonanol dehydrogenase, 3(or 4)-decanol dehydrogenase, 3(or 4)-undecanol dehydrogenase, 2-methyl-3(or 4)-hexanol dehydrogenase, 5-methyl-3 (or 4)-heptanol dehydrogenase, 6-methyl-3 (or 4)-heptanol dehydrogenase, 7-methyl-3(or 4)-octanol dehydrogenase, 1-phenyl-2(or 3)-pentanol dehydrogenase, 1-(4-hydroxyphenyl)-2(or 3)-pentanol dehydrogenase, 1-indole-2(or 3)-pentanol dehydrogenase, 4(or 5)-nonanol dehydrogenase, 4(or 5)-decanol dehydrogenase, 4(or 5)-undecanol dehydrogenase, 4(or 5)-dodecanol dehydrogenase, 2-methyl-3(or 4)-heptanol dehydrogenase, 3-methyl-4(or 5)-octanol dehydrogenase, 2-methyl-4(or 5)-octanol dehydrogenase, 8-methyl-4(or 5)-nonanol dehydrogenase, 1-phenyl-2(or 3)-hexanol dehydrogenase, 1-(4-hydroxyphenyl)-2(or 3)-hexanol dehydrogenase, 1-indole-2(or 3)-hexanol dehydrogenase, 4(or 5)-undecanol dehydrogenase, 5(or 6)-undecanol dehydrogenase, 5(or 6)-tridecanol dehydrogenase, 2-methyl-3(or 4)-octanol dehydrogenase, 3-methyl-4(or 5)-nonanol dehydrogenase, 2-methyl-4(or 5)-nonanol dehydrogenase, 2-methyl-5(or 6)-decanol dehydrogenase, 1-phenyl-2(or 3)-heptanol dehydrogenase, 1-(4-hydroxyphenyl)-2(or 3)-heptanol dehydrogenase, 1-indole-2(or 3)-heptanol dehydrogenase, 6(or 7)-tridecanol dehydrogenase, 6(or 7)-tetradecanol dehydrogenase, 2-methyl-3(or 4)-nonanol dehydrogenase, 3-methyl-4(or 5)-decanol dehydrogenase, 2-methyl-4(or 5)-decanol dehydrogenase, 2-methyl-5(or 6)-undecanol dehydrogenase, 1-phenyl-2(or 3)-octanol dehydrogenase, 1-(4-hydroxyphenyl)-2(or 3)-octanol dehydrogenase, 1-indole-2(or 3)-octanol dehydrogenase, 7(or 8)-pentadecanol dehydrogenase, 2-methyl-3(or 4)-decanol dehydrogenase, 3-methyl-4(or 5)-undecanol dehydrogenase, 2-methyl-4(or 5)-undecanol dehydrogenase, 2-methyl-5 (or 6)-dodecanol dehydrogenase, 1-phenyl-2(or 3)-nonanol dehydrogenase, 1-(4-hydroxyphenyl)-2 (or 3)-nonanol dehydrogenase, 1-indole-2(or 3)-nonanol dehydrogenase, 2-methyl-3(or 4)-undecanol dehydrogenase, 3-methyl-4(or 5)-dodecanol dehydrogenase, 2-methyl-4(or 5)-dodecanol dehydrogenase, 2-methyl-5(or 6)-tridecanol dehydrogenase, 1-phenyl-2(or 3)-decanol dehydrogenase, 1-(4-hydroxyphenyl)-2 (or 3)-decanol dehydrogenase, 1-indole-2(or 3)-decanol dehydrogenase, 2,5-dimethyl-3(or 4)-heptanol dehydrogenase, 2,6-dimethyl-3(or 4)-heptanol dehydrogenase, 2,7-dimethyl-3(or 4)-octanol dehydrogenase, 1-phenyl-4-methyl-2(or 3)-pentanol dehydrogenase, 1-(4-hydroxyphenyl)-4-methyl-2(or 3)-pentanol dehydrogenase, 1-indole-4-methyl-2(or 3)-pentanol dehydrogenase, 2,6-dimethyl-4(or 5)-octanol dehydrogenase, 3,8-dimethyl-4(or 5)-nonanol dehydrogenase, 1-phenyl-4-methyl-2(or 3)-hexanol dehydrogenase, 1-(4-hydroxyphenyl)-4-methyl-2 (or 3)-hexanol dehydrogenase, 1-indole-4-methyl-2(or 3)-hexanol dehydrogenase, 2,8-dimethyl-4(or 5)-nonanol dehydrogenase, 1-phenyl-5-methyl-2(or 3)-hexanol dehydrogenase, 1-(4-hydroxyphenyl)-5-methyl-2(or 3)-hexanol dehydrogenase, 1-indole-5-methyl-2(or 3)-hexanol dehydrogenase, 1-phenyl-6-methyl-2(or 3)-heptanol dehydrogenase, 1-(4-hydroxyphenyl)-6-methyl-2(or 3)-heptanol dehydrogenase, 1-indole-6-methyl-2(or 3)-heptanol dehydrogenase, 1-(4-hydroxyphenyl)-4-phenyl-2(or 3)-butanol dehydrogenase, 1-indole-4-phenyl-2(or 3)-butanol dehydrogenase, 1-indole-4-(4-hydroxyphenyl)-2(or 3)-butanol dehydrogenase, 1,10-diamino-5-decanol dehydrogenase, 1,4-di(4-hydroxyphenyl)-2-butanol dehydrogenase, 2-hexanol-1,6-dicarboxylic acid dehydrogenase, phenylethanol dehydrogenase, 4-hydroxyphenylethanol dehydrogenase, Indole-3-ethanol dehydrogenase, and the like.
[0305]In certain aspects, a selected alcohol dehydrogenase or secondary alcohol dehydrogenase may have one or more of the above exemplified alcohol dehydrogenase activities, such as a 2-butanol dehydrogenase activity, 3-hexanol dehydrogenase activity, and/or a 4-octanol dehydrogenase activity, among others.
[0306]In certain aspects, a recombinant microorganism may comprise one or more secondary alcohol dehydrogenases encoded by a nucleotide reference sequence selected from SEQ ID NO:109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, and 141, or an enzyme having a polyeptide sequence selected from SEQ ID NO:110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, and 142, including biologically active fragments or variants thereof, such as optimized variants. Certain aspects may also comprises nucleotide sequences or polypeptide sequences having 80%, 85%, 90%, 95%, 97%, 98%, 99% sequence identity to SEQ ID NOS:109-142.
[0307]For the secondary alcohol dehydrogenase sequences referred to above, SEQ ID NO:109 is the nucleotide sequence and SEQ ID NO:110 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-1: PP--1946) isolated from Pseudomonas putida KT2440. SEQ ID NO:111 is the nucleotide sequence and SEQ ID NO:112 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-2: PP--1817) isolated from Pseudomonas putida KT2440.
[0308]SEQ ID NO:113 is the nucleotide sequence and SEQ ID NO:114 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-3: PP--1953) isolated from Pseudomonas putida KT2440. SEQ ID NO:115 is the nucleotide sequence and SEQ ID NO:116 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-4: PP--3037) isolated from Pseudomonas putida KT2440.
[0309]SEQ ID NO:117 is the nucleotide sequence and SEQ ID NO:118 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-5: PP--1852) isolated from Pseudomonas putida KT2440. SEQ ID NO:119 is the nucleotide sequence and SEQ ID NO:120 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-6: PP--2723) isolated from Pseudomonas putida KT2440.
[0310]SEQ ID NO:121 is the nucleotide sequence and SEQ ID NO:122 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-7: PP--2002) isolated from Pseudomonas putida KT2440. SEQ ID NO:123 is the nucleotide sequence and SEQ ID NO:124 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-8: PP--1914) isolated from Pseudomonas putida KT2440.
[0311]SEQ ID NO:125 is the nucleotide sequence and SEQ ID NO:126 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-9: PP--1914) isolated from Pseudomonas putida KT2440. SEQ ID NO:127 is the nucleotide sequence and SEQ ID NO:128 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-10: PP--3926) isolated from Pseudomonas putida KT2440.
[0312]SEQ ID NO:129 is the nucleotide sequence and SEQ ID NO:130 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-11: PFL--1756) isolated from Pseudomonas fluorescens Pf-5. SEQ ID NO:131 is the nucleotide sequence and SEQ ID NO:132 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-12: KPN--01694) isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578.
[0313]SEQ ID NO:133 is the nucleotide sequence and SEQ ID NO:134 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-13: KPN--02061) isolated from Kiebsiella pneumoniae subsp. pneumoniae MGH 78578. SEQ ID NO:135 is the nucleotide sequence and SEQ ID NO:136 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-14: KPN--00827) isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578.
[0314]SEQ ID NO:137 is the nucleotide sequence and SEQ ID NO:138 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-16: KPN--01350) isolated from Kiebsiella pneumoniae subsp. pneumoniae MGH 78578. SEQ ID NO:139 is the nucleotide sequence and SEQ ID NO:140 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-17: KPN--03369) isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578. SEQ ID NO:141 is the nucleotide sequence and SEQ ID NO:142 is the polypeptide sequence of a secondary alcohol dehydrogenase (2adh-18: KPN--03363) isolated from Klebsiella pneumoniae subsp. pneumoniae MGH 78578.
[0315]In certain aspects, an alcohol dehydrogenase (e.g., DEHU hydrogenase), a secondary alcohol dehydrogenase (2ADH), a fragment, variant, or derivative thereof, or any other enzyme that utilizes such an active site, may comprise at least one of a nicotinamide adenine dinucleotide (NAD+), NADH, nicotinamide adenine dinucleotide phosphate (NADP+), or NADPH binding motif. In certain embodiments, the NAD+, NADH, NADP+, or NADPH binding motif may be selected from the group consisting of Y-X-G-G-X-Y, Y-X-X-G-G-X-Y, Y-X-X-X-G-G-X-Y, Y-X-G-X-X-Y, Y-X-X-G-G-X-X-Y, Y-X-X-X-G-X-X-Y, Y-X-G-X-Y, Y-X-X-G-X-Y, Y-X-X-X-G-X-Y, and Y-X-X-X-X-G-X-Y; wherein Y is independently selected from alanine, glycine, and serine, wherein G is glycine, and wherein X is independently selected from a genetically encoded amino acid.
[0316]As one example of a step in a reduction and dehydration pathway, ฮฑ-hydroxy cyclopentanone may be reduced to 1,2-cyclopentanediol. For example, the glycerol dehydrogenase isolated from Hansenula ofunaensis favors the reduction of ฮฑ-hydroxy ketones and ฮฑ-keto ketones, and has very broad substrate specificity. The similar alcohol dehydrogenase derived from Hansenula polumorpha and meso-2,3-butanediol dehydrogenase has similar properties. Certain embodiments may incorporate a 1,2-cyclopentanediol dehydrogenase to the microbial system or isolated microorganism. Other embodiments may incorporate a glycerol dehydrogenase from Hansenula ofunaensis, Hansenula polumorpha, Klebsiella pneumonia, or any other suitable organism.
[0317]By way of example, a chemical or hydrocarbon such as 1,2-cyclopentanediol may be dehydrated to form cyclopentanone as one enzymatic step in a reduction and dehydration pathway. There are at least two different types of diol dehydratases that may catalyze dehydration of chemicals such as 1,2-cyclopentanediol. Certain embodiments of microbial system comprising a reduction and dehydration pathway will comprise diol dehydratases such as 1,2-cyclopentanediol dehydratase.
[0318]In the last enzymatic step for a reduction and dehydration pathway, the conversion of such exemplary chemicals as ฮฑ-hydroxy cyclopentanone to cyclopentanol may include the reduction of cyclopentanone to cyclopentanol. This step may be catalyzed by cyclopentanol dehydrogenase, which is found in Comomonas sp. strain NCIMB 9872 and its gene (cpnA) has been isolated. Certain embodiments of a microbial system or isolated microorganism may comprise a cyclopentanol dehydrogenase, such as that expressed by cpnA in Comomonas sp. strain NCIMB 9872, among others described herein.
[0319]As detailed below, in certain embodiments, selected C--C ligation pathways may be utilized in combination with selected components or enzymes of a reduction and dehydration pathway to produce a commodity chemical, or intermediate thereof.
[0320]For example, certain embodiments include a method wherein the C--C ligation pathway may comprise an acetoaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,3-butanediol dehydrogenase, a 2,3-butanediol dehydratase, and a 2-butanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a propionaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,4-hexanediol dehydrogenase, a 3,4-hexanediol dehydratase, and a 3-hexanol dehydrogenase.
[0321]Additional embodiments include a method wherein the C--C ligation pathway may comprise a butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 4,5-octanediol dehydrogenase, a 4,5-octanediol dehydratase, and a 4-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 5,6-decanediol dehydrogenase, a 5,6-decanediol dehydratase, and a 5-decanol dehydrogenase.
[0322]Additional embodiments include a method wherein the C--C ligation pathway may comprise a butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 6,7-dodecanediol dehydrogenase, a 6,7-dodecanediol dehydratase, and a 6-dodecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 7,8-tetradecanediol dehydrogenase, a 7,8-tetradecanediol dehydratase, and a 7-tetradecanol dehydrogenase.
[0323]Additional embodiments include a method wherein the C--C ligation pathway may comprise a butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 8,9-hexadecanediol dehydrogenase, a 8,9-hexadecanediol dehydratase, and a 8-hexadecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise an isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,5-dimethyl-3,4-hexanediol dehydrogenase, a 2,5-dimethyl-3,4-hexanediol dehydratase, and a 2,5-dimethyl-3-hexanol dehydrogenase.
[0324]Additional embodiments include a method wherein the C--C ligation pathway may comprise a 2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,6-dimethyl-4,5-octanediol dehydrogenase, a 3,6-dimethyl-4,5-octanediol dehydratase, and a 3,6-dimethyl-4-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a 3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,7-dimethyl-4,5-octanediol dehydrogenase, a 2,7-dimethyl-4,5-octanediol dehydratase, and a 2,7-dimethyl-4-octanol dehydrogenase.
[0325]Additional embodiments include a method wherein the C--C ligation pathway may comprise a 3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,9-dimethyl-5,6-decanediol dehydrogenase, a 2,9-dimethyl-4,5-decanediol dehydratase, and a 2,9-dimethyl-4-decanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1,4-diphenyl-2,3-butanediol dehydrogenase, a 1,4-diphenyl-2,3-butanediol dehydratase, and a 1,4-diphenyl-2-butanol dehydrogenase.
[0326]Additional embodiments include a method wherein the C--C ligation pathway may comprise a phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a bis-1,4-(4-hydroxyphenyl)-2,3-butanediol dehydrogenase, a bis-1,4-(4-hydroxyphenyl)-2,3-butanediol dehydratase, and a bis-1,4-(4-hydroxyphenyl)-2-butanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1,4-diindole-2,3-butanediol dehydrogenase, a 1,4-diindole-2,3-butanediol dehydratase, and a 1,4-diindole-2-butanol dehydrogenase.
[0327]Additional embodiments include a method wherein the C--C ligation pathway may comprise an ฮฑ-keto adipate carboxylyase, and wherein the reduction and dehydration pathway may comprise at least one of a 1,2-cyclopentanediol dehydrogenase, a 1,2-cyclopentanediol dehydratase, and a cyclopentanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/propiondehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,3-pentanediol dehydrogenase, a 2,3-pentanediol dehydratase, and a 2(or 3)-pentanol dehydrogenase.
[0328]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,3-hexanediol dehydrogenase, a 2,3-hexanediol dehydratase, and a 2(or 3)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,3-heptanediol dehydrogenase, a 2,3-heptanediol dehydratase, and a 2(or 3)-heptanol dehydrogenase.
[0329]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/hexyldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,3-octanediol dehydrogenase, a 2,3-octanediol dehydratase, and a 2(or 3)-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/octaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,3-nonanediol dehydrogenase, a 2,3-nonanediol dehydratase, and a 2(or 3)-nonanol dehydrogenase.
[0330]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 4-methyl-2,3-pentanediol dehydrogenase, a 4-methyl-2,3-pentanediol dehydratase, and a 4-methyl-2(or 3)-pentanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 4-methyl-2,3-hexanediol dehydrogenase, a 4-methyl-2,3-hexanediol dehydratase, and a 4-methyl-2(or 3)-hexanol dehydrogenase.
[0331]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 5-methyl-2,3-hexanediol dehydrogenase, a 5-methyl-2,3-hexanediol dehydrogenase, and a 5-methyl-2(or 3)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 6-methyl-2,3-heptanediol dehydrogenase, a 6-methyl-2,3-heptanediol dehydrogenase, and a 6-methyl-2(or 3)-heptanol dehydrogenase.
[0332]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-2,3-butanediol dehydrogenase, a 1-phenyl-2,3-butanediol dehydratase, and a 1-phenyl-2(or 3)-butanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-2,3-butanediol dehydrogenase, a 1-(4-hydroxyphenyl)-2,3-butanediol dehydratase, and a 1-(4-hydroxyphenyl)-2(or 3)-butanol dehydrogenase.
[0333]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an acetoaldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-2,3-butanediol dehydrogenase, a 1-indole-2,3-butanediol dehydratase, and a 1-indole-2(or 3)-butanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,4-heptanediol dehydrogenase, a 3,4-heptanediol dehydratase, and a 3(or 4)-heptanol dehydrogenase.
[0334]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,4-octanediol dehydrogenase, a 3,4-octanediol dehydratase, and a 3(or 4)-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/hexyldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,4-nonanediol dehydrogenase, a 3,4-nonanediol dehydratase, and a 3(or 4)-nonanol dehydrogenase.
[0335]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/heptaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,4-decanediol dehydrogenase, a 3,4-decanediol dehydratase, and a 3(or 4)-decanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/octaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,4-undecanediol dehydrogenase, a 3,4-undecanediol dehydratase, and a 3(or 4)-undecanol dehydrogenase.
[0336]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-3,4-hexanediol dehydrogenase, a 2-methyl-3,4-hexanediol dehydratase, and a 2-methyl-3(or 4)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 5-methyl-3,4-heptanediol dehydrogenase, a 5-methyl-3,4-heptanediol dehydratase, and a 5-methyl-3 (or 4)-heptanol dehydrogenase.
[0337]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 6-methyl-3,4-heptanediol dehydrogenase, a 6-methyl-3,4-heptanediol dehydratase, and a 6-methyl-3(or 4)-heptanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 7-methyl-3,4-octanediol dehydrogenase, a 7-methyl-3,4-octanediol dehydratase, and a 7-methyl-3(or 4)-octanol dehydrogenase.
[0338]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde and a phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-2,3-pentanediol dehydrogenase, a 1-phenyl-2,3-pentanediol dehydratase, and a 1-phenyl-2(or 3)-pentanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-2,3-pentanediol dehydrogenase, a 1-(4-hydroxyphenyl)-2,3-pentanediol dehydratase, and a 1-(4-hydroxyphenyl)-2(or 3)-pentanol dehydrogenase.
[0339]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a propionaldehyde/indoleacetoaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-2,3-pentanediol dehydrogenase, a 1-indole-2,3-pentanediol dehydratase, and a 1-indole-2(or 3)-pentanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 4,5-nonanediol dehydrogenase, a 4,5-nonanediol dehydratase, and a 4(or 5)-nonanol dehydrogenase.
[0340]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/hexyldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 4,5-decanediol dehydrogenase, a 4,5-decanediol dehydratase, and a 4(or 5)-decanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/heptaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 4,5-undecanediol dehydrogenase, a 4,5-undecanediol dehydratase, and a 4(or 5)-undecanol dehydrogenase.
[0341]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/octaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 4,5-dodecanediol dehydrogenase, a 4,5-dodecanediol dehydratase, and a 4(or 5)-dodecanol dehydrogenase.
[0342]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-3,4-heptanediol dehydrogenase, a 2-methyl-3,4-heptanediol dehydratase, and a 2-methyl-3(or 4)-heptanol dehydrogenase.
[0343]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3-methyl-4,5-octanediol dehydrogenase, a 3-methyl-4,5-octanediol dehydratase, and a 3-methyl-4(or 5)-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-4,5-octanediol dehydrogenase, a 2-methyl-4,5-octanediol dehydratase, and a 2-methyl-4(or 5)-octanol dehydrogenase.
[0344]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of an 8-methyl-4,5-nonanediol dehydrogenase, an 8-methyl-4,5-nonanediol dehydratase, and an 8-methyl-4(or 5)-nonanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-2,3-hexanediol dehydrogenase, a 1-phenyl-2,3-hexanediol dehydratase, and a 1-phenyl-2(or 3)-hexanol dehydrogenase.
[0345]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-2,3-hexanediol dehydrogenase, a 1-(4-hydroxyphenyl)-2,3-hexanediol dehydratase, and a 1-(4-hydroxyphenyl)-2(or 3)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a butyraldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-2,3-hexanediol dehydrogenase, a 1-indole-2,3-hexanediol dehydratase, and a 1-indole-2(or 3)-hexanol dehydrogenase.
[0346]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/hexyldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 5,6-undecanediol dehydrogenase, a 4,5-undecanediol dehydratase, and a 4(or 5)-undecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/heptaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 5,6-undecanediol dehydrogenase, a 5,6-undecanediol dehydratase, and a 5(or 6)-undecanol dehydrogenase.
[0347]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/octaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 5,6-tridecanediol dehydrogenase, a 5,6-tridecanediol dehydratase, and a 5(or 6)-tridecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-3,4-octanediol dehydrogenase, a 2-methyl-3,4-octanediol dehydratase, and a 2-methyl-3(or 4)-octanol dehydrogenase.
[0348]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3-methyl-4,5-nonanediol dehydrogenase, a 3-methyl-4,5-nonanediol dehydratase, and a 3-methyl-4(or 5)-nonanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-4,5-nonanediol dehydrogenase, a 2-methyl-4,5-nonanediol dehydratase, and a 2-methyl-4(or 5)-nonanol dehydrogenase.
[0349]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-5,6-decanediol dehydrogenase, a 2-methyl-5,6-decanediol dehydratase, and a 2-methyl-5(or 6)-decanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-2,3-heptanediol dehydrogenase, a 1-phenyl-2,3-heptanediol dehydratase, and a 1-phenyl-2(or 3)-heptanol dehydrogenase.
[0350]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-2,3-heptanediol dehydrogenase, a 1-(4-hydroxyphenyl)-2,3-heptanediol dehydratase, and a 1-(4-hydroxyphenyl)-2(or 3)-heptanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a pentaldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-2,3-heptanediol dehydrogenase, a 1-indole-2,3-heptanediol dehydratase, and a 1-indole-2(or 3)-heptanol dehydrogenase.
[0351]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/heptaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 6,7-tridecanediol dehydrogenase, a 6,7-tridecanediol dehydratase, and a 6(or 7)-tridecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/octaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 6,7-tetradecanediol dehydrogenase, a 6,7-tetradecanediol dehydratase, and a 6(or 7)-tetradecanol dehydrogenase.
[0352]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-3,4-nonanediol dehydrogenase, a 2-methyl-3,4-nonanediol dehydratase, and a 2-methyl-3(or 4)-nonanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3-methyl-4,5-decanediol dehydrogenase, a 3-methyl-4,5-decanediol dehydratase, and a 3-methyl-4(or 5)-decanol dehydrogenase.
[0353]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-4,5-decanediol dehydrogenase, a 2-methyl-4,5-decanediol dehydratase, and a 2-methyl-4(or 5)-decanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-5,6-undecanediol dehydrogenase, a 2-methyl-5,6-undecanediol dehydratase, and a 2-methyl-5(or 6)-undecanol dehydrogenase.
[0354]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-2,3-octanediol dehydrogenase, a 1-phenyl-2,3-octanediol dehydratase, and a 1-phenyl-2(or 3)-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-2,3-octanediol dehydrogenase, a 1-(4-hydroxyphenyl)-2,3-octanediol dehydratase, and a 1-(4-hydroxyphenyl)-2(or 3)-octanol dehydrogenase.
[0355]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a hexyldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-2,3-octanediol dehydrogenase, a 1-indole-2,3-octanediol dehydratase, and a 1-indole-2(or 3)-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/octaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 7,8-pentadecanediol dehydrogenase, a 7,8-pentadecanediol dehydratase, and a 7(or 8)-pentadecanol dehydrogenase.
[0356]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-3,4-decanediol dehydrogenase, a 2-methyl-3,4-decanediol dehydratase, and a 2-methyl-3(or 4)-decanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3-methyl-4,5-undecanediol dehydrogenase, a 3-methyl-4,5-undecanediol dehydratase, and a 3-methyl-4(or 5)-undecanol dehydrogenase.
[0357]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-4,5-undecanediol dehydrogenase, a 2-methyl-4,5-undecanediol dehydratase, and a 2-methyl-4(or 5)-undecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-5,6-dodecanediol dehydrogenase, a 2-methyl-5,6-dodecanediol dehydratase, and a 2-methyl-5(or 6)-dodecanol dehydrogenase.
[0358]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-2,3-nonanediol dehydrogenase, a 1-phenyl-2,3-nonanediol dehydratase, and a 1-phenyl-2(or 3)-nonanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-2,3-nonanediol dehydrogenase, a 1-(4-hydroxyphenyl)-2,3-nonanediol dehydratase, and a 1-(4-hydroxyphenyl)-2 (or 3)-nonanol dehydrogenase.
[0359]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a heptaldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-2,3-nonanediol dehydrogenase, a 1-indole-2,3-nonanediol dehydratase, and a 1-indole-2(or 3)-nonanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an octaldehyde/isobutyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-3,4-undecanediol dehydrogenase, a 2-methyl-3,4-undecanediol dehydratase, and a 2-methyl-3(or 4)-undecanol dehydrogenase.
[0360]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an octaldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3-methyl-4,5-dodecanediol dehydrogenase, a 3-methyl-4,5-dodecanediol dehydratase, and a 3-methyl-4(or 5)-dodecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an octaldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-4,5-dodecanediol dehydrogenase, a 2-methyl-4,5-dodecanediol dehydratase, and a 2-methyl-4(or 5)-dodecanol dehydrogenase.
[0361]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an octaldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2-methyl-5,6-tridecanediol dehydrogenase, a 2-methyl-5,6-tridecanediol dehydratase, and a 2-methyl-5(or 6)-tridecanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an octaldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-2,3-decanediol dehydrogenase, a 1-phenyl-2,3-decanediol dehydratase, and a 1-phenyl-2(or 3)-decanol dehydrogenase.
[0362]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an octaldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-2,3-decanediol dehydrogenase, a 1-(4-hydroxyphenyl)-2,3-decanediol dehydratase, and a 1-(4-hydroxyphenyl)-2 (or 3)-decanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an octaldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-2,3-decanediol dehydrogenase, a 1-indole-2,3-decanediol dehydratase, and a 1-indole-2(or 3)-decanol dehydrogenase.
[0363]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an isobutyraldehyde/2-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,5-dimethyl-3,4-heptanediol dehydrogenase, a 2,5-dimethyl-3,4-heptanediol dehydratase, and a 2,5-dimethyl-3(or 4)-heptanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an isobutyraldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,6-dimethyl-3,4-heptanediol dehydrogenase, a 2,6-dimethyl-3,4-heptanediol dehydratase, and a 2,6-dimethyl-3(or 4)-heptanol dehydrogenase.
[0364]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an isobutyraldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,7-dimethyl-3,4-octanediol dehydrogenase, a 2,7-dimethyl-3,4-octanediol dehydratase, and a 2,7-dimethyl-3(or 4)-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an isobutyraldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-4-methyl-2,3-pentanediol dehydrogenase, a 1-phenyl-4-methyl-2,3-pentanediol dehydratase, and a 1-phenyl-4-methyl-2(or 3)-pentanol dehydrogenase.
[0365]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an isobutyraldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-4-methyl-2,3-pentanediol dehydrogenase, a 1-(4-hydroxyphenyl)-4-methyl-2,3-pentanediol dehydratase, and a 1-(4-hydroxyphenyl)-4-methyl-2(or 3)-pentanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of an isobutyraldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-4-methyl-2,3-pentanediol dehydrogenase, a 1-indole-4-methyl-2,3-pentanediol dehydratase, and a 1-indole-4-methyl-2(or 3)-pentanol dehydrogenase.
[0366]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 2-methyl-butyraldehyde/3-methyl-butyraldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,6-dimethyl-4,5-octanediol dehydrogenase, a 2,6-dimethyl-4,5-octanediol dehydratase, and a 2,6-dimethyl-4(or 5)-octanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 2-methyl-butyraldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 3,8-dimethyl-4,5-nonanediol dehydrogenase, a 3,8-dimethyl-4,5-nonanediol dehydratase, and a 3,8-dimethyl-4(or 5)-nonanol dehydrogenase.
[0367]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 2-methyl-butyraldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-4-methyl-2,3-hexanediol dehydrogenase, a 1-phenyl-4-methyl-2,3-hexanediol dehydratase, and a 1-phenyl-4-methyl-2(or 3)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 2-methyl-butyraldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-4-methyl-2,3-hexanediol dehydrogenase, a 1-(4-hydroxyphenyl)-4-methyl-2,3-hexanediol dehydratase, and a 1-(4-hydroxyphenyl)-4-methyl-2 (or 3)-hexanol dehydrogenase.
[0368]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 2-methyl-butyraldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-4-methyl-2,3-hexanediol dehydrogenase, a 1-indole-4-methyl-2,3-hexanediol dehydratase, and a 1-indole-4-methyl-2(or 3)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 3-methyl-butyraldehyde/4-methyl-pentaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 2,8-dimethyl-4,5-nonanediol dehydrogenase, a 2,8-dimethyl-4,5-nonanediol dehydratase, and a 2,8-dimethyl-4(or 5)-nonanol dehydrogenase.
[0369]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 3-methyl-butyraldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-5-methyl-2,3-hexanediol dehydrogenase, a 1-phenyl-5-methyl-2,3-hexanediol dehydratase, and a 1-phenyl-5-methyl-2(or 3)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 3-methyl-butyraldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-5-methyl-2,3-hexanediol dehydrogenase, a 1-(4-hydroxyphenyl)-5-methyl-2,3-hexanediol dehydratase, and a 1-(4-hydroxyphenyl)-5-methyl-2(or 3)-hexanol dehydrogenase.
[0370]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 3-methyl-butyraldehyde/indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-5-methyl-2,3-hexanediol dehydrogenase, a 1-indole-5-methyl-2,3-hexanediol dehydratase, and a 1-indole-5-methyl-2(or 3)-hexanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 4-methyl-pentaldehyde/phenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-phenyl-6-methyl-2,3-heptanediol dehydrogenase, a 1-phenyl-6-methyl-2,3-heptanediol dehydratase, and a 1-phenyl-6-methyl-2(or 3)-heptanol dehydrogenase.
[0371]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 4-methyl-pentaldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-6-methyl-2,3-heptanediol dehydrogenase, a 1-(4-hydroxyphenyl)-6-methyl-2,3-heptanediol dehydratase, and a 1-(4-hydroxyphenyl)-6-methyl-2(or 3)-heptanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 4-methyl-pentaldehyde/Indoleacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-6-methyl-2,3-heptanediol dehydrogenase, a 1-indole-6-methyl-2,3-heptanediol dehydratase, and a 1-indole-6-methyl-2(or 3)-heptanol dehydrogenase.
[0372]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a phenylacetaldehyde/4-hydroxyphenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-(4-hydroxyphenyl)-4-phenyl-2,3-butanediol dehydrogenase, a 1-(4-hydroxyphenyl)-4-phenyl-2,3-butanediol dehydratase, and a 1-(4-hydroxyphenyl)-4-phenyl-2(or 3)-butanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a phenylacetaldehyde/indolephenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-4-phenyl-2,3-butanediol dehydrogenase, a 1-indole-4-phenyl-2,3-butanediol dehydratase, and a 1-indole-4-phenyl-2(or 3)-butanol dehydrogenase.
[0373]Additional embodiments include a method wherein the C--C ligation pathway may comprise at least one of a 4-hydroxyphenylacetaldehyde/indolephenylacetaldehyde lyase and wherein the reduction and dehydration pathway may comprise at least one of a 1-indole-4-(4-hydroxyphenyl)-2,3-butanediol dehydrogenase, a 1-indole-4-(4-hydroxyphenyl)-2,3-butanediol dehydratase, and a 1-indole-4-(4-hydroxyphenyl)-2(or 3)-butanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a 5-amino-pantaldehyde lyase, and wherein the reduction and dehydration pathway may comprise at least one of a 1,10-diamino-5,6-decanediol dehydrogenase, a 1,10-diamino-5,6-decanediol dehydratase, and a 1,10-diamino-5-decanol dehydrogenase.
[0374]Additional embodiments include a method wherein the C--C ligation pathway may comprise a 4-hydroxyphenyl acetaldehyde lyase, and wherein the reduction and dehydration pathway may comprise at least one of a 1,4-di(4-hydroxyphenyl)-2,3-butanediol, a 1,4-di(4-hydroxyphenyl)-2,3-butanediol dehydratase, and a 1,4-di(4-hydroxyphenyl)-2-butanol dehydrogenase. Additional embodiments include a method wherein the C--C ligation pathway may comprise a succinate semialdehyde lyase, and wherein the reduction and dehydration pathway may comprise at least one of a 2,3-hexanediol-1,6-dicarboxylic acid dehydrogenase, a 2,3-hexanediol-1,6-dicarboxylic acid dehydratase, and a 2-hexanol-1,6-dicarboxylic dehydrogenase.
[0375]Certain embodiments of a microbial system or recombinant microorganism may comprise genes encoding enzymes that are able to catalyze (e.g., reduction and dehydration) the conversion of 4-octanol to octene or octane. Other embodiments may comprise redesigned or de novo designed enzymes for this reduction and dehydration pathway. For example, three redesigned enzymes could convert 4-octanone to either 3- and 4-octene. The first step could be catalyzed by redesigned isocitrate dehydrogenase. This enzyme could catalyze the formation of 4-hydroxy-3(or 5)-carboxylic octane. The 4-hydroxy group could be phosphorylated by redesigned kinase. Finally, redesigned mevalonate diphosphate decarboxylase catalyzes the formation of 3(or 4)-octene.
[0376]In other embodiments, several redesigned enzymes could convert 4-octanone to octane. For example, the 4-hydroxy-3(or 5)-carboxylic octane is sequentially reduced and dehydrated to form 3(or 5)-carboxylic octane. Redesigned enzymes involved in fatty acid metabolism can catalyze these reactions. The 3(or 5)-carboxylic octane can be reduced to corresponding aldehyde by aldehyde dehydrogenase and the product may be decarbonylated to form octane catalyzed by a redesigned decarbonylase.
[0377]As noted above, for the production of certain commodity chemicals, such as 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol, among other similar chemicals, a biosynthesis pathway (e.g., aldehyde biosynthesis pathway) may optionally or further comprise one or more genes encoding a decarboxylase enzyme, such as an indole-3-pyruvate decarboxylase (IPDC), to produce an aldehyde. In certain aspects, an IPDC may comprise an amino acid sequence that is at least 80%, 90%, 95%, 98%, or 99% identical to the amino acid sequence set forth in SEQ ID NO:312. An IDPC enzyme may comprise certain conserved amino acid residues, such as G24, D25, E48, A55, R60, G75, E89, H113, G252, G405, G413, G428, G430, and/or N456.
[0378]In these and other embodiments, a recombinant microorganism may comprise an aldehyde reductase, such as a phenylacetoaldehyde reductase (PAR), to convert an aldehyde to a commodity chemical. In certain aspects, a PAR may comprise an amino acid sequence that is at least 80%, 90%, 95%, 98%, or 99% identical to the amino acid sequence set forth in SEQ ID NO:313, which shows the sequence of a PAR enzymed derived from Rhodococcus sp. ST-10. In certain aspects, a PAR enzyme may comprise at least one of a nicotinamide adenine dinucleotide (NAD+), NADH, nicotinamide adenine dinucleotide phosphate (NADP+), or NADPH binding motif. In certain embodiments, the NAD+, NADH, NADP+, or NADPH binding motif may be selected from the group consisting of Y-X-G-G-X-Y, Y-X-X-G-G-X-Y, Y-X-X-X-G-G-X-Y, Y-X-G-X-X-Y, Y-X-X-G-G-X-X-Y, Y-X-X-X-G-X-X-Y, Y-X-G-X-Y, Y-X-X-G-X-Y, Y-X-X-X-G-X-Y, and Y-X-X-X-X-G-X-Y; wherein Y is independently selected from alanine, glycine, and serine, wherein G is glycine, and wherein X is independently selected from a genetically encoded amino acid.
[0379]In certain embodiments, such a recombinant microorganism may also or alternatively comprise a secondary alcohol dehydrogenase having an activity selected from at least one of a phenylethanol dehydrogenase activity, a 4-hydroxyphenylethanol dehydrogenase activity, and an Indole-3-ethanol dehydrogenase activity, to reduce the aldehyde to its corresponding alcohol (e.g. 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and indole-3-ethanol).
[0380]Embodiments of the present invention also include methods for converting a suitable monosaccharide to a commodity chemical comprising, (a) obtaining a suitable monosaccharide; (b) contacting the suitable monosaccharide with a microbial system for a time sufficient to convert to the suitable monosaccharide to the biofuel, wherein the microbial system comprises, (i) one or more genes encoding and expressing a fatty acid biosynthesis pathway, an amino acid biosynthetic pathway, and/or a short chain alcohol biosynthetic pathway; (ii) one or more genes encoding and expressing a keto-acid decarboxylase, aldehyde dehydrogenase, and/or alcohol dehydrogenase; and (iii) an enzymatic reduction pathway selected from (1) an enzymatic long chain alcohol reduction pathway, (2) an enzymatic decarbonylation pathway, (3) an enzymatic decarboxylation pathway, and (4) an enzymatic reduction pathway comprising (1), (2), and/or (3), thereby converting the suitable monosaccharide to the commodity chemical.
[0381]Embodiments of the present invention may comprise one or more genes encoding and expressing enzymes in a fatty acid synthesis pathway, which may be used, as one example, to produce biofuels in the form of alkanes, such as medium to long chain alkanes. In certain embodiments, the specificity of the fatty acid biosynthesis pathway in the microbial system may be recalibrated or redesigned. Merely by way of example, microorganisms generally produce a mixture of long chain fatty acids (e.g., E. coli naturally produce large quantities of long chain fatty acids (C16-C19: <95% in whole cells) and small quantity of medium chain fatty acids (C12: 2% and C14: 5% in whole cells)).
[0382]In certain embodiments, the recalibration or re-engineering may be directed to increasing production of medium chain alkanes, including, but not limited to, caprylate (C8), caprate (C10), laurate (C12), myristate (C14), and palmitate (C16), as alkanes produced from these fatty acids are major components of gasoline, diesels, and kerosene. In addition to these fatty acids, other embodiments may be directed to increased production of long chain fatty acids, including, but not limited to, stearate (C18), arachidonate (C20), behenate (C22) and longer fatty acids, as n-alkanes produced from these fatty acids are one of major components in heavy oils.
[0383]For example, Cuphea mainly accumulate medium chain fatty acids as major components in their seed oils, and these compositions alter depending on species. In particular, Cuphea pulcherrima accumulates caprylate (C8:0) 96%, Cuphea koehneana accumulates caprate (C10:0) 95.3%, and Cuphea polymorpha accumulates laurate (C12:0) 80.1%. Embodiments of the microbial systems or isolated microorganisms according to the present application may incorporate genes from various Cuphea species encoding enzymes involved in a fatty acid biosynthesis pathway, and these microorganisms may be directed in part to the production of middle chain fatty acids.
[0384]In other embodiments, acyl-acyl carrier protein (ACP) thioesterases (TEs) derived from various species including Cuphea hookeriana, Cuphea palustris, Umbellularia californica, and Cinnamomum camphorum may be over-expressed in such microorganisms as E. coli, wherein the specific activity for the formation of each medium chain fatty acids, caprylate (C8), caprate (C10), laurate (C12), myristate (C14), and palmitate (C16) is improved over the wild type. Certain embodiments may include other enzyme components involved in fatty acid biosynthesis as known to a person skilled in the arts, including, but not limited to, ACP and ฮฒ-ketoacyl ACP synthase (KAS) IV.
[0385]Microbial systems and isolated microorganisms of the present application may also incorporate fatty aldehyde dehydrogenases to reduce fatty acids to fatty aldehydes. Merely by way of explanation, the conversion of fatty acids to fatty aldehydes may be catalyzed by medium and/or long chain fatty aldehyde dehydrogenases isolated from various suitable organisms. Certain embodiments may incorporate, for example, a fatty aldehyde dehydrogenase derived from Vibrio harveyi.
[0386]Microbial systems and isolated microorganisms of the present application may also incorporate one or more enzymes that catalyze the conversion of fatty aldehydes to biofuels such as n-alkanes, including, for example, enzymes comprising an enzymatic long chain alcohol reduction pathway. Certain embodiments may incorporate genes from various other sources that encode enzymes capable of catalyzing the reduction and dehydration of fatty acids to biofuels, such as alkanes. For example, bacterial strain HD-1 is able to produce biofuels, such as n-alkanes, with various chain lengths, and also produces both odd and even numbered alkanes. Certain embodiments of the microbial systems and recombinant microorganisms provided herein may incorporate the HD-1 genes encoding the enzymes involved in this pathway.
[0387]Other embodiments may incorporate redesigned or de novo designed enzymes for this reduction pathway. For example, embodiments of the present invention may include a redesigned isocitrate dehydrogenase, which may catalyze the formation of 2-carboxy-1-alcohols. In certain embodiments, the 2-carboxy-1-alcohols may be sequentially reduced and dehydrated to form 2-carboxy-alkanes, which may be catalyzed by redesigned enzymes involved in fatty acid metabolism. The 2-carboxy-alkanes can be reduced to corresponding aldehyde by aldehyde dehydrogenase and then decarbonylated to form n-alkanes catalyzed by the redesigned decarbonylase as discussed below. Certain embodiments of these microbial systems may produce either even numbered n-alkanes, odd numbered n-alkanes, or both.
[0388]Certain embodiments of the present application may incorporate the genes encoding enzymes catalyzing decarbonylation, or an enzymatic decarbonylation pathway. Merely by way of example, green colonial alga Botyrococcus braunii, race A, produces linear odd-numbered C27, C29, and C31 hydrocarbons that total up to 32% of the alga's dry weight. Microsomal preparations of this organism have decarbonylation activity. This decarbonylase from B. braunii culture is a cobalt-protoporphyrin IX containing enzyme. Certain microbial systems of isolated microorganisms may incorporate the gene encoding fatty aldehyde decarbonylase from Botyrococcus braunii.
[0389]Other embodiments may include redesigned decarbonylase enzymes, for example, wherein the N-terminal membrane sequence is substituted. By way of explanation, the functional activity of a similar enzyme, cytochrome P450 containing Fe-protopolphyrin IX (heme), is improved by substituting N-terminal membrane associated sequence, and the functional activity of decarbonylases of the present microbial systems may comprise similar substitutions or improvements.
[0390]Other embodiments may incorporate the genes encoding a Co-porphyrin synthase. In explanation, decarbonylase enzymes may use Co-protoporphyrin IX as a co-factor, and Clostridium tetranomorphum is able to incorporate cobalt into incubated protopolphyrin IX. Certain embodiments may incorporate the Co-porphyrin synthase from Clostridium tetranomorphum, or from other suitable microorganisms. Other embodiments may incorporate de novo designed decarbonylation enzymes using inorganic metals such as Co2+, Fe2+, and Ni2+ as catalysts.
[0391]Certain embodiments may comprise genes encoding the enzymes responsible for the formation of alkenes, or an enzymatic decarboxylation pathway. These genes may be derived or isolated from various sources, such as higher plants and insects. For example, higher plants such as germinating safflower (Carthamus tinctorius L.) produce a number of odd numbered 1-alkenes, including 1-pentadecene, 1-heptadecene, 1,8-heptadecadiene and 1,8,11-heptadecatriene besides about 80-90% 1,8,11,14-heptadecatetraene by decarboxylation from their corresponding fatty acids. Certain embodiments may incorporate the genes from higher plants such as Carthamus tinctorius.
[0392]Other embodiments may incorporate the genes encoding the enzymes responsible for the formation of alkenes (e.g., an enzymatic decarboxylation pathway) from microorganisms, including, but not limited to, such as bacterial strain DH-1. By way of explanation, bacterial strain DH-1 produces n-alkenes in addition to n-alkanes.
[0393]Other embodiments may incorporate the genes from de novo designed enzymes for an enzymatic decarboxylation pathway. For example, these redesigned enzymes convert ฮฒ-hydroxy fatty acids to n-alkenes. The first step is catalyzed by a redesigned kinase, which catalyzes the phosphorylation of a ฮฒ-hydroxy group. A redesigned mevalonate diphosphate decarboxylase then catalyzes the formation of n-alkenes, such as n-1-alkene.
[0394]Any microorganism may be utilized according to the present invention. In certain aspects, a microorganism is a eukaryotic or prokaryotic microorganism. In certain aspects, a microrganism is a yeast, such as S. cerevisiae. In certain aspects, a microorganism is a bacteria, such as a gram-positive bacteria or a gram-negative bacteria. Given its rapid growth rate, well-understood genetics, the variety of available genetic tools, and its capability in producing heterologous proteins, genetically modified E. coli may be used in certain embodiments of a microbial system as described herein, whether for the degradation and metabolism of a polysaccharide, such as alginate or pectin, or the formation or biosynthesis of commodity chemicals, such as biofuels.
[0395]Other microorganisms may be used according to the present invention, based in part on the compatibility of enzymes and metabolites to host organisms. For example, other organisms such as Acetobacter aceti, Achromobacter, Acidiphilium, Acinetobacter, Actinomadura, Actinoplanes, Aeropyrum pernix, Agrobacterium, Alcaligenes, Ananas comosus (M), Arthrobacter, Aspargillus niger, Aspargillus oryze, Aspergillus melleus, Aspergillus pulverulentus, Aspergillus saitoi, Aspergillus sojea, Aspergillus usamii, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus clausii, Bacillus lentus, Bacillus licheniformis, Bacillus macerans, Bacillus stearothermophilus, Bacillus subtilis, Bifidobacterium, Brevibacillus brevis, Burkholderia cepacia, Candida cylindracea, Candida rugosa, Carica papaya (L), Cellulosimicrobium, Cephalosporium, Chaetomium erraticum, Chaetomium gracile, Clostridium, Clostridium butyricum, Clostridium acetobutylicum, Clostridium thermocellum, Corynebacterium (glutamicum), Corynebacterium efficiens, Escherichia coli, Enterococcus, Erwina chrysanthemi, Gliconobacter, Gluconacetobacter, Haloarcula, Humicola insolens, Humicola nsolens, Kitasatospora setae, Klebsiella, Klebsiella oxytoca, Kluyveromyces, Kluyveromyces fragilis, Kluyveromyces lactis, Kocuria, Lactlactis, Lactobacillus, Lactobacillus fermentum, Lactobacillus sake, Lactococcus, Lactococcus lactis, Leuconostoc, Methylocystis, Methanolobus siciliae, Methanogenium organophilum, Methanobacterium bryantii, Microbacterium imperiale, Micrococcus lysodeikticus, Microlunatus, Mucor javanicus, Mycobacterium, Myrothecium, Nitrobacter, Nitrosomonas, Nocardia, Papaya carica, Pediococcus, Pediococcus halophilus, Penicillium, Penicillium camemberti, Penicillium citrinum, Penicillium emersonii, Penicillium roqueforti, Penicillum lilactinum, Penicillum multicolor, Paracoccus pantotrophus, Propionibacterium, Pseudomonas, Pseudomonas fluorescens, Pseudomonas denitrificans, Pyrococcus, Pyrococcus furiosus, Pyrococcus horikoshii, Rhizobium, Rhizomucor miehei, Rhizomucor pusillus Lindt, Rhizopus, Rhizopus delemar, Rhizopus japonicus, Rhizopus niveus, Rhizopus oryzae, Rhizopus oligosporus, Rhodococcus, Sccharomyces cerevisiae, Sclerotina libertina, Sphingobacterium multivorum, Sphingobium, Sphingomonas, Streptococcus, Streptococcus thermophilus Y-1, Streptomyces, Streptomyces griseus, Streptomyces lividans, Streptomyces murinus, Streptomyces rubiginosus, Streptomyces violaceoruber, Streptoverticillium mobaraense, Tetragenococcus, Thermus, Thiosphaera pantotropha, Trametes, Trichoderma, Trichoderma longibrachiatum, Trichoderma reesei, Trichoderma viride, Trichosporon penicillatum, Vibrio alginolyticus, Xanthomonas, yeast, Zygosaccharomyces rouxii, Zymomonas, and Zymomonus mobilis, may be utilized as recombinant microorganisms provided herein, and, thus, may be utilized according to the various methods of the present invention.
[0396]The following Examples are offered by way of illustration, not limitation.
EXAMPLES
Example 1
Engineering E. Coli to Grow on Alginate as a Sole Source of Carbon
[0397]Wild type E. coli cannot use alginate polymer or degraded alginate as its sole carbon source (see FIG. 4). Vibrio splendidus, however, is known to be able to metabolize alginate to support growth. To generate recombinant E. coli that use degraded alginate as its sole carbon source, a Vibrio splendidus fosmid library was constructed and cloned into E. coli.
[0398]To prepare the Vibrio splendidus fosmid library, genomic DNA was isolated from Vibrio Splendidus B01 (gift from Dr. Martin Polz, MIT) using the DNeasy Blood and Tissue Kit (Qiagen, Valencia, Calif.). A fosmid library was then constructed using Copy Control Fosmid Library Production Kit (Epicentre, Madison, Wis.). This library consisted of random genomic fragments of approximately 40 kb inserted into the vector pCC1 FOS (Epicentre, Madison, Wis.).
[0399]The fosmid library was packaged into phage, and E. coli DH10B cells harboring a pDONR221 plasmid (Invitrogen, Carlsbad, Calif.) carrying certain Vibrio splendidus genes (V12B01--02425 to V12B01--02480; encoding a type II secretion apparatus; see SEQ ID NO:1) were transfected with the phage library. This secretome region encodes a type II secretion apparatus derived from Vibrio splendidus, which was cloned into a pDONR221 plasmid and introduced into E. coli strain DH10B (see Example 1).
[0400]Transformants were selected for chloroamphenicol resistance and then screened for their ability to grow on degraded alginate. The resultant transformants were screened for growth on degraded alginate media. Degraded alginate media was prepared by incubating 2% Alginate (Sigma-Aldrich, St. Louis, Mo.) 10 mM Na-Phosphate buffer, 50 mM KCl, 400 mM NaCl with alginate lyase from Flavobacterium sp. (Sigma-Aldrich, St. Louis, Mo.) at room temperature for at least one week. This degraded alginate was diluted to a concentration of 0.8% to make growth media that had a final concentration of 1รM9 salts, 2 mM MgSO4, 100 ฮผM CaCl2, 0.007% Leucine, 0.01% casamino acids, 1.5% NaCl (this includes all sources of sodium: M9, diluted alginate and added NaCl).
[0401]One fosmid-containing E. coli clone was isolated that grew well on this media. The fosmid DNA from this clone was isolated and prepared using FosmidMAX DNA Purification Kit (Epicentre, Madison, Wis.). This isolated fosmid was transferred back into DH10B cells, and these cells were tested for the ability to grown on alginate.
[0402]The results are illustrated in FIG. 4, which shows that certain fosmid-containing E. coli clones are capable of growing on alginate as a sole source of carbon. Agrobacterium tumefaciens provides a positive control (see hatched circles). As a negative control, E. coli DH10B cells are not capable of growing on alginate (see immediate left of positive control).
[0403]These results also demonstrate that the sequences contained within this Vibrio splendidus derived fosmid clone are sufficient to confer on E. coli the ability to grow on degraded alginate as a sole source of carbon. Accordingly, the type II secretion machinery sequences contained within the pDONR221 vector (i.e., SEQ ID NO:1), which was harbored by the original DH10B cells, were not necessary for growth on degraded alginate.
[0404]The isolated fosmid sufficient to confer growth alginate as a sole source of carbon was sequenced by Elim Biopharmaceuticals (Hayward, Calif.) using the following primers: Uni R3--GGGCGGCCGCAAGGGGTTCGCGTTGGCCGA (SEQ ID NO:147) and PCC1FOS_uni_F--GGAGAAAATACCGCATCAGGCG (SEQ ID NO:148). Sequencing showed that the vector contained a genomic DNA section that contained the full length genes V12B01--24189 to V12B01--24249 (see SEQ ID NOS:2-64). SEQ ID NO:2 shows the nucleotide sequence of entire region between V12B01--24189 to V12B01--24249. SEQ ID NOS:3-64 show the individual putative genes contained within SEQ ID NO:2. In this sequence, there is a large gene before V12B01--24189 that is truncated in the fosmid clone. The large gene V12B01--24184 is a putative protein with similarity to autotransporters and belongs to COG3210, which is a cluster of orthologous proteins that include large exoproteins involved in heme utilization or adhesion. In the fosmid clone, V12B01--24184 is N-terminally truncated such that the first 5893 bp are missing from the predicted open reading frame (which is predicted to contain 22889 bp in total).
Example 2
Engineering E. Coli to Grow on Pectin as a Sole Source of Carbon
[0405]Wild type E. coli is not capable of growing on pectin, di-, or tri-galacturonates as a sole source of carbon. To identify the minimal components to confer on E. coli the capability of growing on pectin, di- and/or tri-galacturonates as a sole source of carbon, an E. coli strain BL21(DE3) harboring both the pBBRGal3P plasmid and the pTrcogl-kdgR plasmid was engineered and tested for the ability to grown on these polysaccharides.
[0406]The pBBRGal3P plasmid was engineered to contain certain genomic region of Erwinia carotovora subsp. Atroseptica SCR11043, comprising several genes (kdgF, kduI, kduD, pelW, togM, togN, toga, togB, kdgM, and paeX) encoding certain enzymes (kduI, kduD, ogl, pelW and paeX), transporters (togM, togN, togA, togB, and kdgM), and regulatory proteins (kdgR) responsible for the degradation of di- and trigalacturonate. SEQ ID NO:65 shows the nucleotide sequence of the kdgF-PaeX region from Erwinia carotovora subsp. Atroseptica SCR11043.
[0407]To construct this plasmid, the DNA sequence encoding kdgF, kduI, kduD, pelW, togM, togN, togA, togB, kdgM, paeX, ogl, and kdgR of Erwinia carotovora subsp. Atroseptica SCR11043 was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 6 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGGGATCC AAGTTGCAGGATATGACGAAAGCG-3') (SEQ ID NO:149) and reverse (5'-GCTCTAGA AGATTATCCCTGTCTGCGGAAGCGG-3') (SEQ ID NO:150) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Erwinia carotovora subsp. Atroseptica SCR11043 genome (ATCC) in 50 ฮผl.
[0408]The vector pBBR1MCS-2 was then amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 2.5 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-GCTCTAGA GGGGTGCCTAATGAGTGAGCTAAC-3') (SEQ ID NO:151) and reverse (5'-CGGGATCC GCGTTAATATTTTGTTAAAATTCGC-3') (SEQ ID NO:152) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pBBR1MCS-2 in 50 ฮผl. Both amplified DNA fragments were digested with BamHI and XbaI and ligated.
[0409]The pTrcogl-kdgR plasmid was engineered to contain certain genomic regions of Erwinia carotovora subsp. Atroseptica SCR11043, comprising two genes (ogl and kdgR) encoding an enzyme (ogl) and a regulatory protein (kdgR) responsible for degradation of di- and trigalacturonate. SEQ ID NO:66 shows the nucleotide sequence of ogl-kdgR from Erwinia carotovora subsp. Atroseptica SCR11043.
[0410]To prepare this construct, the DNA sequence encoding ogl and kdgR of Erwinia carotovora subsp. Atroseptica SCR11043 was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-GCTCTAGA GTTTATGTCGCACCCGCCGTTGG-3') (SEQ ID NO:153) and reverse (5'-CCCAAGC TTAGAAAGGGAAATTGTGGTAGCCC-3') (SEQ ID NO:154) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Erwinia carotovora subsp. Atroseptica SCR11043 genome (ATCC) in 50 ฮผl. The amplified DNA fragment was digested with XbaI and HindIII and ligated into pTrc99A pre-digested with the same restriction enzymes.
[0411]The plasmids pBBRGal3P and pTrcogl-kdgR were co-transformed into E. coli strain BL21(DE3). A single colony was inoculated into LB media containing 50 ug/ml kanamycin and 100 ug/ml ampicillin, and the culture was grown in incubation shaker with 200 rpm at 37 C. When culture reached OD 600 nm of 0.6, 500 ul of culture was transferred to eppendorf tube and centrifuged to pellet the cells. The cells were resuspended into 50 ul of M9 media containing 2 mM MgSO4, 100 uM CaCl2, 0.4% di- or trigalacturonate, and 5 ul of this solution was inoculated into 500 ul of fresh M9 media containing 2 mM MgSO4, 100 uM CaCl2, 0.4% di- or trigalacturonate. The culture was grown in incubation shaker with 200 rpm at 37 C.
[0412]The results in FIG. 5A show that these two plasmids were sufficient to provide E. coli ability to grow on di- and trigalacturonate as sole source of carbon, but not pectin. In particular, these results show that the regions kdgF-paeX and ogl-kdgR were sufficient to confer this ability on E. coli.
[0413]Based on the information obtained from the above experiments, it was considered whether the introduction of pectate lyase, pectate acetylesterase, and methylesterase might confer E. coli capability of growing on pectin. To test this hypothesis, E. coli strain DH5ฮฑ bacterial cells were engineered to contain both the pROU2 plasmid and the pPEL74 plasmid.
[0414]The pROU2 plasmid contains certain genomic regions of Erwinia chrysanthemi, comprising several genes (kdgF, kduI, kduD, pelW, togM, togN, togA, togB, kdgM, paeX, ogl, and kdgR) encoding enzymes (kduI, kduD, ogl, pelW, and paeX), transporters (togM, togN, togA, togB, and kdgM), and regulatory proteins (kdgR) responsible for degradation of di- and trigalacturonate.
[0415]The pPEL74 plasmid contains certain genomic regions of Erwinia chrysanthemi, comprising several genes (pelA, pelE, paeY, and pem) encoding pectate lyases (pelA and pelE), pectin acetylesterases (paeY), and pectin methylesterase (pem).
[0416]As shown in FIG. 5B, E. coli DH5a engineered with pROU2 and pPEL74 was able to grow on pectin as a sole source of carbon, showing that the genes contained within these plasmids are sufficient to confer this property on an organism that is otherwise incapable of growing on pectin as a sole source of carbon.
Example 3
In Vitro Conversion of Alginate to Pyruvate and Glyceraldehyde-3-Phosphate
[0417]The ability of an enzyme mixture containing all required enzymes for alginate degradation and metabolism was investigated for its ability to produce pyruvate from alginate. In addition, various novel alcohol dehydrogenases (ADHs), such as ADH1-12 (see SEQ ID NOS:69-92), isolated from Agrobacterium tumefaciens, were tested for their ability to catalyze either DEHU or mannuronate hydrogenation.
[0418]A simplified metabolic pathway for alginate degradation and metabolism is shown in FIG. 2. Alginate can be degraded by at least two different methodologies: enzymatic and chemical methodologies.
[0419]In enzymatic degradation, the degradation of alginate is catalyzed by a family of enzymes called alginate lyases. For this experiment, Atu3025 was used. Atu3025 is an exolytically acting enzyme and yields DEHU from alginate polymer. DEHU is converted to the common hexuronate metabolite, KDG. This reaction is catalyzed by alcohol dehydrogenases (e.g., DEHU hydrogenases).
[0420]Chemical degradation catalyzed by acid solution, such as formate, yields a monosaccharide mannuronate. Mannuronate is then converted to mannonate, which is catalyzed by enzymes with mannonate dehydrogenase (mannuronate reductase) activity. In bacteria, mannonate dehydratase (UxuA) catalyzes dehydration from mannuronate to form KDG.
[0421]KDG is readily metabolized to form of pyruvate and glyceraldehydes-3-phosphate (G3P). KDG is first phosphorylated to KDG-6-phosphate (KDGP), which is catalyzed by KDG kinase, and then broken down to pyruvate and G3P, which is catalyzed by KDGP aldolase.
[0422]Preparation of oligoalginate lyase Atu3025 derived from Agrobacterium tumefaciens C58. pETAtu3025 was constructed based on pET29 plasmid backbone (Novagen). The oligoalginate lyase Atu3025 was amplified by PCR: 98ยฐ C. for 10 sec, 55ยฐ C. for 15 sec, and 72ยฐ C. for 60 sec, repeated for 30 times. The reaction mixture contained 1ร Phusion buffer, 2 mM dNTP, 0.5 ฮผM forward (5'-GGAATTCCATATGCGTCCCTCTGCCCCGGCC-3') (SEQ ID NO:155) and reverse (5'-CGGGATCCTTAGAACTGCTTGGGAAGGGAG-3') (SEQ ID NO:156) primers, 2.5 U Phusion DNA polymerase (Finezyme), and an aliquot of Agrobacterium tumefaciens C58 (gift from Professor Eugene Nester, University of Washington) cells as a template in total volume of 100 ฮผl. The amplified fragment was digested with NdeI and BamHI and ligated into pET29 pre-digested with the same enzymes using T4 DNA ligase to form pETAtu3025. The constructed plasmid was sequenced (Elim Biopharmaceuticals) and the DNA sequence of the insert was confirmed. The nucleotide sequence of the Atu3025 insert is provided in SEQ ID NO:67. The polypeptide sequence encoded by the Atu3025 insert is provided in SEQ ID NO:68.
[0423]The pETAtu3025 was transformed into Escherichia coli strain BL21(DE3). A colony of BL21(DE3) containing pETAtu3025 was inoculated into 50 ml of LB media containing 50 ฮผg/ml kanamycin (Km50). This strain was grown in an orbital shaker with 200 rpm at 37ยฐ C. The 0.2 mM IPTG was added to the culture when the OD600 nm reached 0.6, and the induced culture was grown in an orbital shaker with 200 rpm at 20ยฐ C. 24 hours after the induction, the cells were harvested by centrifugation at 4,000 rpmรg for 10 min and the pellet was resuspended into 2 ml of Bugbuster (Novagen) containing 10 ฮผl of Lysonaseยฎ Bioprocessing Reagent (Novagen). The solution was again centrifuged at 4,000 rpmรg for 10 min and the supernatant was obtained.
[0424]Construction of pETADH1 through pETADH12. DNA sequences of ADH1-12 of Agrobacterium tumefaciens C58 were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (Table 1) and reverse (Table 1) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Agrobacterium tumefaciens C58 genome in 50 ฮผl. Amplified DNA fragment was digested with NdeI and BamHI and ligated into pET28 pre-digested with the same restriction enzymes. For DNA sequences with internal NdeI or BamHI site, front and bottom half sequences of each ADH were first amplified using described method. The resulting two DNA fragments were gel purified and spliced by overlapping PCR.
TABLE-US-00001 TABLE 1 Primers used to amplify ADH1-12 from Agrobacterium tumefaciens C58. A. tumefaciens Name C58 Forward Primer Reverse Primer ADH1 Atu1557 GGAATTCCATATGTTCACAACGTCCGCCTA GCTTGACGGCCATGTGGCCGAGGCCGC (SEQ ID NO:276) (SEQ ID NO:277) GCGGCCTCGGCCACATGGCCGTCAAGC CGGGATCCTTAGGCGGCCTTCTGGCGCG (SEQ ID NO:278) (SEQ ID NO:279) ADH2 Atu2022 GGAATTCCATATGGCTATTGCAAGAGGTTA CGGGATCCTTAAGCGTCGAGCGAGGCCA (SEQ ID NO:280) (SEQ ID NO:281) ADH3 Atu0626 GGAATTCCATATGACTAAAACAATGAAGGC CACCGGGGCCGGGGTCCGGTATTGCCA (SEQ ID NO:282) (SEQ ID NO:283) TGGCAATACCGGACCCCGGCCCCGGTG CGGGATCCTTAGGCGGCGAGATCCACGA (SEQ ID NO:284) (SEQ ID NO:285) ADH4 Atu5240 GGAATTCCATATGACCGGGGCGAACCAGCC ATAGCCGCTCATACGCCTCGGTTGCCT (SEQ ID NO:286) (SEQ ID NO:287) AGGCAACCGAGGCGTATGAGCGGCTAT CGGGATCCTTAAGCGCCGTGCGGAAGGA (SEQ ID NO:288) (SEQ ID NO:289) ADH5 Atu3163 GGAATTCCATATGACCATGCATGCCATTCA CGGGATCCTTATTCGGCTGCAAATTGCA (SEQ ID NO:290) (SEQ ID NO:291) ADH6 Atu2l5l GGAATTCCATATGCGCGCGCTTTATTACGA CGGGATCCTTATTCGAACCGGTCGATGA (SEQ ID NO:292) (SEQ ID NO:293) ADH7 Atu2814 GGAATTCCATATGCTGGCGATTTTCTGTGA CGGGATCCTTATGCGACCTCCACCATGC (SEQ ID NO:294) (SEQ ID NO:295) ADH8 Atu5447 GGAATTCCATATGAAAGCCTTCGTCGTCGA CGGGATCCTTAGGATGCGTATGTAACCA (SEQ ID NO:296) (SEQ ID NO:297) ADH9 Atu4087 GGAATTCCATATGAAAGCGATTGTCGCCCA CGGGATCCTTAGGAAAAGGCGATCTGCA (SEQ ID NO:298) (SEQ ID NO:299) ADH10 Atu4289 GGAATTCCATATGCCGATGGCGCTCGGGCA CGGGATCCTTAGAATTCGATGACTTGCC (SEQ ID NO:300) (SEQ ID NO:301) ADH11 Atu3027 GGAATTCCATATGAAACATTCTCAGGACAA GGGCGCCGATCATGTGGTGCGTTTCCG (SEQ ID NO:302) (SEQ ID NO:303) CGGAAACGCACCACATGATCGGCGCCC CGGGATCCTTATGCCATACGTTCCATAT (SEQ ID NO:304) (SEQ ID NO:305) ADH12 Atu3026 GGAATTCCATATGCAGCGTTTTACCAACAG CGGGATCCTTAGGAAAACAGGACGCCGC (SEQ ID NO:306) (SEQ ID NO:307)
Expression and Purification of ADH 1-10.
[0425]All plasmids were transformed into Escherichia coli strain BL21(DE3). The single colonies of BL21(DE3) containing respective alcohol dehydrogenase (ADH) genes were inoculated into 50 ml of LB media containing 50 ฮผg/ml kanamycin (Km50). These strains were grown in an orbital shaker with 200 rpm at 37ยฐ C. The 0.2 mM IPTG was added to each culture when the OD600 nm reached 0.6, and the induced culture was grown in an orbital shaker with 200 rpm at 20ยฐ C. 24 hours after the induction, the cells were harvested by centrifugation at 4,000 rpmรg for 10 min and the pellet was resuspended into 2 ml of Bugbuster (Novagen) containing 10 ฮผl of Lysonaseยฎ Bioprocessing Reagent (Novagen). The solution was again centrifuged at 4,000 rpmรg for 10 min and the supernatant was obtained.
Preparation of ห2% DEHU Solution by Enzymatic Degradation.
[0426]DEHU solution was enzymatically prepared. A 2% alginate solution was prepared by adding 10 g of low viscosity alginate into the 500 ml of 20 mM Tris-HCl (pH7.5) solution. An approximately 10 mg of alginate lyase derived from Flavobacterium sp. (purchased from Sigma-aldrich) was added to the alginate solution. 250 ml of this solution was then transferred to another bottle and the E. coli cell lysate containing Atu3025 prepared above section was added. The alginate degradation was carried out at room temperature over night. The resulting products were analyzed by thin layer chromatography, and DEHU formation was confirmed.
Preparation of D-Mannuronate Solution by Chemical Degradation.
[0427]D-mannuronate solution was chemically prepared based on the protocol previously described by Spoehr (Archive of Biochemistry, 14: pp 153-155). Fifty milligram of alginate was dissolved into 800 ฮผL of ninety percent formate. This solution was incubated at 100ยฐ C. for over night. Formate was then evaporated and the residual substances were washed with absolute ethanol twice. The residual substance was again dissolved into absolute ethanol and filtrated. Ethanol was evaporated and residual substances were resuspended into 20 mL of 20 mM Tris-HCl (pH 8.0) and the solution was filtrated to make a D-mannuronate solution. This D-mannuronate solution was diluted 5-fold and used for assay.
Assay for DEHU Hydrogenase.
[0428]To identify DEHU hydrogenase, a NADPH dependent DEHU hydrogenation assay was performed. 20 ฮผl of prepared cell lysate containing each ADH was added to 160 ฮผl of 20-fold deluted DEHU solution prepared in the above section. 20 ฮผl of 2.5 mg/ml of NADPH solution (20 mM Tris-HCl, pH 8.0) was added to initiate the hydrogenation reaction, as a preliminary study using cell lysate of A. tumefaciens C58 have shown that DEHU hydrogenation requires NADPH as a co-factor. The consumption of NADPH was monitored an absorbance at 340 nm for 30 min using the kinetic mode of ThermoMAX 96 well plate reader (Molecular Devises). E. coli cell lysate containing alcohol dehydrogenase (ADH) 10 lacking a portion of N-terminal domain was used in a control reaction mixture.
Assay for D-Mannuronate Hydrogenase.
[0429]To identify D-mannuronate hydrogenase, a NADPH dependent D-mannuronate hydrogenation assay was performed. 20 ฮผl of prepared cell lysate containing each ADH was added to 160 ฮผl of D-mannuronate solution prepared in the above section. 20 ฮผl of 2.5 mg/ml of NADPH solution (20 mM Tris-HCl, pH 8.0) was added to initiate the hydrogenation reaction. The consumption of NADPH was monitored an absorbance at 340 nm for 30 min using the kinetic mode of ThermoMAX 96 well plate reader (Molecular Devises). E. coli cell lysate containing alcohol dehydrogenase (ADH) 10 lacking a portion of N-terminal domain was used in a control reaction mixture.
Construction of pETkdgK.
[0430]DNA sequence of kdgK of Escherichia coli encoding 2-keto-deoxy gluconate kinase was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-AGGTACGGTGAAATAA AGGAGG ATATACAT ATGTCCAAAAAGATTGCCGT-3') (SEQ ID NO:157) and reverse (5'-TTTTCCTTTTGCGGCCGCCCCGCTGGCATCGCCTCAC-3') (SEQ ID NO:158) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli DH10B genome in 50 ฮผl. Amplified DNA fragment was digested with NdeI and NotI and ligated into pET29 pre-digested with the same restriction enzymes.
Construction of pETkd2A.
[0431]DNA sequence of kdgA Escherichi coli encoding 2-keto-deoxy gluconate-6-phosphate aldolase was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1รPhusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-GGCGATGCCAGCGTAA AGGAGG ATATACAT ATGAAAAACTGGAAAACAAG-3') (SEQ ID NO:159) and reverse (5'-TTTTCCTTTTGCGGCCGCCCCAGCTTAGCGCCTTCTA-3') (SEQ ID NO:160) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli DH10B genome in 50 ฮผl. Amplified DNA fragment was digested with NdeI and NotI and ligated into pET29 pre-digested with the same restriction enzymes.
Protein Expression and Purification.
[0432]All plasmids (pETAtu3025, pETADH11, pETADH12, pETkdgA, pETkdgK, and pETuxuA) were transformed into Escherichia coli strain BL21(DE3). The single colonies of BL21(DE3) containing respective plasmids were inoculated into 50 ml of LB media containing 50 ฮผg/ml kanamycin (KM50). These strains were grown in an orbital shaker with 200 rpm at 37ยฐ C. The 0.2 mM IPTG was added to each culture when the OD600 nm reached 0.6, and the induced culture was grown in an orbital shaker with 200 rpm at 20ยฐ C. 24 hours after the induction, the cells were harvested by centrifugation at 4,000 rpmรg for 10 min and the pellet was resuspended into 2 ml of Bugbuster (Novagen) containing 10 ฮผl of Lysonaseยฎ Bioprocessing Reagent (Novagen) and suggested amount of protease inhibitor cocktail (SIGMA). The solution was again centrifuged at 4,000 rpmรg for 10 min and the supernatant was obtained. The supernatant was applied to Nickel-NTA spin column (Qiagen) to purify His-tagged proteins.
[0433]The results of the assays for DEHU hydrogenase activity and D-mannuronate hydrogenase activity of ADH1-10 are shown in FIGS. 7A and 7B. These results demonstrate that the novel enzymes ADH1 and ADH2 showed significant DEHU hydrogenase activity (FIG. 7A), and that the novel enzymes ADH3, ADH4, and ADH9 showed significant mannuronate hydrogenase activity (FIG. 7B).
In Vitro Pyruvate Formation.
[0434]The reaction mixture contained 1% alginate or ห0.5% mannuronate, ห5 ug of purified Atu3026 (ADH12) or Atu3027 (ADH11), and ห5 ug of purified oligoalginate lyase (Atu3025), UxuA, KdgK, and KdgA, 2 mM of ATP, and 0.6 mM of NADPH in 20 mM Tris-HCl pH7.0. The reaction was carried out over night and the pyruvate formation was monitored by the pyruvate assay kit (BioVision, Inc).
[0435]The results of in vitro pyruvate formation from alginate mediated by enzymatic and chemical degradation are shown in FIG. 6B and FIG. 6c, respectively. As can be seen in these figures, alginate was converted to pyruvate via the isolated enzymes. These results also show that each of Atu3026 (ADH12) and Atu3027 (ADH11) are capable of catalyzing both DEHU hydrogenase and mannuronate hydrogenase reactions.
Example 4
Construction and Biological Activity of Biosynthesis Pathways
Construction of Pathways:
[0436]A propionaldehyde biosynthetic pathway comprising a threonine deaminase (ilvA) gene from Escherichia coli and keto-isovalerate decarboxylase (kivd) from Lactococcus lactis is constructed and tested for the ability to convert L-threonine to propionaldehyde.
[0437]A butyraldehyde biosynthetic pathway comprising a thiolase (atoB) gene from E. coli, ฮฒ-hydroxy butyryl-CoA dehydrogenase (hbd), crotonase (crt), butyryl-CoA dehydrogenase (bcd), electron transfer flavoprotein A (etfA), and electron transfer flavoprotein B (etfB)genes from Clostridium acetobutyricum ATCC 824, and a coenzyme A-linked butyraldehyde dehydrogenase (ald) gene from Clostridium beijerinckii acetobutyricum ATCC 824 was constructed in E. coli and tested for the ability to produce butyraldehyde. Also, a coenzyme A-linked alcohol dehydrogenase (adhE2) gene from Clostridium acetobutyricum ATCC 824 was used as an alternative to ald and tested for the ability to produce butanol.
[0438]An isobutyraldehyde biosynthetic pathway comprising an acetolactate synthase (alsS) from Bacillus subtilis or (als) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (codon usage was optimized for E. coli protein expression) and acetolactate reductoisomerase (ilvC) and 2,3-dihydroxyisovalerate dehydratase (ilvD), genes from E. coli and keto-isovalerate decarboxylase (kivd) from Lactococcus lactis was constructed and tested for the ability to produce isobutyraldehyde, as measured by isobutanal production.
[0439]3-methylbutyraldehyde and 2-methylbutyraldehyde biosynthesis pathways comprising an acetolactate synthase (alsS) from Bacillus subtilis or (als) from Klebsiella pneumoniae subsp. pneumoniae MGH 78578 (codon usage was optimized for E. coli protein expression), acetolactate reductoisomerase (ilvC), 2,3-dihydroxyisovalerate dehydratase (ilvD), isopropylmalate synthase (LeuA), isopropylmalate isomerase (LeuC and LeuD), and 3-isopropylmalate dehydrogenase (LeuB) genes from E. coli and keto-isovalerate decarboxylase (kivd) from Lactococcus lactis were constructed and tested for the ability to produce 3-isovaleraldehyde and 2-isovaleraldehyde.
[0440]Phenylacetoaldehyde and 4-hydroxyphenylacetoaldehyde biosynthesis pathways comprising a transketolase (tktA), a 3-deoxy-7-phosphoheptulonate synthase (aroF, aroG, and aroH), 3-dehydroquinate synthase (aroB), a 3-dehydroquinate dehydratase (aroD), a dehydroshikimate reductase (aroE), a shikimate kinase II (aroL), a shikimate kinase I (aroK), a 5-enolpyruvylshikimate-3-phosphate synthetase (aroA), a chorismate synthase (aroC), a fused chorismate mutase P/prephenate dehydratase (pheA), and a fused chorismate mutase T/prephenate dehydrogenase (tyrA) genes from E. coli, keto-isovalerate decarboxylase (kivd) from Lactococcus lactis were constructed and tested for the ability to produce phenylacetoaldehyde and/or 4-hydroxyphenylacetoaldehyde.
[0441]A 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and 2-(indole-3-)ethanol biosynthesis pathway comprising a transketolase (tktA), a 3-deoxy-7-phosphoheptulonate synthase (aroF, aroG, and aroH), 3-dehydroquinate synthase (aroB), a 3-dehydroquinate dehydratase (aroD), a dehydroshikimate reductase (aroE), a shikimate kinase II (aroL), a shikimate kinase I (aroK), a 5-enolpyruvylshikimate-3-phosphate synthetase (aroA), a chorismate synthase (aroC), a fused chorismate mutase P/prephenate dehydratase (pheA), and a fused chorismate mutase T/prephenate dehydrogenase (tyrA) genes from E. coli, keto-isovalerate decarboxylase (kivd) from Lactococcus lactis, alcohol dehydrogenase (adh2) from Saccharomyces cerevisiae, Indole-3-pyruvate decarboxylase (ipdc) from Azospirillum brasilense, phenylethanol reductase (par) from Rhodococcus sp. ST-10, and benzaldehyde lyase (bal) from Pseudomonas fluorescence was constructed and tested for the ability to produce 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol and/or 2-(indole-3)ethanol.
Construction of pBADButP.
[0442]The DNA sequence encoding hbd, crt, bcd, etfA, and etfB of Clostridium acetobutyricum ATCC 824 was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 3 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCTTAGGAGGATTAGTCATGGAAC-3') (SEQ ID NO:161) and reverse (5'-GCTCTAGA TTATTTTGAATAATCGTAGAAACC-3') (SEQ ID NO:162) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Clostridium acetobutyricum ATCC 824 genome (ATCC) in 50 ฮผl. Amplified DNA fragment was digested with BamHI and XbaI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADButP-atoB.
[0443]The DNA sequence encoding atoB of Escherichia coli DH10B was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-GCTCTAGAGGAGGATATATATATGAAAAATTGTGTCATCGTC-3') (SEQ ID NO:163) and reverse (5'-AA CTGCAGTTAATTCAACCGTTCAATCACC-3') (SEQ ID NO:164) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli DH10B genome in 50 ฮผl. Amplified DNA fragment was digested with XbaI and PstI and ligated into pBADButP pre-digested with the same restriction enzymes.
Construction of pBADatoB-ald.
[0444]The DNA sequence encoding atoB of Escherichia coli DH10B and ald from Clostridium beijerinckii were amplified separately by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTC AGGAGGATATATATATGAAAAATTGTGTCATCGTCAGTG-3') (SEQ ID NO:165) for atoB and 5'-GGTTGAATTAAGGAGGATATATATATGAATAAAGACACACTAATACCTAC-3' for ald) (SEQ ID NO:166) and reverse (5'-GTCTTTATTCATATATATATCCTCCTTAATTCAACCGTTCAATCACCATC-3' (SEQ ID NO:146) for atoB and 5'-CCCAAGCTTAGCCGGCAAGTACACATCTTC-3' for ald) (SEQ ID NO:167) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli DH10B and Clostridium beijerinckii genome (ATCC) in 501, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 2 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTC AGGAGGATATATATATGAAAAATTGTGTCATCGTCAGTG-3') (SEQ ID NO:168) and reverse (5'-CCCAAGCTTAGCCGGCAAGTACACATCTTC-3') (SEQ ID NO:169) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with SacI and HindIII and ligated into pBADButP pre-digested with the same restriction enzymes.
Construction of pBADButP-atoB-ALD.
[0445]The DNA fragment 1 encoding chloramphenicol acetyltransferase (CAT), P15 origin of replication, araBAD promoter, atoB of Escherichia coli DH10B and ald of Clostridium beijerinckii and the DNA fragment 2 encoding araBAD promoter, hbd, crt, bcd, etfA, and etfB of Clostridium acetobutyricum ATCC 824 were amplified separately by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-AAGGAAAAAAGCGGCCGCCCCTGAACCGACGACCGGGTCG-3') (SEQ ID NO:170) for fragment 1 and 5'-CGGGGTACCACTTTTCATACTCCCGCCATTCAG-3' (SEQ ID NO:274) for fragment 2, and reverse (5'-CGGGGTACCGCGGATACATATTTGAATGTATTTAG-3') (SEQ ID NO:171) for fragment 1 and (5'-AAGGAAAAAAGCGGCCGCGCGGATACATATTTGAATGTATTTAG-3') (SEQ ID NO:172) for fragment 2) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pBADatoB-ald and pBADButP in 50 ฮผl, respectively. Amplified DNA fragments were digested with NotI and KpnI and ligated each other.
Construction of pBADilvCD.
[0446]The DNA fragments encoding ilvC and ilvD of Escherichia coli DH10B were amplified separately by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-GCTCTAGAGGAGGATATATATATGGCTAACTACTTCAATACAC-3') (SEQ ID NO:173) for ilvC and 5'-TGCTGTTGCGGGTTAAGGAGGATATATATATGCCTAAGTACCGTTCCGCC-3' for ilvD) (SEQ ID NO:174) and reverse (5'-AACGGTACTTAGGCATATATATATCCTCCTTAACCCGCAACAGCAATACG-3') (SEQ ID NO:175) for ilvC and 5'-ACATGCATGCTTAACCCCCCAGTTTCGATT-3') (SEQ ID NO:176) for ilvD) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli DH10B genome (ATCC) in 50 ฮผl. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 2 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-GCTCTAGAGGAGGATATATATATGGCTAACTACTTCAATACAC-3') (SEQ ID NO:177) and reverse (5'-ACATGCATGCTTAACCCCCCAGTTTCGATT-3') (SEQ ID NO:178) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with XbaI and SphI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADals-ilvCD.
[0447]The DNA fragment encoding als of Klebsiella pneumoniae subsp. pneumoniae MGH 78578 of its codon usage optimized for over-expression in E. coli was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGGATAAACAGTATCCGGT-3') (SEQ ID NO:179) and reverse (5'-GCTCTAGATTACAGAATTTGACTCAGGT-3') (SEQ ID NO:180) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pETals in 50 ฮผl. The amplified DNA fragment was digested with SacI and XbaI and ligated into pBADilvCD pre-digested with the same restriction enzymes.
Construction of pBADalsS-ilvCD.
[0448]The DNA fragments encoding front and bottom halves of alsS of Bacillus subtilis B26 were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 0.5 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGTTGACAAAAGCAACAAAAG-3') (SEQ ID NO:181) for front and 5'-CGGTACCCTTTCCAGAGATTTAGAG-3' (SEQ ID NO:275) for back halves, and reverse (5'-CTCTAAATCTCTGGAAAGGGTACCG-3') (SEQ ID NO:182) for front and (5'-GCTCTAGATTAGAGAGCTTTCGTTTTCATG-3' for back halves) (SEQ ID NO:183) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Bacillus subtilis B26 genome (ATCC) in 50 ฮผl. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGTTGACAAAAGCAACAAAAG-3') (SEQ ID NO:184) and reverse (5'-GCTCTAGATTAGAGAGCTTTCGTTTTCATG-3') (SEQ ID NO:185) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was internal XbaI site free and thus was digested with SacI and XbaI and ligated into pBADilvCD pre-digested with the same restriction enzymes.
Construction of pBADLeuABCD.
[0449]The DNA fragment encoding leuA, leuB, leuC, and leuD of Escherichia coli BL21(DE3) was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 3 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTCAGGAGGATATATATATGAGCCAGCAAGTCATTATTTTCG-3') (SEQ ID NO:186) and reverse (5'-AAAACTGCAGCGTTTGATGACGTGGACGATAGCGG-3') (SEQ ID NO:187) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli BL21(DE3) genome in 50 ฮผl. The amplified DNA fragment was digested with SacI and XbaI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADLeuABCD2.
[0450]The DNA fragment 1 encoding leuA and leuB and the DNA fragment 2 encoding leuC and leuD of Escherichia coli BL21 (DE3) were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTCAGGAGGATATATATATGAGCCAGCAAGTCATTATTTTCG-3') (SEQ ID NO:188) for fragment 1 and (5'-AGGGGTGTAAGGAGGATATATATATGGCTAAGACGTTATACGAAAAATTG-3') (SEQ ID NO:189) for fragment 2 and reverse (5'-CGTCTTAGCCATATATATATCCTCCTTACACCCCTTCTGCTACATAGCGG-3') (SEQ ID NO:190) for fragment 1 and (5'-AAAACTGCAGCGTTTGATGACGTGGACGATAGCGG-3') (SEQ ID NO:191) for fragment 2 primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli BL21(DE3) genome in 50 ฮผl, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 3 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTCAGGAGGATATATATATGAGCCAGCAAGTCATTATTTTCG-3') (SEQ ID NO:192) and reverse (5'-AAAACTGCAGCGTTTGATGACGTGGACGATAGCGG-3') (SEQ ID NO:193) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with SacI and XbaI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADLeuABCD4.
[0451]The DNA fragments encoding leuA, leuB, leuC and leuD of Escherichia coli BL21(DE3) were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTCAGGAGGATATATATATGAGCCAGCAAGTCATTATTTTCG-3') (SEQ ID NO:194) for leuA, (5'-GAAACCGTGTGAGGAGGATATATATATGTCGAAGAATTACCATATTGCCG-3') (SEQ ID NO:195) for leuB, (5'-AGGGGTGTAAGGAGGATATATATATGGCTAAGACGTTATACGAAAAATTG-3') (SEQ ID NO:196) for leuC, and (5'-ACATTAAATAAGGAGGATATATATATGGCAGAGAAATTTATCAAACACAC-3') (SEQ ID NO:197) for leuD and reverse (5'-ATTCTTCGACATATATATATCCTCCTCACACGGTTTCCTTGTTGTTTTCG-3') (SEQ ID NO:198) for leuA, (5'-CGTCTTAGCCATATATATATCCTCCTTACACCCCTTCTGCTACATAGCGG-3') (SEQ ID NO:199) for leuB, (5'-TTTCTCTGCCATATATATATCCTCCTTATTTAATGTTGCGAATGTCGGCG-3') (SEQ ID NO:200) for leuC, and (5'-AAAACTGCAGCGTTTGATGACGTGGACGATAGCGG-3') (SEQ ID NO:201) for leuD primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli BL21(DE3) genome in 50 ฮผl, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 3 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTCAGGAGGATATATATATGAGCCAGCAAGTCATTATTTTCG-3') (SEQ ID NO:202) and reverse (5'-AAAACTGCAGCGTTTGATGACGTGGACGATAGCGG-3') (SEQ ID NO:203) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with SacI and XbaI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADals-ilvCD-leuABCD, pBADals-ilvCD-leuABCD2 pBADals-ilvCD-leuABCD4 pBADalsS-ilvCD-leuABCD, pBADalsS-ilvCD-leuABCD2 pBADalsS-ilvCD-leuABCD4.
[0452]The DNA fragments 1 (for als) and 2 (for alsS) encoding chloramphenicol acetyltransferase (CAT), P15 origin of replication, araBAD promoter, als of Klebsiella pneumoniae subsp. pneumoniae MGH 78578 of its codon usage optimized for over-expression in E. coli or alsS of Bacillus subtilis B26 and ilvC and ilvD of E. coli DH 10B were amplified separately by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-AAGGAAAAAAGCGGCCGCCCCTGAACCGACGACCGGGTCG-3') (SEQ ID NO:204) and reverse (5'-CGGGGTACCGCGGATACATATTTGAATGTATTTAG-3') (SEQ ID NO:205) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pBADals-ilvCD and pBADalsS-ilvCD in 50 ฮผl, respectively.
[0453]To remove an internal SphI restriction enzyme site form leuC, overlap PCR was carried out. The front and bottom halves of DNA fragment 3 (for leuABCD), fragment 4 (for leuABCD2), and fragment 5 (for leuABCD4) encoding araBAD promoter, leuA, leuB, leuC, and leuD of E. coli BL21(DE3) were amplified separately by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-AAGGAAAAAAGCGGCCGCACTTTTCATACTCCCGCCATTCAG-3') (SEQ ID NO:206) for front and (5'-CAAAGGCCGTCTGCACGCGCCGAAAGGCAAA-3') (SEQ ID NO:207) for back halves) and reverse (5'-TTTGCCTTTCGGCGCGTGCAGACGGCCTTTG-3') (SEQ ID NO:208) for front and (5'-ACATGCATGCCGTTTGATGACGTGGACGATAGCGG-3') (SEQ ID NO:209) for bottom halves, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pBADleuABCD, pBADleuABCD2, and pBADleuABCD4 in 50 ฮผl, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-AAGGAAAAAAGCGGCCGCACTTTTCATACTCCCGCCATTCAG-3') (SEQ ID NO:210) and reverse (5'-ACATGCATGCCGTTTGATGACGTGGACGATAGCGG-3') (SEQ ID NO:211) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The resulting fragment 3, 4, and 5 were digested with SphI and NotI and ligated into both fragment 1 and 2 pre-digested with the same restriction enzymes.
Construction of pBADaroG-tktA-aroBDE.
[0454]The DNA fragments encoding aroG, tktA, aroB, aroD, and aroE of Escherichia coli BL21(DE3) were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATAT ATGAATTATCAGAACGACGATTTAC-3') (SEQ ID NO:212) for aroG, (5'-GCGTCGCGGGTAAGGAGGAAAATTTTATGTCCTCACGTAAAGAGCTTGCC-3') (SEQ ID NO:213) for tktA, (5'-GAACTGCTGTAAGGAGGTTAAAATTATGGAGAGGATTGTCGTTACTCTCG-3') (SEQ ID NO:214) for aroB,}(5'-CAATCAGCGTAAGGAGGTATATATAATGAAAACCGTAACTGTAAAAGATC-3') (SEQ ID NO:215) for aroD, and (5'-TACACCAGGCATAAGGAGGAATTAATTATGGAAACCTATGCTGTTTTTGG-3') (SEQ ID NO:216) for aroE and reverse (5'-TACGTGAGGACATAAAATTTTCCTCCTTACCCGCGACGCGCTTTTACTGC-3') (SEQ ID NO:217) for aroG, (5'-CAATCCTCTCCATAATTTTAACCTCCTTACAGCAGTTCTTTTGCTTTCGC-3') (SEQ ID NO:218) for tktA, (5'-CAATCAGCGTAAGGAGGTATATATAATGAAAACCGTAACTGTAAAAGATC-3') (SEQ ID NO:219) for aroB, (5'-TACGGTTTTCATTATATATACCTCCTTACGCTGATTGACAATCGGCAATG-3') (SEQ ID NO:220) for aroD, and (5'-ACATGCATGCTTACGCGGACAATTCCTCCTGCAA-3') (SEQ ID NO:221) for aroE, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli BL21(DE3) genome in 50 ฮผl, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 3 min, repeated 30 times. The reaction mixture contained 1รPhusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGAATTATCAGAACGACGATTTAC-3') (SEQ ID NO:222) and reverse (5'-ACATGCATGCTTACGCGGACAATTCCTCCTGCAA-3') (SEQ ID NO:223) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with SacI and SphI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADpheA-aroLAC.
[0455]The DNA fragments encoding pheA, aroL, aroA, and aroC of Escherichia coli DH10 were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGACATCGGAAAACCCGTTACTGG-3') (SEQ ID NO:224) for pheA, (5'-GATCCAACCTAAGGAGGAAAATTTTATGACACAACCTCTTTTTCTGATCG-3') (SEQ ID NO:225) for aroL, (5'-GATCAATTGTTAAGGAGGTATATATAATGGAATCCCTGACGTTACAACCC-3') (SEQ ID NO:226) for aroA, and (5'-CAGGCAGCCTAAGGAGGAATTAATTATGGCTGGAAACACAATTGGACAAC-3') (SEQ ID NO:227) for aroC and reverse (5'-AGGTTGTGTCATAAAATTTTCCTCCTTAGGTTGGATCAACAGGCACTACG-3') (SEQ ID NO:228) for pheA, (5'-CAGGGATTCCATTATATATACCTCCTTAACAATTGATCGTCTGTGCCAGG-3') (SEQ ID NO:229) for aroL, (5'-GTTTCCAGCCATAATTAATTCCTCCTTAGGCTGCCTGGCTAATCCGCGCC-3') (SEQ ID NO:230) for aroA, and (5'-ACATGCATGCTTACCAGCGTGGAATATCAGTCTTC-3') (SEQ ID NO:231) for aroC primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli BL21(DE3) genome in 50 ฮผl, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGACATCGGAAAACCCGTTACTGG-3') (SEQ ID NO:232) and reverse (5'-ACATGCATGCTTACCAGCGTGGAATATCAGTCTTC-3') (SEQ ID NO:233) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with SacI and SphI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADtyrA-aroLAC.
[0456]The DNA fragments encoding pheA, aroL, aroA, and aroC of Escherichia coli DH10 were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGGTTGCTGAATTGACCGCATTAC-3') (SEQ ID NO:234) for tyrA, (5'-AATCGCCAGTAAGGAGGAAAATTTTATGACACAACCTCTTTTTCTGATCG-3') (SEQ ID NO:235) for aroL, (5'-GATCAATTGTTAAGGAGGTATATATAATGGAATCCCTGACGTTACAACCC-3') (SEQ ID NO:236) for aroA, and (5'-CAGGCAGCCTAAGGAGGAATTAATTATGGCTGGAAACACAATTGGACAAC-3') (SEQ ID NO:237) for aroC, and reverse (5'-GAGGTTGTGTCATAAAATTTTCCTCCTTACTGGCGATTGTCATTCGCCTG-3') (SEQ ID NO:238) for tyrA, (5'-CAGGGATTCCATTATATATACCTCCTTAACAATTGATCGTCTGTGCCAGG-3') (SEQ ID NO:239) for aroL, (5'-GTTTCCAGCCATAATTAATTCCTCCTTAGGCTGCCTGGCTAATCCGCGCC-3') (SEQ ID NO:240) for aroA, and (5'-ACATGCATGCTTACCAGCGTGGAATATCAGTCTTC-3') (SEQ ID NO:241) for aroC, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Escherichia coli BL21(DE3) genome in 50 ฮผl, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGGTTGCTGAATTGACCGCATTAC-3') (SEQ ID NO:242) and reverse (5'-ACATGCATGCTTACCAGCGTGGAATATCAGTCTTC-3') (SEQ ID NO:243) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with SacI and SphI and ligated into pBAD33 pre-digested with the same restriction enzymes.
Construction of pBADpheA-aroLAC-aroG-tktA-aroBDE and pBADtyrA-aroLAC-aroG-tktA-aroBDE.
[0457]A DNA fragment 1 (for pheA) and 2 (for tyrA) encoding chloramphenicol acetyltransferase (CAT), P15 origin of replication, araBAD promoter, pheA or tyrA, aroL, aroA, aroC of Escherichia coli DH10B and a DNA fragment 3 encoding araBAD promoter, aroG, tktA, aroB, aroD, and aroE of Escherichia coli DH10B were amplified separately by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 4 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-AAGGAAAAAAGCGGCCGCCCCTGAACCGACGACCGGGTCG-3') (SEQ ID NO:244) for fragment 1 and 2 and (5'-GCTCTAGAACTTTTCATACTCCCGCCATTCAG-3') (SEQ ID NO:245) for fragment 3, and reverse (5'-GCTCTAGAGCGGATACATATTTGAATGTATTTAG-3') (SEQ ID NO:246) for fragment 1 and 2 and (5'-AAGGAAAAAAGCGGCCGCGCGGATACATATTTGAATGTATTTAG-3') (SEQ ID NO:247) for fragment 3, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pBADpheA-aroLAC, pBADtyrA-aroLAC, and pBADaroG-tktA-aroBDE in 50 ฮผl, respectively. Amplified DNA fragments 1 and 2 were digested with NotI and XbaI and ligated into fragment 3 pre-digested with the same restriction enzymes.
Construction of pTrcBAL.
[0458]A DNA sequence encoding benzaldehyde lyase (bal) of Pseudomonas fluorescens of its codon usage optimized for over-expression in E. coli was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CATGCCATGGCTATGATTACTGGTGG-3') (SEQ ID NO:248) and reverse (5'-CCCCGAGCTCTTACGCGCCGGATTGGAAATACA-3') (SEQ ID NO:249) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pETBAL in 50 ฮผl. Amplified DNA fragment was digested with NcoI and SacI and ligated into pTrc99A pre-digested with the same restriction enzymes.
Construction of pTrcAdhE2.
[0459]A DNA sequence encoding Co-A linked alcohol/aldehyde dehydrogenase (adhE2) of Clostridium acetobutyricum ATCC824 was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CATGCCATGGCCAAAGTTACAAATCAAAAAG-3') (SEQ ID NO:250) and reverse (5'-CGAGCTCTTAAAATGATTTTATATAGATATCC-3') (SEQ ID NO:251) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Clostridium acetobutyricum ATCC824 genome in 50 ฮผl. Amplified DNA fragment was digested with NcoI and SacI and ligated into pTrc99A pre-digested with the same restriction enzymes.
Construction of pTrcAdh2.
[0460]A DNA sequence encoding alcohol dehydrogenase (adh2) of Saccharomyces cerevisiae was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CATGCCATGGGTATTCCAGAAACTCAAAAAG-3') (SEQ ID NO:252) and reverse (5'-CCCGAGCTCTTATTTAGAAGTGTCAACAACG-3') (SEQ ID NO:253) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng genome of Saccharomyces cerevisiae in 50 ฮผl. Amplified DNA fragment was digested with NcoI and SacI and ligated into pTrc99A pre-digested with the same restriction enzymes.
Construction of pTrcBALD.
[0461]A DNA sequence encoding CoA-linked aldehyde dehydrogenase (ald) of Clostridium beijerinckii was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCCGAGCTCAGGAGG ATATACATATGAATAAAGACACACTAATACC-3') (SEQ ID NO:254) and reverse (5'-CCCAAGCTTAGCCGGCAAGTACACATCTTC-3') (SEQ ID NO:255) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pETBAL in 50 ฮผl. Amplified DNA fragment was digested with SacI and HndIII and ligated into pTrcBAL pre-digested with the same restriction enzymes.
Construction of pTrcBALK.
[0462]A DNA sequence encoding ketoisovalerate decarboxylase (kivd) of Lactococcus lavtis was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGTATACAGTAGGAGATTACC-3') (SEQ ID NO:256) and reverse (5'-GCTCTAGATTATGATTTATTTTGTTCAGCAAAT-3') (SEQ ID NO:257) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pETBAL in 50 ฮผl. Amplified DNA fragment was digested with SacI and XbaI and ligated into pTrcBAL pre-digested with the same restriction enzymes.
Construction of pTrcAdh-Kivd.
[0463]A DNA sequence encoding ketoisovalerate decarboxylase (kivd) of Lactococcus lavtis was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCCGAGCTCAGGAGGATATATATATGTATACAGTAGGAGATTACC-3') (SEQ ID NO:258) and reverse (5'-GCTCTAGATTATGATTTATTTTGTTCAGCAAAT-3') (SEQ ID NO:259) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pETBAL in 50 ฮผl. Amplified DNA fragment was digested with SacI and XbaI and ligated into pTrcAdh2 pre-digested with the same restriction enzymes.
Construction of pTrcBAL-DDH-2ADH.
[0464]To remove internal NcoI site, overlap PCR was carried out. DNA fragments encoding front and bottom halves of meso-2,3-butanedioldehydrogenase (ddh) of Klebsiella pneumoniae subsp. pneumoniae MGH 78578 and secondary alcohol dehydrogenase (2adh) of Pseudomanas fluorescens were amplified separately by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTCAGGAGGATATATATATGAAAAAAGTCGCACTTGTTACCG-3') (SEQ ID NO:260) for front half of ddh, (5'-GGCCGGCGGCCGCGCGATGGCGGTGAAAGTG-3') (SEQ ID NO:261) for bottom half of ddh, (5'-AACTAATCTAGAGGAGGATATATATATGAGCATGACGTTTTCCGGCCAGG-3') (SEQ ID NO:262) for front half of 2adh, and (5'-CCTTGCGGAGGGCTCGATGGATGAGTTCGAC-3') (SEQ ID NO:263) for bottom half of 2adh, and reverse (5'-CACTTTCACCGCCATCGCGCGGCCGCCGGCC-3') (SEQ ID NO:264) for front half of ddh, (5'-GCTCATATATATATCCTCCTCTAGATTAGTTAAACACCATCCCGCCGTCG-3') (SEQ ID NO:265) for bottom half of ddh, (5'-GTCGAACTCATCCATCGAGCCCTCCGCAAGG-3') (SEQ ID NO:266) for front half of 2adh, and (5'-CCCAAGCTTAGATCGCGGTGGCCCCGCCGTCG-3') (SEQ ID NO:267) for bottom half of 2adh, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Kiebsiella pneumoniae subsp. pneumoniae MGH 78578 for ddh and Pseudomanas fluorescens genome for 2adh in 50 ฮผl, respectively. The amplified DNA fragments were gel purified and eluted into 30 ul of EB buffer (Qiagen). 5 ul from each DNA solution was combined and each DNA fragment was spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 2 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CGAGCTCAGGAGGATATATATATGAAAAAAGTCGCACTTGTTACCG-3') (SEQ ID NO:268) and reverse (5'-CCCAAGCTTAGATCGCGGTGGCCCCGCCGTCG-3') (SEQ ID NO:269) primers, 1 U Phusion High Fidelity DNA polymerase (NEB). The spliced fragment was digested with SacI and HindIII and ligated into pTrcBAL pre-digested with the same restriction enzymes.
Construction of pBBRPduCDEGH.
[0465]A DNA sequence encoding propanediol dehydratase medium (pduD) and small (pdue) subunits and propanediol dehydratase reactivation large (pduG) and small (pduH) subunits of Klebsiella pneumoniae subsp. pneumoniae MGH 78578 was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 2 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-GCTCTAGAGGAGGATTTAAAAATGGAAATTAACGAAACGCTGC-3') (SEQ ID NO:270) and reverse (5'-TCCCCGCGGTTAAGCATGGCGATCCCGAAATGGAATCCCTTTGAC-3') (SEQ ID NO:271) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Klebsiella pneumoniae subsp. pneumoniae MGH 78578 in 50 ฮผl. Amplified DNA fragment was digested with SacII and XbaI and ligated into pTrc99A pre-digested with the same restriction enzymes to form pBBRPduDEGH.
[0466]A DNA sequence encoding propanediol dehydratase large subunit (pduC) of Klebsiella pneumoniae subsp. pneumoniae MGH 78578 was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCGCTCGAGGAGGATATATATATGAGATCGAAAAGATTTGAAGC-3') (SEQ ID NO:272) and reverse (5'-GCTCTAGATTAGCCAAGTTCATTGGGATCG-3') (SEQ ID NO:273) primers, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng Kiebsiella pneumoniae subsp. pneumoniae MGH 78578 in 50 ฮผl. Amplified DNA fragment was digested with XhoI and XbaI and ligated into pBBRPduDEGH pre-digested with the same restriction enzymes.
Construction of pTrcIpdc-Par.
[0467]A DNA sequence encoding indole-3-pyruvate (ipdc) of Azospirillum brasilense and phenylethanol reductase (par) of Rhodococcus sp. ST-10 were amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 1 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward primers (5'-CATGCCATGGGACTGGCTGAGGCACTGCTGC-3' (SEQ ID NO:314) for ipdc and 5'-CGAGCTCAGGAGGATATATATATGAAAGCTATCCAGTACACCCGTAT-3' (SEQ ID NO:315) for par, and reverse primers (5'-CGAGCTCTTATTCGCGCGGTGCCGCGTGCAGG-3' (SEQ ID NO:316) for ipdc and 5'-GCTCTAGATTACAGGCCCGGAACCACAACGGCGC-3' (SEQ ID NO:317) for par, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pTrcIpdc and pTrcPar, respectively, in 50 ฮผl. Amplified DNA fragment of ipdc and par were digested with NcoI/SacI and SacI/XbaI, respectively, and were ligated into pTrc99A pre-digested with NcoI and XbaI.
Testing and Results:
[0468]To test the butyraldehyde biosynthesis pathway, DH10B harboring pBADButP-atoB/pTrcBALD and pBADButP-atoB-ALD/pTrcB2DH/pBBRpduCDEGH were grown overnight in LB media containing 50 ug/ml chroramphenicol (Cm50) and 100 ug/ml ampicillin (Amp100) at 37 C, 200 rpm. An aliquot of each seed culture was inoculated into fresh TB media containing Cm50 and Amp100 and was grown in incubation shaker at 37 C, 200 rpm. Three hours after inoculation, the cultures were induced with 13.3 mM arabinose and 1 mM IPTG and were grown for overnight. 700 ul of this culture was extracted with equal volume of ethylacetate and analyzed by GC-MS.
[0469]To test the isobutyeraldehyde biosynthesis pathway, DH10B cells harboring pBADals-ilvCD/pTrcBALK or pBADalsS-ilvCD/pTrcBALK were grown overnight in LB media containing 50 ug/ml chroramphenicol (Cm50) and 100 ug/ml ampicillin (Amp100) at 37 C, 200 rpm. An aliquot of each seed culture was inoculated into fresh TB media containing Cm50 and Amp100 and was grown in incubation shaker at 37 C, 200 rpm. Three hours after inoculation, the cultures were induced with 13.3 mM arabinose and 1 mM IPTG and were grown for overnight. 700 ul of this culture was extracted with equal volume of ethylacetate and analyzed by GC-MS for the production of isobutyraldehyde. FIG. 8B shows the production of isobutanal from these cultures.
[0470]To test the 3-methylbutyraldehyde and 2-methylbutyraldehyde biosynthesis pathways, DH10B harboring pBADals-ilvCD-LeuABCD/pTrcBALK, pBADals-ilvCD-LeuABCD2/pTrcBALK, pBADals-ilvCD-LeuABCD/pTrcBALK4, pBADalsS-LeuABCD/pTrcBALK, pBADalsS-LeuABCD2/pTrcBALK, or pBADalsS-LeuABCD4/pTrcBALK were grown overnight in LB media containing 50 ug/ml chroramphenicol (Cm50) and 100 ug/ml ampicillin (Amp100) at 37 C, 200 rpm. An aliquot of each seed culture was inoculated into fresh TB media containing Cm50 and Amp100 and was grown in incubation shaker at 37 C, 200 rpm. Three hours after inoculation, the cultures were induced with 13.3 mM arabinose and 1 mM IPTG and were grown for overnight. 700 ul of this culture was extracted with equal volume of ethylacetate and analyzed by GC-MS. The production of 2-isovaleralcohol (2-methylpental) and 3-isovaleralcohol (3-methylpentanal) was monitored because 3-isovaleraldehyde and 2-isovaleraldehyde are spontaneously converted to their corresponding alcohols. FIG. 8B shows the production of 2-methylpental and 3-methylpentanal from these cultures.
[0471]To test the phenylacetoaldehyde and 4-hydroxyphenylacetoaldehyde biosynthesis pathways, DH10B cells harboring pBADpheA-aroLAC/pTrcBALK, pBADtyrA-aroLAC/pTrcBALK, pBADaroG-tktA-aroBDE/pTrcBALK, pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcBALK, and pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcBALK were grown overnight in LB media containing 50 ug/ml chroramphenicol (Cm50) and 100 ug/ml ampicillin (Amp100) at 37 C, 200 rpm. An aliquot of each seed culture was inoculated into fresh TB media containing Cm50 and Amp100 and was grown in incubation shaker at 37 C, 200 rpm. Three hours after inoculation, the cultures were induced with 13.3 mM arabinose and 1 mM IPTG and were grown for overnight. 700 ul of this culture was extracted with equal volume of ethylacetate and analyzed by GC-MS. The production of phenylacetoaldehyde, 4-hydroxyphenylaldehyde and their corresponding alcohols were monitored using GC-MS. FIG. 9B shows the production of 4-hydroxyphenylethanol from these cultures.
[0472]To test the 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol, and 2-(indole-3) ethanol biosynthesis pathways, DH10B harboring pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcBALK, pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcBALK, pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcAdh2-Kivd, pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcAdh2-Kivd, pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcIpdc-Par, and pBADpheA-aroLAC-aroG-tktA-aroBDE/pTrcIpdc-Par were grown overnight in LB media containing 50 ug/ml chroramphenicol (Cm50) and 100 ug/ml ampicillin (Amp100) at 37 C, 200 rpm. An aliquot of each seed culture was inoculated into fresh TB media containing Cm50 and Amp100 and was grown in incubation shaker at 37 C, 200 rpm. Three hours after inoculation, the cultures were induced with 13.3 mM arabinose and 1 mM IPTG and were grown for overnight to a week. 700 ul of this culture was extracted with equal volume of ethylacetate and analyzed by GC-MS. The results are detailed below.
[0473]The production of 2-phenylethanol, 2-(4-hydroxyphenyl)ethanol and/or 2-(indole-3-)ethanol was monitored using GC-MS. FIG. 42A shows the production of 2-phenylethanol from these cultures at 24 hours. FIG. 42B shows the production of 2-(4-hydroxyphenyl)ethanol from these cultures at 24 hours. FIG. 42C shows the production of 2-(indole-3-)ethanol from these cultures at 24 hours.
[0474]FIG. 43A shows the GC-MS chromatogram for control (pBAD33 and pTrc99A) at one week. FIG. 43B shows the GC-MS chromatogram for 2-phenylethanol (5.97 min) production from pBADpheA-aroLAC-aroG-tktA-aroBDE and pTrcBALK at one week. FIG. 44 shows the GC-MS chromatogram for 2-(4-hydroxyphenyl)ethanol (9.36 min) and 2-(indole-3) ethanol (10.32 min) production from pBADtyrA-aroLAC-aroG-tktA-aroBDE and pTrcBALK at one week.
Example 5
Isolation and Biological Activity of Diol Dehydrogenases
[0475]Available substrates such as 3-hydroxy-2-butanone (acetoin), 4-hydroxy-3-hexanone (propioin), 5-hydroxy-4-octanone (butyroin), 6-hydroxy-5-decanone (valeroin), and 1,2-cyclopentanediol were used to measure the ability of diol dehydrogenases (ddh) to catalyze the reduction of large saturated ฮฑ-hydroxyketones to produce a diol. All reagents were purchased from Sigma-Aldrich Co. and TCI America, unless otherwise stated.
[0476]For cloning and isolation of DDH polypeptides, genomic DNA from several species of bacteria were obtained from ATCC (Lactobaccilus brevis ATCC 367, Pseudomanas putida KT2440, and Kiebsiella pneumoniae MGH78578), PCR-amplified (using Phusion with polymerase with 1ร Phusion buffer, 0.2 mM dNTP, 0.5 ฮผL Phusion enzyme, 1.5 ฮผM primers, and 20 pg template DNA in a 50 ฮผL reaction) utilizing the following protocol: 30 cylces, 98ยฐ C./10 secs (denaturing), 60ยฐ C./15 secs (annealing), 72ยฐ C./30 secs (elongation). Polymerase chain reaction products were then digested using restriction enzymes NdeI and BamHI, then ligated into NdeI/BamHI digested pET28 vectors. Vectors containing ddh clones were transformed into BL21(DE3) competent cells for protein expression. Single colony was innoculated into LB media, and expression of 6รHis-tagged proteins of interest was induced at OD600=0.6 with 0.1 mM IPTG. Expression was allowed to proceed for 15 hours at 22ยฐ C. The 6รHis-tagged enzymes were purified using Ni-NTA spin columns following suggested protocols by QIAGEN, yelding purified protein concentrations in the range of 1.1-6.5 mg/mL (determined by Bradford assay).
[0477]Diol dehydrogenase ddh 1 was isolated from Lactobaccilus brevis ATCC 367, diol dehydrogenase ddh2 was isolated from Pseudomonas putida KT2440, and diol dehydrogenase ddh3 was isolated from Klebsiella pneumoniae MGH78578. The nucleotide sequence encoding and polypeptide sequence of ddh 1 are shown in SEQ ID NOS:97 and 98, respectively; nucleotide sequence encoding and polypeptide sequence of ddh2 are shown in SEQ ID NOS:99 and 100, respectively; and nucleotide sequence encoding and polypeptide sequence of ddh3 are shown in SEQ ID NOS: 101 and 102, respectively.
[0478]Reactions to measure biological activity of DDH polypeptides were performed in a final volume of 200 ฮผL as follows: 25 mM substrate, 0.04 mg/mL DDH polypeptide, 0.25 mg/mL nicotinamide cofactor, 200 mM imidazole, 14 mM Tris-HCl, and 1.5% by volume DMSO. Biological activity was assayed using a Molecular Devices Thermomax 96 well plate reader, monitoring absorbance at 340 nm, which corresponds to NADH or NADPH concentration. For the kinetic studies, 0.04 mg/mL DDH polypeptide, 0.25 mg/mL NADH, 20 mM Tris HCl Buffer pH 6.5(red) or 9.0(ox), T=25 C, 100 uL total volume was used.
[0479]FIG. 12A shows the biological activity of ddh1, ddh2, and ddh3 using butyroin as a substrate (triangles represent ddh3 activity). FIG. 12B shows the oxidation activity of ddh3 towards 1,2-cyclopentanediol and 1,2-cyclohexanediol as measured by NADH production. FIG. 13 summarizes the results of kinetic studies for various substrates in the oxidation reactions catalyzed by the DDH polypeptides. These reactions were NAD+ dependent.
Example 6
Sequential In Vivo Biological Activity of CC-Ligases (Lyases) and Diol Dehydrogenases
[0480]The ability of a C--C lyase and a diol hydrogenase to perform the following sequential reaction was tested in E. coli:
##STR00001##
[0481]For ฮฑ-hydroxyketone and diol production, a pathway comprising a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) and meso-2,3-butanediol dehydrogenase (ddh) gene isolated from Kiebsiella pneumoniae subsp. pneumoniae MGH 78578 was constructed in E. coli and tested for its ability to condensate the substrates detailed below in Table 2 (e.g., acetoaldehyde, propionaldehyde, butyraldehyde, isobutyraldehyde, 2-methyl-butyraldehyde, 3-methyl-butyraldehyde, phenylacetaldehyde, and 4-hydroxyphenylacetaldehyde, or their corresponding alcohols) to form ฮฑ-hydroxyketone and the corresponding diol in vivo. The production of various ฮฑ-hydroxyketones and diols was monitored by gas chromatography-mass spectrometry (GC-MS).
TABLE-US-00002 TABLE 2 Summary of substrates and products. Produced Substrate ฮฑ-hydroxyketone Produced diol Figures Butanal 5-Hydroxy-4-octanone 4,5-Octanonediol 17A & B n-Pentanal 6-Hydroxy-5-decanone 5,6-Decanediol 18A & B 3-Methylbutanal 2,7-Dimethyl-5-hydroxy-4- 2,7-Dimethyl-4,5- 19A & B octanone octanediol n-Hexanal 7-Hydroxy-6-dodecanone 6,7-dodecanediol 20A & B 4-Methylpentanal 2,9-Dimethyl-6-hydroxy-5- 2,9-Dimethyl-5,6- 21A & B decanone decanediol n-Octanal 9-Hydroxy-8-hexadecanone 8,9-hexadecanediol 22 Acetaldehyde 3-Hydroxy-2-butanone 2,3-Butanediol 23 n-Propanal 4-Hydroxy-3-hexanone 3,4-Hexanediol 24A & B Phenylacetoaldehyde 1,4-Diphenyl-3-hydroxy-2- 1,4-Diphenyl-2,3- 25 butanone butanediol
For Analysis of โฆC10.
[0482]E. coli harboring pTrcBAL-DDH-2ADH was grown for overnight in LB media containing 50 ug/ml Kanamycine (Km). This seed culture was innoculated into M9 media containing 3% (v/v) glycerol, 0.5% (g/v) and 50 ug/ml Km. 10 mL cultures were grown to O.D.600=0.7, then cultures were induced with 0.5 mM IPTG. The cells were allowed to express the enzymes of interest for 3 hours before various aldehydes were added to a concentration of 5-10 mM. After addition of aldehydes, the cultures were capped and incubated at 37ยฐ C. with shaking for 72 hours. Cultures were extracted with 2 mL ethyl acetate, and analyzed on GC-MS using the following protocol:
[0483]1 ฮผL injection w/50:1 split
[0484]Inlet temperature--150ยฐ C.
[0485]Initial oven temperature--50ยฐ C.
[0486]Temperature Ramp 1--10ยฐ C./min to 150ยฐ C.
[0487]Temperature Ramp 2--50ยฐ C./min to 300ยฐ C.
[0488]GC to MS transfer temp--250ยฐ C.
[0489]MS detection--full scan MW 35-200
For Analysis of โงC12.
[0490]E. coli DH10B strains harboring pTrc99A (Ctrl vector) or pTrcBAL were inoculated into 0.75รM9/0.5% LB containing 0.1 mM CaCl2, 2 mM MgSO4, 1 mM KCl, 1% galacturonate, 5 ฮผg/mL thiamine, Amp. The cultures were grown up to an optical density (600 n nm) of 0.8 and induced with 0.25 mM IPTG. The cells were allowed to express the proteins for 2.5 hours at 37ยฐ C., then aldehyde substrate was added to a concentration of 5 mM, the culture vial was capped tightly and incubated for 72 hours at 37ยฐ C. w/shaking 200 rpm. 1 mL of the final culture was extracted with 0.75 mL of ethyl acetate, centrifuged facilitate phase separation, then analyzed via GCMS using the following method.
[0491]1 ฮผL injection w/50:1 split
[0492]Inlet temperature--250ยฐ C.
[0493]Initial oven temperature--50ยฐ C.
[0494]Temperature Ramp 1--10ยฐ C./min to 125ยฐ C.
[0495]Temperature Ramp 2--30ยฐ C./min to 300ยฐ C.
[0496]Final Temperature 300ยฐ C.--1 minute
[0497]GC to MS transfer temp--250ยฐ C.
[0498]MS detection--full scan MW 40-260.
[0499]The results are depicted in FIGS. 17 through 25. FIG. 17 shows the sequential conversion of butanal into 5-hydroxy-4-octanone and then 4,5-octanonediol. FIG. 18 shows the sequential conversion of n-pentanal into 6-hydroxy-5-decanone and then 5,6-decanediol. FIG. 19 shows the conversion of 3-methylbutanal into 2,7-dimethyl-5-hydroxy-4-octanone and then 2,7-Dimethyl-4,5-octanediol. FIG. 20 shows the sequential conversion of n-hexanal into 7-hydroxy-6-dodecanone and then 6,7-dodecanediol. FIG. 21 shows the conversion of 4-methylpentanal into 2,9-dimethyl-6-hydroxy-5-decanone and then 2,9-dimethyl-5,6-decanediol. FIG. 22 shows the conversion of n-octanal into 9-hydroxy-8-hexadecanone. FIG. 23 shows the conversion of acetaldehyde into 3-hydroxy-2-butanone. FIG. 24 shows the sequential conversion of n-propanal into 4-hydroxy-3-hexanone and then 3,4-hexanediol. FIG. 25 shows the conversion of phenylacetoaldehyde into 1,4-diphenyl-3-hydroxy-2-butanone.
[0500]Similar to above, a pathway comprising a benzaldehyde lyase (bal) gene isolated from Pseudomonas fluorescens (codon usage was optimized for E. coli protein expression) was constructed in E. coli and tested for its ability to catalyze the production of various ฮฑ-hydroxyketones. The results, which show the broad spectrum of C--C ligase activity for the bal gene tested, are set forth in FIG. 48 through FIG. 55.
Example 7
Sequential Biological Activity of Diol Dehydrogenases and Diol Dehydratases
[0501]To test the sequential biological activity of diol dehydrogenases and diol dehydratases in a dehydration and reduction pathway, butyroin was used as a substrate in a sequential reaction to produce 4-octanone. The enzyme diol dehydrogenase (e.g., ddh) catalyzes the reversible reduction and oxidation of ฮฑ-hydroxy ketones and its corresponding diol, such as 5-hydroxy-4-octanone and 4,5-octanediol, and the enzyme diol dehydratase (e.g., pduCDE) catalyzes the irreversible dehydration of diols, such as 4,5-octanediol.
[0502]Diol dehydrogenase ddh from Kiebsiella pneumoniae MGH 78578 and diol dehydratase pduCDE from Kiebsiella pneumoniae MGH 78578 were cloned into a bacterial expression vector and expressed and purified on a Ni-NTA column, as described in Example X except that 1 mM of 1,2-propanediol was added at all time during the expression and purification of diol dehydratase. The large, medium, and small subunits of the pduCDE polyeptide are encoded by the nucleotide sequences of SEQ ID NOs:103, 105, and 107, respectively, and the polypeptide sequence are set forth in SEQ ID NOs: 104, 106, and 108, respectively.
[0503]The ddh3 and pduCDE polypeptides were incubated with butyroin and their appropriate cofactors, then assayed using gas chromatography-mass spectrometry (GC-MS) for their ability to perform sequential reactions resulting in the product 4-octanone. Reaction conditions are given in Table 3 below. The reaction mixture was incubated at 37ยฐ C. for 40 hours in a 0.6 mL eppendorf tube with minimal head space. The reaction product was extracted with an equivalent volume of ethyl acetate, stored in a glass vial, and sent to Thermo Fischer Scientific Instruments Division for compositional analysis by GC-MS.
TABLE-US-00003 TABLE 3 Reaction Conditions Rxn Component Concentration 5-hydroxy-4-octanone (butyroin) 8.4 mM Adenosylcobalamin (coenzyme B12) 33.5 ฮผM KCl 9.6 mM NADH 18 mM dDH3 enzyme 0.19 mg/mL dDOH1 enzyme mix 0.15 mg/mL Reaction Buffer 10 mM Tris HCl pH 7.0
[0504]FIG. 26A shows GC-MS data which confirms the presence of 4,5-octanediol in the sample extraction. The mass-spectra of the peaks, retention time, at 5.36 was identified as butyroin (substrate), and at 6.01, 6.09, and 6.12 min were identified as different isomers of 4,5-octanediol. This compound is the expected product resulting from the reduction of butyroin by ddh3.
[0505]FIG. 26B shows GC-MS data confirming the presence of 4-octanone in the sample extraction. The mass-spectra of the peak, retention time, at 4.55 was identified as 4-octanone. This compound is the expected product resulting from the sequential dehydrogenation of butyroin and dehydration of 4,5-octanediol by ddh3 and pduCDE, respectively.
[0506]FIGS. 27A and 27B show comparisons between the sample extraction gas chromatograph/mass spectrum and the 4-octanone standard gas chromatograph/mass spectrum. These results demonstrate that 4-octanone was produced from butyroin using the enzymes diol dehydrogenase (ddh3) and a diol dehydratase (pduCDE). GC-MS analysis of the incubated reaction mixture confirmed starting material, intermediate and product, demonstrating that these enzymes can be reappropriated for these specific substrates.
Example 8
Isolation and Biological Activity of Secondary Alcohol Dehydrogenases
[0507]Substrates such as 4-octanone, 2,7-dimethyl-4-octanone, cyclopentanone and corresponding alcohols were utilized to measure the ability of secondary alcohol dehydrogenases (2ADHs) to catalyze the reduction of large saturated ketones to secondary alcohols. An example of a reaction catalyzed by secondary alcohol dehydrogenases is illustrated below (reduction of 4-octanone to 4-octanol is shown):
##STR00002##
[0508]All enzymes and reagents were purchased from New England Biolabs and Sigma, respectively, unless otherwise stated.
[0509]Various secondary alcohol dehydrogenases (2ADHs) were isolated from Pseudomonas putida KT2440, Pseudomonas fluorescens Pf-5, and Kiebsiella pneumoniae MGH 78578. All vectors were transformed in BL21(DE3) competent cells and expression of the genes encoding the proteins of interest was induced with IPTG (via the T7 promoter). The cells were lysed, proteins were extracted and then purified on Ni-NTA columns. Final protein concentration in the Ni-NTA eluate was diluted to 0.15 mg/mL prior to assays.
[0510]NADPH/NADPH consumption and production assays were performed using a THERMOmax microplate reader in the kinetic mode, monitoring the NADPH absorbance peak at 340 nm until the reaction reached equilibrium. In the assay described in Table 2, 2ADH-2, 2ADH-5, 2ADH-8, and 2ADH-10 were tested for their ability to either catalyze the oxidation of 4-octanol or catalyze the reduction of 4-octanone. These reaction conditions are found in Table 4 below.
TABLE-US-00004 TABLE 4 Reaction Conditions for Various Enzyme Assays Reaction Component Final Concentration NADH Production Assay (30ยฐ C.) 2ADH enzyme Approx. 0.058 ฮผg/ฮผL 4-octanol 5.55 mM NAD+ Approx. 1.4 ฮผg/ฮผL Imidizole (from Elution Buffer) Approx. 280 mM NADH Consumption Assay (30ยฐ C.) 2ADH enzyme Approx. 0.075 ฮผg/ฮผL 4-octanone 5.0 mM NADH Approx. 0.25 ฮผg/ฮผL Imidizole (from Elution Buffer) Approx. 250 mM NADPH Production Assay (30ยฐ C.) 2ADH enzyme Approx. 0.058 ฮผg/ฮผL 4-octanol 5.55 mM NADP+ Approx. 1.4 ฮผg/ฮผL Imidizole (from Elution Buffer) Approx. 280 mM
[0511]Further testing was performed, as described in Tables 5 below, in which 2ADH-2, 2ADH-11, 2ADH-12, 2ADH-13, 2ADH-14, 2ADH-15, 2ADH-16, 2ADH-17, and 2ADH-18 were tested for their ability to either catalyze the oxidation of 4-octanol, 2,7-dimethyl-4-octanonol, or cyclopentanol, or catalyze the reduction of 4-octanone, 2,7-dimethyl-4-octanonone, or cyclopentanone.
TABLE-US-00005 TABLE 5 Rxn Component Final Concentration Rxn Components for NADPH Consumption Assays (Reduction) Substrate 25 mM Enzyme 0.04 mg/mL Nicotinamide cofactor 0.25 mg/mL Imidizole 200 mM Tris HCl 14 mM DMSO 1.5% by volume Total Volume 200 ฮผL Rxn Components for NAD(P)H Production Assays (Oxidation) Substrate 5 mM Enzyme 0.04 mg/mL Nicotinamide cofactor 0.25 mg/mL Imidizole 200 mM Tris HCl 14 mM Rxn Components for NAD(P)H Production Assay using 2,7-dimethyl-4-octanone as a substrate Substrate 50 mM Enzyme 0.08 mg/mL Nicotinamide cofactor 0.25 mg/mL Imidizole 200 mM Tris HCl 14 mM DMSO 3% by volume
[0512]FIG. 30A shows the results from the NADH Production Assay of Table 3, in which 2ADH-2 catalyzes the oxidation of 4-octanol in the presence of NAD+, as measured by NADH production. FIG. 30B shows the results of the NADPH Production Assay of Table 3, in which 2ADH-5, 2ADH-8, and 2ADH-10 catalyze the oxidation of 4-octanol in the presence of NADP+, as measured by NADPH production.
[0513]FIG. 31 shows the oxidation of 4-octanol by 2ADH-11 (FIG. 31A) and 2ADH-16 (FIG. 31B), as measured by NADH and NADPH production, respectively. FIG. 32 shows the oxidation of 2,7-dimethyloctanol by 2ADH-11 and others (FIG. 32A) and 2ADH-16 (FIG. 32B), as measured by NADH and NADPH production, respectively.
[0514]FIG. 33A shows the reduction of 2,7-dimethyl octanol by 2ADH 11 and 2ADH16 as monitored by NADPH consumption. FIG. 33B shows the reduction activity of both 2ADH11 and 2ADH16 towards various substrates. FIG. 34 shows the oxidation (FIG. 34A) and reduction (FIG. 34B) of cyclopentanol by 2ADH-16.
[0515]Similar to above, kinetic testing for both oxidation and reduction reactions was performed on various substrates using 2ADH-16. The conditions for these studies were as follows: 0.04 mg/mL enzyme, 0.25 mg/mL cofactor, 20 mM Tris HCl Buffer pH 6.5(red) or 9.0(ox), T=25 C, 100 uL total volume was used. The calculated rate constants for the reduction reactions, along with the structures of the substrates, are summarized in FIG. 35. The calculated rate constants for the oxidation reactions, along with the structures of the substrates, are summarized in FIG. 36. These results show that 2ADH-16 is capable of catalyzing both the oxidation and reduction of a wide variety of substrates.
Example 9
Isolation and In Vitro and In Vivo Activity of Coenzyme B 12 Independent Diol Dehydratases
[0516]Substrates such as 1,2-propanediol, meso-2,3-butanediol, and trans-1,2-cyclopentanediol were utilized to test both the in vitro and in vivo biological activity of a B12 independent diol dehydratase in a dehydration and reduction pathway. Diol dehydratases catalyzes the irreversible dehydration of diols, such as 1,2-propanediol.
[0517]For in vitro activity, E. coli BL21(DE3) harboring pETPduCDE (diol dehydratase subunits) was inoculated into 100 mL LB media, grown to OD600=0.7, induced with 0.15 mM IPTG, and incubated for 22 hours at 22ยฐ C. The cells were lysed and proteins of interest were purified on a Ni-NTA spin column. Purification of all three dehydratase subunits was accomplished by adding 5 mM 1,2-propanediol to the lysis and wash buffers. The Ni-NTA purification yielded approximately 660 ฮผL of protein mixture at a concentration of 2.2 mg/mL. Protein concentration assays were conducted using a Bradford reagent protocol.
[0518]The purified PduCDE was used to set up in vitro diol dehydratase reactions. Three assays were conducted with 1,2-propanediol and meso-2,3-butanediol. Control reactions were also set up with elution buffer added in place of purifiedPduCDE. In vitro reactions were conducted under semi-anaerobic conditions in 2 mL screw cap glass vials. Reaction components and concentrations are given in Table 6.
TABLE-US-00006 TABLE 6 Reaction conditions for B12 dependent DDOH in vitro assay Rxn Component Concentration Diol substrate 10 mM Adenosylcobalamin (B12) 100 ฮผg/mL KCl 10 mM dOH1 enzyme mix 0.08 mg/mL Reaction Buffer 10 mM Tris HCl pH 7.5
[0519]After 48 hours, 1 mL of the reaction mixture was extracted with 0.5 mL of either ethylacetate or hexanol and analyzed by GCMS.
[0520]The following GCMS protocol was used for all experiments:
[0521]1 ฮผL injection w/50:1 split
[0522]Inlet temperature--250ยฐ C.
[0523]Initial oven temperature--50ยฐ C.
[0524]Temperature Ramp 1--10ยฐ C./min to 125ยฐ C.
[0525]Temperature Ramp 2--30ยฐ C./min to 300ยฐ C.
[0526]Final Temperature 300ยฐ C.--1 minute
[0527]GC to MS transfer temp--250ยฐ C.
[0528]MS detection--full scan MW 40-260
[0529]The results are shown in FIG. 45. FIG. 45A confirms the formation of 1-propanal from 1,2-propanediol, and FIG. 45B confirms the formation of 2-butanone from meso-2,3-butanediol, both of which were catalyzed by B12 independent diol dehydratase.
[0530]For in vivo activity, the pBBRDhaB1/2 plasmid was constructed as follows: the DNA sequence encoding B12-independent glycerol dehydratase (dhaB1) and activator (dhaB2) of Clostridium butyricum was amplified by polymerase chain reaction (PCR): 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 2 min for dhaB1 and 1 min for dhaB2, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward primers (5'-CCGCTCGAGGAGGATATATATATGATTTCTAAAGGCTTTAGCACCC-3' (SEQ ID NO:318) for dhaB1 and 5'-ACGTGATGTAATCTAGAGGAGGATATATATATGAGCAAAGAAATTAAAGG-3' (SEQ ID NO:319) for dhaB2, and reverse primers (5'-TCTTTGCTCATATATATATCCTCCTCTAGATTACATCACGTGTTCAGTAC-3' (SEQ ID NO:320) for dhaB1 and 5'-CGAGCTCTTATTCGGCGCCAATGGTGCACGGG-3' (SEQ ID NO:321) for dhaB2, 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng pETdhaB1 and pETdhaB2, respectively, in 50 ฮผl. Amplified fragments were gel purified and spliced by another round of PCR: 98ยฐ C. for 10 sec, 60ยฐ C. for 15 sec, and 72ยฐ C. for 2.5 min, repeated 30 times. The reaction mixture contained 1ร Phusion buffer (NEB), 2 mM dNTP, 0.5 ฮผM forward (5'-CCGCTCGAGGAGGATATATATATGATTTCTAAAGGCTTTAGCACCC-3') (SEQ ID NO:322) and reverse primers (5'-CGAGCTCTTATTCGGCGCCAATGGTGCACGGG-3') (SEQ ID NO:323), 1 U Phusion High Fidelity DNA polymerase (NEB), and 50 ng each fragment in 50 ฮผl. Amplified DNA fragment was digested with XhoI and SacI and ligated into pBBR1MCS-2 pre-digested with the same restriction enzymes.
[0531]Two strains of E. coli DH10B harboring pBBR1MCS-2 or pBBRDhaB1/2 into TB media without glycerol were innoculated. Cultures were grown to OD600=0.5 and the substrates 1,2-propanediol, meso-2,3-butanediol, and trans-1,2-cyclopentanediol were added to separate cultures to a concentration of 10 mM. 5 ug/ml of co-enzyme S-adenosylmethionine was added before the culture is transferred to anaerobic environment. The cultures were incubated at 37 C for 48 hrs.
[0532]After 48 hours, 1 mL of culture was extracted with 0.5 mL of ethylacetate or hexanol and analyzed by GCMS, as described above. The results are shown in FIG. 46. FIG. 46A shows the in vivo production of 1-propanol from 1,2-propanediol. FIG. 46B shows the in vivo production of 2-butanol from meso-2,3 butanediol. FIG. 46C shows the in vivo production of cyclopentanone from trans-1,2-cyclopentanediol.
Example 10
Identification of Secreted Alginate Lyase and Genomic Regions Sufficient for Growth on Alginate as a Sole Source of Carbon
[0533]To identify secreted or external alginate lyases, and to identify genomic regions from Vibrio splendidus that are sufficient to confer growth in alginate as a sole source of carbon, the following clones were made using the gateway system from Invitrogen (Carlsbad, Calif.). First, entry vectors were made by TOPO cloning PCR fragments into pENTR/D/TOPO. PCR fragments were generated using Vibrio splendidus B01 genomic DNA as a template and amplified with the following primer pairs:
[0534]Vs24214-24249: genomic region corresponding to gene id between V12B01--24214 and V12B01--24249 (see Example 1).
TABLE-US-00007 TABLE 7 24214 F cacc caagcgatagtttatatagcgt (SEQ ID NO:324) 24249R gaaatgaacggatattacgt (SEQ ID NO:325)
[0535]Vs24189-24209: genomic region corresponding to gene id between V12B01--24189 and V12B01--24209 (see Example 1).
TABLE-US-00008 TABLE 8 24189 R cggaacaggtgattgtggt (SEQ ID NO:326) 24209 F cacc gcccacttcaagatgaagctgt (SEQ ID NO:327)
[0536]Vs24214-24239: genomic region corresponding to gene id between V12B01--24214 and V12B01--24239 (see Example 1).
TABLE-US-00009 TABLE 9 24214 F cacc caagcgatagtttatatagcgt (SEQ ID NO:328) 24239 R_1 gtggctaagtacatgccggt (SEQ ID NO:329)
[0537]The entry vectors were recombined with the destination vector pET-DEST42 (Invitrogen) using the LR recombinase enzyme (Invitrogen). These destination vectors were then put into electrocompetent DH10B or BL21 cells.
[0538]The alginate lyase clones were then made by digesting (using enzymes Nde I and Bam HI) the PCR products that were generated using Vibrio splendidus 12B01 genomic DNA as a template and amplified with the following primer pairs:
TABLE-US-00010 TABLE 10 GGAATTC CAT (SEQ ID NO:330) atgacaaagaatatgacgactaaac for 24214 ndeF forward primer for V12B01_24214 CG GGATCC ttattatttcccctgccctgcagt (SEQ ID NO:331) for reverse primer 24214 bamR for V12B0l_24214 24219 ndeF GGAATTC CAT atgagctatcaaccacttttac (SEQ ID NO:332) for forward primer for V12B0l_24219 CG GGATCC ttacagttgagcaaatgatcc (SEQ ID NO:333) for reverse primer 24219 bamR for V12B0l_24219
[0539]The digested PCR products were then ligated into cut pET28 vector. Certain of the cloned genomic regions of Vibrio splendidus B01 were tested for the presence of secreted alginate lyases, and the above-described constructs were tested in various combinations for the ability to confer growth on alginate as a sole source of carbon.
[0540]The Vs24254 (SEQ ID NO: 32) region of Vibro spendidus encodes a functional external alginate lyase. BL21 cells expressing Vs24254 from the pET28 vector were capable of breaking down alginate in the growth medium. When grown on LB+2% alginate+0.1 mM Isopropyl ฮฒ3-D-1-thiogalactopyranoside (IPTG), only cells expressing the Vs24254 gene give a positive TBA assay result of pink color. This assay was performed by spinning down an overnight culture grown on the above mentioned media. The media was then mixed in a 1:1 ratio with 0.8% thiobarbituric acid (TBA), heated for 10 min at 99 degrees Celsius, and assayed for pink coloration. FIG. 47 shows the results of this assay. The left tube in FIG. 47 represents media taken from an overnight culture of cells expressing Vs24254, while the right hand tube shows the TBA reaction using media from cells expressing Vs24259 (negative control). The lack of pink coloration in the negative control indicates that little or no cleavage of the alginate polymer has occurred. Wildtype E. coli cells not expressing any recombinant proteins show the same coloration as the negative control Vs24259 (data not shown).
[0541]To test the ability of recombinant E. coli to grow on alginate as a sole source of carbon, transformed cells were grown for 19 hours at 30 degrees Celsius with mild shaking in a 96-well plate. Each well held 222 ฮผl of minimal media (see growth conditions for explanation of minimal media) with the 0.66% carbon source in the form of either degraded alginate or glucose (positive control for growth). All cells were either BL21 with no plasmid (BL21--negative control), one plasmid (Da or 3a), or two plasmids (Dk3a and Da3k). The plasmids are indicated by the lower case letter: "a" refers to the plasmid backbone pET-DEST42 and "k" refers to the pENTR/D/TOPO backbone. "D" indicates that the plasmid contains the genomic region Vs24214-24249, while "3" indicates that the plasmid contains the genomic region Vs24189-24209. Thus, Da would be pET-DEST42-Vs24214-24249, Da3k would be pET-DEST42-Vs24214-24249 and pENTR/D/TOPO-Vs24189-24209 and so on.
[0542]As shown in FIG. 56A, the two vector-constructs pET-DEST42-Vs24214-24249 and pENTR/D/TOPO-Vs24189-24209 when combined in E. coli confer growth on degraded alginate as the sole carbon source. This same result is be observed when these genomic inserts are switched into the opposite vector (pET-DEST42-Vs24189-24209 and pENTR/D/TOPO-Vs24214-24249). FIG. 56B shows growth on glucose as a positive control. Thus, the combined genomic regions of Vs24214-24249 and Vs24189-24209 from Vibro splendidus were sufficient to confer on E. coli the ability to grown on alginate as a sole source of carbon.
Example 11
Production of Ethanol from Alginate
[0543]The ability of recombinant E. coli to produce ethanol by growing on alginate on a source of carbon was tested. To generate recombinant E. coli, DNA sequences encoding pyruvate decarboxylase (pdc), and two alcohol dehydrogenase (adhA and adhB) of Zymomonas mobilis were amplified by polymerase chain reaction (PCR). These amplified fragments were gel purified and spliced together by another round of PCR. The final amplified DNA fragment was digested with BamHI and XbaI ligated into pBBR1MCS-2 pre-digested with the same restriction enzymes. The resulting plasmid is referred to as pBBRPdc-AdhA/B.
[0544]E. coli was transformed with either pBBRPdc-AdhA/B or pBBRPdc-AdhA/B+1.5 Fos (fosmid clone containing genomic region between VI 2B01--24189 and V12B01--24249; these sequences confer on E. coli the ability to use alginate as a sole source of carbon, see Examples 1 and 10), grown in m9 media containing alginate, and tested for the production of ethanol. The results are shown in FIG. 57, which demonstrates that the strain harboring pBBRPdc-AdhA/B+1.5 FOS showed significantly higher ethanol production when growing on alginate. These results indicate that the pBBRPdc-AdhA/B+1.5 FOS was able to utilize alginate as a source of carbon in the production of ethanol.
[0545]The various embodiments described above can be combined to provide further embodiments. All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non-patent publications referred to in this specification and/or listed in the Application Data Sheet, are incorporated herein by reference, in their entirety. Aspects of the embodiments can be modified, if necessary to employ concepts of the various patents, applications and publications to provide yet further embodiments.
[0546]These and other changes can be made to the embodiments in light of the above-detailed description. In general, in the following claims, the terms used should not be construed to limit the claims to the specific embodiments disclosed in the specification and the claims, but should be construed to include all possible embodiments along with the full scope of equivalents to which such claims are entitled. Accordingly, the claims are not limited by the disclosure.
[0547]The following publications are herein incorporated by reference in their entirety. [0548]1. T. Y. Wong, L. A. Preston, N. L. Schiller, Annu Rev Microbiol 54, 289 (2000). [0549]2. W. Hashimoto, O. Miyake, A. Ochiai, K. Murata, J Biosci Bioeng 99, 48 (January, 2005). [0550]3. M. Yamasaki, K. Ogura, W. Hashimoto, B. Mikami, K. Murata, J Mol Biol 352, 11 (Sep. 9, 2005). [0551]4. M. Yamasaki et al., Acta Crystallogr Sect F Struct Biol Cryst Commun 61, 288 (Mar. 1, 2005). [0552]5. O. Miyake, A. Ochiai, W. Hashimoto, K. Murata, J Bacteriol 186, 2891 (May, 2004). [0553]6. O. Miyake, W. Hashimoto, K. Murata, Protein Expr Purif 29, 33 (May, 2003). [0554]7. H. J. Yoon, B. Mikami, W. Hashimoto, K. Murata, J Mol Biol 290, 505 (Jul. 9, 1999). [0555]8. H. J. Yoon, W. Hashimoto, O. Miyake, K. Murata, B. Mikami, J Mol Biol 307, 9 (Mar. 16, 2001). [0556]9. W. Hashimoto, O. Miyake, K. Momma, S. Kawai, K. Murata, J Bacteriol 182, 4572 (August, 2000). [0557]10. H. J. Yoon et al., Protein Expr Purif 19, 84 (June, 2000). [0558]11. T. Osawa, Y. Matsubara, T. Muramatsu, M. Kimura, Y. Kakuta, J Mol Biol 345, 1111 (Feb. 4, 2005). [0559]12. A. Ochiai, W. Hashimoto, K. Murata, Res Microbiol 157, 642 (September, 2006). [0560]13. F. J. Mergulhao, D. K. Summers, G. A. Monteiro, Biotechnol Adv 23, 177 (May, 2005). [0561]14. J. H. Choi, S. Y. Lee, Appl Microbiol Biotechnol 64, 625 (June, 2004). [0562]15. M. P. DeLisa, D. Tullman, G. Georgiou, Proc Natl Acad Sci USA 100, 6115 (May 13, 2003). [0563]16. N. Blaudeck, G. A. Sprenger, R. Freudl, T. Wiegert, J Bacteriol 183, 604 (January, 2001). [0564]17. N. Pradel et al., Biochem Biophys Res Commun 306, 786 (Jul. 4, 2003). [0565]18. L. Masip et al, Science 303, 1185 (Feb. 20, 2004).
[0566]19. C. M. Barrett, N. Ray, J. D. Thomas, C. Robinson, A. Bolhuis, Biochem Biophys Res Commun 304, 279 (May 2, 2003). [0567]20. R. Binet, S. Letoffe, J. M. Ghigo, P. Delepelaire, C. Wandersman, Folia Microbiol (Praha) 42, 179 (1997). [0568]21. I. Gentschev, G. Dietrich, W. Goebel, Trends Microbiol 10, 39 (January, 2002). [0569]22. V. Koronakis, FEBS Lett 555, 66 (Nov. 27, 2003). [0570]23. J. Jose, Appl Microbiol Biotechnol 69, 607 (February, 2006). [0571]24. J. Jose, D. Betscheider, D. Zangen, Anal Biochem 346, 258 (Nov. 15, 2005). [0572]25. M. Ashiuchi, H. Misono, Appl Microbiol Biotechnol 59, 9 (June, 2002). [0573]26. J. Narita et al., Appl Microbiol Biotechnol 70, 564 (May, 2006). [0574]27. Y. Aso et al., Nat Biotechnol 24, 188 (February, 2006). [0575]28. W. Hashimoto et al., Biosci Biotechnol Biochem 69, 673 (April, 2005). [0576]29. A. E. Lagarde, F. R. Stoeber, J Bacteriol 129, 606 (February, 1977). [0577]30. M. A. Mandrand-Berthelot, P. Ritzenthaler, M. Mata-Gilsinger, J Bacteriol 160, 600 (November, 1984). [0578]31. J. Pouyssegur, F. Stoeber, J Bacteriol 117, 641 (February, 1974). [0579]32. J. Preiss, G. Ashwell, J Biol Chem 237, 309 (February, 1962). [0580]33. J. Preiss, G. Ashwell, J Biol Chem 237, 317 (February, 1962). [0581]34. G. M. Bird, P. Haas, Biochemical Journal 25, 403 (1931). [0582]35. L. H. Cretcher, W. L. Nelson, Science 67, 537 (May 25, 1928). [0583]36. W. L. Nelson, L. H. Cretcher, Journal of the American Chemical Society 51, 1914 (1929). [0584]37. W. L. Nelson, L. H. Cretcher, Journal of the American Chemical Society 52, 2130 (1930). [0585]38. W. L. Nelson, L. H. Cretcher, Journal of the American Chemical Society 54, 3409 (1932). [0586]39. E. Schoeffel, K. P. Link, Journal of Biological Chemistry 95, 213 (1932). [0587]40. E. Schoeffel, K. P. Link, Journal of Biological Chemistry 100, 397 (1933). [0588]41. H. A. Spoehr, Archive of Biochemistry 14, 153 (1947). [0589]42. J. J. Farmer, 3rd, R. G. Eagon, J Bacteriol 97, 97 (January, 1969). [0590]43. R. L. Anderson, D. P. Allison, J Biol Chem 240, 2367 (June, 1965). [0591]44. W. J. Lennarz, R. J. Light, K. Bloch, Proc Natl Acad Sci USA 48, 840 (May, 1962). [0592]45. S. A. Graham, Crit Rev Food Sci Nutr 28, 139 (1989). [0593]46. E. Wiberg, P. Edwards, J. Byrne, S. Stymne, K. Dehesh, Planta 212, 33 (December, 2000). [0594]47. L. Yuan, T. A. Voelker, D. J. Hawkins, Proc Natl Acad Sci USA 92, 10639 (Nov. 7, 1995). [0595]48. K. Dehesh, A. Jones, D. S. Knutzon, T. A. Voelker, Plant J 9, 167 (February, 1996). [0596]49. K. Dehesh, P. Edwards, T. Hayes, A. M. Cranmer, J. Fillatti, Plant Physiol 110, 203 (January, 1996). [0597]50. K. M. Mayer, J. Shanklin, BMC Plant Biol 7, 1 (2007). [0598]51. J. K. Jha et al., Plant Physiol Biochem 44, 645 (November-December, 2006). [0599]52. B. S. Schutt, M. Brummel, R. Schuch, F. Spener, Planta 205, 263 (June, 1998). [0600]53. K. Dehesh, P. Edwards, J. Fillatti, M. Slabaugh, J. Byrne, Plant J 15, 383 (August, 1998). [0601]54. J. M. Leonard, S. J. Knapp, M. B. Slabaugh, Plant J 13, 621 (March, 1998). [0602]55. M. Vedadi, R. Szittner, L. Smillie, E. Meighen, Biochemistry 34, 16725 (Dec. 26, 1995). [0603]56. M. O. Park, J Bacteriol 187, 1426 (February, 2005). [0604]57. M. O. Park, K. Heguri, K. Hirata, K. Miyamoto, J Appl Microbiol 98, 324 (2005). [0605]58. M. O. Park, M. Tanabe, K. Hirata, K. Miyamoto, Appl Microbiol Biotechnol 56, 448 (August, 2001). [0606]59. M. Morikawa, T. Twasa, S. Yanagida, T. Imanaka, Journal of Fermentation and Bioengineering 85, 243 (1998). [0607]60. M. Dennis, P. E. Kolattukudy, Proc Natl Acad Sci USA 89, 5306 (Jun. 15, 1992). [0608]61. T. M. Cheesbrough, P. E. Kolattukudy, J Biol Chem 263, 2738 (Feb. 25, 1988). [0609]62. M. C. Chang, R. A. Eachus, W. Trieu, D. K. Ro, J. D. Keasling, Nat Chem Biol 3, 274 (May, 2007). [0610]63. R. J. Porra, B. D. Ross, Biochem J 94, 557 (March, 1965). [0611]64. X. Chen, W. Guo, L. Zhao, Q. Fu, Y. Ma, J Phys Chem A 111, 3566 (May 10, 2007). [0612]65. L. Zhao, W. Guo, R. Zhang, S. Wu, X. Lu, Chemphyschem 7, 1345 (Jun. 12, 2006). [0613]66. L. Zhao, R. Zhang, W. Guo, S. Wu, X. Lu, Chemical Physics Letters 414, 28 (2005). [0614]67. G. Gorgen, W. Boland, Eur J Biochem 185, 237 (Nov. 6, 1989). [0615]68. P. Ney, W. Boland, Eur J Biochem 162, 203 (Jan. 2, 1987). [0616]69. Z. L. Boynton, G. N. Bennett, F. B. Rudolph, Appl Environ Microbiol 62, 2758 (August, 1996). [0617]70. R. T. Yan, J. S. Chen, Appl Environ Microbiol 56, 2591 (September, 1990). [0618]71. R. V. Nair, G. N. Bennett, E. T. Papoutsakis, J Bacteriol 176, 871 (February, 1994). [0619]72. D. P. Wiesenbom, F. B. Rudolph, E. T. Papoutsakis, Appl Environ Microbiol 55, 317 (February, 1989). [0620]73. D. K. Thompson, J. S. Chen, Appl Environ Microbiol 56, 607 (March, 1990). [0621]74. M. G. Hartmanis, J Biol Chem 262, 617 (Jan. 15, 1987). [0622]75. K. X. Huang, S. Huang, F. B. Rudolph, G. N. Bennett, J Mol Microbiol Biotechnol 2, 33 (January, 2000). [0623]76. L. Fontaine et al., J Bacteriol 184, 821 (February, 2002). [0624]77. B. McMahon, M. E. Gallagher, S. G. Mayhew, FEMS Microbiol Lett 250, 121 (Sep. 1, 2005). [0625]78. M. Li, S. Yao, S. K., Microbial Biotechnology 23, 573 (2007). [0626]79. T. B. Causey, S. Zhou, K. T. Shanmugam, L. O. Ingram, Proc Natl Acad Sci USA 100, 825 (Feb. 4, 2003). [0627]80. D. E. Chang, S. Shin, J. S. Rhee, J. G. Pan, J Bacteriol 181, 6656 (November, 1999).
[0628]81. C. R. Dittrich, R. V. Vadali, G. N. Bennett, K. Y. San, Biotechnol Prog 21, 627 (March-April, 2005). [0629]82. H. Lin, N. M. Castro, G. N. Bennett, K. Y. San, Appl Microbiol Biotechnol 71, 870 (August, 2006). [0630]83. U. Schorken, G. A. Sprenger, Biochim Biophys Acta 1385, 229 (Jun. 29, 1998). [0631]84. G. A. Sprenger, M. Pohl, Journal of Molecular Catalysis B: Enzymatic 6, 145 (1999). [0632]85. G. A. Sprenger, M. Pohl, Journal of Molecular Catalysis B: Enzymic 6, 145 (1999). [0633]86. B. Gonzalez, R. Vicuna, J Bacteriol 171, 2401 (May, 1989). [0634]87. P. Hinrichsen, I. Gomez, R. Vicuna, Gene 144, 137 (Jun. 24, 1994). [0635]88. E. Janzen et al., Bioorg Chem 34, 345 (December, 2006). [0636]89. M. M. Kneen, I. D. Pogozheva, G. L. Kenyon, M. J. McLeish, Biochim Biophys Acta 1753, 263 (Dec. 1, 2005). [0637]90. K. Yamada-Onodera, A. Nakajima, Y. Tani, J Biosci Bioeng 102, 545 (December, 2006). [0638]91. K. Yamada-Onodera, M. Fukui, Y. Tani, J Biosci Bioeng 103, 174 (February, 2007). [0639]92. T. Tobimatsu, M. Azuma, S. Hayashi, K. Nishimoto, T. Toraya, Biosci Biotechnol Biochem 62, 1774 (September, 1998). [0640]93. T. Tobimatsu et al., J Biol Chem 271, 22352 (Sep. 13, 1996). [0641]94. T. Toraya, T. Shirakashi, T. Kosuga, S. Fukui, Biochem Biophys Res Commun 69, 475 (Mar. 22, 1976). [0642]95. M. Yamanishi et al., Eur J Biochem 269, 4484 (September, 2002). [0643]96. J. R. O'Brien et al., Biochemistry 43, 4635 (Apr. 27, 2004).
[0644]97. C. Raynaud, P. Sarcabal, I. Meynial-Salles, C. Croux, P. Soucaille, Proc Natl Acad Sci USA 100, 5010 (Apr. 29, 2003). [0645]98. B. Ludwig, A. Akundi, K. Kendall, Appl Environ Microbiol 61, 3729 (October, 1995). [0646]99. S. X. Xie, J. Ogawa, S. Shimizu, Biosci Biotechnol Biochem 63, 1721 (October, 1999). [0647]100. T. Zelinski, J. Peters, M. R. Kula, J Biotechnol 33, 283 (Apr. 15, 1994). [0648]101. M. C. Hunt, A. Rautanen, M. A. Westin, L. T. Svensson, S. E. Alexson, Faseb J 20, 1855 (September, 2006). [0649]102. M. A. Westin, S. E. Alexson, M. C. Hunt, J Biol Chem 279, 21841 (May 21, 2004). [0650]103. M. A. Westin, M. C. Hunt, S. E. Alexson, J Biol Chem 280, 38125 (Nov. 18, 2005). [0651]104. H. Iwaki, Y. Hasegawa, S. Wang, M. M. Kayser, P. C. Lau, Appl Environ Microbiol 68, 5671 (November, 2002).
Sequence CWU
1
333112066DNAVibrio splendidus 1ggggacaagt ttgtacaaaa aagcaggctt gacgcttatc
acatttagta gaagcttatg 60tggaggcgat tggctttttt ttcaaggaag attacaaaat
agctcaggta atgccgattt 120atagatttgc tatgatatag ttcaggatct tatgctttta
ataagcagga acagaattta 180tgaacaaaaa agctgatagt ttagtaggtt acagctttat
tcgttataga aagggttagg 240gaacgtgaac tttttagagc tcaaacttcg catggataac
tctccggtgc tgagccgatt 300tttagagaat ggatttttac tccagcagaa actgagcctt
gttctttgtt gtgtgttgat 360cgcagcttct gcatggattt taggacagct tgcatggttt
attgaacctg ctgagcaaac 420cgtcgtgcca tggacagcaa cggcttcctc gtcttcaacg
cctcaatcga ctcttgatat 480ctcttctttg cagcagagca acatgtttgg tgcttataac
ccaaccacgc ctgctgtggt 540tgagcagcaa gttatccaag atgcgccaaa gacgcgactg
aacctcgttt tagtgggtgc 600agtagccagt tctaatccaa agctgagctt ggctgtgatt
gccaatcgcg gcacacaagc 660aacctacggc attaatgaag agatcgaagg tacgcgagct
aagttaaaag cggtattagt 720cgatcgcgtg attattgata actcaggtcg agacgaaacc
ttgatgcttg aaggcattga 780gtacaagcgt ttgtctgtat cagcacctgc gccacctcgt
acctcttctt ctgtgcgtgg 840caacaaccca gcttctgcag aagagaagct agatgaaatt
aaagcgaaga taatgaaaga 900tccgcaacaa atcttccaat atgttcgact gtctcaggtg
aaacgcgacg ataaagtgat 960tggttatcgt gtgagccctg gcaaagattc agaacttttt
aactctgttg ggctccaaaa 1020cggagatatt gccactcagt taaatggaca agacctgaca
gaccctgctg ctatgggcaa 1080catattccgt tctatctcag agctgacaga gctaaacctc
gtcgtcgaga gagatggtca 1140acaacatgaa gtgtttattg aattttagaa ctttgcgtct
aacgaaggac gaaagtgtag 1200gagaagtacg tgaagcattg gtttaagaaa agtgcatggt
tattggcagg aagcttaatc 1260tgcacacccg cagccatcgc gagtgatttt agtgccagct
ttaaaggcac tgatattcaa 1320gagtttatta atattgttgg tcgtaaccta gagaagacga
tcatcgttga cccttcggtg 1380cgcggaaaaa tcgatgtacg cagctacgac gtactcaatg
aagagcaata ctacagcttc 1440ttcctaaacg tattggaagt gtatggctac gcggttgtcg
aaatggactc gggtgttctt 1500aagatcatca aggccaaaga ttcgaaaaca tcggcaattc
cagtcgttgg agacagtgac 1560acgatcaaag gcgacaatgt ggtgacacgt gttgtgacgg
ttcgtaatgt ctcggtgcgt 1620gaactttctc ctctgcttcg tcaactaaac gacaatgcag
gcgcgggtaa cgttgtgcac 1680tacgacccag ccaacatcat ccttattaca ggccgagcgg
cggtagtaaa ccgtttagct 1740gaaatcatca agcgtgttga ccaagcgggt gataaagaga
ttgaagtcgt tgagctaaag 1800aatgcttctg cggcagaaat ggtacgtatc gttgatgcgt
taagcaaaac cactgatgcg 1860aaaaacacac ctgcatttct acaacctaaa ttagttgccg
atgaacgtac caatgcgatt 1920cttatctcag gcgaccctaa agtacgtagc cgtttaagaa
ggctgattga acagcttgat 1980gttgaaatgg caaccaaggg caataaccaa gttatttacc
ttaaatatgc aaaagccgaa 2040gatctagttg atgtgctgaa aggcgtgtcg gacaacctac
aatcagagaa gcagacatca 2100accaaaggaa gttcatcgca gcgtaaccaa gtgatgatct
cagctcacag tgacaccaac 2160tctttagtga ttaccgcaca gccggacatc atgaatgcgc
ttcaagatgt gatcgcacag 2220ctggatattc gtcgtgctca agtattgatt gaagcactga
ttgtcgaaat ggccgaaggt 2280gacggcgtta accttggtgt gcagtggggt aaccttgaaa
cgggtgccat gattcagtac 2340agcaacactg gcgcttccat tggcggtgtg atggttggtt
tagaagaagc gaaagacagc 2400gaaacgacaa ccgctgttta tgattcagac ggtaaattct
tacgtaatga aaccacgacg 2460gaagaaggtg actattcaac attagcttcc gcactttctg
gtgttaatgg tgcggcaatg 2520agtgtggtaa tgggtgactg gaccgccttg atcagtgcag
tagcgaccga ttcaaattca 2580aatatcctat cttctccaag tatcaccgtg atggataacg
gcgaagcgtc attcattgtg 2640ggtgaagagg tgcctgttct aaccggttct acagcaggct
caagtaacga caacccattc 2700caaacagttg aacgtaaaga agtgggtatc aagcttaaag
tggtgccgca aatcaatgaa 2760ggtgattcgg ttcaactgca aatagaacaa gaagtatcga
acgtattagg cgccaatggt 2820gcggttgatg tgcgttttgc taagcgacag ctaaatacat
cagtgattgt tcaagacggt 2880caaatgctgg tgttgggtgg cttgattgac gagcgagcat
tggaaagtga atctaaggtg 2940ccgttcttgg gagatattcc tgtgcttgga cacttgttca
aatcaaccag tactcaggtt 3000gagaaaaaga acctaatggt cttcatcaaa ccaaccatta
ttcgtgatgg tatgacagcc 3060gatggtatca cgcagcgtaa atacaacttc atccgtgctg
agcagttgta caaggctgag 3120caaggactga agttaatggc agacgataac atcccagtat
tgcctaaatt tggtgccgac 3180atgaatcacc cggctgaaat tcaagccttc atcgatcaaa
tggaacaaga ataatggctg 3240aattggtagg ggcggcacgt acttatcagc gcttgccgtt
tagctttgcg aatcgctaca 3300agatggtgtt ggaataccaa catccagagc gcgcaccgat
actttattat gttgagccac 3360tgaaatcggc ggcgatcatt gaagtgagtc gtgttgtgaa
aaatggtttc acgccacaag 3420cgattactct cgatgagttt gataaaaaac taaccgatgc
ttatcagcgt gactcgtcag 3480aagctcgtca gctcatggaa gacattggtg ctgatagtga
tgatttcttc tcactagcgg 3540aagaactgcc tcaagacgaa gacttacttg aatcagaaga
tgatgcacca atcatcaagt 3600taatcaatgc gatgctgggt gaggcgatca aagagggtgc
ttcggatata cacatcgaaa 3660cctttgaaaa gtcactttgt atccgtttcc gagttgatgg
tgtgctgcgt gatgttctag 3720cgccaagccg taaactggct ccgctattgg tttcacgtgt
caaggttatg gctaaactgg 3780atattgcgga aaaacgcgtg ccacaagatg gtcgtatttc
tctgcgtatt ggtggccgag 3840cggttgatgt tcgtgtttca accatgcctt cttcgcatgg
tgagcgtgtg gtaatgcgtc 3900tgttggacaa aaatgccact cgtctagact tgcacagttt
aggtatgaca gccgaaaacc 3960atgaaaactt ccgtaagctg attcagcgcc cacatggcat
tatcttggtg accggcccga 4020caggttcagg taaatcgacg accttgtacg caggtctgca
agaactcaac agcaatgaac 4080gaaacatttt aaccgttgaa gacccaatcg aattcgatat
cgatggcatt ggtcaaacac 4140aagtgaaccc taaggttgat atgacctttg cgcgtggttt
acgtgccatt cttcgtcaag 4200atcctgatgt tgttatgatt ggtgagatcc gtgacttgga
gaccgcagag attgctgtcc 4260aggcctcttt gacaggtcac ttagttatgt cgactctgca
taccaatact gccgtcggtg 4320cgattacacg tctacgtgat atgggcattg aacctttctt
gatctcttct tcgctgctgg 4380gtgttttggc tcagcgcttg gttcgtactt tatgtaacga
atgtaaagaa ccttatgaag 4440ccgataaaga gcagaagaaa ctgtttgggt tgaagaagaa
agaaagcttg acgctttacc 4500atgccaaagg ttgtgaagag tgtggccata agggttatcg
aggtcgtacg ggtattcatg 4560agctgttgat gattgatgat tcagtacaag agctgattca
cagtgaagcg ggtgagcagg 4620cgattgataa agcaattcgt ggcacaacac caagtattcg
agatgatggc ttgagcaaag 4680ttctgaaagg ggtaacgtcc ctagaagaag tgatgcgcgt
gaccaaggaa gtctagtatg 4740gcggcatttg aatacaaagc actggatgcc aaaggcaaaa
gtaaaaaagg ctcaattgaa 4800gcagataatg ctcgtcaggc tcgccaaaga ataaaagagc
ttggcttgat gccggttgag 4860atgaccgagg ctaaagcaaa aacagcaaaa ggtgctcagc
catcgaccag ctttaaacgc 4920ggcatcagta cgcctgatct tgcgcttatt actcgtcaaa
tatccacgct cgttcaatct 4980ggtatgccgc tagaagagtg tttgaaagcc gttgccgaac
agtctgagaa acctcgtatt 5040cgcaccatgc tactcgcggt gagatctaag gtgactgaag
gttattcgtt agcagacagc 5100ttgtctgatt atccccatat cttcgatgag ctattcagag
ccatggttgc tgctggtgag 5160aagtcagggc atctagatgc ggtattggaa cgattggctg
actacgcaga aaaccgtcag 5220aagatgcgtt ctaagttgct gcaagcgatg atctacccca
tcgtgctggt ggtgtttgcg 5280gtgacgattg tgtcgttcct actggcaacg gtagtgccga
agatcgttga gcctattatc 5340caaatgggac aagagctccc tcagtcgaca caatttttat
tagcatcgag tgaatttatc 5400cagaattggg gcatccaatt actggtgttg accattggtg
tgattgtgtt ggttaagact 5460gcgctgaaaa agccgggcgt tcgcatgagc tgggatcgca
aattattgag catcccgctg 5520ataggcaaga tagcgaaagg gatcaacacc tctcgttttg
cacgaacact ttctatctgt 5580acctctagtg cgattcctat ccttgaaggg atgaaggtcg
cggtagatgt gatgtcgaat 5640catcacgtga aacaacaagt attacaggca tcagatagcg
ttagagaagg ggcaagcctg 5700cgtaaagcgc ttgatcaaac caaactcttt cccccgatga
tgctgcatat gatcgccagt 5760ggtgagcaga gtggccaatt ggaacagatg ctgacaagag
cggcagataa tcaggatcaa 5820agctttgaat cgaccgttaa tatcgcgtta ggcattttta
ccccagcgct tattgcgttg 5880atggctggct tagtgctgtt tatcgtgatg gcgacgctga
tgccaatgct tgaaatgaac 5940aatttaatga gtggttaacc tgccgctcat cagacgttag
tttttggatt atcgagaaga 6000aggacatcat tcccctcaac tcgctatctg taatttggag
aaaataatga aaaataaaat 6060gaaaaaacaa tcaggcttta ccctattaga agtcatggtt
gttgtcgtta tccttggtgt 6120tctagcaagt tttgttgtac ctaacctgtt gggcaacaaa
gagaaggcgg atcaacaaaa 6180agccatcact gatattgtgg cgctagagaa cgcgctcgac
atgtacaaac tggataacag 6240cgtttaccca acaacggatc aaggcctgga cgggttggtg
acaaagccaa gcagtccaga 6300gcctcgtaac taccgagacg gcggttacat caagcgtcta
cctaacgacc catggggcaa 6360tgagtaccaa tacctaagtc ctggtgataa cggcacaatt
gatatcttca ctcttggcgc 6420agatggtcaa gaaggtggtg aaggtattgc tgcagatatc
ggcaactgga acatgcagga 6480cttccaataa gcttcggctt gttgtcggtt gatacgttcc
tgttgtttga ttcgttatcg 6540ttgcttgata cgttattgat ggtagtacgc aaaaaatgga
gtctacaagg tgaaaactaa 6600gcaaacacag ccaggtttca ccttgattga gattcttttg
gtgttggtat tactgtcagt 6660atcggcggtc gcggtgatct cgaccatccc taccaatagc
aaagatgttg ctaaaaaata 6720cgctcaaagc ttttatcagc gaattcagct actcaatgaa
gaggctattt tgagtggctt 6780agattttggt gttcgtgttg atgaaaaaaa atcgacttac
gttctgatga ctttgaagtc 6840tgatggctgg caagaaacgg agttcgaaaa gatcccttct
tcaactgaat taccggaaga 6900actggcactg tcgctgacat taggtggtgg cgcgtgggaa
gacgatgatc ggttgttcaa 6960tccaggaagc ttatttgatg aagatatgtt tgctgatctt
gaagaggaaa agaagccgaa 7020accaccacag atctacatct tgtcgagtgc tgaaatgacg
ccatttgtac tgtcgtttta 7080cccaaatacc ggtgacacaa tacaagatgt ttggcgcatt
cgagtattgg ataatggtgt 7140gattcgatta ctcgagccgg gagaagaaga tgaagaagaa
taaccgttct ccttatcgtt 7200ctcgcggtat gcctcttggt tctcgaggaa tgactctgct
tgaagtattg gttgcgctgg 7260ctatcttcgc tacggcggcg atcagtgtga ttcgtgctgt
cacccagcac atcaatacgc 7320tcagttatct cgaagaaaaa accttcgcgg cgatggtcgt
tgataatcaa atggccctag 7380tcatgctaca tcctgagatg cttaaaaaag cgcagggcac
gcaagagtta gcgggaagag 7440aatggttctg gaaggtgact cccatcgata ccagcgataa
tttattaaag gcgtttgatg 7500tgagtgcggc aaccagtaag aaagcgtctc cagtcgttac
ggtgcgcagt tatgtggtta 7560attaagagaa tgtggtcaat taagagcatg ttattaatta
agaacagctc gctaactaag 7620agcgtgtcgc taactaagag catgtcggaa aataagcgta
cgccgcgtaa acaaggtcta 7680ccttcaaaag ggagaggctt taccttaatt gaagtcttgg
tctcgattgc tatctttgcc 7740acgctaagta tggcggctta tcaggtggtt aatcaggtgc
agcgaagcaa cgagatctct 7800attgagcgca gtgctcgttt gaaccaactg caacgcagtt
tagtcatttt agataatgat 7860tttcgccaga tggcggtgcg aaaatttcgt accaacggtg
aagaagcatc atctaagctg 7920atcttaatga aagagtattt attggactcc gacagtgtag
gcatcatgtt tactcgtcta 7980ggttggcaca acccacaaca gcagtttcct cgcggtgaag
tcacgaaggt tggctaccgt 8040attaaagaag aaacacttga gcgtgtatgg tggcgttatc
ccgatacacc ttcaggccaa 8100gaaggtgtga ttacccctct gcttgatgat gttgaaagct
tggaattcga gttttatgac 8160ggaagccgct gggggaaaga gtggcaaacc gataaatcac
tgccgaaagc ggtgaggctt 8220aagctgacac tgaaagacta tggtgagata gagcgtgttt
atctcactcc cggtggcacc 8280ctagatcagg ccgatgattc ttcaaacagt gactcttcag
gcagtagtga ggggaataat 8340gactcatcga actaataagc gtttagcgac aaggtcagcc
ttgggacgta aacaacgtgg 8400tgtcgcgctg atcattattt tgatgctatt ggcgatcatg
gcaaccattg ctggcagcat 8460gtccgagcgt ttgtttacgc aattcaagcg cgttggtaac
caactgaatt accaacaggc 8520ttactggtac agcattggtg tggaagcgct tgtgcaaaac
ggtattaggc aaagttacaa 8580agacagtgat accgtgaacc taagccaacc atgggcgtta
gaagagcagg tatacccatt 8640ggattatggc caagttaagg gccgcattgt tgatgctcag
gcatgtttta atcttaatgc 8700cttagccgga gtggcgacca cttcaagtaa ccagactcct
tatttaatca cggtttggca 8760aaccttattg gaaaaccaag acgttgagcc ttatcaggct
gaggttatcg caaattcaac 8820gtgggaattt gttgatgcgg atacacgaac cacctcttcg
tctggtgtag aagacagcac 8880gtatgaagcg atgaagccct cttatttggc ggcgaatggc
ttaatggccg atgaatccga 8940gctacgagcg gtttatcaag tcactggtga agtgatgaat
aaggttcgcc cctttgtttg 9000cgctctgcca accgatgatt tccgcttgaa tgtgaatact
ctcacggaaa aacaagcacc 9060gttattggaa gcgatgtttg cgccaggctt aagtgaatcg
gatgccaaac agctgataga 9120taaacgccca tttgatggct gggatacggt agatgctttc
atggctgaac ctgccattgt 9180tggtgtaagt gccgaagtca gcaagaaagc gaaagcatat
ttaactgtag atagcgccta 9240ttttgagcta gatgcagagg tattagttga gcagtcacgt
gtacgtatac ggacgctttt 9300ctatagtagt aatcgagaaa cagtgacggt agtacgccgt
cgttttggag gaatcagtga 9360gcgagtttct gaccgttcga ctgagtagcg aaccacaaag
ccctgtgcag tggttagttt 9420ggtcgacaag ccaacaagaa gtgatagcaa gcggtgaact
gtctagctgg gaacagcttg 9480acgagttaac gccttacgct gaaaagcgca gctgtatcgc
tttattgccg ggaagtgaat 9540gcttaattaa gcgtgttgag atcccgaaag gtgctgctcg
ccagtttgat tctatgctgc 9600cgttcttatt agaagacgaa gtcgcacaag atatcgaaga
cttacacctg actattttag 9660ataaagatgc cactcacgct accgtgtgtg gtgtggatcg
tgaatggcta aaacaagctt 9720tagacctgtt tcgcgaagcc aatataatct tccgtaaggt
gctaccagat acactagccg 9780tgccttttga agaacaaggc atcagtgcgt tgcagataga
tcagcattgg ttattgcgcc 9840aaggtcactc tcaacgtcaa ggtcactatc aagccgtatc
gatcagtgaa gcatggttac 9900cgatgttttt gcaaagtgat tgggttgtcg ctggtgagga
agagcaagcg acgactatct 9960tcagctatac cgcgatgccg agcgacgacg ttcaacagca
aagcggcctc gagtggcaag 10020caaagcctgc ggaattggtg atgtctttat tgagtcagca
agcgatcaca agcggcgtaa 10080atttactgac tggcaccttt aaaaccaaat cttcattcag
taaatattgg cgtgtttggc 10140agaaagtggc gattgctgct tgtttgctgg tggccgtgat
tgtgactcag caagtgttga 10200aggttcagca atacgaagcg caagcacaag cctaccgcat
ggagagtgag cgtatcttta 10260gagctgtgct gcctggcaaa caacgcattc cgaccgtgag
ttacctcaag cgtcagatga 10320atgatgaagc taagaaatac ggtggttcag gcgaaggtga
ttctttactt ggttggttag 10380ctttgctgcc tgaaacctta gggcaagtga agacgatcga
agttgaaagc attcgctacg 10440atggcaaccg ttctgaggtt cgactgcagg ctaaaagttc
tgacttccaa cactttgaga 10500ccgcaagggt gaagctcgaa gagaagtttg tcgttgagca
agggccattg aaccgtaatg 10560gcgatgccgt atttggcagt tttactctta aaccccatca
ataacctgcg taaggagatc 10620agtgatgaga aatatgattg aaccactcca agcgtggtgg
gcttcaataa gtcagcggga 10680acaacgatta gtcattggtt gttctatttt attgatactg
ggcgttgtct attggggatt 10740aatacaacca cttagccaac gagccgagct tgcacaaagc
cgcattcaaa gtgagaagca 10800acttctggct tgggtaacgg acaaagcgaa tcaagtggtt
gaactacgag gcagtggtgg 10860catcagtgcc agtcagcctt tgaaccaatc tgtgcctgct
tctatgcgcc gttttaacat 10920cgagctgata cgcgtgcaac cacgcggtga gatgctgcaa
gtttggatta agcctgtgcc 10980atttaataag ttcgttgact ggctgacata cctgaaagaa
aagcagggtg ttgaggttga 11040gtttatggat attgatcgct ctgatagccc tggggttatt
gagatcaacc gactacagtt 11100taaacgaggt taatgtgaaa cgcggtttat ctttcaaata
cggcctgtta ttcagcgtca 11160tttttatcgt ttttttctcg gtaagcttgt tgctgcattt
gcctgccgct tttgctctca 11220agcatgcacc cgtcgtgcgt ggtttaagca ttgaaggcgt
tgagggcacc gtttggcaag 11280gtcgcgctaa caatatcgcg tggcagcgtg tcaattacgg
ctcagtgcag tgggacttcc 11340agttctctaa actattccaa gccaaagcag aacttgcggt
tcgctttggc cgcaacagcg 11400acatgaactt atcaggtaaa ggacgtgtcg gatatagcat
gagtggtgct tacgcggaaa 11460acttagtggc atcaatgcca gccagcaacg tgatgaaata
tgcgccagct atcccagtgc 11520ctgtgtctat tgcagggcaa gttgaactga cgatcaaaca
tgcggttcat gctcaacctt 11580ggtgtcaatc aggtgaaggt acgcttgctt ggtctggtgc
agcagtcgac tcgccagtgg 11640gttcgttaga ccttggccct gtgattgcgg acataacgtg
tgaagacagc acaattgcag 11700ccaaaggcac tcagaagagc gatcaggtag acagcgagtt
ctcagcgagc gtaacaccta 11760accaacgcta cacctcggca gcatggttta agccaggcgc
tgaattcccg ccagcaatgc 11820agagtcagct taagtggttg ggcaatcctg atagccaagg
taaataccaa tttacttatc 11880aaggccgctt ttagcccggt atttacttca gagctagtat
ctgaagtaaa tttggcgatc 11940aaatcgcgaa ctataaaaaa cgggcacctc actgaggtgc
ccgttttgtt tgttctgaga 12000atctagagga tatctgacgg ttaaagagag caaactcacc
cagctttctt gtacaaagtg 12060gtcccc
12066254080DNAVibrio splendidus 2gtgctttgtg
acaacggggg atgtatggat attgaagttt cgcgccaggt tgcggtagtt 60gaagctacga
gtggagatgt cgtcgtagtt aagccagacg gcagcgcaag aaaagtttca 120gttggcgata
ccatccgtga aaatgagatc gtgattacgg ccaacaagtc agagcttgta 180ttaggcgttc
agaatgattc gattccggtt gcagagaatt gcgtcggttg tgttgatgaa 240aacgctgcat
gggtagatgc cccaatagct ggtgaggtta attttgactt acagcaagca 300gacgcagaaa
ccttcactga agacgacctt gctgcaattc aagaagccat tttaggtggt 360gccgatccga
ctcaaatctt agaagcaacg gctgctggtg gcggactagg ttctgcaaat 420gctggctttg
tgacgattga ctataactac actgaaactc atccatcgac tttctttgag 480accgctggtc
tagcagaaca aactgttgat gaagacagag aagaattcag atctatcact 540cgttcatcag
gtggccaatc aatcagtgaa acactgactg aaggctccat atctggcaat 600acctatcccc
aatctgtaac aacgacagaa acgattattg ctggtagttt agctctcgcc 660cctaactctt
tcattccaga aactttatcc ctcgcttcac tacttagtga attaaacagc 720gacattactt
caagtggtca gtccgttatc ttcacctatg acgcgacgac taattctatc 780gttggtgttc
aagataccga cgaagtatta cgtatcgaca ttgatgccgt cagtgttggc 840aataacattg
agctttctct aaccacaacg atttcccagc cgattgatca tgtaccgtcg 900gttggcggtg
gtcaggtttc ttacactggc gatcaaatag atattgcctt tgatattcaa 960ggtgaagaca
ccgctgggaa cccgctagca acacccgtta acgcacaagt ttcagtgttt 1020gacgggatag
atccgtctgt tgaaagtgtc aatatcacta acgttgaaac tagcagcgcg 1080gcaatcgaag
ggacgttctc aaatattggt agtgataacc ttcaatcagc cgtatttgat 1140gcaagtgcac
tggaccagtt tgatgggttg ctcagtgata atcaaaacac gcttgcgaga 1200ctttctgatg
atggaacaac gattactctg tccatccaag gtcgaggtga ggttgttctc 1260actatctctc
tagataccga tggcacctat aaattcgagc agtctaatcc gatagaacaa 1320gtgggtaccg
attcactgac gttcgctttg ccaatcacga ttaccgattt tgaccaagat 1380gttgtaacca
atacgatcaa cattgccatt actgatggcg atagccctgt tattactaat 1440gttgacagta
ttgatgttga tgaagcgggc attgttggcg gctcacaaga gggcacggcg 1500ccagtgtctg
gcactggcgg tatcaccgcg gacatttttg aaagtgacat cattgaccat 1560tatgagctag
aacccactga atttaatact aatggcacct tggtttcaaa tggcgaggct 1620gtgctacttg
agttgattga tgaaaccaac ggtgtaagaa cttacgaagg ttatgttgag 1680gtcaatggtt
cgagaattac ggtctttgac gttaaaattg atagcccttc attgggcaac 1740tatgagttta
atctttatga agaactttct catcaaggcg ctgaagatgc gctgttaact 1800tttgcattgc
caatttatgc tgttgatgca gatggcgacc gttctgcact gtctggaggt 1860tcgaacacac
cagaagctgc tgagatcctc gttaatgtta aagacgatgt cgttgaatta 1920gttgataagg
ttgaatcagt caccgagccg accttagcgg gcgatactat tgtttcgtat 1980aacctgttca
attttgaagg cgcagatggt tctacaattc aatcgtttaa ctacgacggt 2040gttgattact
cactcgatca aagcctgctc cccgatgcta cccagatttt cagttttact 2100gaaggtgtcg
tcactatctc attaaacggt gacttcagtt ttgaagtcgc tcgtgatatc 2160gaccactcaa
gcagtgaaac tatcgtcaaa cagttctcat ttttagccga agatggtgat 2220ggggatactg
atagttcgac gcttgagtta agtattaccg atggccaaga tccgatcatt 2280gatttgatcc
cgcctgtgac tctctctgaa accaacctta atgacggctc tgctcccagc 2340ggaagtacag
ttagcgcaac cgagacgatt acctttaccg caggcagcga cgatgtagca 2400agtttccgta
ttgaaccaac agagtttaat gtgggcggtg cacttaaatc gaatggattt 2460tcggttgaga
taaaagaaga ttcggctaat ccgggtactt acattggctt tattaccaac 2520ggttcgggcg
ctgaaatccc agtgtttacg attgctttct ctacgagcac attgggtgaa 2580tacaccttta
ctctgcttga agcgttagac catgtagatg gtttagataa gaacgatctg 2640agctttgatc
tgcctattta tgcggttgat acggacggcg acgattcatt ggtgtctcag 2700cttaatgtga
ctatcggtga tgatgttcaa atcatgcaag acggtacgtt agatatcacc 2760gagccaaatc
ttgctgacgg tacaatcaca accaacacca ttgatgtaat gccaaatcaa 2820agtgctgatg
gcgcgacgat cactcggttc acttatgacg gtgtcgtaaa cacactggat 2880caaagtattt
caggagaaca gcagttcagc ttcacagaag gcgaactgtt tatcaccctt 2940gaaggtgaag
tgcgctttga gcctaatcgc gatctagacc actcagtgag tgaagatatc 3000gtgaagtcga
ttgtggtgac ttcaagcgac ttcgataacg atccggtgac ttcaaccatt 3060acgctgacga
tcactgatgg tgataacccg acgattgatg ttattccaag tgttacgctt 3120tctgaaatta
acctgagcga tggctctgct ccaagtggca gcgcggtaag ctcgactcaa 3180actattactt
ttaccaatca aagtgatgat gtggttcgtt tccgtattga gtcaacggag 3240ttcaatacta
acgatgatct taaatcgaac ggtttagctg ttgagttacg tgaagacccg 3300gcagggtcgg
gtgactacat tggttttacg accagtgcga cgaacgtaga aactccagta 3360ttcacattaa
gctttaattc tggatcatta ggtgaataca cgttcacact catcgaagcg 3420ttggaccacc
aagatgcccg tggcaacaac gacctcagtt ttgatttacc tgtttacgcg 3480gtagatagtg
atggcgatga ttcattggtg tctccgttaa acgtcactat cggtgatgat 3540gttcaaatca
tgcaagatag tacgttagat atcgtcgagc caaccgtcgc agatttggcc 3600gctggcacag
tgacaactaa caccattgat gtgatgccaa atcaaagtgc cgatggcgca 3660acggtgacgc
aattcactta tgatggccag cttcgaacac ttgaccaaaa tgacaatggt 3720gagcagcaat
ttagcttcac agaaggtgaa ctgttcatca cgcttcaagg tgatgtgcgc 3780tttgagccta
atcgtaatct agaccacaca ctcagcgaag acatcgtgaa atcaatcgtg 3840gtgacatcta
gcgattccga taacgatgtg ttgacctcaa ccgtcactct gaccattacc 3900gatggtgata
tcccaaccat tgataatgtt ccaactgtga acttgtctga aactaatctg 3960agtgatggct
ctgcacctag cggaagcgcg gtgagttcaa ctcaaactat tacttacacc 4020actcaaagtg
atgatgtgac aagcttccgt attgaaccga ctgaatttaa tgttggtggc 4080gctctcacat
caaacggatt ggcagtcgag ttaaaagctg atccaaccac accgggtggc 4140tacatcggtt
ttgtgactga tggttcgaac gttgaaacta acgtgttcac gattagcttc 4200tcagatacca
atttaggcca gtacaccttc accttacttg aagcgttaga ccatgtggat 4260ggtttagcga
acaatgatct gacctttgat ctgcctgttt atgcagttga tagcgatggc 4320gacgattcac
tggtgtctca gttaaatgta accatcggtg atgatgttca aatcatgcaa 4380ggtggtacgt
tagatatcac tgagccaaat cttgcagacg gcacaattac aaccaatacc 4440atcgatgtga
tgccagagca aagcgccgat ggtgcgacga tcactcagtt cacttatgac 4500ggtcaagttc
gaacactgga tcaaacggac aatggtgagc agcaatttag cttcactgaa 4560ggcgagttgt
tcatcactct tcaaggtgac gtgcgtttcg aacccaatcg caacctagat 4620cacacagcta
gcgaagatat cgtgaagtcg atagtggtga cttcaagcga tttagataac 4680gatgtggtga
cgtcaacggt cactctgacg attactgatg gtgatatccc aaccattgat 4740gcagtgccaa
gcgttactct gtctgaaatc aatcttagtg acggctctgc gccaagtggc 4800actgcagtta
gtcaaactga gacgattacc ttcaccaatc aaagtgatga tgtgaccagt 4860ttccgtattg
agccaataga gttcaatgtg ggcggtgcac tgaaatcgaa tggatttgcg 4920gttgagataa
aagaagattc ggctaatccg ggtacttaca ttggctttat taccaacggt 4980tcgggcgctg
aaatcccagt gtttacgatt gctttctcta cgagctcatt gggtgaatac 5040acctttactc
tgcttgaagc gttagaccat gtagatggtt tagataagaa cgatctgagc 5100ttcgatctgc
ctgtttatgc ggtcgatacg gacggcgatg attcattggt gtctcagcta 5160aacgtgacca
tcggtgatga tgtccaaatc atgcaagacg gtacgttaga tatcatcgag 5220ccaaatctgg
ctgatggaac aatcacaacc agcactattg atgtgatgcc aaaccaaagt 5280gctgatggtg
cgacgatcac tcagtttact tatgacggtc agctaagaac gcttgatcaa 5340aatgacactg
gcgaacagca gttcagcttc acagaaggcg agttgtttat cacccttgaa 5400ggtgaagtgc
gctttgagcc aaaccgagac ctagaccaca ccgcgagtga agatattgtt 5460aagtcgattg
tggtcacttc aagtgatttc gataacgact ctctgacttc taccgtaacg 5520ctgaccatta
ctgatggtga taaccctacg atcgacgtca ttccaagcgt taccctttct 5580gaaactaatc
tgagtgatgg ctctgctcca agtggcagcg cggtaagctc gactcaaact 5640attactttta
ccaatcaaag tgatgatgtg gttcgtttcc gtattgagcc aacggagttc 5700aatactaacg
atgatcttaa atcgaacggt ttagccgttg agttacgtga agacccggct 5760gggtcgggtg
actacattgg ttttactact agtgcgacga atgtcgaaac cacggtattt 5820acgctgagtt
tttctagcac cacattaggt gaatatacct tcactttgct tgaagcgttg 5880gaccaccaag
atgcccgtgg caacaacgac ctcagttttg aactgcctgt ttatgcggta 5940gacagtgatg
gcgatgattc actgatgtct ccgttaaacg tcaccatcgg cgatgatgtt 6000caaatcatgc
aagacggtac gttagatatc gtcgagccaa ccgtcgcaga tttggccgct 6060ggcattgtga
caactaacac cattgatgtg atgccaaatc aaagtgccga tggcgcgacg 6120atcactcaat
tcacttatga tggccaactt cgaacacttg accaaaatga caatggcgaa 6180caacagttta
gcttcacgga aggtgaacta ttcatcactc ttgaaggtga agtgcgcttt 6240gagcctaatc
gtaatctaga ccacacgctg aacgaagaca tcgtgaaatc gatcgtggtg 6300acgtctagtg
actccgataa cgatgtgttg acctcaaccg tcactctgac cattaccgat 6360ggtgatatcc
caaccattga taatgtgcca acagtgagct tgtcagaaac aagtctgagt 6420gacggctctt
caccaagtgg cagcgcagtt agctcaactc aaaccatcac ttacaccact 6480caaagtgatg
atgtaaccag cttccgtatt gaaccgactg agttcaatgt tggcggtgct 6540ctcaaatcaa
atggattggc ggttgagctg aaggccgatc caaccactcc gggcggctac 6600atcggctttg
tgactgatgg ttcgaacgtt gaaactaacg tgttcacgat tagcttctcg 6660gataccaatt
taggtcaata caccttcacc ttgcttgaag cgttggatca tgcggatagc 6720cttgcaaata
acgatctgag ctttgatctg ccagtctacg ccgtcgatag tgatggcgat 6780gattcactgg
tgtctcaact caatgtaacc atcggtgatg atgttcaaat catgcaaggt 6840ggtacgttag
atatcactga gccaaacctt gcagacggca caaccacaac taacaccatc 6900gatgtgatgc
cagaacaaag tgccgatggt gcgacgatca ctcagtttac gtatgacggg 6960caagttcgca
ctctggatca aactgacaat ggtgagcagc aatttagctt cactgaaggc 7020gagttgttca
tcactcttca aggtgacgtg cgtttcgaac ccaatcgcaa cctagatcac 7080acagctagcg
aagacatcgt gaagtcgata gtggtgactt caagcgattc agataacgat 7140gtggtgacgt
caacggtcac tctgactatt actgatggtg atctcccaac cattgatgca 7200gtgccaagcg
ttactctgtc tgaaactaat cttagtgacg gctctgcgcc aagtggcagc 7260gcagtcagtc
aaactgagac catcaccttt accaatcaaa gtgatgatgt ggcgagtttc 7320cgtattgagc
caaccgagtt taatgtgggc ggtgcactga aatcgaatgg gtttgcggtt 7380gagataaaag
aagactctgc taatccgggt acttacattg gctttattgc caatggttcg 7440agcgctgaaa
tcccagtgtt cacgattgct ttctctacga gtacgttggg tgaatacacc 7500tttactctgc
ttgaagcgtt agaccatgcg gatggtttag ataagaacga tctgagcttt 7560gagcttccgg
tttacgcggt tgatacagac ggtgatgatt cattggtatc tcagcttaat 7620gtgaccattg
gtgatgatgt tcaaatcatg caagatggta cgttagacgt tatcgagcca 7680aatcttgcag
acggcacaat cacaaccaac accattgatg tgatgcccga gcaaagtgct 7740gatggtgcga
cgatcactca gtttacttat gacggtcagc taagaacgct tgatcaaaat 7800gacactggtg
aacagcagtt cagcttcaca gaaggcgagt tgtttatcac ccttgaaggt 7860gaagtgcgct
ttgaacctaa tcgcgatcta gaccattccg ttagcgaaga catcgtgaag 7920tcgatagtag
tgacttcaag cgacttcgat aacgatccgg tgacttcagc cattacgctg 7980accattactg
atggtgataa tccgactatc gattcggtac cgagcgttgt acttgaagaa 8040gctgatttaa
ctgatggctc atcgccaagt ggcagcgcgg ttagtcaaac ggaaaccatc 8100actttcacta
atcaaagtga cgatgttgag aaattccgtt tagaaccaag tgaatttaat 8160actaacaacg
cgctcaagtc cgatggcttg atcattgaga ttcgagagga accaacagga 8220tccggcaatt
atattggttt cacgaccgat atttcgaatg tcgaaaccac tgtgtttaca 8280ctcgatttca
gcagtaccac tttgggtgag tacaccttca cgcttctgga agcgattgac 8340cacacgcctg
ttcaaggcaa taacgatcta acattcaact tgccagtcta cgcggttgat 8400agcgacggtg
atgattcgct aatgtcatca ctatcggtga cgattactga tgatgttcaa 8460gtgatggtga
gtggttcgct tagtatcgaa gagcctactg ttgccgactt ggctgcaggc 8520acgccaacaa
catcagtatt tgatgtatta acatccgcga gtgctgatgg ggcgaccatt 8580actcagttca
cttatgatgg tggggcggta ttaacgcttg atcaaaacga tacaggtgag 8640cagaagttcg
tggttgctga tggggcatta tatatcactc tgcaaggcga tattcgtttc 8700gaaccaagtc
gtaaccttga ccatactggt ggcgatatcg tcaagtcgat agtcgtaact 8760tcaagtgatt
ccgatagcga tcttgtgtct tcaacggtaa cgctaaccat tactgatggc 8820gatatcccaa
cgattgacac ggtgccaagc gttactctgt cagaaacgaa tctgagcgac 8880ggatctgctc
cgaatgcaag tgcggtaagt tcaactcaaa ccattacctt tactaaccaa 8940agtgatgacg
tgacgagttt ccgtattgaa ccgactgatt ttaatgttgg tggtgctctg 9000aaatcgaacg
gattggcggt cgaactgaaa gcggacccaa ctacaccggg tggctacatc 9060ggttttgtga
ctgatggttc gaacgttgaa actaacgtgt ttacgattag cttctcggat 9120accaatttag
gtcaatacac cttcaccctg cttgaagcgt tggatcatgt agatggctta 9180gtgaagaatg
atctgacttt tgatcttcct gtttatgcgg ttgatagcga tggtgatgat 9240tcactggtgt
ctcaactgaa tgtgaccatt ggtgatgatg tacaggtcat gcaaaaccaa 9300gcgcttaata
ttattgagcc aacggttgct gatttggctg caggtactcc gacgacagcc 9360actgttgatg
tgatgcctag ccaaagtgcc gatggcgcga caatcactca gtttacttac 9420gatggcgggg
cggcaataac actcgaccaa aacgacaccg gtgaacagaa gtttgtattt 9480actgaaggtt
cactgtttat caccttgcaa ggtgaagtgc gtttcgagcc aaatcgcaat 9540ctaaaccaca
cagcgagcga agacatcgtg aagtcgattg tggtgacttc aagcgattta 9600gataacgatg
tactgacgtc aacggtcact ctgactatta ctgatggtga tatcccaacc 9660attgatgcag
tgccaagcgt tactctgtct gaaactaatc ttagtgacgg ctcagcgcca 9720agcagcagtg
ctgtaagtca aacagagacg attaccttca tcaatcaaag tgatgatgtg 9780gcgagtttcc
gtattgagcc aacagagttc aatgtgggcg gtgcactgaa atcgaatgga 9840tttgcggttg
agataaaaga agattcggct aatccgggta cttatatcgg ttttattacc 9900gatggttcga
atactgaagt tcctgtattc acgattgctt tctctacaag tacgttgggc 9960gaatacacct
tcaccttact tgaagcgcta gaccatgcaa atggcctaga taagaacgat 10020ctgagttttg
atcttcctgt ttatgcggta gacagtgatg gcgatgattc actggtgtct 10080caactgaatg
tgaccattgg tgatgatgtc caaataatgc aagacggtac gttagatatc 10140actgagccaa
atcttgcaga cggaacaatc acaaccaaca ccattgatgt gatgccaaat 10200cagagtgccg
atggtgcgac gatcactgaa ttctcatttg gcggtattgt caaaacactc 10260gatcaaagca
tcgtaggtga gcagcagttt agtttcaccg aaggtgagct attcatcact 10320cttcaaggtc
aagtgcgctt tgaaccaaat cgtgaccttg accactctgc cagcgaagac 10380atcgtgaagt
cgatagtggt tacttcaagt gattttgata acgatcctgt gacttcaacc 10440gttacgctga
ccattaccga tggtgatatt ccaactatcg atgcggtacc aagtgttacg 10500ctttcagaaa
caaacctagc tgatggttct gcgccaagtg gtagtgcggt tagtcaaacg 10560gagacgatta
cttttaccaa tcaaagtgat gatgtggttc gcttccgtct ggaaccaacc 10620gagttcaata
ctaacgatgc acttaaatcg aatggcttag cggtcgaact gcgcgaagaa 10680cctcaaggct
ctggtcagta cattggcttt accaccagtt cgtctaatgt tgagacaaca 10740gtatttacgt
tggactttaa ctccggaacc ttaggtgaat acacatttac tttaatcgaa 10800gctctggatc
atcaagatgc gcgtggcaac aacgatttaa gctttaatct acctgtgtat 10860gcggtggata
gtgatggcga tgactcgtta gtctctcagc ttggcgtgac cattggcgac 10920gatgtgcagt
tgatgcaaga cggcacaatc accagtcgtg agcctgcagc aagtgttgaa 10980acatcaaata
cctttgatgt gatgccaaac caaagtgctg atggagccaa agtcacttca 11040tttgttttcg
atggtaagac tgcagaaagt cttgatttga atgtgaatgg tgaacaagag 11100ttcgtcttca
cggaaggttc ggtatttatt acgacggaag gtgagatacg attcgagccg 11160gtacgtaatc
aaaatcatgc tggtggtgat attaccaagt cgattgaggt gacgtctgtt 11220gacctcgatg
gcgatattgt cacatcgaca gtgacactga agattgttga tggtgacctt 11280cctactatcg
accttgttcc cggaattacg ttatctgaag tggatctggc cgatggctct 11340gtgccaaccg
gtaatccagt gacaatgaca caaaccatta cctacacagc gggtagtgac 11400gacgtaagcc
atttcagaat tgaccctacg cagttcaata cttcaggggt tttgaaatcg 11460aacggcctag
atgtcgaaat aaaagagcag ccagctaatt ctggtaatta cattggcttc 11520gtcaaagacg
gttctaacgt agaaaccaac gtcttcacga tcagcttctc gacgagcaat 11580ttagggcaat
acacgttcac actacttgaa gcgttagatc atgtagatgg attgcaaaac 11640aatatactaa
gcttcgatgt ccctgtttta gcggttgatg cggatggtga tgattctgca 11700atgtcgccta
tgacggttgc gatcaccgat gacgtacaag gtgttcaaga tggcaccttg 11760agtatcactg
agccttcatt agctgatttg gcatcgggta cgccaccaac gacggcaatc 11820attgatgtta
tgccaacgca gagtgctgat ggcgcgaaag taacacagtt tacttacgat 11880ggtggcacag
ctgtaacgtt agacccaagc atcgccacag aacaagtctt taccgtaacc 11940gatggcttac
tgtacatcac cattgaaggg gaggttcgtt ttgagccgag ccgagatcta 12000gaccattcat
ctggcgatat cgtaagaacg attgtcgtca ccaccagtga ttttgataac 12060gatacagata
ccgcggatgt cactttgacg atcaaagacg gtatcaatcc cgttatcaat 12120gtggttccag
atgttaactt atcggaagtt aatctagcgg atggctcgac gccaagtggt 12180tctgcagtca
gttcgactca cacaatcact tacaccgaag gaagtgatga ttttagtcac 12240tttagaattg
cgaccaacga attcaatcct ggcgatctgt tgaaatcaag tggtcttgtt 12300gttcaactaa
aagaagatcc tgcttctgct ggtgattaca ttggttatac cgatgatggt 12360atgggtaacg
ttaccgatgt atttaccatt agctttgata gtgcaaacaa agctcagttt 12420acatttacct
tgattgaggc gcttgatcac cttgatggtg tgctttacaa cgatcttacg 12480ttccgtttgc
ctatctatgc tgttgataca gatgattctg aatcaacaaa gcgcgatgtg 12540gtggttacga
tagaagatga catccagcaa atgcaagatg gcttcttaac cattaccgag 12600ccaaattctg
gtactccaac aacaactacc gttgatgtga tgccaatacc aagtgcagac 12660ggtgcgacta
ttacgcagtt cacgtatgac ggtggttctc caattactct gaatcaaagc 12720atcagcggcg
aacaagagtt tgttttcact gaaggttcac tgtttgtgac actagatggt 12780gatgtaaggt
ttgagccaaa tagaaacctt gatcactctg cgggcgacat tgttaaatcg 12840attgtgttca
cgtcttcaga ctttgataac gacatcttct catcaaaagt cactctcacc 12900attgttgatg
gtgatgggcc aacaatcgac gttgtgccgg gtgtggcatt gtcagaaagc 12960ttacttgcgg
atggttcgac gcctagcgta aatcccgtga gtatgactca aaccattact 13020tcacttgcaa
gtagtgatga tattgctgaa atagtggtgg aagtcgggtt gttcaatacc 13080aacggcgcgt
tgaagtcgga tggtttgtca ctgagtttac gtgaagaccc tgtaaattca 13140ggcgactaca
ttgcatttac tactaatggt tcgggtgttg agaaagttat cttcactctg 13200gattttgatg
atacgaatcc gagtcaatat acgtttactc tgcttgaacg tttagaccat 13260gttgatggct
taggaaataa cgatctgagt tttgatcttt ctgtttatgc agaagatacc 13320gatggtgata
tttcagcgtc taaaccgctt acagtcacca tcaccgatga tgttcagctc 13380atgcaatccg
gtgcgctcaa cattactgag ccaaccacag gaacaccgac tacagcagtc 13440tttgatgtga
tgcctgcgca aagtgcagat ggcgcgacaa tcactaagtt tacctatggc 13500agccaacctg
aagagtctct ggtacaaacc gtcacgggtg agcaagaatt tgtgttcact 13560gaaggttctc
tgtttatcaa tcttgaaggt gatgtacgtt tcgaacctaa ccgtaatctc 13620gatcattcgg
gtggtaacat cgttaagacc attacggtga catcggaaga taaagatggc 13680gatattgtca
cttcaacagt gacgctgact attgtagatg gcgcgccacc agtaatagac 13740acagtaccaa
cggttgcatt ggaagaagcg aatctggtcg acggatcttc accgggttta 13800cctgttagcc
aaactgaaat cattactttc acagcaggaa gtgatgatgt gagccacttc 13860cgtattgatc
cggctcaatt caacacatca ggcgatctga aagcggatgg tttggtggtt 13920cagttaaaag
aagatcctct aaacagcgat aattatattg gttacgttga aagcggcggt 13980gtccaaacgg
atatcttcac catcaccttt agcagcgtgg ttctaggaga gtacacattc 14040accttgttgg
aagagttaga tcacctgcct gtacaaggta acaatgatca aatcttcacc 14100ttgccagtga
tcgcagtcga caaagacaac actgactcag cggtgaaacc tcttacggtg 14160accattaccg
atgatgttcc aaccattact gacaccaccg gcgccagtac gtttgtggtt 14220gatgaagatg
atttgggcac tctggcacaa gcgacgggtt cgtttgtaac cacagaaggt 14280gcagatcaag
tcgaggttta cgaactacgt aatatatcaa cgttggaagc aacgctatcg 14340tcgggcagtg
aaggtattaa gatcactgag atcacaggtg ctgctaacac gaccacctac 14400caaggggcga
ccgacccaag tggaacgcca attttcacat tagtgctgac tgatgatggt 14460gcctacacct
ttaccttgct tggccctctc aatcacgcta cgacaccgag taacctcgat 14520acattaacaa
taccatttga tgttgttgcc gttgacggtg atggcgatga ttctaaccaa 14580tatgtattgc
caatcgaggt gctagatgat gtgcctgtaa tgacggcgcc gacgggtgaa 14640acggttgttg
atgaagacga tcttactggc attggttccg atcaatctga agatacaatt 14700atcaatggac
tgttcaccgt tgatgaaggt gcggatggcg ttgtgctgta tgagctggtt 14760gatgaagatt
tggttctgac gggcttaacc tctgatggag aaagcttaga gtggctagct 14820gtttcacaaa
acggcacaac atttacttac gttgctcaaa ctgcaacgag taatgaagcg 14880gtgttcgaga
ttattttcga cacctcggat aacagctacc aatttgaatt atttaagcca 14940ctgaagcacc
ctgacggtgc aaacgagaac gcgatagatc ttgatttctc aatcgttgct 15000gaagattttg
atcaagacca atcggatgcg atcggtctaa aaattacggt aaccgatgat 15060gttccgttag
tgacaactca atcgattact cgtcttgaag gtcaggggta tggcaactct 15120aaagtcgaca
tgtttgccaa tgcaacagat gtgggggctg atggcgcggt actgagtcga 15180attgagggta
tctcaaataa tggtgcagat attgttttcc gtagcgggaa caatgggcca 15240tatagtagcg
gcttcgattt aaacagcggt agccaacaag ttcgagtcta cgagcaaaca 15300aatggcggtg
ctgatactcg tgaacttggc cgtctacgca tcaactcaaa tggtgaggtt 15360gaattcagag
ctaacggcta tctcgatcat gacggtgatg acaccatcga cttctcgatt 15420aacgtgattg
ccacagatgg agatttagac acctctgaaa caccgttaga tattacgatt 15480actgataggg
attctacaag aattgcgctg aaagtgacga ccttcgagga tgcgggtaga 15540gactcaacca
taccttacgc aacaggtgat gagccgactc ttgagaatgt tcaagataac 15600caaaatggtt
tgccgaatgc gccagcgcaa gttgcgctgc aagttagtct gtatgaccaa 15660gataacgctg
aatctattgg gcagttgacg attaaaagcc cgaacggagg tgatagtcat 15720caaggtactt
tttattactt tgatggtgct gactacatag aattagtgcc tgagtcaaat 15780gggagcatta
tatttggctc tcctgaactc gaacaaagct tcgctccaaa cccgagtgaa 15840ccaagacaaa
ctatcgcgac gatagacaac ctgttctttg ttccagacca acacgctagt 15900tcggatgaaa
ctggtgggcg agttcgttat gagcttgaaa ttgagaaaaa tggcagtacg 15960gatcacaccg
ttaattcaaa cttcagaatt gagattgaag ctgtagctga tattgcgact 16020tgggatgatt
ccaacagcac gtatcagtat caagtcaacg aagatgaaga caatgtcacg 16080ttgcagctga
acgcagagtc tcaagataac agtaatactg agacgattac ctatgaactt 16140gaagccgttc
aaggcgacgg gaagtttgag ttacttgatc aaaatggcaa tgtgttaacg 16200cccgttaatg
gtgtttatat catcgcatct gctgatatca atagcaccgt agttaaccct 16260attgataact
tctcagggca gattgagttc aaagcgacgg caattacgga agagacgctt 16320aacccatacg
atgattcaga caacggtgga gcaaacgata agacgacggc tcgttctgtg 16380gaacaaagta
ttgttattga tgtgaccgca gatgcggacc ctggcacatt cagtgttagt 16440cgaattcaga
tcaacgaaga caatatcgat gatccagatt acgtcgggcc tttggacaat 16500aaagacgcgt
tcacgttaga cgaagtcatc accatgacag ggtcggtcga ttctgacagt 16560tctgaagaac
tgtttgtgcg catcagtaat gttacggaag gagctgtgct ttacttctta 16620ggcaccacga
cagtcgttcc gaccatcacg atcaatggtg tggattatca agaaatcgcg 16680tattccgatt
tggctaacgt tgaggttgtt ccaaccaaac acagtaatgt cgatttcacc 16740ttcgatgtta
cgggagtggt caaagatacg gcaaatctat ccacgggcgc ccaaatcgat 16800gaggagatac
taggaactaa aaccgtcaac gttgaagtca aaggcgttgc cgatactcct 16860tatggtggaa
cgaatggcac ggcttggagt gcaattacag atggcactac atctggtgtt 16920caaaccacga
ttcaagagag ccaaaatggt gatacctttg ctgagcttga tttcaccgtg 16980ttgtcgggag
agagaagacc agatactggc actacaccat tagctgacga tgggtcagaa 17040tcaataaccg
ttattctatc gggtataccc gatggggttg ttctagaaga cggtgacggt 17100acagtgattg
accttaactt tgtcggttat gaaaccggac cgggcggtag tcctgactta 17160tccaaaccta
tctacgaagc gaacattact gaggcgggta aaacttcagg cattcgcatc 17220agacctgtcg
actcttcaac cgagaatatt cacattcaag gtaaagtgat tgtgactgag 17280aacgatggtc
acacgcttac gtttgatcaa gaaattcgag tgcttgttat acctcgaatc 17340gacacatcag
caacttatgt caatacgact aacggtgatg aagatacggc tatcaatatt 17400gattggcacc
ctgaaggcac ggattacatt gatgacgatg agcatttcac taagataact 17460attaatggaa
taccactggg tgttactgca gtagtcaacg gtgatgtgac cgttgatgac 17520tcaaccccag
gaacattgat tataacgcct aaagatgctt cccaaactcc tgaacaattt 17580actcaaattg
cattagctaa taacttcatt caaatgacgc ctccggctga ttctagtgca 17640gattttacgt
tgaccaccga acttaaaatg gaagagcgag atcatgagta tacgtctagc 17700ggcctagagg
atgaagatgg tggttatgtc gaagccgatc cagatataac cggaatcatt 17760aacgttcaag
tacgacctgt ggttgaacct ggagatgccg acaacaagat tgtcgtttca 17820aacgaagatg
gctctggaga tctcactacg attacggctg atgctaatgg tgtcattaaa 17880tttacaacta
acagtgataa ccaaacgact gatactaacg gagacgaaat ctgggacggt 17940gaatacgtcg
tccgatacca agaaacggat ttaagcacag tagaagagca agtcgacgaa 18000gtgattgttc
agctgactaa caccgatgga agcgcgttat ctgatgatat tttagggcaa 18060cttttagtaa
ctggtgcctc ttacgaaggc ggtggccgat gggttgtgac caatgaagat 18120gcctttagcg
tcagtgcgcc caatggatta gatttcaccc ctgccaatga tgcggatgat 18180gtagctactg
atttcaatga tatcaagatg acaattttca ctttggtctc agatcctggt 18240gatgctaaca
atgaaacgtc cgcccaagtg caacgcaccg gagaagtaac gctttcttat 18300cctgaagtgc
tgacggcacc tgacaaagtt gccgcagata ttgcgattgt gccagacagt 18360gttatcgacg
ctgttgagga tactcagctt gatctcggcg cggcactcaa cggcattttg 18420agcttgacgg
gtcgcgatga ttctactgac caagtgacgg tgatcatcga tggcactctg 18480gtcattgatg
ctacaacatc attcccaatt agcctgtcgg gaacaagtga tgttgacttt 18540gtgaatggga
aatatgttta cgagacgact gttgagcagg gcgtagccgt cgattcatcg 18600ggtttgttat
tgaatctgcc accaaactac tctggtgact ttaggttgcc aatgaccatc 18660gtgaccaaag
atttacaatc tggtgatgag aagaccttag tgactgaagt tatcatcaaa 18720gtcgcaccag
atgctgagac ggatccaacg attgaggtga atgtcgtggg ttcgcttgat 18780gatgccttta
atcctgttga taccgacggt caagctgggc aagatccggt gggttacgaa 18840gacacctata
ttcaactcga cttcaattcg accatttcgg atcaggtttc cggcgtcgaa 18900ggcggccaag
aagcgtttac gtccattact ttaacgttgg acgacccttc tataggtgca 18960ttctatgaca
acacgggtac ttcattaggt acatctgtta cgtttaatca ggctgaaata 19020gcagcgggtg
cactcgataa cgtgctcttt agggcaatcg aaaattaccc aacgggtaat 19080gatattaacc
aagtgcaggt taatgtcagc ggtacagtca cagataccgc aacctataat 19140gatcctgctt
ctcctgcggg tacggcaaca gactcagata ctttctctac gagtgtcagc 19200tttgaagtcg
ttcctgtggt cgatgacgtg tctgtcactg gaccgggtag cgatcctgat 19260gttatcgaga
ttactggcaa cgaagaccag ctcatttctt tgtcggggac agggcctgta 19320tcgattgcac
tgactgacct tgatggttca gaacagtttg tatcgattaa gttcacagat 19380gtccctgatg
gcttccaaat gcgtgcagat gctggctcga catataccgt gaaaaataat 19440ggtaatggag
agtggagtgt tcaactgcct caagcttcgg ggttgtcatt cgatttaagt 19500gagatttcga
tcttgccgcc taaaaacttc agtggtaccg ctgagtttgg tgtggaagtc 19560ttcactcaag
aatcgttgct gggtgtgcct actgcggcgg caaacttgcc aagcttcaaa 19620ctgcatgtgg
tacctgttgg tgacgatgtt gataccaatc cgactgattc tgtaacaggc 19680aacgaaggcc
aaaacattga tatcgaaatc aatgcgacta ttttggataa agaattgtct 19740gcaacaggaa
gcgggacgta taccgagaat gcgcccgaaa cgcttcgagt tgaagtggcg 19800ggtgttcctc
aagatgcttc tattttctat ccagatggca cgacattggc tagctacgat 19860ccggcgacgc
agctctggac tctcgatgtt ccagctcagt cgttagataa gatcgtattt 19920aactctggcg
aacataatag tgatacaggc aatgtactgg gtatcaatgg tccactgcag 19980attacggtac
gttcagtaga tactgatgct gataatacag agtacctagg tacgccaacc 20040agcttcgatg
tcgatctggt gattgatcct attaacgatc aaccgatctt tgtgaacgta 20100acgaatattg
aaacatcgga agacatcagt gttgccatcg acaactttag tatctacgac 20160gtcgacgcaa
actttgataa tccagatgct ccgtatgaac tgacgcttaa agtcgaccaa 20220acactgccgg
gagcgcaagg tgtgtttgag tttaccagct ctcctgacgt gacgtttgta 20280ttgcaacctg
acggctcatt ggtgattacc ggtaaagaag ccgacattaa taccgcattg 20340actaatggag
ctgtgacttt caaacccgac ccagaccaga actacctcaa ccagactggt 20400ttagtcacaa
tcaatgcaac gctcgatgat ggtggtaata acggtttgat tgacgcggtt 20460gatccgaata
ccgctcaaac caatcaaact accttcacca ttaaggtgac ggaagtgaat 20520gacgctcctg
tggcgactaa cgttgattta ggctcgattg cggaagacgc tcaaatcgtg 20580attgttgaga
gtgacttgat tgcagccagt tctgatctag aaaaccataa tctcacagta 20640accggtgtga
ctcttactca agggcaaggt cagcttacac gctatgaaaa tgctggtggt 20700gctgatgacg
cagcgattac ggggccattc tggatattca ttgcagataa tgatttcaac 20760ggcgacgtta
aattcaatta ctccattatc gatgatggta ccaccaacgg tgtggatgat 20820tttaaaaccg
atagcgctga aatcagcctt gtagttactg aagtcaatga ccagccagtg 20880gcatcgaaca
ttgatttggg caccatgctt gaagaaggac agctggtcat taaagaggaa 20940gacctgattt
ccgcaaccac tgatccggaa aacgacacga ttactgtgaa cagtttggtg 21000ctcgatcaag
gtcagggcca attacaacgc tttgagaacg tgggcggtgc tgatgatgct 21060acgatcactg
gcccgtactg ggtatttact gcagccaacg aatacaacgg tgatgttaag 21120ttcacttata
ccgttgagga cgatggtaca accaacggcg ctgatgattt cttaacagat 21180accggcgaaa
ttagcgttgt ggtaacggaa gtgaatgatc aaccggtggc aacggatatc 21240gacttaggaa
acatccttga agaagggcag ttgatcatca aagaggaaga cttaattgct 21300gctacgagcg
atccggaaaa cgacacgatt accgtgacca atctggtgct cgacgaaggc 21360caaggccagt
tacagcgctt tgagaacgtg ggcggtgctg atgacgctat gattactggc 21420ccgtactgga
tatttacggc tgctgatgaa tacaacggta acgttaagtt cacctatacc 21480gtcgaggatg
atggtacaac caacggcgct aatgatttcc taacggatac tgcagagatc 21540acagcgattg
tcgacggagt gaacgatacg cctgttgtta atggtgacag tgtcactacg 21600attgttgacg
aggatgctgg tcagctattg agtggtatca atgtcagtga cccagattat 21660gtggatgcat
tttctaatga cttgatgaca gtcacgctga cagtggatta cggtacattg 21720aacgtatcac
ttccggcagt gacgacagtg atggtcaacg gcaacaacac tggttcggtt 21780atcttagttg
gtactttgag tgacctgaat gcgctgattg atacgccaac cagtccaaac 21840ggtgtctacc
tcgatgcgag cttgtctcca accaatagca ttggcttaga agtaatcgcc 21900aaagacagcg
gtaacccttc tggtatcgcg attgaaactg caccagtggt ttataatatc 21960gcagtgacac
cagtcgctaa tgcgccaacc ttgtctattg atccggcatt taactatgtg 22020agaaacatta
cgaccagctc atctgtggtc gctaatagtg gagtcgcttt agttggaatt 22080gtcgctgcat
tgacggacat tactgaagag ttaacgttga agatcagcga tgttccggat 22140ggtgttgatg
taaccagtga tgtgggtacg gtttcgttgg tgggtgatac ttggatagcg 22200accgctgatg
cgatcgatag tctcagactc gtagagcagt catcattagg taaaccgttg 22260accccgggta
attacacctt gaaagttgag gcgctatctg aagagactga caacaacgat 22320attgcgatat
ctcaaaacat cgatctgaat ctcaatattg ttgccaatcc aatagatctc 22380gatctgtctt
ctgaaacaga cgatgtgcaa cttttagcga gtaactttga tactaacctc 22440actggcggaa
ctggaaatga ccgacttgta ggtggagcgg gtgacgatac gctggttggc 22500ggtgacggta
acgacacact cattggtggc ggcggttccg atattctaac cggtggcaat 22560ggtatggatt
cgtttgtatg gctcaatatt gaagatggcg ttgaagacac cattaccgat 22620ttcagcctgt
ctgaaggaga ccaaatcgac ctacgagaag tattacctga gttgaagaat 22680acatctccag
acatgtctgc attgctacaa cagatagacg cgaaagtgga aggggatgat 22740attgagctta
cgatcaagtc tgatggttta ggcactacgg aacaggtgat tgtggttgaa 22800gaccttgctc
ctcagctaac cttaagtggc accatgcctt cggatatttt ggatgcgtta 22860gtgcaacaaa
atgtcatcac tcacggttaa cgcctaattg gaggctagct attagaatct 22920aacgattaaa
ctaaaagcgg accatttaac cataacgaaa gaggccagca ttgctggcct 22980cttttttgtc
actgtataaa tcgtaaagag ttacttaaga gagttgtgga tcaggaactc 23040ttcttcgacg
cctttcaatt tcatctcatc cataatgaag ttcactgtgt tcaacaagcg 23100ttgttcacct
tttggtatca ggtaaccgaa ttgactgttg gtaaacggtg tttcacagcg 23160tgccgcttca
agacgttcgt ccgtcacttg atagaacaga ccttcaggag tttctgtcac 23220cattacatca
actttacctt ccgcaacggc ttgcggaacg tctaggttgt tctcgtaacg 23280cgtaaagctc
gcgtcttgca agttagcatc cgcaaacatc tcattagtcc caccgatatt 23340gacgccaaca
cgcacagaag agaggttcac tttctcaatg ctgttgtatt gttctgcttt 23400gcctttcgca
actaagaaac acttgccaaa ggtcatgtaa ccttgagttt gttctgcgtt 23460taactgacgc
tgcattttac gcgtgatacc gcccatcgcg atgtcgtatt tatcgctgtc 23520tagatcggtc
agtagatctt tccatgtggt acgaacaatc tgtaattcaa cgcccaactg 23580ctctgcaaca
tgtttggcta cgtcaatgtc ataaccagag taggttttgc cgtcgaagta 23640agaaaaaggt
ttgtagtcgc ctgtggtgcc gacgcgaagt gtgcctgatt tttgaatgtc 23700ttctagctgg
tcagcttgta ctacaccaga aagtgccaga gtaatggaag caagtaatag 23760tgatgttttt
ttcattgtaa ttatctgttg tgtttgtgtt gttattcaaa gtaacagaaa 23820caatcagaga
aagagatcaa accattggaa aggttgtaaa agaagataaa acgagggcag 23880gagataggta
acgctattga tttgtgaaca ttgataaaca tgtgtttcat attccatttt 23940gataaaccgt
agacaaacaa aaagcccatg ttatcgaata acatgggctt cattttggtt 24000taacttgtta
gctgcttatt tagctgctta tttagctgtt tagctgttta gctgtttagc 24060tacttagcaa
ctgactcgtt gttcatctta gccggagctt tagatgcgtt aaccagcagg 24120ataccaacgg
tgagtaccat cgaaccacat agtaggaaca acaagcgtcc tgttggttcg 24180tttggaatca
gagccattgc taggataccg aaacctgctg tgctgataag cttaccaagc 24240attgaacgct
gtttagtatc taggttctgc tgctcttcac cttccgctac tagcggcgta 24300ttccagttag
tgaatagttg gtcaacttct ttctcacgtt caggcgatag gcctttgtag 24360aagcgagaag
ttaggatgaa gtaaccacca gtaaacacta cgtgagcagc taagctaaga 24420ccaactttca
agtcgctcca ttcacggcca gtaagcgctg tttccatacc aaataggtgc 24480tcgatgtctt
ctgcttgaag cgagataccg aagatgtaag aaacgaagcc accaacgatt 24540aacgtagacc
aaccagccca gtcaggcgtc ttacgaatcc acataccaag tagtacaggg 24600ataagcattg
ggaagccaat taacgcacct acgttcatta cgatatcgaa caagctcaaa 24660tgacgtagag
agttaatgaa caagccaatc gcgatgatga taatacccat catgatagtg 24720gttagcttac
ttacaataac cagctctttc tgagttgcgt tttgacgtag aatagggctg 24780tagaagttca
ttacaaagat gccagcgtta cggttcaaac ctgaatccat agaagacatt 24840gttgcagcga
acattgctga cataagaaga ccaaccatac ctgctggcat tacgttctgt 24900acgaatgcta
ggtaagcagc atcaccagct ttatcaccca ttgaagcgta ctccaatgcg 24960aaatcaggca
tgaatgcact tacgtaccaa ggtggtagga accagattag tgggccaaca 25020accataagga
tacatgctag gcctgccgct ttacgtgcgt tttcactgtc tttcgcacat 25080aggtaacggt
aagcgttgat gctgttgttc attacaccga actgcttcac gaagatgaat 25140acaacccaaa
gaacgaagat gctcatgtag tttaggttat tacctaacat gaagtcgccg 25200tcgaaatttg
caacgatgtt agttaggcca ccaccgtgga agtaagctgc aaccgcacaa 25260gtaatcgtaa
ccgccatgat aacaagcatt tgcatgaagt cagaagcaac aaccgcccaa 25320gagccgcctg
ttactgccat caatactaga accatacccg ttaccacaat ggttgcttcc 25380attgggatgt
tgaataccgc tgctacgaag atagctagac catttagcca gatacccgca 25440gagataaggc
tgtcaggcat acctgcccat gtgaagaact gttcagacgt tttaccaaag 25500cgctgacgaa
tagcttcgat cgccgttacc acacgaagtt ggcggaactt tggagcgaag 25560tacatatagt
tcatgaagta gccaaaagca ttggctaaga ataggattac aataacgaaa 25620ccgtcattga
acgcgcgtcc tgcggcacct gtaaacgtcc atgctgaaaa ctgtgtcatg 25680aaggcggttg
caccaaccat ccaccacaac attttgccgc cccctctgaa gtaatcacta 25740gtcgacgtgg
tgaacttacg gaacatccaa ccaatagcga ttaaaaagaa gaagtaggcg 25800agaacaacaa
aagtatcgat agtcatcttt tcagcctttt aaatatcata attaactggg 25860cttagattaa
cgcgttcaaa ggtttatttg tactacaata tgtctttagt atgatctagg 25920tcgcattgat
ttttgggtgc acacgataag ttaatttaac ctactgtttt tattgatttt 25980aattgttttt
atgaattgct ctagatccaa gataaattga agttcaaatg tttatatgta 26040ttacaatata
agtaatgagg ctttagttta ccttatttat aagattttaa ttataaccgt 26100aacaaatatg
ctacaactga gcgtggttgt gcgacgacat tcacgttaat ttggaactct 26160attctggaaa
ttcttgtatt aggatttcaa gtgtagctca ttgttttcac ttcgctattt 26220tgtgtttgtc
tgcggttctg tcgcctttcc atgctattga ttaatttttt cgtgctagag 26280agacgcgtat
ttggaatgtt tgtcactgag tgggcgttaa actggacgac gggacactct 26340ttcggctcac
tttgtctatt gtggtcttca gtgcatgcta tgagaaatgt ttgacgacgt 26400attgaaaagg
aatattgtcg gataaaggga tgggtaagga gctggataag cggtagggag 26460ccccagtaac
gcttcgctag atgcatactg aggttgcttg aaagccttac atcactcgtt 26520cttgcctgtc
ttagtcacgg agctgtacga ggccataggg agaacggtga tagggtatgg 26580ggaaacagaa
cgttgattga gcgtgtttta cggttagtca gcgcaataaa cgccagataa 26640taaaaagccc
caccgaggtg aggctttatc acgaaatcta aaacagatta agcgttaacg 26700tgatcaactg
cgtcacgaac aagcttgcct agttcgtccc acttaccttc atcgataagg 26760ttagttggaa
ccatccaagt accgccacac gcaagaacag aagggatcga taggtattca 26820tcaacattct
tcaagcttac gccaccagta ggcatgaatt taacagggta aactgctgtt 26880agtgctttaa
gcatgccagt accgcctgaa ggctcagcag ggaagaactt caacgtgcga 26940agacccattt
ccattgcttg ctcaactagg cttgggttgt taacacccgg tacgattgca 27000atacctttat
cgatacagta ttgaacagta cgtgggttaa aacctgggct tacgatgaaa 27060tcaacaccag
cttcgataga tgcgtcaact tgctcgttag tcagtacagt acctgaaccg 27120attagcatgt
ctgggaattc tttacgcatg atgcgaatcg cttcgattgc acattctgta 27180cgtagtgtaa
tttctgcaca tggcatgcca ttttcaacca acgctttacc tagagggata 27240gcgtcttcag
cacggttgat cgcgattaca ggaattactt ttaggtttgc tagttgttca 27300tttaatgtcg
tcatgaattc tttctcacgt taaatgtggg cctgctttca actaagcaaa 27360cccttgatta
atagttaaag tgcgtaatta tagagacaga tcaggcgtcg cttctagagg 27420aatgatagca
cctggatgct gaatcacggt tcctgccaca atatgacctg caaatgcagc 27480atcacgagca
ctaccgccgc tcaagcgctt ggccaagaag cctgcactga acgagtcgcc 27540agcggcagtc
gtatcaacga tgttgtctac agggttgggt gcaacgtatt gagcgctttg 27600gctttcaacc
actaagcagt ctttcgcgcc acgtttaatg acgatctctt tcacaccaga 27660ctctgacgta
cgtgtaatac attgttcaat gctttcgtcg ccgtatagct cttgctcatc 27720atcaaacgtc
agcagagccg tatctgtgta cttaagcatt ttcaagtacc aagaaatcgc 27780ttcttgttgg
ctttcccaaa gtttaggtcg gtagttattg tcgaagaata cttggccgcc 27840ttgagctttg
aatttgtcta agaagttgaa tagctgcgtg cgaccatttt ctgtcaagat 27900tgccagcgta
ataccactta agtaaatcgc gtcaaaagag aacagcttat caagaagagc 27960aggcgtgtct
tcctgatcaa acatgaactt cgctgcagca tcactacgcc agtagtggaa 28020actgcgttca
ccagtttcat cggtctcgat gtagtaaagc cctggttgtt tgtggtccag 28080ctgagcaatt
aagctcgtgt cgataccttc cgcttgccaa ttttttaaca tgtcggtact 28140gaatgggtca
gtgcctagtg cagttacgta gctcgtgttg atatcttgct cttttgttaa 28200gcgtgacaag
taaagtgcag tattcagcgt atcgccacca aaactttgct taagcccgtc 28260ttgtttcttt
tgtagctcaa ccatgcactc gccaatgacc gcgatgttta atgatttcat 28320atgcttacct
tagcaactga ggttgcgcta gttattattt taggaaatct tcacgcgcag 28380gattgaagat
atcaagaagg atgctgtctt gttctagagc aactgcaccg tgcatcatgt 28440gtttacgagc
gaagtaagca tcgccttctt taagcacttt cttctcgccg tcgatttcag 28500cttcgaagct
accacgaaca acataaccga tttggtcgtg aatttcgtga gtatgagggt 28560ggccaatcgc
gcccttatca aagcataggt gtactgccat tagatcgtca gtgtaagcaa 28620cgattttacg
cttaatgccg ccaccaagtt cttcccatgg attttcatct aggataaaga 28680aagagttcat
tgtgtatctc ctaatctgtt taaatctttt aagtgttact taacttgcat 28740ccatcataag
ggaatgagtt caattgtaat acaatatatc taaatttgtg tgatattgat 28800caagcgatag
tttatatagc gtaaatgaat caacaactta agaattgctt ggtatctggc 28860attagttagc
tgcatcaatg gcttacggtg aattatgtga ctctactcat catttggcga 28920cgaataggta
taattaaagc tcatattgta ttactttata tggagtttga aaatttaatc 28980aaagtttaag
cagataaact ctttattgag ggtgacaaag aatatgacga ctaaaccagt 29040attgttgact
gaagctgaaa tcgaacagct tcatcttgaa gtgggccgtt ctagcttaat 29100gggcaaaacc
attgcagcga acgcgaaaga cctagaagca ttcatgcgtt tacctattga 29160tgttccaggt
cacggtgaag ctgggggtta cgaacataac cgccacaagc aaaattacac 29220gtacatgaac
ctagctggtc gcatgttctt gatcactaaa gagcaaaaat acgctgactt 29280tgttacagaa
ttactagaag agtacgcaga caaatatcta acgtttgatt accacgtaca 29340gaaaaacacc
aacccaacag gtcgtttgtt ccaccaaatc ctaaacgaac actgctggtt 29400aatgttctca
agcttagctt attcttgtgt tgcttcaaca ctgacacaag atcagcgtga 29460caatattgag
tctcgcattt ttgaacccat gctagaaatg ttcacggtta aatacgcaca 29520cgacttcgac
cgtattcaca atcacggtat ttgggcagta gccgctgtgg gtatctgtgg 29580tcttgcttta
ggcaaacgtg aatacctaga aatgtcagtg tacggcatcg accgtaatga 29640tactggcggt
ttcctagcgc aagtttctca gctatttgca ccttctggct actacatgga 29700aggtccttac
taccatcgtt atgcgattcg cccaacgtgt gtgttcgctg aagtgattca 29760ccgtcatatg
cctgaagttg atatctacaa ctacaaaggc ggcgtgattg gtaacacagt 29820acaagctatg
cttgcgacag cgtacccgaa cggcgagttc ccggctctga atgatgcttc 29880tcgtactatg
ggtatcacag acatgggtgt tcaggttgcg gtcagtgttt acagtaagca 29940ttactcttct
gaaaacggtg tagaccaaaa cattctgggt atggcgaaga ttcaagacgc 30000agtatggatg
catccatgtg gtcttgagct atctaaagca tacgaagccg catctgcaga 30060gaaagaaatc
ggcatgcctt tctggccaag tgttgaattg aatgaaggcc ctcaaggtca 30120caacggcgcg
caaggcttta tccgtatgca ggataagaaa ggcgacgttt ctcaacttgt 30180gatgaactac
ggccaacacg gcatgggtca cggcaacttt gatacgctgg gtatttcttt 30240ctttaaccgc
ggtcaagaag tgctacgtga atacggcttc tgtcgttggg ttaacgttga 30300gccaaaattc
ggcggccgtt acctagacga aaacaaatct tacgctcgtc aaacgattgc 30360tcacaatgca
gttacgattg atgaaaaatg tcagaacaac tttgacgttg aacgtgcaga 30420ctcagtacat
ggtttacctc acttctttaa agtagaagac gatcaaatca acggtatgag 30480tgcatttgct
aacgatcatt accaaggctt tgacatgcaa cgcagcgtgt tcatgctaaa 30540tcttgaagaa
ttagaatctc cgttattgtt agacctatac cgcttagatt ctacaaaagg 30600cggcgaaggc
gagcaccaat acgactattc acaccaatat gcgggtcaga ttgttcgcac 30660taacttcgaa
taccaagcga acaaagagct aaacactcta ggtgacgatt tcggttacca 30720acatctatgg
aacgtcgcaa gcggtgaagt gaagggcaca gcaattgtaa gttggctaca 30780aaacaacacc
tactacacat ggctaggtgc aacgtctaac gataatgctg aagtaatatt 30840tactcgcact
ggcgctaacg acccaagttt caatctacgt tcagagcctg cgttcattct 30900acgcagcaaa
ggcgaaacaa cactgtttgc ttctgttgtt gaaacgcacg gttatttcaa 30960cgaagaattc
gagcaatctg tcaatgcacg tggtgttgtg aaagacatca aagtcgtggc 31020tcacaccaat
gtcggttcgg tagttgagat caccacagag aaatcaaacg tgacagtgat 31080gatcagcaac
caacttggcg cgactgacag cactgaacac aaagtagaac tgaacggcaa 31140agtatacagc
tggaaaggct tctactcagt agagacaact ttacaagaaa cgaattcaga 31200agaacttagc
actgcagggc aggggaaata ataatgagct atcaaccact tttacttaac 31260tttgatgaag
cagctgaact tcgtaaagaa cttggcaagg atagcctatt aggtaacgca 31320ctgactcgcg
acattaaaca aactgacgct tacatggctg aagttggcat tgaagtacca 31380ggtcacggtg
aaggcggcgg ttacgagcac aaccgtcata agcaaaacta catccatatg 31440gatctagcag
gccgtttgtt ccttatcact gaggaaacaa aataccgaga ttacatcgtt 31500gatatgctaa
cagcgtacgc gacggtatac ccaacacttg aaagcaacgt aagccgtgac 31560tctaaccctc
cgggtaagct gttccaccaa acgttgaacg agaacatgtg gatgctttac 31620gcttcttgtg
cgtacagctg catctaccac acgatctctg aagagcaaaa gcgtctgatc 31680gaagacgatc
ttcttaagca aatgatcgaa atgttcgttg tgacttacgc acacgacttc 31740gatatcgtac
acaaccacgg cttatgggca gtggcagcag taggtatctg tggttacgca 31800atcaacgatc
aagagtctgt agacaaagca ctatacggcc tgaaactaga caaagtcagc 31860ggcggtttct
tagcgcaact agaccaactg ttttcgccag acggctacta catggaaggt 31920ccttactacc
accgtttctc tctgcgtcca atctacctgt tcgcagaagc gattgaacgt 31980cgtcagcctg
aagttggtat ctatgaattc aacgattcag tgatcaagac aacgtcttac 32040tctgtattca
aaacggcatt cccagacggt acattgcctg ctctgaacga ttcatcgaag 32100acaatctcta
tcaacgatga aggcgttatc atggcaacgt ctgtgtgtta ccaccgttac 32160gagcaaactg
aaactctact tggtatggct aaccaccagc aaaacgtttg ggttcatgct 32220tcaggtaaaa
cactgtctga cgcggttgat gcagcagacg acatcaaagc attcaactgg 32280ggtagcctgt
ttgtaaccga cggccctgaa ggcgaaaaag gcggcgtaag catccttcgt 32340caccgtgacg
aacaagatga cgacacgatg gcgttgatct ggtttggtca acacggttct 32400gatcaccagt
accactctgc tctagaccac ggtcactacg atggcctgca cctaagcgta 32460tttaaccgtg
gccacgaagt gctgcacgat ttcggcttcg gtcgctgggt aaacgttgag 32520cctaagtttg
gcggtcgtta catcccagag aacaagtctt actgtaagca gacggttgct 32580cacaacacag
taacggttga tcagaaaacg cagaacaact tcaacacagc attggctgag 32640tctaagtttg
gtcagaagca cttcttcgta gcagacgacc agtctctaca aggcatgagc 32700ggcacaattt
ctgagtacta cactggcgta gacatgcaac gcagcgtgat tcttgctgaa 32760cttcctgagt
tcgagaagcc acttgtaatc gacgtatacc gcatcgaagc tgacgctgaa 32820caccagtacg
acctacccgt tcaccactct ggtcagatca tccgtactga cttcgattac 32880aacatggaaa
aaacgcttaa gccgctaggt gaagacaacg gttaccagca cttatggaac 32940gtggcttcag
gcaaagtgaa cgaagaaggt tctctagtaa gctggctaca tgacagcagc 33000tactacagcc
tagtaaccag cgcgaatgcg ggcagcgaag tgatttttgc tcgcactggt 33060gctaacgatc
cagacttcaa ccttaagagt gagcctgcgt tcatcttacg tcagtctggt 33120caaaaccacg
tgtttgcttc tgtactagaa acgcatggtt actttaacga gtctatcgaa 33180gcctctgtag
gcgctcgtgg tctagttaaa tcagtatctg ttgtgggcca taacagtgtc 33240gggactgttg
ttcgcattca gactacttct ggcaacactt accactacgg tatctcaaac 33300caagctgaag
acacgcagca agcaactcac actgttgagt tcgcgggtga gacatactcg 33360tgggaaggat
catttgctca actgtaaatg attaacatac atgccgttta acgatggcat 33420gtattgatgt
ggtgctttgc gggaacgaag catcacattg aattcagtcg tgattgcaaa 33480tcgttcgttg
ataccaacaa cgactgaata catcgggaat aagtcaaacc gagtaactca 33540ctgcgagttg
ctcggttttt ttatgcgtgc tgcttttata agaaggggga aagaggatgg 33600ggcaacggag
cttccctttt ccttcgaatc ttacagagtg ggctaaagta taatttagga 33660tttaaaaata
aagggattca aggatgaagt ggttattggc aatagttgcg atgtctggtg 33720tcgcattggc
ggcagaaaat aagaatgttg aggtgagcag tgagcatttc gtccgttatc 33780aataccaaga
caaaatcagc tatggaaagc tagacaatga cgcagtgtta ccggtcagcg 33840gcgatctctt
tggcgaatat tcggtagcaa aaaattcgat cccgttagag tcggttgagg 33900tgttactacc
gacaaaacca gagaaagtct tcgccgtcgg gatgaacttc gctagccact 33960tagcctcacc
tgccgatgca ccaccgccga tgtttcttaa acttccttct tctttgattc 34020tcacgggcga
agtgattcaa gtgccaccaa aagcaagaaa tgttcatttt gaaggcgagc 34080tggtggttgt
gattggtaga gagctcagtc aagccagtga agaagaagcc gaacaagcga 34140tctttggcgt
cacggtgggc aacgatatta ctgaaagaag ttggcaaggc gccgatttac 34200aatggctccg
agcgaaagct tccgatggtt ttggcccggt tggcaacaca attgtgcgcg 34260gcattgatta
caacaatatt gagttaacca ctcgtgttaa cggtaaagtg gttcaacaag 34320aaaatacttc
gttcatgatc cacaagccaa gaaaagtcgt gagctatttg agctattatt 34380ttaccctcaa
accgggcgat ctaattttca tgggcacgcc aggtagaact tatgctctgt 34440ccgacaaaga
tcaagtgagt gtcacgattg aaggggtagg gactgtggta aatgaagtgc 34500ggttctgatg
gaattgaatt agcgttggga gctacagagc ttatgtctga atttgcagta 34560cgtagacgac
ttgaacctat taatttgaac taggttaact tgtgtagtga ataaactaac 34620cgtttttcgg
ttccattatt ttagcccaat tgagtgatgt ttttggaagc gagcagagaa 34680aacgagaatg
acgaacctac atgctcggcg agggttttgt tagtggtgta acacagtgtt 34740tctagctaag
agaaattaga tgctttctaa gtgtttgatt aattgaataa attaacaggt 34800actatccgct
ttgattttac tcaattggct gtaggtttaa atactgttat agtgttcctt 34860aaataataca
taaacataac atataaataa gcgaacttat ggctagcact tttaattcaa 34920tttcgggctc
gaagcgtagc ctgcacgtgc aagtagcacg cgaaatcgct cgaggaattt 34980tgtctggtga
tctgccgcaa ggttctatta ttcctggtga aatggcgttg tgtgaacagt 35040ttggtatcag
ccgaacggca cttcgtgaag cagttaaact actgacctct aaaggtctgt 35100tagagtctcg
ccctaaaatt ggtactcgcg tagtcgaccg cgcatactgg aacttccttg 35160atcctcaact
gattgaatgg atggacggac taaccgacgt agaccaattc tgttctcagt 35220ttttaggcct
tcgccgtgcg atcgagcctg aagcgtgtgc actggcggca aaatttgcga 35280cagctgaaca
acgtatcgag ctttcagaga tcttccaaaa gatggtcgaa gtggatgaag 35340ctgaagtgtt
tgaccaagaa cgttggacag acattgatac tcgtttccat agcttgatct 35400tcaatgcgac
cggtaacgac ttctatctac cgttcggtaa tattctgact actatgttcg 35460ttaacttcat
agtgcattct tctgaagagg gaagcacatg catcaatgaa caccgcagaa 35520tctatgaagc
tatcatggcc ggtgattgtg acaaggctag aattgcttct gctgttcact 35580tgcaagatgc
caaccaccgt ttggcaacag cataatagaa atgatttaaa gcgcacctga 35640gccatctcac
atcgagatga acaccctcac gttcggataa acgactttaa aaggtatgcc 35700tagtgcatgc
cttttttggt ttttagaccg cgtgttgcac tatctgtagc actattttgg 35760gtcagtcttt
tcgctacgtc tgttaagcta ttcttccacg ttacaacccg ccttgttttt 35820aacgtctacg
taacaatccc caagcatcgt tctaaacaca tttttagact gtctgtacct 35880gacaagtagt
tatgcgacag ccgggatttt tcacctctca gtattctaaa tctgggatta 35940aacaaacagg
gttctcggat ttaatattta gatatttaaa tcgaattcta atgatattac 36000ccactcgatt
tcgtaaaaaa cactggttta ttgtgtgatg aatgatgtgg gtttggtcaa 36060ggattctctt
ttattatttt tgagaacttt atgtttatat gtgtttgatt gtatttgtta 36120ataagtgtgc
aaagtctcac ttttatttta agttgttgtt tttaatgttt aatttatttt 36180gagtgtttga
tcttttgggt ttttacctaa aaccctaaca atttccttaa tggattagcc 36240atattccatc
ctatgtcata tatataatta acttaatcaa tcaaaataag atcaccatca 36300cttatttgga
ttattgtact acaaataaag agtcgaattt cctatagtcc tcgtaacaaa 36360ttaaaacgga
caaaggatac acgatggaac tcaacacgat tattgtcggc atttatttcc 36420tattcttgat
tgcgataggt tggatgttta gaacatttac aagtactact agtgactact 36480tccgcggggg
cggtaacatg ttgtggtgga tggttggtgc aaccgccttt atgacccagt 36540ttagtgcatg
gacattcacc ggtgcagcag gtaaagcgta taacgatggt ttcgctgtag 36600cggtcatctt
cgtagccaac gcatttggtt acttcatgaa ctacgcgtac ttcgcgccga 36660aattccgtca
acttcgcgtt gttacggtaa tcgaagcgat tcgtatgcgt tttggtgcga 36720ccaacgaaca
agtattcact tggtcttcaa tgccaaactc agtggtatct gcgggtgtgt 36780ggttaaacgc
attggcaatc atcgcttcgg gtatcttcgg tttcgacatg aacatgacta 36840tctgggtgac
tggcctagtg gtattggcaa tgtcggtaac aggtggttca tgggcggtaa 36900tcgcatctga
cttcatgcag atggttatca tcatggcggt aacggtaact tgtgcggttg 36960tagcggttgt
tcaaggtggc ggtgttggtg agattgttaa caacttccca gtacaagatg 37020gtggttcgtt
cctttggggc aacaacatca actacctaag catctttacg atttgggcat 37080tcttcatctt
cgttaagcag ttctcaatca cgaacaacat gcttaactct taccgttacc 37140tagcggctaa
agactcaaag aacgctaaga aagctgcact gcttgcttgt gtgttgatgt 37200tgtgtggtgt
gtttatttgg ttcatgcctt cttggttcat tgcaggccaa ggtgttgatt 37260tatcagcggc
ttacccgaat gcaggtaaaa aagcgggtga ctttgcttac ctatacttcg 37320tacaagagta
catgccagca ggtatggttg gtctattagt tgccgcgatg tttgcagcga 37380caatgtcttc
aatggactca ggtctaaacc gtaactcagg tatttttgtt aagaacttct 37440acgaaacaat
cgttcgtaaa ggtcaagcat cagagaaaga gctagtaacc gtatctaaaa 37500ttacttcagc
ggtatttggt ttcgctatta tcctaatcgc acagttcatc aactcattaa 37560aaggcttaag
cctgtttgat acgatgatgt acgtaggtgc gttaatcggc ttccctatga 37620cgattcctgc
attccttggt ttcttcatca agaagactcc ggactgggct ggttggggaa 37680cgctagttgt
tggtggtatc gtatcttatg tggttggttt tgttatcaac gcggagatgg 37740tagcagcggc
gtttggtctt gatactctaa caggacgtga atggtctgat gttaaagttg 37800cgattggtct
gattgctcac atcacgctaa ccggtggctt cttcgtacta tctacgatgt 37860tctacaagcc
tctatcaaaa gaacgtcaag cggatgttga taagttcttt ggcaacttag 37920ataccccatt
agtagctgaa tcggcagagc aaaaagtgtt ggataacaaa caacgtcaaa 37980tgcttggtaa
actgattgcg gtagcgggtg ttggtattat gctgatggct cttctgacta 38040acccaatgtg
ggggcgccta gtcttcatct tatgtggtgt gatagtgggt ggtgtcggta 38100ttctacttgt
gaaagcggtc gatgacggcg gcaagcaagc gaaagcagta accgaaagct 38160aatacataga
aaacgtttat aatagaatgc gacgactcga aagggcgtcg cattttttat 38220tctgcggaac
tggaaaaccg tcaggtgaaa gatatctgac ctaaatcacg aaaactgtac 38280aaagtggttc
aatcgaatcg aaatatattc aattgtccta caataagacg tatattgttg 38340ctaattcctt
tcaatcaact tgaaaaataa gtgagttaga atgagcgacc aaaaatctct 38400tgatgcaatc
aggaagatga agctggaaaa cgatacttca gcaggtaatc ttgtagacct 38460actccctatc
gaagttcaaa cacgtgactt cgacctatca ttcctagaca ccttgagcga 38520agcacgtccg
cgtcttcttg ttcaagctga tcagctagaa gaattcaaag caaaagtgaa 38580agctgatcaa
gctcactgta tgtttgatga tttctacaac aactctaccg ttaagttcct 38640tgagactgct
cctttcgaag agcctcaagc gtacccagct gagacggtag gtaaagcttc 38700tctatggcgt
ccttattggc gtcaaatgta cgttgattgc caaatggcac tgaacgcgac 38760acgtaaccta
gcgattgctg gtgttgtaaa agaagacgaa gcgctcattg cgaaagcaaa 38820agcttggact
ctaaaactgt ctacgtacga tccagaaggc gtgacttctc gtggctataa 38880cgatgaagcg
gctttccgtg ttatcgctgc tatggcttgg ggttacgatt ggctacacgg 38940ctacttcacc
gatgaagaac gccagcaagt tcaagatgct ttgattgagc gtctagacga 39000aatcatgcac
cacctgaaag tgacggttga tctattgaac aacccactaa atagccacgg 39060tgttcgttct
atctcttctg ctatcatccc aacgtgtatc gcgctttacc acgatcaccc 39120gaaagcaggc
gagtacattg catacgcgct agaatactac gcagtacatt acccaccatg 39180gggcggtgta
gacggcggtt gggctgaagg tcctgattac tggaacacgc aaactgcatt 39240cctaggcgaa
gcattcgacc tattgaaagc atactgtggt gtagacatgt ttaacaaaac 39300attctacgaa
aacacaggtg atttcccgct ttactgcatg ccagttcact ctaagcgcgc 39360gagcttctgt
gaccagtctt caatcggcga tttcccaggt ttaaaactgg cttacaacat 39420caagcactac
gcaggtgtta accagaagcc tgagtacgtt tggtactata accagcttaa 39480aggccgtgat
actgaagcac acaccaaatt ctacaacttc ggttggtggg acttcggtta 39540tgacgatctt
cgttttaact tcctttggga tgcacctgaa gagaaagccc catcgaacga 39600tccactgttg
aaagtattcc caatcacggg ttgggctgca ttccacaaca agatgactga 39660gcgtgataac
catattcaca tggtattcaa atgttctccg tttggctcaa tcagccactc 39720tcacggtgac
caaaacgcat ttacgcttca cgcatttggt gaaacgctag cgtcagtaac 39780aggttactat
ggtggtttcg gtgtagacat gcacacgaaa tggcgtcgtc aaacgttctc 39840taaaaacctg
ccactatttg gcggtaaagg tcagtacggc gagaacaaga acacaggcta 39900cgaaaaccac
caagatcgct tttgtatcga agcgggcggc actatctctg acttcgacac 39960tgaatctgat
gtgaagatgg ttgaaggtga tgcaacggca tcttacaagt acttcgttcc 40020tgaaatcgaa
tcttacaagc gtaaagtctg gttcgttcaa ggtaaagtct tcgtaatgca 40080agacaaggca
acgctttctg aagagaaaga catgacttgg ctaatgcaca caactttcgc 40140aaacgaagtg
gcagacaagt ctttcactat ccgtggcgaa gttgcgcacc tagacgtaaa 40200cttcatcaac
gagtctgctg ataacatcac gtcagttaag aacgttgaag gctttggcga 40260agttgaccca
tacgagttca aagatcttga gatccaccgt cacgtggaag tggaattcaa 40320gccatcgaaa
gagcacaaca tcctgacgct tcttgttcct aataagaatg aaggcgagca 40380agttgaagtg
tttcacaagc ttgaaggcaa cacgctactg ctaaatgttg acggcgaaac 40440ggtttcaatc
gaactgtaat ccgctgaagt aacagaagtt agatactaaa aactccgagt 40500gaaagctcgg
agtttttttg tttggctagc caattaagtt ggagttggat aagtcagtta 40560agttgtatta
gttgacaacg ttggcaaacc gatcaggttg aaagaaaact taattggcca 40620gagataaata
gcttctcgat gccaagtcag tggctgaggg ctaaatctgg acattgatgc 40680acataaagac
cggcatgtac ttagccacta tgctcaatga aatgtgcagg agtcgtataa 40740gagactcgta
tatatcgctc tgttagaaga acagggcgcc aacgcctgtt tcctagcaat 40800tgttatgact
tacttttccg tgaacagtct tatcactggc tgagtaaggg agtagtgaac 40860tatacatagg
taaaggcgta gcttgttctt actaatcgta tgacatttaa cgtacgttat 40920tcgttattat
aatgaacata taatcataca atactatatt tggagtttga acatgactaa 40980acctgtaatc
ggtttcattg gcctaggtct tatgggcggc aacatggttg aaaacctaca 41040aaagcgcggc
taccacgtaa acgtaatgga tctaagcgct gaagctgttg ctcgcgtaac 41100agatcgcggc
aacgcaactg cattcacttc tgctaaagaa ctagctgctg caagtgacat 41160cgttcagttt
tgtctgacaa cttctgctgt tgttgaaaaa atcgtttacg gcgaagacgg 41220cgttctagcg
ggcatcaaag aaggcgcagt actagtagac ttcggtactt ctatccctgc 41280ttctactaag
aaaatcggcg cagctcttgc tgaaaaaggc gcgggcatga tcgacgcacc 41340tctaggtcgt
actcctgcac acgctaaaga tggtcttctg aacatcatgg ctgctggcga 41400catggaaact
ttcaacaaag ttaaacctgt tcttgaagag caaggcgaaa acgtattcca 41460cctaggggct
ctaggttctg gtcacgtgac taagcttgta aacaacttca tgggtatgac 41520gactgttgcg
actatgtctc aagctttcgc tgttgctcaa cgcgctggtg ttgatggcca 41580acaactgttt
gacatcatgt ctgcaggtcc atctaactct ccgttcatgc aattctgtaa 41640gttctacgcg
gtagacggcg aagagaagct aggtttctct gttgctaacg caaacaaaga 41700ccttggttac
ttccttgcac tttgtgaaga gctaggtact gagtctctaa tcgctcaagg 41760tactgcaaca
agcctacaag ctgctgttga tgcaggcatg ggtaacaacg acgtaccagt 41820aatcttcgac
tacttcgcta aactagagaa gtaatcgacg tacgacctcg ctagggtatt 41880gcttgtcttc
taggcggcga tacctcagcg aggttcgttt ttatctgcca tacccaaccc 41940tttgttccct
tgttaaaatc ttctacttct acttctactt ctacttcaat ttcctcagtt 42000acacctaatc
aaaactctgt ttaactctgt tactgcctca attcctattt ttttctatat 42060ctatttctaa
cggtaaattc aaaaccttct agcaccaact cattcactca tttttcctcg 42120caagctcaaa
ctcaacgcgc ttacatgatt gttggtgatg gcttaacacc gctcgtatat 42180cggtcctgaa
aagaaagtaa aaaaaaagcc cacacagctg gtgactgtat gggcatgttc 42240ggacgagccg
tctggacaaa caaatgagca atagtaagtg aaaaaacgaa taacgagatc 42300ccccgacagt
ttctacgtta aacgcgttca atgaccttaa agcggctgct tcaattatca 42360ctttgaattg
aacaaaagca tccagaaaga acttaagtta tgattcaaat acaccatagt 42420acaagactta
ttgtattaca aataaatttt aagattgaat gcctttagtg aatggttagt 42480tggtagaagt
gtgagttaag actcattttt tcactcagct gggtgaggta aagaagaaga 42540gttttcgaaa
agatgttatc ggaaaaatga tgagctaatt atctaaaaat cgatctattt 42600taatgtgtta
tgcgtcaatg tttaacttcg aacaaaatcc aaactcataa atgataccta 42660tgtcacaggg
cggttttagc cagttttaat atatcaagat cgctcacaga atgtctggtc 42720aattaaacat
acaatattaa ttaagttgat ggttgtgacg atggatcggc atgaacaagt 42780ttcgctttcc
gtatcttcga aaatgtaaaa aatggccatt tcattcggat gaaaataata 42840gacataggtt
gatatggatg atgagtttta tgaattcaaa attgtctcta gggtttaaag 42900gaaaattgat
tttaatggta gcggtcgtca gttctagtgc tttggcattt acgaactggt 42960ttacgcttaa
cttggccact gaacaggtaa accaaacgat ttataacgag attgatcact 43020cgcttacgat
agaaatcaat caaatagaaa gtaccgttca gcgcaccatc gataccgtta 43080actctgttgc
acaagagttc atgaaatccc cttaccaagt gccgaatgaa gcactcatgc 43140attatgccgc
taagcttggt ggcattgaca agattgtggt gggttttgac gacggccgtt 43200cttatacctc
tcgcccttca gagtctttcc ctaacggtgt tggaataaaa gaaaaataca 43260atccaaccac
tcgaccttgg tatcaacaag cgaaattgaa atcaggctta tcttttagtg 43320gtctgttttt
cactaagagt actcaagtgc ctatgatcgg tgtgacctac tcataccaag 43380atcgtgtcat
catggccgat atacgctttg acgatttgga aacgcagctt gaacagctgg 43440acagcatcta
cgaagccaaa ggcattatca tcgacgaaaa ggggatggtg gtcgcttcaa 43500caatcgaaaa
cgtgcttccg caaaccaata tatcttctgc agacactcaa atgaaactca 43560acagtgccat
tgaacagcct gatcaattca ttgagggtgt gattgatggt aaccagagaa 43620tcttgatggc
caagaaagtg gatattggca gccagaaaga gtggttcatg atctccagta 43680ttgaccctga
actcgcgctc aatcagctga atggcgtgat gtcgagtgcg cgcatcctta 43740tcgtcgcttg
tgtacttggc tcggtgatat tgatgatttt acttctgaat cgtttctacc 43800gcccaatcgt
gtcactgcgc aaaatcgtcc acgatctatc acaaggtaac ggagacctca 43860ctcaaaggct
tgctgagaag gggaatgatg acttagggca tatcgccaaa gacatcaact 43920tgttcattat
cggcttacaa gagatggtta aggatgtgaa atacaagaac tcggatctcg 43980ataccaaggt
actgagtatt cgcgaaggtt gtaaagaaac cagcgatgta ctgaaagttc 44040atactgatga
aacggttcaa gtggtctctg cgattaacgg cttgtctgaa gcatcaaacg 44100aagtagagaa
gagttctcag tcggcggcag aagcagcaag agaggccgct gtgttcagtg 44160atgagacgaa
acagattaac acggtgacgg aaacctatat cagtgatctt gagaagcaag 44220tctgcaccac
ttctgatgac attcgctcaa tggccaatga aacgcagagc atccagtcta 44280tcgtgtctgt
gattggcgga attgcggaac aaactaattt gctggcattg aatgcgtcaa 44340ttgaagcggc
gagggcgggt gaacatggtc gaggtttcgc ggtggttgct gatgaagtcc 44400gtgcgctagc
caaccgaacg caaatcagta cctctgaaat tgatgaagcg ttatctggct 44460tgcagtctaa
atcagatggt ttggttaaat ctattgagtt gaccaaaagt aactgtgaac 44520tgactcgcgc
tcaagttgtt caagctgtaa acatgttggc gaagctaacc gagcagatgg 44580aaacagtaag
tcgttttaat aatgacattt cgggttcgtc tgttgagcaa aacgccctta 44640ttcagagcat
tgctaagaac atgcataaga ttgaaagctt tgttgaggag cttaataaac 44700taagccaaga
tcagttaact gaatcagcag aaatcaaaac acttaacggt agcgttagtg 44760aattgatgag
cagctttaag gtttaatgtt tctaatattt atacctaaaa atcaacatgt 44820taagtttagt
tgttgatctg aaggccactc aataactgtc gagtttagag tggcttttct 44880gcgttgttct
tgagtctaac tctacgtaat atccgttcat ttcacttcat ttgccgcatc 44940tcacattctg
ataaatagac aattgacata aaatagtaca aatatacatt gtcactctac 45000tcttatggat
aagtgagata aatgtgaata agccaatctt tgtcgtcgta ctcgcttcgc 45060ttacgtatgg
ctgcggtgga agcagctcca gtgactctag tgacccttct gataccaata 45120actcaggagc
atcttatggt gttgttgctc cctatgatat tgccaagtat caaaacatcc 45180tttccagctc
agatcttcag gtgtctgatc ctaatggaga ggagggcaat aaaacctctg 45240aagtcaaaga
tggtaacttc gatggttatg tcagtgatta tttttatgct gacgaagaga 45300cggaaaatct
gatcttcaaa atggcgaact acaagatgcg ctctgaagtt cgtgaaggag 45360aaaacttcga
tatcaatgaa gcaggcgtaa gacgcagtct acatgcggaa ataagcctac 45420ctgatattga
gcatgtaatg gcgagttctc ccgcagatca cgatgaagtg accgtgctac 45480agatccacaa
taaaggtaca gacgagagtg gcacgggtta tatccctcat ccgctattgc 45540gtgtggtttg
ggagcaagaa cgagatggcc tcacaggtca ctactgggca gtcatgaaaa 45600ataatgccat
tgactgtagc agtgccgctg actcttcgga ttgttatgcc acttcatata 45660atcgctacga
tttgggagag gcggatctcg ataacttcac caagtttgat ctttctgttt 45720atgaaaatac
cctttcgatc aaagtgaacg atgaagttaa agtcgacgaa gacatcacct 45780actggcagca
tctactgagt tactttaaag cgggtatcta caatcaattt gaaaatggtg 45840aagccacggc
tcactttcag gcactgcgat acaccaccac acaggtcaac ggctcaaacg 45900attgggatat
taatgattgg aagttgacga ttcctgcgag taaagacact tggtatggaa 45960gtgggggtga
cagtgcggct gaactagaac ctgagcgctg cgaatcgagc aaagaccttc 46020tcgccaacga
cagtgatgtc tacgacagcg atattggtct ttcttatttc aataccgatg 46080aagggagagt
gcactttaga gcggatatgg gatatggcac ctctaccgaa aattctagct 46140atattcgctc
tgagctcagg gagttgtatc aaagcagtgt tcaaccggat tgtagcacca 46200gcgatgaaga
tacaagttgg tatttggacg acactagaac gaacgctacc agtcacgagt 46260taaccgcaag
cttacgaatt gaagactacc cgaacattaa taaccaagac ccgaaagtgg 46320tgcttgggca
aatacacggt tggaagatca atcaagcatt ggtgaagttg ttatgggaag 46380gcgagagtaa
gccagtaaga gtgatactga actctgattt tgagcgcaac aaccaagact 46440gtaaccattg
tgacccgttc agtgtcgagt taggtactta ttcggcaagt gaagagtggc 46500gatatacgat
tcgagccaat caagacggta tctacttagc gactcatgat ttagatggaa 46560ctaatacggt
ttctcattta atcccttggg gacaagatta cacagataaa gatggggaca 46620cggtctcgtt
gacgtcagat tggacatcga cagacatcgc tttctatttc aaagcgggca 46680tctacccaca
atttaagcct gatagcgact atgcgggtga agtgtttgat gtgagcttta 46740gttctctaag
agcagagcat aactgagttc tctgatgttt ggttagccat gtcggtaatg 46800aagaagacca
tattgatgcc tacaatgtgg tctttttttg tttttggaca cttacagtga 46860tgtgttttga
aggacaaatg ttctgctcga atcatgcaaa tacacacgat tacagctcgc 46920ttgttctgcc
cttgctagct catttcgcat tccaaattct tatatattgt cttttatcaa 46980taggaaatgt
gatccagtta aagtatggaa aaatcggaaa gtgttcctag tctcatttat 47040ccaacgaagt
gttttatttg tattataaga ttacgtaata ttttcgtgtt atcgcaaata 47100ctgataggtg
aatcgcctta tagctcgtgt ttgctgattt agctttcact tacgaacgct 47160gtctttgtat
tataataatg gattaaatat gaaacaaatt actctaaaaa ctttactcgc 47220ttcttctatt
ctacttgcgg ttggttgtgc gagcacgagc acgcctactg ctgattttcc 47280aaataacaaa
gaaactggtg aagcgcttct gacgccagtt gctgtttccg ctagtagcca 47340tgatggtaac
ggacctgatc gtctcgttga ccaagaccta actacacgtt ggtcatctgc 47400gggtgacggc
gagtgggcaa cgctagacta tggttcagta caggagtttg acgcggttca 47460ggcatctttc
agtaaaggta atcagcgcca atctaaattt gatatccaag tgagtgttga 47520tggcgaaagc
tggacaacgg tactagaaaa ccaactaagc tcaggtaaag cgatcggcct 47580agagcgtttc
caatttgagc cagtagtgca agcacgctac gtaagatacg ttggtcacgg 47640taacaccaaa
aacggttgga acagtgtgac tggattagcg gcggttaact gtagcattaa 47700cgcatgtcct
gctagccata tcatcacttc agacgtggtt gcagcagaag ccgtgattat 47760tgctgaaatg
aaagcggcag aaaaagcacg taaagatgcg cgcaaagatc tacgctctgg 47820taacttcggt
gtagcagcgg tttacccttg tgagacgacc gttgaatgtg acactcgcag 47880tgcacttcca
gttccgacag gcctgccagc gacaccagtt gcaggtaact cgccaagcga 47940aaactttgac
atgacgcatt ggtacctatc tcaaccattt gaccatgaca aaaatggcaa 48000acctgatgat
gtgtctgagt ggaaccttgc aaacggttac caacaccctg aaatcttcta 48060cacagctgat
gacggcggcc tagtattcaa agcttacgtg aaaggtgtac gtacctctaa 48120aaacactaag
tacgcgcgta cagagcttcg tgaaatgatg cgtcgtggtg atcagtctat 48180tagcactaaa
ggtgttaata agaataactg ggtattctca agcgctcctg aatctgactt 48240agagtcggca
gcgggtattg acggcgttct agaagcgacg ttgaaaatcg accatgcaac 48300aacgacgggt
aatgcgaatg aagtaggtcg ctttatcatt ggtcagattc acgatcaaaa 48360cgatgaacca
attcgtttgt actaccgtaa actgccaaac caagaaacgg gtgcggttta 48420cttcgcacat
gaaagccaag acgcaactaa agaggacttc taccctctag tgggcgacat 48480gacggctgaa
gtgggtgacg atggtatcgc gcttggcgaa gtgttcagct accgtattga 48540cgttaaaggc
aacacgatga ctgtaacgct aatacgtgaa ggcaaagacg atgttgtaca 48600agtggttgat
atgagcaaca gcggctacga cgcaggcggc aagtacatgt acttcaaagc 48660cggtgtttac
aaccaaaaca tcagcggcga cctagacgat tactcacaag cgactttcta 48720tcagctagat
gtatcgcacg atcaatacaa aaagtaatct aatcgaataa cacttaatat 48780taaaggtatt
gcaatagcct ccagccttag ggtttggagg cttttttgtg cctgctgttg 48840gttgggctta
agcgtatgat ttaattgagt aggagagggg tagttatcag ttgcacagag 48900tttaagacat
tatcattaag ctcattcagt attaacttta gtcattatca gtcactatta 48960ccccccaagc
gccgatcaca attaacctag ctcatgatta atctcagtta ccaataggct 49020agcctgtagc
ggattcaaac ccaaataatg tcgtgatgtt tatcggaatc accatagctc 49080gaaaactttg
accttgttct caaggctttg ccaatgcacg aacgtattat gtgcgtggtt 49140tactaataag
cgttagctcg gctgactact catactgttc ttgaaaccgt tactcttggg 49200ttgtttagct
agactcctag caacagccat aaatagtgct ctaactcttt cataattaga 49260agggtagggt
tagccattct attggttcca atgctttatg aaatactagg cgggctcaag 49320tcgatgatca
aacgactcta acagcttaag gttatgcgct tttgcgttag ttacctgcag 49380gccgtaaatg
ccctgattgt agttgtacgg tgacgctgaa taataatttg taggattagt 49440atagaactga
gagactttgt ctatctatga tcgatacagg ctttgagagg gctggatcag 49500tagaaagaca
gaatgacaat tagcactaga gttattttgg tttttaatta gagttaataa 49560aatagatatt
tggtttgtta aatttaatcg tgtcataagc tctgtgtttt aaaaaataaa 49620aaaagccata
gcagttgcta tggctttgaa taagtcaggt tctaaggtaa gcaaacagca 49680agtcaacttg
tctgttttga tattcttagt cttagttcaa gatattttct ttacctgccg 49740cagtgttcac
tgcagatggt tgtgcgtaga tggctgtatt tcttatatct ttaccgttgt 49800cagctgaaag
tagggttttg taaccattga acgtattgct ttcaatagtg acattacagc 49860caaggttatc
atcactattc tttatgacgg cactgctaga atcaccaact ttaattccgc 49920ccacatcact
accaccagag ttaatagtga atgtattatt tgtgatttgt gaaccaaatc 49980gcccgttgtc
actactacag ttaatacgaa ttgcattatt ttggaaactg ccacttaaac 50040cgacaaattc
gctattgtct aatgtaaagt aacctcgaga gaataaccaa cttgcttttt 50100tagtacctag
atcatcttcg gtaatgccgt ttgcatcgaa ctttaggttt tcaagtgcta 50160caggatctga
atctttacca attttaccaa taacgatcgc accagtttca ttatctgaag 50220taccagctga
ctccctacca aaacacccgg ccaaattgtc gttagcaaaa gtcatgtttt 50280tgatacctgc
accgggtgca gtgacatcaa tacaagcatc tccggtaatg gttgctaaac 50340cagcaccatc
aattgtgaca gctttattta gctcaataac accggtatca aacgtacctt 50400cagatgataa
atcaataatc gcgccatctt ctgctgatgc aatcgcagcg ttcacatcat 50460cgactgattt
aggttttcca tcatcggcat tttctaatgc agttataaca gattcatctg 50520taatctctgt
tgctgagtaa gctgtttcta cgtcatcttt ttcacaggtc atatctagct 50580gttgctcagt
cactgtgtaa gtacagtcct taccttcaaa ggaaacaaca ccttcttctt 50640cagcagtata
tattgaactc tcaaaagtga agccattagc tacgtctcca ctgtaaatgc 50700ttagagcacg
agtaccttcc tcattattat caaagcgata tggtgaagtt ccgctgagtg 50760actgtgcagc
aacagcacca cctgtcagat cccaatagac gttttctata gagtaaactt 50820caacaggttc
aacagggtct gttccgcctg gatctgttgg aataggtaaa ccatcactgt 50880tacaaccaaa
taataaacct gtcgaaagag cgacagctgt agcgacttta gaaatttgca 50940taaaatattc
tctttatgat attaaatcca tatgtaaatc acataagaaa tagataatga 51000atagtcgtta
aatatttatt aggatgaagc taattctgat tagaacatcc tattatttaa 51060aataaagtaa
ttaaaatatg cccaaataaa ttacaagagg agagggctat tttatatttt 51120gactatttta
ttattagaat gagtaagcaa taccaacacg gtatttagct tcacgatctt 51180ttgaagatga
actgatatca gaagaccaga tttcagcaaa aggtttccaa gaaccgaact 51240tgtagtttac
ctttaagcca gcatcccatt cccagtcatc actattataa agaagtacgt 51300tatccaaaga
ttttacatag tttgcttcgt aagaaaggcc aagcttaggt agagattcaa 51360ttttgtaaga
gcccgtcagt gtaactttag acttttgagc tgattctaaa cgctcgccag 51420tttcagaatc
tttgtcgcca aattgtgtgt ggttacggaa gtcagcatat tcatgacggt 51480aacgaatagc
agttgttaaa cccatatctg ctttatagcc aacgcggaac tgaggtttaa 51540acgtaacctt
tttcatcttc cagtcgccat cgttagcatt aggctcatcc caatcccaag 51600caataggcat
acccatttgt agataccaat tattgtctat tttgtatgtc gcagtgttat 51660cgatctccat
accatagatg taccaattgc catcgtaaaa actctggctg tttgctgatt 51720taacagaacc
tgaatcttca tcatagtaag agtcatcacc gtggaactta agttctagac 51780cagtagagtg
cttccacttg tctgacagct taaagctttc acctagctta actcggtgtt 51840gatggcgagc
gtctacgtga gccgtatcac cattagtctt tgtataatcc gtcgcagcac 51900gatactcgta
acgataatca agagatgcac cagcagctgt gcccgctaaa agagtacatg 51960caacagctgc
agcaattttt gtaacagaat tcataccttt gtctcactat tattttttta 52020ttttggatac
atccaatgta cccctgactc acaaaccaat accttacatg gtattaaatt 52080aatgtatgac
aaatatggta tttattccta gggtagattt ctgtgagatc tatcaaaagt 52140tccgactaat
ggcctattta tatagctaaa tgttatgaat atctcaattt aaggcttacc 52200aatcaaatca
atcatgactc agttctcata ttaacaaacc ttgtaagctc agttggttgt 52260atgtgttaaa
ataatacaaa tataagaata ttcccacact ttcatatcga tgttctagtt 52320gttgtggttt
aaacataacg gcgcatgttg agggatatag atataaacca ccgccaaatg 52380tttggtaaaa
gttaaaagat ggcgaaatgt aaattctatt tattggttgg tttatttaag 52440tcgaagagaa
aatatttagt actaattcgt gttcaaaagt agtttctgtg ctgagagtgt 52500actcagtatc
tgttaacaat aaaggatgag tcatgtttaa gaaaaacata ttagcagtgg 52560cgttattagc
gactgtgcca atggttactt tcgcaaataa cggtgtttct taccccgtac 52620ctgccgataa
attcgatatg cataattgga aaataaccat accttcagat attaatgaag 52680atggtcgcgt
tgatgaaata gaaggggtcg ctatgatgag ctactcacat agtgatttct 52740tccatcttga
taaagacggc aaccttgtat ttgaagtgca gaaccaagcg attacgacga 52800aaaactcgaa
gaatgcgcgt tctgagttac gccagatgcc aagaggcgca gatttctcta 52860tcgatacggc
tgataaagga aaccagtggg cactgtcgag tcacccagcg gctagtgaat 52920acagtgctgt
gggcggaaca ttagaagcga cattaaaagt gaatcacgtc tcagttaacg 52980ctaagttccc
agaaaaatac ccagctcatt ctgttgtggt tggtcagatt catgctaaaa 53040aacacaacga
gctaatcaaa gctggaaccg gttatgggca tggtaatgaa ccactaaaga 53100tcttctataa
gaagtttcct gaccaagaaa tgggttcagt attctggaac tatgaacgta 53160acctagagaa
aaaagatcct aaccgtgccg atatcgctta tccagtgtgg ggtaacacgt 53220gggaaaaccc
tgcagagccg ggtgaagccg gtattgctct tggtgaagag tttagctaca 53280aagtggaagt
gaaaggcacc atgatgtacc taacgtttga aaccgagcgt cacgataccg 53340ttaagtatga
aatcgacctg agtaagggca tcgatgaact tgactcacca acgggctatg 53400ctgaagatga
tttttactac aaagcgggcg catacggcca atgtagcgtg agcgattctc 53460accctgtatg
ggggcctggt tgtggcggta ctggcgattt cgctgtcgat aaaaagaatg 53520gcgattacaa
cagtgtgact ttctctgcgc ttaagttaaa cggtaaatag cacatagcat 53580aaccaatagt
ctagctagac gcagtcctta aggaatattt tcgaagacca cttaaccgaa 53640tgttgagtgg
tctttttgtt ttatatgagt tttaagatga acttggtatt aatgtgacct 53700tggtatcaat
gagggtgtac gtgaagccta ccaatgaaag gtacagctaa aacaatacaa 53760ccttgtcaaa
agacaaggtt gcattcagaa agcgtaggaa gattttagga cgacaactcg 53820atacggagtt
tagtcataca tcaactcttt ggctttgtcg gcatcaaact ctttaagaga 53880ctttcgagcc
aagtgacgga atgggaaagc tttcacgact tcttcgaatg gttggatggc 53940aaatgcccaa
aagatagaac cgtctaatcc aaagatgatc aatgcacaca atggaattga 54000aattacccat
tgaccagtaa agttgatttt gaagactgcg gtcgtttttc ctagggctct 54060taatacattc
ccatgaaccg
54080322890DNAVibrio splendidus 3gtgctttgtg acaacggggg atgtatggat
attgaagttt cgcgccaggt tgcggtagtt 60gaagctacga gtggagatgt cgtcgtagtt
aagccagacg gcagcgcaag aaaagtttca 120gttggcgata ccatccgtga aaatgagatc
gtgattacgg ccaacaagtc agagcttgta 180ttaggcgttc agaatgattc gattccggtt
gcagagaatt gcgtcggttg tgttgatgaa 240aacgctgcat gggtagatgc cccaatagct
ggtgaggtta attttgactt acagcaagca 300gacgcagaaa ccttcactga agacgacctt
gctgcaattc aagaagccat tttaggtggt 360gccgatccga ctcaaatctt agaagcaacg
gctgctggtg gcggactagg ttctgcaaat 420gctggctttg tgacgattga ctataactac
actgaaactc atccatcgac tttctttgag 480accgctggtc tagcagaaca aactgttgat
gaagacagag aagaattcag atctatcact 540cgttcatcag gtggccaatc aatcagtgaa
acactgactg aaggctccat atctggcaat 600acctatcccc aatctgtaac aacgacagaa
acgattattg ctggtagttt agctctcgcc 660cctaactctt tcattccaga aactttatcc
ctcgcttcac tacttagtga attaaacagc 720gacattactt caagtggtca gtccgttatc
ttcacctatg acgcgacgac taattctatc 780gttggtgttc aagataccga cgaagtatta
cgtatcgaca ttgatgccgt cagtgttggc 840aataacattg agctttctct aaccacaacg
atttcccagc cgattgatca tgtaccgtcg 900gttggcggtg gtcaggtttc ttacactggc
gatcaaatag atattgcctt tgatattcaa 960ggtgaagaca ccgctgggaa cccgctagca
acacccgtta acgcacaagt ttcagtgttt 1020gacgggatag atccgtctgt tgaaagtgtc
aatatcacta acgttgaaac tagcagcgcg 1080gcaatcgaag ggacgttctc aaatattggt
agtgataacc ttcaatcagc cgtatttgat 1140gcaagtgcac tggaccagtt tgatgggttg
ctcagtgata atcaaaacac gcttgcgaga 1200ctttctgatg atggaacaac gattactctg
tccatccaag gtcgaggtga ggttgttctc 1260actatctctc tagataccga tggcacctat
aaattcgagc agtctaatcc gatagaacaa 1320gtgggtaccg attcactgac gttcgctttg
ccaatcacga ttaccgattt tgaccaagat 1380gttgtaacca atacgatcaa cattgccatt
actgatggcg atagccctgt tattactaat 1440gttgacagta ttgatgttga tgaagcgggc
attgttggcg gctcacaaga gggcacggcg 1500ccagtgtctg gcactggcgg tatcaccgcg
gacatttttg aaagtgacat cattgaccat 1560tatgagctag aacccactga atttaatact
aatggcacct tggtttcaaa tggcgaggct 1620gtgctacttg agttgattga tgaaaccaac
ggtgtaagaa cttacgaagg ttatgttgag 1680gtcaatggtt cgagaattac ggtctttgac
gttaaaattg atagcccttc attgggcaac 1740tatgagttta atctttatga agaactttct
catcaaggcg ctgaagatgc gctgttaact 1800tttgcattgc caatttatgc tgttgatgca
gatggcgacc gttctgcact gtctggaggt 1860tcgaacacac cagaagctgc tgagatcctc
gttaatgtta aagacgatgt cgttgaatta 1920gttgataagg ttgaatcagt caccgagccg
accttagcgg gcgatactat tgtttcgtat 1980aacctgttca attttgaagg cgcagatggt
tctacaattc aatcgtttaa ctacgacggt 2040gttgattact cactcgatca aagcctgctc
cccgatgcta cccagatttt cagttttact 2100gaaggtgtcg tcactatctc attaaacggt
gacttcagtt ttgaagtcgc tcgtgatatc 2160gaccactcaa gcagtgaaac tatcgtcaaa
cagttctcat ttttagccga agatggtgat 2220ggggatactg atagttcgac gcttgagtta
agtattaccg atggccaaga tccgatcatt 2280gatttgatcc cgcctgtgac tctctctgaa
accaacctta atgacggctc tgctcccagc 2340ggaagtacag ttagcgcaac cgagacgatt
acctttaccg caggcagcga cgatgtagca 2400agtttccgta ttgaaccaac agagtttaat
gtgggcggtg cacttaaatc gaatggattt 2460tcggttgaga taaaagaaga ttcggctaat
ccgggtactt acattggctt tattaccaac 2520ggttcgggcg ctgaaatccc agtgtttacg
attgctttct ctacgagcac attgggtgaa 2580tacaccttta ctctgcttga agcgttagac
catgtagatg gtttagataa gaacgatctg 2640agctttgatc tgcctattta tgcggttgat
acggacggcg acgattcatt ggtgtctcag 2700cttaatgtga ctatcggtga tgatgttcaa
atcatgcaag acggtacgtt agatatcacc 2760gagccaaatc ttgctgacgg tacaatcaca
accaacacca ttgatgtaat gccaaatcaa 2820agtgctgatg gcgcgacgat cactcggttc
acttatgacg gtgtcgtaaa cacactggat 2880caaagtattt caggagaaca gcagttcagc
ttcacagaag gcgaactgtt tatcaccctt 2940gaaggtgaag tgcgctttga gcctaatcgc
gatctagacc actcagtgag tgaagatatc 3000gtgaagtcga ttgtggtgac ttcaagcgac
ttcgataacg atccggtgac ttcaaccatt 3060acgctgacga tcactgatgg tgataacccg
acgattgatg ttattccaag tgttacgctt 3120tctgaaatta acctgagcga tggctctgct
ccaagtggca gcgcggtaag ctcgactcaa 3180actattactt ttaccaatca aagtgatgat
gtggttcgtt tccgtattga gtcaacggag 3240ttcaatacta acgatgatct taaatcgaac
ggtttagctg ttgagttacg tgaagacccg 3300gcagggtcgg gtgactacat tggttttacg
accagtgcga cgaacgtaga aactccagta 3360ttcacattaa gctttaattc tggatcatta
ggtgaataca cgttcacact catcgaagcg 3420ttggaccacc aagatgcccg tggcaacaac
gacctcagtt ttgatttacc tgtttacgcg 3480gtagatagtg atggcgatga ttcattggtg
tctccgttaa acgtcactat cggtgatgat 3540gttcaaatca tgcaagatag tacgttagat
atcgtcgagc caaccgtcgc agatttggcc 3600gctggcacag tgacaactaa caccattgat
gtgatgccaa atcaaagtgc cgatggcgca 3660acggtgacgc aattcactta tgatggccag
cttcgaacac ttgaccaaaa tgacaatggt 3720gagcagcaat ttagcttcac agaaggtgaa
ctgttcatca cgcttcaagg tgatgtgcgc 3780tttgagccta atcgtaatct agaccacaca
ctcagcgaag acatcgtgaa atcaatcgtg 3840gtgacatcta gcgattccga taacgatgtg
ttgacctcaa ccgtcactct gaccattacc 3900gatggtgata tcccaaccat tgataatgtt
ccaactgtga acttgtctga aactaatctg 3960agtgatggct ctgcacctag cggaagcgcg
gtgagttcaa ctcaaactat tacttacacc 4020actcaaagtg atgatgtgac aagcttccgt
attgaaccga ctgaatttaa tgttggtggc 4080gctctcacat caaacggatt ggcagtcgag
ttaaaagctg atccaaccac accgggtggc 4140tacatcggtt ttgtgactga tggttcgaac
gttgaaacta acgtgttcac gattagcttc 4200tcagatacca atttaggcca gtacaccttc
accttacttg aagcgttaga ccatgtggat 4260ggtttagcga acaatgatct gacctttgat
ctgcctgttt atgcagttga tagcgatggc 4320gacgattcac tggtgtctca gttaaatgta
accatcggtg atgatgttca aatcatgcaa 4380ggtggtacgt tagatatcac tgagccaaat
cttgcagacg gcacaattac aaccaatacc 4440atcgatgtga tgccagagca aagcgccgat
ggtgcgacga tcactcagtt cacttatgac 4500ggtcaagttc gaacactgga tcaaacggac
aatggtgagc agcaatttag cttcactgaa 4560ggcgagttgt tcatcactct tcaaggtgac
gtgcgtttcg aacccaatcg caacctagat 4620cacacagcta gcgaagatat cgtgaagtcg
atagtggtga cttcaagcga tttagataac 4680gatgtggtga cgtcaacggt cactctgacg
attactgatg gtgatatccc aaccattgat 4740gcagtgccaa gcgttactct gtctgaaatc
aatcttagtg acggctctgc gccaagtggc 4800actgcagtta gtcaaactga gacgattacc
ttcaccaatc aaagtgatga tgtgaccagt 4860ttccgtattg agccaataga gttcaatgtg
ggcggtgcac tgaaatcgaa tggatttgcg 4920gttgagataa aagaagattc ggctaatccg
ggtacttaca ttggctttat taccaacggt 4980tcgggcgctg aaatcccagt gtttacgatt
gctttctcta cgagctcatt gggtgaatac 5040acctttactc tgcttgaagc gttagaccat
gtagatggtt tagataagaa cgatctgagc 5100ttcgatctgc ctgtttatgc ggtcgatacg
gacggcgatg attcattggt gtctcagcta 5160aacgtgacca tcggtgatga tgtccaaatc
atgcaagacg gtacgttaga tatcatcgag 5220ccaaatctgg ctgatggaac aatcacaacc
agcactattg atgtgatgcc aaaccaaagt 5280gctgatggtg cgacgatcac tcagtttact
tatgacggtc agctaagaac gcttgatcaa 5340aatgacactg gcgaacagca gttcagcttc
acagaaggcg agttgtttat cacccttgaa 5400ggtgaagtgc gctttgagcc aaaccgagac
ctagaccaca ccgcgagtga agatattgtt 5460aagtcgattg tggtcacttc aagtgatttc
gataacgact ctctgacttc taccgtaacg 5520ctgaccatta ctgatggtga taaccctacg
atcgacgtca ttccaagcgt taccctttct 5580gaaactaatc tgagtgatgg ctctgctcca
agtggcagcg cggtaagctc gactcaaact 5640attactttta ccaatcaaag tgatgatgtg
gttcgtttcc gtattgagcc aacggagttc 5700aatactaacg atgatcttaa atcgaacggt
ttagccgttg agttacgtga agacccggct 5760gggtcgggtg actacattgg ttttactact
agtgcgacga atgtcgaaac cacggtattt 5820acgctgagtt tttctagcac cacattaggt
gaatatacct tcactttgct tgaagcgttg 5880gaccaccaag atgcccgtgg caacaacgac
ctcagttttg aactgcctgt ttatgcggta 5940gacagtgatg gcgatgattc actgatgtct
ccgttaaacg tcaccatcgg cgatgatgtt 6000caaatcatgc aagacggtac gttagatatc
gtcgagccaa ccgtcgcaga tttggccgct 6060ggcattgtga caactaacac cattgatgtg
atgccaaatc aaagtgccga tggcgcgacg 6120atcactcaat tcacttatga tggccaactt
cgaacacttg accaaaatga caatggcgaa 6180caacagttta gcttcacgga aggtgaacta
ttcatcactc ttgaaggtga agtgcgcttt 6240gagcctaatc gtaatctaga ccacacgctg
aacgaagaca tcgtgaaatc gatcgtggtg 6300acgtctagtg actccgataa cgatgtgttg
acctcaaccg tcactctgac cattaccgat 6360ggtgatatcc caaccattga taatgtgcca
acagtgagct tgtcagaaac aagtctgagt 6420gacggctctt caccaagtgg cagcgcagtt
agctcaactc aaaccatcac ttacaccact 6480caaagtgatg atgtaaccag cttccgtatt
gaaccgactg agttcaatgt tggcggtgct 6540ctcaaatcaa atggattggc ggttgagctg
aaggccgatc caaccactcc gggcggctac 6600atcggctttg tgactgatgg ttcgaacgtt
gaaactaacg tgttcacgat tagcttctcg 6660gataccaatt taggtcaata caccttcacc
ttgcttgaag cgttggatca tgcggatagc 6720cttgcaaata acgatctgag ctttgatctg
ccagtctacg ccgtcgatag tgatggcgat 6780gattcactgg tgtctcaact caatgtaacc
atcggtgatg atgttcaaat catgcaaggt 6840ggtacgttag atatcactga gccaaacctt
gcagacggca caaccacaac taacaccatc 6900gatgtgatgc cagaacaaag tgccgatggt
gcgacgatca ctcagtttac gtatgacggg 6960caagttcgca ctctggatca aactgacaat
ggtgagcagc aatttagctt cactgaaggc 7020gagttgttca tcactcttca aggtgacgtg
cgtttcgaac ccaatcgcaa cctagatcac 7080acagctagcg aagacatcgt gaagtcgata
gtggtgactt caagcgattc agataacgat 7140gtggtgacgt caacggtcac tctgactatt
actgatggtg atctcccaac cattgatgca 7200gtgccaagcg ttactctgtc tgaaactaat
cttagtgacg gctctgcgcc aagtggcagc 7260gcagtcagtc aaactgagac catcaccttt
accaatcaaa gtgatgatgt ggcgagtttc 7320cgtattgagc caaccgagtt taatgtgggc
ggtgcactga aatcgaatgg gtttgcggtt 7380gagataaaag aagactctgc taatccgggt
acttacattg gctttattgc caatggttcg 7440agcgctgaaa tcccagtgtt cacgattgct
ttctctacga gtacgttggg tgaatacacc 7500tttactctgc ttgaagcgtt agaccatgcg
gatggtttag ataagaacga tctgagcttt 7560gagcttccgg tttacgcggt tgatacagac
ggtgatgatt cattggtatc tcagcttaat 7620gtgaccattg gtgatgatgt tcaaatcatg
caagatggta cgttagacgt tatcgagcca 7680aatcttgcag acggcacaat cacaaccaac
accattgatg tgatgcccga gcaaagtgct 7740gatggtgcga cgatcactca gtttacttat
gacggtcagc taagaacgct tgatcaaaat 7800gacactggtg aacagcagtt cagcttcaca
gaaggcgagt tgtttatcac ccttgaaggt 7860gaagtgcgct ttgaacctaa tcgcgatcta
gaccattccg ttagcgaaga catcgtgaag 7920tcgatagtag tgacttcaag cgacttcgat
aacgatccgg tgacttcagc cattacgctg 7980accattactg atggtgataa tccgactatc
gattcggtac cgagcgttgt acttgaagaa 8040gctgatttaa ctgatggctc atcgccaagt
ggcagcgcgg ttagtcaaac ggaaaccatc 8100actttcacta atcaaagtga cgatgttgag
aaattccgtt tagaaccaag tgaatttaat 8160actaacaacg cgctcaagtc cgatggcttg
atcattgaga ttcgagagga accaacagga 8220tccggcaatt atattggttt cacgaccgat
atttcgaatg tcgaaaccac tgtgtttaca 8280ctcgatttca gcagtaccac tttgggtgag
tacaccttca cgcttctgga agcgattgac 8340cacacgcctg ttcaaggcaa taacgatcta
acattcaact tgccagtcta cgcggttgat 8400agcgacggtg atgattcgct aatgtcatca
ctatcggtga cgattactga tgatgttcaa 8460gtgatggtga gtggttcgct tagtatcgaa
gagcctactg ttgccgactt ggctgcaggc 8520acgccaacaa catcagtatt tgatgtatta
acatccgcga gtgctgatgg ggcgaccatt 8580actcagttca cttatgatgg tggggcggta
ttaacgcttg atcaaaacga tacaggtgag 8640cagaagttcg tggttgctga tggggcatta
tatatcactc tgcaaggcga tattcgtttc 8700gaaccaagtc gtaaccttga ccatactggt
ggcgatatcg tcaagtcgat agtcgtaact 8760tcaagtgatt ccgatagcga tcttgtgtct
tcaacggtaa cgctaaccat tactgatggc 8820gatatcccaa cgattgacac ggtgccaagc
gttactctgt cagaaacgaa tctgagcgac 8880ggatctgctc cgaatgcaag tgcggtaagt
tcaactcaaa ccattacctt tactaaccaa 8940agtgatgacg tgacgagttt ccgtattgaa
ccgactgatt ttaatgttgg tggtgctctg 9000aaatcgaacg gattggcggt cgaactgaaa
gcggacccaa ctacaccggg tggctacatc 9060ggttttgtga ctgatggttc gaacgttgaa
actaacgtgt ttacgattag cttctcggat 9120accaatttag gtcaatacac cttcaccctg
cttgaagcgt tggatcatgt agatggctta 9180gtgaagaatg atctgacttt tgatcttcct
gtttatgcgg ttgatagcga tggtgatgat 9240tcactggtgt ctcaactgaa tgtgaccatt
ggtgatgatg tacaggtcat gcaaaaccaa 9300gcgcttaata ttattgagcc aacggttgct
gatttggctg caggtactcc gacgacagcc 9360actgttgatg tgatgcctag ccaaagtgcc
gatggcgcga caatcactca gtttacttac 9420gatggcgggg cggcaataac actcgaccaa
aacgacaccg gtgaacagaa gtttgtattt 9480actgaaggtt cactgtttat caccttgcaa
ggtgaagtgc gtttcgagcc aaatcgcaat 9540ctaaaccaca cagcgagcga agacatcgtg
aagtcgattg tggtgacttc aagcgattta 9600gataacgatg tactgacgtc aacggtcact
ctgactatta ctgatggtga tatcccaacc 9660attgatgcag tgccaagcgt tactctgtct
gaaactaatc ttagtgacgg ctcagcgcca 9720agcagcagtg ctgtaagtca aacagagacg
attaccttca tcaatcaaag tgatgatgtg 9780gcgagtttcc gtattgagcc aacagagttc
aatgtgggcg gtgcactgaa atcgaatgga 9840tttgcggttg agataaaaga agattcggct
aatccgggta cttatatcgg ttttattacc 9900gatggttcga atactgaagt tcctgtattc
acgattgctt tctctacaag tacgttgggc 9960gaatacacct tcaccttact tgaagcgcta
gaccatgcaa atggcctaga taagaacgat 10020ctgagttttg atcttcctgt ttatgcggta
gacagtgatg gcgatgattc actggtgtct 10080caactgaatg tgaccattgg tgatgatgtc
caaataatgc aagacggtac gttagatatc 10140actgagccaa atcttgcaga cggaacaatc
acaaccaaca ccattgatgt gatgccaaat 10200cagagtgccg atggtgcgac gatcactgaa
ttctcatttg gcggtattgt caaaacactc 10260gatcaaagca tcgtaggtga gcagcagttt
agtttcaccg aaggtgagct attcatcact 10320cttcaaggtc aagtgcgctt tgaaccaaat
cgtgaccttg accactctgc cagcgaagac 10380atcgtgaagt cgatagtggt tacttcaagt
gattttgata acgatcctgt gacttcaacc 10440gttacgctga ccattaccga tggtgatatt
ccaactatcg atgcggtacc aagtgttacg 10500ctttcagaaa caaacctagc tgatggttct
gcgccaagtg gtagtgcggt tagtcaaacg 10560gagacgatta cttttaccaa tcaaagtgat
gatgtggttc gcttccgtct ggaaccaacc 10620gagttcaata ctaacgatgc acttaaatcg
aatggcttag cggtcgaact gcgcgaagaa 10680cctcaaggct ctggtcagta cattggcttt
accaccagtt cgtctaatgt tgagacaaca 10740gtatttacgt tggactttaa ctccggaacc
ttaggtgaat acacatttac tttaatcgaa 10800gctctggatc atcaagatgc gcgtggcaac
aacgatttaa gctttaatct acctgtgtat 10860gcggtggata gtgatggcga tgactcgtta
gtctctcagc ttggcgtgac cattggcgac 10920gatgtgcagt tgatgcaaga cggcacaatc
accagtcgtg agcctgcagc aagtgttgaa 10980acatcaaata cctttgatgt gatgccaaac
caaagtgctg atggagccaa agtcacttca 11040tttgttttcg atggtaagac tgcagaaagt
cttgatttga atgtgaatgg tgaacaagag 11100ttcgtcttca cggaaggttc ggtatttatt
acgacggaag gtgagatacg attcgagccg 11160gtacgtaatc aaaatcatgc tggtggtgat
attaccaagt cgattgaggt gacgtctgtt 11220gacctcgatg gcgatattgt cacatcgaca
gtgacactga agattgttga tggtgacctt 11280cctactatcg accttgttcc cggaattacg
ttatctgaag tggatctggc cgatggctct 11340gtgccaaccg gtaatccagt gacaatgaca
caaaccatta cctacacagc gggtagtgac 11400gacgtaagcc atttcagaat tgaccctacg
cagttcaata cttcaggggt tttgaaatcg 11460aacggcctag atgtcgaaat aaaagagcag
ccagctaatt ctggtaatta cattggcttc 11520gtcaaagacg gttctaacgt agaaaccaac
gtcttcacga tcagcttctc gacgagcaat 11580ttagggcaat acacgttcac actacttgaa
gcgttagatc atgtagatgg attgcaaaac 11640aatatactaa gcttcgatgt ccctgtttta
gcggttgatg cggatggtga tgattctgca 11700atgtcgccta tgacggttgc gatcaccgat
gacgtacaag gtgttcaaga tggcaccttg 11760agtatcactg agccttcatt agctgatttg
gcatcgggta cgccaccaac gacggcaatc 11820attgatgtta tgccaacgca gagtgctgat
ggcgcgaaag taacacagtt tacttacgat 11880ggtggcacag ctgtaacgtt agacccaagc
atcgccacag aacaagtctt taccgtaacc 11940gatggcttac tgtacatcac cattgaaggg
gaggttcgtt ttgagccgag ccgagatcta 12000gaccattcat ctggcgatat cgtaagaacg
attgtcgtca ccaccagtga ttttgataac 12060gatacagata ccgcggatgt cactttgacg
atcaaagacg gtatcaatcc cgttatcaat 12120gtggttccag atgttaactt atcggaagtt
aatctagcgg atggctcgac gccaagtggt 12180tctgcagtca gttcgactca cacaatcact
tacaccgaag gaagtgatga ttttagtcac 12240tttagaattg cgaccaacga attcaatcct
ggcgatctgt tgaaatcaag tggtcttgtt 12300gttcaactaa aagaagatcc tgcttctgct
ggtgattaca ttggttatac cgatgatggt 12360atgggtaacg ttaccgatgt atttaccatt
agctttgata gtgcaaacaa agctcagttt 12420acatttacct tgattgaggc gcttgatcac
cttgatggtg tgctttacaa cgatcttacg 12480ttccgtttgc ctatctatgc tgttgataca
gatgattctg aatcaacaaa gcgcgatgtg 12540gtggttacga tagaagatga catccagcaa
atgcaagatg gcttcttaac cattaccgag 12600ccaaattctg gtactccaac aacaactacc
gttgatgtga tgccaatacc aagtgcagac 12660ggtgcgacta ttacgcagtt cacgtatgac
ggtggttctc caattactct gaatcaaagc 12720atcagcggcg aacaagagtt tgttttcact
gaaggttcac tgtttgtgac actagatggt 12780gatgtaaggt ttgagccaaa tagaaacctt
gatcactctg cgggcgacat tgttaaatcg 12840attgtgttca cgtcttcaga ctttgataac
gacatcttct catcaaaagt cactctcacc 12900attgttgatg gtgatgggcc aacaatcgac
gttgtgccgg gtgtggcatt gtcagaaagc 12960ttacttgcgg atggttcgac gcctagcgta
aatcccgtga gtatgactca aaccattact 13020tcacttgcaa gtagtgatga tattgctgaa
atagtggtgg aagtcgggtt gttcaatacc 13080aacggcgcgt tgaagtcgga tggtttgtca
ctgagtttac gtgaagaccc tgtaaattca 13140ggcgactaca ttgcatttac tactaatggt
tcgggtgttg agaaagttat cttcactctg 13200gattttgatg atacgaatcc gagtcaatat
acgtttactc tgcttgaacg tttagaccat 13260gttgatggct taggaaataa cgatctgagt
tttgatcttt ctgtttatgc agaagatacc 13320gatggtgata tttcagcgtc taaaccgctt
acagtcacca tcaccgatga tgttcagctc 13380atgcaatccg gtgcgctcaa cattactgag
ccaaccacag gaacaccgac tacagcagtc 13440tttgatgtga tgcctgcgca aagtgcagat
ggcgcgacaa tcactaagtt tacctatggc 13500agccaacctg aagagtctct ggtacaaacc
gtcacgggtg agcaagaatt tgtgttcact 13560gaaggttctc tgtttatcaa tcttgaaggt
gatgtacgtt tcgaacctaa ccgtaatctc 13620gatcattcgg gtggtaacat cgttaagacc
attacggtga catcggaaga taaagatggc 13680gatattgtca cttcaacagt gacgctgact
attgtagatg gcgcgccacc agtaatagac 13740acagtaccaa cggttgcatt ggaagaagcg
aatctggtcg acggatcttc accgggttta 13800cctgttagcc aaactgaaat cattactttc
acagcaggaa gtgatgatgt gagccacttc 13860cgtattgatc cggctcaatt caacacatca
ggcgatctga aagcggatgg tttggtggtt 13920cagttaaaag aagatcctct aaacagcgat
aattatattg gttacgttga aagcggcggt 13980gtccaaacgg atatcttcac catcaccttt
agcagcgtgg ttctaggaga gtacacattc 14040accttgttgg aagagttaga tcacctgcct
gtacaaggta acaatgatca aatcttcacc 14100ttgccagtga tcgcagtcga caaagacaac
actgactcag cggtgaaacc tcttacggtg 14160accattaccg atgatgttcc aaccattact
gacaccaccg gcgccagtac gtttgtggtt 14220gatgaagatg atttgggcac tctggcacaa
gcgacgggtt cgtttgtaac cacagaaggt 14280gcagatcaag tcgaggttta cgaactacgt
aatatatcaa cgttggaagc aacgctatcg 14340tcgggcagtg aaggtattaa gatcactgag
atcacaggtg ctgctaacac gaccacctac 14400caaggggcga ccgacccaag tggaacgcca
attttcacat tagtgctgac tgatgatggt 14460gcctacacct ttaccttgct tggccctctc
aatcacgcta cgacaccgag taacctcgat 14520acattaacaa taccatttga tgttgttgcc
gttgacggtg atggcgatga ttctaaccaa 14580tatgtattgc caatcgaggt gctagatgat
gtgcctgtaa tgacggcgcc gacgggtgaa 14640acggttgttg atgaagacga tcttactggc
attggttccg atcaatctga agatacaatt 14700atcaatggac tgttcaccgt tgatgaaggt
gcggatggcg ttgtgctgta tgagctggtt 14760gatgaagatt tggttctgac gggcttaacc
tctgatggag aaagcttaga gtggctagct 14820gtttcacaaa acggcacaac atttacttac
gttgctcaaa ctgcaacgag taatgaagcg 14880gtgttcgaga ttattttcga cacctcggat
aacagctacc aatttgaatt atttaagcca 14940ctgaagcacc ctgacggtgc aaacgagaac
gcgatagatc ttgatttctc aatcgttgct 15000gaagattttg atcaagacca atcggatgcg
atcggtctaa aaattacggt aaccgatgat 15060gttccgttag tgacaactca atcgattact
cgtcttgaag gtcaggggta tggcaactct 15120aaagtcgaca tgtttgccaa tgcaacagat
gtgggggctg atggcgcggt actgagtcga 15180attgagggta tctcaaataa tggtgcagat
attgttttcc gtagcgggaa caatgggcca 15240tatagtagcg gcttcgattt aaacagcggt
agccaacaag ttcgagtcta cgagcaaaca 15300aatggcggtg ctgatactcg tgaacttggc
cgtctacgca tcaactcaaa tggtgaggtt 15360gaattcagag ctaacggcta tctcgatcat
gacggtgatg acaccatcga cttctcgatt 15420aacgtgattg ccacagatgg agatttagac
acctctgaaa caccgttaga tattacgatt 15480actgataggg attctacaag aattgcgctg
aaagtgacga ccttcgagga tgcgggtaga 15540gactcaacca taccttacgc aacaggtgat
gagccgactc ttgagaatgt tcaagataac 15600caaaatggtt tgccgaatgc gccagcgcaa
gttgcgctgc aagttagtct gtatgaccaa 15660gataacgctg aatctattgg gcagttgacg
attaaaagcc cgaacggagg tgatagtcat 15720caaggtactt tttattactt tgatggtgct
gactacatag aattagtgcc tgagtcaaat 15780gggagcatta tatttggctc tcctgaactc
gaacaaagct tcgctccaaa cccgagtgaa 15840ccaagacaaa ctatcgcgac gatagacaac
ctgttctttg ttccagacca acacgctagt 15900tcggatgaaa ctggtgggcg agttcgttat
gagcttgaaa ttgagaaaaa tggcagtacg 15960gatcacaccg ttaattcaaa cttcagaatt
gagattgaag ctgtagctga tattgcgact 16020tgggatgatt ccaacagcac gtatcagtat
caagtcaacg aagatgaaga caatgtcacg 16080ttgcagctga acgcagagtc tcaagataac
agtaatactg agacgattac ctatgaactt 16140gaagccgttc aaggcgacgg gaagtttgag
ttacttgatc aaaatggcaa tgtgttaacg 16200cccgttaatg gtgtttatat catcgcatct
gctgatatca atagcaccgt agttaaccct 16260attgataact tctcagggca gattgagttc
aaagcgacgg caattacgga agagacgctt 16320aacccatacg atgattcaga caacggtgga
gcaaacgata agacgacggc tcgttctgtg 16380gaacaaagta ttgttattga tgtgaccgca
gatgcggacc ctggcacatt cagtgttagt 16440cgaattcaga tcaacgaaga caatatcgat
gatccagatt acgtcgggcc tttggacaat 16500aaagacgcgt tcacgttaga cgaagtcatc
accatgacag ggtcggtcga ttctgacagt 16560tctgaagaac tgtttgtgcg catcagtaat
gttacggaag gagctgtgct ttacttctta 16620ggcaccacga cagtcgttcc gaccatcacg
atcaatggtg tggattatca agaaatcgcg 16680tattccgatt tggctaacgt tgaggttgtt
ccaaccaaac acagtaatgt cgatttcacc 16740ttcgatgtta cgggagtggt caaagatacg
gcaaatctat ccacgggcgc ccaaatcgat 16800gaggagatac taggaactaa aaccgtcaac
gttgaagtca aaggcgttgc cgatactcct 16860tatggtggaa cgaatggcac ggcttggagt
gcaattacag atggcactac atctggtgtt 16920caaaccacga ttcaagagag ccaaaatggt
gatacctttg ctgagcttga tttcaccgtg 16980ttgtcgggag agagaagacc agatactggc
actacaccat tagctgacga tgggtcagaa 17040tcaataaccg ttattctatc gggtataccc
gatggggttg ttctagaaga cggtgacggt 17100acagtgattg accttaactt tgtcggttat
gaaaccggac cgggcggtag tcctgactta 17160tccaaaccta tctacgaagc gaacattact
gaggcgggta aaacttcagg cattcgcatc 17220agacctgtcg actcttcaac cgagaatatt
cacattcaag gtaaagtgat tgtgactgag 17280aacgatggtc acacgcttac gtttgatcaa
gaaattcgag tgcttgttat acctcgaatc 17340gacacatcag caacttatgt caatacgact
aacggtgatg aagatacggc tatcaatatt 17400gattggcacc ctgaaggcac ggattacatt
gatgacgatg agcatttcac taagataact 17460attaatggaa taccactggg tgttactgca
gtagtcaacg gtgatgtgac cgttgatgac 17520tcaaccccag gaacattgat tataacgcct
aaagatgctt cccaaactcc tgaacaattt 17580actcaaattg cattagctaa taacttcatt
caaatgacgc ctccggctga ttctagtgca 17640gattttacgt tgaccaccga acttaaaatg
gaagagcgag atcatgagta tacgtctagc 17700ggcctagagg atgaagatgg tggttatgtc
gaagccgatc cagatataac cggaatcatt 17760aacgttcaag tacgacctgt ggttgaacct
ggagatgccg acaacaagat tgtcgtttca 17820aacgaagatg gctctggaga tctcactacg
attacggctg atgctaatgg tgtcattaaa 17880tttacaacta acagtgataa ccaaacgact
gatactaacg gagacgaaat ctgggacggt 17940gaatacgtcg tccgatacca agaaacggat
ttaagcacag tagaagagca agtcgacgaa 18000gtgattgttc agctgactaa caccgatgga
agcgcgttat ctgatgatat tttagggcaa 18060cttttagtaa ctggtgcctc ttacgaaggc
ggtggccgat gggttgtgac caatgaagat 18120gcctttagcg tcagtgcgcc caatggatta
gatttcaccc ctgccaatga tgcggatgat 18180gtagctactg atttcaatga tatcaagatg
acaattttca ctttggtctc agatcctggt 18240gatgctaaca atgaaacgtc cgcccaagtg
caacgcaccg gagaagtaac gctttcttat 18300cctgaagtgc tgacggcacc tgacaaagtt
gccgcagata ttgcgattgt gccagacagt 18360gttatcgacg ctgttgagga tactcagctt
gatctcggcg cggcactcaa cggcattttg 18420agcttgacgg gtcgcgatga ttctactgac
caagtgacgg tgatcatcga tggcactctg 18480gtcattgatg ctacaacatc attcccaatt
agcctgtcgg gaacaagtga tgttgacttt 18540gtgaatggga aatatgttta cgagacgact
gttgagcagg gcgtagccgt cgattcatcg 18600ggtttgttat tgaatctgcc accaaactac
tctggtgact ttaggttgcc aatgaccatc 18660gtgaccaaag atttacaatc tggtgatgag
aagaccttag tgactgaagt tatcatcaaa 18720gtcgcaccag atgctgagac ggatccaacg
attgaggtga atgtcgtggg ttcgcttgat 18780gatgccttta atcctgttga taccgacggt
caagctgggc aagatccggt gggttacgaa 18840gacacctata ttcaactcga cttcaattcg
accatttcgg atcaggtttc cggcgtcgaa 18900ggcggccaag aagcgtttac gtccattact
ttaacgttgg acgacccttc tataggtgca 18960ttctatgaca acacgggtac ttcattaggt
acatctgtta cgtttaatca ggctgaaata 19020gcagcgggtg cactcgataa cgtgctcttt
agggcaatcg aaaattaccc aacgggtaat 19080gatattaacc aagtgcaggt taatgtcagc
ggtacagtca cagataccgc aacctataat 19140gatcctgctt ctcctgcggg tacggcaaca
gactcagata ctttctctac gagtgtcagc 19200tttgaagtcg ttcctgtggt cgatgacgtg
tctgtcactg gaccgggtag cgatcctgat 19260gttatcgaga ttactggcaa cgaagaccag
ctcatttctt tgtcggggac agggcctgta 19320tcgattgcac tgactgacct tgatggttca
gaacagtttg tatcgattaa gttcacagat 19380gtccctgatg gcttccaaat gcgtgcagat
gctggctcga catataccgt gaaaaataat 19440ggtaatggag agtggagtgt tcaactgcct
caagcttcgg ggttgtcatt cgatttaagt 19500gagatttcga tcttgccgcc taaaaacttc
agtggtaccg ctgagtttgg tgtggaagtc 19560ttcactcaag aatcgttgct gggtgtgcct
actgcggcgg caaacttgcc aagcttcaaa 19620ctgcatgtgg tacctgttgg tgacgatgtt
gataccaatc cgactgattc tgtaacaggc 19680aacgaaggcc aaaacattga tatcgaaatc
aatgcgacta ttttggataa agaattgtct 19740gcaacaggaa gcgggacgta taccgagaat
gcgcccgaaa cgcttcgagt tgaagtggcg 19800ggtgttcctc aagatgcttc tattttctat
ccagatggca cgacattggc tagctacgat 19860ccggcgacgc agctctggac tctcgatgtt
ccagctcagt cgttagataa gatcgtattt 19920aactctggcg aacataatag tgatacaggc
aatgtactgg gtatcaatgg tccactgcag 19980attacggtac gttcagtaga tactgatgct
gataatacag agtacctagg tacgccaacc 20040agcttcgatg tcgatctggt gattgatcct
attaacgatc aaccgatctt tgtgaacgta 20100acgaatattg aaacatcgga agacatcagt
gttgccatcg acaactttag tatctacgac 20160gtcgacgcaa actttgataa tccagatgct
ccgtatgaac tgacgcttaa agtcgaccaa 20220acactgccgg gagcgcaagg tgtgtttgag
tttaccagct ctcctgacgt gacgtttgta 20280ttgcaacctg acggctcatt ggtgattacc
ggtaaagaag ccgacattaa taccgcattg 20340actaatggag ctgtgacttt caaacccgac
ccagaccaga actacctcaa ccagactggt 20400ttagtcacaa tcaatgcaac gctcgatgat
ggtggtaata acggtttgat tgacgcggtt 20460gatccgaata ccgctcaaac caatcaaact
accttcacca ttaaggtgac ggaagtgaat 20520gacgctcctg tggcgactaa cgttgattta
ggctcgattg cggaagacgc tcaaatcgtg 20580attgttgaga gtgacttgat tgcagccagt
tctgatctag aaaaccataa tctcacagta 20640accggtgtga ctcttactca agggcaaggt
cagcttacac gctatgaaaa tgctggtggt 20700gctgatgacg cagcgattac ggggccattc
tggatattca ttgcagataa tgatttcaac 20760ggcgacgtta aattcaatta ctccattatc
gatgatggta ccaccaacgg tgtggatgat 20820tttaaaaccg atagcgctga aatcagcctt
gtagttactg aagtcaatga ccagccagtg 20880gcatcgaaca ttgatttggg caccatgctt
gaagaaggac agctggtcat taaagaggaa 20940gacctgattt ccgcaaccac tgatccggaa
aacgacacga ttactgtgaa cagtttggtg 21000ctcgatcaag gtcagggcca attacaacgc
tttgagaacg tgggcggtgc tgatgatgct 21060acgatcactg gcccgtactg ggtatttact
gcagccaacg aatacaacgg tgatgttaag 21120ttcacttata ccgttgagga cgatggtaca
accaacggcg ctgatgattt cttaacagat 21180accggcgaaa ttagcgttgt ggtaacggaa
gtgaatgatc aaccggtggc aacggatatc 21240gacttaggaa acatccttga agaagggcag
ttgatcatca aagaggaaga cttaattgct 21300gctacgagcg atccggaaaa cgacacgatt
accgtgacca atctggtgct cgacgaaggc 21360caaggccagt tacagcgctt tgagaacgtg
ggcggtgctg atgacgctat gattactggc 21420ccgtactgga tatttacggc tgctgatgaa
tacaacggta acgttaagtt cacctatacc 21480gtcgaggatg atggtacaac caacggcgct
aatgatttcc taacggatac tgcagagatc 21540acagcgattg tcgacggagt gaacgatacg
cctgttgtta atggtgacag tgtcactacg 21600attgttgacg aggatgctgg tcagctattg
agtggtatca atgtcagtga cccagattat 21660gtggatgcat tttctaatga cttgatgaca
gtcacgctga cagtggatta cggtacattg 21720aacgtatcac ttccggcagt gacgacagtg
atggtcaacg gcaacaacac tggttcggtt 21780atcttagttg gtactttgag tgacctgaat
gcgctgattg atacgccaac cagtccaaac 21840ggtgtctacc tcgatgcgag cttgtctcca
accaatagca ttggcttaga agtaatcgcc 21900aaagacagcg gtaacccttc tggtatcgcg
attgaaactg caccagtggt ttataatatc 21960gcagtgacac cagtcgctaa tgcgccaacc
ttgtctattg atccggcatt taactatgtg 22020agaaacatta cgaccagctc atctgtggtc
gctaatagtg gagtcgcttt agttggaatt 22080gtcgctgcat tgacggacat tactgaagag
ttaacgttga agatcagcga tgttccggat 22140ggtgttgatg taaccagtga tgtgggtacg
gtttcgttgg tgggtgatac ttggatagcg 22200accgctgatg cgatcgatag tctcagactc
gtagagcagt catcattagg taaaccgttg 22260accccgggta attacacctt gaaagttgag
gcgctatctg aagagactga caacaacgat 22320attgcgatat ctcaaaacat cgatctgaat
ctcaatattg ttgccaatcc aatagatctc 22380gatctgtctt ctgaaacaga cgatgtgcaa
cttttagcga gtaactttga tactaacctc 22440actggcggaa ctggaaatga ccgacttgta
ggtggagcgg gtgacgatac gctggttggc 22500ggtgacggta acgacacact cattggtggc
ggcggttccg atattctaac cggtggcaat 22560ggtatggatt cgtttgtatg gctcaatatt
gaagatggcg ttgaagacac cattaccgat 22620ttcagcctgt ctgaaggaga ccaaatcgac
ctacgagaag tattacctga gttgaagaat 22680acatctccag acatgtctgc attgctacaa
cagatagacg cgaaagtgga aggggatgat 22740attgagctta cgatcaagtc tgatggttta
ggcactacgg aacaggtgat tgtggttgaa 22800gaccttgctc ctcagctaac cttaagtggc
accatgcctt cggatatttt ggatgcgtta 22860gtgcaacaaa atgtcatcac tcacggttaa
2289047629PRTVibrio splendidus 4Met Leu
Cys Asp Asn Gly Gly Cys Met Asp Ile Glu Val Ser Arg Gln1 5
10 15Val Ala Val Val Glu Ala Thr Ser
Gly Asp Val Val Val Val Lys Pro 20 25
30Asp Gly Ser Ala Arg Lys Val Ser Val Gly Asp Thr Ile Arg Glu
Asn 35 40 45Glu Ile Val Ile Thr
Ala Asn Lys Ser Glu Leu Val Leu Gly Val Gln 50 55
60Asn Asp Ser Ile Pro Val Ala Glu Asn Cys Val Gly Cys Val
Asp Glu65 70 75 80Asn
Ala Ala Trp Val Asp Ala Pro Ile Ala Gly Glu Val Asn Phe Asp
85 90 95Leu Gln Gln Ala Asp Ala Glu
Thr Phe Thr Glu Asp Asp Leu Ala Ala 100 105
110Ile Gln Glu Ala Ile Leu Gly Gly Ala Asp Pro Thr Gln Ile
Leu Glu 115 120 125Ala Thr Ala Ala
Gly Gly Gly Leu Gly Ser Ala Asn Ala Gly Phe Val 130
135 140Thr Ile Asp Tyr Asn Tyr Thr Glu Thr His Pro Ser
Thr Phe Phe Glu145 150 155
160Thr Ala Gly Leu Ala Glu Gln Thr Val Asp Glu Asp Arg Glu Glu Phe
165 170 175Arg Ser Ile Thr Arg
Ser Ser Gly Gly Gln Ser Ile Ser Glu Thr Leu 180
185 190Thr Glu Gly Ser Ile Ser Gly Asn Thr Tyr Pro Gln
Ser Val Thr Thr 195 200 205Thr Glu
Thr Ile Ile Ala Gly Ser Leu Ala Leu Ala Pro Asn Ser Phe 210
215 220Ile Pro Glu Thr Leu Ser Leu Ala Ser Leu Leu
Ser Glu Leu Asn Ser225 230 235
240Asp Ile Thr Ser Ser Gly Gln Ser Val Ile Phe Thr Tyr Asp Ala Thr
245 250 255Thr Asn Ser Ile
Val Gly Val Gln Asp Thr Asp Glu Val Leu Arg Ile 260
265 270Asp Ile Asp Ala Val Ser Val Gly Asn Asn Ile
Glu Leu Ser Leu Thr 275 280 285Thr
Thr Ile Ser Gln Pro Ile Asp His Val Pro Ser Val Gly Gly Gly 290
295 300Gln Val Ser Tyr Thr Gly Asp Gln Ile Asp
Ile Ala Phe Asp Ile Gln305 310 315
320Gly Glu Asp Thr Ala Gly Asn Pro Leu Ala Thr Pro Val Asn Ala
Gln 325 330 335Val Ser Val
Phe Asp Gly Ile Asp Pro Ser Val Glu Ser Val Asn Ile 340
345 350Thr Asn Val Glu Thr Ser Ser Ala Ala Ile
Glu Gly Thr Phe Ser Asn 355 360
365Ile Gly Ser Asp Asn Leu Gln Ser Ala Val Phe Asp Ala Ser Ala Leu 370
375 380Asp Gln Phe Asp Gly Leu Leu Ser
Asp Asn Gln Asn Thr Leu Ala Arg385 390
395 400Leu Ser Asp Asp Gly Thr Thr Ile Thr Leu Ser Ile
Gln Gly Arg Gly 405 410
415Glu Val Val Leu Thr Ile Ser Leu Asp Thr Asp Gly Thr Tyr Lys Phe
420 425 430Glu Gln Ser Asn Pro Ile
Glu Gln Val Gly Thr Asp Ser Leu Thr Phe 435 440
445Ala Leu Pro Ile Thr Ile Thr Asp Phe Asp Gln Asp Val Val
Thr Asn 450 455 460Thr Ile Asn Ile Ala
Ile Thr Asp Gly Asp Ser Pro Val Ile Thr Asn465 470
475 480Val Asp Ser Ile Asp Val Asp Glu Ala Gly
Ile Val Gly Gly Ser Gln 485 490
495Glu Gly Thr Ala Pro Val Ser Gly Thr Gly Gly Ile Thr Ala Asp Ile
500 505 510Phe Glu Ser Asp Ile
Ile Asp His Tyr Glu Leu Glu Pro Thr Glu Phe 515
520 525Asn Thr Asn Gly Thr Leu Val Ser Asn Gly Glu Ala
Val Leu Leu Glu 530 535 540Leu Ile Asp
Glu Thr Asn Gly Val Arg Thr Tyr Glu Gly Tyr Val Glu545
550 555 560Val Asn Gly Ser Arg Ile Thr
Val Phe Asp Val Lys Ile Asp Ser Pro 565
570 575Ser Leu Gly Asn Tyr Glu Phe Asn Leu Tyr Glu Glu
Leu Ser His Gln 580 585 590Gly
Ala Glu Asp Ala Leu Leu Thr Phe Ala Leu Pro Ile Tyr Ala Val 595
600 605Asp Ala Asp Gly Asp Arg Ser Ala Leu
Ser Gly Gly Ser Asn Thr Pro 610 615
620Glu Ala Ala Glu Ile Leu Val Asn Val Lys Asp Asp Val Val Glu Leu625
630 635 640Val Asp Lys Val
Glu Ser Val Thr Glu Pro Thr Leu Ala Gly Asp Thr 645
650 655Ile Val Ser Tyr Asn Leu Phe Asn Phe Glu
Gly Ala Asp Gly Ser Thr 660 665
670Ile Gln Ser Phe Asn Tyr Asp Gly Val Asp Tyr Ser Leu Asp Gln Ser
675 680 685Leu Leu Pro Asp Ala Thr Gln
Ile Phe Ser Phe Thr Glu Gly Val Val 690 695
700Thr Ile Ser Leu Asn Gly Asp Phe Ser Phe Glu Val Ala Arg Asp
Ile705 710 715 720Asp His
Ser Ser Ser Glu Thr Ile Val Lys Gln Phe Ser Phe Leu Ala
725 730 735Glu Asp Gly Asp Gly Asp Thr
Asp Ser Ser Thr Leu Glu Leu Ser Ile 740 745
750Thr Asp Gly Gln Asp Pro Ile Ile Asp Leu Ile Pro Pro Val
Thr Leu 755 760 765Ser Glu Thr Asn
Leu Asn Asp Gly Ser Ala Pro Ser Gly Ser Thr Val 770
775 780Ser Ala Thr Glu Thr Ile Thr Phe Thr Ala Gly Ser
Asp Asp Val Ala785 790 795
800Ser Phe Arg Ile Glu Pro Thr Glu Phe Asn Val Gly Gly Ala Leu Lys
805 810 815Ser Asn Gly Phe Ser
Val Glu Ile Lys Glu Asp Ser Ala Asn Pro Gly 820
825 830Thr Tyr Ile Gly Phe Ile Thr Asn Gly Ser Gly Ala
Glu Ile Pro Val 835 840 845Phe Thr
Ile Ala Phe Ser Thr Ser Thr Leu Gly Glu Tyr Thr Phe Thr 850
855 860Leu Leu Glu Ala Leu Asp His Val Asp Gly Leu
Asp Lys Asn Asp Leu865 870 875
880Ser Phe Asp Leu Pro Ile Tyr Ala Val Asp Thr Asp Gly Asp Asp Ser
885 890 895Leu Val Ser Gln
Leu Asn Val Thr Ile Gly Asp Asp Val Gln Ile Met 900
905 910Gln Asp Gly Thr Leu Asp Ile Thr Glu Pro Asn
Leu Ala Asp Gly Thr 915 920 925Ile
Thr Thr Asn Thr Ile Asp Val Met Pro Asn Gln Ser Ala Asp Gly 930
935 940Ala Thr Ile Thr Arg Phe Thr Tyr Asp Gly
Val Val Asn Thr Leu Asp945 950 955
960Gln Ser Ile Ser Gly Glu Gln Gln Phe Ser Phe Thr Glu Gly Glu
Leu 965 970 975Phe Ile Thr
Leu Glu Gly Glu Val Arg Phe Glu Pro Asn Arg Asp Leu 980
985 990Asp His Ser Val Ser Glu Asp Ile Val Lys
Ser Ile Val Val Thr Ser 995 1000
1005Ser Asp Phe Asp Asn Asp Pro Val Thr Ser Thr Ile Thr Leu Thr Ile
1010 1015 1020Thr Asp Gly Asp Asn Pro Thr
Ile Asp Val Ile Pro Ser Val Thr Leu1025 1030
1035 1040Ser Glu Ile Asn Leu Ser Asp Gly Ser Ala Pro Ser
Gly Ser Ala Val 1045 1050
1055Ser Ser Thr Gln Thr Ile Thr Phe Thr Asn Gln Ser Asp Asp Val Val
1060 1065 1070Arg Phe Arg Ile Glu Ser
Thr Glu Phe Asn Thr Asn Asp Asp Leu Lys 1075 1080
1085Ser Asn Gly Leu Ala Val Glu Leu Arg Glu Asp Pro Ala Gly
Ser Gly 1090 1095 1100Asp Tyr Ile Gly
Phe Thr Thr Ser Ala Thr Asn Val Glu Thr Pro Val1105 1110
1115 1120Phe Thr Leu Ser Phe Asn Ser Gly Ser
Leu Gly Glu Tyr Thr Phe Thr 1125 1130
1135Leu Ile Glu Ala Leu Asp His Gln Asp Ala Arg Gly Asn Asn Asp
Leu 1140 1145 1150Ser Phe Asp
Leu Pro Val Tyr Ala Val Asp Ser Asp Gly Asp Asp Ser 1155
1160 1165Leu Val Ser Pro Leu Asn Val Thr Ile Gly Asp
Asp Val Gln Ile Met 1170 1175 1180Gln
Asp Ser Thr Leu Asp Ile Val Glu Pro Thr Val Ala Asp Leu Ala1185
1190 1195 1200Ala Gly Thr Val Thr Thr
Asn Thr Ile Asp Val Met Pro Asn Gln Ser 1205
1210 1215Ala Asp Gly Ala Thr Val Thr Gln Phe Thr Tyr Asp
Gly Gln Leu Arg 1220 1225
1230Thr Leu Asp Gln Asn Asp Asn Gly Glu Gln Gln Phe Ser Phe Thr Glu
1235 1240 1245Gly Glu Leu Phe Ile Thr Leu
Gln Gly Asp Val Arg Phe Glu Pro Asn 1250 1255
1260Arg Asn Leu Asp His Thr Leu Ser Glu Asp Ile Val Lys Ser Ile
Val1265 1270 1275 1280Val Thr
Ser Ser Asp Ser Asp Asn Asp Val Leu Thr Ser Thr Val Thr
1285 1290 1295Leu Thr Ile Thr Asp Gly Asp
Ile Pro Thr Ile Asp Asn Val Pro Thr 1300 1305
1310Val Asn Leu Ser Glu Thr Asn Leu Ser Asp Gly Ser Ala Pro
Ser Gly 1315 1320 1325Ser Ala Val
Ser Ser Thr Gln Thr Ile Thr Tyr Thr Thr Gln Ser Asp 1330
1335 1340Asp Val Thr Ser Phe Arg Ile Glu Pro Thr Glu Phe
Asn Val Gly Gly1345 1350 1355
1360Ala Leu Thr Ser Asn Gly Leu Ala Val Glu Leu Lys Ala Asp Pro Thr
1365 1370 1375Thr Pro Gly Gly Tyr
Ile Gly Phe Val Thr Asp Gly Ser Asn Val Glu 1380
1385 1390Thr Asn Val Phe Thr Ile Ser Phe Ser Asp Thr Asn
Leu Gly Gln Tyr 1395 1400 1405Thr
Phe Thr Leu Leu Glu Ala Leu Asp His Val Asp Gly Leu Ala Asn 1410
1415 1420Asn Asp Leu Thr Phe Asp Leu Pro Val Tyr
Ala Val Asp Ser Asp Gly1425 1430 1435
1440Asp Asp Ser Leu Val Ser Gln Leu Asn Val Thr Ile Gly Asp Asp
Val 1445 1450 1455Gln Ile
Met Gln Gly Gly Thr Leu Asp Ile Thr Glu Pro Asn Leu Ala 1460
1465 1470Asp Gly Thr Ile Thr Thr Asn Thr Ile
Asp Val Met Pro Glu Gln Ser 1475 1480
1485Ala Asp Gly Ala Thr Ile Thr Gln Phe Thr Tyr Asp Gly Gln Val Arg
1490 1495 1500Thr Leu Asp Gln Thr Asp Asn
Gly Glu Gln Gln Phe Ser Phe Thr Glu1505 1510
1515 1520Gly Glu Leu Phe Ile Thr Leu Gln Gly Asp Val Arg
Phe Glu Pro Asn 1525 1530
1535Arg Asn Leu Asp His Thr Ala Ser Glu Asp Ile Val Lys Ser Ile Val
1540 1545 1550Val Thr Ser Ser Asp Leu
Asp Asn Asp Val Val Thr Ser Thr Val Thr 1555 1560
1565Leu Thr Ile Thr Asp Gly Asp Ile Pro Thr Ile Asp Ala Val
Pro Ser 1570 1575 1580Val Thr Leu Ser
Glu Ile Asn Leu Ser Asp Gly Ser Ala Pro Ser Gly1585 1590
1595 1600Thr Ala Val Ser Gln Thr Glu Thr Ile
Thr Phe Thr Asn Gln Ser Asp 1605 1610
1615Asp Val Thr Ser Phe Arg Ile Glu Pro Ile Glu Phe Asn Val Gly
Gly 1620 1625 1630Ala Leu Lys
Ser Asn Gly Phe Ala Val Glu Ile Lys Glu Asp Ser Ala 1635
1640 1645Asn Pro Gly Thr Tyr Ile Gly Phe Ile Thr Asn
Gly Ser Gly Ala Glu 1650 1655 1660Ile
Pro Val Phe Thr Ile Ala Phe Ser Thr Ser Ser Leu Gly Glu Tyr1665
1670 1675 1680Thr Phe Thr Leu Leu Glu
Ala Leu Asp His Val Asp Gly Leu Asp Lys 1685
1690 1695Asn Asp Leu Ser Phe Asp Leu Pro Val Tyr Ala Val
Asp Thr Asp Gly 1700 1705
1710Asp Asp Ser Leu Val Ser Gln Leu Asn Val Thr Ile Gly Asp Asp Val
1715 1720 1725Gln Ile Met Gln Asp Gly Thr
Leu Asp Ile Ile Glu Pro Asn Leu Ala 1730 1735
1740Asp Gly Thr Ile Thr Thr Ser Thr Ile Asp Val Met Pro Asn Gln
Ser1745 1750 1755 1760Ala Asp
Gly Ala Thr Ile Thr Gln Phe Thr Tyr Asp Gly Gln Leu Arg
1765 1770 1775Thr Leu Asp Gln Asn Asp Thr
Gly Glu Gln Gln Phe Ser Phe Thr Glu 1780 1785
1790Gly Glu Leu Phe Ile Thr Leu Glu Gly Glu Val Arg Phe Glu
Pro Asn 1795 1800 1805Arg Asp Leu
Asp His Thr Ala Ser Glu Asp Ile Val Lys Ser Ile Val 1810
1815 1820Val Thr Ser Ser Asp Phe Asp Asn Asp Ser Leu Thr
Ser Thr Val Thr1825 1830 1835
1840Leu Thr Ile Thr Asp Gly Asp Asn Pro Thr Ile Asp Val Ile Pro Ser
1845 1850 1855Val Thr Leu Ser Glu
Thr Asn Leu Ser Asp Gly Ser Ala Pro Ser Gly 1860
1865 1870Ser Ala Val Ser Ser Thr Gln Thr Ile Thr Phe Thr
Asn Gln Ser Asp 1875 1880 1885Asp
Val Val Arg Phe Arg Ile Glu Pro Thr Glu Phe Asn Thr Asn Asp 1890
1895 1900Asp Leu Lys Ser Asn Gly Leu Ala Val Glu
Leu Arg Glu Asp Pro Ala1905 1910 1915
1920Gly Ser Gly Asp Tyr Ile Gly Phe Thr Thr Ser Ala Thr Asn Val
Glu 1925 1930 1935Thr Thr
Val Phe Thr Leu Ser Phe Ser Ser Thr Thr Leu Gly Glu Tyr 1940
1945 1950Thr Phe Thr Leu Leu Glu Ala Leu Asp
His Gln Asp Ala Arg Gly Asn 1955 1960
1965Asn Asp Leu Ser Phe Glu Leu Pro Val Tyr Ala Val Asp Ser Asp Gly
1970 1975 1980Asp Asp Ser Leu Met Ser Pro
Leu Asn Val Thr Ile Gly Asp Asp Val1985 1990
1995 2000Gln Ile Met Gln Asp Gly Thr Leu Asp Ile Val Glu
Pro Thr Val Ala 2005 2010
2015Asp Leu Ala Ala Gly Ile Val Thr Thr Asn Thr Ile Asp Val Met Pro
2020 2025 2030Asn Gln Ser Ala Asp Gly
Ala Thr Ile Thr Gln Phe Thr Tyr Asp Gly 2035 2040
2045Gln Leu Arg Thr Leu Asp Gln Asn Asp Asn Gly Glu Gln Gln
Phe Ser 2050 2055 2060Phe Thr Glu Gly
Glu Leu Phe Ile Thr Leu Glu Gly Glu Val Arg Phe2065 2070
2075 2080Glu Pro Asn Arg Asn Leu Asp His Thr
Leu Asn Glu Asp Ile Val Lys 2085 2090
2095Ser Ile Val Val Thr Ser Ser Asp Ser Asp Asn Asp Val Leu Thr
Ser 2100 2105 2110Thr Val Thr
Leu Thr Ile Thr Asp Gly Asp Ile Pro Thr Ile Asp Asn 2115
2120 2125Val Pro Thr Val Ser Leu Ser Glu Thr Ser Leu
Ser Asp Gly Ser Ser 2130 2135 2140Pro
Ser Gly Ser Ala Val Ser Ser Thr Gln Thr Ile Thr Tyr Thr Thr2145
2150 2155 2160Gln Ser Asp Asp Val Thr
Ser Phe Arg Ile Glu Pro Thr Glu Phe Asn 2165
2170 2175Val Gly Gly Ala Leu Lys Ser Asn Gly Leu Ala Val
Glu Leu Lys Ala 2180 2185
2190Asp Pro Thr Thr Pro Gly Gly Tyr Ile Gly Phe Val Thr Asp Gly Ser
2195 2200 2205Asn Val Glu Thr Asn Val Phe
Thr Ile Ser Phe Ser Asp Thr Asn Leu 2210 2215
2220Gly Gln Tyr Thr Phe Thr Leu Leu Glu Ala Leu Asp His Ala Asp
Ser2225 2230 2235 2240Leu Ala
Asn Asn Asp Leu Ser Phe Asp Leu Pro Val Tyr Ala Val Asp
2245 2250 2255Ser Asp Gly Asp Asp Ser Leu
Val Ser Gln Leu Asn Val Thr Ile Gly 2260 2265
2270Asp Asp Val Gln Ile Met Gln Gly Gly Thr Leu Asp Ile Thr
Glu Pro 2275 2280 2285Asn Leu Ala
Asp Gly Thr Thr Thr Thr Asn Thr Ile Asp Val Met Pro 2290
2295 2300Glu Gln Ser Ala Asp Gly Ala Thr Ile Thr Gln Phe
Thr Tyr Asp Gly2305 2310 2315
2320Gln Val Arg Thr Leu Asp Gln Thr Asp Asn Gly Glu Gln Gln Phe Ser
2325 2330 2335Phe Thr Glu Gly Glu
Leu Phe Ile Thr Leu Gln Gly Asp Val Arg Phe 2340
2345 2350Glu Pro Asn Arg Asn Leu Asp His Thr Ala Ser Glu
Asp Ile Val Lys 2355 2360 2365Ser
Ile Val Val Thr Ser Ser Asp Ser Asp Asn Asp Val Val Thr Ser 2370
2375 2380Thr Val Thr Leu Thr Ile Thr Asp Gly Asp
Leu Pro Thr Ile Asp Ala2385 2390 2395
2400Val Pro Ser Val Thr Leu Ser Glu Thr Asn Leu Ser Asp Gly Ser
Ala 2405 2410 2415Pro Ser
Gly Ser Ala Val Ser Gln Thr Glu Thr Ile Thr Phe Thr Asn 2420
2425 2430Gln Ser Asp Asp Val Ala Ser Phe Arg
Ile Glu Pro Thr Glu Phe Asn 2435 2440
2445Val Gly Gly Ala Leu Lys Ser Asn Gly Phe Ala Val Glu Ile Lys Glu
2450 2455 2460Asp Ser Ala Asn Pro Gly Thr
Tyr Ile Gly Phe Ile Ala Asn Gly Ser2465 2470
2475 2480Ser Ala Glu Ile Pro Val Phe Thr Ile Ala Phe Ser
Thr Ser Thr Leu 2485 2490
2495Gly Glu Tyr Thr Phe Thr Leu Leu Glu Ala Leu Asp His Ala Asp Gly
2500 2505 2510Leu Asp Lys Asn Asp Leu
Ser Phe Glu Leu Pro Val Tyr Ala Val Asp 2515 2520
2525Thr Asp Gly Asp Asp Ser Leu Val Ser Gln Leu Asn Val Thr
Ile Gly 2530 2535 2540Asp Asp Val Gln
Ile Met Gln Asp Gly Thr Leu Asp Val Ile Glu Pro2545 2550
2555 2560Asn Leu Ala Asp Gly Thr Ile Thr Thr
Asn Thr Ile Asp Val Met Pro 2565 2570
2575Glu Gln Ser Ala Asp Gly Ala Thr Ile Thr Gln Phe Thr Tyr Asp
Gly 2580 2585 2590Gln Leu Arg
Thr Leu Asp Gln Asn Asp Thr Gly Glu Gln Gln Phe Ser 2595
2600 2605Phe Thr Glu Gly Glu Leu Phe Ile Thr Leu Glu
Gly Glu Val Arg Phe 2610 2615 2620Glu
Pro Asn Arg Asp Leu Asp His Ser Val Ser Glu Asp Ile Val Lys2625
2630 2635 2640Ser Ile Val Val Thr Ser
Ser Asp Phe Asp Asn Asp Pro Val Thr Ser 2645
2650 2655Ala Ile Thr Leu Thr Ile Thr Asp Gly Asp Asn Pro
Thr Ile Asp Ser 2660 2665
2670Val Pro Ser Val Val Leu Glu Glu Ala Asp Leu Thr Asp Gly Ser Ser
2675 2680 2685Pro Ser Gly Ser Ala Val Ser
Gln Thr Glu Thr Ile Thr Phe Thr Asn 2690 2695
2700Gln Ser Asp Asp Val Glu Lys Phe Arg Leu Glu Pro Ser Glu Phe
Asn2705 2710 2715 2720Thr Asn
Asn Ala Leu Lys Ser Asp Gly Leu Ile Ile Glu Ile Arg Glu
2725 2730 2735Glu Pro Thr Gly Ser Gly Asn
Tyr Ile Gly Phe Thr Thr Asp Ile Ser 2740 2745
2750Asn Val Glu Thr Thr Val Phe Thr Leu Asp Phe Ser Ser Thr
Thr Leu 2755 2760 2765Gly Glu Tyr
Thr Phe Thr Leu Leu Glu Ala Ile Asp His Thr Pro Val 2770
2775 2780Gln Gly Asn Asn Asp Leu Thr Phe Asn Leu Pro Val
Tyr Ala Val Asp2785 2790 2795
2800Ser Asp Gly Asp Asp Ser Leu Met Ser Ser Leu Ser Val Thr Ile Thr
2805 2810 2815Asp Asp Val Gln Val
Met Val Ser Gly Ser Leu Ser Ile Glu Glu Pro 2820
2825 2830Thr Val Ala Asp Leu Ala Ala Gly Thr Pro Thr Thr
Ser Val Phe Asp 2835 2840 2845Val
Leu Thr Ser Ala Ser Ala Asp Gly Ala Thr Ile Thr Gln Phe Thr 2850
2855 2860Tyr Asp Gly Gly Ala Val Leu Thr Leu Asp
Gln Asn Asp Thr Gly Glu2865 2870 2875
2880Gln Lys Phe Val Val Ala Asp Gly Ala Leu Tyr Ile Thr Leu Gln
Gly 2885 2890 2895Asp Ile
Arg Phe Glu Pro Ser Arg Asn Leu Asp His Thr Gly Gly Asp 2900
2905 2910Ile Val Lys Ser Ile Val Val Thr Ser
Ser Asp Ser Asp Ser Asp Leu 2915 2920
2925Val Ser Ser Thr Val Thr Leu Thr Ile Thr Asp Gly Asp Ile Pro Thr
2930 2935 2940Ile Asp Thr Val Pro Ser Val
Thr Leu Ser Glu Thr Asn Leu Ser Asp2945 2950
2955 2960Gly Ser Ala Pro Asn Ala Ser Ala Val Ser Ser Thr
Gln Thr Ile Thr 2965 2970
2975Phe Thr Asn Gln Ser Asp Asp Val Thr Ser Phe Arg Ile Glu Pro Thr
2980 2985 2990Asp Phe Asn Val Gly Gly
Ala Leu Lys Ser Asn Gly Leu Ala Val Glu 2995 3000
3005Leu Lys Ala Asp Pro Thr Thr Pro Gly Gly Tyr Ile Gly Phe
Val Thr 3010 3015 3020Asp Gly Ser Asn
Val Glu Thr Asn Val Phe Thr Ile Ser Phe Ser Asp3025 3030
3035 3040Thr Asn Leu Gly Gln Tyr Thr Phe Thr
Leu Leu Glu Ala Leu Asp His 3045 3050
3055Val Asp Gly Leu Val Lys Asn Asp Leu Thr Phe Asp Leu Pro Val
Tyr 3060 3065 3070Ala Val Asp
Ser Asp Gly Asp Asp Ser Leu Val Ser Gln Leu Asn Val 3075
3080 3085Thr Ile Gly Asp Asp Val Gln Val Met Gln Asn
Gln Ala Leu Asn Ile 3090 3095 3100Ile
Glu Pro Thr Val Ala Asp Leu Ala Ala Gly Thr Pro Thr Thr Ala3105
3110 3115 3120Thr Val Asp Val Met Pro
Ser Gln Ser Ala Asp Gly Ala Thr Ile Thr 3125
3130 3135Gln Phe Thr Tyr Asp Gly Gly Ala Ala Ile Thr Leu
Asp Gln Asn Asp 3140 3145
3150Thr Gly Glu Gln Lys Phe Val Phe Thr Glu Gly Ser Leu Phe Ile Thr
3155 3160 3165Leu Gln Gly Glu Val Arg Phe
Glu Pro Asn Arg Asn Leu Asn His Thr 3170 3175
3180Ala Ser Glu Asp Ile Val Lys Ser Ile Val Val Thr Ser Ser Asp
Leu3185 3190 3195 3200Asp Asn
Asp Val Leu Thr Ser Thr Val Thr Leu Thr Ile Thr Asp Gly
3205 3210 3215Asp Ile Pro Thr Ile Asp Ala
Val Pro Ser Val Thr Leu Ser Glu Thr 3220 3225
3230Asn Leu Ser Asp Gly Ser Ala Pro Ser Ser Ser Ala Val Ser
Gln Thr 3235 3240 3245Glu Thr Ile
Thr Phe Ile Asn Gln Ser Asp Asp Val Ala Ser Phe Arg 3250
3255 3260Ile Glu Pro Thr Glu Phe Asn Val Gly Gly Ala Leu
Lys Ser Asn Gly3265 3270 3275
3280Phe Ala Val Glu Ile Lys Glu Asp Ser Ala Asn Pro Gly Thr Tyr Ile
3285 3290 3295Gly Phe Ile Thr Asp
Gly Ser Asn Thr Glu Val Pro Val Phe Thr Ile 3300
3305 3310Ala Phe Ser Thr Ser Thr Leu Gly Glu Tyr Thr Phe
Thr Leu Leu Glu 3315 3320 3325Ala
Leu Asp His Ala Asn Gly Leu Asp Lys Asn Asp Leu Ser Phe Asp 3330
3335 3340Leu Pro Val Tyr Ala Val Asp Ser Asp Gly
Asp Asp Ser Leu Val Ser3345 3350 3355
3360Gln Leu Asn Val Thr Ile Gly Asp Asp Val Gln Ile Met Gln Asp
Gly 3365 3370 3375Thr Leu
Asp Ile Thr Glu Pro Asn Leu Ala Asp Gly Thr Ile Thr Thr 3380
3385 3390Asn Thr Ile Asp Val Met Pro Asn Gln
Ser Ala Asp Gly Ala Thr Ile 3395 3400
3405Thr Glu Phe Ser Phe Gly Gly Ile Val Lys Thr Leu Asp Gln Ser Ile
3410 3415 3420Val Gly Glu Gln Gln Phe Ser
Phe Thr Glu Gly Glu Leu Phe Ile Thr3425 3430
3435 3440Leu Gln Gly Gln Val Arg Phe Glu Pro Asn Arg Asp
Leu Asp His Ser 3445 3450
3455Ala Ser Glu Asp Ile Val Lys Ser Ile Val Val Thr Ser Ser Asp Phe
3460 3465 3470Asp Asn Asp Pro Val Thr
Ser Thr Val Thr Leu Thr Ile Thr Asp Gly 3475 3480
3485Asp Ile Pro Thr Ile Asp Ala Val Pro Ser Val Thr Leu Ser
Glu Thr 3490 3495 3500Asn Leu Ala Asp
Gly Ser Ala Pro Ser Gly Ser Ala Val Ser Gln Thr3505 3510
3515 3520Glu Thr Ile Thr Phe Thr Asn Gln Ser
Asp Asp Val Val Arg Phe Arg 3525 3530
3535Leu Glu Pro Thr Glu Phe Asn Thr Asn Asp Ala Leu Lys Ser Asn
Gly 3540 3545 3550Leu Ala Val
Glu Leu Arg Glu Glu Pro Gln Gly Ser Gly Gln Tyr Ile 3555
3560 3565Gly Phe Thr Thr Ser Ser Ser Asn Val Glu Thr
Thr Val Phe Thr Leu 3570 3575 3580Asp
Phe Asn Ser Gly Thr Leu Gly Glu Tyr Thr Phe Thr Leu Ile Glu3585
3590 3595 3600Ala Leu Asp His Gln Asp
Ala Arg Gly Asn Asn Asp Leu Ser Phe Asn 3605
3610 3615Leu Pro Val Tyr Ala Val Asp Ser Asp Gly Asp Asp
Ser Leu Val Ser 3620 3625
3630Gln Leu Gly Val Thr Ile Gly Asp Asp Val Gln Leu Met Gln Asp Gly
3635 3640 3645Thr Ile Thr Ser Arg Glu Pro
Ala Ala Ser Val Glu Thr Ser Asn Thr 3650 3655
3660Phe Asp Val Met Pro Asn Gln Ser Ala Asp Gly Ala Lys Val Thr
Ser3665 3670 3675 3680Phe Val
Phe Asp Gly Lys Thr Ala Glu Ser Leu Asp Leu Asn Val Asn
3685 3690 3695Gly Glu Gln Glu Phe Val Phe
Thr Glu Gly Ser Val Phe Ile Thr Thr 3700 3705
3710Glu Gly Glu Ile Arg Phe Glu Pro Val Arg Asn Gln Asn His
Ala Gly 3715 3720 3725Gly Asp Ile
Thr Lys Ser Ile Glu Val Thr Ser Val Asp Leu Asp Gly 3730
3735 3740Asp Ile Val Thr Ser Thr Val Thr Leu Lys Ile Val
Asp Gly Asp Leu3745 3750 3755
3760Pro Thr Ile Asp Leu Val Pro Gly Ile Thr Leu Ser Glu Val Asp Leu
3765 3770 3775Ala Asp Gly Ser Val
Pro Thr Gly Asn Pro Val Thr Met Thr Gln Thr 3780
3785 3790Ile Thr Tyr Thr Ala Gly Ser Asp Asp Val Ser His
Phe Arg Ile Asp 3795 3800 3805Pro
Thr Gln Phe Asn Thr Ser Gly Val Leu Lys Ser Asn Gly Leu Asp 3810
3815 3820Val Glu Ile Lys Glu Gln Pro Ala Asn Ser
Gly Asn Tyr Ile Gly Phe3825 3830 3835
3840Val Lys Asp Gly Ser Asn Val Glu Thr Asn Val Phe Thr Ile Ser
Phe 3845 3850 3855Ser Thr
Ser Asn Leu Gly Gln Tyr Thr Phe Thr Leu Leu Glu Ala Leu 3860
3865 3870Asp His Val Asp Gly Leu Gln Asn Asn
Ile Leu Ser Phe Asp Val Pro 3875 3880
3885Val Leu Ala Val Asp Ala Asp Gly Asp Asp Ser Ala Met Ser Pro Met
3890 3895 3900Thr Val Ala Ile Thr Asp Asp
Val Gln Gly Val Gln Asp Gly Thr Leu3905 3910
3915 3920Ser Ile Thr Glu Pro Ser Leu Ala Asp Leu Ala Ser
Gly Thr Pro Pro 3925 3930
3935Thr Thr Ala Ile Ile Asp Val Met Pro Thr Gln Ser Ala Asp Gly Ala
3940 3945 3950Lys Val Thr Gln Phe Thr
Tyr Asp Gly Gly Thr Ala Val Thr Leu Asp 3955 3960
3965Pro Ser Ile Ala Thr Glu Gln Val Phe Thr Val Thr Asp Gly
Leu Leu 3970 3975 3980Tyr Ile Thr Ile
Glu Gly Glu Val Arg Phe Glu Pro Ser Arg Asp Leu3985 3990
3995 4000Asp His Ser Ser Gly Asp Ile Val Arg
Thr Ile Val Val Thr Thr Ser 4005 4010
4015Asp Phe Asp Asn Asp Thr Asp Thr Ala Asp Val Thr Leu Thr Ile
Lys 4020 4025 4030Asp Gly Ile
Asn Pro Val Ile Asn Val Val Pro Asp Val Asn Leu Ser 4035
4040 4045Glu Val Asn Leu Ala Asp Gly Ser Thr Pro Ser
Gly Ser Ala Val Ser 4050 4055 4060Ser
Thr His Thr Ile Thr Tyr Thr Glu Gly Ser Asp Asp Phe Ser His4065
4070 4075 4080Phe Arg Ile Ala Thr Asn
Glu Phe Asn Pro Gly Asp Leu Leu Lys Ser 4085
4090 4095Ser Gly Leu Val Val Gln Leu Lys Glu Asp Pro Ala
Ser Ala Gly Asp 4100 4105
4110Tyr Ile Gly Tyr Thr Asp Asp Gly Met Gly Asn Val Thr Asp Val Phe
4115 4120 4125Thr Ile Ser Phe Asp Ser Ala
Asn Lys Ala Gln Phe Thr Phe Thr Leu 4130 4135
4140Ile Glu Ala Leu Asp His Leu Asp Gly Val Leu Tyr Asn Asp Leu
Thr4145 4150 4155 4160Phe Arg
Leu Pro Ile Tyr Ala Val Asp Thr Asp Asp Ser Glu Ser Thr
4165 4170 4175Lys Arg Asp Val Val Val Thr
Ile Glu Asp Asp Ile Gln Gln Met Gln 4180 4185
4190Asp Gly Phe Leu Thr Ile Thr Glu Pro Asn Ser Gly Thr Pro
Thr Thr 4195 4200 4205Thr Thr Val
Asp Val Met Pro Ile Pro Ser Ala Asp Gly Ala Thr Ile 4210
4215 4220Thr Gln Phe Thr Tyr Asp Gly Gly Ser Pro Ile Thr
Leu Asn Gln Ser4225 4230 4235
4240Ile Ser Gly Glu Gln Glu Phe Val Phe Thr Glu Gly Ser Leu Phe Val
4245 4250 4255Thr Leu Asp Gly Asp
Val Arg Phe Glu Pro Asn Arg Asn Leu Asp His 4260
4265 4270Ser Ala Gly Asp Ile Val Lys Ser Ile Val Phe Thr
Ser Ser Asp Phe 4275 4280 4285Asp
Asn Asp Ile Phe Ser Ser Lys Val Thr Leu Thr Ile Val Asp Gly 4290
4295 4300Asp Gly Pro Thr Ile Asp Val Val Pro Gly
Val Ala Leu Ser Glu Ser4305 4310 4315
4320Leu Leu Ala Asp Gly Ser Thr Pro Ser Val Asn Pro Val Ser Met
Thr 4325 4330 4335Gln Thr
Ile Thr Ser Leu Ala Ser Ser Asp Asp Ile Ala Glu Ile Val 4340
4345 4350Val Glu Val Gly Leu Phe Asn Thr Asn
Gly Ala Leu Lys Ser Asp Gly 4355 4360
4365Leu Ser Leu Ser Leu Arg Glu Asp Pro Val Asn Ser Gly Asp Tyr Ile
4370 4375 4380Ala Phe Thr Thr Asn Gly Ser
Gly Val Glu Lys Val Ile Phe Thr Leu4385 4390
4395 4400Asp Phe Asp Asp Thr Asn Pro Ser Gln Tyr Thr Phe
Thr Leu Leu Glu 4405 4410
4415Arg Leu Asp His Val Asp Gly Leu Gly Asn Asn Asp Leu Ser Phe Asp
4420 4425 4430Leu Ser Val Tyr Ala Glu
Asp Thr Asp Gly Asp Ile Ser Ala Ser Lys 4435 4440
4445Pro Leu Thr Val Thr Ile Thr Asp Asp Val Gln Leu Met Gln
Ser Gly 4450 4455 4460Ala Leu Asn Ile
Thr Glu Pro Thr Thr Gly Thr Pro Thr Thr Ala Val4465 4470
4475 4480Phe Asp Val Met Pro Ala Gln Ser Ala
Asp Gly Ala Thr Ile Thr Lys 4485 4490
4495Phe Thr Tyr Gly Ser Gln Pro Glu Glu Ser Leu Val Gln Thr Val
Thr 4500 4505 4510Gly Glu Gln
Glu Phe Val Phe Thr Glu Gly Ser Leu Phe Ile Asn Leu 4515
4520 4525Glu Gly Asp Val Arg Phe Glu Pro Asn Arg Asn
Leu Asp His Ser Gly 4530 4535 4540Gly
Asn Ile Val Lys Thr Ile Thr Val Thr Ser Glu Asp Lys Asp Gly4545
4550 4555 4560Asp Ile Val Thr Ser Thr
Val Thr Leu Thr Ile Val Asp Gly Ala Pro 4565
4570 4575Pro Val Ile Asp Thr Val Pro Thr Val Ala Leu Glu
Glu Ala Asn Leu 4580 4585
4590Val Asp Gly Ser Ser Pro Gly Leu Pro Val Ser Gln Thr Glu Ile Ile
4595 4600 4605Thr Phe Thr Ala Gly Ser Asp
Asp Val Ser His Phe Arg Ile Asp Pro 4610 4615
4620Ala Gln Phe Asn Thr Ser Gly Asp Leu Lys Ala Asp Gly Leu Val
Val4625 4630 4635 4640Gln Leu
Lys Glu Asp Pro Leu Asn Ser Asp Asn Tyr Ile Gly Tyr Val
4645 4650 4655Glu Ser Gly Gly Val Gln Thr
Asp Ile Phe Thr Ile Thr Phe Ser Ser 4660 4665
4670Val Val Leu Gly Glu Tyr Thr Phe Thr Leu Leu Glu Glu Leu
Asp His 4675 4680 4685Leu Pro Val
Gln Gly Asn Asn Asp Gln Ile Phe Thr Leu Pro Val Ile 4690
4695 4700Ala Val Asp Lys Asp Asn Thr Asp Ser Ala Val Lys
Pro Leu Thr Val4705 4710 4715
4720Thr Ile Thr Asp Asp Val Pro Thr Ile Thr Asp Thr Thr Gly Ala Ser
4725 4730 4735Thr Phe Val Val Asp
Glu Asp Asp Leu Gly Thr Leu Ala Gln Ala Thr 4740
4745 4750Gly Ser Phe Val Thr Thr Glu Gly Ala Asp Gln Val
Glu Val Tyr Glu 4755 4760 4765Leu
Arg Asn Ile Ser Thr Leu Glu Ala Thr Leu Ser Ser Gly Ser Glu 4770
4775 4780Gly Ile Lys Ile Thr Glu Ile Thr Gly Ala
Ala Asn Thr Thr Thr Tyr4785 4790 4795
4800Gln Gly Ala Thr Asp Pro Ser Gly Thr Pro Ile Phe Thr Leu Val
Leu 4805 4810 4815Thr Asp
Asp Gly Ala Tyr Thr Phe Thr Leu Leu Gly Pro Leu Asn His 4820
4825 4830Ala Thr Thr Pro Ser Asn Leu Asp Thr
Leu Thr Ile Pro Phe Asp Val 4835 4840
4845Val Ala Val Asp Gly Asp Gly Asp Asp Ser Asn Gln Tyr Val Leu Pro
4850 4855 4860Ile Glu Val Leu Asp Asp Val
Pro Val Met Thr Ala Pro Thr Gly Glu4865 4870
4875 4880Thr Val Val Asp Glu Asp Asp Leu Thr Gly Ile Gly
Ser Asp Gln Ser 4885 4890
4895Glu Asp Thr Ile Ile Asn Gly Leu Phe Thr Val Asp Glu Gly Ala Asp
4900 4905 4910Gly Val Val Leu Tyr Glu
Leu Val Asp Glu Asp Leu Val Leu Thr Gly 4915 4920
4925Leu Thr Ser Asp Gly Glu Ser Leu Glu Trp Leu Ala Val Ser
Gln Asn 4930 4935 4940Gly Thr Thr Phe
Thr Tyr Val Ala Gln Thr Ala Thr Ser Asn Glu Ala4945 4950
4955 4960Val Phe Glu Ile Ile Phe Asp Thr Ser
Asp Asn Ser Tyr Gln Phe Glu 4965 4970
4975Leu Phe Lys Pro Leu Lys His Pro Asp Gly Ala Asn Glu Asn Ala
Ile 4980 4985 4990Asp Leu Asp
Phe Ser Ile Val Ala Glu Asp Phe Asp Gln Asp Gln Ser 4995
5000 5005Asp Ala Ile Gly Leu Lys Ile Thr Val Thr Asp
Asp Val Pro Leu Val 5010 5015 5020Thr
Thr Gln Ser Ile Thr Arg Leu Glu Gly Gln Gly Tyr Gly Asn Ser5025
5030 5035 5040Lys Val Asp Met Phe Ala
Asn Ala Thr Asp Val Gly Ala Asp Gly Ala 5045
5050 5055Val Leu Ser Arg Ile Glu Gly Ile Ser Asn Asn Gly
Ala Asp Ile Val 5060 5065
5070Phe Arg Ser Gly Asn Asn Gly Pro Tyr Ser Ser Gly Phe Asp Leu Asn
5075 5080 5085Ser Gly Ser Gln Gln Val Arg
Val Tyr Glu Gln Thr Asn Gly Gly Ala 5090 5095
5100Asp Thr Arg Glu Leu Gly Arg Leu Arg Ile Asn Ser Asn Gly Glu
Val5105 5110 5115 5120Glu Phe
Arg Ala Asn Gly Tyr Leu Asp His Asp Gly Asp Asp Thr Ile
5125 5130 5135Asp Phe Ser Ile Asn Val Ile
Ala Thr Asp Gly Asp Leu Asp Thr Ser 5140 5145
5150Glu Thr Pro Leu Asp Ile Thr Ile Thr Asp Arg Asp Ser Thr
Arg Ile 5155 5160 5165Ala Leu Lys
Val Thr Thr Phe Glu Asp Ala Gly Arg Asp Ser Thr Ile 5170
5175 5180Pro Tyr Ala Thr Gly Asp Glu Pro Thr Leu Glu Asn
Val Gln Asp Asn5185 5190 5195
5200Gln Asn Gly Leu Pro Asn Ala Pro Ala Gln Val Ala Leu Gln Val Ser
5205 5210 5215Leu Tyr Asp Gln Asp
Asn Ala Glu Ser Ile Gly Gln Leu Thr Ile Lys 5220
5225 5230Ser Pro Asn Gly Gly Asp Ser His Gln Gly Thr Phe
Tyr Tyr Phe Asp 5235 5240 5245Gly
Ala Asp Tyr Ile Glu Leu Val Pro Glu Ser Asn Gly Ser Ile Ile 5250
5255 5260Phe Gly Ser Pro Glu Leu Glu Gln Ser Phe
Ala Pro Asn Pro Ser Glu5265 5270 5275
5280Pro Arg Gln Thr Ile Ala Thr Ile Asp Asn Leu Phe Phe Val Pro
Asp 5285 5290 5295Gln His
Ala Ser Ser Asp Glu Thr Gly Gly Arg Val Arg Tyr Glu Leu 5300
5305 5310Glu Ile Glu Lys Asn Gly Ser Thr Asp
His Thr Val Asn Ser Asn Phe 5315 5320
5325Arg Ile Glu Ile Glu Ala Val Ala Asp Ile Ala Thr Trp Asp Asp Ser
5330 5335 5340Asn Ser Thr Tyr Gln Tyr Gln
Val Asn Glu Asp Glu Asp Asn Val Thr5345 5350
5355 5360Leu Gln Leu Asn Ala Glu Ser Gln Asp Asn Ser Asn
Thr Glu Thr Ile 5365 5370
5375Thr Tyr Glu Leu Glu Ala Val Gln Gly Asp Gly Lys Phe Glu Leu Leu
5380 5385 5390Asp Gln Asn Gly Asn Val
Leu Thr Pro Val Asn Gly Val Tyr Ile Ile 5395 5400
5405Ala Ser Ala Asp Ile Asn Ser Thr Val Val Asn Pro Ile Asp
Asn Phe 5410 5415 5420Ser Gly Gln Ile
Glu Phe Lys Ala Thr Ala Ile Thr Glu Glu Thr Leu5425 5430
5435 5440Asn Pro Tyr Asp Asp Ser Asp Asn Gly
Gly Ala Asn Asp Lys Thr Thr 5445 5450
5455Ala Arg Ser Val Glu Gln Ser Ile Val Ile Asp Val Thr Ala Asp
Ala 5460 5465 5470Asp Pro Gly
Thr Phe Ser Val Ser Arg Ile Gln Ile Asn Glu Asp Asn 5475
5480 5485Ile Asp Asp Pro Asp Tyr Val Gly Pro Leu Asp
Asn Lys Asp Ala Phe 5490 5495 5500Thr
Leu Asp Glu Val Ile Thr Met Thr Gly Ser Val Asp Ser Asp Ser5505
5510 5515 5520Ser Glu Glu Leu Phe Val
Arg Ile Ser Asn Val Thr Glu Gly Ala Val 5525
5530 5535Leu Tyr Phe Leu Gly Thr Thr Thr Val Val Pro Thr
Ile Thr Ile Asn 5540 5545
5550Gly Val Asp Tyr Gln Glu Ile Ala Tyr Ser Asp Leu Ala Asn Val Glu
5555 5560 5565Val Val Pro Thr Lys His Ser
Asn Val Asp Phe Thr Phe Asp Val Thr 5570 5575
5580Gly Val Val Lys Asp Thr Ala Asn Leu Ser Thr Gly Ala Gln Ile
Asp5585 5590 5595 5600Glu Glu
Ile Leu Gly Thr Lys Thr Val Asn Val Glu Val Lys Gly Val
5605 5610 5615Ala Asp Thr Pro Tyr Gly Gly
Thr Asn Gly Thr Ala Trp Ser Ala Ile 5620 5625
5630Thr Asp Gly Thr Thr Ser Gly Val Gln Thr Thr Ile Gln Glu
Ser Gln 5635 5640 5645Asn Gly Asp
Thr Phe Ala Glu Leu Asp Phe Thr Val Leu Ser Gly Glu 5650
5655 5660Arg Arg Pro Asp Thr Gly Thr Thr Pro Leu Ala Asp
Asp Gly Ser Glu5665 5670 5675
5680Ser Ile Thr Val Ile Leu Ser Gly Ile Pro Asp Gly Val Val Leu Glu
5685 5690 5695Asp Gly Asp Gly Thr
Val Ile Asp Leu Asn Phe Val Gly Tyr Glu Thr 5700
5705 5710Gly Pro Gly Gly Ser Pro Asp Leu Ser Lys Pro Ile
Tyr Glu Ala Asn 5715 5720 5725Ile
Thr Glu Ala Gly Lys Thr Ser Gly Ile Arg Ile Arg Pro Val Asp 5730
5735 5740Ser Ser Thr Glu Asn Ile His Ile Gln Gly
Lys Val Ile Val Thr Glu5745 5750 5755
5760Asn Asp Gly His Thr Leu Thr Phe Asp Gln Glu Ile Arg Val Leu
Val 5765 5770 5775Ile Pro
Arg Ile Asp Thr Ser Ala Thr Tyr Val Asn Thr Thr Asn Gly 5780
5785 5790Asp Glu Asp Thr Ala Ile Asn Ile Asp
Trp His Pro Glu Gly Thr Asp 5795 5800
5805Tyr Ile Asp Asp Asp Glu His Phe Thr Lys Ile Thr Ile Asn Gly Ile
5810 5815 5820Pro Leu Gly Val Thr Ala Val
Val Asn Gly Asp Val Thr Val Asp Asp5825 5830
5835 5840Ser Thr Pro Gly Thr Leu Ile Ile Thr Pro Lys Asp
Ala Ser Gln Thr 5845 5850
5855Pro Glu Gln Phe Thr Gln Ile Ala Leu Ala Asn Asn Phe Ile Gln Met
5860 5865 5870Thr Pro Pro Ala Asp Ser
Ser Ala Asp Phe Thr Leu Thr Thr Glu Leu 5875 5880
5885Lys Met Glu Glu Arg Asp His Glu Tyr Thr Ser Ser Gly Leu
Glu Asp 5890 5895 5900Glu Asp Gly Gly
Tyr Val Glu Ala Asp Pro Asp Ile Thr Gly Ile Ile5905 5910
5915 5920Asn Val Gln Val Arg Pro Val Val Glu
Pro Gly Asp Ala Asp Asn Lys 5925 5930
5935Ile Val Val Ser Asn Glu Asp Gly Ser Gly Asp Leu Thr Thr Ile
Thr 5940 5945 5950Ala Asp Ala
Asn Gly Val Ile Lys Phe Thr Thr Asn Ser Asp Asn Gln 5955
5960 5965Thr Thr Asp Thr Asn Gly Asp Glu Ile Trp Asp
Gly Glu Tyr Val Val 5970 5975 5980Arg
Tyr Gln Glu Thr Asp Leu Ser Thr Val Glu Glu Gln Val Asp Glu5985
5990 5995 6000Val Ile Val Gln Leu Thr
Asn Thr Asp Gly Ser Ala Leu Ser Asp Asp 6005
6010 6015Ile Leu Gly Gln Leu Leu Val Thr Gly Ala Ser Tyr
Glu Gly Gly Gly 6020 6025
6030Arg Trp Val Val Thr Asn Glu Asp Ala Phe Ser Val Ser Ala Pro Asn
6035 6040 6045Gly Leu Asp Phe Thr Pro Ala
Asn Asp Ala Asp Asp Val Ala Thr Asp 6050 6055
6060Phe Asn Asp Ile Lys Met Thr Ile Phe Thr Leu Val Ser Asp Pro
Gly6065 6070 6075 6080Asp Ala
Asn Asn Glu Thr Ser Ala Gln Val Gln Arg Thr Gly Glu Val
6085 6090 6095Thr Leu Ser Tyr Pro Glu Val
Leu Thr Ala Pro Asp Lys Val Ala Ala 6100 6105
6110Asp Ile Ala Ile Val Pro Asp Ser Val Ile Asp Ala Val Glu
Asp Thr 6115 6120 6125Gln Leu Asp
Leu Gly Ala Ala Leu Asn Gly Ile Leu Ser Leu Thr Gly 6130
6135 6140Arg Asp Asp Ser Thr Asp Gln Val Thr Val Ile Ile
Asp Gly Thr Leu6145 6150 6155
6160Val Ile Asp Ala Thr Thr Ser Phe Pro Ile Ser Leu Ser Gly Thr Ser
6165 6170 6175Asp Val Asp Phe Val
Asn Gly Lys Tyr Val Tyr Glu Thr Thr Val Glu 6180
6185 6190Gln Gly Val Ala Val Asp Ser Ser Gly Leu Leu Leu
Asn Leu Pro Pro 6195 6200 6205Asn
Tyr Ser Gly Asp Phe Arg Leu Pro Met Thr Ile Val Thr Lys Asp 6210
6215 6220Leu Gln Ser Gly Asp Glu Lys Thr Leu Val
Thr Glu Val Ile Ile Lys6225 6230 6235
6240Val Ala Pro Asp Ala Glu Thr Asp Pro Thr Ile Glu Val Asn Val
Val 6245 6250 6255Gly Ser
Leu Asp Asp Ala Phe Asn Pro Val Asp Thr Asp Gly Gln Ala 6260
6265 6270Gly Gln Asp Pro Val Gly Tyr Glu Asp
Thr Tyr Ile Gln Leu Asp Phe 6275 6280
6285Asn Ser Thr Ile Ser Asp Gln Val Ser Gly Val Glu Gly Gly Gln Glu
6290 6295 6300Ala Phe Thr Ser Ile Thr Leu
Thr Leu Asp Asp Pro Ser Ile Gly Ala6305 6310
6315 6320Phe Tyr Asp Asn Thr Gly Thr Ser Leu Gly Thr Ser
Val Thr Phe Asn 6325 6330
6335Gln Ala Glu Ile Ala Ala Gly Ala Leu Asp Asn Val Leu Phe Arg Ala
6340 6345 6350Ile Glu Asn Tyr Pro Thr
Gly Asn Asp Ile Asn Gln Val Gln Val Asn 6355 6360
6365Val Ser Gly Thr Val Thr Asp Thr Ala Thr Tyr Asn Asp Pro
Ala Ser 6370 6375 6380Pro Ala Gly Thr
Ala Thr Asp Ser Asp Thr Phe Ser Thr Ser Val Ser6385 6390
6395 6400Phe Glu Val Val Pro Val Val Asp Asp
Val Ser Val Thr Gly Pro Gly 6405 6410
6415Ser Asp Pro Asp Val Ile Glu Ile Thr Gly Asn Glu Asp Gln Leu
Ile 6420 6425 6430Ser Leu Ser
Gly Thr Gly Pro Val Ser Ile Ala Leu Thr Asp Leu Asp 6435
6440 6445Gly Ser Glu Gln Phe Val Ser Ile Lys Phe Thr
Asp Val Pro Asp Gly 6450 6455 6460Phe
Gln Met Arg Ala Asp Ala Gly Ser Thr Tyr Thr Val Lys Asn Asn6465
6470 6475 6480Gly Asn Gly Glu Trp Ser
Val Gln Leu Pro Gln Ala Ser Gly Leu Ser 6485
6490 6495Phe Asp Leu Ser Glu Ile Ser Ile Leu Pro Pro Lys
Asn Phe Ser Gly 6500 6505
6510Thr Ala Glu Phe Gly Val Glu Val Phe Thr Gln Glu Ser Leu Leu Gly
6515 6520 6525Val Pro Thr Ala Ala Ala Asn
Leu Pro Ser Phe Lys Leu His Val Val 6530 6535
6540Pro Val Gly Asp Asp Val Asp Thr Asn Pro Thr Asp Ser Val Thr
Gly6545 6550 6555 6560Asn Glu
Gly Gln Asn Ile Asp Ile Glu Ile Asn Ala Thr Ile Leu Asp
6565 6570 6575Lys Glu Leu Ser Ala Thr Gly
Ser Gly Thr Tyr Thr Glu Asn Ala Pro 6580 6585
6590Glu Thr Leu Arg Val Glu Val Ala Gly Val Pro Gln Asp Ala
Ser Ile 6595 6600 6605Phe Tyr Pro
Asp Gly Thr Thr Leu Ala Ser Tyr Asp Pro Ala Thr Gln 6610
6615 6620Leu Trp Thr Leu Asp Val Pro Ala Gln Ser Leu Asp
Lys Ile Val Phe6625 6630 6635
6640Asn Ser Gly Glu His Asn Ser Asp Thr Gly Asn Val Leu Gly Ile Asn
6645 6650 6655Gly Pro Leu Gln Ile
Thr Val Arg Ser Val Asp Thr Asp Ala Asp Asn 6660
6665 6670Thr Glu Tyr Leu Gly Thr Pro Thr Ser Phe Asp Val
Asp Leu Val Ile 6675 6680 6685Asp
Pro Ile Asn Asp Gln Pro Ile Phe Val Asn Val Thr Asn Ile Glu 6690
6695 6700Thr Ser Glu Asp Ile Ser Val Ala Ile Asp
Asn Phe Ser Ile Tyr Asp6705 6710 6715
6720Val Asp Ala Asn Phe Asp Asn Pro Asp Ala Pro Tyr Glu Leu Thr
Leu 6725 6730 6735Lys Val
Asp Gln Thr Leu Pro Gly Ala Gln Gly Val Phe Glu Phe Thr 6740
6745 6750Ser Ser Pro Asp Val Thr Phe Val Leu
Gln Pro Asp Gly Ser Leu Val 6755 6760
6765Ile Thr Gly Lys Glu Ala Asp Ile Asn Thr Ala Leu Thr Asn Gly Ala
6770 6775 6780Val Thr Phe Lys Pro Asp Pro
Asp Gln Asn Tyr Leu Asn Gln Thr Gly6785 6790
6795 6800Leu Val Thr Ile Asn Ala Thr Leu Asp Asp Gly Gly
Asn Asn Gly Leu 6805 6810
6815Ile Asp Ala Val Asp Pro Asn Thr Ala Gln Thr Asn Gln Thr Thr Phe
6820 6825 6830Thr Ile Lys Val Thr Glu
Val Asn Asp Ala Pro Val Ala Thr Asn Val 6835 6840
6845Asp Leu Gly Ser Ile Ala Glu Asp Ala Gln Ile Val Ile Val
Glu Ser 6850 6855 6860Asp Leu Ile Ala
Ala Ser Ser Asp Leu Glu Asn His Asn Leu Thr Val6865 6870
6875 6880Thr Gly Val Thr Leu Thr Gln Gly Gln
Gly Gln Leu Thr Arg Tyr Glu 6885 6890
6895Asn Ala Gly Gly Ala Asp Asp Ala Ala Ile Thr Gly Pro Phe Trp
Ile 6900 6905 6910Phe Ile Ala
Asp Asn Asp Phe Asn Gly Asp Val Lys Phe Asn Tyr Ser 6915
6920 6925Ile Ile Asp Asp Gly Thr Thr Asn Gly Val Asp
Asp Phe Lys Thr Asp 6930 6935 6940Ser
Ala Glu Ile Ser Leu Val Val Thr Glu Val Asn Asp Gln Pro Val6945
6950 6955 6960Ala Ser Asn Ile Asp Leu
Gly Thr Met Leu Glu Glu Gly Gln Leu Val 6965
6970 6975Ile Lys Glu Glu Asp Leu Ile Ser Ala Thr Thr Asp
Pro Glu Asn Asp 6980 6985
6990Thr Ile Thr Val Asn Ser Leu Val Leu Asp Gln Gly Gln Gly Gln Leu
6995 7000 7005Gln Arg Phe Glu Asn Val Gly
Gly Ala Asp Asp Ala Thr Ile Thr Gly 7010 7015
7020Pro Tyr Trp Val Phe Thr Ala Ala Asn Glu Tyr Asn Gly Asp Val
Lys7025 7030 7035 7040Phe Thr
Tyr Thr Val Glu Asp Asp Gly Thr Thr Asn Gly Ala Asp Asp
7045 7050 7055Phe Leu Thr Asp Thr Gly Glu
Ile Ser Val Val Val Thr Glu Val Asn 7060 7065
7070Asp Gln Pro Val Ala Thr Asp Ile Asp Leu Gly Asn Ile Leu
Glu Glu 7075 7080 7085Gly Gln Leu
Ile Ile Lys Glu Glu Asp Leu Ile Ala Ala Thr Ser Asp 7090
7095 7100Pro Glu Asn Asp Thr Ile Thr Val Thr Asn Leu Val
Leu Asp Glu Gly7105 7110 7115
7120Gln Gly Gln Leu Gln Arg Phe Glu Asn Val Gly Gly Ala Asp Asp Ala
7125 7130 7135Met Ile Thr Gly Pro
Tyr Trp Ile Phe Thr Ala Ala Asp Glu Tyr Asn 7140
7145 7150Gly Asn Val Lys Phe Thr Tyr Thr Val Glu Asp Asp
Gly Thr Thr Asn 7155 7160 7165Gly
Ala Asn Asp Phe Leu Thr Asp Thr Ala Glu Ile Thr Ala Ile Val 7170
7175 7180Asp Gly Val Asn Asp Thr Pro Val Val Asn
Gly Asp Ser Val Thr Thr7185 7190 7195
7200Ile Val Asp Glu Asp Ala Gly Gln Leu Leu Ser Gly Ile Asn Val
Ser 7205 7210 7215Asp Pro
Asp Tyr Val Asp Ala Phe Ser Asn Asp Leu Met Thr Val Thr 7220
7225 7230Leu Thr Val Asp Tyr Gly Thr Leu Asn
Val Ser Leu Pro Ala Val Thr 7235 7240
7245Thr Val Met Val Asn Gly Asn Asn Thr Gly Ser Val Ile Leu Val Gly
7250 7255 7260Thr Leu Ser Asp Leu Asn Ala
Leu Ile Asp Thr Pro Thr Ser Pro Asn7265 7270
7275 7280Gly Val Tyr Leu Asp Ala Ser Leu Ser Pro Thr Asn
Ser Ile Gly Leu 7285 7290
7295Glu Val Ile Ala Lys Asp Ser Gly Asn Pro Ser Gly Ile Ala Ile Glu
7300 7305 7310Thr Ala Pro Val Val Tyr
Asn Ile Ala Val Thr Pro Val Ala Asn Ala 7315 7320
7325Pro Thr Leu Ser Ile Asp Pro Ala Phe Asn Tyr Val Arg Asn
Ile Thr 7330 7335 7340Thr Ser Ser Ser
Val Val Ala Asn Ser Gly Val Ala Leu Val Gly Ile7345 7350
7355 7360Val Ala Ala Leu Thr Asp Ile Thr Glu
Glu Leu Thr Leu Lys Ile Ser 7365 7370
7375Asp Val Pro Asp Gly Val Asp Val Thr Ser Asp Val Gly Thr Val
Ser 7380 7385 7390Leu Val Gly
Asp Thr Trp Ile Ala Thr Ala Asp Ala Ile Asp Ser Leu 7395
7400 7405Arg Leu Val Glu Gln Ser Ser Leu Gly Lys Pro
Leu Thr Pro Gly Asn 7410 7415 7420Tyr
Thr Leu Lys Val Glu Ala Leu Ser Glu Glu Thr Asp Asn Asn Asp7425
7430 7435 7440Ile Ala Ile Ser Gln Asn
Ile Asp Leu Asn Leu Asn Ile Val Ala Asn 7445
7450 7455Pro Ile Asp Leu Asp Leu Ser Ser Glu Thr Asp Asp
Val Gln Leu Leu 7460 7465
7470Ala Ser Asn Phe Asp Thr Asn Leu Thr Gly Gly Thr Gly Asn Asp Arg
7475 7480 7485Leu Val Gly Gly Ala Gly Asp
Asp Thr Leu Val Gly Gly Asp Gly Asn 7490 7495
7500Asp Thr Leu Ile Gly Gly Gly Gly Ser Asp Ile Leu Thr Gly Gly
Asn7505 7510 7515 7520Gly Met
Asp Ser Phe Val Trp Leu Asn Ile Glu Asp Gly Val Glu Asp
7525 7530 7535Thr Ile Thr Asp Phe Ser Leu
Ser Glu Gly Asp Gln Ile Asp Leu Arg 7540 7545
7550Glu Val Leu Pro Glu Leu Lys Asn Thr Ser Pro Asp Met Ser
Ala Leu 7555 7560 7565Leu Gln Gln
Ile Asp Ala Lys Val Glu Gly Asp Asp Ile Glu Leu Thr 7570
7575 7580Ile Lys Ser Asp Gly Leu Gly Thr Thr Glu Gln Val
Ile Val Val Glu7585 7590 7595
7600Asp Leu Ala Pro Gln Leu Thr Leu Ser Gly Thr Met Pro Ser Asp Ile
7605 7610 7615Leu Asp Ala Leu Val
Gln Gln Asn Val Ile Thr His Gly 7620
76255765DNAVibrio splendidus 5atgaaaaaaa catcactatt acttgcttcc attactctgg
cactttctgg tgtagtacaa 60gctgaccagc tagaagacat tcaaaaatca ggcacacttc
gcgtcggcac cacaggcgac 120tacaaacctt tttcttactt cgacggcaaa acctactctg
gttatgacat tgacgtagcc 180aaacatgttg cagagcagtt gggcgttgaa ttacagattg
ttcgtaccac atggaaagat 240ctactgaccg atctagacag cgataaatac gacatcgcga
tgggcggtat cacgcgtaaa 300atgcagcgtc agttaaacgc agaacaaact caaggttaca
tgacctttgg caagtgtttc 360ttagttgcga aaggcaaagc agaacaatac aacagcattg
agaaagtgaa cctctcttct 420gtgcgtgttg gcgtcaatat cggtgggact aatgagatgt
ttgcggatgc taacttgcaa 480gacgcgagct ttacgcgtta cgagaacaac ctagacgttc
cgcaagccgt tgcggaaggt 540aaagttgatg taatggtgac agaaactcct gaaggtctgt
tctatcaagt gacggacgaa 600cgtcttgaag cggcacgctg tgaaacaccg tttaccaaca
gtcaattcgg ttacctgata 660ccaaaaggtg aacaacgctt gttgaacaca gtgaacttca
ttatggatga gatgaaattg 720aaaggcgtcg aagaagagtt cctgatccac aactctctta
agtaa 7656254PRTVibrio splendidus 6Met Lys Lys Thr Ser
Leu Leu Leu Ala Ser Ile Thr Leu Ala Leu Ser1 5
10 15Gly Val Val Gln Ala Asp Gln Leu Glu Asp Ile
Gln Lys Ser Gly Thr 20 25
30Leu Arg Val Gly Thr Thr Gly Asp Tyr Lys Pro Phe Ser Tyr Phe Asp
35 40 45Gly Lys Thr Tyr Ser Gly Tyr Asp
Ile Asp Val Ala Lys His Val Ala 50 55
60Glu Gln Leu Gly Val Glu Leu Gln Ile Val Arg Thr Thr Trp Lys Asp65
70 75 80Leu Leu Thr Asp Leu
Asp Ser Asp Lys Tyr Asp Ile Ala Met Gly Gly 85
90 95Ile Thr Arg Lys Met Gln Arg Gln Leu Asn Ala
Glu Gln Thr Gln Gly 100 105
110Tyr Met Thr Phe Gly Lys Cys Phe Leu Val Ala Lys Gly Lys Ala Glu
115 120 125Gln Tyr Asn Ser Ile Glu Lys
Val Asn Leu Ser Ser Val Arg Val Gly 130 135
140Val Asn Ile Gly Gly Thr Asn Glu Met Phe Ala Asp Ala Asn Leu
Gln145 150 155 160Asp Ala
Ser Phe Thr Arg Tyr Glu Asn Asn Leu Asp Val Pro Gln Ala
165 170 175Val Ala Glu Gly Lys Val Asp
Val Met Val Thr Glu Thr Pro Glu Gly 180 185
190Leu Phe Tyr Gln Val Thr Asp Glu Arg Leu Glu Ala Ala Arg
Cys Glu 195 200 205Thr Pro Phe Thr
Asn Ser Gln Phe Gly Tyr Leu Ile Pro Lys Gly Glu 210
215 220Gln Arg Leu Leu Asn Thr Val Asn Phe Ile Met Asp
Glu Met Lys Leu225 230 235
240Lys Gly Val Glu Glu Glu Phe Leu Ile His Asn Ser Leu Lys
245 2507765DNAVibrio splendidus 7atgaaaaaaa catcactatt
acttgcttcc attactctgg cactttctgg tgtagtacaa 60gctgaccagc tagaagacat
tcaaaaatca ggcacacttc gcgtcggcac cacaggcgac 120tacaaacctt tttcttactt
cgacggcaaa acctactctg gttatgacat tgacgtagcc 180aaacatgttg cagagcagtt
gggcgttgaa ttacagattg ttcgtaccac atggaaagat 240ctactgaccg atctagacag
cgataaatac gacatcgcga tgggcggtat cacgcgtaaa 300atgcagcgtc agttaaacgc
agaacaaact caaggttaca tgacctttgg caagtgtttc 360ttagttgcga aaggcaaagc
agaacaatac aacagcattg agaaagtgaa cctctcttct 420gtgcgtgttg gcgtcaatat
cggtgggact aatgagatgt ttgcggatgc taacttgcaa 480gacgcgagct ttacgcgtta
cgagaacaac ctagacgttc cgcaagccgt tgcggaaggt 540aaagttgatg taatggtgac
agaaactcct gaaggtctgt tctatcaagt gacggacgaa 600cgtcttgaag cggcacgctg
tgaaacaccg tttaccaaca gtcaattcgg ttacctgata 660ccaaaaggtg aacaacgctt
gttgaacaca gtgaacttca ttatggatga gatgaaattg 720aaaggcgtcg aagaagagtt
cctgatccac aactctctta agtaa 7658588PRTVibrio
splendidus 8Met Thr Ile Asp Thr Phe Val Val Leu Ala Tyr Phe Phe Phe Leu
Ile1 5 10 15Ala Ile Gly
Trp Met Phe Arg Lys Phe Thr Thr Ser Thr Ser Asp Tyr 20
25 30Phe Arg Gly Gly Gly Lys Met Leu Trp Trp
Met Val Gly Ala Thr Ala 35 40
45Phe Met Thr Gln Phe Ser Ala Trp Thr Phe Thr Gly Ala Ala Gly Arg 50
55 60Ala Phe Asn Asp Gly Phe Val Ile Val
Ile Leu Phe Leu Ala Asn Ala65 70 75
80Phe Gly Tyr Phe Met Asn Tyr Met Tyr Phe Ala Pro Lys Phe
Arg Gln 85 90 95Leu Arg
Val Val Thr Ala Ile Glu Ala Ile Arg Gln Arg Phe Gly Lys 100
105 110Thr Ser Glu Gln Phe Phe Thr Trp Ala
Gly Met Pro Asp Ser Leu Ile 115 120
125Ser Ala Gly Ile Trp Leu Asn Gly Leu Ala Ile Phe Val Ala Ala Val
130 135 140Phe Asn Ile Pro Met Glu Ala
Thr Ile Val Val Thr Gly Met Val Leu145 150
155 160Val Leu Met Ala Val Thr Gly Gly Ser Trp Ala Val
Val Ala Ser Asp 165 170
175Phe Met Gln Met Leu Val Ile Met Ala Val Thr Ile Thr Cys Ala Val
180 185 190Ala Ala Tyr Phe His Gly
Gly Gly Leu Thr Asn Ile Val Ala Asn Phe 195 200
205Asp Gly Asp Phe Met Leu Gly Asn Asn Leu Asn Tyr Met Ser
Ile Phe 210 215 220Val Leu Trp Val Val
Phe Ile Phe Val Lys Gln Phe Gly Val Met Asn225 230
235 240Asn Ser Ile Asn Ala Tyr Arg Tyr Leu Cys
Ala Lys Asp Ser Glu Asn 245 250
255Ala Arg Lys Ala Ala Gly Leu Ala Cys Ile Leu Met Val Val Gly Pro
260 265 270Leu Ile Trp Phe Leu
Pro Pro Trp Tyr Val Ser Ala Phe Met Pro Asp 275
280 285Phe Ala Leu Glu Tyr Ala Ser Met Gly Asp Lys Ala
Gly Asp Ala Ala 290 295 300Tyr Leu Ala
Phe Val Gln Asn Val Met Pro Ala Gly Met Val Gly Leu305
310 315 320Leu Met Ser Ala Met Phe Ala
Ala Thr Met Ser Ser Met Asp Ser Gly 325
330 335Leu Asn Arg Asn Ala Gly Ile Phe Val Met Asn Phe
Tyr Ser Pro Ile 340 345 350Leu
Arg Gln Asn Ala Thr Gln Lys Glu Leu Val Ile Val Ser Lys Leu 355
360 365Thr Thr Ile Met Met Gly Ile Ile Ile
Ile Ala Ile Gly Leu Phe Ile 370 375
380Asn Ser Leu Arg His Leu Ser Leu Phe Asp Ile Val Met Asn Val Gly385
390 395 400Ala Leu Ile Gly
Phe Pro Met Leu Ile Pro Val Leu Leu Gly Met Trp 405
410 415Ile Arg Lys Thr Pro Asp Trp Ala Gly Trp
Ser Thr Leu Ile Val Gly 420 425
430Gly Phe Val Ser Tyr Ile Phe Gly Ile Ser Leu Gln Ala Glu Asp Ile
435 440 445Glu His Leu Phe Gly Met Glu
Thr Ala Leu Thr Gly Arg Glu Trp Ser 450 455
460Asp Leu Lys Val Gly Leu Ser Leu Ala Ala His Val Val Phe Thr
Gly465 470 475 480Gly Tyr
Phe Ile Leu Thr Ser Arg Phe Tyr Lys Gly Leu Ser Pro Glu
485 490 495Arg Glu Lys Glu Val Asp Gln
Leu Phe Thr Asn Trp Asn Thr Pro Leu 500 505
510Val Ala Glu Gly Glu Glu Gln Gln Asn Leu Asp Thr Lys Gln
Arg Ser 515 520 525Met Leu Gly Lys
Leu Ile Ser Thr Ala Gly Phe Gly Ile Leu Ala Met 530
535 540Ala Leu Ile Pro Asn Glu Pro Thr Gly Arg Leu Leu
Phe Leu Leu Cys545 550 555
560Gly Ser Met Val Leu Thr Val Gly Ile Leu Leu Val Asn Ala Ser Lys
565 570 575Ala Pro Ala Lys Met
Asn Asn Glu Ser Val Ala Lys 580
5859627DNAVibrio splendidus 9atgacgacat taaatgaaca actagcaaac ctaaaagtaa
ttcctgtaat cgcgatcaac 60cgtgctgaag acgctatccc tctaggtaaa gcgttggttg
aaaatggcat gccatgtgca 120gaaattacac tacgtacaga atgtgcaatc gaagcgattc
gcatcatgcg taaagaattc 180ccagacatgc taatcggttc aggtactgta ctgactaacg
agcaagttga cgcatctatc 240gaagctggtg ttgatttcat cgtaagccca ggttttaacc
cacgtactgt tcaatactgt 300atcgataaag gtattgcaat cgtaccgggt gttaacaacc
caagcctagt tgagcaagca 360atggaaatgg gtcttcgcac gttgaagttc ttccctgctg
agccttcagg cggtactggc 420atgcttaaag cactaacagc agtttaccct gttaaattca
tgcctactgg tggcgtaagc 480ttgaagaatg ttgatgaata cctatcgatc ccttctgttc
ttgcgtgtgg cggtacttgg 540atggttccaa ctaaccttat cgatgaaggt aagtgggacg
aactaggcaa gcttgttcgt 600gacgcagttg atcacgttaa cgcttaa
62710208PRTVibrio splendidus 10Met Thr Thr Leu Asn
Glu Gln Leu Ala Asn Leu Lys Val Ile Pro Val1 5
10 15Ile Ala Ile Asn Arg Ala Glu Asp Ala Ile Pro
Leu Gly Lys Ala Leu 20 25
30Val Glu Asn Gly Met Pro Cys Ala Glu Ile Thr Leu Arg Thr Glu Cys
35 40 45Ala Ile Glu Ala Ile Arg Ile Met
Arg Lys Glu Phe Pro Asp Met Leu 50 55
60Ile Gly Ser Gly Thr Val Leu Thr Asn Glu Gln Val Asp Ala Ser Ile65
70 75 80Glu Ala Gly Val Asp
Phe Ile Val Ser Pro Gly Phe Asn Pro Arg Thr 85
90 95Val Gln Tyr Cys Ile Asp Lys Gly Ile Ala Ile
Val Pro Gly Val Asn 100 105
110Asn Pro Ser Leu Val Glu Gln Ala Met Glu Met Gly Leu Arg Thr Leu
115 120 125Lys Phe Phe Pro Ala Glu Pro
Ser Gly Gly Thr Gly Met Leu Lys Ala 130 135
140Leu Thr Ala Val Tyr Pro Val Lys Phe Met Pro Thr Gly Gly Val
Ser145 150 155 160Leu Lys
Asn Val Asp Glu Tyr Leu Ser Ile Pro Ser Val Leu Ala Cys
165 170 175Gly Gly Thr Trp Met Val Pro
Thr Asn Leu Ile Asp Glu Gly Lys Trp 180 185
190Asp Glu Leu Gly Lys Leu Val Arg Asp Ala Val Asp His Val
Asn Ala 195 200 20511933DNAVibrio
splendidus 11atgaaatcat taaacatcgc ggtcattggc gagtgcatgg ttgagctaca
aaagaaacaa 60gacgggctta agcaaagttt tggtggcgat acgctgaata ctgcacttta
cttgtcacgc 120ttaacaaaag agcaagatat caacacgagc tacgtaactg cactaggcac
tgacccattc 180agtaccgaca tgttaaaaaa ttggcaagcg gaaggtatcg acacgagctt
aattgctcag 240ctggaccaca aacaaccagg gctttactac atcgagaccg atgaaactgg
tgaacgcagt 300ttccactact ggcgtagtga tgctgcagcg aagttcatgt ttgatcagga
agacacgcct 360gctcttcttg ataagctgtt ctcttttgac gcgatttact taagtggtat
tacgctggca 420atcttgacag aaaatggtcg cacgcagcta ttcaacttct tagacaaatt
caaagctcaa 480ggcggccaag tattcttcga caataactac cgacctaaac tttgggaaag
ccaacaagaa 540gcgatttctt ggtacttgaa aatgcttaag tacacagata cggctctgct
gacgtttgat 600gatgagcaag agctatacgg cgacgaaagc attgaacaat gtattacacg
tacgtcagag 660tctggtgtga aagagatcgt cattaaacgt ggcgcgaaag actgcttagt
ggttgaaagc 720caaagcgctc aatacgttgc acccaaccct gtagacaaca tcgttgatac
gactgccgct 780ggcgactcgt tcagtgcagg cttcttggcc aagcgcttga gcggcggtag
tgctcgtgat 840gctgcatttg caggtcatat tgtggcagga accgtgattc agcatccagg
tgctatcatt 900cctctagaag cgacgcctga tctgtctcta taa
93312310PRTVibrio splendidus 12Met Lys Ser Leu Asn Ile Ala
Val Ile Gly Glu Cys Met Val Glu Leu1 5 10
15Gln Lys Lys Gln Asp Gly Leu Lys Gln Ser Phe Gly Gly
Asp Thr Leu 20 25 30Asn Thr
Ala Leu Tyr Leu Ser Arg Leu Thr Lys Glu Gln Asp Ile Asn 35
40 45Thr Ser Tyr Val Thr Ala Leu Gly Thr Asp
Pro Phe Ser Thr Asp Met 50 55 60Leu
Lys Asn Trp Gln Ala Glu Gly Ile Asp Thr Ser Leu Ile Ala Gln65
70 75 80Leu Asp His Lys Gln Pro
Gly Leu Tyr Tyr Ile Glu Thr Asp Glu Thr 85
90 95Gly Glu Arg Ser Phe His Tyr Trp Arg Ser Asp Ala
Ala Ala Lys Phe 100 105 110Met
Phe Asp Gln Glu Asp Thr Pro Ala Leu Leu Asp Lys Leu Phe Ser 115
120 125Phe Asp Ala Ile Tyr Leu Ser Gly Ile
Thr Leu Ala Ile Leu Thr Glu 130 135
140Asn Gly Arg Thr Gln Leu Phe Asn Phe Leu Asp Lys Phe Lys Ala Gln145
150 155 160Gly Gly Gln Val
Phe Phe Asp Asn Asn Tyr Arg Pro Lys Leu Trp Glu 165
170 175Ser Gln Gln Glu Ala Ile Ser Trp Tyr Leu
Lys Met Leu Lys Tyr Thr 180 185
190Asp Thr Ala Leu Leu Thr Phe Asp Asp Glu Gln Glu Leu Tyr Gly Asp
195 200 205Glu Ser Ile Glu Gln Cys Ile
Thr Arg Thr Ser Glu Ser Gly Val Lys 210 215
220Glu Ile Val Ile Lys Arg Gly Ala Lys Asp Cys Leu Val Val Glu
Ser225 230 235 240Gln Ser
Ala Gln Tyr Val Ala Pro Asn Pro Val Asp Asn Ile Val Asp
245 250 255Thr Thr Ala Ala Gly Asp Ser
Phe Ser Ala Gly Phe Leu Ala Lys Arg 260 265
270Leu Ser Gly Gly Ser Ala Arg Asp Ala Ala Phe Ala Gly His
Ile Val 275 280 285Ala Gly Thr Val
Ile Gln His Pro Gly Ala Ile Ile Pro Leu Glu Ala 290
295 300Thr Pro Asp Leu Ser Leu305
31013336DNAVibrio splendidus 13atgaactctt tctttatcct agatgaaaat
ccatgggaag aacttggtgg cggcattaag 60cgtaaaatcg ttgcttacac tgacgatcta
atggcagtac acctatgctt tgataagggc 120gcgattggcc accctcatac tcacgaaatt
cacgaccaaa tcggttatgt tgttcgtggt 180agcttcgaag ctgaaatcga cggcgagaag
aaagtgctta aagaaggcga tgcttacttc 240gctcgtaaac acatgatgca cggtgcagtt
gctctagaac aagacagcat ccttcttgat 300atcttcaatc ctgcgcgtga agatttccta
aaataa 33614111PRTVibrio splendidus 14Met
Asn Ser Phe Phe Ile Leu Asp Glu Asn Pro Trp Glu Glu Leu Gly1
5 10 15Gly Gly Ile Lys Arg Lys Ile
Val Ala Tyr Thr Asp Asp Leu Met Ala 20 25
30Val His Leu Cys Phe Asp Lys Gly Ala Ile Gly His Pro His
Thr His 35 40 45Glu Ile His Asp
Gln Ile Gly Tyr Val Val Arg Gly Ser Phe Glu Ala 50 55
60Glu Ile Asp Gly Glu Lys Lys Val Leu Lys Glu Gly Asp
Ala Tyr Phe65 70 75
80Ala Arg Lys His Met Met His Gly Ala Val Ala Leu Glu Gln Asp Ser
85 90 95Ile Leu Leu Asp Ile Phe
Asn Pro Ala Arg Glu Asp Phe Leu Lys 100 105
110152208DNAVibrio splendidus 15atgacgacta aaccagtatt
gttgactgaa gctgaaatcg aacagcttca tcttgaagtg 60ggccgttcta gcttaatggg
caaaaccatt gcagcgaacg cgaaagacct agaagcattc 120atgcgtttac ctattgatgt
tccaggtcac ggtgaagctg ggggttacga acataaccgc 180cacaagcaaa attacacgta
catgaaccta gctggtcgca tgttcttgat cactaaagag 240caaaaatacg ctgactttgt
tacagaatta ctagaagagt acgcagacaa atatctaacg 300tttgattacc acgtacagaa
aaacaccaac ccaacaggtc gtttgttcca ccaaatccta 360aacgaacact gctggttaat
gttctcaagc ttagcttatt cttgtgttgc ttcaacactg 420acacaagatc agcgtgacaa
tattgagtct cgcatttttg aacccatgct agaaatgttc 480acggttaaat acgcacacga
cttcgaccgt attcacaatc acggtatttg ggcagtagcc 540gctgtgggta tctgtggtct
tgctttaggc aaacgtgaat acctagaaat gtcagtgtac 600ggcatcgacc gtaatgatac
tggcggtttc ctagcgcaag tttctcagct atttgcacct 660tctggctact acatggaagg
tccttactac catcgttatg cgattcgccc aacgtgtgtg 720ttcgctgaag tgattcaccg
tcatatgcct gaagttgata tctacaacta caaaggcggc 780gtgattggta acacagtaca
agctatgctt gcgacagcgt acccgaacgg cgagttcccg 840gctctgaatg atgcttctcg
tactatgggt atcacagaca tgggtgttca ggttgcggtc 900agtgtttaca gtaagcatta
ctcttctgaa aacggtgtag accaaaacat tctgggtatg 960gcgaagattc aagacgcagt
atggatgcat ccatgtggtc ttgagctatc taaagcatac 1020gaagccgcat ctgcagagaa
agaaatcggc atgcctttct ggccaagtgt tgaattgaat 1080gaaggccctc aaggtcacaa
cggcgcgcaa ggctttatcc gtatgcagga taagaaaggc 1140gacgtttctc aacttgtgat
gaactacggc caacacggca tgggtcacgg caactttgat 1200acgctgggta tttctttctt
taaccgcggt caagaagtgc tacgtgaata cggcttctgt 1260cgttgggtta acgttgagcc
aaaattcggc ggccgttacc tagacgaaaa caaatcttac 1320gctcgtcaaa cgattgctca
caatgcagtt acgattgatg aaaaatgtca gaacaacttt 1380gacgttgaac gtgcagactc
agtacatggt ttacctcact tctttaaagt agaagacgat 1440caaatcaacg gtatgagtgc
atttgctaac gatcattacc aaggctttga catgcaacgc 1500agcgtgttca tgctaaatct
tgaagaatta gaatctccgt tattgttaga cctataccgc 1560ttagattcta caaaaggcgg
cgaaggcgag caccaatacg actattcaca ccaatatgcg 1620ggtcagattg ttcgcactaa
cttcgaatac caagcgaaca aagagctaaa cactctaggt 1680gacgatttcg gttaccaaca
tctatggaac gtcgcaagcg gtgaagtgaa gggcacagca 1740attgtaagtt ggctacaaaa
caacacctac tacacatggc taggtgcaac gtctaacgat 1800aatgctgaag taatatttac
tcgcactggc gctaacgacc caagtttcaa tctacgttca 1860gagcctgcgt tcattctacg
cagcaaaggc gaaacaacac tgtttgcttc tgttgttgaa 1920acgcacggtt atttcaacga
agaattcgag caatctgtca atgcacgtgg tgttgtgaaa 1980gacatcaaag tcgtggctca
caccaatgtc ggttcggtag ttgagatcac cacagagaaa 2040tcaaacgtga cagtgatgat
cagcaaccaa cttggcgcga ctgacagcac tgaacacaaa 2100gtagaactga acggcaaagt
atacagctgg aaaggcttct actcagtaga gacaacttta 2160caagaaacga attcagaaga
acttagcact gcagggcagg ggaaataa 220816735PRTVibrio
splendidus 16Met Thr Thr Lys Pro Val Leu Leu Thr Glu Ala Glu Ile Glu Gln
Leu1 5 10 15His Leu Glu
Val Gly Arg Ser Ser Leu Met Gly Lys Thr Ile Ala Ala 20
25 30Asn Ala Lys Asp Leu Glu Ala Phe Met Arg
Leu Pro Ile Asp Val Pro 35 40
45Gly His Gly Glu Ala Gly Gly Tyr Glu His Asn Arg His Lys Gln Asn 50
55 60Tyr Thr Tyr Met Asn Leu Ala Gly Arg
Met Phe Leu Ile Thr Lys Glu65 70 75
80Gln Lys Tyr Ala Asp Phe Val Thr Glu Leu Leu Glu Glu Tyr
Ala Asp 85 90 95Lys Tyr
Leu Thr Phe Asp Tyr His Val Gln Lys Asn Thr Asn Pro Thr 100
105 110Gly Arg Leu Phe His Gln Ile Leu Asn
Glu His Cys Trp Leu Met Phe 115 120
125Ser Ser Leu Ala Tyr Ser Cys Val Ala Ser Thr Leu Thr Gln Asp Gln
130 135 140Arg Asp Asn Ile Glu Ser Arg
Ile Phe Glu Pro Met Leu Glu Met Phe145 150
155 160Thr Val Lys Tyr Ala His Asp Phe Asp Arg Ile His
Asn His Gly Ile 165 170
175Trp Ala Val Ala Ala Val Gly Ile Cys Gly Leu Ala Leu Gly Lys Arg
180 185 190Glu Tyr Leu Glu Met Ser
Val Tyr Gly Ile Asp Arg Asn Asp Thr Gly 195 200
205Gly Phe Leu Ala Gln Val Ser Gln Leu Phe Ala Pro Ser Gly
Tyr Tyr 210 215 220Met Glu Gly Pro Tyr
Tyr His Arg Tyr Ala Ile Arg Pro Thr Cys Val225 230
235 240Phe Ala Glu Val Ile His Arg His Met Pro
Glu Val Asp Ile Tyr Asn 245 250
255Tyr Lys Gly Gly Val Ile Gly Asn Thr Val Gln Ala Met Leu Ala Thr
260 265 270Ala Tyr Pro Asn Gly
Glu Phe Pro Ala Leu Asn Asp Ala Ser Arg Thr 275
280 285Met Gly Ile Thr Asp Met Gly Val Gln Val Ala Val
Ser Val Tyr Ser 290 295 300Lys His Tyr
Ser Ser Glu Asn Gly Val Asp Gln Asn Ile Leu Gly Met305
310 315 320Ala Lys Ile Gln Asp Ala Val
Trp Met His Pro Cys Gly Leu Glu Leu 325
330 335Ser Lys Ala Tyr Glu Ala Ala Ser Ala Glu Lys Glu
Ile Gly Met Pro 340 345 350Phe
Trp Pro Ser Val Glu Leu Asn Glu Gly Pro Gln Gly His Asn Gly 355
360 365Ala Gln Gly Phe Ile Arg Met Gln Asp
Lys Lys Gly Asp Val Ser Gln 370 375
380Leu Val Met Asn Tyr Gly Gln His Gly Met Gly His Gly Asn Phe Asp385
390 395 400Thr Leu Gly Ile
Ser Phe Phe Asn Arg Gly Gln Glu Val Leu Arg Glu 405
410 415Tyr Gly Phe Cys Arg Trp Val Asn Val Glu
Pro Lys Phe Gly Gly Arg 420 425
430Tyr Leu Asp Glu Asn Lys Ser Tyr Ala Arg Gln Thr Ile Ala His Asn
435 440 445Ala Val Thr Ile Asp Glu Lys
Cys Gln Asn Asn Phe Asp Val Glu Arg 450 455
460Ala Asp Ser Val His Gly Leu Pro His Phe Phe Lys Val Glu Asp
Asp465 470 475 480Gln Ile
Asn Gly Met Ser Ala Phe Ala Asn Asp His Tyr Gln Gly Phe
485 490 495Asp Met Gln Arg Ser Val Phe
Met Leu Asn Leu Glu Glu Leu Glu Ser 500 505
510Pro Leu Leu Leu Asp Leu Tyr Arg Leu Asp Ser Thr Lys Gly
Gly Glu 515 520 525Gly Glu His Gln
Tyr Asp Tyr Ser His Gln Tyr Ala Gly Gln Ile Val 530
535 540Arg Thr Asn Phe Glu Tyr Gln Ala Asn Lys Glu Leu
Asn Thr Leu Gly545 550 555
560Asp Asp Phe Gly Tyr Gln His Leu Trp Asn Val Ala Ser Gly Glu Val
565 570 575Lys Gly Thr Ala Ile
Val Ser Trp Leu Gln Asn Asn Thr Tyr Tyr Thr 580
585 590Trp Leu Gly Ala Thr Ser Asn Asp Asn Ala Glu Val
Ile Phe Thr Arg 595 600 605Thr Gly
Ala Asn Asp Pro Ser Phe Asn Leu Arg Ser Glu Pro Ala Phe 610
615 620Ile Leu Arg Ser Lys Gly Glu Thr Thr Leu Phe
Ala Ser Val Val Glu625 630 635
640Thr His Gly Tyr Phe Asn Glu Glu Phe Glu Gln Ser Val Asn Ala Arg
645 650 655Gly Val Val Lys
Asp Ile Lys Val Val Ala His Thr Asn Val Gly Ser 660
665 670Val Val Glu Ile Thr Thr Glu Lys Ser Asn Val
Thr Val Met Ile Ser 675 680 685Asn
Gln Leu Gly Ala Thr Asp Ser Thr Glu His Lys Val Glu Leu Asn 690
695 700Gly Lys Val Tyr Ser Trp Lys Gly Phe Tyr
Ser Val Glu Thr Thr Leu705 710 715
720Gln Glu Thr Asn Ser Glu Glu Leu Ser Thr Ala Gly Gln Gly Lys
725 730 735172154DNAVibrio
splendidus 17atgagctatc aaccactttt acttaacttt gatgaagcag ctgaacttcg
taaagaactt 60ggcaaggata gcctattagg taacgcactg actcgcgaca ttaaacaaac
tgacgcttac 120atggctgaag ttggcattga agtaccaggt cacggtgaag gcggcggtta
cgagcacaac 180cgtcataagc aaaactacat ccatatggat ctagcaggcc gtttgttcct
tatcactgag 240gaaacaaaat accgagatta catcgttgat atgctaacag cgtacgcgac
ggtataccca 300acacttgaaa gcaacgtaag ccgtgactct aaccctccgg gtaagctgtt
ccaccaaacg 360ttgaacgaga acatgtggat gctttacgct tcttgtgcgt acagctgcat
ctaccacacg 420atctctgaag agcaaaagcg tctgatcgaa gacgatcttc ttaagcaaat
gatcgaaatg 480ttcgttgtga cttacgcaca cgacttcgat atcgtacaca accacggctt
atgggcagtg 540gcagcagtag gtatctgtgg ttacgcaatc aacgatcaag agtctgtaga
caaagcacta 600tacggcctga aactagacaa agtcagcggc ggtttcttag cgcaactaga
ccaactgttt 660tcgccagacg gctactacat ggaaggtcct tactaccacc gtttctctct
gcgtccaatc 720tacctgttcg cagaagcgat tgaacgtcgt cagcctgaag ttggtatcta
tgaattcaac 780gattcagtga tcaagacaac gtcttactct gtattcaaaa cggcattccc
agacggtaca 840ttgcctgctc tgaacgattc atcgaagaca atctctatca acgatgaagg
cgttatcatg 900gcaacgtctg tgtgttacca ccgttacgag caaactgaaa ctctacttgg
tatggctaac 960caccagcaaa acgtttgggt tcatgcttca ggtaaaacac tgtctgacgc
ggttgatgca 1020gcagacgaca tcaaagcatt caactggggt agcctgtttg taaccgacgg
ccctgaaggc 1080gaaaaaggcg gcgtaagcat ccttcgtcac cgtgacgaac aagatgacga
cacgatggcg 1140ttgatctggt ttggtcaaca cggttctgat caccagtacc actctgctct
agaccacggt 1200cactacgatg gcctgcacct aagcgtattt aaccgtggcc acgaagtgct
gcacgatttc 1260ggcttcggtc gctgggtaaa cgttgagcct aagtttggcg gtcgttacat
cccagagaac 1320aagtcttact gtaagcagac ggttgctcac aacacagtaa cggttgatca
gaaaacgcag 1380aacaacttca acacagcatt ggctgagtct aagtttggtc agaagcactt
cttcgtagca 1440gacgaccagt ctctacaagg catgagcggc acaatttctg agtactacac
tggcgtagac 1500atgcaacgca gcgtgattct tgctgaactt cctgagttcg agaagccact
tgtaatcgac 1560gtataccgca tcgaagctga cgctgaacac cagtacgacc tacccgttca
ccactctggt 1620cagatcatcc gtactgactt cgattacaac atggaaaaaa cgcttaagcc
gctaggtgaa 1680gacaacggtt accagcactt atggaacgtg gcttcaggca aagtgaacga
agaaggttct 1740ctagtaagct ggctacatga cagcagctac tacagcctag taaccagcgc
gaatgcgggc 1800agcgaagtga tttttgctcg cactggtgct aacgatccag acttcaacct
taagagtgag 1860cctgcgttca tcttacgtca gtctggtcaa aaccacgtgt ttgcttctgt
actagaaacg 1920catggttact ttaacgagtc tatcgaagcc tctgtaggcg ctcgtggtct
agttaaatca 1980gtatctgttg tgggccataa cagtgtcggg actgttgttc gcattcagac
tacttctggc 2040aacacttacc actacggtat ctcaaaccaa gctgaagaca cgcagcaagc
aactcacact 2100gttgagttcg cgggtgagac atactcgtgg gaaggatcat ttgctcaact
gtaa 215418717PRTVibrio slpendidus 18Met Ser Tyr Gln Pro Leu Leu
Leu Asn Phe Asp Glu Ala Ala Glu Leu1 5 10
15Arg Lys Glu Leu Gly Lys Asp Ser Leu Leu Gly Asn Ala
Leu Thr Arg 20 25 30Asp Ile
Lys Gln Thr Asp Ala Tyr Met Ala Glu Val Gly Ile Glu Val 35
40 45Pro Gly His Gly Glu Gly Gly Gly Tyr Glu
His Asn Arg His Lys Gln 50 55 60Asn
Tyr Ile His Met Asp Leu Ala Gly Arg Leu Phe Leu Ile Thr Glu65
70 75 80Glu Thr Lys Tyr Arg Asp
Tyr Ile Val Asp Met Leu Thr Ala Tyr Ala 85
90 95Thr Val Tyr Pro Thr Leu Glu Ser Asn Val Ser Arg
Asp Ser Asn Pro 100 105 110Pro
Gly Lys Leu Phe His Gln Thr Leu Asn Glu Asn Met Trp Met Leu 115
120 125Tyr Ala Ser Cys Ala Tyr Ser Cys Ile
Tyr His Thr Ile Ser Glu Glu 130 135
140Gln Lys Arg Leu Ile Glu Asp Asp Leu Leu Lys Gln Met Ile Glu Met145
150 155 160Phe Val Val Thr
Tyr Ala His Asp Phe Asp Ile Val His Asn His Gly 165
170 175Leu Trp Ala Val Ala Ala Val Gly Ile Cys
Gly Tyr Ala Ile Asn Asp 180 185
190Gln Glu Ser Val Asp Lys Ala Leu Tyr Gly Leu Lys Leu Asp Lys Val
195 200 205Ser Gly Gly Phe Leu Ala Gln
Leu Asp Gln Leu Phe Ser Pro Asp Gly 210 215
220Tyr Tyr Met Glu Gly Pro Tyr Tyr His Arg Phe Ser Leu Arg Pro
Ile225 230 235 240Tyr Leu
Phe Ala Glu Ala Ile Glu Arg Arg Gln Pro Glu Val Gly Ile
245 250 255Tyr Glu Phe Asn Asp Ser Val
Ile Lys Thr Thr Ser Tyr Ser Val Phe 260 265
270Lys Thr Ala Phe Pro Asp Gly Thr Leu Pro Ala Leu Asn Asp
Ser Ser 275 280 285Lys Thr Ile Ser
Ile Asn Asp Glu Gly Val Ile Met Ala Thr Ser Val 290
295 300Cys Tyr His Arg Tyr Glu Gln Thr Glu Thr Leu Leu
Gly Met Ala Asn305 310 315
320His Gln Gln Asn Val Trp Val His Ala Ser Gly Lys Thr Leu Ser Asp
325 330 335Ala Val Asp Ala Ala
Asp Asp Ile Lys Ala Phe Asn Trp Gly Ser Leu 340
345 350Phe Val Thr Asp Gly Pro Glu Gly Glu Lys Gly Gly
Val Ser Ile Leu 355 360 365Arg His
Arg Asp Glu Gln Asp Asp Asp Thr Met Ala Leu Ile Trp Phe 370
375 380Gly Gln His Gly Ser Asp His Gln Tyr His Ser
Ala Leu Asp His Gly385 390 395
400His Tyr Asp Gly Leu His Leu Ser Val Phe Asn Arg Gly His Glu Val
405 410 415Leu His Asp Phe
Gly Phe Gly Arg Trp Val Asn Val Glu Pro Lys Phe 420
425 430Gly Gly Arg Tyr Ile Pro Glu Asn Lys Ser Tyr
Cys Lys Gln Thr Val 435 440 445Ala
His Asn Thr Val Thr Val Asp Gln Lys Thr Gln Asn Asn Phe Asn 450
455 460Thr Ala Leu Ala Glu Ser Lys Phe Gly Gln
Lys His Phe Phe Val Ala465 470 475
480Asp Asp Gln Ser Leu Gln Gly Met Ser Gly Thr Ile Ser Glu Tyr
Tyr 485 490 495Thr Gly Val
Asp Met Gln Arg Ser Val Ile Leu Ala Glu Leu Pro Glu 500
505 510Phe Glu Lys Pro Leu Val Ile Asp Val Tyr
Arg Ile Glu Ala Asp Ala 515 520
525Glu His Gln Tyr Asp Leu Pro Val His His Ser Gly Gln Ile Ile Arg 530
535 540Thr Asp Phe Asp Tyr Asn Met Glu
Lys Thr Leu Lys Pro Leu Gly Glu545 550
555 560Asp Asn Gly Tyr Gln His Leu Trp Asn Val Ala Ser
Gly Lys Val Asn 565 570
575Glu Glu Gly Ser Leu Val Ser Trp Leu His Asp Ser Ser Tyr Tyr Ser
580 585 590Leu Val Thr Ser Ala Asn
Ala Gly Ser Glu Val Ile Phe Ala Arg Thr 595 600
605Gly Ala Asn Asp Pro Asp Phe Asn Leu Lys Ser Glu Pro Ala
Phe Ile 610 615 620Leu Arg Gln Ser Gly
Gln Asn His Val Phe Ala Ser Val Leu Glu Thr625 630
635 640His Gly Tyr Phe Asn Glu Ser Ile Glu Ala
Ser Val Gly Ala Arg Gly 645 650
655Leu Val Lys Ser Val Ser Val Val Gly His Asn Ser Val Gly Thr Val
660 665 670Val Arg Ile Gln Thr
Thr Ser Gly Asn Thr Tyr His Tyr Gly Ile Ser 675
680 685Asn Gln Ala Glu Asp Thr Gln Gln Ala Thr His Thr
Val Glu Phe Ala 690 695 700Gly Glu Thr
Tyr Ser Trp Glu Gly Ser Phe Ala Gln Leu705 710
71519825DNAVibrio splendidus 19atgaagtggt tattggcaat agttgcgatg
tctggtgtcg cattggcggc agaaaataag 60aatgttgagg tgagcagtga gcatttcgtc
cgttatcaat accaagacaa aatcagctat 120ggaaagctag acaatgacgc agtgttaccg
gtcagcggcg atctctttgg cgaatattcg 180gtagcaaaaa attcgatccc gttagagtcg
gttgaggtgt tactaccgac aaaaccagag 240aaagtcttcg ccgtcgggat gaacttcgct
agccacttag cctcacctgc cgatgcacca 300ccgccgatgt ttcttaaact tccttcttct
ttgattctca cgggcgaagt gattcaagtg 360ccaccaaaag caagaaatgt tcattttgaa
ggcgagctgg tggttgtgat tggtagagag 420ctcagtcaag ccagtgaaga agaagccgaa
caagcgatct ttggcgtcac ggtgggcaac 480gatattactg aaagaagttg gcaaggcgcc
gatttacaat ggctccgagc gaaagcttcc 540gatggttttg gcccggttgg caacacaatt
gtgcgcggca ttgattacaa caatattgag 600ttaaccactc gtgttaacgg taaagtggtt
caacaagaaa atacttcgtt catgatccac 660aagccaagaa aagtcgtgag ctatttgagc
tattatttta ccctcaaacc gggcgatcta 720attttcatgg gcacgccagg tagaacttat
gctctgtccg acaaagatca agtgagtgtc 780acgattgaag gggtagggac tgtggtaaat
gaagtgcggt tctga 82520274PRTVibrio splendidus 20Met
Lys Trp Leu Leu Ala Ile Val Ala Met Ser Gly Val Ala Leu Ala1
5 10 15Ala Glu Asn Lys Asn Val Glu
Val Ser Ser Glu His Phe Val Arg Tyr 20 25
30Gln Tyr Gln Asp Lys Ile Ser Tyr Gly Lys Leu Asp Asn Asp
Ala Val 35 40 45Leu Pro Val Ser
Gly Asp Leu Phe Gly Glu Tyr Ser Val Ala Lys Asn 50 55
60Ser Ile Pro Leu Glu Ser Val Glu Val Leu Leu Pro Thr
Lys Pro Glu65 70 75
80Lys Val Phe Ala Val Gly Met Asn Phe Ala Ser His Leu Ala Ser Pro
85 90 95Ala Asp Ala Pro Pro Pro
Met Phe Leu Lys Leu Pro Ser Ser Leu Ile 100
105 110Leu Thr Gly Glu Val Ile Gln Val Pro Pro Lys Ala
Arg Asn Val His 115 120 125Phe Glu
Gly Glu Leu Val Val Val Ile Gly Arg Glu Leu Ser Gln Ala 130
135 140Ser Glu Glu Glu Ala Glu Gln Ala Ile Phe Gly
Val Thr Val Gly Asn145 150 155
160Asp Ile Thr Glu Arg Ser Trp Gln Gly Ala Asp Leu Gln Trp Leu Arg
165 170 175Ala Lys Ala Ser
Asp Gly Phe Gly Pro Val Gly Asn Thr Ile Val Arg 180
185 190Gly Ile Asp Tyr Asn Asn Ile Glu Leu Thr Thr
Arg Val Asn Gly Lys 195 200 205Val
Val Gln Gln Glu Asn Thr Ser Phe Met Ile His Lys Pro Arg Lys 210
215 220Val Val Ser Tyr Leu Ser Tyr Tyr Phe Thr
Leu Lys Pro Gly Asp Leu225 230 235
240Ile Phe Met Gly Thr Pro Gly Arg Thr Tyr Ala Leu Ser Asp Lys
Asp 245 250 255Gln Val Ser
Val Thr Ile Glu Gly Val Gly Thr Val Val Asn Glu Val 260
265 270Arg Phe21717DNAVibrio splendidus
21atggctagca cttttaattc aatttcgggc tcgaagcgta gcctgcacgt gcaagtagca
60cgcgaaatcg ctcgaggaat tttgtctggt gatctgccgc aaggttctat tattcctggt
120gaaatggcgt tgtgtgaaca gtttggtatc agccgaacgg cacttcgtga agcagttaaa
180ctactgacct ctaaaggtct gttagagtct cgccctaaaa ttggtactcg cgtagtcgac
240cgcgcatact ggaacttcct tgatcctcaa ctgattgaat ggatggacgg actaaccgac
300gtagaccaat tctgttctca gtttttaggc cttcgccgtg cgatcgagcc tgaagcgtgt
360gcactggcgg caaaatttgc gacagctgaa caacgtatcg agctttcaga gatcttccaa
420aagatggtcg aagtggatga agctgaagtg tttgaccaag aacgttggac agacattgat
480actcgtttcc atagcttgat cttcaatgcg accggtaacg acttctatct accgttcggt
540aatattctga ctactatgtt cgttaacttc atagtgcatt cttctgaaga gggaagcaca
600tgcatcaatg aacaccgcag aatctatgaa gctatcatgg ccggtgattg tgacaaggct
660agaattgctt ctgctgttca cttgcaagat gccaaccacc gtttggcaac agcataa
71722238PRTVibrio splendidus 22Met Ala Ser Thr Phe Asn Ser Ile Ser Gly
Ser Lys Arg Ser Leu His1 5 10
15Val Gln Val Ala Arg Glu Ile Ala Arg Gly Ile Leu Ser Gly Asp Leu
20 25 30Pro Gln Gly Ser Ile Ile
Pro Gly Glu Met Ala Leu Cys Glu Gln Phe 35 40
45Gly Ile Ser Arg Thr Ala Leu Arg Glu Ala Val Lys Leu Leu
Thr Ser 50 55 60Lys Gly Leu Leu Glu
Ser Arg Pro Lys Ile Gly Thr Arg Val Val Asp65 70
75 80Arg Ala Tyr Trp Asn Phe Leu Asp Pro Gln
Leu Ile Glu Trp Met Asp 85 90
95Gly Leu Thr Asp Val Asp Gln Phe Cys Ser Gln Phe Leu Gly Leu Arg
100 105 110Arg Ala Ile Glu Pro
Glu Ala Cys Ala Leu Ala Ala Lys Phe Ala Thr 115
120 125Ala Glu Gln Arg Ile Glu Leu Ser Glu Ile Phe Gln
Lys Met Val Glu 130 135 140Val Asp Glu
Ala Glu Val Phe Asp Gln Glu Arg Trp Thr Asp Ile Asp145
150 155 160Thr Arg Phe His Ser Leu Ile
Phe Asn Ala Thr Gly Asn Asp Phe Tyr 165
170 175Leu Pro Phe Gly Asn Ile Leu Thr Thr Met Phe Val
Asn Phe Ile Val 180 185 190His
Ser Ser Glu Glu Gly Ser Thr Cys Ile Asn Glu His Arg Arg Ile 195
200 205Tyr Glu Ala Ile Met Ala Gly Asp Cys
Asp Lys Ala Arg Ile Ala Ser 210 215
220Ala Val His Leu Gln Asp Ala Asn His Arg Leu Ala Thr Ala225
230 235231779DNAVibrio splendidus 23atggaactca
acacgattat tgtcggcatt tatttcctat tcttgattgc gataggttgg 60atgtttagaa
catttacaag tactactagt gactacttcc gcgggggcgg taacatgttg 120tggtggatgg
ttggtgcaac cgcctttatg acccagttta gtgcatggac attcaccggt 180gcagcaggta
aagcgtataa cgatggtttc gctgtagcgg tcatcttcgt agccaacgca 240tttggttact
tcatgaacta cgcgtacttc gcgccgaaat tccgtcaact tcgcgttgtt 300acggtaatcg
aagcgattcg tatgcgtttt ggtgcgacca acgaacaagt attcacttgg 360tcttcaatgc
caaactcagt ggtatctgcg ggtgtgtggt taaacgcatt ggcaatcatc 420gcttcgggta
tcttcggttt cgacatgaac atgactatct gggtgactgg cctagtggta 480ttggcaatgt
cggtaacagg tggttcatgg gcggtaatcg catctgactt catgcagatg 540gttatcatca
tggcggtaac ggtaacttgt gcggttgtag cggttgttca aggtggcggt 600gttggtgaga
ttgttaacaa cttcccagta caagatggtg gttcgttcct ttggggcaac 660aacatcaact
acctaagcat ctttacgatt tgggcattct tcatcttcgt taagcagttc 720tcaatcacga
acaacatgct taactcttac cgttacctag cggctaaaga ctcaaagaac 780gctaagaaag
ctgcactgct tgcttgtgtg ttgatgttgt gtggtgtgtt tatttggttc 840atgccttctt
ggttcattgc aggccaaggt gttgatttat cagcggctta cccgaatgca 900ggtaaaaaag
cgggtgactt tgcttaccta tacttcgtac aagagtacat gccagcaggt 960atggttggtc
tattagttgc cgcgatgttt gcagcgacaa tgtcttcaat ggactcaggt 1020ctaaaccgta
actcaggtat ttttgttaag aacttctacg aaacaatcgt tcgtaaaggt 1080caagcatcag
agaaagagct agtaaccgta tctaaaatta cttcagcggt atttggtttc 1140gctattatcc
taatcgcaca gttcatcaac tcattaaaag gcttaagcct gtttgatacg 1200atgatgtacg
taggtgcgtt aatcggcttc cctatgacga ttcctgcatt ccttggtttc 1260ttcatcaaga
agactccgga ctgggctggt tggggaacgc tagttgttgg tggtatcgta 1320tcttatgtgg
ttggttttgt tatcaacgcg gagatggtag cagcggcgtt tggtcttgat 1380actctaacag
gacgtgaatg gtctgatgtt aaagttgcga ttggtctgat tgctcacatc 1440acgctaaccg
gtggcttctt cgtactatct acgatgttct acaagcctct atcaaaagaa 1500cgtcaagcgg
atgttgataa gttctttggc aacttagata ccccattagt agctgaatcg 1560gcagagcaaa
aagtgttgga taacaaacaa cgtcaaatgc ttggtaaact gattgcggta 1620gcgggtgttg
gtattatgct gatggctctt ctgactaacc caatgtgggg gcgcctagtc 1680ttcatcttat
gtggtgtgat agtgggtggt gtcggtattc tacttgtgaa agcggtcgat 1740gacggcggca
agcaagcgaa agcagtaacc gaaagctaa
177924592PRTVibrio splendidus 24Met Glu Leu Asn Thr Ile Ile Val Gly Ile
Tyr Phe Leu Phe Leu Ile1 5 10
15Ala Ile Gly Trp Met Phe Arg Thr Phe Thr Ser Thr Thr Ser Asp Tyr
20 25 30Phe Arg Gly Gly Gly Asn
Met Leu Trp Trp Met Val Gly Ala Thr Ala 35 40
45Phe Met Thr Gln Phe Ser Ala Trp Thr Phe Thr Gly Ala Ala
Gly Lys 50 55 60Ala Tyr Asn Asp Gly
Phe Ala Val Ala Val Ile Phe Val Ala Asn Ala65 70
75 80Phe Gly Tyr Phe Met Asn Tyr Ala Tyr Phe
Ala Pro Lys Phe Arg Gln 85 90
95Leu Arg Val Val Thr Val Ile Glu Ala Ile Arg Met Arg Phe Gly Ala
100 105 110Thr Asn Glu Gln Val
Phe Thr Trp Ser Ser Met Pro Asn Ser Val Val 115
120 125Ser Ala Gly Val Trp Leu Asn Ala Leu Ala Ile Ile
Ala Ser Gly Ile 130 135 140Phe Gly Phe
Asp Met Asn Met Thr Ile Trp Val Thr Gly Leu Val Val145
150 155 160Leu Ala Met Ser Val Thr Gly
Gly Ser Trp Ala Val Ile Ala Ser Asp 165
170 175Phe Met Gln Met Val Ile Ile Met Ala Val Thr Val
Thr Cys Ala Val 180 185 190Val
Ala Val Val Gln Gly Gly Gly Val Gly Glu Ile Val Asn Asn Phe 195
200 205Pro Val Gln Asp Gly Gly Ser Phe Leu
Trp Gly Asn Asn Ile Asn Tyr 210 215
220Leu Ser Ile Phe Thr Ile Trp Ala Phe Phe Ile Phe Val Lys Gln Phe225
230 235 240Ser Ile Thr Asn
Asn Met Leu Asn Ser Tyr Arg Tyr Leu Ala Ala Lys 245
250 255Asp Ser Lys Asn Ala Lys Lys Ala Ala Leu
Leu Ala Cys Val Leu Met 260 265
270Leu Cys Gly Val Phe Ile Trp Phe Met Pro Ser Trp Phe Ile Ala Gly
275 280 285Gln Gly Val Asp Leu Ser Ala
Ala Tyr Pro Asn Ala Gly Lys Lys Ala 290 295
300Gly Asp Phe Ala Tyr Leu Tyr Phe Val Gln Glu Tyr Met Pro Ala
Gly305 310 315 320Met Val
Gly Leu Leu Val Ala Ala Met Phe Ala Ala Thr Met Ser Ser
325 330 335Met Asp Ser Gly Leu Asn Arg
Asn Ser Gly Ile Phe Val Lys Asn Phe 340 345
350Tyr Glu Thr Ile Val Arg Lys Gly Gln Ala Ser Glu Lys Glu
Leu Val 355 360 365Thr Val Ser Lys
Ile Thr Ser Ala Val Phe Gly Phe Ala Ile Ile Leu 370
375 380Ile Ala Gln Phe Ile Asn Ser Leu Lys Gly Leu Ser
Leu Phe Asp Thr385 390 395
400Met Met Tyr Val Gly Ala Leu Ile Gly Phe Pro Met Thr Ile Pro Ala
405 410 415Phe Leu Gly Phe Phe
Ile Lys Lys Thr Pro Asp Trp Ala Gly Trp Gly 420
425 430Thr Leu Val Val Gly Gly Ile Val Ser Tyr Val Val
Gly Phe Val Ile 435 440 445Asn Ala
Glu Met Val Ala Ala Ala Phe Gly Leu Asp Thr Leu Thr Gly 450
455 460Arg Glu Trp Ser Asp Val Lys Val Ala Ile Gly
Leu Ile Ala His Ile465 470 475
480Thr Leu Thr Gly Gly Phe Phe Val Leu Ser Thr Met Phe Tyr Lys Pro
485 490 495Leu Ser Lys Glu
Arg Gln Ala Asp Val Asp Lys Phe Phe Gly Asn Leu 500
505 510Asp Thr Pro Leu Val Ala Glu Ser Ala Glu Gln
Lys Val Leu Asp Asn 515 520 525Lys
Gln Arg Gln Met Leu Gly Lys Leu Ile Ala Val Ala Gly Val Gly 530
535 540Ile Met Leu Met Ala Leu Leu Thr Asn Pro
Met Trp Gly Arg Leu Val545 550 555
560Phe Ile Leu Cys Gly Val Ile Val Gly Gly Val Gly Ile Leu Leu
Val 565 570 575Lys Ala Val
Asp Asp Gly Gly Lys Gln Ala Lys Ala Val Thr Glu Ser 580
585 590252079DNAVibrio splendidus 25atgagcgacc
aaaaatctct tgatgcaatc aggaagatga agctggaaaa cgatacttca 60gcaggtaatc
ttgtagacct actccctatc gaagttcaaa cacgtgactt cgacctatca 120ttcctagaca
ccttgagcga agcacgtccg cgtcttcttg ttcaagctga tcagctagaa 180gaattcaaag
caaaagtgaa agctgatcaa gctcactgta tgtttgatga tttctacaac 240aactctaccg
ttaagttcct tgagactgct cctttcgaag agcctcaagc gtacccagct 300gagacggtag
gtaaagcttc tctatggcgt ccttattggc gtcaaatgta cgttgattgc 360caaatggcac
tgaacgcgac acgtaaccta gcgattgctg gtgttgtaaa agaagacgaa 420gcgctcattg
cgaaagcaaa agcttggact ctaaaactgt ctacgtacga tccagaaggc 480gtgacttctc
gtggctataa cgatgaagcg gctttccgtg ttatcgctgc tatggcttgg 540ggttacgatt
ggctacacgg ctacttcacc gatgaagaac gccagcaagt tcaagatgct 600ttgattgagc
gtctagacga aatcatgcac cacctgaaag tgacggttga tctattgaac 660aacccactaa
atagccacgg tgttcgttct atctcttctg ctatcatccc aacgtgtatc 720gcgctttacc
acgatcaccc gaaagcaggc gagtacattg catacgcgct agaatactac 780gcagtacatt
acccaccatg gggcggtgta gacggcggtt gggctgaagg tcctgattac 840tggaacacgc
aaactgcatt cctaggcgaa gcattcgacc tattgaaagc atactgtggt 900gtagacatgt
ttaacaaaac attctacgaa aacacaggtg atttcccgct ttactgcatg 960ccagttcact
ctaagcgcgc gagcttctgt gaccagtctt caatcggcga tttcccaggt 1020ttaaaactgg
cttacaacat caagcactac gcaggtgtta accagaagcc tgagtacgtt 1080tggtactata
accagcttaa aggccgtgat actgaagcac acaccaaatt ctacaacttc 1140ggttggtggg
acttcggtta tgacgatctt cgttttaact tcctttggga tgcacctgaa 1200gagaaagccc
catcgaacga tccactgttg aaagtattcc caatcacggg ttgggctgca 1260ttccacaaca
agatgactga gcgtgataac catattcaca tggtattcaa atgttctccg 1320tttggctcaa
tcagccactc tcacggtgac caaaacgcat ttacgcttca cgcatttggt 1380gaaacgctag
cgtcagtaac aggttactat ggtggtttcg gtgtagacat gcacacgaaa 1440tggcgtcgtc
aaacgttctc taaaaacctg ccactatttg gcggtaaagg tcagtacggc 1500gagaacaaga
acacaggcta cgaaaaccac caagatcgct tttgtatcga agcgggcggc 1560actatctctg
acttcgacac tgaatctgat gtgaagatgg ttgaaggtga tgcaacggca 1620tcttacaagt
acttcgttcc tgaaatcgaa tcttacaagc gtaaagtctg gttcgttcaa 1680ggtaaagtct
tcgtaatgca agacaaggca acgctttctg aagagaaaga catgacttgg 1740ctaatgcaca
caactttcgc aaacgaagtg gcagacaagt ctttcactat ccgtggcgaa 1800gttgcgcacc
tagacgtaaa cttcatcaac gagtctgctg ataacatcac gtcagttaag 1860aacgttgaag
gctttggcga agttgaccca tacgagttca aagatcttga gatccaccgt 1920cacgtggaag
tggaattcaa gccatcgaaa gagcacaaca tcctgacgct tcttgttcct 1980aataagaatg
aaggcgagca agttgaagtg tttcacaagc ttgaaggcaa cacgctactg 2040ctaaatgttg
acggcgaaac ggtttcaatc gaactgtaa
207926692PRTVibrio splendidus 26Met Ser Asp Gln Lys Ser Leu Asp Ala Ile
Arg Lys Met Lys Leu Glu1 5 10
15Asn Asp Thr Ser Ala Gly Asn Leu Val Asp Leu Leu Pro Ile Glu Val
20 25 30Gln Thr Arg Asp Phe Asp
Leu Ser Phe Leu Asp Thr Leu Ser Glu Ala 35 40
45Arg Pro Arg Leu Leu Val Gln Ala Asp Gln Leu Glu Glu Phe
Lys Ala 50 55 60Lys Val Lys Ala Asp
Gln Ala His Cys Met Phe Asp Asp Phe Tyr Asn65 70
75 80Asn Ser Thr Val Lys Phe Leu Glu Thr Ala
Pro Phe Glu Glu Pro Gln 85 90
95Ala Tyr Pro Ala Glu Thr Val Gly Lys Ala Ser Leu Trp Arg Pro Tyr
100 105 110Trp Arg Gln Met Tyr
Val Asp Cys Gln Met Ala Leu Asn Ala Thr Arg 115
120 125Asn Leu Ala Ile Ala Gly Val Val Lys Glu Asp Glu
Ala Leu Ile Ala 130 135 140Lys Ala Lys
Ala Trp Thr Leu Lys Leu Ser Thr Tyr Asp Pro Glu Gly145
150 155 160Val Thr Ser Arg Gly Tyr Asn
Asp Glu Ala Ala Phe Arg Val Ile Ala 165
170 175Ala Met Ala Trp Gly Tyr Asp Trp Leu His Gly Tyr
Phe Thr Asp Glu 180 185 190Glu
Arg Gln Gln Val Gln Asp Ala Leu Ile Glu Arg Leu Asp Glu Ile 195
200 205Met His His Leu Lys Val Thr Val Asp
Leu Leu Asn Asn Pro Leu Asn 210 215
220Ser His Gly Val Arg Ser Ile Ser Ser Ala Ile Ile Pro Thr Cys Ile225
230 235 240Ala Leu Tyr His
Asp His Pro Lys Ala Gly Glu Tyr Ile Ala Tyr Ala 245
250 255Leu Glu Tyr Tyr Ala Val His Tyr Pro Pro
Trp Gly Gly Val Asp Gly 260 265
270Gly Trp Ala Glu Gly Pro Asp Tyr Trp Asn Thr Gln Thr Ala Phe Leu
275 280 285Gly Glu Ala Phe Asp Leu Leu
Lys Ala Tyr Cys Gly Val Asp Met Phe 290 295
300Asn Lys Thr Phe Tyr Glu Asn Thr Gly Asp Phe Pro Leu Tyr Cys
Met305 310 315 320Pro Val
His Ser Lys Arg Ala Ser Phe Cys Asp Gln Ser Ser Ile Gly
325 330 335Asp Phe Pro Gly Leu Lys Leu
Ala Tyr Asn Ile Lys His Tyr Ala Gly 340 345
350Val Asn Gln Lys Pro Glu Tyr Val Trp Tyr Tyr Asn Gln Leu
Lys Gly 355 360 365Arg Asp Thr Glu
Ala His Thr Lys Phe Tyr Asn Phe Gly Trp Trp Asp 370
375 380Phe Gly Tyr Asp Asp Leu Arg Phe Asn Phe Leu Trp
Asp Ala Pro Glu385 390 395
400Glu Lys Ala Pro Ser Asn Asp Pro Leu Leu Lys Val Phe Pro Ile Thr
405 410 415Gly Trp Ala Ala Phe
His Asn Lys Met Thr Glu Arg Asp Asn His Ile 420
425 430His Met Val Phe Lys Cys Ser Pro Phe Gly Ser Ile
Ser His Ser His 435 440 445Gly Asp
Gln Asn Ala Phe Thr Leu His Ala Phe Gly Glu Thr Leu Ala 450
455 460Ser Val Thr Gly Tyr Tyr Gly Gly Phe Gly Val
Asp Met His Thr Lys465 470 475
480Trp Arg Arg Gln Thr Phe Ser Lys Asn Leu Pro Leu Phe Gly Gly Lys
485 490 495Gly Gln Tyr Gly
Glu Asn Lys Asn Thr Gly Tyr Glu Asn His Gln Asp 500
505 510Arg Phe Cys Ile Glu Ala Gly Gly Thr Ile Ser
Asp Phe Asp Thr Glu 515 520 525Ser
Asp Val Lys Met Val Glu Gly Asp Ala Thr Ala Ser Tyr Lys Tyr 530
535 540Phe Val Pro Glu Ile Glu Ser Tyr Lys Arg
Lys Val Trp Phe Val Gln545 550 555
560Gly Lys Val Phe Val Met Gln Asp Lys Ala Thr Leu Ser Glu Glu
Lys 565 570 575Asp Met Thr
Trp Leu Met His Thr Thr Phe Ala Asn Glu Val Ala Asp 580
585 590Lys Ser Phe Thr Ile Arg Gly Glu Val Ala
His Leu Asp Val Asn Phe 595 600
605Ile Asn Glu Ser Ala Asp Asn Ile Thr Ser Val Lys Asn Val Glu Gly 610
615 620Phe Gly Glu Val Asp Pro Tyr Glu
Phe Lys Asp Leu Glu Ile His Arg625 630
635 640His Val Glu Val Glu Phe Lys Pro Ser Lys Glu His
Asn Ile Leu Thr 645 650
655Leu Leu Val Pro Asn Lys Asn Glu Gly Glu Gln Val Glu Val Phe His
660 665 670Lys Leu Glu Gly Asn Thr
Leu Leu Leu Asn Val Asp Gly Glu Thr Val 675 680
685Ser Ile Glu Leu 69027882DNAVibrio splendidus
27atgactaaac ctgtaatcgg tttcattggc ctaggtctta tgggcggcaa catggttgaa
60aacctacaaa agcgcggcta ccacgtaaac gtaatggatc taagcgctga agctgttgct
120cgcgtaacag atcgcggcaa cgcaactgca ttcacttctg ctaaagaact agctgctgca
180agtgacatcg ttcagttttg tctgacaact tctgctgttg ttgaaaaaat cgtttacggc
240gaagacggcg ttctagcggg catcaaagaa ggcgcagtac tagtagactt cggtacttct
300atccctgctt ctactaagaa aatcggcgca gctcttgctg aaaaaggcgc gggcatgatc
360gacgcacctc taggtcgtac tcctgcacac gctaaagatg gtcttctgaa catcatggct
420gctggcgaca tggaaacttt caacaaagtt aaacctgttc ttgaagagca aggcgaaaac
480gtattccacc taggggctct aggttctggt cacgtgacta agcttgtaaa caacttcatg
540ggtatgacga ctgttgcgac tatgtctcaa gctttcgctg ttgctcaacg cgctggtgtt
600gatggccaac aactgtttga catcatgtct gcaggtccat ctaactctcc gttcatgcaa
660ttctgtaagt tctacgcggt agacggcgaa gagaagctag gtttctctgt tgctaacgca
720aacaaagacc ttggttactt ccttgcactt tgtgaagagc taggtactga gtctctaatc
780gctcaaggta ctgcaacaag cctacaagct gctgttgatg caggcatggg taacaacgac
840gtaccagtaa tcttcgacta cttcgctaaa ctagagaagt aa
88228293PRTVibrio splendidus 28Met Thr Lys Pro Val Ile Gly Phe Ile Gly
Leu Gly Leu Met Gly Gly1 5 10
15Asn Met Val Glu Asn Leu Gln Lys Arg Gly Tyr His Val Asn Val Met
20 25 30Asp Leu Ser Ala Glu Ala
Val Ala Arg Val Thr Asp Arg Gly Asn Ala 35 40
45Thr Ala Phe Thr Ser Ala Lys Glu Leu Ala Ala Ala Ser Asp
Ile Val 50 55 60Gln Phe Cys Leu Thr
Thr Ser Ala Val Val Glu Lys Ile Val Tyr Gly65 70
75 80Glu Asp Gly Val Leu Ala Gly Ile Lys Glu
Gly Ala Val Leu Val Asp 85 90
95Phe Gly Thr Ser Ile Pro Ala Ser Thr Lys Lys Ile Gly Ala Ala Leu
100 105 110Ala Glu Lys Gly Ala
Gly Met Ile Asp Ala Pro Leu Gly Arg Thr Pro 115
120 125Ala His Ala Lys Asp Gly Leu Leu Asn Ile Met Ala
Ala Gly Asp Met 130 135 140Glu Thr Phe
Asn Lys Val Lys Pro Val Leu Glu Glu Gln Gly Glu Asn145
150 155 160Val Phe His Leu Gly Ala Leu
Gly Ser Gly His Val Thr Lys Leu Val 165
170 175Asn Asn Phe Met Gly Met Thr Thr Val Ala Thr Met
Ser Gln Ala Phe 180 185 190Ala
Val Ala Gln Arg Ala Gly Val Asp Gly Gln Gln Leu Phe Asp Ile 195
200 205Met Ser Ala Gly Pro Ser Asn Ser Pro
Phe Met Gln Phe Cys Lys Phe 210 215
220Tyr Ala Val Asp Gly Glu Glu Lys Leu Gly Phe Ser Val Ala Asn Ala225
230 235 240Asn Lys Asp Leu
Gly Tyr Phe Leu Ala Leu Cys Glu Glu Leu Gly Thr 245
250 255Glu Ser Leu Ile Ala Gln Gly Thr Ala Thr
Ser Leu Gln Ala Ala Val 260 265
270Asp Ala Gly Met Gly Asn Asn Asp Val Pro Val Ile Phe Asp Tyr Phe
275 280 285Ala Lys Leu Glu Lys
290291872DNAVibrio splendidus 29atggtagcgg tcgtcagttc tagtgctttg
gcatttacga actggtttac gcttaacttg 60gccactgaac aggtaaacca aacgatttat
aacgagattg atcactcgct tacgatagaa 120atcaatcaaa tagaaagtac cgttcagcgc
accatcgata ccgttaactc tgttgcacaa 180gagttcatga aatcccctta ccaagtgccg
aatgaagcac tcatgcatta tgccgctaag 240cttggtggca ttgacaagat tgtggtgggt
tttgacgacg gccgttctta tacctctcgc 300ccttcagagt ctttccctaa cggtgttgga
ataaaagaaa aatacaatcc aaccactcga 360ccttggtatc aacaagcgaa attgaaatca
ggcttatctt ttagtggtct gtttttcact 420aagagtactc aagtgcctat gatcggtgtg
acctactcat accaagatcg tgtcatcatg 480gccgatatac gctttgacga tttggaaacg
cagcttgaac agctggacag catctacgaa 540gccaaaggca ttatcatcga cgaaaagggg
atggtggtcg cttcaacaat cgaaaacgtg 600cttccgcaaa ccaatatatc ttctgcagac
actcaaatga aactcaacag tgccattgaa 660cagcctgatc aattcattga gggtgtgatt
gatggtaacc agagaatctt gatggccaag 720aaagtggata ttggcagcca gaaagagtgg
ttcatgatct ccagtattga ccctgaactc 780gcgctcaatc agctgaatgg cgtgatgtcg
agtgcgcgca tccttatcgt cgcttgtgta 840cttggctcgg tgatattgat gattttactt
ctgaatcgtt tctaccgccc aatcgtgtca 900ctgcgcaaaa tcgtccacga tctatcacaa
ggtaacggag acctcactca aaggcttgct 960gagaagggga atgatgactt agggcatatc
gccaaagaca tcaacttgtt cattatcggc 1020ttacaagaga tggttaagga tgtgaaatac
aagaactcgg atctcgatac caaggtactg 1080agtattcgcg aaggttgtaa agaaaccagc
gatgtactga aagttcatac tgatgaaacg 1140gttcaagtgg tctctgcgat taacggcttg
tctgaagcat caaacgaagt agagaagagt 1200tctcagtcgg cggcagaagc agcaagagag
gccgctgtgt tcagtgatga gacgaaacag 1260attaacacgg tgacggaaac ctatatcagt
gatcttgaga agcaagtctg caccacttct 1320gatgacattc gctcaatggc caatgaaacg
cagagcatcc agtctatcgt gtctgtgatt 1380ggcggaattg cggaacaaac taatttgctg
gcattgaatg cgtcaattga agcggcgagg 1440gcgggtgaac atggtcgagg tttcgcggtg
gttgctgatg aagtccgtgc gctagccaac 1500cgaacgcaaa tcagtacctc tgaaattgat
gaagcgttat ctggcttgca gtctaaatca 1560gatggtttgg ttaaatctat tgagttgacc
aaaagtaact gtgaactgac tcgcgctcaa 1620gttgttcaag ctgtaaacat gttggcgaag
ctaaccgagc agatggaaac agtaagtcgt 1680tttaataatg acatttcggg ttcgtctgtt
gagcaaaacg cccttattca gagcattgct 1740aagaacatgc ataagattga aagctttgtt
gaggagctta ataaactaag ccaagatcag 1800ttaactgaat cagcagaaat caaaacactt
aacggtagcg ttagtgaatt gatgagcagc 1860tttaaggttt aa
187230623PRTVibrio splendidus 30Met Val
Ala Val Val Ser Ser Ser Ala Leu Ala Phe Thr Asn Trp Phe1 5
10 15Thr Leu Asn Leu Ala Thr Glu Gln
Val Asn Gln Thr Ile Tyr Asn Glu 20 25
30Ile Asp His Ser Leu Thr Ile Glu Ile Asn Gln Ile Glu Ser Thr
Val 35 40 45Gln Arg Thr Ile Asp
Thr Val Asn Ser Val Ala Gln Glu Phe Met Lys 50 55
60Ser Pro Tyr Gln Val Pro Asn Glu Ala Leu Met His Tyr Ala
Ala Lys65 70 75 80Leu
Gly Gly Ile Asp Lys Ile Val Val Gly Phe Asp Asp Gly Arg Ser
85 90 95Tyr Thr Ser Arg Pro Ser Glu
Ser Phe Pro Asn Gly Val Gly Ile Lys 100 105
110Glu Lys Tyr Asn Pro Thr Thr Arg Pro Trp Tyr Gln Gln Ala
Lys Leu 115 120 125Lys Ser Gly Leu
Ser Phe Ser Gly Leu Phe Phe Thr Lys Ser Thr Gln 130
135 140Val Pro Met Ile Gly Val Thr Tyr Ser Tyr Gln Asp
Arg Val Ile Met145 150 155
160Ala Asp Ile Arg Phe Asp Asp Leu Glu Thr Gln Leu Glu Gln Leu Asp
165 170 175Ser Ile Tyr Glu Ala
Lys Gly Ile Ile Ile Asp Glu Lys Gly Met Val 180
185 190Val Ala Ser Thr Ile Glu Asn Val Leu Pro Gln Thr
Asn Ile Ser Ser 195 200 205Ala Asp
Thr Gln Met Lys Leu Asn Ser Ala Ile Glu Gln Pro Asp Gln 210
215 220Phe Ile Glu Gly Val Ile Asp Gly Asn Gln Arg
Ile Leu Met Ala Lys225 230 235
240Lys Val Asp Ile Gly Ser Gln Lys Glu Trp Phe Met Ile Ser Ser Ile
245 250 255Asp Pro Glu Leu
Ala Leu Asn Gln Leu Asn Gly Val Met Ser Ser Ala 260
265 270Arg Ile Leu Ile Val Ala Cys Val Leu Gly Ser
Val Ile Leu Met Ile 275 280 285Leu
Leu Leu Asn Arg Phe Tyr Arg Pro Ile Val Ser Leu Arg Lys Ile 290
295 300Val His Asp Leu Ser Gln Gly Asn Gly Asp
Leu Thr Gln Arg Leu Ala305 310 315
320Glu Lys Gly Asn Asp Asp Leu Gly His Ile Ala Lys Asp Ile Asn
Leu 325 330 335Phe Ile Ile
Gly Leu Gln Glu Met Val Lys Asp Val Lys Tyr Lys Asn 340
345 350Ser Asp Leu Asp Thr Lys Val Leu Ser Ile
Arg Glu Gly Cys Lys Glu 355 360
365Thr Ser Asp Val Leu Lys Val His Thr Asp Glu Thr Val Gln Val Val 370
375 380Ser Ala Ile Asn Gly Leu Ser Glu
Ala Ser Asn Glu Val Glu Lys Ser385 390
395 400Ser Gln Ser Ala Ala Glu Ala Ala Arg Glu Ala Ala
Val Phe Ser Asp 405 410
415Glu Thr Lys Gln Ile Asn Thr Val Thr Glu Thr Tyr Ile Ser Asp Leu
420 425 430Glu Lys Gln Val Cys Thr
Thr Ser Asp Asp Ile Arg Ser Met Ala Asn 435 440
445Glu Thr Gln Ser Ile Gln Ser Ile Val Ser Val Ile Gly Gly
Ile Ala 450 455 460Glu Gln Thr Asn Leu
Leu Ala Leu Asn Ala Ser Ile Glu Ala Ala Arg465 470
475 480Ala Gly Glu His Gly Arg Gly Phe Ala Val
Val Ala Asp Glu Val Arg 485 490
495Ala Leu Ala Asn Arg Thr Gln Ile Ser Thr Ser Glu Ile Asp Glu Ala
500 505 510Leu Ser Gly Leu Gln
Ser Lys Ser Asp Gly Leu Val Lys Ser Ile Glu 515
520 525Leu Thr Lys Ser Asn Cys Glu Leu Thr Arg Ala Gln
Val Val Gln Ala 530 535 540Val Asn Met
Leu Ala Lys Leu Thr Glu Gln Met Glu Thr Val Ser Arg545
550 555 560Phe Asn Asn Asp Ile Ser Gly
Ser Ser Val Glu Gln Asn Ala Leu Ile 565
570 575Gln Ser Ile Ala Lys Asn Met His Lys Ile Glu Ser
Phe Val Glu Glu 580 585 590Leu
Asn Lys Leu Ser Gln Asp Gln Leu Thr Glu Ser Ala Glu Ile Lys 595
600 605Thr Leu Asn Gly Ser Val Ser Glu Leu
Met Ser Ser Phe Lys Val 610 615
620311743DNAVibrio splendidus 31gtgaataagc caatctttgt cgtcgtactc
gcttcgctta cgtatggctg cggtggaagc 60agctccagtg actctagtga cccttctgat
accaataact caggagcatc ttatggtgtt 120gttgctccct atgatattgc caagtatcaa
aacatccttt ccagctcaga tcttcaggtg 180tctgatccta atggagagga gggcaataaa
acctctgaag tcaaagatgg taacttcgat 240ggttatgtca gtgattattt ttatgctgac
gaagagacgg aaaatctgat cttcaaaatg 300gcgaactaca agatgcgctc tgaagttcgt
gaaggagaaa acttcgatat caatgaagca 360ggcgtaagac gcagtctaca tgcggaaata
agcctacctg atattgagca tgtaatggcg 420agttctcccg cagatcacga tgaagtgacc
gtgctacaga tccacaataa aggtacagac 480gagagtggca cgggttatat ccctcatccg
ctattgcgtg tggtttggga gcaagaacga 540gatggcctca caggtcacta ctgggcagtc
atgaaaaata atgccattga ctgtagcagt 600gccgctgact cttcggattg ttatgccact
tcatataatc gctacgattt gggagaggcg 660gatctcgata acttcaccaa gtttgatctt
tctgtttatg aaaataccct ttcgatcaaa 720gtgaacgatg aagttaaagt cgacgaagac
atcacctact ggcagcatct actgagttac 780tttaaagcgg gtatctacaa tcaatttgaa
aatggtgaag ccacggctca ctttcaggca 840ctgcgataca ccaccacaca ggtcaacggc
tcaaacgatt gggatattaa tgattggaag 900ttgacgattc ctgcgagtaa agacacttgg
tatggaagtg ggggtgacag tgcggctgaa 960ctagaacctg agcgctgcga atcgagcaaa
gaccttctcg ccaacgacag tgatgtctac 1020gacagcgata ttggtctttc ttatttcaat
accgatgaag ggagagtgca ctttagagcg 1080gatatgggat atggcacctc taccgaaaat
tctagctata ttcgctctga gctcagggag 1140ttgtatcaaa gcagtgttca accggattgt
agcaccagcg atgaagatac aagttggtat 1200ttggacgaca ctagaacgaa cgctaccagt
cacgagttaa ccgcaagctt acgaattgaa 1260gactacccga acattaataa ccaagacccg
aaagtggtgc ttgggcaaat acacggttgg 1320aagatcaatc aagcattggt gaagttgtta
tgggaaggcg agagtaagcc agtaagagtg 1380atactgaact ctgattttga gcgcaacaac
caagactgta accattgtga cccgttcagt 1440gtcgagttag gtacttattc ggcaagtgaa
gagtggcgat atacgattcg agccaatcaa 1500gacggtatct acttagcgac tcatgattta
gatggaacta atacggtttc tcatttaatc 1560ccttggggac aagattacac agataaagat
ggggacacgg tctcgttgac gtcagattgg 1620acatcgacag acatcgcttt ctatttcaaa
gcgggcatct acccacaatt taagcctgat 1680agcgactatg cgggtgaagt gtttgatgtg
agctttagtt ctctaagagc agagcataac 1740tga
174332580PRTVibrio splendidus 32Met Asn
Lys Pro Ile Phe Val Val Val Leu Ala Ser Leu Thr Tyr Gly1 5
10 15Cys Gly Gly Ser Ser Ser Ser Asp
Ser Ser Asp Pro Ser Asp Thr Asn 20 25
30Asn Ser Gly Ala Ser Tyr Gly Val Val Ala Pro Tyr Asp Ile Ala
Lys 35 40 45Tyr Gln Asn Ile Leu
Ser Ser Ser Asp Leu Gln Val Ser Asp Pro Asn 50 55
60Gly Glu Glu Gly Asn Lys Thr Ser Glu Val Lys Asp Gly Asn
Phe Asp65 70 75 80Gly
Tyr Val Ser Asp Tyr Phe Tyr Ala Asp Glu Glu Thr Glu Asn Leu
85 90 95Ile Phe Lys Met Ala Asn Tyr
Lys Met Arg Ser Glu Val Arg Glu Gly 100 105
110Glu Asn Phe Asp Ile Asn Glu Ala Gly Val Arg Arg Ser Leu
His Ala 115 120 125Glu Ile Ser Leu
Pro Asp Ile Glu His Val Met Ala Ser Ser Pro Ala 130
135 140Asp His Asp Glu Val Thr Val Leu Gln Ile His Asn
Lys Gly Thr Asp145 150 155
160Glu Ser Gly Thr Gly Tyr Ile Pro His Pro Leu Leu Arg Val Val Trp
165 170 175Glu Gln Glu Arg Asp
Gly Leu Thr Gly His Tyr Trp Ala Val Met Lys 180
185 190Asn Asn Ala Ile Asp Cys Ser Ser Ala Ala Asp Ser
Ser Asp Cys Tyr 195 200 205Ala Thr
Ser Tyr Asn Arg Tyr Asp Leu Gly Glu Ala Asp Leu Asp Asn 210
215 220Phe Thr Lys Phe Asp Leu Ser Val Tyr Glu Asn
Thr Leu Ser Ile Lys225 230 235
240Val Asn Asp Glu Val Lys Val Asp Glu Asp Ile Thr Tyr Trp Gln His
245 250 255Leu Leu Ser Tyr
Phe Lys Ala Gly Ile Tyr Asn Gln Phe Glu Asn Gly 260
265 270Glu Ala Thr Ala His Phe Gln Ala Leu Arg Tyr
Thr Thr Thr Gln Val 275 280 285Asn
Gly Ser Asn Asp Trp Asp Ile Asn Asp Trp Lys Leu Thr Ile Pro 290
295 300Ala Ser Lys Asp Thr Trp Tyr Gly Ser Gly
Gly Asp Ser Ala Ala Glu305 310 315
320Leu Glu Pro Glu Arg Cys Glu Ser Ser Lys Asp Leu Leu Ala Asn
Asp 325 330 335Ser Asp Val
Tyr Asp Ser Asp Ile Gly Leu Ser Tyr Phe Asn Thr Asp 340
345 350Glu Gly Arg Val His Phe Arg Ala Asp Met
Gly Tyr Gly Thr Ser Thr 355 360
365Glu Asn Ser Ser Tyr Ile Arg Ser Glu Leu Arg Glu Leu Tyr Gln Ser 370
375 380Ser Val Gln Pro Asp Cys Ser Thr
Ser Asp Glu Asp Thr Ser Trp Tyr385 390
395 400Leu Asp Asp Thr Arg Thr Asn Ala Thr Ser His Glu
Leu Thr Ala Ser 405 410
415Leu Arg Ile Glu Asp Tyr Pro Asn Ile Asn Asn Gln Asp Pro Lys Val
420 425 430Val Leu Gly Gln Ile His
Gly Trp Lys Ile Asn Gln Ala Leu Val Lys 435 440
445Leu Leu Trp Glu Gly Glu Ser Lys Pro Val Arg Val Ile Leu
Asn Ser 450 455 460Asp Phe Glu Arg Asn
Asn Gln Asp Cys Asn His Cys Asp Pro Phe Ser465 470
475 480Val Glu Leu Gly Thr Tyr Ser Ala Ser Glu
Glu Trp Arg Tyr Thr Ile 485 490
495Arg Ala Asn Gln Asp Gly Ile Tyr Leu Ala Thr His Asp Leu Asp Gly
500 505 510Thr Asn Thr Val Ser
His Leu Ile Pro Trp Gly Gln Asp Tyr Thr Asp 515
520 525Lys Asp Gly Asp Thr Val Ser Leu Thr Ser Asp Trp
Thr Ser Thr Asp 530 535 540Ile Ala Phe
Tyr Phe Lys Ala Gly Ile Tyr Pro Gln Phe Lys Pro Asp545
550 555 560Ser Asp Tyr Ala Gly Glu Val
Phe Asp Val Ser Phe Ser Ser Leu Arg 565
570 575Ala Glu His Asn 580331569DNAVibrio
splendidus 33atgaaacaaa ttactctaaa aactttactc gcttcttcta ttctacttgc
ggttggttgt 60gcgagcacga gcacgcctac tgctgatttt ccaaataaca aagaaactgg
tgaagcgctt 120ctgacgccag ttgctgtttc cgctagtagc catgatggta acggacctga
tcgtctcgtt 180gaccaagacc taactacacg ttggtcatct gcgggtgacg gcgagtgggc
aacgctagac 240tatggttcag tacaggagtt tgacgcggtt caggcatctt tcagtaaagg
taatcagcgc 300caatctaaat ttgatatcca agtgagtgtt gatggcgaaa gctggacaac
ggtactagaa 360aaccaactaa gctcaggtaa agcgatcggc ctagagcgtt tccaatttga
gccagtagtg 420caagcacgct acgtaagata cgttggtcac ggtaacacca aaaacggttg
gaacagtgtg 480actggattag cggcggttaa ctgtagcatt aacgcatgtc ctgctagcca
tatcatcact 540tcagacgtgg ttgcagcaga agccgtgatt attgctgaaa tgaaagcggc
agaaaaagca 600cgtaaagatg cgcgcaaaga tctacgctct ggtaacttcg gtgtagcagc
ggtttaccct 660tgtgagacga ccgttgaatg tgacactcgc agtgcacttc cagttccgac
aggcctgcca 720gcgacaccag ttgcaggtaa ctcgccaagc gaaaactttg acatgacgca
ttggtaccta 780tctcaaccat ttgaccatga caaaaatggc aaacctgatg atgtgtctga
gtggaacctt 840gcaaacggtt accaacaccc tgaaatcttc tacacagctg atgacggcgg
cctagtattc 900aaagcttacg tgaaaggtgt acgtacctct aaaaacacta agtacgcgcg
tacagagctt 960cgtgaaatga tgcgtcgtgg tgatcagtct attagcacta aaggtgttaa
taagaataac 1020tgggtattct caagcgctcc tgaatctgac ttagagtcgg cagcgggtat
tgacggcgtt 1080ctagaagcga cgttgaaaat cgaccatgca acaacgacgg gtaatgcgaa
tgaagtaggt 1140cgctttatca ttggtcagat tcacgatcaa aacgatgaac caattcgttt
gtactaccgt 1200aaactgccaa accaagaaac gggtgcggtt tacttcgcac atgaaagcca
agacgcaact 1260aaagaggact tctaccctct agtgggcgac atgacggctg aagtgggtga
cgatggtatc 1320gcgcttggcg aagtgttcag ctaccgtatt gacgttaaag gcaacacgat
gactgtaacg 1380ctaatacgtg aaggcaaaga cgatgttgta caagtggttg atatgagcaa
cagcggctac 1440gacgcaggcg gcaagtacat gtacttcaaa gccggtgttt acaaccaaaa
catcagcggc 1500gacctagacg attactcaca agcgactttc tatcagctag atgtatcgca
cgatcaatac 1560aaaaagtaa
156934522PRTVibrio splendidus 34Met Lys Gln Ile Thr Leu Lys
Thr Leu Leu Ala Ser Ser Ile Leu Leu1 5 10
15Ala Val Gly Cys Ala Ser Thr Ser Thr Pro Thr Ala Asp
Phe Pro Asn 20 25 30Asn Lys
Glu Thr Gly Glu Ala Leu Leu Thr Pro Val Ala Val Ser Ala 35
40 45Ser Ser His Asp Gly Asn Gly Pro Asp Arg
Leu Val Asp Gln Asp Leu 50 55 60Thr
Thr Arg Trp Ser Ser Ala Gly Asp Gly Glu Trp Ala Thr Leu Asp65
70 75 80Tyr Gly Ser Val Gln Glu
Phe Asp Ala Val Gln Ala Ser Phe Ser Lys 85
90 95Gly Asn Gln Arg Gln Ser Lys Phe Asp Ile Gln Val
Ser Val Asp Gly 100 105 110Glu
Ser Trp Thr Thr Val Leu Glu Asn Gln Leu Ser Ser Gly Lys Ala 115
120 125Ile Gly Leu Glu Arg Phe Gln Phe Glu
Pro Val Val Gln Ala Arg Tyr 130 135
140Val Arg Tyr Val Gly His Gly Asn Thr Lys Asn Gly Trp Asn Ser Val145
150 155 160Thr Gly Leu Ala
Ala Val Asn Cys Ser Ile Asn Ala Cys Pro Ala Ser 165
170 175His Ile Ile Thr Ser Asp Val Val Ala Ala
Glu Ala Val Ile Ile Ala 180 185
190Glu Met Lys Ala Ala Glu Lys Ala Arg Lys Asp Ala Arg Lys Asp Leu
195 200 205Arg Ser Gly Asn Phe Gly Val
Ala Ala Val Tyr Pro Cys Glu Thr Thr 210 215
220Val Glu Cys Asp Thr Arg Ser Ala Leu Pro Val Pro Thr Gly Leu
Pro225 230 235 240Ala Thr
Pro Val Ala Gly Asn Ser Pro Ser Glu Asn Phe Asp Met Thr
245 250 255His Trp Tyr Leu Ser Gln Pro
Phe Asp His Asp Lys Asn Gly Lys Pro 260 265
270Asp Asp Val Ser Glu Trp Asn Leu Ala Asn Gly Tyr Gln His
Pro Glu 275 280 285Ile Phe Tyr Thr
Ala Asp Asp Gly Gly Leu Val Phe Lys Ala Tyr Val 290
295 300Lys Gly Val Arg Thr Ser Lys Asn Thr Lys Tyr Ala
Arg Thr Glu Leu305 310 315
320Arg Glu Met Met Arg Arg Gly Asp Gln Ser Ile Ser Thr Lys Gly Val
325 330 335Asn Lys Asn Asn Trp
Val Phe Ser Ser Ala Pro Glu Ser Asp Leu Glu 340
345 350Ser Ala Ala Gly Ile Asp Gly Val Leu Glu Ala Thr
Leu Lys Ile Asp 355 360 365His Ala
Thr Thr Thr Gly Asn Ala Asn Glu Val Gly Arg Phe Ile Ile 370
375 380Gly Gln Ile His Asp Gln Asn Asp Glu Pro Ile
Arg Leu Tyr Tyr Arg385 390 395
400Lys Leu Pro Asn Gln Glu Thr Gly Ala Val Tyr Phe Ala His Glu Ser
405 410 415Gln Asp Ala Thr
Lys Glu Asp Phe Tyr Pro Leu Val Gly Asp Met Thr 420
425 430Ala Glu Val Gly Asp Asp Gly Ile Ala Leu Gly
Glu Val Phe Ser Tyr 435 440 445Arg
Ile Asp Val Lys Gly Asn Thr Met Thr Val Thr Leu Ile Arg Glu 450
455 460Gly Lys Asp Asp Val Val Gln Val Val Asp
Met Ser Asn Ser Gly Tyr465 470 475
480Asp Ala Gly Gly Lys Tyr Met Tyr Phe Lys Ala Gly Val Tyr Asn
Gln 485 490 495Asn Ile Ser
Gly Asp Leu Asp Asp Tyr Ser Gln Ala Thr Phe Tyr Gln 500
505 510Leu Asp Val Ser His Asp Gln Tyr Lys Lys
515 520351230DNAVibrio splendidus 35atgcaaattt
ctaaagtcgc tacagctgtc gctctttcga caggtttatt atttggttgt 60aacagtgatg
gtttacctat tccaacagat ccaggcggaa cagaccctgt tgaacctgtt 120gaagtttact
ctatagaaaa cgtctattgg gatctgacag gtggtgctgt tgctgcacag 180tcactcagcg
gaacttcacc atatcgcttt gataataatg aggaaggtac tcgtgctcta 240agcatttaca
gtggagacgt agctaatggc ttcacttttg agagttcaat atatactgct 300gaagaagaag
gtgttgtttc ctttgaaggt aaggactgta cttacacagt gactgagcaa 360cagctagata
tgacctgtga aaaagatgac gtagaaacag cttactcagc aacagagatt 420acagatgaat
ctgttataac tgcattagaa aatgccgatg atggaaaacc taaatcagtc 480gatgatgtga
acgctgcgat tgcatcagca gaagatggcg cgattattga tttatcatct 540gaaggtacgt
ttgataccgg tgttattgag ctaaataaag ctgtcacaat tgatggtgct 600ggtttagcaa
ccattaccgg agatgcttgt attgatgtca ctgcacccgg tgcaggtatc 660aaaaacatga
cttttgctaa cgacaatttg gccgggtgtt ttggtaggga gtcagctggt 720acttcagata
atgaaactgg tgcgatcgtt attggtaaaa ttggtaaaga ttcagatcct 780gtagcacttg
aaaacctaaa gttcgatgca aacggcatta ccgaagatga tctaggtact 840aaaaaagcaa
gttggttatt ctctcgaggt tactttacat tagacaatag cgaatttgtc 900ggtttaagtg
gcagtttcca aaataatgca attcgtatta actgtagtag tgacaacggg 960cgatttggtt
cacaaatcac aaataataca ttcactatta actctggtgg tagtgatgtg 1020ggcggaatta
aagttggtga ttctagcagt gccgtcataa agaatagtga tgataacctt 1080ggctgtaatg
tcactattga aagcaatacg ttcaatggtt acaaaaccct actttcagct 1140gacaacggta
aagatataag aaatacagcc atctacgcac aaccatctgc agtgaacact 1200gcggcaggta
aagaaaatat cttgaactaa
123036409PRTVibrio splendidus 36Met Gln Ile Ser Lys Val Ala Thr Ala Val
Ala Leu Ser Thr Gly Leu1 5 10
15Leu Phe Gly Cys Asn Ser Asp Gly Leu Pro Ile Pro Thr Asp Pro Gly
20 25 30Gly Thr Asp Pro Val Glu
Pro Val Glu Val Tyr Ser Ile Glu Asn Val 35 40
45Tyr Trp Asp Leu Thr Gly Gly Ala Val Ala Ala Gln Ser Leu
Ser Gly 50 55 60Thr Ser Pro Tyr Arg
Phe Asp Asn Asn Glu Glu Gly Thr Arg Ala Leu65 70
75 80Ser Ile Tyr Ser Gly Asp Val Ala Asn Gly
Phe Thr Phe Glu Ser Ser 85 90
95Ile Tyr Thr Ala Glu Glu Glu Gly Val Val Ser Phe Glu Gly Lys Asp
100 105 110Cys Thr Tyr Thr Val
Thr Glu Gln Gln Leu Asp Met Thr Cys Glu Lys 115
120 125Asp Asp Val Glu Thr Ala Tyr Ser Ala Thr Glu Ile
Thr Asp Glu Ser 130 135 140Val Ile Thr
Ala Leu Glu Asn Ala Asp Asp Gly Lys Pro Lys Ser Val145
150 155 160Asp Asp Val Asn Ala Ala Ile
Ala Ser Ala Glu Asp Gly Ala Ile Ile 165
170 175Asp Leu Ser Ser Glu Gly Thr Phe Asp Thr Gly Val
Ile Glu Leu Asn 180 185 190Lys
Ala Val Thr Ile Asp Gly Ala Gly Leu Ala Thr Ile Thr Gly Asp 195
200 205Ala Cys Ile Asp Val Thr Ala Pro Gly
Ala Gly Ile Lys Asn Met Thr 210 215
220Phe Ala Asn Asp Asn Leu Ala Gly Cys Phe Gly Arg Glu Ser Ala Gly225
230 235 240Thr Ser Asp Asn
Glu Thr Gly Ala Ile Val Ile Gly Lys Ile Gly Lys 245
250 255Asp Ser Asp Pro Val Ala Leu Glu Asn Leu
Lys Phe Asp Ala Asn Gly 260 265
270Ile Thr Glu Asp Asp Leu Gly Thr Lys Lys Ala Ser Trp Leu Phe Ser
275 280 285Arg Gly Tyr Phe Thr Leu Asp
Asn Ser Glu Phe Val Gly Leu Ser Gly 290 295
300Ser Phe Gln Asn Asn Ala Ile Arg Ile Asn Cys Ser Ser Asp Asn
Gly305 310 315 320Arg Phe
Gly Ser Gln Ile Thr Asn Asn Thr Phe Thr Ile Asn Ser Gly
325 330 335Gly Ser Asp Val Gly Gly Ile
Lys Val Gly Asp Ser Ser Ser Ala Val 340 345
350Ile Lys Asn Ser Asp Asp Asn Leu Gly Cys Asn Val Thr Ile
Glu Ser 355 360 365Asn Thr Phe Asn
Gly Tyr Lys Thr Leu Leu Ser Ala Asp Asn Gly Lys 370
375 380Asp Ile Arg Asn Thr Ala Ile Tyr Ala Gln Pro Ser
Ala Val Asn Thr385 390 395
400Ala Ala Gly Lys Glu Asn Ile Leu Asn 40537861DNAVibrio
splendidus 37atgaattctg ttacaaaaat tgctgcagct gttgcatgta ctcttttagc
gggcacagct 60gctggtgcat ctcttgatta tcgttacgag tatcgtgctg cgacggatta
tacaaagact 120aatggtgata cggctcacgt agacgctcgc catcaacacc gagttaagct
aggtgaaagc 180tttaagctgt cagacaagtg gaagcactct actggtctag aacttaagtt
ccacggtgat 240gactcttact atgatgaaga ttcaggttct gttaaatcag caaacagcca
gagtttttac 300gatggcaatt ggtacatcta tggtatggag atcgataaca ctgcgacata
caaaatagac 360aataattggt atctacaaat gggtatgcct attgcttggg attgggatga
gcctaatgct 420aacgatggcg actggaagat gaaaaaggtt acgtttaaac ctcagttccg
cgttggctat 480aaagcagata tgggtttaac aactgctatt cgttaccgtc atgaatatgc
tgacttccgt 540aaccacacac aatttggcga caaagattct gaaactggcg agcgtttaga
atcagctcaa 600aagtctaaag ttacactgac gggctcttac aaaattgaat ctctacctaa
gcttggcctt 660tcttacgaag caaactatgt aaaatctttg gataacgtac ttctttataa
tagtgatgac 720tgggaatggg atgctggctt aaaggtaaac tacaagttcg gttcttggaa
accttttgct 780gaaatctggt cttctgatat cagttcatct tcaaaagatc gtgaagctaa
ataccgtgtt 840ggtattgctt actcattcta a
86138286PRTVibrio splendidus 38Met Asn Ser Val Thr Lys Ile
Ala Ala Ala Val Ala Cys Thr Leu Leu1 5 10
15Ala Gly Thr Ala Ala Gly Ala Ser Leu Asp Tyr Arg Tyr
Glu Tyr Arg 20 25 30Ala Ala
Thr Asp Tyr Thr Lys Thr Asn Gly Asp Thr Ala His Val Asp 35
40 45Ala Arg His Gln His Arg Val Lys Leu Gly
Glu Ser Phe Lys Leu Ser 50 55 60Asp
Lys Trp Lys His Ser Thr Gly Leu Glu Leu Lys Phe His Gly Asp65
70 75 80Asp Ser Tyr Tyr Asp Glu
Asp Ser Gly Ser Val Lys Ser Ala Asn Ser 85
90 95Gln Ser Phe Tyr Asp Gly Asn Trp Tyr Ile Tyr Gly
Met Glu Ile Asp 100 105 110Asn
Thr Ala Thr Tyr Lys Ile Asp Asn Asn Trp Tyr Leu Gln Met Gly 115
120 125Met Pro Ile Ala Trp Asp Trp Asp Glu
Pro Asn Ala Asn Asp Gly Asp 130 135
140Trp Lys Met Lys Lys Val Thr Phe Lys Pro Gln Phe Arg Val Gly Tyr145
150 155 160Lys Ala Asp Met
Gly Leu Thr Thr Ala Ile Arg Tyr Arg His Glu Tyr 165
170 175Ala Asp Phe Arg Asn His Thr Gln Phe Gly
Asp Lys Asp Ser Glu Thr 180 185
190Gly Glu Arg Leu Glu Ser Ala Gln Lys Ser Lys Val Thr Leu Thr Gly
195 200 205Ser Tyr Lys Ile Glu Ser Leu
Pro Lys Leu Gly Leu Ser Tyr Glu Ala 210 215
220Asn Tyr Val Lys Ser Leu Asp Asn Val Leu Leu Tyr Asn Ser Asp
Asp225 230 235 240Trp Glu
Trp Asp Ala Gly Leu Lys Val Asn Tyr Lys Phe Gly Ser Trp
245 250 255Lys Pro Phe Ala Glu Ile Trp
Ser Ser Asp Ile Ser Ser Ser Ser Lys 260 265
270Asp Arg Glu Ala Lys Tyr Arg Val Gly Ile Ala Tyr Ser Phe
275 280 285391038DNAVibrio
splendidus 39atgtttaaga aaaacatatt agcagtggcg ttattagcga ctgtgccaat
ggttactttc 60gcaaataacg gtgtttctta ccccgtacct gccgataaat tcgatatgca
taattggaaa 120ataaccatac cttcagatat taatgaagat ggtcgcgttg atgaaataga
aggggtcgct 180atgatgagct actcacatag tgatttcttc catcttgata aagacggcaa
ccttgtattt 240gaagtgcaga accaagcgat tacgacgaaa aactcgaaga atgcgcgttc
tgagttacgc 300cagatgccaa gaggcgcaga tttctctatc gatacggctg ataaaggaaa
ccagtgggca 360ctgtcgagtc acccagcggc tagtgaatac agtgctgtgg gcggaacatt
agaagcgaca 420ttaaaagtga atcacgtctc agttaacgct aagttcccag aaaaataccc
agctcattct 480gttgtggttg gtcagattca tgctaaaaaa cacaacgagc taatcaaagc
tggaaccggt 540tatgggcatg gtaatgaacc actaaagatc ttctataaga agtttcctga
ccaagaaatg 600ggttcagtat tctggaacta tgaacgtaac ctagagaaaa aagatcctaa
ccgtgccgat 660atcgcttatc cagtgtgggg taacacgtgg gaaaaccctg cagagccggg
tgaagccggt 720attgctcttg gtgaagagtt tagctacaaa gtggaagtga aaggcaccat
gatgtaccta 780acgtttgaaa ccgagcgtca cgataccgtt aagtatgaaa tcgacctgag
taagggcatc 840gatgaacttg actcaccaac gggctatgct gaagatgatt tttactacaa
agcgggcgca 900tacggccaat gtagcgtgag cgattctcac cctgtatggg ggcctggttg
tggcggtact 960ggcgatttcg ctgtcgataa aaagaatggc gattacaaca gtgtgacttt
ctctgcgctt 1020aagttaaacg gtaaatag
103840345PRTVibrio splendidus 40Met Phe Lys Lys Asn Ile Leu
Ala Val Ala Leu Leu Ala Thr Val Pro1 5 10
15Met Val Thr Phe Ala Asn Asn Gly Val Ser Tyr Pro Val
Pro Ala Asp 20 25 30Lys Phe
Asp Met His Asn Trp Lys Ile Thr Ile Pro Ser Asp Ile Asn 35
40 45Glu Asp Gly Arg Val Asp Glu Ile Glu Gly
Val Ala Met Met Ser Tyr 50 55 60Ser
His Ser Asp Phe Phe His Leu Asp Lys Asp Gly Asn Leu Val Phe65
70 75 80Glu Val Gln Asn Gln Ala
Ile Thr Thr Lys Asn Ser Lys Asn Ala Arg 85
90 95Ser Glu Leu Arg Gln Met Pro Arg Gly Ala Asp Phe
Ser Ile Asp Thr 100 105 110Ala
Asp Lys Gly Asn Gln Trp Ala Leu Ser Ser His Pro Ala Ala Ser 115
120 125Glu Tyr Ser Ala Val Gly Gly Thr Leu
Glu Ala Thr Leu Lys Val Asn 130 135
140His Val Ser Val Asn Ala Lys Phe Pro Glu Lys Tyr Pro Ala His Ser145
150 155 160Val Val Val Gly
Gln Ile His Ala Lys Lys His Asn Glu Leu Ile Lys 165
170 175Ala Gly Thr Gly Tyr Gly His Gly Asn Glu
Pro Leu Lys Ile Phe Tyr 180 185
190Lys Lys Phe Pro Asp Gln Glu Met Gly Ser Val Phe Trp Asn Tyr Glu
195 200 205Arg Asn Leu Glu Lys Lys Asp
Pro Asn Arg Ala Asp Ile Ala Tyr Pro 210 215
220Val Trp Gly Asn Thr Trp Glu Asn Pro Ala Glu Pro Gly Glu Ala
Gly225 230 235 240Ile Ala
Leu Gly Glu Glu Phe Ser Tyr Lys Val Glu Val Lys Gly Thr
245 250 255Met Met Tyr Leu Thr Phe Glu
Thr Glu Arg His Asp Thr Val Lys Tyr 260 265
270Glu Ile Asp Leu Ser Lys Gly Ile Asp Glu Leu Asp Ser Pro
Thr Gly 275 280 285Tyr Ala Glu Asp
Asp Phe Tyr Tyr Lys Ala Gly Ala Tyr Gly Gln Cys 290
295 300Ser Val Ser Asp Ser His Pro Val Trp Gly Pro Gly
Cys Gly Gly Thr305 310 315
320Gly Asp Phe Ala Val Asp Lys Lys Asn Gly Asp Tyr Asn Ser Val Thr
325 330 335Phe Ser Ala Leu Lys
Leu Asn Gly Lys 340 34541897DNAVibrio
splendidus 41atggataact ctccggtgct gagccgattt ttagagaatg gatttttact
ccagcagaaa 60ctgagccttg ttctttgttg tgtgttgatc gcagcttctg catggatttt
aggacagctt 120gcatggttta ttgaacctgc tgagcaaacc gtcgtgccat ggacagcaac
ggcttcctcg 180tcttcaacgc ctcaatcgac tcttgatatc tcttctttgc agcagagcaa
catgtttggt 240gcttataacc caaccacgcc tgctgtggtt gagcagcaag ttatccaaga
tgcgccaaag 300acgcgactga acctcgtttt agtgggtgca gtagccagtt ctaatccaaa
gctgagcttg 360gctgtgattg ccaatcgcgg cacacaagca acctacggca ttaatgaaga
gatcgaaggt 420acgcgagcta agttaaaagc ggtattagtc gatcgcgtga ttattgataa
ctcaggtcga 480gacgaaacct tgatgcttga aggcattgag tacaagcgtt tgtctgtatc
agcacctgcg 540ccacctcgta cctcttcttc tgtgcgtggc aacaacccag cttctgcaga
agagaagcta 600gatgaaatta aagcgaagat aatgaaagat ccgcaacaaa tcttccaata
tgttcgactg 660tctcaggtga aacgcgacga taaagtgatt ggttatcgtg tgagccctgg
caaagattca 720gaacttttta actctgttgg gctccaaaac ggagatattg ccactcagtt
aaatggacaa 780gacctgacag accctgctgc tatgggcaac atattccgtt ctatctcaga
gctgacagag 840ctaaacctcg tcgtcgagag agatggtcaa caacatgaag tgtttattga
attttag 89742298PRTVibrio splendidus 42Met Asp Asn Ser Pro Val Leu
Ser Arg Phe Leu Glu Asn Gly Phe Leu1 5 10
15Leu Gln Gln Lys Leu Ser Leu Val Leu Cys Cys Val Leu
Ile Ala Ala 20 25 30Ser Ala
Trp Ile Leu Gly Gln Leu Ala Trp Phe Ile Glu Pro Ala Glu 35
40 45Gln Thr Val Val Pro Trp Thr Ala Thr Ala
Ser Ser Ser Ser Thr Pro 50 55 60Gln
Ser Thr Leu Asp Ile Ser Ser Leu Gln Gln Ser Asn Met Phe Gly65
70 75 80Ala Tyr Asn Pro Thr Thr
Pro Ala Val Val Glu Gln Gln Val Ile Gln 85
90 95Asp Ala Pro Lys Thr Arg Leu Asn Leu Val Leu Val
Gly Ala Val Ala 100 105 110Ser
Ser Asn Pro Lys Leu Ser Leu Ala Val Ile Ala Asn Arg Gly Thr 115
120 125Gln Ala Thr Tyr Gly Ile Asn Glu Glu
Ile Glu Gly Thr Arg Ala Lys 130 135
140Leu Lys Ala Val Leu Val Asp Arg Val Ile Ile Asp Asn Ser Gly Arg145
150 155 160Asp Glu Thr Leu
Met Leu Glu Gly Ile Glu Tyr Lys Arg Leu Ser Val 165
170 175Ser Ala Pro Ala Pro Pro Arg Thr Ser Ser
Ser Val Arg Gly Asn Asn 180 185
190Pro Ala Ser Ala Glu Glu Lys Leu Asp Glu Ile Lys Ala Lys Ile Met
195 200 205Lys Asp Pro Gln Gln Ile Phe
Gln Tyr Val Arg Leu Ser Gln Val Lys 210 215
220Arg Asp Asp Lys Val Ile Gly Tyr Arg Val Ser Pro Gly Lys Asp
Ser225 230 235 240Glu Leu
Phe Asn Ser Val Gly Leu Gln Asn Gly Asp Ile Ala Thr Gln
245 250 255Leu Asn Gly Gln Asp Leu Thr
Asp Pro Ala Ala Met Gly Asn Ile Phe 260 265
270Arg Ser Ile Ser Glu Leu Thr Glu Leu Asn Leu Val Val Glu
Arg Asp 275 280 285Gly Gln Gln His
Glu Val Phe Ile Glu Phe 290 295432025DNAVibrio
splendidus 43gtgaagcatt ggtttaagaa aagtgcatgg ttattggcag gaagcttaat
ctgcacaccc 60gcagccatcg cgagtgattt tagtgccagc tttaaaggca ctgatattca
agagtttatt 120aatattgttg gtcgtaacct agagaagacg atcatcgttg acccttcggt
gcgcggaaaa 180atcgatgtac gcagctacga cgtactcaat gaagagcaat actacagctt
cttcctaaac 240gtattggaag tgtatggcta cgcggttgtc gaaatggact cgggtgttct
taagatcatc 300aaggccaaag attcgaaaac atcggcaatt ccagtcgttg gagacagtga
cacgatcaaa 360ggcgacaatg tggtgacacg tgttgtgacg gttcgtaatg tctcggtgcg
tgaactttct 420cctctgcttc gtcaactaaa cgacaatgca ggcgcgggta acgttgtgca
ctacgaccca 480gccaacatca tccttattac aggccgagcg gcggtagtaa accgtttagc
tgaaatcatc 540aagcgtgttg accaagcggg tgataaagag attgaagtcg ttgagctaaa
gaatgcttct 600gcggcagaaa tggtacgtat cgttgatgcg ttaagcaaaa ccactgatgc
gaaaaacaca 660cctgcatttc tacaacctaa attagttgcc gatgaacgta ccaatgcgat
tcttatctca 720ggcgacccta aagtacgtag ccgtttaaga aggctgattg aacagcttga
tgttgaaatg 780gcaaccaagg gcaataacca agttatttac cttaaatatg caaaagccga
agatctagtt 840gatgtgctga aaggcgtgtc ggacaaccta caatcagaga agcagacatc
aaccaaagga 900agttcatcgc agcgtaacca agtgatgatc tcagctcaca gtgacaccaa
ctctttagtg 960attaccgcac agccggacat catgaatgcg cttcaagatg tgatcgcaca
gctggatatt 1020cgtcgtgctc aagtattgat tgaagcactg attgtcgaaa tggccgaagg
tgacggcgtt 1080aaccttggtg tgcagtgggg taaccttgaa acgggtgcca tgattcagta
cagcaacact 1140ggcgcttcca ttggcggtgt gatggttggt ttagaagaag cgaaagacag
cgaaacgaca 1200accgctgttt atgattcaga cggtaaattc ttacgtaatg aaaccacgac
ggaagaaggt 1260gactattcaa cattagcttc cgcactttct ggtgttaatg gtgcggcaat
gagtgtggta 1320atgggtgact ggaccgcctt gatcagtgca gtagcgaccg attcaaattc
aaatatccta 1380tcttctccaa gtatcaccgt gatggataac ggcgaagcgt cattcattgt
gggtgaagag 1440gtgcctgttc taaccggttc tacagcaggc tcaagtaacg acaacccatt
ccaaacagtt 1500gaacgtaaag aagtgggtat caagcttaaa gtggtgccgc aaatcaatga
aggtgattcg 1560gttcaactgc aaatagaaca agaagtatcg aacgtattag gcgccaatgg
tgcggttgat 1620gtgcgttttg ctaagcgaca gctaaataca tcagtgattg ttcaagacgg
tcaaatgctg 1680gtgttgggtg gcttgattga cgagcgagca ttggaaagtg aatctaaggt
gccgttcttg 1740ggagatattc ctgtgcttgg acacttgttc aaatcaacca gtactcaggt
tgagaaaaag 1800aacctaatgg tcttcatcaa accaaccatt attcgtgatg gtatgacagc
cgatggtatc 1860acgcagcgta aatacaactt catccgtgct gagcagttgt acaaggctga
gcaaggactg 1920aagttaatgg cagacgataa catcccagta ttgcctaaat ttggtgccga
catgaatcac 1980ccggctgaaa ttcaagcctt catcgatcaa atggaacaag aataa
202544674PRTVibrio splendidus 44Met Lys His Trp Phe Lys Lys
Ser Ala Trp Leu Leu Ala Gly Ser Leu1 5 10
15Ile Cys Thr Pro Ala Ala Ile Ala Ser Asp Phe Ser Ala
Ser Phe Lys 20 25 30Gly Thr
Asp Ile Gln Glu Phe Ile Asn Ile Val Gly Arg Asn Leu Glu 35
40 45Lys Thr Ile Ile Val Asp Pro Ser Val Arg
Gly Lys Ile Asp Val Arg 50 55 60Ser
Tyr Asp Val Leu Asn Glu Glu Gln Tyr Tyr Ser Phe Phe Leu Asn65
70 75 80Val Leu Glu Val Tyr Gly
Tyr Ala Val Val Glu Met Asp Ser Gly Val 85
90 95Leu Lys Ile Ile Lys Ala Lys Asp Ser Lys Thr Ser
Ala Ile Pro Val 100 105 110Val
Gly Asp Ser Asp Thr Ile Lys Gly Asp Asn Val Val Thr Arg Val 115
120 125Val Thr Val Arg Asn Val Ser Val Arg
Glu Leu Ser Pro Leu Leu Arg 130 135
140Gln Leu Asn Asp Asn Ala Gly Ala Gly Asn Val Val His Tyr Asp Pro145
150 155 160Ala Asn Ile Ile
Leu Ile Thr Gly Arg Ala Ala Val Val Asn Arg Leu 165
170 175Ala Glu Ile Ile Lys Arg Val Asp Gln Ala
Gly Asp Lys Glu Ile Glu 180 185
190Val Val Glu Leu Lys Asn Ala Ser Ala Ala Glu Met Val Arg Ile Val
195 200 205Asp Ala Leu Ser Lys Thr Thr
Asp Ala Lys Asn Thr Pro Ala Phe Leu 210 215
220Gln Pro Lys Leu Val Ala Asp Glu Arg Thr Asn Ala Ile Leu Ile
Ser225 230 235 240Gly Asp
Pro Lys Val Arg Ser Arg Leu Arg Arg Leu Ile Glu Gln Leu
245 250 255Asp Val Glu Met Ala Thr Lys
Gly Asn Asn Gln Val Ile Tyr Leu Lys 260 265
270Tyr Ala Lys Ala Glu Asp Leu Val Asp Val Leu Lys Gly Val
Ser Asp 275 280 285Asn Leu Gln Ser
Glu Lys Gln Thr Ser Thr Lys Gly Ser Ser Ser Gln 290
295 300Arg Asn Gln Val Met Ile Ser Ala His Ser Asp Thr
Asn Ser Leu Val305 310 315
320Ile Thr Ala Gln Pro Asp Ile Met Asn Ala Leu Gln Asp Val Ile Ala
325 330 335Gln Leu Asp Ile Arg
Arg Ala Gln Val Leu Ile Glu Ala Leu Ile Val 340
345 350Glu Met Ala Glu Gly Asp Gly Val Asn Leu Gly Val
Gln Trp Gly Asn 355 360 365Leu Glu
Thr Gly Ala Met Ile Gln Tyr Ser Asn Thr Gly Ala Ser Ile 370
375 380Gly Gly Val Met Val Gly Leu Glu Glu Ala Lys
Asp Ser Glu Thr Thr385 390 395
400Thr Ala Val Tyr Asp Ser Asp Gly Lys Phe Leu Arg Asn Glu Thr Thr
405 410 415Thr Glu Glu Gly
Asp Tyr Ser Thr Leu Ala Ser Ala Leu Ser Gly Val 420
425 430Asn Gly Ala Ala Met Ser Val Val Met Gly Asp
Trp Thr Ala Leu Ile 435 440 445Ser
Ala Val Ala Thr Asp Ser Asn Ser Asn Ile Leu Ser Ser Pro Ser 450
455 460Ile Thr Val Met Asp Asn Gly Glu Ala Ser
Phe Ile Val Gly Glu Glu465 470 475
480Val Pro Val Leu Thr Gly Ser Thr Ala Gly Ser Ser Asn Asp Asn
Pro 485 490 495Phe Gln Thr
Val Glu Arg Lys Glu Val Gly Ile Lys Leu Lys Val Val 500
505 510Pro Gln Ile Asn Glu Gly Asp Ser Val Gln
Leu Gln Ile Glu Gln Glu 515 520
525Val Ser Asn Val Leu Gly Ala Asn Gly Ala Val Asp Val Arg Phe Ala 530
535 540Lys Arg Gln Leu Asn Thr Ser Val
Ile Val Gln Asp Gly Gln Met Leu545 550
555 560Val Leu Gly Gly Leu Ile Asp Glu Arg Ala Leu Glu
Ser Glu Ser Lys 565 570
575Val Pro Phe Leu Gly Asp Ile Pro Val Leu Gly His Leu Phe Lys Ser
580 585 590Thr Ser Thr Gln Val Glu
Lys Lys Asn Leu Met Val Phe Ile Lys Pro 595 600
605Thr Ile Ile Arg Asp Gly Met Thr Ala Asp Gly Ile Thr Gln
Arg Lys 610 615 620Tyr Asn Phe Ile Arg
Ala Glu Gln Leu Tyr Lys Ala Glu Gln Gly Leu625 630
635 640Lys Leu Met Ala Asp Asp Asn Ile Pro Val
Leu Pro Lys Phe Gly Ala 645 650
655Asp Met Asn His Pro Ala Glu Ile Gln Ala Phe Ile Asp Gln Met Glu
660 665 670Gln
Glu451503DNAVibrio splendidus 45atggctgaat tggtaggggc ggcacgtact
tatcagcgct tgccgtttag ctttgcgaat 60cgctacaaga tggtgttgga ataccaacat
ccagagcgcg caccgatact ttattatgtt 120gagccactga aatcggcggc gatcattgaa
gtgagtcgtg ttgtgaaaaa tggtttcacg 180ccacaagcga ttactctcga tgagtttgat
aaaaaactaa ccgatgctta tcagcgtgac 240tcgtcagaag ctcgtcagct catggaagac
attggtgctg atagtgatga tttcttctca 300ctagcggaag aactgcctca agacgaagac
ttacttgaat cagaagatga tgcaccaatc 360atcaagttaa tcaatgcgat gctgggtgag
gcgatcaaag agggtgcttc ggatatacac 420atcgaaacct ttgaaaagtc actttgtatc
cgtttccgag ttgatggtgt gctgcgtgat 480gttctagcgc caagccgtaa actggctccg
ctattggttt cacgtgtcaa ggttatggct 540aaactggata ttgcggaaaa acgcgtgcca
caagatggtc gtatttctct gcgtattggt 600ggccgagcgg ttgatgttcg tgtttcaacc
atgccttctt cgcatggtga gcgtgtggta 660atgcgtctgt tggacaaaaa tgccactcgt
ctagacttgc acagtttagg tatgacagcc 720gaaaaccatg aaaacttccg taagctgatt
cagcgcccac atggcattat cttggtgacc 780ggcccgacag gttcaggtaa atcgacgacc
ttgtacgcag gtctgcaaga actcaacagc 840aatgaacgaa acattttaac cgttgaagac
ccaatcgaat tcgatatcga tggcattggt 900caaacacaag tgaaccctaa ggttgatatg
acctttgcgc gtggtttacg tgccattctt 960cgtcaagatc ctgatgttgt tatgattggt
gagatccgtg acttggagac cgcagagatt 1020gctgtccagg cctctttgac aggtcactta
gttatgtcga ctctgcatac caatactgcc 1080gtcggtgcga ttacacgtct acgtgatatg
ggcattgaac ctttcttgat ctcttcttcg 1140ctgctgggtg ttttggctca gcgcttggtt
cgtactttat gtaacgaatg taaagaacct 1200tatgaagccg ataaagagca gaagaaactg
tttgggttga agaagaaaga aagcttgacg 1260ctttaccatg ccaaaggttg tgaagagtgt
ggccataagg gttatcgagg tcgtacgggt 1320attcatgagc tgttgatgat tgatgattca
gtacaagagc tgattcacag tgaagcgggt 1380gagcaggcga ttgataaagc aattcgtggc
acaacaccaa gtattcgaga tgatggcttg 1440agcaaagttc tgaaaggggt aacgtcccta
gaagaagtga tgcgcgtgac caaggaagtc 1500tag
150346500PRTVibrio splendidus 46Met Ala
Glu Leu Val Gly Ala Ala Arg Thr Tyr Gln Arg Leu Pro Phe1 5
10 15Ser Phe Ala Asn Arg Tyr Lys Met
Val Leu Glu Tyr Gln His Pro Glu 20 25
30Arg Ala Pro Ile Leu Tyr Tyr Val Glu Pro Leu Lys Ser Ala Ala
Ile 35 40 45Ile Glu Val Ser Arg
Val Val Lys Asn Gly Phe Thr Pro Gln Ala Ile 50 55
60Thr Leu Asp Glu Phe Asp Lys Lys Leu Thr Asp Ala Tyr Gln
Arg Asp65 70 75 80Ser
Ser Glu Ala Arg Gln Leu Met Glu Asp Ile Gly Ala Asp Ser Asp
85 90 95Asp Phe Phe Ser Leu Ala Glu
Glu Leu Pro Gln Asp Glu Asp Leu Leu 100 105
110Glu Ser Glu Asp Asp Ala Pro Ile Ile Lys Leu Ile Asn Ala
Met Leu 115 120 125Gly Glu Ala Ile
Lys Glu Gly Ala Ser Asp Ile His Ile Glu Thr Phe 130
135 140Glu Lys Ser Leu Cys Ile Arg Phe Arg Val Asp Gly
Val Leu Arg Asp145 150 155
160Val Leu Ala Pro Ser Arg Lys Leu Ala Pro Leu Leu Val Ser Arg Val
165 170 175Lys Val Met Ala Lys
Leu Asp Ile Ala Glu Lys Arg Val Pro Gln Asp 180
185 190Gly Arg Ile Ser Leu Arg Ile Gly Gly Arg Ala Val
Asp Val Arg Val 195 200 205Ser Thr
Met Pro Ser Ser His Gly Glu Arg Val Val Met Arg Leu Leu 210
215 220Asp Lys Asn Ala Thr Arg Leu Asp Leu His Ser
Leu Gly Met Thr Ala225 230 235
240Glu Asn His Glu Asn Phe Arg Lys Leu Ile Gln Arg Pro His Gly Ile
245 250 255Ile Leu Val Thr
Gly Pro Thr Gly Ser Gly Lys Ser Thr Thr Leu Tyr 260
265 270Ala Gly Leu Gln Glu Leu Asn Ser Asn Glu Arg
Asn Ile Leu Thr Val 275 280 285Glu
Asp Pro Ile Glu Phe Asp Ile Asp Gly Ile Gly Gln Thr Gln Val 290
295 300Asn Pro Lys Val Asp Met Thr Phe Ala Arg
Gly Leu Arg Ala Ile Leu305 310 315
320Arg Gln Asp Pro Asp Val Val Met Ile Gly Glu Ile Arg Asp Leu
Glu 325 330 335Thr Ala Glu
Ile Ala Val Gln Ala Ser Leu Thr Gly His Leu Val Met 340
345 350Ser Thr Leu His Thr Asn Thr Ala Val Gly
Ala Ile Thr Arg Leu Arg 355 360
365Asp Met Gly Ile Glu Pro Phe Leu Ile Ser Ser Ser Leu Leu Gly Val 370
375 380Leu Ala Gln Arg Leu Val Arg Thr
Leu Cys Asn Glu Cys Lys Glu Pro385 390
395 400Tyr Glu Ala Asp Lys Glu Gln Lys Lys Leu Phe Gly
Leu Lys Lys Lys 405 410
415Glu Ser Leu Thr Leu Tyr His Ala Lys Gly Cys Glu Glu Cys Gly His
420 425 430Lys Gly Tyr Arg Gly Arg
Thr Gly Ile His Glu Leu Leu Met Ile Asp 435 440
445Asp Ser Val Gln Glu Leu Ile His Ser Glu Ala Gly Glu Gln
Ala Ile 450 455 460Asp Lys Ala Ile Arg
Gly Thr Thr Pro Ser Ile Arg Asp Asp Gly Leu465 470
475 480Ser Lys Val Leu Lys Gly Val Thr Ser Leu
Glu Glu Val Met Arg Val 485 490
495Thr Lys Glu Val 500471221DNAVibrio splendidus
47atggcggcat ttgaatacaa agcactggat gccaaaggca aaagtaaaaa aggctcaatt
60gaagcagata atgctcgtca ggctcgccaa agaataaaag agcttggctt gatgccggtt
120gagatgaccg aggctaaagc aaaaacagca aaaggtgctc agccatcgac cagctttaaa
180cgcggcatca gtacgcctga tcttgcgctt attactcgtc aaatatccac gctcgttcaa
240tctggtatgc cgctagaaga gtgtttgaaa gccgttgccg aacagtctga gaaacctcgt
300attcgcacca tgctactcgc ggtgagatct aaggtgactg aaggttattc gttagcagac
360agcttgtctg attatcccca tatcttcgat gagctattca gagccatggt tgctgctggt
420gagaagtcag ggcatctaga tgcggtattg gaacgattgg ctgactacgc agaaaaccgt
480cagaagatgc gttctaagtt gctgcaagcg atgatctacc ccatcgtgct ggtggtgttt
540gcggtgacga ttgtgtcgtt cctactggca acggtagtgc cgaagatcgt tgagcctatt
600atccaaatgg gacaagagct ccctcagtcg acacaatttt tattagcatc gagtgaattt
660atccagaatt ggggcatcca attactggtg ttgaccattg gtgtgattgt gttggttaag
720actgcgctga aaaagccggg cgttcgcatg agctgggatc gcaaattatt gagcatcccg
780ctgataggca agatagcgaa agggatcaac acctctcgtt ttgcacgaac actttctatc
840tgtacctcta gtgcgattcc tatccttgaa gggatgaagg tcgcggtaga tgtgatgtcg
900aatcatcacg tgaaacaaca agtattacag gcatcagata gcgttagaga aggggcaagc
960ctgcgtaaag cgcttgatca aaccaaactc tttcccccga tgatgctgca tatgatcgcc
1020agtggtgagc agagtggcca attggaacag atgctgacaa gagcggcaga taatcaggat
1080caaagctttg aatcgaccgt taatatcgcg ttaggcattt ttaccccagc gcttattgcg
1140ttgatggctg gcttagtgct gtttatcgtg atggcgacgc tgatgccaat gcttgaaatg
1200aacaatttaa tgagtggtta a
122148406PRTVibrio splendidus 48Met Ala Ala Phe Glu Tyr Lys Ala Leu Asp
Ala Lys Gly Lys Ser Lys1 5 10
15Lys Gly Ser Ile Glu Ala Asp Asn Ala Arg Gln Ala Arg Gln Arg Ile
20 25 30Lys Glu Leu Gly Leu Met
Pro Val Glu Met Thr Glu Ala Lys Ala Lys 35 40
45Thr Ala Lys Gly Ala Gln Pro Ser Thr Ser Phe Lys Arg Gly
Ile Ser 50 55 60Thr Pro Asp Leu Ala
Leu Ile Thr Arg Gln Ile Ser Thr Leu Val Gln65 70
75 80Ser Gly Met Pro Leu Glu Glu Cys Leu Lys
Ala Val Ala Glu Gln Ser 85 90
95Glu Lys Pro Arg Ile Arg Thr Met Leu Leu Ala Val Arg Ser Lys Val
100 105 110Thr Glu Gly Tyr Ser
Leu Ala Asp Ser Leu Ser Asp Tyr Pro His Ile 115
120 125Phe Asp Glu Leu Phe Arg Ala Met Val Ala Ala Gly
Glu Lys Ser Gly 130 135 140His Leu Asp
Ala Val Leu Glu Arg Leu Ala Asp Tyr Ala Glu Asn Arg145
150 155 160Gln Lys Met Arg Ser Lys Leu
Leu Gln Ala Met Ile Tyr Pro Ile Val 165
170 175Leu Val Val Phe Ala Val Thr Ile Val Ser Phe Leu
Leu Ala Thr Val 180 185 190Val
Pro Lys Ile Val Glu Pro Ile Ile Gln Met Gly Gln Glu Leu Pro 195
200 205Gln Ser Thr Gln Phe Leu Leu Ala Ser
Ser Glu Phe Ile Gln Asn Trp 210 215
220Gly Ile Gln Leu Leu Val Leu Thr Ile Gly Val Ile Val Leu Val Lys225
230 235 240Thr Ala Leu Lys
Lys Pro Gly Val Arg Met Ser Trp Asp Arg Lys Leu 245
250 255Leu Ser Ile Pro Leu Ile Gly Lys Ile Ala
Lys Gly Ile Asn Thr Ser 260 265
270Arg Phe Ala Arg Thr Leu Ser Ile Cys Thr Ser Ser Ala Ile Pro Ile
275 280 285Leu Glu Gly Met Lys Val Ala
Val Asp Val Met Ser Asn His His Val 290 295
300Lys Gln Gln Val Leu Gln Ala Ser Asp Ser Val Arg Glu Gly Ala
Ser305 310 315 320Leu Arg
Lys Ala Leu Asp Gln Thr Lys Leu Phe Pro Pro Met Met Leu
325 330 335His Met Ile Ala Ser Gly Glu
Gln Ser Gly Gln Leu Glu Gln Met Leu 340 345
350Thr Arg Ala Ala Asp Asn Gln Asp Gln Ser Phe Glu Ser Thr
Val Asn 355 360 365Ile Ala Leu Gly
Ile Phe Thr Pro Ala Leu Ile Ala Leu Met Ala Gly 370
375 380Leu Val Leu Phe Ile Val Met Ala Thr Leu Met Pro
Met Leu Glu Met385 390 395
400Asn Asn Leu Met Ser Gly 40549444DNAVibrio splendidus
49atgaaaaata aaatgaaaaa acaatcaggc tttaccctat tagaagtcat ggttgttgtc
60gttatccttg gtgttctagc aagttttgtt gtacctaacc tgttgggcaa caaagagaag
120gcggatcaac aaaaagccat cactgatatt gtggcgctag agaacgcgct cgacatgtac
180aaactggata acagcgttta cccaacaacg gatcaaggcc tggacgggtt ggtgacaaag
240ccaagcagtc cagagcctcg taactaccga gacggcggtt acatcaagcg tctacctaac
300gacccatggg gcaatgagta ccaataccta agtcctggtg ataacggcac aattgatatc
360ttcactcttg gcgcagatgg tcaagaaggt ggtgaaggta ttgctgcaga tatcggcaac
420tggaacatgc aggacttcca ataa
44450146PRTVibrio splendidus 50Lys Asn Lys Met Lys Lys Gln Ser Gly Phe
Thr Leu Leu Glu Val Met1 5 10
15Val Val Val Val Ile Leu Gly Val Leu Ala Ser Phe Val Val Pro Asn
20 25 30Leu Leu Gly Asn Lys Glu
Lys Ala Asp Gln Gln Lys Ala Ile Thr Asp 35 40
45Ile Val Ala Leu Glu Asn Ala Leu Asp Met Tyr Lys Leu Asp
Asn Ser 50 55 60Val Tyr Pro Thr Thr
Asp Gln Gly Leu Asp Gly Leu Val Thr Lys Pro65 70
75 80Ser Ser Pro Glu Pro Arg Asn Tyr Arg Asp
Gly Gly Tyr Ile Lys Arg 85 90
95Leu Pro Asn Asp Pro Trp Gly Asn Glu Tyr Gln Tyr Leu Ser Pro Gly
100 105 110Asp Asn Gly Thr Ile
Asp Ile Phe Thr Leu Gly Ala Asp Gly Gln Glu 115
120 125Gly Gly Glu Gly Ile Ala Ala Asp Ile Gly Asn Trp
Asn Met Gln Asp 130 135 140Phe
Gln14551594DNAVibrio splendidus 51gtgaaaacta agcaaacaca gccaggtttc
accttgattg agattctttt ggtgttggta 60ttactgtcag tatcggcggt cgcggtgatc
tcgaccatcc ctaccaatag caaagatgtt 120gctaaaaaat acgctcaaag cttttatcag
cgaattcagc tactcaatga agaggctatt 180ttgagtggct tagattttgg tgttcgtgtt
gatgaaaaaa aatcgactta cgttctgatg 240actttgaagt ctgatggctg gcaagaaacg
gagttcgaaa agatcccttc ttcaactgaa 300ttaccggaag aactggcact gtcgctgaca
ttaggtggtg gcgcgtggga agacgatgat 360cggttgttca atccaggaag cttatttgat
gaagatatgt ttgctgatct tgaagaggaa 420aagaagccga aaccaccaca gatctacatc
ttgtcgagtg ctgaaatgac gccatttgta 480ctgtcgtttt acccaaatac cggtgacaca
atacaagatg tttggcgcat tcgagtattg 540gataatggtg tgattcgatt actcgagccg
ggagaagaag atgaagaaga ataa 59452197PRTVibrio splendidus 52Met
Lys Thr Lys Gln Thr Gln Pro Gly Phe Thr Leu Ile Glu Ile Leu1
5 10 15Leu Val Leu Val Leu Leu Ser
Val Ser Ala Val Ala Val Ile Ser Thr 20 25
30Ile Pro Thr Asn Ser Lys Asp Val Ala Lys Lys Tyr Ala Gln
Ser Phe 35 40 45Tyr Gln Arg Ile
Gln Leu Leu Asn Glu Glu Ala Ile Leu Ser Gly Leu 50 55
60Asp Phe Gly Val Arg Val Asp Glu Lys Lys Ser Thr Tyr
Val Leu Met65 70 75
80Thr Leu Lys Ser Asp Gly Trp Gln Glu Thr Glu Phe Glu Lys Ile Pro
85 90 95Ser Ser Thr Glu Leu Pro
Glu Glu Leu Ala Leu Ser Leu Thr Leu Gly 100
105 110Gly Gly Ala Trp Glu Asp Asp Asp Arg Leu Phe Asn
Pro Gly Ser Leu 115 120 125Phe Asp
Glu Asp Met Phe Ala Asp Leu Glu Glu Glu Lys Lys Pro Lys 130
135 140Pro Pro Gln Ile Tyr Ile Leu Ser Ser Ala Glu
Met Thr Pro Phe Val145 150 155
160Leu Ser Phe Tyr Pro Asn Thr Gly Asp Thr Ile Gln Asp Val Trp Arg
165 170 175Ile Arg Val Leu
Asp Asn Gly Val Ile Arg Leu Leu Glu Pro Gly Glu 180
185 190Glu Asp Glu Glu Glu 19553396DNAVibrio
splendidus 53atgaagaaga ataaccgttc tccttatcgt tctcgcggta tgcctcttgg
ttctcgagga 60atgactctgc ttgaagtatt ggttgcgctg gctatcttcg ctacggcggc
gatcagtgtg 120attcgtgctg tcacccagca catcaatacg ctcagttatc tcgaagaaaa
aaccttcgcg 180gcgatggtcg ttgataatca aatggcccta gtcatgctac atcctgagat
gcttaaaaaa 240gcgcagggca cgcaagagtt agcgggaaga gaatggttct ggaaggtgac
tcccatcgat 300accagcgata atttattaaa ggcgtttgat gtgagtgcgg caaccagtaa
gaaagcgtct 360ccagtcgtta cggtgcgcag ttatgtggtt aattaa
39654131PRTVibrio splendidus 54Met Lys Lys Asn Asn Arg Ser
Pro Tyr Arg Ser Arg Gly Met Pro Leu1 5 10
15Gly Ser Arg Gly Met Thr Leu Leu Glu Val Leu Val Ala
Leu Ala Ile 20 25 30Phe Ala
Thr Ala Ala Ile Ser Val Ile Arg Ala Val Thr Gln His Ile 35
40 45Asn Thr Leu Ser Tyr Leu Glu Glu Lys Thr
Phe Ala Ala Met Val Val 50 55 60Asp
Asn Gln Met Ala Leu Val Met Leu His Pro Glu Met Leu Lys Lys65
70 75 80Ala Gln Gly Thr Gln Glu
Leu Ala Gly Arg Glu Trp Phe Trp Lys Val 85
90 95Thr Pro Ile Asp Thr Ser Asp Asn Leu Leu Lys Ala
Phe Asp Val Ser 100 105 110Ala
Ala Thr Ser Lys Lys Ala Ser Pro Val Val Thr Val Arg Ser Tyr 115
120 125Val Val Asn 13055804DNAVibrio
slpendidus 55atgtggttaa ttaagagaat gtggtcaatt aagagcatgt tattaattaa
gaacagctcg 60ctaactaaga gcgtgtcgct aactaagagc atgtcggaaa ataagcgtac
gccgcgtaaa 120caaggtctac cttcaaaagg gagaggcttt accttaattg aagtcttggt
ctcgattgct 180atctttgcca cgctaagtat ggcggcttat caggtggtta atcaggtgca
gcgaagcaac 240gagatctcta ttgagcgcag tgctcgtttg aaccaactgc aacgcagttt
agtcatttta 300gataatgatt ttcgccagat ggcggtgcga aaatttcgta ccaacggtga
agaagcatca 360tctaagctga tcttaatgaa agagtattta ttggactccg acagtgtagg
catcatgttt 420actcgtctag gttggcacaa cccacaacag cagtttcctc gcggtgaagt
cacgaaggtt 480ggctaccgta ttaaagaaga aacacttgag cgtgtatggt ggcgttatcc
cgatacacct 540tcaggccaag aaggtgtgat tacccctctg cttgatgatg ttgaaagctt
ggaattcgag 600ttttatgacg gaagccgctg ggggaaagag tggcaaaccg ataaatcact
gccgaaagcg 660gtgaggctta agctgacact gaaagactat ggtgagatag agcgtgttta
tctcactccc 720ggtggcaccc tagatcaggc cgatgattct tcaaacagtg actcttcagg
cagtagtgag 780gggaataatg actcatcgaa ctaa
80456267PRTVibrio splendidus 56Met Trp Leu Ile Lys Arg Met
Trp Ser Ile Lys Ser Met Leu Leu Ile1 5 10
15Lys Asn Ser Ser Leu Thr Lys Ser Val Ser Leu Thr Lys
Ser Met Ser 20 25 30Glu Asn
Lys Arg Thr Pro Arg Lys Gln Gly Leu Pro Ser Lys Gly Arg 35
40 45Gly Phe Thr Leu Ile Glu Val Leu Val Ser
Ile Ala Ile Phe Ala Thr 50 55 60Leu
Ser Met Ala Ala Tyr Gln Val Val Asn Gln Val Gln Arg Ser Asn65
70 75 80Glu Ile Ser Ile Glu Arg
Ser Ala Arg Leu Asn Gln Leu Gln Arg Ser 85
90 95Leu Val Ile Leu Asp Asn Asp Phe Arg Gln Met Ala
Val Arg Lys Phe 100 105 110Arg
Thr Asn Gly Glu Glu Ala Ser Ser Lys Leu Ile Leu Met Lys Glu 115
120 125Tyr Leu Leu Asp Ser Asp Ser Val Gly
Ile Met Phe Thr Arg Leu Gly 130 135
140Trp His Asn Pro Gln Gln Gln Phe Pro Arg Gly Glu Val Thr Lys Val145
150 155 160Gly Tyr Arg Ile
Lys Glu Glu Thr Leu Glu Arg Val Trp Trp Arg Tyr 165
170 175Pro Asp Thr Pro Ser Gly Gln Glu Gly Val
Ile Thr Pro Leu Leu Asp 180 185
190Asp Val Glu Ser Leu Glu Phe Glu Phe Tyr Asp Gly Ser Arg Trp Gly
195 200 205Lys Glu Trp Gln Thr Asp Lys
Ser Leu Pro Lys Ala Val Arg Leu Lys 210 215
220Leu Thr Leu Lys Asp Tyr Gly Glu Ile Glu Arg Val Tyr Leu Thr
Pro225 230 235 240Gly Gly
Thr Leu Asp Gln Ala Asp Asp Ser Ser Asn Ser Asp Ser Ser
245 250 255Gly Ser Ser Glu Gly Asn Asn
Asp Ser Ser Asn 260 265571050DNAVibrio
splendidus 57atgactcatc gaactaataa gcgtttagcg acaaggtcag ccttgggacg
taaacaacgt 60ggtgtcgcgc tgatcattat tttgatgcta ttggcgatca tggcaaccat
tgctggcagc 120atgtccgagc gtttgtttac gcaattcaag cgcgttggta accaactgaa
ttaccaacag 180gcttactggt acagcattgg tgtggaagcg cttgtgcaaa acggtattag
gcaaagttac 240aaagacagtg ataccgtgaa cctaagccaa ccatgggcgt tagaagagca
ggtataccca 300ttggattatg gccaagttaa gggccgcatt gttgatgctc aggcatgttt
taatcttaat 360gccttagccg gagtggcgac cacttcaagt aaccagactc cttatttaat
cacggtttgg 420caaaccttat tggaaaacca agacgttgag ccttatcagg ctgaggttat
cgcaaattca 480acgtgggaat ttgttgatgc ggatacacga accacctctt cgtctggtgt
agaagacagc 540acgtatgaag cgatgaagcc ctcttatttg gcggcgaatg gcttaatggc
cgatgaatcc 600gagctacgag cggtttatca agtcactggt gaagtgatga ataaggttcg
cccctttgtt 660tgcgctctgc caaccgatga tttccgcttg aatgtgaata ctctcacgga
aaaacaagca 720ccgttattgg aagcgatgtt tgcgccaggc ttaagtgaat cggatgccaa
acagctgata 780gataaacgcc catttgatgg ctgggatacg gtagatgctt tcatggctga
acctgccatt 840gttggtgtaa gtgccgaagt cagcaagaaa gcgaaagcat atttaactgt
agatagcgcc 900tattttgagc tagatgcaga ggtattagtt gagcagtcac gtgtacgtat
acggacgctt 960ttctatagta gtaatcgaga aacagtgacg gtagtacgcc gtcgttttgg
aggaatcagt 1020gagcgagttt ctgaccgttc gactgagtag
105058349PRTVibrio splendidus 58Met Thr His Arg Thr Asn Lys
Arg Leu Ala Thr Arg Ser Ala Leu Gly1 5 10
15Arg Lys Gln Arg Gly Val Ala Leu Ile Ile Ile Leu Met
Leu Leu Ala 20 25 30Ile Met
Ala Thr Ile Ala Gly Ser Met Ser Glu Arg Leu Phe Thr Gln 35
40 45Phe Lys Arg Val Gly Asn Gln Leu Asn Tyr
Gln Gln Ala Tyr Trp Tyr 50 55 60Ser
Ile Gly Val Glu Ala Leu Val Gln Asn Gly Ile Arg Gln Ser Tyr65
70 75 80Lys Asp Ser Asp Thr Val
Asn Leu Ser Gln Pro Trp Ala Leu Glu Glu 85
90 95Gln Val Tyr Pro Leu Asp Tyr Gly Gln Val Lys Gly
Arg Ile Val Asp 100 105 110Ala
Gln Ala Cys Phe Asn Leu Asn Ala Leu Ala Gly Val Ala Thr Thr 115
120 125Ser Ser Asn Gln Thr Pro Tyr Leu Ile
Thr Val Trp Gln Thr Leu Leu 130 135
140Glu Asn Gln Asp Val Glu Pro Tyr Gln Ala Glu Val Ile Ala Asn Ser145
150 155 160Thr Trp Glu Phe
Val Asp Ala Asp Thr Arg Thr Thr Ser Ser Ser Gly 165
170 175Val Glu Asp Ser Thr Tyr Glu Ala Met Lys
Pro Ser Tyr Leu Ala Ala 180 185
190Asn Gly Leu Met Ala Asp Glu Ser Glu Leu Arg Ala Val Tyr Gln Val
195 200 205Thr Gly Glu Val Met Asn Lys
Val Arg Pro Phe Val Cys Ala Leu Pro 210 215
220Thr Asp Asp Phe Arg Leu Asn Val Asn Thr Leu Thr Glu Lys Gln
Ala225 230 235 240Pro Leu
Leu Glu Ala Met Phe Ala Pro Gly Leu Ser Glu Ser Asp Ala
245 250 255Lys Gln Leu Ile Asp Lys Arg
Pro Phe Asp Gly Trp Asp Thr Val Asp 260 265
270Ala Phe Met Ala Glu Pro Ala Ile Val Gly Val Ser Ala Glu
Val Ser 275 280 285Lys Lys Ala Lys
Ala Tyr Leu Thr Val Asp Ser Ala Tyr Phe Glu Leu 290
295 300Asp Ala Glu Val Leu Val Glu Gln Ser Arg Val Arg
Ile Arg Thr Leu305 310 315
320Phe Tyr Ser Ser Asn Arg Glu Thr Val Thr Val Val Arg Arg Arg Phe
325 330 335Gly Gly Ile Ser Glu
Arg Val Ser Asp Arg Ser Thr Glu 340
345591248DNAVibrio splendidus 59gtgagcgagt ttctgaccgt tcgactgagt
agcgaaccac aaagccctgt gcagtggtta 60gtttggtcga caagccaaca agaagtgata
gcaagcggtg aactgtctag ctgggaacag 120cttgacgagt taacgcctta cgctgaaaag
cgcagctgta tcgctttatt gccgggaagt 180gaatgcttaa ttaagcgtgt tgagatcccg
aaaggtgctg ctcgccagtt tgattctatg 240ctgccgttct tattagaaga cgaagtcgca
caagatatcg aagacttaca cctgactatt 300ttagataaag atgccactca cgctaccgtg
tgtggtgtgg atcgtgaatg gctaaaacaa 360gctttagacc tgtttcgcga agccaatata
atcttccgta aggtgctacc agatacacta 420gccgtgcctt ttgaagaaca aggcatcagt
gcgttgcaga tagatcagca ttggttattg 480cgccaaggtc actctcaacg tcaaggtcac
tatcaagccg tatcgatcag tgaagcatgg 540ttaccgatgt ttttgcaaag tgattgggtt
gtcgctggtg aggaagagca agcgacgact 600atcttcagct ataccgcgat gccgagcgac
gacgttcaac agcaaagcgg cctcgagtgg 660caagcaaagc ctgcggaatt ggtgatgtct
ttattgagtc agcaagcgat cacaagcggc 720gtaaatttac tgactggcac ctttaaaacc
aaatcttcat tcagtaaata ttggcgtgtt 780tggcagaaag tggcgattgc tgcttgtttg
ctggtggccg tgattgtgac tcagcaagtg 840ttgaaggttc agcaatacga agcgcaagca
caagcctacc gcatggagag tgagcgtatc 900tttagagctg tgctgcctgg caaacaacgc
attccgaccg tgagttacct caagcgtcag 960atgaatgatg aagctaagaa atacggtggt
tcaggcgaag gtgattcttt acttggttgg 1020ttagctttgc tgcctgaaac cttagggcaa
gtgaagacga tcgaagttga aagcattcgc 1080tacgatggca accgttctga ggttcgactg
caggctaaaa gttctgactt ccaacacttt 1140gagaccgcaa gggtgaagct cgaagagaag
tttgtcgttg agcaagggcc attgaaccgt 1200aatggcgatg ccgtatttgg cagttttact
cttaaacccc atcaataa 124860415PRTVibrio splendidus 60Met
Ser Glu Phe Leu Thr Val Arg Leu Ser Ser Glu Pro Gln Ser Pro1
5 10 15Val Gln Trp Leu Val Trp Ser
Thr Ser Gln Gln Glu Val Ile Ala Ser 20 25
30Gly Glu Leu Ser Ser Trp Glu Gln Leu Asp Glu Leu Thr Pro
Tyr Ala 35 40 45Glu Lys Arg Ser
Cys Ile Ala Leu Leu Pro Gly Ser Glu Cys Leu Ile 50 55
60Lys Arg Val Glu Ile Pro Lys Gly Ala Ala Arg Gln Phe
Asp Ser Met65 70 75
80Leu Pro Phe Leu Leu Glu Asp Glu Val Ala Gln Asp Ile Glu Asp Leu
85 90 95His Leu Thr Ile Leu Asp
Lys Asp Ala Thr His Ala Thr Val Cys Gly 100
105 110Val Asp Arg Glu Trp Leu Lys Gln Ala Leu Asp Leu
Phe Arg Glu Ala 115 120 125Asn Ile
Ile Phe Arg Lys Val Leu Pro Asp Thr Leu Ala Val Pro Phe 130
135 140Glu Glu Gln Gly Ile Ser Ala Leu Gln Ile Asp
Gln His Trp Leu Leu145 150 155
160Arg Gln Gly His Ser Gln Arg Gln Gly His Tyr Gln Ala Val Ser Ile
165 170 175Ser Glu Ala Trp
Leu Pro Met Phe Leu Gln Ser Asp Trp Val Val Ala 180
185 190Gly Glu Glu Glu Gln Ala Thr Thr Ile Phe Ser
Tyr Thr Ala Met Pro 195 200 205Ser
Asp Asp Val Gln Gln Gln Ser Gly Leu Glu Trp Gln Ala Lys Pro 210
215 220Ala Glu Leu Val Met Ser Leu Leu Ser Gln
Gln Ala Ile Thr Ser Gly225 230 235
240Val Asn Leu Leu Thr Gly Thr Phe Lys Thr Lys Ser Ser Phe Ser
Lys 245 250 255Tyr Trp Arg
Val Trp Gln Lys Val Ala Ile Ala Ala Cys Leu Leu Val 260
265 270Ala Val Ile Val Thr Gln Gln Val Leu Lys
Val Gln Gln Tyr Glu Ala 275 280
285Gln Ala Gln Ala Tyr Arg Met Glu Ser Glu Arg Ile Phe Arg Ala Val 290
295 300Leu Pro Gly Lys Gln Arg Ile Pro
Thr Val Ser Tyr Leu Lys Arg Gln305 310
315 320Met Asn Asp Glu Ala Lys Lys Tyr Gly Gly Ser Gly
Glu Gly Asp Ser 325 330
335Leu Leu Gly Trp Leu Ala Leu Leu Pro Glu Thr Leu Gly Gln Val Lys
340 345 350Thr Ile Glu Val Glu Ser
Ile Arg Tyr Asp Gly Asn Arg Ser Glu Val 355 360
365Arg Leu Gln Ala Lys Ser Ser Asp Phe Gln His Phe Glu Thr
Ala Arg 370 375 380Val Lys Leu Glu Glu
Lys Phe Val Val Glu Gln Gly Pro Leu Asn Arg385 390
395 400Asn Gly Asp Ala Val Phe Gly Ser Phe Thr
Leu Lys Pro His Gln 405 410
41561489DNAVibrio splendidus 61atgagaaata tgattgaacc actccaagcg
tggtgggctt caataagtca gcgggaacaa 60cgattagtca ttggttgttc tattttattg
atactgggcg ttgtctattg gggattaata 120caaccactta gccaacgagc cgagcttgca
caaagccgca ttcaaagtga gaagcaactt 180ctggcttggg taacggacaa agcgaatcaa
gtggttgaac tacgaggcag tggtggcatc 240agtgccagtc agcctttgaa ccaatctgtg
cctgcttcta tgcgccgttt taacatcgag 300ctgatacgcg tgcaaccacg cggtgagatg
ctgcaagttt ggattaagcc tgtgccattt 360aataagttcg ttgactggct gacatacctg
aaagaaaagc agggtgttga ggttgagttt 420atggatattg atcgctctga tagccctggg
gttattgaga tcaaccgact acagtttaaa 480cgaggttaa
48962162PRTVibrio splendidus 62Met Arg
Asn Met Ile Glu Pro Leu Gln Ala Trp Trp Ala Ser Ile Ser1 5
10 15Gln Arg Glu Gln Arg Leu Val Ile
Gly Cys Ser Ile Leu Leu Ile Leu 20 25
30Gly Val Val Tyr Trp Gly Leu Ile Gln Pro Leu Ser Gln Arg Ala
Glu 35 40 45Leu Ala Gln Ser Arg
Ile Gln Ser Glu Lys Gln Leu Leu Ala Trp Val 50 55
60Thr Asp Lys Ala Asn Gln Val Val Glu Leu Arg Gly Ser Gly
Gly Ile65 70 75 80Ser
Ala Ser Gln Pro Leu Asn Gln Ser Val Pro Ala Ser Met Arg Arg
85 90 95Phe Asn Ile Glu Leu Ile Arg
Val Gln Pro Arg Gly Glu Met Leu Gln 100 105
110Val Trp Ile Lys Pro Val Pro Phe Asn Lys Phe Val Asp Trp
Leu Thr 115 120 125Tyr Leu Lys Glu
Lys Gln Gly Val Glu Val Glu Phe Met Asp Ile Asp 130
135 140Arg Ser Asp Ser Pro Gly Val Ile Glu Ile Asn Arg
Leu Gln Phe Lys145 150 155
160Arg Gly63780DNAVibrio splendidus 63gtgaaacgcg gtttatcttt caaatacggc
ctgttattca gcgtcatttt tatcgttttt 60ttctcggtaa gcttgttgct gcatttgcct
gccgcttttg ctctcaagca tgcacccgtc 120gtgcgtggtt taagcattga aggcgttgag
ggcaccgttt ggcaaggtcg cgctaacaat 180atcgcgtggc agcgtgtcaa ttacggctca
gtgcagtggg acttccagtt ctctaaacta 240ttccaagcca aagcagaact tgcggttcgc
tttggccgca acagcgacat gaacttatca 300ggtaaaggac gtgtcggata tagcatgagt
ggtgcttacg cggaaaactt agtggcatca 360atgccagcca gcaacgtgat gaaatatgcg
ccagctatcc cagtgcctgt gtctattgca 420gggcaagttg aactgacgat caaacatgcg
gttcatgctc aaccttggtg tcaatcaggt 480gaaggtacgc ttgcttggtc tggtgcagca
gtcgactcgc cagtgggttc gttagacctt 540ggccctgtga ttgcggacat aacgtgtgaa
gacagcacaa ttgcagccaa aggcactcag 600aagagcgatc aggtagacag cgagttctca
gcgagcgtaa cacctaacca acgctacacc 660tcggcagcat ggtttaagcc aggcgctgaa
ttcccgccag caatgcagag tcagcttaag 720tggttgggca atcctgatag ccaaggtaaa
taccaattta cttatcaagg ccgcttttag 78064259PRTVibrio splendidus 64Met
Lys Arg Gly Leu Ser Phe Lys Tyr Gly Leu Leu Phe Ser Val Ile1
5 10 15Phe Ile Val Phe Phe Ser Val
Ser Leu Leu Leu His Leu Pro Ala Ala 20 25
30Phe Ala Leu Lys His Ala Pro Val Val Arg Gly Leu Ser Ile
Glu Gly 35 40 45Val Glu Gly Thr
Val Trp Gln Gly Arg Ala Asn Asn Ile Ala Trp Gln 50 55
60Arg Val Asn Tyr Gly Ser Val Gln Trp Asp Phe Gln Phe
Ser Lys Leu65 70 75
80Phe Gln Ala Lys Ala Glu Leu Ala Val Arg Phe Gly Arg Asn Ser Asp
85 90 95Met Asn Leu Ser Gly Lys
Gly Arg Val Gly Tyr Ser Met Ser Gly Ala 100
105 110Tyr Ala Glu Asn Leu Val Ala Ser Met Pro Ala Ser
Asn Val Met Lys 115 120 125Tyr Ala
Pro Ala Ile Pro Val Pro Val Ser Ile Ala Gly Gln Val Glu 130
135 140Leu Thr Ile Lys His Ala Val His Ala Gln Pro
Trp Cys Gln Ser Gly145 150 155
160Glu Gly Thr Leu Ala Trp Ser Gly Ala Ala Val Asp Ser Pro Val Gly
165 170 175Ser Leu Asp Leu
Gly Pro Val Ile Ala Asp Ile Thr Cys Glu Asp Ser 180
185 190Thr Ile Ala Ala Lys Gly Thr Gln Lys Ser Asp
Gln Val Asp Ser Glu 195 200 205Phe
Ser Ala Ser Val Thr Pro Asn Gln Arg Tyr Thr Ser Ala Ala Trp 210
215 220Phe Lys Pro Gly Ala Glu Phe Pro Pro Ala
Met Gln Ser Gln Leu Lys225 230 235
240Trp Leu Gly Asn Pro Asp Ser Gln Gly Lys Tyr Gln Phe Thr Tyr
Gln 245 250 255Gly Arg
Phe6510967DNAErwinia carotovora subsp. Atroseptica SCRI1043 65aagttgcagg
atatgacgaa agcgtggccg acgactatac cggccacgct ttgaggaatt 60acaggaaatc
agctcgctta ggcgagaaag catcgatcag tacgctaccg tcttccagcg 120aaaccacgcc
gtgcatctcg tgtttcaccg ccagataggc gtcgcccgtt ttcagggtgc 180gtttttcacc
ttcgatcacg acttcaaagc tgccagcggc aacataagca atctggtcgt 240gaatctcatg
gaagtgcggc gtaccaatcg cacctttatc aaagtgcacg taaaccatca 300tcagctcatc
gctccatgtc atgattttac gtttaatgcc accgcccagc tcttcccatg 360gcgtttcatc
atcaataaag tatcttctca tcatctctct cctctaacgc tctttttgcc 420cataccttct
attgcgtcaa caaaccgtgt acgacaacga atgcatggct atggattgcg 480acattttagc
cacatcagta ccagaagaaa cataaaataa gcaaaaccat gacggccctc 540aagaaataaa
taaaacatta tttcattttt attgaattcg catctcatcc aaactatcat 600cccgcataac
aagaaagaac cgggcatgtt gaggaacagg tgacgttgtc actgccacgc 660aacatcatct
gtttcgcccg gcgctttcgc caggaacgat tcctcttctt ggaacggcgc 720ctgatttttg
tttttctctg aaagagaggc taagaaatgc aagttcgtca aagcattcac 780agcgatcacg
cgaagcagct agatacagca ggcctgcgtc gtgaattcct gatcgaacag 840attttttctg
ccgatgccta cactatgacc tatagccaca tcgaccgaat catcgtcggt 900ggcatcatgc
ccgtacacag cgccgtaacg attggcggtg aagtgggtaa acaactcggc 960gttagctatt
tccttgagcg tcgcgaactc ggagccatca acattggcgg cgcgggtacc 1020gttactgtcg
atggcgagcg ctatgacgtg ggtaatgaag aagcaattta tgttggcatg 1080ggcgtgaaag
acgtgcagtt taccagcact gatgccacta acccggccaa gttctactac 1140aacagcgcgc
ctgcacatac gacatatcct acccgcaaga ttacccaagc tgacgcttca 1200ccacaaaccg
tgggagaaga tgcaagctgt aatcgtcgca caattaacaa atacattgtt 1260cccgatgtat
tgccaacctg ccagctcacc atgggattaa ccaagttagc tgaaggcagc 1320ctgtggaaca
ccatgccttg tcatacgcat gagcgccgga tggaagtcta tttctatttt 1380gatatggatg
aggaaacggc cgttttccac atgatggggc aaccgcagga aacccgtcac 1440atagttatta
aaaacgagca ggcggtgatt tcaccgagct ggtcgattca ttccggtgtt 1500ggcaccagac
gctacacctt tatctggggc atggttggcg agaatcaagt tttcggtgac 1560atggatcacg
tcaaggttag cgagttacgt taatcgcttt caaccggaat taccggtgtt 1620ccctacagta
acagctaacg actaagtatt gtcgcttata gagagattat tgatatgatt 1680ttaaattctt
ttgatttgca aggtaaagtt gctcttatca cgggttgtga tacgggttta 1740ggtcagggta
tggctatcgg tctggcacaa gctggctgtg atatcgttgg cgtcaacatc 1800gttgaaccaa
aagataccat cgaaaaagtt accgcactgg gacgccgttt cctcagcctg 1860accgctgaca
tgagcaacgt agcgggtcat gccgagctgg tagagaaagc cgttgctgaa 1920tttggtcacg
ttgacattct ggtcaacaac gccggtatca tccgtcgtga agatgctatc 1980gagttcagcg
agaaaaactg ggacgacgtc atgaatctga acattaagag cgttttcttt 2040atgtctcagg
ctgttgcacg ccagtttatc aaacaaggta aaggcggcaa gatcatcaac 2100atcgcctcta
tgctgtcctt ccaaggcggt atccgcgtgc cttcttacac tgcgtcaaaa 2160agcgccgtta
tgggtgtaac ccgtctgctg gctaacgagt gggcaaaaca cggcatcaac 2220gttaacgcca
ttgctccagg gtacatggca accaacaata ctcagcaact gcgcgccgat 2280gaagaccgca
gcaaagagat tctggaccgt atcccggctg gccgttgggg tttaccacag 2340gatctgatgg
gcccatccgt cttcctggca tccagcgcat ctgattacat caatggctac 2400acgattgccg
ttgatggtgg ctggctggct cgctaagtgt aatttttctt agcggcattt 2460cgctaatcca
cgataaaaag cacaatttag gttgtgcttt ttatttattt ttcaagttgt 2520tatttcgttt
tttataattc tcttttctgc ctaaatcctt tcttaaaaaa aaatcaaaac 2580aacgttccga
ctttgatcac actttcgata ttgcgtgcat gacgacaagg ttaatagcgc 2640aatataatca
atcaaaacag tgtttctatt tataaggaac tgttcacgca gttccataag 2700aaggtactcc
atgagtattt ttgaaaactt atacaccagc aggaaatcgc agctcgacga 2760atgggttgct
gcacttgata gccacatatc ctgcgttcag gaaaaaggcc gcagccaaag 2820ccaaccgacg
ctattactgg ccgatggttt tgatgtggaa aattatgcgc ctgcggtatg 2880gcaatttccg
gatgggcaca gcgcgcctat ttctaatttt gccagccagc agaattggct 2940aagaacgctg
tgcgccatga gcgtcgttac gggtaatgat agttaccaac agcacgctat 3000cgcacaaagc
gaatatttcc tggatcattt cgttgatgat aatagcggcc tgttctactg 3060gggcggccat
cgctttatta atctggatac gctggaaggc gaagggccag aatccaaagc 3120tcaggtgcat
gaattaaagc accacctgcc ctattacgcg ctgttacatc gtgttaacgc 3180ggaaaagacg
ctgaacttct ttcaggggtt ctggaacgca cacgttgaag attggaattc 3240actggatctg
ggtcgtcatg gcgattacag caaaaaacgc gatcctgatg ttttcctgca 3300taaccgtcat
gatgtcgtcg atccggcaca gtggcccgtt ctgccattaa cgaaaggcct 3360gacgtttgtt
aatgccggca cggatctgat ttacgccgca ttcaaatatg cagaatatac 3420gggcgatagc
catgccgcgg catggggtaa acacctttat cgccaatacg ttctggctcg 3480caacccagaa
accggtatgc cggtgtatca attcagttca ccacagcagc gccagccagt 3540gccggaagac
gataaccaga cgcagtcctg gtttggcgat cgcgctcaac gccagtttgg 3600cccagagttc
ggtgaaatcg cacgtgaagc caatgtgctg ttccgcgata tgcgtccact 3660gctgattgat
aacccgctgg caatgctgga tatcctccgc acacagcctg atgcagaaat 3720gctgaattgg
gtaatctctg gattaaaaaa ttattaccag tacgcctacg atgtcaccag 3780caatacgttg
cgcccgatgt ggaacaacgg gcaggacatg acaggctacc gttttaaacg 3840cgatggctat
tacggcaaag cgggaacgga attaaaaccg ttcgcattag aaggtgatta 3900tttattacct
ctggttcgtg cttatcgtct gagcggtgat gaagacctgt acgcactggt 3960taacaccatg
ctgacacggc tgaataaaga agatattcag cacatcgcca gtccgctact 4020tttgttgacc
gttatcgaac tggccgatca caagcaatca gaatcctggg cacattacgc 4080cgcacaactg
gcgggcgtta tgtttgaaca acatttccat cgtggtttgt ttgttcgctc 4140tgcacagcat
cgttatgttc gtctggatga tacctatccg ctggctttac tgactttcgt 4200tgccgcctgt
cgcaacaaat taaacgatat cccgccgtat ctgacacaag gtggatatgt 4260tcacggcgat
tttcacgtta acggggaaaa tagaattgtt tatgacgtgg aattaattta 4320tccagagtta
ttaacagctt aattttatgt tttttttaat gattcacaat taatcaatag 4380gtaagcatta
tgaatgaaaa cagaatgctg gggttagcct atatctcccc ctatattata 4440gggctgatag
tttttaccgc tttccccttt atttcgtcat ttatcctcag ttttactgag 4500tatgatttga
tgagtccgcc tgagtttacg ggtcttgaga actatcaccg tatgttcatg 4560gaggatgatc
ttttttggaa atcaatgggc gtcacctttg cctatgtatt tctgaccatt 4620ccattgaaat
taatcttcgc actgttaatt gcgtttgtac ttaatttcaa attacgtggt 4680atcggtttct
tccgtactgc ttactatgtg ccttctattc tgggcagcag cgtggccatt 4740gccgttctgt
ggcgtgccct attcgccatc gatggcttgc tgaacagctt cctcggcgta 4800tttggctttg
atgccatcaa ctggctgggc gaaccttcgc tggcactgat gtcggtaacc 4860ctgctgcgcg
tatggcagtt tggttccgcc atggttatct tccttgctgc attgcagaac 4920gtcccgcaat
cacagtatga agcagccatg atcgacggtg catccaaatg gcaaatgttc 4980ctgaaagtaa
cggttccact gattacgccg gttattttct ttaactttat catgcagacc 5040actcaggcat
tccaggagtt tacggcacct tacgtcatca ctggcggcgg tccaacgcac 5100tacacctatc
tgttctcgct ctatatctat gataccgcgt tcaagtattt cgatatgggc 5160tatggtgctg
cgctggcatg ggttctgttc ctggttgttg cggtatttgc ggcaatctcc 5220tttaagtcgt
cgaaatactg ggtgttctac tccgctgata aaggaggaaa aaatggctga 5280catgcattca
aacctgacta cagcacaaga aattgctgct gcagaagtac gccgcacgct 5340gcgtaaagag
aaactcagtg cctccatccg ttacgtgata ctgctgttcg ttggcttact 5400gatgctttac
ccactagcgt ggatgttctc agcgtcgttc aaaccgaacc aagagatctt 5460cacgacactg
ggcctgtggc cggaacacgc cacatgggac ggtttcgtta acggttggaa 5520aaccggtacg
gaatacaatt tcggtcacta catgatcaat acgctcaagt tcgtgattcc 5580gaaagtgcta
ctgaccatta tctcttccac cattgtcgct tacggctttg cccgtttcga 5640gattccatgg
aagggcttct ggttcgggac gctgatcacc accatgctgt taccaagcac 5700cgtgttgctg
attccgcagt acatcatgtt ccgtgaaatg ggcatgctga acagctatct 5760gccactgtac
ttgccgatgg cgtttgcaac acaagggttc tttgtgttca tgctgatcca 5820gttcctgcgt
ggtgtaccac gtgatatgga agaagccgcc cagatcgatg gctgtaactc 5880cttccaggtt
ctgtggtatg tggtcgtgcc gattttgaaa ccagccatca tctctgttgc 5940gctgttccag
ttcatgtggt caatgaacga cttcatcggt ccgctgattt atgtctatag 6000cgtggataaa
tatccgattg cgctggcgct gaaaatgtct atcgacgtta ctgaaggcgc 6060tccgtggaat
gaaatcctgg caatgtccag catctccatt ctgccatcca ttattgtttt 6120cttcctggca
cagcgttact tcgtacaagg cgtgaccagc agcggaatta aaggttaata 6180gaggatttat
catggctgaa gttattttca ataaactgga aaaagtatac accaacggct 6240tcaaagcggt
tcacggcatc gacctgacca ttaaagacgg tgagttcatg gttatcgtcg 6300gcccgtcagg
ctgtgcgaaa tcaacgacgc tgcgtatgtt agcgggtctg gaaaccatca 6360gcggcggtga
agttcgcatc ggcgagcgcg ttgttaacaa tctggcaccg aaagagcgtg 6420ggattgcaat
ggtgttccag aactatgcgc tctaccctca tatgacggta aaagagaacc 6480tggcgtttgg
tctgaagctg agcaaaatgc ctaaagatca aattgaagcg caagtaacgg 6540aagcagccaa
aattctggag ctggaagacc tgatggatcg tctgccacgc cagctatctg 6600gtggtcaggc
gcagcgtgtg gccgtaggcc gtgccatcgt taaaaagccg gatgttttcc 6660tgtttgatga
accgttatct aacctggatg ccaaactgcg tgcttccatg cgtatccgta 6720tttctgacct
gcataagcag ttgaagaaaa gcggtaaagc ggcaacgacg gtatatgtta 6780cccacgacca
gactgaagcc atgaccatgg gcgaccgtat ctgcgttatg aagctgggtc 6840acatcatgca
ggtcgatacg ccggataacc tgtaccattt ccctgtcaac atgttcgttg 6900ctggcttcat
tggctcacca gaaatgaaca ttaagccgtg caaactggtc gagaaagacg 6960gtcagattgg
cgttgttgtg ggtaataacg cgctggtatt aaatactgaa aaacaagata 7020aagtgcgcag
ctacgtagga caagacgtat tcttcggcgt tcgcccagac tatgtttcct 7080tgtcagatac
gccatttgaa ggcagccact cacagggtga actggttcgc gtagaaaaca 7140tgggtcacga
attctttatg tacattaaag tcgatggctt tgaattaacc agccgcattc 7200cttatgacga
aggtcggctg attatcgaga agggactgca tcgtccggta tatttccagt 7260tcgacatgga
aaaatgccat atttttgatg caaaaacaga aaaaaatatc tctctttaac 7320aggagtagta
accgatgaaa aaagcgatcc tacacacgtt aatagcttca tctttggcat 7380tagttgcaat
gccatctctg gcagccgatc aggttgagtt gagaatgtcc tggtggggcg 7440gcaacagccg
tcaccaacag acgctcaagg cgattgaaga gttccataag cagcacccag 7500acatcaccgt
gaaagcggaa tacaccggat gggatggtca cctgtctcgt ctgacaacac 7560agattgccgg
taacactgag ccagatgtga tgcagactaa ctggaactgg ctgccgattt 7620tctccaaaaa
cggcgatggt ttttatgatc tgaacaaagt gaaagattct ctggatctga 7680cccagttcga
agcaaaagaa ctgcaaaaca ccacggttaa cggcaagctg aacggtattc 7740ctatttctgt
taccgctcgc gtgttctatt tcaacaacga aagctgggca aaagcgggac 7800tggaataccc
gaaaacgtgg gacgaactgc tgaacgccgg taaagtgttc aaagagaagc 7860tgggcgacca
atactaccct atcgtgttgg aacaccagga ttctctggca ctgctgaact 7920cttacatggt
tcaaaaatac aacattcctg ctattgatgt gaaaagtcag aaattcgcct 7980ataccgatgc
acaatgggtt gaattctttg gcatgtataa gaaactgatc gacagccatg 8040tcatgcctga
tgcgaaatac tatgcctctt tcggtaagag caacatgtat gagatgaagc 8100catggatcaa
tggcgagtgg tctggtactt acatgtggaa ctccactatc actaagtact 8160ctgacaactt
gcaaccacca gcaaaactgg cgttaggtaa ctacccaatg ctgcctggtg 8220caaaagatgc
tggcttgttc ttcaaacctg cacaaatgct gtctatcggt aagtcaacca 8280agcatcctaa
agagtctgct cagttgatca acttcctgct gaacagcaaa gaaggtgctc 8340aggctttggg
tctggaacgt ggtgtaccgt tgagtaaagc ggctgtggct cagctgaccg 8400ctgatggcat
catcaaagat gatgctccag cagttgccgg gttgaagctg gcgctgtctc 8460tgccgcatga
agttgctgtt tctccttatt tcgacgaccc acaaatcgtt tctctgtttg 8520gtgataccat
ccaatctatc gattatggtc agaaatctgt ggaagacgca gcgaaatact 8580tccagcgtca
atctgagcgt gttctgaaac gcgcaatgaa ataatgtagc actcgattta 8640ccctgtaatt
catccctgcc gcaccgacgg cagggatttt tcatttaaat taaaacatcc 8700tctatattca
attcgatctc cctcacaatt tgaaacccta ttttactttt tgttactcaa 8760aacgatctcg
atcacagaac gtaatttaat aataaataga atagaacttg tcccaaaaaa 8820cataatgcgc
ctttcgaatt aaagtattaa gcacagtcct aaccaatggg gaatataaca 8880atgaaattta
aattattagc tctggctgtt acatcattaa ttagtgtgaa tgcaatggct 8940gtaactatcg
attaccgtca tgaaatgaaa gatacaccga aaaatgatca ccgcgatcgt 9000ttgtcaatgt
cacaccgttt tgccaatggc tttggtttat ccgttgaagc aaaatggcgt 9060caatccagtg
ctgacagcac accgaataaa ccatttaatg aaaccgtcag caacggtact 9120gaagttgtcg
ccagctatgt ttacaacttc aacaaaactt tttctctgga gccaggtttc 9180tctttagatt
caagctctac ctctaacaac tatcgccctt atctgcgcgg taaagtgaat 9240atcactgacg
atctttctac ctctttacgt tatcgtcctt actacaaacg taacagcggt 9300gatgttccaa
atgcatcaaa aaacaaccaa gagaatggtt ataacctaac cgccgttctc 9360agctataaat
tcctgaaaga tttccaagtt gattacgaac tggactacaa aaaagcaaat 9420aaagccggtg
cgtatcaata cgacaatgaa acatacaatt tcgaccatga tgtaaaattg 9480tcttataaaa
tggataaaaa ctggaagcct tatatggctg taggtaatgt tgcagattcc 9540ggcaccaacg
atcatcgtca aactcgttac cgtgttggtg tgcaatacag cttctaataa 9600cggccttgtt
atttaaataa gcgttattag gtagcagaag ggatgttatt gttaatcgat 9660ttactcagat
ctacttttat cattaacatc cctttattat ggtgtccgtt gtaggttaag 9720caggttagtt
acgtttcttt gttgtacatg atttagttat atgcgtttta gctgctgtaa 9780ttgctgtgtc
tgatttaccc tcttcgtgta tgaatgttat ttctttatta aaatttgcgg 9840ttcagggtag
tcattttttc tccgatgtga tggctaccct attttttacc accgcccaac 9900gattcccccc
tcattccctt tgtcaggtga tctatcatga ttgttcgttc tctgcttgtc 9960ggggccatta
tgatgtctgt aaatggatta agttacgcac aacctgtttt ctctgtctgg 10020ccacacggtg
aagcaccggg tgcctcttct tcaacggcac agccgcaagt ggtcgaacgg 10080agtaaagatc
cttctcttcc cgatcgagcc gcaacgggta ttcgcagccc tgaaattacc 10140gtttatccgg
cagagaaacc caatggcatg gcattactca ttacgccggg cggttcttat 10200cagcgcgtcg
tgctagataa agaaggcagc gatctagccc ctttctttaa tcaacaaggc 10260tacacccttt
tcgtgatgac ctatcgtatg cccggtgaag gccataaaga aggcgctgac 10320gctccgctag
ccgatgccca acgagccatc agaacactga gagccaacgc cgaaaagtgg 10380cacattaacc
cgcagcgcat cggtattatg gggttctccg ccggtggtca cgttgccgcc 10440agccttggaa
cccgattcgc acagtccgtt taccccgcga tggacgccgt tgataacgta 10500agcgcacgcc
ctgacttcat ggtgttgatg taccccgtaa tttctatgca ggcagatatt 10560gcgcacgccg
gttcacgtaa acagttaatc ggcgagcaac cgatggaagt acaagcggta 10620cgttattctc
ctgagaaaca ggttactgat cagactcccc ccacgttttt ggtgcatgcg 10680gttgacgatc
cgtcagtgtc ggttgataac agcctggtga tgtttagcgc gctgcgggca 10740aagcagattc
cggtcgaaat gcatctcttt gagaaaggta aacacggctt cggtctccgc 10800ggcaccaagg
ggcttcctgc cgctgcctgg cctcaactgc tggacaactg gctacgcgct 10860ttacctgcaa
gcaacgaatt gccgaaagcc gcgccataag gtatagcaaa catcgtaacc 10920gaaataaatc
gttacgccgt caccgcttcc gcagacaggg ataatct
10967662582DNAErwinia carotovora subsp. Atroseptica SCRI1043 66ccaacggcgg
gtgcgacata aacataagcg aatcgaagcg ctgcgctccg gtgagtatct 60gaagtaattt
acgatagttt ctttccaaag gcccattcgg gcctttgtta tttcagcgtt 120tattgattca
tcaaacctgc gctttctctg ctcgaatgtt ttcactagat ctgaaacagg 180tggtgaaaac
atgaagaatg ttttataaaa taaaaccacg atcacggaaa aatgaaacat 240tgtttctata
ataccgatat gacaggcgtc tcgcgtgaga tttgtggcct gatttttgaa 300caaccggtgt
cggggtgacc gattcgtcgg acgttcagta atgtcaggtt atcgaagcgt 360atgcgtgtgt
ggcgtcaaat tcttcatgat aagttctaag gatttacgga tggccaaagg 420taataagatc
cccctaacgt ttcataccta ccaggatgca gcaaccggca ccgaagttgt 480gcgtttaacc
ccgcccgatg ttatctgcca ccggaattat ttctaccaga agtgtttctt 540caatgacggt
agcaagctgc tgtttggcgc tgcatttgat ggcccatgga actactatct 600gctggattta
aaagagcaga acgccacaca gttgacggaa ggcaaaggcg acaatacttt 660tggtggtttc
ctgtctccga atgacgatgc gctatattac gttaaaaata cccgtaattt 720gatgcgtgtc
gatctgacta cgctggaaga gaaaacgatt tatcaggtgc ctgacgattg 780ggtcggctac
ggtacttggg ttgccaactc cgattgcacc aaaatggtcg gtattgagat 840caagaaagaa
gactggaagc cactgaccga ttggaaaaaa ttccaggagt tctacttcac 900taatccttgc
tgtcgtctga ttcgcgtcga tttggtaacg ggcgaagcgg agactatcct 960tcaggaaaac
cagtggctgg gtcacccaat ctaccgtcca ggtgatgaca acacggttgc 1020tttctgtcac
gaaggcccgc atgacctggt tgatgctcgt atgtggttca tcaacgaaga 1080tggcaccaac
atgcgcaaag tgaaagagca tgcagaaggc gaaagctgca cccacgaatt 1140ttgggtgccg
gatggctccg cgatgattta tgtctcttat cttaaagacg ataccaaccg 1200ttatattcgc
agcatcgatc ccgttacgct ggaagatcgc caactgcgtg taatgccgcc 1260gtgttctcac
ctgatgagta actatgatgg cacactgttg gtcggtgatg gttccgatgc 1320accggtcgac
gtgcaggatg atggtggcta caaaattgag aacgatccgt tcctgtatgt 1380tttcaacctg
aaaactggca aagaacatcg tattgcgcag cacaatacat cctgggaagt 1440gttggaaggg
gaccgtcagg tcactcaccc gcacccgtct ttcacgccgg ataataaaca 1500agttctgttt
acttctgacg tagatggaaa acctgcgttg tatctggcga aggttcctga 1560ttcagtctgg
aactaataat actaataaat ccgcgtcacg tttcatggcg cggattattt 1620taaaatattt
acttacatat tattttatta agtctctgac gcggttattt ctcaaactta 1680acttgattat
cgttgttgct ccattgccat aatcaaagcg ttccctttat actaaaacca 1740ttgttctatt
ttttttaaaa caaaaaaacc tgagtagggt aaccacaaaa atggctagtg 1800cagatttaga
taaacaaccc gattccgtgt cgtccgtttt aaaggttttt ggtattttgc 1860aggcattagg
tgaagagaga gaaattggta ttaccgagct ttctcagcga gtcatgatgt 1920ctaagagtac
cgtttaccgt ttcttgcaga cgatgaaatc cctgggctat gtcgcgcagg 1980aaggtgaatc
agagaagtat tcgctaacgc tcaagttgtt tgaacttggt gcaaaagcat 2040tgcagaacgt
agacttaatc cgcagtgcgg atatacagat gcgcgagttg tctgtgctga 2100cgcgggaaac
gattcacctt ggcgcgttgg atgaagacgg catcgtttat atccacaaga 2160ttgattctat
gtataacctg cgtatgtatt cgcgcatcgg tcgccgtaat ccactacaca 2220gtaccgcaat
tggtaaagtg ttgctggctt ggcgcgatcg cggtgaagtg gaagaggttc 2280tgtcgactgt
cgaattcacg cgtagtacgc cacacacatt gtgtactgct gaagatcttc 2340tcaatcaact
ggatgtcgtg cgtgagcaag gctacgggga agataaagaa gagcaggaag 2400aagggctgcg
ttgtatcgct gtgccagtat tcgatcgttt tggtgtggtg attgccggcc 2460tcagtatttc
cttcccaacg attcgttttt cagaagaaaa caaacacgaa tatgtggcca 2520tgctgcacac
cgcagctaga aatatctctg agcaaatggg ctaccacaat ttccctttct 2580ga
2582672331DNAAgrobacterium tumefaciens 67atgcgtccct ctgccccggc catctccaga
cagacacttc tcgatgaacc ccgcccgggc 60tcattgacca ttggctacga gccgagcgaa
gaagcacaac cgacggagaa ccctccgcgc 120ttttcatggc tacccgatat tgacgacggc
gcgcgttacg tgctgcgcat ttcgaccgat 180cccggtttta cagacaaaaa aacgctcgtc
ttcgaggatc tcgcctggaa tttcttcacc 240ccggatgaag cactgccgga cggccattat
cactggtgtt atgcgctatg ggatcagaaa 300tccgcaacag cgcattccaa ctggagcacc
gtacgcagtt tcgagatcag tgaagcactg 360ccgaaaacgc cgctgcccgg caggtctgcc
cgccatgctg ccgcgcaaac cagccaccct 420cggctgtggc tcaactccga gcaattgagt
gccttcgccg atgccgttgc gaaggacccc 480aaccattgtg gctgggccga gttttacgaa
aaatcggtcg agccgtggct cgagcggccg 540gtcatgccgg aaccgcagcc ctatcccaac
aacacgcgtg tcgccacgct ctggcggcag 600atgtatatag actgccagga agtgatctat
gcgatccggc acctggccat tgccggccgc 660gtgctcggac gcgacgacct tctcgatgca
tcccgcaaat ggctgctggc cgtcgccgcc 720tgggacacga aaggtgcgac ctcacgcgcc
tataatgacg aggcggggtt ccgcgtcgtc 780gtcgcactcg cctggggtta tgactggctg
tacgaccatc tgagcgaaga cgaacgcagg 840accgtgcgat ccgttcttct cgaacggacg
cgggaagttg ccgatcatgt catcgcacac 900gcccgcattc acgtctttcc ctatgacagc
catgcggtgc gctcgctttc ggctgtattg 960acgccggcct gcatcgcact tcagggagaa
agcgacgagg ctggcgaatg gctcgactat 1020accgtcgaat tccttgccac gctctattct
ccctgggcgg gaaccgatgg tggttgggcg 1080gaaggtccgc attactggat gaccggcatg
gcctatctca tcgaggccgc caatctgatc 1140cgctcctata ttggttatga cctctatcaa
cggccgtttt tccagaatac cggtcgcttc 1200ccgctttaca ccaaggcgcc gggaacccgc
cgcgccaact tcggcgacga ctccaccctt 1260ggcgaccttc ccggcctgaa gctgggatac
aacgtccggc aattcgccgg cgtcaccggc 1320aatggccatt accagtggta tttcgatcac
atcaaggccg atgcgacagg cacggaaatg 1380gccttttaca attacggctg gtgggacctc
aacttcgacg atctcgtcta tcgccacgat 1440tacccgcagg tggaagccgt gtctcccgcc
gacctgccgg cactcgccgt tttcgatgat 1500attggttggg cgaccatcca aaaagacatg
gaagacccgg accggcacct gcagttcgtc 1560ttcaaatcca gcccttacgg ttcgctcagc
cacagtcacg gcgaccagaa tgcctttgtg 1620ctttatgccc atggcgagga tctggcgatc
cagtccggtt attacgtggc gttcaattcg 1680cagatgcatc tgaattggcg gcgtcagaca
cggtcgaaaa atgccgtgct gatcggcggc 1740aaaggccaat atgcggaaaa ggacaaggcg
cttgcacgcc gcgccgccgg ccgcatcgtc 1800tcggtggagg aacagcccgg ccatgttcgt
atcgtcggcg atgcaaccgc cgcctaccag 1860gttgcgaacc cgctggttca aaaggtgctg
cgcgaaaccc acttcgttaa tgacagctat 1920ttcgtgattg tcgacgaagt cgaatgttcg
gaaccccagg aactgcaatg gctttgccat 1980acactcggag cgccgcagac cggcaggtca
agcttccgct acaatggccg gaaagccggt 2040ttctacggac agttcgttta ctcttcgggc
ggcacgccgc aaatcagcgc cgtggagggt 2100tttcccgata tcgacccgaa agaattcgaa
gggctcgaca tacaccacca tgtctgcgcc 2160acggttccgg ccgccacccg gcatcgcctt
gtcacccttc tggtgcctta cagcctgaag 2220gagccgaagc gcattttcag cttcatcgat
gatcagggtt tttccaccga catctacttc 2280agtgatgtcg atgacgagcg tttcaagctc
tcccttccca agcagttcta a 233168776PRTAgrobacterium tumefaciens
68Met Arg Pro Ser Ala Pro Ala Ile Ser Arg Gln Thr Leu Leu Asp Glu1
5 10 15Pro Arg Pro Gly Ser Leu
Thr Ile Gly Tyr Glu Pro Ser Glu Glu Ala 20 25
30Gln Pro Thr Glu Asn Pro Pro Arg Phe Ser Trp Leu Pro
Asp Ile Asp 35 40 45Asp Gly Ala
Arg Tyr Val Leu Arg Ile Ser Thr Asp Pro Gly Phe Thr 50
55 60Asp Lys Lys Thr Leu Val Phe Glu Asp Leu Ala Trp
Asn Phe Phe Thr65 70 75
80Pro Asp Glu Ala Leu Pro Asp Gly His Tyr His Trp Cys Tyr Ala Leu
85 90 95Trp Asp Gln Lys Ser Ala
Thr Ala His Ser Asn Trp Ser Thr Val Arg 100
105 110Ser Phe Glu Ile Ser Glu Ala Leu Pro Lys Thr Pro
Leu Pro Gly Arg 115 120 125Ser Ala
Arg His Ala Ala Ala Gln Thr Ser His Pro Arg Leu Trp Leu 130
135 140Asn Ser Glu Gln Leu Ser Ala Phe Ala Asp Ala
Val Ala Lys Asp Pro145 150 155
160Asn His Cys Gly Trp Ala Glu Phe Tyr Glu Lys Ser Val Glu Pro Trp
165 170 175Leu Glu Arg Pro
Val Met Pro Glu Pro Gln Pro Tyr Pro Asn Asn Thr 180
185 190Arg Val Ala Thr Leu Trp Arg Gln Met Tyr Ile
Asp Cys Gln Glu Val 195 200 205Ile
Tyr Ala Ile Arg His Leu Ala Ile Ala Gly Arg Val Leu Gly Arg 210
215 220Asp Asp Leu Leu Asp Ala Ser Arg Lys Trp
Leu Leu Ala Val Ala Ala225 230 235
240Trp Asp Thr Lys Gly Ala Thr Ser Arg Ala Tyr Asn Asp Glu Ala
Gly 245 250 255Phe Arg Val
Val Val Ala Leu Ala Trp Gly Tyr Asp Trp Leu Tyr Asp 260
265 270His Leu Ser Glu Asp Glu Arg Arg Thr Val
Arg Ser Val Leu Leu Glu 275 280
285Arg Thr Arg Glu Val Ala Asp His Val Ile Ala His Ala Arg Ile His 290
295 300Val Phe Pro Tyr Asp Ser His Ala
Val Arg Ser Leu Ser Ala Val Leu305 310
315 320Thr Pro Ala Cys Ile Ala Leu Gln Gly Glu Ser Asp
Glu Ala Gly Glu 325 330
335Trp Leu Asp Tyr Thr Val Glu Phe Leu Ala Thr Leu Tyr Ser Pro Trp
340 345 350Ala Gly Thr Asp Gly Gly
Trp Ala Glu Gly Pro His Tyr Trp Met Thr 355 360
365Gly Met Ala Tyr Leu Ile Glu Ala Ala Asn Leu Ile Arg Ser
Tyr Ile 370 375 380Gly Tyr Asp Leu Tyr
Gln Arg Pro Phe Phe Gln Asn Thr Gly Arg Phe385 390
395 400Pro Leu Tyr Thr Lys Ala Pro Gly Thr Arg
Arg Ala Asn Phe Gly Asp 405 410
415Asp Ser Thr Leu Gly Asp Leu Pro Gly Leu Lys Leu Gly Tyr Asn Val
420 425 430Arg Gln Phe Ala Gly
Val Thr Gly Asn Gly His Tyr Gln Trp Tyr Phe 435
440 445Asp His Ile Lys Ala Asp Ala Thr Gly Thr Glu Met
Ala Phe Tyr Asn 450 455 460Tyr Gly Trp
Trp Asp Leu Asn Phe Asp Asp Leu Val Tyr Arg His Asp465
470 475 480Tyr Pro Gln Val Glu Ala Val
Ser Pro Ala Asp Leu Pro Ala Leu Ala 485
490 495Val Phe Asp Asp Ile Gly Trp Ala Thr Ile Gln Lys
Asp Met Glu Asp 500 505 510Pro
Asp Arg His Leu Gln Phe Val Phe Lys Ser Ser Pro Tyr Gly Ser 515
520 525Leu Ser His Ser His Gly Asp Gln Asn
Ala Phe Val Leu Tyr Ala His 530 535
540Gly Glu Asp Leu Ala Ile Gln Ser Gly Tyr Tyr Val Ala Phe Asn Ser545
550 555 560Gln Met His Leu
Asn Trp Arg Arg Gln Thr Arg Ser Lys Asn Ala Val 565
570 575Leu Ile Gly Gly Lys Gly Gln Tyr Ala Glu
Lys Asp Lys Ala Leu Ala 580 585
590Arg Arg Ala Ala Gly Arg Ile Val Ser Val Glu Glu Gln Pro Gly His
595 600 605Val Arg Ile Val Gly Asp Ala
Thr Ala Ala Tyr Gln Val Ala Asn Pro 610 615
620Leu Val Gln Lys Val Leu Arg Glu Thr His Phe Val Asn Asp Ser
Tyr625 630 635 640Phe Val
Ile Val Asp Glu Val Glu Cys Ser Glu Pro Gln Glu Leu Gln
645 650 655Trp Leu Cys His Thr Leu Gly
Ala Pro Gln Thr Gly Arg Ser Ser Phe 660 665
670Arg Tyr Asn Gly Arg Lys Ala Gly Phe Tyr Gly Gln Phe Val
Tyr Ser 675 680 685Ser Gly Gly Thr
Pro Gln Ile Ser Ala Val Glu Gly Phe Pro Asp Ile 690
695 700Asp Pro Lys Glu Phe Glu Gly Leu Asp Ile His His
His Val Cys Ala705 710 715
720Thr Val Pro Ala Ala Thr Arg His Arg Leu Val Thr Leu Leu Val Pro
725 730 735Tyr Ser Leu Lys Glu
Pro Lys Arg Ile Phe Ser Phe Ile Asp Asp Gln 740
745 750Gly Phe Ser Thr Asp Ile Tyr Phe Ser Asp Val Asp
Asp Glu Arg Phe 755 760 765Lys Leu
Ser Leu Pro Lys Gln Phe 770 775691068DNAAgrobacterium
temefaciens C58 69atgttcacaa cgtccgccta tgcctgcgat gacggctctt cgccgatgaa
gctcgcgacc 60atcaggcgcc gcgatcccgg tccgcgcgat gtcgaaatcg agatagaatt
ctgtggcgtc 120tgccactcgg acatccatac ggcccgcagc gaatggccgg gctccctcta
cccttgcgtc 180cccggccacg aaatcgtcgg ccgtgtcggt cgggtgggcg cgcaagtcac
ccggttcaag 240acgggtgacc gcgtcggtgt cggctgtatc gtcgatagct gccgcgaatg
cgcaagctgc 300gccgaagggc tggagcaata ttgcgaaaac ggcatgaccg gcacctataa
ctcccctgac 360aaggcgatgg gcggcggcgc gcatacgctt ggcggctatt ccgcccatgt
ggtggtggat 420gaccgctatg tgctcaatat tcccgaaggg ctcgatccgg cggcagcagc
accgctactc 480tgcgctggta tcaccaccta ctcgccgctg cgccactgga atgccggccc
cggcaaacgc 540gtcggcgtcg tcggtctggg cggcctcggc catatggccg tcaagctcgc
caatgccatg 600ggtgcgactg tcgtgatgat caccacctcg cccggcaagg cggaggatgc
caaaaaactc 660ggcgcacacg aggtgatcat ctcccgcgat gcggagcaga tgaagaaggc
tacctcgagc 720ctcgatctca tcatcgatgc tgtcgccgcc gaccacgaca tcgacgccta
tctggcgctg 780ctgaaacgcg atggcgcgct ggtgcaggtg ggcgcgccgg aaaagccact
ttcggtgatg 840gccttcagcc tcatccccgg ccgcaagacc tttgccggct cgatgatcgg
cggtattccc 900gagactcagg aaatgctgga tttctgcgcc gaaaaaggca tcgccggcga
aatcgagatg 960atcgatatcg atcagatcaa tgacgcttat gaacgcatga taaaaagcga
tgtgcgttat 1020cgtttcgtca ttgatatgaa gagcctgccg cgccagaagg ccgcctga
106870355PRTAgrobacterium tumefaciens C58 70Met Phe Thr Thr
Ser Ala Tyr Ala Cys Asp Asp Gly Ser Ser Pro Met1 5
10 15Lys Leu Ala Thr Ile Arg Arg Arg Asp Pro
Gly Pro Arg Asp Val Glu 20 25
30Ile Glu Ile Glu Phe Cys Gly Val Cys His Ser Asp Ile His Thr Ala
35 40 45Arg Ser Glu Trp Pro Gly Ser Leu
Tyr Pro Cys Val Pro Gly His Glu 50 55
60Ile Val Gly Arg Val Gly Arg Val Gly Ala Gln Val Thr Arg Phe Lys65
70 75 80Thr Gly Asp Arg Val
Gly Val Gly Cys Ile Val Asp Ser Cys Arg Glu 85
90 95Cys Ala Ser Cys Ala Glu Gly Leu Glu Gln Tyr
Cys Glu Asn Gly Met 100 105
110Thr Gly Thr Tyr Asn Ser Pro Asp Lys Ala Met Gly Gly Gly Ala His
115 120 125Thr Leu Gly Gly Tyr Ser Ala
His Val Val Val Asp Asp Arg Tyr Val 130 135
140Leu Asn Ile Pro Glu Gly Leu Asp Pro Ala Ala Ala Ala Pro Leu
Leu145 150 155 160Cys Ala
Gly Ile Thr Thr Tyr Ser Pro Leu Arg His Trp Asn Ala Gly
165 170 175Pro Gly Lys Arg Val Gly Val
Val Gly Leu Gly Gly Leu Gly His Met 180 185
190Ala Val Lys Leu Ala Asn Ala Met Gly Ala Thr Val Val Met
Ile Thr 195 200 205Thr Ser Pro Gly
Lys Ala Glu Asp Ala Lys Lys Leu Gly Ala His Glu 210
215 220Val Ile Ile Ser Arg Asp Ala Glu Gln Met Lys Lys
Ala Thr Ser Ser225 230 235
240Leu Asp Leu Ile Ile Asp Ala Val Ala Ala Asp His Asp Ile Asp Ala
245 250 255Tyr Leu Ala Leu Leu
Lys Arg Asp Gly Ala Leu Val Gln Val Gly Ala 260
265 270Pro Glu Lys Pro Leu Ser Val Met Ala Phe Ser Leu
Ile Pro Gly Arg 275 280 285Lys Thr
Phe Ala Gly Ser Met Ile Gly Gly Ile Pro Glu Thr Gln Glu 290
295 300Met Leu Asp Phe Cys Ala Glu Lys Gly Ile Ala
Gly Glu Ile Glu Met305 310 315
320Ile Asp Ile Asp Gln Ile Asn Asp Ala Tyr Glu Arg Met Ile Lys Ser
325 330 335Asp Val Arg Tyr
Arg Phe Val Ile Asp Met Lys Ser Leu Pro Arg Gln 340
345 350Lys Ala Ala 355711047DNAAgrobacterium
tumefaciens C58 71atggctattg caagaggtta tgctgcgacc gacgcgtcga agccgcttac
cccgttcacc 60ttcgaacgcc gcgagccgaa tgatgacgac gtcgtcatcg atatcaaata
tgccggcatc 120tgccactcgg acatccacac cgtccgcaac gaatggcaca atgccgttta
cccgatcgtt 180ccgggccacg aaatcgccgg tgtcgtgcgg gccgttggtt ccaaggtcac
gcggttcaag 240gtcggcgacc atgtcggcgt cggctgcttt gtcgattcct gcgttggctg
cgccacccgc 300gatgtcgaca atgagcagta tatgccgggt ctcgtgcaga cctacaattc
cgttgaacgg 360gacggcaaga gcgcgaccca gggcggttat tccgaccata tcgtggtcag
ggaagactac 420gtcctgtcca tcccggacaa cctgccgctc gatgcctccg cgccgcttct
ctgcgccggc 480atcacgctct attcgccgct gcagcactgg aatgcaggcc ccggcaagaa
agtggctatc 540gtcggcatgg gtggccttgg ccacatgggc gtgaagatcg gctcggccat
gggcgctgat 600atcaccgttc tctcgcagac gctgtcgaag aaggaagacg gcctcaagct
cggcgcgaag 660gaatattacg ccaccagcga cgcctcgacc tttgagaaac tcgccggcac
cttcgacctg 720atcctgtgca cagtctcggc cgaaatcgac tggaacgcct acctcaacct
gctcaaggtc 780aacggcacga tggttctgct cggcgtgccg gaacatgcga tcccggtgca
cgcattctcg 840gtcattcccg cccgccgttc gctcgccggt tcgatgatcg gctcgatcaa
ggaaacccag 900gaaatgctgg atttctgcgg caagcacgac atcgtttcgg aaatcgaaac
gatcggcatc 960aaggacgtca acgaagccta tgagcgcgtg ctgaagagcg acgtgcgtta
ccgcttcgtc 1020atcgacatgg cctcgctcga cgcttga
104772348PRTAgrobacterium tumefaciens C58 72Met Ala Ile Ala
Arg Gly Tyr Ala Ala Thr Asp Ala Ser Lys Pro Leu1 5
10 15Thr Pro Phe Thr Phe Glu Arg Arg Glu Pro
Asn Asp Asp Asp Val Val 20 25
30Ile Asp Ile Lys Tyr Ala Gly Ile Cys His Ser Asp Ile His Thr Val
35 40 45Arg Asn Glu Trp His Asn Ala Val
Tyr Pro Ile Val Pro Gly His Glu 50 55
60Ile Ala Gly Val Val Arg Ala Val Gly Ser Lys Val Thr Arg Phe Lys65
70 75 80Val Gly Asp His Val
Gly Val Gly Cys Phe Val Asp Ser Cys Val Gly 85
90 95Cys Ala Thr Arg Asp Val Asp Asn Glu Gln Tyr
Met Pro Gly Leu Val 100 105
110Gln Thr Tyr Asn Ser Val Glu Arg Asp Gly Lys Ser Ala Thr Gln Gly
115 120 125Gly Tyr Ser Asp His Ile Val
Val Arg Glu Asp Tyr Val Leu Ser Ile 130 135
140Pro Asp Asn Leu Pro Leu Asp Ala Ser Ala Pro Leu Leu Cys Ala
Gly145 150 155 160Ile Thr
Leu Tyr Ser Pro Leu Gln His Trp Asn Ala Gly Pro Gly Lys
165 170 175Lys Val Ala Ile Val Gly Met
Gly Gly Leu Gly His Met Gly Val Lys 180 185
190Ile Gly Ser Ala Met Gly Ala Asp Ile Thr Val Leu Ser Gln
Thr Leu 195 200 205Ser Lys Lys Glu
Asp Gly Leu Lys Leu Gly Ala Lys Glu Tyr Tyr Ala 210
215 220Thr Ser Asp Ala Ser Thr Phe Glu Lys Leu Ala Gly
Thr Phe Asp Leu225 230 235
240Ile Leu Cys Thr Val Ser Ala Glu Ile Asp Trp Asn Ala Tyr Leu Asn
245 250 255Leu Leu Lys Val Asn
Gly Thr Met Val Leu Leu Gly Val Pro Glu His 260
265 270Ala Ile Pro Val His Ala Phe Ser Val Ile Pro Ala
Arg Arg Ser Leu 275 280 285Ala Gly
Ser Met Ile Gly Ser Ile Lys Glu Thr Gln Glu Met Leu Asp 290
295 300Phe Cys Gly Lys His Asp Ile Val Ser Glu Ile
Glu Thr Ile Gly Ile305 310 315
320Lys Asp Val Asn Glu Ala Tyr Glu Arg Val Leu Lys Ser Asp Val Arg
325 330 335Tyr Arg Phe Val
Ile Asp Met Ala Ser Leu Asp Ala 340
345731029DNAAgrobacterium tumefaciens C58 73atgactaaaa caatgaaggc
ggcggttgtc cgcgcatttg gaaaaccgct gaccatcgag 60gaagtggcaa taccggatcc
cggccccggt gaaattctca tcaactacaa ggcgacgggc 120gtttgccaca ccgacctgca
cgccgcaacg ggggattggc cggtcaagcc caacccgccc 180ttcattcccg gacatgaagg
tgcaggttac gtcgccaaga tcggcgctgg cgtcaccggc 240atcaaggagg gcgaccgcgc
cggcacgccc tggctctaca ccgcctgcgg atgctgcatt 300ccctgccgta ccggctggga
aaccctgtgc ccgagccaga agaactcagg ttattccgtc 360aacggcagct ttgccgaata
tggccttgcc gatccgaaat tcgtcggccg cctgcctgac 420aatctcgatt tcggcccagc
cgcacccgtg ctctgcgccg gcgttacagt ctataagggc 480ctgaaggaaa ccgaagtcag
gcccggtgaa tgggtggtca tttcaggcat tggcgggctt 540ggccacatgg ccgtgcaata
tgcgaaagcc atgggcatgc atgtggttgc cgccgatatt 600ttcgacgaca agctggcgct
tgccaaaaag ctcggagccg acgtcgtcgt caacggccgc 660gcgcctgacg cggtggagca
agtgcaaaag gcaaccggcg gcgtccatgg cgcgctggtg 720acggcggttt caccgaaggc
catggagcag gcttatggct tcctgcgctc caagggcacg 780atggcgcttg tcggtctgcc
gccgggcttc atctccattc cggtgttcga cacggtgctg 840aagcgcatca cggtgcgtgg
ctccatcgtc ggcacgcggc aggatctgga ggaggcgttg 900accttcgccg gtgaaggcaa
ggtggccgcc cacttctcgt gggacaagct cgaaaacatc 960aatgatatct tccatcgcat
ggaagagggc aagatcgacg gccgtatcgt cgtggatctc 1020gccgcctga
102974342PRTAgrobacterium
tumefaciens C58 74Met Thr Lys Thr Met Lys Ala Ala Val Val Arg Ala Phe Gly
Lys Pro1 5 10 15Leu Thr
Ile Glu Glu Val Ala Ile Pro Asp Pro Gly Pro Gly Glu Ile 20
25 30Leu Ile Asn Tyr Lys Ala Thr Gly Val
Cys His Thr Asp Leu His Ala 35 40
45Ala Thr Gly Asp Trp Pro Val Lys Pro Asn Pro Pro Phe Ile Pro Gly 50
55 60His Glu Gly Ala Gly Tyr Val Ala Lys
Ile Gly Ala Gly Val Thr Gly65 70 75
80Ile Lys Glu Gly Asp Arg Ala Gly Thr Pro Trp Leu Tyr Thr
Ala Cys 85 90 95Gly Cys
Cys Ile Pro Cys Arg Thr Gly Trp Glu Thr Leu Cys Pro Ser 100
105 110Gln Lys Asn Ser Gly Tyr Ser Val Asn
Gly Ser Phe Ala Glu Tyr Gly 115 120
125Leu Ala Asp Pro Lys Phe Val Gly Arg Leu Pro Asp Asn Leu Asp Phe
130 135 140Gly Pro Ala Ala Pro Val Leu
Cys Ala Gly Val Thr Val Tyr Lys Gly145 150
155 160Leu Lys Glu Thr Glu Val Arg Pro Gly Glu Trp Val
Val Ile Ser Gly 165 170
175Ile Gly Gly Leu Gly His Met Ala Val Gln Tyr Ala Lys Ala Met Gly
180 185 190Met His Val Val Ala Ala
Asp Ile Phe Asp Asp Lys Leu Ala Leu Ala 195 200
205Lys Lys Leu Gly Ala Asp Val Val Val Asn Gly Arg Ala Pro
Asp Ala 210 215 220Val Glu Gln Val Gln
Lys Ala Thr Gly Gly Val His Gly Ala Leu Val225 230
235 240Thr Ala Val Ser Pro Lys Ala Met Glu Gln
Ala Tyr Gly Phe Leu Arg 245 250
255Ser Lys Gly Thr Met Ala Leu Val Gly Leu Pro Pro Gly Phe Ile Ser
260 265 270Ile Pro Val Phe Asp
Thr Val Leu Lys Arg Ile Thr Val Arg Gly Ser 275
280 285Ile Val Gly Thr Arg Gln Asp Leu Glu Glu Ala Leu
Thr Phe Ala Gly 290 295 300Glu Gly Lys
Val Ala Ala His Phe Ser Trp Asp Lys Leu Glu Asn Ile305
310 315 320Asn Asp Ile Phe His Arg Met
Glu Glu Gly Lys Ile Asp Gly Arg Ile 325
330 335Val Val Asp Leu Ala Ala
340751008DNAAgrobacterium tumefaciens C58 75atgaccgggg cgaaccagcc
ttgggaggtt caagaggttc ccgttccgaa ggcagagcca 60ggacttgtcc ttgttaaaat
ccacgcctcc ggcatgtgct acacggacgt gtgggcgacg 120cagggtgccg gtggcgacat
ctatccgcag acccccggcc atgaggttgt cggcgagatc 180atcgaggtcg gcgcgggcgt
tcatacgcgc aaggtgggag accgggtcgg caccacctgg 240gtgcagtcct cttgtggacg
atgctcctac tgccgccaga accgtccgtt gaccggccag 300acagccatga actgcgattc
acccaggaca acggggttcg cgacgcaagg cgggcacgca 360gagtacatcg cgatctctgc
tgaaggcaca gtgttattac ccgacgggct cgactacacg 420gatgccgcac ccatgatgtg
cgcaggctac acgacctgga gcggcttgcg cgacgccgag 480cccaaacctg gtgacagaat
tgcggtactt ggcatcggcg ggctggggca cgtcgccgtg 540cagttctcca aagccttggg
gtttgagacc atcgcgatca cgcattcacc cgacaagcac 600aagttggcca ccgatcttgg
tgcagacatc gtcgtcgccg atggcaaaga gttattggag 660gccggcggtg cggacgttct
tctggttacg accaacgact tcgacaccgc cgaaaaagcg 720atggcgggcg taaggcctga
cgggcgcatc gttctttgcg cgctcgactt cagcaagccg 780ttctcgatcc cgtccgacgg
caagccgttc cacatgatgc gccaacgcgt ggttgggtcc 840acgcatggcg gacagcacta
tctcgccgaa atcctcgatc tcgccgccaa gggcaaggtc 900aagccgattg tcgagacctt
cgccctcgag caggcaaccg aggcatatga gcggctatcc 960accgggaaga tgcgcttccg
gggcgtgttc cttccgcacg gcgcttga 100876335PRTAgrobacterium
tumefaciens C58 76Met Thr Gly Ala Asn Gln Pro Trp Glu Val Gln Glu Val Pro
Val Pro1 5 10 15Lys Ala
Glu Pro Gly Leu Val Leu Val Lys Ile His Ala Ser Gly Met 20
25 30Cys Tyr Thr Asp Val Trp Ala Thr Gln
Gly Ala Gly Gly Asp Ile Tyr 35 40
45Pro Gln Thr Pro Gly His Glu Val Val Gly Glu Ile Ile Glu Val Gly 50
55 60Ala Gly Val His Thr Arg Lys Val Gly
Asp Arg Val Gly Thr Thr Trp65 70 75
80Val Gln Ser Ser Cys Gly Arg Cys Ser Tyr Cys Arg Gln Asn
Arg Pro 85 90 95Leu Thr
Gly Gln Thr Ala Met Asn Cys Asp Ser Pro Arg Thr Thr Gly 100
105 110Phe Ala Thr Gln Gly Gly His Ala Glu
Tyr Ile Ala Ile Ser Ala Glu 115 120
125Gly Thr Val Leu Leu Pro Asp Gly Leu Asp Tyr Thr Asp Ala Ala Pro
130 135 140Met Met Cys Ala Gly Tyr Thr
Thr Trp Ser Gly Leu Arg Asp Ala Glu145 150
155 160Pro Lys Pro Gly Asp Arg Ile Ala Val Leu Gly Ile
Gly Gly Leu Gly 165 170
175His Val Ala Val Gln Phe Ser Lys Ala Leu Gly Phe Glu Thr Ile Ala
180 185 190Ile Thr His Ser Pro Asp
Lys His Lys Leu Ala Thr Asp Leu Gly Ala 195 200
205Asp Ile Val Val Ala Asp Gly Lys Glu Leu Leu Glu Ala Gly
Gly Ala 210 215 220Asp Val Leu Leu Val
Thr Thr Asn Asp Phe Asp Thr Ala Glu Lys Ala225 230
235 240Met Ala Gly Val Arg Pro Asp Gly Arg Ile
Val Leu Cys Ala Leu Asp 245 250
255Phe Ser Lys Pro Phe Ser Ile Pro Ser Asp Gly Lys Pro Phe His Met
260 265 270Met Arg Gln Arg Val
Val Gly Ser Thr His Gly Gly Gln His Tyr Leu 275
280 285Ala Glu Ile Leu Asp Leu Ala Ala Lys Gly Lys Val
Lys Pro Ile Val 290 295 300Glu Thr Phe
Ala Leu Glu Gln Ala Thr Glu Ala Tyr Glu Arg Leu Ser305
310 315 320Thr Gly Lys Met Arg Phe Arg
Gly Val Phe Leu Pro His Gly Ala 325 330
335771017DNAAgrobacterium tumefaciens C58 77atgaccatgc
atgccattca attcgtcgag aagggacgcg ccgtgctggc ggaactcccc 60gtcgccgatc
tgccgccggg ccatgcgctc gtgcgggtca aggcttcggg gctttgccat 120accgatatcg
acgtgctgca tgcgcgttat ggcgacggtg cgttccccgt cattccgggg 180catgaatatg
ctggcgaagt cgcagccgtg gcttccgatg tgacagtctt caaggctggc 240gaccgggttg
tcgtcgatcc caatctgccc tgtggcacct gcgccagctg caggaaaggg 300ctgaccaacc
tttgcagcac attgaaagct tacggcgttt cccacaatgg cggctttgcg 360gagttcagtg
tggtgcgtgc cgatcacctg cacggtatcg gttcgatgcc ctatcacgtc 420gcggcgctgg
ctgagccgct tgcctgtgtt gtcaatggca tgcagagtgc gggtattggc 480gagagtggcg
tggtgccgga gaatgcgctt gttttcggtg ctgggcccat cggcctgctg 540cttgccctgt
cgctgaaatc acgcggcatt gcgacggtga cgatggccga tatcaatgaa 600agcaggctgg
cctttgccca ggacctcggg cttcagacgg cggtatccgg ctcggaagcg 660ctctcgcggc
agcggaagga gttcgatttc gtggccgatg cgacgggtat tgccccggtc 720gccgaggcga
tgatcccgct ggttgcggat ggcggcacgg cgctattctt cggcgtctgc 780gcgccggatg
cccgtatttc ggtggcaccg tttgaaatct tccggcgcca gctgaaactt 840gtcggctcgc
attcgctgaa ccgcaacata ccgcaggcgc ttgccattct ggagacggat 900ggcgaggtca
tggcgcggct cgtttcgcac cgcttgccgc tttcggagat gctgccgttc 960tttacgaaaa
aaccgtctga tccggcgacg atgaaagtgc aatttgcagc cgaatga
101778338PRTAgrobacterium tumefaciens C58 78Met Thr Met His Ala Ile Gln
Phe Val Glu Lys Gly Arg Ala Val Leu1 5 10
15Ala Glu Leu Pro Val Ala Asp Leu Pro Pro Gly His Ala
Leu Val Arg 20 25 30Val Lys
Ala Ser Gly Leu Cys His Thr Asp Ile Asp Val Leu His Ala 35
40 45Arg Tyr Gly Asp Gly Ala Phe Pro Val Ile
Pro Gly His Glu Tyr Ala 50 55 60Gly
Glu Val Ala Ala Val Ala Ser Asp Val Thr Val Phe Lys Ala Gly65
70 75 80Asp Arg Val Val Val Asp
Pro Asn Leu Pro Cys Gly Thr Cys Ala Ser 85
90 95Cys Arg Lys Gly Leu Thr Asn Leu Cys Ser Thr Leu
Lys Ala Tyr Gly 100 105 110Val
Ser His Asn Gly Gly Phe Ala Glu Phe Ser Val Val Arg Ala Asp 115
120 125His Leu His Gly Ile Gly Ser Met Pro
Tyr His Val Ala Ala Leu Ala 130 135
140Glu Pro Leu Ala Cys Val Val Asn Gly Met Gln Ser Ala Gly Ile Gly145
150 155 160Glu Ser Gly Val
Val Pro Glu Asn Ala Leu Val Phe Gly Ala Gly Pro 165
170 175Ile Gly Leu Leu Leu Ala Leu Ser Leu Lys
Ser Arg Gly Ile Ala Thr 180 185
190Val Thr Met Ala Asp Ile Asn Glu Ser Arg Leu Ala Phe Ala Gln Asp
195 200 205Leu Gly Leu Gln Thr Ala Val
Ser Gly Ser Glu Ala Leu Ser Arg Gln 210 215
220Arg Lys Glu Phe Asp Phe Val Ala Asp Ala Thr Gly Ile Ala Pro
Val225 230 235 240Ala Glu
Ala Met Ile Pro Leu Val Ala Asp Gly Gly Thr Ala Leu Phe
245 250 255Phe Gly Val Cys Ala Pro Asp
Ala Arg Ile Ser Val Ala Pro Phe Glu 260 265
270Ile Phe Arg Arg Gln Leu Lys Leu Val Gly Ser His Ser Leu
Asn Arg 275 280 285Asn Ile Pro Gln
Ala Leu Ala Ile Leu Glu Thr Asp Gly Glu Val Met 290
295 300Ala Arg Leu Val Ser His Arg Leu Pro Leu Ser Glu
Met Leu Pro Phe305 310 315
320Phe Thr Lys Lys Pro Ser Asp Pro Ala Thr Met Lys Val Gln Phe Ala
325 330 335Ala
Glu791044DNAAgrobacterium tumefaciens C58 79atgcgcgcgc tttattacga
acgattcggc gagacccctg tagtcgcgtc cctgcctgat 60ccggcaccga gcgatggcgg
cgtggtgatt gcggtgaagg caaccggcct ctgccgcagc 120gactggcatg gctggatggg
acatgacacg gatatccgtc tgccgcatgt gcccggccac 180gagttcgccg gcgtcatctc
cgcagtcggc agaaacgtca cccgcttcaa gacgggtgat 240cgcgttaccg tgcctttcgt
ctccggctgc ggccattgcc atgagtgccg ctccggcaat 300cagcaggtct gcgaaacgca
gttccagccc ggcttcaccc attggggttc cttcgccgaa 360tatgtcgcca tcgactatgc
cgatcagaac ctcgtgcacc tgccggaatc gatgagttac 420gccaccgccg ccggcctcgg
ttgccgtttc gccacctcct tccgggcggt gacggatcag 480ggacgcctga agggcggcga
atggctggct gtccatggct gcggcggtgt cggtctctcc 540gccatcatga tcggcgccgg
cctcggcgca caggtcgtcg ccatcgatat tgccgaagac 600aagctcgaac tcgcccggca
actgggtgca accgcaacca tcaacagccg ctccgttgcc 660gatgtcgccg aagcggtgcg
cgacatcacc ggtggcggcg cgcatgtgtc ggtggatgcg 720cttggccatc cgcagacctg
ctgcaattcc atcagcaacc tgcgccggcg cggacgccat 780gtgcaggtgg ggctgatgct
ggcagaccat gccatgccgg ccattcccat ggcccgggtg 840atcgctcatg agctggagat
ctatggcagc cacggcatgc aggcatggcg ttacgaggac 900atgctggcca tgatcgaaag
cggcaggctt gcgccggaaa agctgattgg ccgccatatc 960tcgctgaccg aagcggccgt
cgccctgccc ggaatggata ggttccagga gagcggcatc 1020agcatcatcg accggttcga
atag 104480357PRTAgrobacterium
tumefaciens C58 80Met Asn Leu Arg Thr Asn Asp Glu Ala Met Met Arg Ala Leu
Tyr Tyr1 5 10 15Glu Arg
Phe Gly Glu Thr Pro Val Val Ala Ser Leu Pro Asp Pro Ala 20
25 30Pro Ser Asp Gly Gly Val Val Ile Ala
Val Lys Ala Thr Gly Leu Cys 35 40
45Arg Ser Asp Trp His Gly Trp Met Gly His Asp Thr Asp Ile Arg Leu 50
55 60Pro His Val Pro Gly His Glu Phe Ala
Gly Val Ile Ser Ala Val Gly65 70 75
80Arg Asn Val Thr Arg Phe Lys Thr Gly Asp Arg Val Thr Val
Pro Phe 85 90 95Val Ser
Gly Cys Gly His Cys His Glu Cys Arg Ser Gly Asn Gln Gln 100
105 110Val Cys Glu Thr Gln Phe Gln Pro Gly
Phe Thr His Trp Gly Ser Phe 115 120
125Ala Glu Tyr Val Ala Ile Asp Tyr Ala Asp Gln Asn Leu Val His Leu
130 135 140Pro Glu Ser Met Ser Tyr Ala
Thr Ala Ala Gly Leu Gly Cys Arg Phe145 150
155 160Ala Thr Ser Phe Arg Ala Val Thr Asp Gln Gly Arg
Leu Lys Gly Gly 165 170
175Glu Trp Leu Ala Val His Gly Cys Gly Gly Val Gly Leu Ser Ala Ile
180 185 190Met Ile Gly Ala Gly Leu
Gly Ala Gln Val Val Ala Ile Asp Ile Ala 195 200
205Glu Asp Lys Leu Glu Leu Ala Arg Gln Leu Gly Ala Thr Ala
Thr Ile 210 215 220Asn Ser Arg Ser Val
Ala Asp Val Ala Glu Ala Val Arg Asp Ile Thr225 230
235 240Gly Gly Gly Ala His Val Ser Val Asp Ala
Leu Gly His Pro Gln Thr 245 250
255Cys Cys Asn Ser Ile Ser Asn Leu Arg Arg Arg Gly Arg His Val Gln
260 265 270Val Gly Leu Met Leu
Ala Asp His Ala Met Pro Ala Ile Pro Met Ala 275
280 285Arg Val Ile Ala His Glu Leu Glu Ile Tyr Gly Ser
His Gly Met Gln 290 295 300Ala Trp Arg
Tyr Glu Asp Met Leu Ala Met Ile Glu Ser Gly Arg Leu305
310 315 320Ala Pro Glu Lys Leu Ile Gly
Arg His Ile Ser Leu Thr Glu Ala Ala 325
330 335Val Ala Leu Pro Gly Met Asp Arg Phe Gln Glu Ser
Gly Ile Ser Ile 340 345 350Ile
Asp Arg Phe Glu 355811011DNAAgrobacterium tumefaciens C58
81atgctggcga ttttctgtga cactcccggt caattaaccg ccaaggatct gccgaacccc
60gtgcgcggcg aaggtgaagt cctggtacgt attcgccgga ttggcgtttg cggcacggat
120ctgcacatct ttaccggcaa ccagccctat ctttcctatc cgcggatcat gggtcacgaa
180ctttccggca cggttgagga ggcacccgct ggcagccacc tttccgctgg cgatgtggtg
240accataattc cctatatgtc ctgcgggaaa tgcaatgcct gcctgaaggg taagagcaat
300tgctgccgca atatcggtgt gcttggcgtt catcgcgatg gcggcatggt ggaatatctg
360agcgtgccgc agcaattcgt gctgaaggcg gaggggctga gcctcgacca ggcagccatg
420acggaatttc tggcgatcgg tgcccatgcg gtgcgtcgcg gtgccgtcga aaaagggcaa
480aaggtcctga tcgtcggtgc cggcccgatc ggcatggcgg ttgctgtctt tgcggttctc
540gatggcacgg aagtgacgat gatcgacggt cgcaccgacc ggctggattt ctgcaaggac
600cacctcggtg tcgctcatac agtcgccctc ggcgacggtg acaaagatcg tctgtccgac
660attaccggtg gcaatttctt cgatgcggtg tttgatgcga ccggcaatcc gaaagccatg
720gagcgcggtt tctccttcgt cggtcacggc ggctcctatg ttctggtgtc catcgtcgcc
780agcgatatca gcttcaacga cccggaattt cacaagcgtg agacgacgct gctcggcagc
840cgcaacgcga cggctgatga tttcgagcgg gtgcttcgcg ccttgcgcga agggaaagtg
900ccggaggcac taatcaccca tcgcatgaca cttgccgatg ttccctcgaa gttcgccggc
960ctgaccgatc cgaaagccgg agtcatcaag ggcatggtgg aggtcgcatg a
101182336PRTAgrobacterium tumefaciens C58 82Met Leu Ala Ile Phe Cys Asp
Thr Pro Gly Gln Leu Thr Ala Lys Asp1 5 10
15Leu Pro Asn Pro Val Arg Gly Glu Gly Glu Val Leu Val
Arg Ile Arg 20 25 30Arg Ile
Gly Val Cys Gly Thr Asp Leu His Ile Phe Thr Gly Asn Gln 35
40 45Pro Tyr Leu Ser Tyr Pro Arg Ile Met Gly
His Glu Leu Ser Gly Thr 50 55 60Val
Glu Glu Ala Pro Ala Gly Ser His Leu Ser Ala Gly Asp Val Val65
70 75 80Thr Ile Ile Pro Tyr Met
Ser Cys Gly Lys Cys Asn Ala Cys Leu Lys 85
90 95Gly Lys Ser Asn Cys Cys Arg Asn Ile Gly Val Leu
Gly Val His Arg 100 105 110Asp
Gly Gly Met Val Glu Tyr Leu Ser Val Pro Gln Gln Phe Val Leu 115
120 125Lys Ala Glu Gly Leu Ser Leu Asp Gln
Ala Ala Met Thr Glu Phe Leu 130 135
140Ala Ile Gly Ala His Ala Val Arg Arg Gly Ala Val Glu Lys Gly Gln145
150 155 160Lys Val Leu Ile
Val Gly Ala Gly Pro Ile Gly Met Ala Val Ala Val 165
170 175Phe Ala Val Leu Asp Gly Thr Glu Val Thr
Met Ile Asp Gly Arg Thr 180 185
190Asp Arg Leu Asp Phe Cys Lys Asp His Leu Gly Val Ala His Thr Val
195 200 205Ala Leu Gly Asp Gly Asp Lys
Asp Arg Leu Ser Asp Ile Thr Gly Gly 210 215
220Asn Phe Phe Asp Ala Val Phe Asp Ala Thr Gly Asn Pro Lys Ala
Met225 230 235 240Glu Arg
Gly Phe Ser Phe Val Gly His Gly Gly Ser Tyr Val Leu Val
245 250 255Ser Ile Val Ala Ser Asp Ile
Ser Phe Asn Asp Pro Glu Phe His Lys 260 265
270Arg Glu Thr Thr Leu Leu Gly Ser Arg Asn Ala Thr Ala Asp
Asp Phe 275 280 285Glu Arg Val Leu
Arg Ala Leu Arg Glu Gly Lys Val Pro Glu Ala Leu 290
295 300Ile Thr His Arg Met Thr Leu Ala Asp Val Pro Ser
Lys Phe Ala Gly305 310 315
320Leu Thr Asp Pro Lys Ala Gly Val Ile Lys Gly Met Val Glu Val Ala
325 330
335831005DNAAgrobacterium tumefaciens C58 83gtgaaagcct tcgtcgtcga
caagtacaag aagaagggcc cgctgcgtct ggccgacatg 60cccaatccgg tcatcggcgc
caatgatgtg ctggttcgca tccatgccac tgccatcaat 120cttctcgact ccaaggtgcg
cgacggggaa ttcaagctgt tcctgcccta tcgtcctccc 180ttcattctcg gtcatgatct
ggccggaacg gtcatccgcg tcggcgcgaa tgtacggcag 240ttcaagacag gcgacgaggt
tttcgctcgc ccgcgtgatc accgggtcgg aaccttcgca 300gaaatgattg cggtcgatgc
cgcagacctt gcgctgaagc caacgagcct gtccatggag 360caggcagcgt cgatcccgct
cgtcggactg actgcctggc aggcgcttat cgaggttggc 420aaggtcaagt ccggccagaa
ggttttcatc caggccggtt ccggcggtgt cggcaccttc 480gccatccagc ttgccaagca
tctcggcgct accgtggcca cgaccaccag cgccgcgaat 540gccgaactgg tcaaaagcct
cggcgcagat gtggtgatcg actacaagac gcaggacttc 600gaacaggtgc tgtccggcta
cgatctcgtc ctgaacagcc aggatgccaa gacgctggaa 660aagtcgttga acgtgctgag
accgggcgga aagctcattt cgatctccgg tccgccggat 720gttgcctttg ccagatcgtt
gaaactgaat ccgctcctgc gttttgtcgt cagaatgctg 780agccgtggtg tcctgaaaaa
ggcaagcaga cgcggtgtcg attactcttt cctgttcatg 840cgcgccgaag gtcagcaatt
gcatgagatc gccgaactga tcgatgccgg caccatccgt 900ccggtcgtcg acaaggtgtt
tcaatttgcg cagacgcccg acgccctggc ctatgtcgag 960accggacggg caaggggcaa
ggttgtggtt acatacgcat cctag 100584359PRTAgrobacterium
tumefaciens C58 84Met Pro Ser Leu Cys Arg Lys Pro Trp Leu Ser Ser Leu Pro
Asp Leu1 5 10 15Ile Asn
Val Ser His Trp Arg Lys Pro Val Lys Ala Phe Val Val Asp 20
25 30Lys Tyr Lys Lys Lys Gly Pro Leu Arg
Leu Ala Asp Met Pro Asn Pro 35 40
45Val Ile Gly Ala Asn Asp Val Leu Val Arg Ile His Ala Thr Ala Ile 50
55 60Asn Leu Leu Asp Ser Lys Val Arg Asp
Gly Glu Phe Lys Leu Phe Leu65 70 75
80Pro Tyr Arg Pro Pro Phe Ile Leu Gly His Asp Leu Ala Gly
Thr Val 85 90 95Ile Arg
Val Gly Ala Asn Val Arg Gln Phe Lys Thr Gly Asp Glu Val 100
105 110Phe Ala Arg Pro Arg Asp His Arg Val
Gly Thr Phe Ala Glu Met Ile 115 120
125Ala Val Asp Ala Ala Asp Leu Ala Leu Lys Pro Thr Ser Leu Ser Met
130 135 140Glu Gln Ala Ala Ser Ile Pro
Leu Val Gly Leu Thr Ala Trp Gln Ala145 150
155 160Leu Ile Glu Val Gly Lys Val Lys Ser Gly Gln Lys
Val Phe Ile Gln 165 170
175Ala Gly Ser Gly Gly Val Gly Thr Phe Ala Ile Gln Leu Ala Lys His
180 185 190Leu Gly Ala Thr Val Ala
Thr Thr Thr Ser Ala Ala Asn Ala Glu Leu 195 200
205Val Lys Ser Leu Gly Ala Asp Val Val Ile Asp Tyr Lys Thr
Gln Asp 210 215 220Phe Glu Gln Val Leu
Ser Gly Tyr Asp Leu Val Leu Asn Ser Gln Asp225 230
235 240Ala Lys Thr Leu Glu Lys Ser Leu Asn Val
Leu Arg Pro Gly Gly Lys 245 250
255Leu Ile Ser Ile Ser Gly Pro Pro Asp Val Ala Phe Ala Arg Ser Leu
260 265 270Lys Leu Asn Pro Leu
Leu Arg Phe Val Val Arg Met Leu Ser Arg Gly 275
280 285Val Leu Lys Lys Ala Ser Arg Arg Gly Val Asp Tyr
Ser Phe Leu Phe 290 295 300Met Arg Ala
Glu Gly Gln Gln Leu His Glu Ile Ala Glu Leu Ile Asp305
310 315 320Ala Gly Thr Ile Arg Pro Val
Val Asp Lys Val Phe Gln Phe Ala Gln 325
330 335Thr Pro Asp Ala Leu Ala Tyr Val Glu Thr Gly Arg
Ala Arg Gly Lys 340 345 350Val
Val Val Thr Tyr Ala Ser 355851032DNAAgrobacterium tumefaciens C58
85atgaaagcga ttgtcgccca cggggcaaag gatgtgcgca tcgaagaccg gccggaggaa
60aagccgggtc cgggcgaggt gcggctccgt ctggcgaggg gcgggatctg cggcagtgat
120ctgcattatt acaatcatgg cggtttcggc gccgtgcggc ttcgtgaacc catggtgctg
180ggccatgagg tttccgccgt catcgaggaa ctgggcgaag gcgttgaggg gctgaagatc
240ggcggtctgg tggcggtttc gccgtcgcgc ccatgccgaa cctgccgctt ctgccaggag
300ggtctgcaca atcagtgcct caacatgcgg ttttatggca gcgccatgcc tttcccgcat
360attcagggcg cgttccggga aattctggtg gcggacgccc tgcaatgcgt gccggccgat
420ggtctcagcg ccggggaagc cgccatggcg gaaccgctgg cggtgacgct gcatgccaca
480cgccgggccg gcgatttgct gggaaaacgt gtgctcgtca cgggttgcgg ccccatcggc
540attctctcca ttctggctgc gcgccgggcg ggtgctgctg aaatcgtcgc caccgacctt
600tccgatttca cgctcggcaa ggcgcgtgaa gcgggggcgg accgtgtcat caacagcaag
660gatgagcccg atgcgctcgc cgcttatggt gcaaacaagg gaaccttcga cattctctat
720gaatgctcgg gtgcggccgt ggcgcttgcc ggcggcatta cggcactgcg gccgcgcggc
780atcatcgtcc agctcgggct cggcggcgat atgagcctgc cgatgatggc gatcacagcc
840aaggaactcg acctgcgtgg ttcctttcgc ttccacgagg aattcgccac cggcgtcgag
900ctgatgcgca agggcctgat cgacgtcaaa cccttcatca cccagaccgt cgatcttgcc
960gacgccatct cggccttcga attcgcctcg gatcgcagcc gcgccatgaa ggtgcagatc
1020gccttttcct aa
103286343PRTAgrobacterium tumefaciens C58 86Met Lys Ala Ile Val Ala His
Gly Ala Lys Asp Val Arg Ile Glu Asp1 5 10
15Arg Pro Glu Glu Lys Pro Gly Pro Gly Glu Val Arg Leu
Arg Leu Ala 20 25 30Arg Gly
Gly Ile Cys Gly Ser Asp Leu His Tyr Tyr Asn His Gly Gly 35
40 45Phe Gly Ala Val Arg Leu Arg Glu Pro Met
Val Leu Gly His Glu Val 50 55 60Ser
Ala Val Ile Glu Glu Leu Gly Glu Gly Val Glu Gly Leu Lys Ile65
70 75 80Gly Gly Leu Val Ala Val
Ser Pro Ser Arg Pro Cys Arg Thr Cys Arg 85
90 95Phe Cys Gln Glu Gly Leu His Asn Gln Cys Leu Asn
Met Arg Phe Tyr 100 105 110Gly
Ser Ala Met Pro Phe Pro His Ile Gln Gly Ala Phe Arg Glu Ile 115
120 125Leu Val Ala Asp Ala Leu Gln Cys Val
Pro Ala Asp Gly Leu Ser Ala 130 135
140Gly Glu Ala Ala Met Ala Glu Pro Leu Ala Val Thr Leu His Ala Thr145
150 155 160Arg Arg Ala Gly
Asp Leu Leu Gly Lys Arg Val Leu Val Thr Gly Cys 165
170 175Gly Pro Ile Gly Ile Leu Ser Ile Leu Ala
Ala Arg Arg Ala Gly Ala 180 185
190Ala Glu Ile Val Ala Thr Asp Leu Ser Asp Phe Thr Leu Gly Lys Ala
195 200 205Arg Glu Ala Gly Ala Asp Arg
Val Ile Asn Ser Lys Asp Glu Pro Asp 210 215
220Ala Leu Ala Ala Tyr Gly Ala Asn Lys Gly Thr Phe Asp Ile Leu
Tyr225 230 235 240Glu Cys
Ser Gly Ala Ala Val Ala Leu Ala Gly Gly Ile Thr Ala Leu
245 250 255Arg Pro Arg Gly Ile Ile Val
Gln Leu Gly Leu Gly Gly Asp Met Ser 260 265
270Leu Pro Met Met Ala Ile Thr Ala Lys Glu Leu Asp Leu Arg
Gly Ser 275 280 285Phe Arg Phe His
Glu Glu Phe Ala Thr Gly Val Glu Leu Met Arg Lys 290
295 300Gly Leu Ile Asp Val Lys Pro Phe Ile Thr Gln Thr
Val Asp Leu Ala305 310 315
320Asp Ala Ile Ser Ala Phe Glu Phe Ala Ser Asp Arg Ser Arg Ala Met
325 330 335Lys Val Gln Ile Ala
Phe Ser 34087939DNAAgrobacterium tumefaciens C58 87atgccgatgg
cgctcgggca cgaagcggcg ggcgtcgtcg aggcattggg cgaaggcgtg 60cgcgatcttg
agcccggcga tcatgtggtc atggtcttca tgcccagttg cggacattgc 120ctgccctgtg
cggaaggcag gcccgctctg tgcgagccgg gcgccgccgc caatgcagca 180ggcaggctgt
tgggtggcgc cacccgcctg aactatcatg gcgaggtcgt ccatcatcac 240cttggtgtgt
cggcctttgc cgaatatgcc gtggtgtcgc gcaattcgct ggtcaagatc 300gaccgcgatc
ttccatttgt cgaggcggca ctcttcggct gcgcggttct caccggcgtc 360ggcgccgtcg
tgaatacggc aagggtcagg accggctcga ctgcggtcgt catcggactt 420ggcggtgtgg
gccttgccgc ggttctcgga gcccgggcgg ccggtgccag caagatcgtc 480gccgtcgacc
tttcgcagga aaagcttgca ctcgccagcg aactgggcgc gaccgccatc 540gtgaacggac
gcgatgagga tgccgtcgag caggtccgcg agctcacttc cggcggtgcc 600gattatgcct
tcgagatggc agggtctatt cgcgccctcg aaaacgcctt caggatgacc 660aaacgtggcg
gcaccaccgt taccgccggt ctgccaccgc cgggtgcggc cctgccgctc 720aacgtcgtgc
agctcgtcgg cgaggagcgg acactcaagg gcagctatat cggcacctgt 780gtgcctctcc
gggatattcc gcgcttcatc gccctttatc gcgacggccg gttgccggtg 840aaccgccttc
tgagcggaag gctgaagcta gaagacatca atgaagggtt cgaccgcctg 900cacgacggaa
gcgccgttcg gcaagtcatc gaattctga
93988312PRTAgrobacterium tumefaciens C58 88Met Pro Met Ala Leu Gly His
Glu Ala Ala Gly Val Val Glu Ala Leu1 5 10
15Gly Glu Gly Val Arg Asp Leu Glu Pro Gly Asp His Val
Val Met Val 20 25 30Phe Met
Pro Ser Cys Gly His Cys Leu Pro Cys Ala Glu Gly Arg Pro 35
40 45Ala Leu Cys Glu Pro Gly Ala Ala Ala Asn
Ala Ala Gly Arg Leu Leu 50 55 60Gly
Gly Ala Thr Arg Leu Asn Tyr His Gly Glu Val Val His His His65
70 75 80Leu Gly Val Ser Ala Phe
Ala Glu Tyr Ala Val Val Ser Arg Asn Ser 85
90 95Leu Val Lys Ile Asp Arg Asp Leu Pro Phe Val Glu
Ala Ala Leu Phe 100 105 110Gly
Cys Ala Val Leu Thr Gly Val Gly Ala Val Val Asn Thr Ala Arg 115
120 125Val Arg Thr Gly Ser Thr Ala Val Val
Ile Gly Leu Gly Gly Val Gly 130 135
140Leu Ala Ala Val Leu Gly Ala Arg Ala Ala Gly Ala Ser Lys Ile Val145
150 155 160Ala Val Asp Leu
Ser Gln Glu Lys Leu Ala Leu Ala Ser Glu Leu Gly 165
170 175Ala Thr Ala Ile Val Asn Gly Arg Asp Glu
Asp Ala Val Glu Gln Val 180 185
190Arg Glu Leu Thr Ser Gly Gly Ala Asp Tyr Ala Phe Glu Met Ala Gly
195 200 205Ser Ile Arg Ala Leu Glu Asn
Ala Phe Arg Met Thr Lys Arg Gly Gly 210 215
220Thr Thr Val Thr Ala Gly Leu Pro Pro Pro Gly Ala Ala Leu Pro
Leu225 230 235 240Asn Val
Val Gln Leu Val Gly Glu Glu Arg Thr Leu Lys Gly Ser Tyr
245 250 255Ile Gly Thr Cys Val Pro Leu
Arg Asp Ile Pro Arg Phe Ile Ala Leu 260 265
270Tyr Arg Asp Gly Arg Leu Pro Val Asn Arg Leu Leu Ser Gly
Arg Leu 275 280 285Lys Leu Glu Asp
Ile Asn Glu Gly Phe Asp Arg Leu His Asp Gly Ser 290
295 300Ala Val Arg Gln Val Ile Glu Phe305
310891035DNAAgrobacterium tumefaciens C58 89atgaaacatt ctcaggacaa
accacgcctg ctgattgcga tgcgtagcga gcttccagaa 60ggcttcttcg gtccgcgcga
atgggcaagg ctgaatgccg tagcggacat tattccgggc 120tttccccata cggatttcga
cacggcgaac ggtgccgagg ctctcgccga agcggatatt 180ctgctcgctg cctggggtac
gccatccctg acacgcgaac gactttcacg cgcgccgcgg 240ctgaaaatgc tggcctatgc
ggcatcatcg gtgcggatgg ttgcgcccgc agaattctgg 300gagacgtcgg atattctggt
cacgacagca gcttccgcca tggccgtgcc ggttgccgaa 360ttcacctatg cggcaatcat
catgtgcggc aaggatgtgt ttcgattgcg ggatgaacat 420agaacagagc gcggcaccgg
cgtttttggc agcaggcgcg gcagaagcct gccctatctt 480ggcaatcatg cccgcaaggt
tggcattgtc ggcgcctcgc gcatcgggcg gctggtgatg 540gagatgctgg cgcgcggcac
attcgagatt gccgtttacg atccctttct gtcggcggaa 600gaggccgcat cccttggcgc
gaagaaagcc gaactggacg agcttctcgc atggtccgat 660gtggtctcgc tgcacgcgcc
gatcctgccg gaaacgcacc atatgatcgg cgcccgcgaa 720ctggcgctga tggcggacca
tgccatcttc atcaacacgg cgcggggctg gctggtcgac 780cacgatgcat tgctgactga
agcgatttcc ggacggctgc gcattctgat tgacacgccc 840gaacccgagc ccctgcccac
ggacagcccg ttttacgatc tgcccaatgt cgttctaacc 900ccccatatag ccggggcgct
gggcaatgaa ttgcgcgcac tttccgatct ggccattacc 960gaaattgaac gtttcgtggc
gggacttgcg cccctccacc cggtccacaa gcaggatatg 1020gaacgtatgg catga
103590331PRTAgrobacterium
tumefaciens C58 90Met Arg Ser Glu Leu Pro Glu Gly Phe Phe Gly Pro Arg Glu
Trp Ala1 5 10 15Arg Leu
Asn Ala Val Ala Asp Ile Ile Pro Gly Phe Pro His Thr Asp 20
25 30Phe Asp Thr Ala Asn Gly Ala Glu Ala
Leu Ala Glu Ala Asp Ile Leu 35 40
45Leu Ala Ala Trp Gly Thr Pro Ser Leu Thr Arg Glu Arg Leu Ser Arg 50
55 60Ala Pro Arg Leu Lys Met Leu Ala Tyr
Ala Ala Ser Ser Val Arg Met65 70 75
80Val Ala Pro Ala Glu Phe Trp Glu Thr Ser Asp Ile Leu Val
Thr Thr 85 90 95Ala Ala
Ser Ala Met Ala Val Pro Val Ala Glu Phe Thr Tyr Ala Ala 100
105 110Ile Ile Met Cys Gly Lys Asp Val Phe
Arg Leu Arg Asp Glu His Arg 115 120
125Thr Glu Arg Gly Thr Gly Val Phe Gly Ser Arg Arg Gly Arg Ser Leu
130 135 140Pro Tyr Leu Gly Asn His Ala
Arg Lys Val Gly Ile Val Gly Ala Ser145 150
155 160Arg Ile Gly Arg Leu Val Met Glu Met Leu Ala Arg
Gly Thr Phe Glu 165 170
175Ile Ala Val Tyr Asp Pro Phe Leu Ser Ala Glu Glu Ala Ala Ser Leu
180 185 190Gly Ala Lys Lys Ala Glu
Leu Asp Glu Leu Leu Ala Trp Ser Asp Val 195 200
205Val Ser Leu His Ala Pro Ile Leu Pro Glu Thr His His Met
Ile Gly 210 215 220Ala Arg Glu Leu Ala
Leu Met Ala Asp His Ala Ile Phe Ile Asn Thr225 230
235 240Ala Arg Gly Trp Leu Val Asp His Asp Ala
Leu Leu Thr Glu Ala Ile 245 250
255Ser Gly Arg Leu Arg Ile Leu Ile Asp Thr Pro Glu Pro Glu Pro Leu
260 265 270Pro Thr Asp Ser Pro
Phe Tyr Asp Leu Pro Asn Val Val Leu Thr Pro 275
280 285His Ile Ala Gly Ala Leu Gly Asn Glu Leu Arg Ala
Leu Ser Asp Leu 290 295 300Ala Ile Thr
Glu Ile Glu Arg Phe Val Ala Gly Leu Ala Pro Leu His305
310 315 320Pro Val His Lys Gln Asp Met
Glu Arg Met Ala 325
33091750DNAAgrobacterium tumefaciens C58 91atgcagcgtt ttaccaacag
aaccatcgtt gtcgccgggg ccggccggga tatcggccgg 60gcatgcgcca tccgtttcgc
acaggaaggc gccaatgtcg ttcttaccta taatggcgcg 120gcagagggcg cggccacagc
cgttgccgaa atcgaaaagc ttggtcgttc ggctctggcg 180atcaaggcgg atctcacaaa
cgccgccgaa gtcgaggctg ccatatctgc ggctgcggac 240aagtttgggg agatccacgg
cctcgtccat gttgccggcg gcctgatcgc ccgcaagaca 300atcgcagaaa tggatgaagc
cttctggcat caggtcctcg acgtcaatct gacatcgctg 360ttcctgacgg ccaagaccgc
attgccgaag atggccaagg gcggcgcgat cgtcactttc 420tcgtcgcagg ccggccgtga
tggcggcggc ccgggcgctc ttgcctatgc cacttccaag 480ggtgccgtga tgaccttcac
ccgcggactt gccaaagaag tcggccccaa aatccgcgtc 540aacgccgttt gccccggtat
gatctccacc accttccacg ataccttcac caagccggag 600gtgcgcgaac gggtggccgg
cgcgacgtcg ctcaagcgcg aagggtcgag cgaagacgtc 660gccggtctgg tggccttcct
cgcgtctgac gatgccgctt atgtcaccgg cgcctgctac 720gacatcaatg gcggcgtcct
gttttcctga 75092249PRTAgrobacterium
tumefaciens C58 92Met Gln Arg Phe Thr Asn Arg Thr Ile Val Val Ala Gly Ala
Gly Arg1 5 10 15Asp Ile
Gly Arg Ala Cys Ala Ile Arg Phe Ala Gln Glu Gly Ala Asn 20
25 30Val Val Leu Thr Tyr Asn Gly Ala Ala
Glu Gly Ala Ala Thr Ala Val 35 40
45Ala Glu Ile Glu Lys Leu Gly Arg Ser Ala Leu Ala Ile Lys Ala Asp 50
55 60Leu Thr Asn Ala Ala Glu Val Glu Ala
Ala Ile Ser Ala Ala Ala Asp65 70 75
80Lys Phe Gly Glu Ile His Gly Leu Val His Val Ala Gly Gly
Leu Ile 85 90 95Ala Arg
Lys Thr Ile Ala Glu Met Asp Glu Ala Phe Trp His Gln Val 100
105 110Leu Asp Val Asn Leu Thr Ser Leu Phe
Leu Thr Ala Lys Thr Ala Leu 115 120
125Pro Lys Met Ala Lys Gly Gly Ala Ile Val Thr Phe Ser Ser Gln Ala
130 135 140Gly Arg Asp Gly Gly Gly Pro
Gly Ala Leu Ala Tyr Ala Thr Ser Lys145 150
155 160Gly Ala Val Met Thr Phe Thr Arg Gly Leu Ala Lys
Glu Val Gly Pro 165 170
175Lys Ile Arg Val Asn Ala Val Cys Pro Gly Met Ile Ser Thr Thr Phe
180 185 190His Asp Thr Phe Thr Lys
Pro Glu Val Arg Glu Arg Val Ala Gly Ala 195 200
205Thr Ser Leu Lys Arg Glu Gly Ser Ser Glu Asp Val Ala Gly
Leu Val 210 215 220Ala Phe Leu Ala Ser
Asp Asp Ala Ala Tyr Val Thr Gly Ala Cys Tyr225 230
235 240Asp Ile Asn Gly Gly Val Leu Phe Ser
24593930DNAEscherichia coli DH10B 93atgtccaaaa agattgccgt
gattggcgaa tgcatgattg agctttccga gaaaggcgcg 60gacgttaagc gcggtttcgg
cggcgatacc ctgaacactt ccgtctatat cgcccgtcag 120gtcgatcctg cggcattaac
cgttcattac gtaacggcgc tgggaacgga cagttttagc 180cagcagatgc tggacgcctg
gcacggcgag aacgttgata cttccctgac ccaacggatg 240gaaaaccgtc tgccgggcct
ttactacatt gaaaccgaca gcaccggcga gcgtacgttc 300tactactggc ggaacgaagc
cgccgccaaa ttctggctgg agagtgagca gtctgcggcg 360atttgcgaag agctggcgaa
tttcgattat ctctacctga gcgggattag cctggcgatc 420ttaagcccga ccagccgcga
aaagctgctt tccctgctgc gcgaatgccg cgccaacggc 480ggaaaagtga ttttcgacaa
taactatcgt ccgcgcctgt gggccagcaa agaagagaca 540cagcaggtgt accaacaaat
gctggaatgc acggatatcg ccttcctgac gctggacgac 600gaagacgcgc tgtggggtca
acagccggtg gaagacgtca ttgcgcgcac ccataacgcg 660ggcgtgaaag aagtggtggt
gaaacgcggg gcggattctt gcctggtgtc cattgctggc 720gaagggttag tggatgttcc
ggcggtgaaa ctgccgaaag aaaaagtgat cgataccacc 780gcagctggcg actctttcag
tgccggttat ctggcggtac gtctgacagg cggcagcgcg 840gaagacgcgg cgaaacgtgg
gcacctgacc gcaagtaccg ttattcagta tcgcggcgcg 900attatcccgc gtgaggcgat
gccagcgtaa 93094309PRTEscherichia
coli DH10B 94Met Ser Lys Lys Ile Ala Val Ile Gly Glu Cys Met Ile Glu Leu
Ser1 5 10 15Glu Lys Gly
Ala Asp Val Lys Arg Gly Phe Gly Gly Asp Thr Leu Asn 20
25 30Thr Ser Val Tyr Ile Ala Arg Gln Val Asp
Pro Ala Ala Leu Thr Val 35 40
45His Tyr Val Thr Ala Leu Gly Thr Asp Ser Phe Ser Gln Gln Met Leu 50
55 60Asp Ala Trp His Gly Glu Asn Val Asp
Thr Ser Leu Thr Gln Arg Met65 70 75
80Glu Asn Arg Leu Pro Gly Leu Tyr Tyr Ile Glu Thr Asp Ser
Thr Gly 85 90 95Glu Arg
Thr Phe Tyr Tyr Trp Arg Asn Glu Ala Ala Ala Lys Phe Trp 100
105 110Leu Glu Ser Glu Gln Ser Ala Ala Ile
Cys Glu Glu Leu Ala Asn Phe 115 120
125Asp Tyr Leu Tyr Leu Ser Gly Ile Ser Leu Ala Ile Leu Ser Pro Thr
130 135 140Ser Arg Glu Lys Leu Leu Ser
Leu Leu Arg Glu Cys Arg Ala Asn Gly145 150
155 160Gly Lys Val Ile Phe Asp Asn Asn Tyr Arg Pro Arg
Leu Trp Ala Ser 165 170
175Lys Glu Glu Thr Gln Gln Val Tyr Gln Gln Met Leu Glu Cys Thr Asp
180 185 190Ile Ala Phe Leu Thr Leu
Asp Asp Glu Asp Ala Leu Trp Gly Gln Gln 195 200
205Pro Val Glu Asp Val Ile Ala Arg Thr His Asn Ala Gly Val
Lys Glu 210 215 220Val Val Val Lys Arg
Gly Ala Asp Ser Cys Leu Val Ser Ile Ala Gly225 230
235 240Glu Gly Leu Val Asp Val Pro Ala Val Lys
Leu Pro Lys Glu Lys Val 245 250
255Ile Asp Thr Thr Ala Ala Gly Asp Ser Phe Ser Ala Gly Tyr Leu Ala
260 265 270Val Arg Leu Thr Gly
Gly Ser Ala Glu Asp Ala Ala Lys Arg Gly His 275
280 285Leu Thr Ala Ser Thr Val Ile Gln Tyr Arg Gly Ala
Ile Ile Pro Arg 290 295 300Glu Ala Met
Pro Ala30595642DNAEscherichia coli DH10B 95atgaaaaact ggaaaacaag
tgcagaatca atcctgacca ccggcccggt tgtaccggtt 60atcgtggtaa aaaaactgga
acacgcggtg ccgatggcaa aagcgttggt tgctggtggg 120gtgcgcgttc tggaagtgac
tctgcgtacc gagtgtgcag ttgacgctat ccgtgctatc 180gccaaagaag tgcctgaagc
gattgtgggt gccggtacgg tgctgaatcc acagcagctg 240gcagaagtca ctgaagcggg
tgcacagttc gcaattagcc cgggtctgac cgagccgctg 300ctgaaagctg ctaccgaagg
gactattcct ctgattccgg ggatcagcac tgtttccgaa 360ctgatgctgg gtatggacta
cggtttgaaa gagttcaaat tcttcccggc tgaagctaac 420ggcggcgtga aagccctgca
ggcgatcgcg ggtccgttct cccaggtccg tttctgcccg 480acgggtggta tttctccggc
taactaccgt gactacctgg cgctgaaaag cgtgctgtgc 540atcggtggtt cctggctggt
tccggcagat gcgctggaag cgggcgatta cgaccgcatt 600actaagctgg cgcgtgaagc
tgtagaaggc gctaagctgt aa 64296213PRTEscherichia
coli DH10B 96Met Lys Asn Trp Lys Thr Ser Ala Glu Ser Ile Leu Thr Thr Gly
Pro1 5 10 15Val Val Pro
Val Ile Val Val Lys Lys Leu Glu His Ala Val Pro Met 20
25 30Ala Lys Ala Leu Val Ala Gly Gly Val Arg
Val Leu Glu Val Thr Leu 35 40
45Arg Thr Glu Cys Ala Val Asp Ala Ile Arg Ala Ile Ala Lys Glu Val 50
55 60Pro Glu Ala Ile Val Gly Ala Gly Thr
Val Leu Asn Pro Gln Gln Leu65 70 75
80Ala Glu Val Thr Glu Ala Gly Ala Gln Phe Ala Ile Ser Pro
Gly Leu 85 90 95Thr Glu
Pro Leu Leu Lys Ala Ala Thr Glu Gly Thr Ile Pro Leu Ile 100
105 110Pro Gly Ile Ser Thr Val Ser Glu Leu
Met Leu Gly Met Asp Tyr Gly 115 120
125Leu Lys Glu Phe Lys Phe Phe Pro Ala Glu Ala Asn Gly Gly Val Lys
130 135 140Ala Leu Gln Ala Ile Ala Gly
Pro Phe Ser Gln Val Arg Phe Cys Pro145 150
155 160Thr Gly Gly Ile Ser Pro Ala Asn Tyr Arg Asp Tyr
Leu Ala Leu Lys 165 170
175Ser Val Leu Cys Ile Gly Gly Ser Trp Leu Val Pro Ala Asp Ala Leu
180 185 190Glu Ala Gly Asp Tyr Asp
Arg Ile Thr Lys Leu Ala Arg Glu Ala Val 195 200
205Glu Gly Ala Lys Leu 21097780DNALactobaccilus brevis
ATCC 367 97atggcatcaa atggaaaagt agcaatggtt accggtggcg gacaaggaat
tggtgaagcc 60atctcgaaac ggttagctaa cgacggcttt gctgtggcaa ttgctgattt
gaacttggac 120aatgccaaca aggtcgtttc tgatattgaa gctgctggtg gcaaggccat
tgcggtcaag 180accgatgtct ctgatcgtga tagcgtgttt gctgcggtta atgaagcggc
cgacaagctg 240ggcggctttg acgttatcgt taataacgcc ggccttggcc caaccacgcc
aattgacacc 300atcacccaag aacagtttga tacggtttat cacgttaacg tgggtggggt
tctttggggc 360attcaagcag cccatgcgaa gttcaaggaa ttgggtcatg gtgggaagat
catttccgcg 420acgtctcaag ccggggttgt tggtaacccg aacttagctc tgtacagtgg
aactaagttt 480gccattcgtg gtgtgaccca agttgcggcg cgtgacttag ccgctgaagg
tatcacggtc 540aatgcttatg cacccgggat tgttaagaca ccaatgatgt ttgacatcgc
tcacaaggtt 600ggtcaaaatg ctggtaaaga cgacgaatgg gggatgcaaa ccttctcaaa
ggacatcgct 660ttatgtcgat tgtcagaacc agaagatgtg gctaacgggg tggctttctt
agccggtccc 720gattctaact acattacggg tcaaacactt gaagttgatg gtgggatgca
gttccactaa 78098259PRTLactobaccilus brevis ATCC 367 98Met Ala Ser Asn
Gly Lys Val Ala Met Val Thr Gly Gly Gly Gln Gly1 5
10 15Ile Gly Glu Ala Ile Ser Lys Arg Leu Ala
Asn Asp Gly Phe Ala Val 20 25
30Ala Ile Ala Asp Leu Asn Leu Asp Asn Ala Asn Lys Val Val Ser Asp
35 40 45Ile Glu Ala Ala Gly Gly Lys Ala
Ile Ala Val Lys Thr Asp Val Ser 50 55
60Asp Arg Asp Ser Val Phe Ala Ala Val Asn Glu Ala Ala Asp Lys Leu65
70 75 80Gly Gly Phe Asp Val
Ile Val Asn Asn Ala Gly Leu Gly Pro Thr Thr 85
90 95Pro Ile Asp Thr Ile Thr Gln Glu Gln Phe Asp
Thr Val Tyr His Val 100 105
110Asn Val Gly Gly Val Leu Trp Gly Ile Gln Ala Ala His Ala Lys Phe
115 120 125Lys Glu Leu Gly His Gly Gly
Lys Ile Ile Ser Ala Thr Ser Gln Ala 130 135
140Gly Val Val Gly Asn Pro Asn Leu Ala Leu Tyr Ser Gly Thr Lys
Phe145 150 155 160Ala Ile
Arg Gly Val Thr Gln Val Ala Ala Arg Asp Leu Ala Ala Glu
165 170 175Gly Ile Thr Val Asn Ala Tyr
Ala Pro Gly Ile Val Lys Thr Pro Met 180 185
190Met Phe Asp Ile Ala His Lys Val Gly Gln Asn Ala Gly Lys
Asp Asp 195 200 205Glu Trp Gly Met
Gln Thr Phe Ser Lys Asp Ile Ala Leu Cys Arg Leu 210
215 220Ser Glu Pro Glu Asp Val Ala Asn Gly Val Ala Phe
Leu Ala Gly Pro225 230 235
240Asp Ser Asn Tyr Ile Thr Gly Gln Thr Leu Glu Val Asp Gly Gly Met
245 250 255Gln Phe
His991089DNAPseudomonas putida KT2440 99atgaatgacc tgagccacac ccacatgcgc
gcggccgtct ggcatggccg ccacgatatt 60cgtgtcgaac aggtaccttt gccggccgac
cctgcgccgg gctgggtgca gatcaaggtg 120gactggtgcg gcatctgcgg ctccgacctg
cacgaatatg ttgccggccc ggtgttcatc 180ccggtagagg ccccgcaccc gctgaccggc
attcagggcc agtgcatcct cggccacgaa 240ttctgcggcc acatcgccaa gcttggcgaa
ggcgtggaag gctatgccgt aggcgacccg 300gtggcggcag acgcgtgcca gcattgtggt
acctgctatt actgcaccca tggcctgtac 360aacatctgcg aacgcctggc gttcaccggc
ctgatgaaca acggtgcctt cgccgagctg 420gtcaacgtgc ccgccaacct gctctaccgg
ctgccgcagg gcttccctgc cgaagccggg 480gcactgatcg agccgctggc ggtgggtatg
cacgcggtga aaaaggccgg cagcctgctt 540gggcaaaccg ttgtagtggt tggggccggc
accatcggcc tgtgcaccat catgtgcgcc 600aaggctgcag gtgcggcaca ggtcatcgcc
cttgagatgt cctctgcgcg caaagccaag 660gccaaggaag cgggcgccaa cgtggtgctg
gaccccagcc agtgcgatgc cctggcggaa 720atccgcgcac tgactgctgg gctgggcgcc
gatgtgagtt ttgagtgcat cggcaacaaa 780catacggcca agctggccat cgacaccatc
cgcaaagcag gcaagtgcgt gctggtgggt 840attttcgaag agcccagcga gttcaacttc
ttcgagctgg tgtccaccga gaagcaagtg 900ctgggggcgt tggcgtacaa cggcgagttt
gctgacgtga ttgccttcat tgctgatggt 960cggctggata ttcgcccgct ggtaaccggc
cggatcggat tggagcagat tgtcgagctg 1020ggcttcgagg aactggtgaa caacaaagag
gagaacgtga agatcatcgt ttcaccaggt 1080gtgcgctga
1089100362PRTPseudomonas putida KT2440
100Met Asn Asp Leu Ser His Thr His Met Arg Ala Ala Val Trp His Gly1
5 10 15Arg His Asp Ile Arg Val
Glu Gln Val Pro Leu Pro Ala Asp Pro Ala 20 25
30Pro Gly Trp Val Gln Ile Lys Val Asp Trp Cys Gly Ile
Cys Gly Ser 35 40 45Asp Leu His
Glu Tyr Val Ala Gly Pro Val Phe Ile Pro Val Glu Ala 50
55 60Pro His Pro Leu Thr Gly Ile Gln Gly Gln Cys Ile
Leu Gly His Glu65 70 75
80Phe Cys Gly His Ile Ala Lys Leu Gly Glu Gly Val Glu Gly Tyr Ala
85 90 95Val Gly Asp Pro Val Ala
Ala Asp Ala Cys Gln His Cys Gly Thr Cys 100
105 110Tyr Tyr Cys Thr His Gly Leu Tyr Asn Ile Cys Glu
Arg Leu Ala Phe 115 120 125Thr Gly
Leu Met Asn Asn Gly Ala Phe Ala Glu Leu Val Asn Val Pro 130
135 140Ala Asn Leu Leu Tyr Arg Leu Pro Gln Gly Phe
Pro Ala Glu Ala Gly145 150 155
160Ala Leu Ile Glu Pro Leu Ala Val Gly Met His Ala Val Lys Lys Ala
165 170 175Gly Ser Leu Leu
Gly Gln Thr Val Val Val Val Gly Ala Gly Thr Ile 180
185 190Gly Leu Cys Thr Ile Met Cys Ala Lys Ala Ala
Gly Ala Ala Gln Val 195 200 205Ile
Ala Leu Glu Met Ser Ser Ala Arg Lys Ala Lys Ala Lys Glu Ala 210
215 220Gly Ala Asn Val Val Leu Asp Pro Ser Gln
Cys Asp Ala Leu Ala Glu225 230 235
240Ile Arg Ala Leu Thr Ala Gly Leu Gly Ala Asp Val Ser Phe Glu
Cys 245 250 255Ile Gly Asn
Lys His Thr Ala Lys Leu Ala Ile Asp Thr Ile Arg Lys 260
265 270Ala Gly Lys Cys Val Leu Val Gly Ile Phe
Glu Glu Pro Ser Glu Phe 275 280
285Asn Phe Phe Glu Leu Val Ser Thr Glu Lys Gln Val Leu Gly Ala Leu 290
295 300Ala Tyr Asn Gly Glu Phe Ala Asp
Val Ile Ala Phe Ile Ala Asp Gly305 310
315 320Arg Leu Asp Ile Arg Pro Leu Val Thr Gly Arg Ile
Gly Leu Glu Gln 325 330
335Ile Val Glu Leu Gly Phe Glu Glu Leu Val Asn Asn Lys Glu Glu Asn
340 345 350Val Lys Ile Ile Val Ser
Pro Gly Val Arg 355 360101771DNAKlebsiella
pneumoniae MGH78578 101atgaaaaaag tcgcacttgt taccggcgcc ggccagggga
ttggtaaagc tatcgccctt 60cgtctggtga aggatggatt tgccgtggcc attgccgatt
ataacgacgc caccgccaaa 120gcggtcgcct cggaaatcaa ccaggccggc ggacacgccg
tggcggtgaa agtggatgtc 180tccgaccgcg atcaggtatt tgccgccgtt gaacaggcgc
gcaaaacgct gggcggcttc 240gacgtcatcg tcaataacgc cggtgtggca ccgtctacgc
cgatcgagtc cattaccccg 300gagattgtcg acaaagtcta caacatcaac gtcaaagggg
tgatctgggg tattcaggcg 360gcggtcgagg cctttaagaa agaggggcac ggcgggaaaa
tcatcaacgc ctgttcccag 420gccggccacg tcggcaaccc ggagctggcg gtgtatagct
ccagtaaatt cgcggtacgc 480ggcttaaccc agaccgccgc tcgcgacctc gcgccgctgg
gcatcacggt caacggctac 540tgcccgggga ttgtcaaaac gccaatgtgg gccgaaattg
accgccaggt gtccgaagcc 600gccggtaaac cgctgggcta cggtaccgcc gagttcgcca
aacgcatcac tctcggtcgt 660ctgtccgagc cggaagatgt cgccgcctgc gtctcctatc
ttgccagccc ggattctgat 720tacatgaccg gtcagtcgtt gctgatcgac ggcgggatgg
tatttaacta a 771102256PRTKlebsiella pneumoniae MGH78578
102Met Lys Lys Val Ala Leu Val Thr Gly Ala Gly Gln Gly Ile Gly Lys1
5 10 15Ala Ile Ala Leu Arg Leu
Val Lys Asp Gly Phe Ala Val Ala Ile Ala 20 25
30Asp Tyr Asn Asp Ala Thr Ala Lys Ala Val Ala Ser Glu
Ile Asn Gln 35 40 45Ala Gly Gly
His Ala Val Ala Val Lys Val Asp Val Ser Asp Arg Asp 50
55 60Gln Val Phe Ala Ala Val Glu Gln Ala Arg Lys Thr
Leu Gly Gly Phe65 70 75
80Asp Val Ile Val Asn Asn Ala Gly Val Ala Pro Ser Thr Pro Ile Glu
85 90 95Ser Ile Thr Pro Glu Ile
Val Asp Lys Val Tyr Asn Ile Asn Val Lys 100
105 110Gly Val Ile Trp Gly Ile Gln Ala Ala Val Glu Ala
Phe Lys Lys Glu 115 120 125Gly His
Gly Gly Lys Ile Ile Asn Ala Cys Ser Gln Ala Gly His Val 130
135 140Gly Asn Pro Glu Leu Ala Val Tyr Ser Ser Ser
Lys Phe Ala Val Arg145 150 155
160Gly Leu Thr Gln Thr Ala Ala Arg Asp Leu Ala Pro Leu Gly Ile Thr
165 170 175Val Asn Gly Tyr
Cys Pro Gly Ile Val Lys Thr Pro Met Trp Ala Glu 180
185 190Ile Asp Arg Gln Val Ser Glu Ala Ala Gly Lys
Pro Leu Gly Tyr Gly 195 200 205Thr
Ala Glu Phe Ala Lys Arg Ile Thr Leu Gly Arg Leu Ser Glu Pro 210
215 220Glu Asp Val Ala Ala Cys Val Ser Tyr Leu
Ala Ser Pro Asp Ser Asp225 230 235
240Tyr Met Thr Gly Gln Ser Leu Leu Ile Asp Gly Gly Met Val Phe
Asn 245 250
2551031665DNAKlebsiella pneumoniae MGH78578 103atgagatcga aaagatttga
agcactggcg aaacgccctg tgaatcagga tggtttcgtt 60aaggagtgga ttgaagaggg
ctttatcgcg atggaaagcc ctaacgatcc caaaccttct 120atccgcatcg tcaacggcgc
ggtgaccgaa ctcgacgata aaccggttga gcagttcgac 180ctgattgacc actttatcgc
gcgctacggc attaatctcg cccgggccga agaagtgatg 240gccatggatt cggttaagct
cgccaacatg ctctgcgacc cgaacgttaa acgcagcgac 300atcgtgccgc tcactaccgc
gatgaccccg gcgaaaatcg tggaagtggt gtcgcatatg 360aacgtggtcg agatgatgat
ggcgatgcaa aaaatgcgcg cccgccgcac gccgtcccag 420caggcgcatg tcactaatat
caaagataat ccggtacaga ttgccgccga cgccgctgaa 480ggcgcatggc gcggctttga
cgagcaggag accaccgtcg ccgtggcgcg ctacgcgccg 540ttcaacgcca tcgccctgct
ggtcggttca caggttggcc gccccggcgt cctcacccag 600tgttcgctgg aagaagccac
cgagctgaaa ctgggcatgc tgggccacac ctgctatgcc 660gaaaccattt cggtatacgg
tacggaaccg gtgtttaccg atggcgatga caccccgtgg 720tcgaaaggct tcctcgcctc
ctcctacgcc tcgcgcggcc tgaaaatgcg ctttacctcc 780ggttccggct cggaggtgca
gatgggctat gccgaaggca aatcgatgct ttatctcgaa 840gcgcgctgca tctacatcac
caaagccgcc ggggtgcaag gcctgcagaa tggctccgtc 900agctgtatcg gcgtgccgtc
cgccgtgccg tccgggatcc gcgccgtact ggcggaaaac 960ctgatctgct cagcgctgga
tctggagtgc gcctccagca acgatcaaac ctttacccac 1020tcggatatgc ggcgtaccgc
gcgtctgctg atgcagttcc tgccaggtac cgactttatc 1080tcctccggtt actcggcggt
gccgaactac gacaacatgt tcgccggttc caacgaagat 1140gccgaagact tcgatgacta
caacgtgatc cagcgcgacc tgaaggtcga tggcggcctg 1200cggccggtgc gtgaagagga
cgtgatcgcc attcgcaaca aagccgcccg cgcgctgcag 1260gcggtatttg ccggcatggg
tttgccgcct attacggatg aagaagtaga agccgccacc 1320tacgcccacg gttcaaaaga
tatgcctgag cgcaatatcg tcgaggacat caagtttgct 1380caggagatca tcaacaagaa
ccgcaacggc ctggaggtgg tgaaagccct ggcgaaaggc 1440ggcttccccg atgtcgccca
ggacatgctc aatattcaga aagccaagct caccggcgac 1500tacctgcata cctccgccat
cattgttggc gagggccagg tgctctcggc cgtgaatgac 1560gtgaacgatt atgccggtcc
ggcaacaggc taccgcctgc aaggcgagcg ctgggaagag 1620attaaaaata tcccgggcgc
gctcgatccc aatgaacttg gctaa 1665104554PRTKlebsiella
pneumoniae MGH78578 104Met Arg Ser Lys Arg Phe Glu Ala Leu Ala Lys Arg
Pro Val Asn Gln1 5 10
15Asp Gly Phe Val Lys Glu Trp Ile Glu Glu Gly Phe Ile Ala Met Glu
20 25 30Ser Pro Asn Asp Pro Lys Pro
Ser Ile Arg Ile Val Asn Gly Ala Val 35 40
45Thr Glu Leu Asp Asp Lys Pro Val Glu Gln Phe Asp Leu Ile Asp
His 50 55 60Phe Ile Ala Arg Tyr Gly
Ile Asn Leu Ala Arg Ala Glu Glu Val Met65 70
75 80Ala Met Asp Ser Val Lys Leu Ala Asn Met Leu
Cys Asp Pro Asn Val 85 90
95Lys Arg Ser Asp Ile Val Pro Leu Thr Thr Ala Met Thr Pro Ala Lys
100 105 110Ile Val Glu Val Val Ser
His Met Asn Val Val Glu Met Met Met Ala 115 120
125Met Gln Lys Met Arg Ala Arg Arg Thr Pro Ser Gln Gln Ala
His Val 130 135 140Thr Asn Ile Lys Asp
Asn Pro Val Gln Ile Ala Ala Asp Ala Ala Glu145 150
155 160Gly Ala Trp Arg Gly Phe Asp Glu Gln Glu
Thr Thr Val Ala Val Ala 165 170
175Arg Tyr Ala Pro Phe Asn Ala Ile Ala Leu Leu Val Gly Ser Gln Val
180 185 190Gly Arg Pro Gly Val
Leu Thr Gln Cys Ser Leu Glu Glu Ala Thr Glu 195
200 205Leu Lys Leu Gly Met Leu Gly His Thr Cys Tyr Ala
Glu Thr Ile Ser 210 215 220Val Tyr Gly
Thr Glu Pro Val Phe Thr Asp Gly Asp Asp Thr Pro Trp225
230 235 240Ser Lys Gly Phe Leu Ala Ser
Ser Tyr Ala Ser Arg Gly Leu Lys Met 245
250 255Arg Phe Thr Ser Gly Ser Gly Ser Glu Val Gln Met
Gly Tyr Ala Glu 260 265 270Gly
Lys Ser Met Leu Tyr Leu Glu Ala Arg Cys Ile Tyr Ile Thr Lys 275
280 285Ala Ala Gly Val Gln Gly Leu Gln Asn
Gly Ser Val Ser Cys Ile Gly 290 295
300Val Pro Ser Ala Val Pro Ser Gly Ile Arg Ala Val Leu Ala Glu Asn305
310 315 320Leu Ile Cys Ser
Ala Leu Asp Leu Glu Cys Ala Ser Ser Asn Asp Gln 325
330 335Thr Phe Thr His Ser Asp Met Arg Arg Thr
Ala Arg Leu Leu Met Gln 340 345
350Phe Leu Pro Gly Thr Asp Phe Ile Ser Ser Gly Tyr Ser Ala Val Pro
355 360 365Asn Tyr Asp Asn Met Phe Ala
Gly Ser Asn Glu Asp Ala Glu Asp Phe 370 375
380Asp Asp Tyr Asn Val Ile Gln Arg Asp Leu Lys Val Asp Gly Gly
Leu385 390 395 400Arg Pro
Val Arg Glu Glu Asp Val Ile Ala Ile Arg Asn Lys Ala Ala
405 410 415Arg Ala Leu Gln Ala Val Phe
Ala Gly Met Gly Leu Pro Pro Ile Thr 420 425
430Asp Glu Glu Val Glu Ala Ala Thr Tyr Ala His Gly Ser Lys
Asp Met 435 440 445Pro Glu Arg Asn
Ile Val Glu Asp Ile Lys Phe Ala Gln Glu Ile Ile 450
455 460Asn Lys Asn Arg Asn Gly Leu Glu Val Val Lys Ala
Leu Ala Lys Gly465 470 475
480Gly Phe Pro Asp Val Ala Gln Asp Met Leu Asn Ile Gln Lys Ala Lys
485 490 495Leu Thr Gly Asp Tyr
Leu His Thr Ser Ala Ile Ile Val Gly Glu Gly 500
505 510Gln Val Leu Ser Ala Val Asn Asp Val Asn Asp Tyr
Ala Gly Pro Ala 515 520 525Thr Gly
Tyr Arg Leu Gln Gly Glu Arg Trp Glu Glu Ile Lys Asn Ile 530
535 540Pro Gly Ala Leu Asp Pro Asn Glu Leu Gly545
550105690DNAKlebsiella pneumoniae MGH78578 105atggaaatta
acgaaacgct gctgcgccag attatcgaag aggtgctgtc ggagatgaaa 60tcaggcgcag
ataagccggt ctcctttagc gcgcctgcgg cttctgtcgc ctctgccgcg 120ccggtcgccg
ttgcgcctgt gtccggcgac agcttcctga cggaaatcgg cgaagccaaa 180cccggcacgc
agcaggatga agtcattatt gccgtcgggc cagcgtttgg tctggcgcaa 240accgccaata
tcgtcggcat tccgcataaa aatattctgc gcgaagtgat cgccggcatt 300gaggaagaag
gcatcaaagc ccgggtgatc cgctgcttta agtcttctga cgtcgccttc 360gtggcagtgg
aaggcaaccg cctgagcggc tccggcatct cgatcggtat tcagtcgaaa 420ggcaccaccg
tcatccacca gcgcggcctg ccgccgcttt ccaatctgga actcttcccg 480caggcgccgc
tgctgacgct ggaaacctac cgtcagattg gcaaaaacgc cgcgcgctac 540gccaaacgcg
agtcgccgca gccggtgccg acgcttaacg atcagatggc tcgtcccaaa 600taccaggcga
agtcggccat tttgcacatt aaagagacca aatacgtggt gacgggcaaa 660aacccgcagg
aactgcgcgt ggcgctttaa
690106229PRTKlebsiella pneumoniae MGH78578 106Met Glu Ile Asn Glu Thr Leu
Leu Arg Gln Ile Ile Glu Glu Val Leu1 5 10
15Ser Glu Met Lys Ser Gly Ala Asp Lys Pro Val Ser Phe
Ser Ala Pro 20 25 30Ala Ala
Ser Val Ala Ser Ala Ala Pro Val Ala Val Ala Pro Val Ser 35
40 45Gly Asp Ser Phe Leu Thr Glu Ile Gly Glu
Ala Lys Pro Gly Thr Gln 50 55 60Gln
Asp Glu Val Ile Ile Ala Val Gly Pro Ala Phe Gly Leu Ala Gln65
70 75 80Thr Ala Asn Ile Val Gly
Ile Pro His Lys Asn Ile Leu Arg Glu Val 85
90 95Ile Ala Gly Ile Glu Glu Glu Gly Ile Lys Ala Arg
Val Ile Arg Cys 100 105 110Phe
Lys Ser Ser Asp Val Ala Phe Val Ala Val Glu Gly Asn Arg Leu 115
120 125Ser Gly Ser Gly Ile Ser Ile Gly Ile
Gln Ser Lys Gly Thr Thr Val 130 135
140Ile His Gln Arg Gly Leu Pro Pro Leu Ser Asn Leu Glu Leu Phe Pro145
150 155 160Gln Ala Pro Leu
Leu Thr Leu Glu Thr Tyr Arg Gln Ile Gly Lys Asn 165
170 175Ala Ala Arg Tyr Ala Lys Arg Glu Ser Pro
Gln Pro Val Pro Thr Leu 180 185
190Asn Asp Gln Met Ala Arg Pro Lys Tyr Gln Ala Lys Ser Ala Ile Leu
195 200 205His Ile Lys Glu Thr Lys Tyr
Val Val Thr Gly Lys Asn Pro Gln Glu 210 215
220Leu Arg Val Ala Leu225107525DNAKlebsiella pneumoniae MGH78578
107atgaataccg acgcaattga atccatggta cgcgacgtgc tgagccggat gaacagccta
60caggacggga taacgcccgc gccagccgcg ccgacaaacg acaccgttcg ccagccaaaa
120gttagcgact acccgttagc gacccgccat ccggagtggg tcaaaaccgc taccaataaa
180acgctcgatg acctgacgct ggagaacgta ttaagcgatc gcgttacggc gcaggacatg
240cgcatcactc cggaaacgct gcgtatgcag gcggcgatcg cccaggatgc cggacgcgat
300cggctggcga tgaactttga gcgggccgca gagctcaccg cggttcccga cgaccgaatc
360cttgagatct acaacgccct gcgcccatac cgttccaccc aggcggagct actggcgatc
420gctgatgacc tcgagcatcg ctaccaggca cgactctgtg ccgcctttgt tcgggaagcg
480gccgggctgt acatcgagcg taagaagctg aaaggcgacg attaa
525108174PRTKlebsiella pneumoniae MGH78578 108Met Asn Thr Asp Ala Ile Glu
Ser Met Val Arg Asp Val Leu Ser Arg1 5 10
15Met Asn Ser Leu Gln Asp Gly Ile Thr Pro Ala Pro Ala
Ala Pro Thr 20 25 30Asn Asp
Thr Val Arg Gln Pro Lys Val Ser Asp Tyr Pro Leu Ala Thr 35
40 45Arg His Pro Glu Trp Val Lys Thr Ala Thr
Asn Lys Thr Leu Asp Asp 50 55 60Leu
Thr Leu Glu Asn Val Leu Ser Asp Arg Val Thr Ala Gln Asp Met65
70 75 80Arg Ile Thr Pro Glu Thr
Leu Arg Met Gln Ala Ala Ile Ala Gln Asp 85
90 95Ala Gly Arg Asp Arg Leu Ala Met Asn Phe Glu Arg
Ala Ala Glu Leu 100 105 110Thr
Ala Val Pro Asp Asp Arg Ile Leu Glu Ile Tyr Asn Ala Leu Arg 115
120 125Pro Tyr Arg Ser Thr Gln Ala Glu Leu
Leu Ala Ile Ala Asp Asp Leu 130 135
140Glu His Arg Tyr Gln Ala Arg Leu Cys Ala Ala Phe Val Arg Glu Ala145
150 155 160Ala Gly Leu Tyr
Ile Glu Arg Lys Lys Leu Lys Gly Asp Asp 165
170109789DNAPseudomonas putida KT2440 109atgacagtca attatgattt
ttccggaaaa gtcgtgctgg ttaccggcgc tggctctggt 60attggccgtg ccactgcgct
tgccttcgcg cagtcgggcg catccgttgc ggtcgcagac 120atctcgactg accacggttt
gaaaaccgta gagttggtca aagccgaagg aggcgaggcg 180accttcttcc atgtcgatgt
aggctctgaa cccagcgtcc agtcgatgct ggctggtgtc 240gtggcgcatt acggcggcct
ggacattgcg cacaacaacg ccggcattga ggccaatatc 300gtgccgctgg ccgagctgga
ctccgacaac tggcgtcgtg tcatcgatgt gaacctttcc 360tcggtgttct attgcctgaa
aggtgaaatc cctctgatgc tgaaaagggg cggcggcgcc 420attgtgaata ccgcatcggc
ctccgggctg attggcggct atcgcctttc cgggtatacc 480gccacgaagc acggcgtagt
ggggctgact aaggctgctg ctatcgatta tgcaaaccag 540aatatccgga ttaatgccgt
gtgccctggt ccagttgact ccccattcct ggctgacatg 600ccgcaaccca tgcgcgatcg
acttctcttt ggcactccaa ttggacgatt ggccaccgca 660gaggagatcg cgcgttcggt
tctgtggctg tgttctgacg atgcaaaata cgtggtgggc 720cattcgatgt cagtcgacgg
tggcgtggca gtgactgcgg ttggtactcg aatggatgat 780ctcttttaa
789110262PRTPseudomonas
putida KT2440 110Met Thr Val Asn Tyr Asp Phe Ser Gly Lys Val Val Leu Val
Thr Gly1 5 10 15Ala Gly
Ser Gly Ile Gly Arg Ala Thr Ala Leu Ala Phe Ala Gln Ser 20
25 30Gly Ala Ser Val Ala Val Ala Asp Ile
Ser Thr Asp His Gly Leu Lys 35 40
45Thr Val Glu Leu Val Lys Ala Glu Gly Gly Glu Ala Thr Phe Phe His 50
55 60Val Asp Val Gly Ser Glu Pro Ser Val
Gln Ser Met Leu Ala Gly Val65 70 75
80Val Ala His Tyr Gly Gly Leu Asp Ile Ala His Asn Asn Ala
Gly Ile 85 90 95Glu Ala
Asn Ile Val Pro Leu Ala Glu Leu Asp Ser Asp Asn Trp Arg 100
105 110Arg Val Ile Asp Val Asn Leu Ser Ser
Val Phe Tyr Cys Leu Lys Gly 115 120
125Glu Ile Pro Leu Met Leu Lys Arg Gly Gly Gly Ala Ile Val Asn Thr
130 135 140Ala Ser Ala Ser Gly Leu Ile
Gly Gly Tyr Arg Leu Ser Gly Tyr Thr145 150
155 160Ala Thr Lys His Gly Val Val Gly Leu Thr Lys Ala
Ala Ala Ile Asp 165 170
175Tyr Ala Asn Gln Asn Ile Arg Ile Asn Ala Val Cys Pro Gly Pro Val
180 185 190Asp Ser Pro Phe Leu Ala
Asp Met Pro Gln Pro Met Arg Asp Arg Leu 195 200
205Leu Phe Gly Thr Pro Ile Gly Arg Leu Ala Thr Ala Glu Glu
Ile Ala 210 215 220Arg Ser Val Leu Trp
Leu Cys Ser Asp Asp Ala Lys Tyr Val Val Gly225 230
235 240His Ser Met Ser Val Asp Gly Gly Val Ala
Val Thr Ala Val Gly Thr 245 250
255Arg Met Asp Asp Leu Phe 260111762DNAPseudomonas putida
KT2440 111atgagcatga ccttttctgg ccaggtagcc ctggtgaccg gcgcgggtgc
cggcatcggc 60cgggcaaccg ccctggcgtt cgcccacgag ggcatgaaag tggtggtggc
ggacctcgac 120ccggtcggcg gcgaggccac cgtggcgcag atccacgcgg caggcggcga
agcgctgttc 180attgcctgcg acgtgacccg cgacgccgag gtgcgccagt tgcatgagcg
cctgatggcc 240gcctacggcc ggctggacta cgccttcaac aacgccggga tcgagatcga
gcaacaccgc 300ctggccgaag gcagcgaagc ggagttcgat gccatcatgg gcgtgaacgt
gaagggcgtg 360tggttgtgca tgaagtatca gttgcccttg ttgctggccc aaggcggtgg
ggccatcgtc 420aataccgcgt cggtggcggg gctaggggcg gcgccaaaga tgagcatcta
cagcgccagc 480aagcatgcgg tcatcggtct gaccaagtcg gcggccatcg agtacgccaa
gaagggcatc 540cgcgtgaacg ccgtgtgccc ggccgtgatc gacaccgaca tgttccgccg
cgcttaccag 600gccgacccgc gcaaggccga gttcgccgca gccatgcacc cggtagggcg
cattggcaag 660gtcgaggaaa tcgccagcgc cgtgctgtat ctgtgcagtg acggcgcggc
gtttaccacc 720gggcattgcc tgacggtgga tggtggggct acggcgatct ga
762112253PRTPseudomonas putida KT2440 112Met Ser Met Thr Phe
Ser Gly Gln Val Ala Leu Val Thr Gly Ala Gly1 5
10 15Ala Gly Ile Gly Arg Ala Thr Ala Leu Ala Phe
Ala His Glu Gly Met 20 25
30Lys Val Val Val Ala Asp Leu Asp Pro Val Gly Gly Glu Ala Thr Val
35 40 45Ala Gln Ile His Ala Ala Gly Gly
Glu Ala Leu Phe Ile Ala Cys Asp 50 55
60Val Thr Arg Asp Ala Glu Val Arg Gln Leu His Glu Arg Leu Met Ala65
70 75 80Ala Tyr Gly Arg Leu
Asp Tyr Ala Phe Asn Asn Ala Gly Ile Glu Ile 85
90 95Glu Gln His Arg Leu Ala Glu Gly Ser Glu Ala
Glu Phe Asp Ala Ile 100 105
110Met Gly Val Asn Val Lys Gly Val Trp Leu Cys Met Lys Tyr Gln Leu
115 120 125Pro Leu Leu Leu Ala Gln Gly
Gly Gly Ala Ile Val Asn Thr Ala Ser 130 135
140Val Ala Gly Leu Gly Ala Ala Pro Lys Met Ser Ile Tyr Ser Ala
Ser145 150 155 160Lys His
Ala Val Ile Gly Leu Thr Lys Ser Ala Ala Ile Glu Tyr Ala
165 170 175Lys Lys Gly Ile Arg Val Asn
Ala Val Cys Pro Ala Val Ile Asp Thr 180 185
190Asp Met Phe Arg Arg Ala Tyr Gln Ala Asp Pro Arg Lys Ala
Glu Phe 195 200 205Ala Ala Ala Met
His Pro Val Gly Arg Ile Gly Lys Val Glu Glu Ile 210
215 220Ala Ser Ala Val Leu Tyr Leu Cys Ser Asp Gly Ala
Ala Phe Thr Thr225 230 235
240Gly His Cys Leu Thr Val Asp Gly Gly Ala Thr Ala Ile
245 250113810DNAPseudomonas putida KT2440 113atgtcttttc
aaaacaaaat cgttgtgctc acaggcgcag cttctggcat cggcaaagcg 60acagcacagc
tgctagtgga gcagggcgcc catgtggttg ccatggatct taaaagcgac 120ttgcttcaac
aagcattcgg cagtgaggag cacgttctgt gcatccctac cgacgtcagc 180gatagcgaag
ccgtgcgagc cgccttccag gcagtggacg cgaaatttgg ccgtgtcgac 240gtgattatta
acgccgcggg catcaacgca cctacgcgag aagccaacca gaaaatggtt 300gatgccaacg
tcgctgccct cgatgccatg aagagcgggc gggcgcccac tttcgacttc 360ctggccgata
cctcggatca ggatttccgg cgcgtaatgg aagtcaattt gttcagccag 420ttttactgca
ttcgagaggg tgttccgctg atgcgccgag cgggtggcgg cagcatcgtc 480aacatctcca
gcgtggcagc gctcctgggc gtggcaatgc cactttacta ccccgcctcc 540aaggcggcgg
tgctgggcct cacccgtgca gcggcagctg agttggcacc ttacaacatt 600cgtgtgaatg
ccatcgctcc aggctctgtc gacacaccat tgatgcatga gcaaccaccg 660gaagtcgttc
agttcctggt cagcatgcaa cccatcaagc ggctggccca acccgaggag 720cttgcccaaa
gcatcctgtt ccttgccggt gagcattcgt ccttcatcac cggacagacg 780ctttctccca
acggcgggat gcacatgtaa
810114269PRTPseudomonas putida KT2440 114Met Ser Phe Gln Asn Lys Ile Val
Val Leu Thr Gly Ala Ala Ser Gly1 5 10
15Ile Gly Lys Ala Thr Ala Gln Leu Leu Val Glu Gln Gly Ala
His Val 20 25 30Val Ala Met
Asp Leu Lys Ser Asp Leu Leu Gln Gln Ala Phe Gly Ser 35
40 45Glu Glu His Val Leu Cys Ile Pro Thr Asp Val
Ser Asp Ser Glu Ala 50 55 60Val Arg
Ala Ala Phe Gln Ala Val Asp Ala Lys Phe Gly Arg Val Asp65
70 75 80Val Ile Ile Asn Ala Ala Gly
Ile Asn Ala Pro Thr Arg Glu Ala Asn 85 90
95Gln Lys Met Val Asp Ala Asn Val Ala Ala Leu Asp Ala
Met Lys Ser 100 105 110Gly Arg
Ala Pro Thr Phe Asp Phe Leu Ala Asp Thr Ser Asp Gln Asp 115
120 125Phe Arg Arg Val Met Glu Val Asn Leu Phe
Ser Gln Phe Tyr Cys Ile 130 135 140Arg
Glu Gly Val Pro Leu Met Arg Arg Ala Gly Gly Gly Ser Ile Val145
150 155 160Asn Ile Ser Ser Val Ala
Ala Leu Leu Gly Val Ala Met Pro Leu Tyr 165
170 175Tyr Pro Ala Ser Lys Ala Ala Val Leu Gly Leu Thr
Arg Ala Ala Ala 180 185 190Ala
Glu Leu Ala Pro Tyr Asn Ile Arg Val Asn Ala Ile Ala Pro Gly 195
200 205Ser Val Asp Thr Pro Leu Met His Glu
Gln Pro Pro Glu Val Val Gln 210 215
220Phe Leu Val Ser Met Gln Pro Ile Lys Arg Leu Ala Gln Pro Glu Glu225
230 235 240Leu Ala Gln Ser
Ile Leu Phe Leu Ala Gly Glu His Ser Ser Phe Ile 245
250 255Thr Gly Gln Thr Leu Ser Pro Asn Gly Gly
Met His Met 260 265115771DNAPseudomonas putida
KT2440 115atgacccttg aaggcaaaac tgcactcgtc accggttcca ccagcggcat
tggcctgggc 60atcgcccagg tattggcccg ggctggcgcc aacatcgtgc tcaacggctt
tggtgacccg 120ggccccgcca tggcggaaat tgcccggcac ggggtgaagg ttgtgcacca
cccggccgac 180ctgtcggatg tggtccagat cgaggctttg ttcaacctgg ccgaacgcga
gttcggcggc 240gtcgacatcc tggtcaacaa cgccggtatc cagcatgtgg caccggttga
gcagttcccg 300ccagaaagct gggacaagat catcgccctg aacctgtcgg ccgtattcca
tggcacgcgc 360ctggcgctgc cgggcatgcg cacgcgcaac tgggggcgca tcatcaatat
cgcttcggtg 420catggcctgg tcggctcgat tggcaaggca gcctacgtgg cagccaagca
tggcgtgatc 480ggcctgacca aggtggtcgg cctggaaacc gccaccagtc atgtcacctg
caatgccata 540tgcccgggct gggtgctgac accgctggtg caaaagcaga tcgacgatcg
tgcggccaag 600ggtggcgatc ggctgcaagc gcagcacgat ctgctggcag aaaagcaacc
gtcgctggct 660ttcgtcaccc ccgaacacct cggtgagctg gtactctttc tgtgcagcga
ggccggtagc 720caggttcgcg gcgccgcctg gaacgtcgat ggtggctggt tggcccagtg a
771116256PRTPseudomonas putida KT2440 116Met Thr Leu Glu Gly
Lys Thr Ala Leu Val Thr Gly Ser Thr Ser Gly1 5
10 15Ile Gly Leu Gly Ile Ala Gln Val Leu Ala Arg
Ala Gly Ala Asn Ile 20 25
30Val Leu Asn Gly Phe Gly Asp Pro Gly Pro Ala Met Ala Glu Ile Ala
35 40 45Arg His Gly Val Lys Val Val His
His Pro Ala Asp Leu Ser Asp Val 50 55
60Val Gln Ile Glu Ala Leu Phe Asn Leu Ala Glu Arg Glu Phe Gly Gly65
70 75 80Val Asp Ile Leu Val
Asn Asn Ala Gly Ile Gln His Val Ala Pro Val 85
90 95Glu Gln Phe Pro Pro Glu Ser Trp Asp Lys Ile
Ile Ala Leu Asn Leu 100 105
110Ser Ala Val Phe His Gly Thr Arg Leu Ala Leu Pro Gly Met Arg Thr
115 120 125Arg Asn Trp Gly Arg Ile Ile
Asn Ile Ala Ser Val His Gly Leu Val 130 135
140Gly Ser Ile Gly Lys Ala Ala Tyr Val Ala Ala Lys His Gly Val
Ile145 150 155 160Gly Leu
Thr Lys Val Val Gly Leu Glu Thr Ala Thr Ser His Val Thr
165 170 175Cys Asn Ala Ile Cys Pro Gly
Trp Val Leu Thr Pro Leu Val Gln Lys 180 185
190Gln Ile Asp Asp Arg Ala Ala Lys Gly Gly Asp Arg Leu Gln
Ala Gln 195 200 205His Asp Leu Leu
Ala Glu Lys Gln Pro Ser Leu Ala Phe Val Thr Pro 210
215 220Glu His Leu Gly Glu Leu Val Leu Phe Leu Cys Ser
Glu Ala Gly Ser225 230 235
240Gln Val Arg Gly Ala Ala Trp Asn Val Asp Gly Gly Trp Leu Ala Gln
245 250 255117750DNAPseudomonas
putida KT2440 117atgtccaagc aacttacact cgaaggcaaa gtggccctgg ttcagggcgg
ttcccgaggc 60attggcgcag ctatcgtaag gcgcctggcc cgcgaaggcg cgcaagtggc
cttcacctat 120gtcagctctg ccggcccggc tgaagaactg gctcgggaaa ttaccgagaa
cggcggcaaa 180gccttggccc tgcgggctga cagcgctgat gccgcggccg tgcagctggc
ggttgatgac 240accgagaaag ccttgggccg gctggatatc ctggtcaaca acgccggtgt
gctggcagtg 300gccccagtga cagagttcga cctggccgac ttcgatcata tgctggccgt
gaacgtacgc 360agcgtgttcg tcgccagcca ggccgcggca cgctatatgg gccagggcgg
tcgtatcatc 420aacattggca gcaccaacgc cgagcgcatg ccgtttgccg gtggtgcacc
gtacgccatg 480agcaagtcgg cactggttgg tctgacccgc ggcatggcac gcgacctcgg
gccgcagggc 540attaccgtga acaacgtgca gcccggcccg gtggacaccg acatgaaccc
ggccagtggc 600gagtttgccg agagcctgat tccgctgatg gccattgggc gatatggcga
gccggaggag 660attgccagct tcgtggctta cctggcaggg cctgaagccg ggtatatcac
cggggccagc 720ctgactgtag atggtgggtt tgcagcctga
750118249PRTPseudomonas putida KT2440 118Met Ser Lys Gln Leu
Thr Leu Glu Gly Lys Val Ala Leu Val Gln Gly1 5
10 15Gly Ser Arg Gly Ile Gly Ala Ala Ile Val Arg
Arg Leu Ala Arg Glu 20 25
30Gly Ala Gln Val Ala Phe Thr Tyr Val Ser Ser Ala Gly Pro Ala Glu
35 40 45Glu Leu Ala Arg Glu Ile Thr Glu
Asn Gly Gly Lys Ala Leu Ala Leu 50 55
60Arg Ala Asp Ser Ala Asp Ala Ala Ala Val Gln Leu Ala Val Asp Asp65
70 75 80Thr Glu Lys Ala Leu
Gly Arg Leu Asp Ile Leu Val Asn Asn Ala Gly 85
90 95Val Leu Ala Val Ala Pro Val Thr Glu Phe Asp
Leu Ala Asp Phe Asp 100 105
110His Met Leu Ala Val Asn Val Arg Ser Val Phe Val Ala Ser Gln Ala
115 120 125Ala Ala Arg Tyr Met Gly Gln
Gly Gly Arg Ile Ile Asn Ile Gly Ser 130 135
140Thr Asn Ala Glu Arg Met Pro Phe Ala Gly Gly Ala Pro Tyr Ala
Met145 150 155 160Ser Lys
Ser Ala Leu Val Gly Leu Thr Arg Gly Met Ala Arg Asp Leu
165 170 175Gly Pro Gln Gly Ile Thr Val
Asn Asn Val Gln Pro Gly Pro Val Asp 180 185
190Thr Asp Met Asn Pro Ala Ser Gly Glu Phe Ala Glu Ser Leu
Ile Pro 195 200 205Leu Met Ala Ile
Gly Arg Tyr Gly Glu Pro Glu Glu Ile Ala Ser Phe 210
215 220Val Ala Tyr Leu Ala Gly Pro Glu Ala Gly Tyr Ile
Thr Gly Ala Ser225 230 235
240Leu Thr Val Asp Gly Gly Phe Ala Ala
245119858DNAPseudomonas putida KT2440 119atgagcgact accctacccc tccattccca
tcccaaccgc aaagcgttcc cggttcccag 60cgcaagatgg atccgtatcc ggactgcggt
gagcagagct acaccggcaa caatcgcctc 120gcaggcaaga tcgccttgat aaccggtgct
gacagcggca tcgggcgtgc ggtggcgatt 180gcctatgccc gagaaggcgc tgacgttgcc
attgcctatc tgaatgaaca cgacgatgcg 240caggaaaccg cgcgctgggt caaagcggct
ggccgccagt gcctgctgct gcccggcgac 300ctggcacaga aacagcactg ccacgacatc
gtcgacaaga ccgtggcgca gtttggtcgc 360atcgatatcc tggtcaacaa cgccgcgttc
cagatggccc atgaaagcct ggacgacatt 420gatgacgatg aatgggtgaa gaccttcgat
accaacatca ccgccatttt ccgcatttgc 480cagcgcgctt tgccctcgat gccaaagggc
ggttcgatca tcaacaccag ttcggtcaac 540tctgacgacc cgtcacccag cctgttggcc
tatgccgcga ccaaaggggc tattgccaat 600ttcactgcag gccttgcgca actgctgggc
aagcagggca ttcgcgtcaa cagcgtcgca 660cccggcccga tctggacccc gctgatcccg
gccaccatgc ctgatgaggc ggtgagaaac 720ttcggttccg gttacccgat gggacggccg
ggtcaacctg tggaggtggc gccaatctat 780gtcttgctgg ggtccgatga agccagctac
atctcgggtt cgcgttacgc cgtgacggga 840ggcaaaccta ttctgtga
858120285PRTPseudomonas putida KT2440
120Met Ser Asp Tyr Pro Thr Pro Pro Phe Pro Ser Gln Pro Gln Ser Val1
5 10 15Pro Gly Ser Gln Arg Lys
Met Asp Pro Tyr Pro Asp Cys Gly Glu Gln 20 25
30Ser Tyr Thr Gly Asn Asn Arg Leu Ala Gly Lys Ile Ala
Leu Ile Thr 35 40 45Gly Ala Asp
Ser Gly Ile Gly Arg Ala Val Ala Ile Ala Tyr Ala Arg 50
55 60Glu Gly Ala Asp Val Ala Ile Ala Tyr Leu Asn Glu
His Asp Asp Ala65 70 75
80Gln Glu Thr Ala Arg Trp Val Lys Ala Ala Gly Arg Gln Cys Leu Leu
85 90 95Leu Pro Gly Asp Leu Ala
Gln Lys Gln His Cys His Asp Ile Val Asp 100
105 110Lys Thr Val Ala Gln Phe Gly Arg Ile Asp Ile Leu
Val Asn Asn Ala 115 120 125Ala Phe
Gln Met Ala His Glu Ser Leu Asp Asp Ile Asp Asp Asp Glu 130
135 140Trp Val Lys Thr Phe Asp Thr Asn Ile Thr Ala
Ile Phe Arg Ile Cys145 150 155
160Gln Arg Ala Leu Pro Ser Met Pro Lys Gly Gly Ser Ile Ile Asn Thr
165 170 175Ser Ser Val Asn
Ser Asp Asp Pro Ser Pro Ser Leu Leu Ala Tyr Ala 180
185 190Ala Thr Lys Gly Ala Ile Ala Asn Phe Thr Ala
Gly Leu Ala Gln Leu 195 200 205Leu
Gly Lys Gln Gly Ile Arg Val Asn Ser Val Ala Pro Gly Pro Ile 210
215 220Trp Thr Pro Leu Ile Pro Ala Thr Met Pro
Asp Glu Ala Val Arg Asn225 230 235
240Phe Gly Ser Gly Tyr Pro Met Gly Arg Pro Gly Gln Pro Val Glu
Val 245 250 255Ala Pro Ile
Tyr Val Leu Leu Gly Ser Asp Glu Ala Ser Tyr Ile Ser 260
265 270Gly Ser Arg Tyr Ala Val Thr Gly Gly Lys
Pro Ile Leu 275 280
285121774DNAPseudomonas putida KT2440 121atgatcgaaa tcagcggcag caccccgggc
cacaatggcc gggtagcctt ggtcacgggc 60gccgcccgcg gcatcggtct gggcattgcc
gcatggctga tctgcgaagg ctggcaagtg 120gtgctgagtg atctggaccg ccagcgtggt
accaaagtgg ccaaggcgtt gggcgacaac 180gcctggttca tcaccatgga cgttgccgac
gaggcccagg tcagtgccgg cgtgtccgaa 240gtgctcgggc agttcggccg gctggacgcg
ctggtgtgca atgcggccat tgccaacccg 300cacaaccaga cgctggaaag cctgagcctg
gcacaatgga accgggtgct gggggtcaac 360ctcagcggcc ccatgctgct ggccaagcat
tgtgcgccgt acctgcgtgc gcacaatggg 420gcgatcgtca acctgacctc tacccgtgct
cggcagtccg aacccgacac cgaggcttac 480gcggcaagca agggcggcct ggtggctttg
acccatgccc tggccatgag cctgggcccg 540gagattcgcg tcaatgcggt gagcccgggc
tggatcgatg cccgtgatcc gtcgcagcgc 600cgtgccgagc cgttgagcga agctgaccat
gcccagcatc caacgggcag ggtagggacc 660gtggaagatg tcgcggccat ggttgcctgg
ttgctgtcac gccaggcggc atttgtcacc 720ggccaggagt ttgtggtcga tggcggcatg
acccgcaaga tgatctatac ctga 774122257PRTPseudomonas putida KT2440
122Met Ile Glu Ile Ser Gly Ser Thr Pro Gly His Asn Gly Arg Val Ala1
5 10 15Leu Val Thr Gly Ala Ala
Arg Gly Ile Gly Leu Gly Ile Ala Ala Trp 20 25
30Leu Ile Cys Glu Gly Trp Gln Val Val Leu Ser Asp Leu
Asp Arg Gln 35 40 45Arg Gly Thr
Lys Val Ala Lys Ala Leu Gly Asp Asn Ala Trp Phe Ile 50
55 60Thr Met Asp Val Ala Asp Glu Ala Gln Val Ser Ala
Gly Val Ser Glu65 70 75
80Val Leu Gly Gln Phe Gly Arg Leu Asp Ala Leu Val Cys Asn Ala Ala
85 90 95Ile Ala Asn Pro His Asn
Gln Thr Leu Glu Ser Leu Ser Leu Ala Gln 100
105 110Trp Asn Arg Val Leu Gly Val Asn Leu Ser Gly Pro
Met Leu Leu Ala 115 120 125Lys His
Cys Ala Pro Tyr Leu Arg Ala His Asn Gly Ala Ile Val Asn 130
135 140Leu Thr Ser Thr Arg Ala Arg Gln Ser Glu Pro
Asp Thr Glu Ala Tyr145 150 155
160Ala Ala Ser Lys Gly Gly Leu Val Ala Leu Thr His Ala Leu Ala Met
165 170 175Ser Leu Gly Pro
Glu Ile Arg Val Asn Ala Val Ser Pro Gly Trp Ile 180
185 190Asp Ala Arg Asp Pro Ser Gln Arg Arg Ala Glu
Pro Leu Ser Glu Ala 195 200 205Asp
His Ala Gln His Pro Thr Gly Arg Val Gly Thr Val Glu Asp Val 210
215 220Ala Ala Met Val Ala Trp Leu Leu Ser Arg
Gln Ala Ala Phe Val Thr225 230 235
240Gly Gln Glu Phe Val Val Asp Gly Gly Met Thr Arg Lys Met Ile
Tyr 245 250
255Thr123741DNAPseudomonas putida KT2440 123atgagcctgc aaggtaaagt
tgcactggtt accggcgcca gccgtggcat tggccaggcc 60atcgccctcg agctgggccg
ccagggcgcg accgtgatcg gtaccgccac gtcggcgtcc 120ggtgccgagc gcatcgctgc
caccctgaaa gaacacggca ttaccggcac tggcatggag 180ctgaacgtga ccagcgccga
atcggttgaa gccgtactgg ccgccattgg cgagcagttc 240ggcgcgccgg ccatcttggt
caacaatgcc ggtatcaccc gcgacaacct catgctgcgc 300atgaaagacg acgagtggtt
tgatgtcatc gacaccaacc tgaacagcct ctaccgtctg 360tccaagggcg tgctgcgtgg
catgaccaag gcgcgttggg gtcgtatcat cagcatcggc 420tcggtcgttg gtgccatggg
taacgcaggt caggccaact acgcggctgc caaggccggt 480ctggaaggtt tcagccgcgc
cctggcgcgt gaagtgggtt cgcgtggtat caccgtcaac 540tcggtgaccc caggcttcat
cgataccgac atgacccgcg agctgccaga agctcagcgc 600gaagccctgc agacccagat
tccgctgggc cgcctgggcc aggctgacga aattgccaag 660gtggtttcgt tcctggcatc
cgacggcgcc gcctacgtga ccggcgctac cgtgccggtc 720aacggcggga tgtacatgta a
741124246PRTPseudomonas
putida KT2440 124Met Ser Leu Gln Gly Lys Val Ala Leu Val Thr Gly Ala Ser
Arg Gly1 5 10 15Ile Gly
Gln Ala Ile Ala Leu Glu Leu Gly Arg Gln Gly Ala Thr Val 20
25 30Ile Gly Thr Ala Thr Ser Ala Ser Gly
Ala Glu Arg Ile Ala Ala Thr 35 40
45Leu Lys Glu His Gly Ile Thr Gly Thr Gly Met Glu Leu Asn Val Thr 50
55 60Ser Ala Glu Ser Val Glu Ala Val Leu
Ala Ala Ile Gly Glu Gln Phe65 70 75
80Gly Ala Pro Ala Ile Leu Val Asn Asn Ala Gly Ile Thr Arg
Asp Asn 85 90 95Leu Met
Leu Arg Met Lys Asp Asp Glu Trp Phe Asp Val Ile Asp Thr 100
105 110Asn Leu Asn Ser Leu Tyr Arg Leu Ser
Lys Gly Val Leu Arg Gly Met 115 120
125Thr Lys Ala Arg Trp Gly Arg Ile Ile Ser Ile Gly Ser Val Val Gly
130 135 140Ala Met Gly Asn Ala Gly Gln
Ala Asn Tyr Ala Ala Ala Lys Ala Gly145 150
155 160Leu Glu Gly Phe Ser Arg Ala Leu Ala Arg Glu Val
Gly Ser Arg Gly 165 170
175Ile Thr Val Asn Ser Val Thr Pro Gly Phe Ile Asp Thr Asp Met Thr
180 185 190Arg Glu Leu Pro Glu Ala
Gln Arg Glu Ala Leu Gln Thr Gln Ile Pro 195 200
205Leu Gly Arg Leu Gly Gln Ala Asp Glu Ile Ala Lys Val Val
Ser Phe 210 215 220Leu Ala Ser Asp Gly
Ala Ala Tyr Val Thr Gly Ala Thr Val Pro Val225 230
235 240Asn Gly Gly Met Tyr Met
245125738DNAPseudomonas putida KT2440 125atgactcaga aaatagctgt cgtgaccggc
ggcagtcgcg gcattggcaa gtccatcgtg 60ctggccctgg ccggcgcggg ttatcaggtt
gccttcagtt atgtccgtga cgaggcgtca 120gccgctgcct tgcaggcgca ggtcgaaggg
ctcggccggg actgcctggc cgtgcagtgt 180gatgtcaagg aagcgccgag cattcaggcg
ttttttgaac gggtcgagca acgtttcgag 240cgtatcgact tgttggtcaa caacgccggt
attacccgtg acggtttgct cgccacgcaa 300tcgttgaacg acatcaccga ggtcatccag
accaacctgg tcggcacgtt gttgtgctgt 360cagcaggtgc tgccctgcat gatgcgccaa
cgcagcgggt gcatcgtcaa cctcagttcg 420gtggccgcgc aaaagcccgg caagggccag
agcaactacg ccgccgccaa aggcggtgta 480gaagcattga cacgcgcact ggcggtggag
ttggcgccgc gcaacatccg ggtcaacgcg 540gtggcgcccg gcatcgtcag caccgacatg
agccaagccc tggtcggcgc ccatgagcag 600gaaatccagt cgcggctgtt gatcaaacgg
ttcgcccggc ctgaagaaat tgccgacgcg 660gtgctgtatc tggccgagcg cggcctgtac
atcacgggcg aagtcctgtc cgtcaacggc 720ggattgaaaa tgccatga
738126245PRTPseudomonas putida KT2440
126Met Thr Gln Lys Ile Ala Val Val Thr Gly Gly Ser Arg Gly Ile Gly1
5 10 15Lys Ser Ile Val Leu Ala
Leu Ala Gly Ala Gly Tyr Gln Val Ala Phe 20 25
30Ser Tyr Val Arg Asp Glu Ala Ser Ala Ala Ala Leu Gln
Ala Gln Val 35 40 45Glu Gly Leu
Gly Arg Asp Cys Leu Ala Val Gln Cys Asp Val Lys Glu 50
55 60Ala Pro Ser Ile Gln Ala Phe Phe Glu Arg Val Glu
Gln Arg Phe Glu65 70 75
80Arg Ile Asp Leu Leu Val Asn Asn Ala Gly Ile Thr Arg Asp Gly Leu
85 90 95Leu Ala Thr Gln Ser Leu
Asn Asp Ile Thr Glu Val Ile Gln Thr Asn 100
105 110Leu Val Gly Thr Leu Leu Cys Cys Gln Gln Val Leu
Pro Cys Met Met 115 120 125Arg Gln
Arg Ser Gly Cys Ile Val Asn Leu Ser Ser Val Ala Ala Gln 130
135 140Lys Pro Gly Lys Gly Gln Ser Asn Tyr Ala Ala
Ala Lys Gly Gly Val145 150 155
160Glu Ala Leu Thr Arg Ala Leu Ala Val Glu Leu Ala Pro Arg Asn Ile
165 170 175Arg Val Asn Ala
Val Ala Pro Gly Ile Val Ser Thr Asp Met Ser Gln 180
185 190Ala Leu Val Gly Ala His Glu Gln Glu Ile Gln
Ser Arg Leu Leu Ile 195 200 205Lys
Arg Phe Ala Arg Pro Glu Glu Ile Ala Asp Ala Val Leu Tyr Leu 210
215 220Ala Glu Arg Gly Leu Tyr Ile Thr Gly Glu
Val Leu Ser Val Asn Gly225 230 235
240Gly Leu Lys Met Pro 245127768DNAPseudomonas
putida KT2440 127atgtccaaga cccacctgtt cgacctcgac ggcaagattg cctttgtttc
cggcgccagc 60cgtggcatcg gcgaggccat cgcccacttg ctcgcgcagc aaggggccca
tgtgatcgtt 120tccagccgca agcttgacgg gtgccagcag gtggccgacg ccatcattgc
cgccggcggc 180aaggccacgg ctgtggcctg ccacattggt gagctggaac agattcagca
ggtgttcgcc 240ggcattcgcg aacagttcgg gcgactggac gtgctggtca acaatgcagc
caccaacccg 300caattctgca atgtgctgga caccgaccca ggggcgttcc agaagaccgt
ggacgtgaac 360atccgtggtt acttcttcat gtcggtggag gctggcaagc tgatgcgcga
gaacggcggc 420ggcagcatca tcaacgtggc gtcgatcaac ggtgtttcac ccgggctgtt
ccaaggcatc 480tactcggtga ccaaggcggc ggtcatcaac atgaccaagg tgttcgccaa
agagtgtgca 540cccttcggta ttcgctgcaa cgcgctactg ccggggctga ccgataccaa
gttcgcttcg 600gcattggtga agaacgaagc catcctcaac gccgccttgc agcagatccc
cctcaaacgc 660gtggccgacc ccaaggaaat ggcgggtgcg gtgctgtacc tggccagcga
tgcctccagc 720tacaccaccg gcaccacgct caatgtcgac ggtggcttcc tgtcctga
768128255PRTPseudomonas putida KT2440 128Met Ser Lys Thr His
Leu Phe Asp Leu Asp Gly Lys Ile Ala Phe Val1 5
10 15Ser Gly Ala Ser Arg Gly Ile Gly Glu Ala Ile
Ala His Leu Leu Ala 20 25
30Gln Gln Gly Ala His Val Ile Val Ser Ser Arg Lys Leu Asp Gly Cys
35 40 45Gln Gln Val Ala Asp Ala Ile Ile
Ala Ala Gly Gly Lys Ala Thr Ala 50 55
60Val Ala Cys His Ile Gly Glu Leu Glu Gln Ile Gln Gln Val Phe Ala65
70 75 80Gly Ile Arg Glu Gln
Phe Gly Arg Leu Asp Val Leu Val Asn Asn Ala 85
90 95Ala Thr Asn Pro Gln Phe Cys Asn Val Leu Asp
Thr Asp Pro Gly Ala 100 105
110Phe Gln Lys Thr Val Asp Val Asn Ile Arg Gly Tyr Phe Phe Met Ser
115 120 125Val Glu Ala Gly Lys Leu Met
Arg Glu Asn Gly Gly Gly Ser Ile Ile 130 135
140Asn Val Ala Ser Ile Asn Gly Val Ser Pro Gly Leu Phe Gln Gly
Ile145 150 155 160Tyr Ser
Val Thr Lys Ala Ala Val Ile Asn Met Thr Lys Val Phe Ala
165 170 175Lys Glu Cys Ala Pro Phe Gly
Ile Arg Cys Asn Ala Leu Leu Pro Gly 180 185
190Leu Thr Asp Thr Lys Phe Ala Ser Ala Leu Val Lys Asn Glu
Ala Ile 195 200 205Leu Asn Ala Ala
Leu Gln Gln Ile Pro Leu Lys Arg Val Ala Asp Pro 210
215 220Lys Glu Met Ala Gly Ala Val Leu Tyr Leu Ala Ser
Asp Ala Ser Ser225 230 235
240Tyr Thr Thr Gly Thr Thr Leu Asn Val Asp Gly Gly Phe Leu Ser
245 250 255129762DNAPseudomonas
fluorescens Pf-5 129atgagcatga cgttttccgg ccaggtggcc ctagtgaccg
gcgcagccaa tggtatcggc 60cgcgccaccg cccaggcatt tgccgcacaa ggcttgaagg
tggtggtggc ggacctggac 120acggcggggg gcgagggcac cgtggcgctg atccgcgagg
ccggtggcga ggcattgttc 180gtgccgtgca acgttaccct ggaggcggat gtgcaaagcc
tcatggcccg caccatcgaa 240gcctatgggc gcctggatta cgccttcaac aatgccggta
tcgagatcga aaagggccgc 300cttgcggagg gctccatgga tgagttcgac gccatcatgg
gggtcaacgt caaaggggtc 360tggctgtgca tgaagtacca gttgccgctg ctgctggccc
agggcggtgg ggcgatcgtc 420aacaccgcct cggtggcggg cctgggcgcg gcgccgaaga
tgagcatcta tgcggcctcc 480aagcatgcgg tgatcggcct gaccaagtcg gcggccatcg
aatatgcgaa gaagaaaatc 540cgcgtgaacg cggtatgccc ggcggtgatc gacaccgaca
tgttccgccg tgcctacgag 600gcggacccga agaaggccga gttcgccgcg gccatgcacc
cggtggggcg catcggcaag 660gtcgaggaga tcgccagtgc ggtgctctac ctgtgcagcg
atggcgcggc ctttaccacc 720ggccatgcac tggcggtcga cggcggggcc accgcgatct
ga 762130253PRTPseudomonas fluorscens Pf-5 130Met
Ser Met Thr Phe Ser Gly Gln Val Ala Leu Val Thr Gly Ala Ala1
5 10 15Asn Gly Ile Gly Arg Ala Thr
Ala Gln Ala Phe Ala Ala Gln Gly Leu 20 25
30Lys Val Val Val Ala Asp Leu Asp Thr Ala Gly Gly Glu Gly
Thr Val 35 40 45Ala Leu Ile Arg
Glu Ala Gly Gly Glu Ala Leu Phe Val Pro Cys Asn 50 55
60Val Thr Leu Glu Ala Asp Val Gln Ser Leu Met Ala Arg
Thr Ile Glu65 70 75
80Ala Tyr Gly Arg Leu Asp Tyr Ala Phe Asn Asn Ala Gly Ile Glu Ile
85 90 95Glu Lys Gly Arg Leu Ala
Glu Gly Ser Met Asp Glu Phe Asp Ala Ile 100
105 110Met Gly Val Asn Val Lys Gly Val Trp Leu Cys Met
Lys Tyr Gln Leu 115 120 125Pro Leu
Leu Leu Ala Gln Gly Gly Gly Ala Ile Val Asn Thr Ala Ser 130
135 140Val Ala Gly Leu Gly Ala Ala Pro Lys Met Ser
Ile Tyr Ala Ala Ser145 150 155
160Lys His Ala Val Ile Gly Leu Thr Lys Ser Ala Ala Ile Glu Tyr Ala
165 170 175Lys Lys Lys Ile
Arg Val Asn Ala Val Cys Pro Ala Val Ile Asp Thr 180
185 190Asp Met Phe Arg Arg Ala Tyr Glu Ala Asp Pro
Lys Lys Ala Glu Phe 195 200 205Ala
Ala Ala Met His Pro Val Gly Arg Ile Gly Lys Val Glu Glu Ile 210
215 220Ala Ser Ala Val Leu Tyr Leu Cys Ser Asp
Gly Ala Ala Phe Thr Thr225 230 235
240Gly His Ala Leu Ala Val Asp Gly Gly Ala Thr Ala Ile
245 250131735DNAKlebsiella pneumoniae subsp.
pneumoniae MGH78578 131atgaaacttg ccagtaaaac cgccattgtc accggcgccg
cacgcggtat cggctttggc 60attgcccagg tgcttgcgcg ggaaggcgcg cgagtgatta
tcgccgatcg tgatgcacac 120ggcgaagccg ccgccgcttc cctgcgcgaa tcgggcgcac
aggcgctgtt tatcagctgc 180aatatcgctg aaaaaacgca ggtcgaagcc ctgtattccc
aggccgaaga ggcgtttggc 240ccggtagaca ttctggtgaa taacgccgga atcaaccgcg
acgccatgct gcacaaatta 300acggaagcgg actgggacac ggttatcgac gttaacctga
aaggcacttt cctctgtatg 360cagcaggccg ctatccgcat gcgcgagcgc ggtgcgggcc
gcattatcaa tatcgcttcc 420gccagttggc ttggcaacgt cgggcaaacc aactattcgg
cgtcaaaagc cggcgtggtg 480ggaatgacca aaaccgcctg ccgcgaactg gcgaaaaaag
gtgtcacggt gaatgccatc 540tgcccgggct ttatcgatac cgacatgacg cgcggcgtac
cggaaaacgt ctggcaaatc 600atggtcagca aaattcccgc gggttacgcc ggcgaggcga
aagacgtcgg cgagtgtgtg 660gcgtttctgg cgtccgatgg cgcgcgctat atcaatggtg
aagtgattaa cgtcggcggc 720ggcatggtgc tgtaa
735132253PRTKlebsiella pneumoniae subsp.
pneumoniae MGH78578 132Met Ser Met Thr Phe Ser Gly Gln Val Ala Leu Val
Thr Gly Ala Ala1 5 10
15Asn Gly Ile Gly Arg Ala Thr Ala Gln Ala Phe Ala Ala Gln Gly Leu
20 25 30Lys Val Val Val Ala Asp Leu
Asp Thr Ala Gly Gly Glu Gly Thr Val 35 40
45Ala Leu Ile Arg Glu Ala Gly Gly Glu Ala Leu Phe Val Pro Cys
Asn 50 55 60Val Thr Leu Glu Ala Asp
Val Gln Ser Leu Met Ala Arg Thr Ile Glu65 70
75 80Ala Tyr Gly Arg Leu Asp Tyr Ala Phe Asn Asn
Ala Gly Ile Glu Ile 85 90
95Glu Lys Gly Arg Leu Ala Glu Gly Ser Met Asp Glu Phe Asp Ala Ile
100 105 110Met Gly Val Asn Val Lys
Gly Val Trp Leu Cys Met Lys Tyr Gln Leu 115 120
125Pro Leu Leu Leu Ala Gln Gly Gly Gly Ala Ile Val Asn Thr
Ala Ser 130 135 140Val Ala Gly Leu Gly
Ala Ala Pro Lys Met Ser Ile Tyr Ala Ala Ser145 150
155 160Lys His Ala Val Ile Gly Leu Thr Lys Ser
Ala Ala Ile Glu Tyr Ala 165 170
175Lys Lys Lys Ile Arg Val Asn Ala Val Cys Pro Ala Val Ile Asp Thr
180 185 190Asp Met Phe Arg Arg
Ala Tyr Glu Ala Asp Pro Lys Lys Ala Glu Phe 195
200 205Ala Ala Ala Met His Pro Val Gly Arg Ile Gly Lys
Val Glu Glu Ile 210 215 220Ala Ser Ala
Val Leu Tyr Leu Cys Ser Asp Gly Ala Ala Phe Thr Thr225
230 235 240Gly His Ala Leu Ala Val Asp
Gly Gly Ala Thr Ala Ile 245
250133750DNAKlebsiella pneumoniae subsp. pneumoniae MGH78578
133atgttattga aagataaagt cgccattatt actggcgcgg cctccgcacg cggtttgggc
60ttcgcgactg cgaaattatt cgccgaaaac ggcgcgaaag tggtcattat cgacctcaat
120ggcgaagcca gtaaaaccgc cgcggcggca ttaggcgaag accatctcgg cctggcggcc
180aacgtcgctg atgaagtgca ggtgcaggcg gccatcgaac agatcctggc gaaatacggt
240cgggttgatg tactggtcaa taacgccggg attacccagc cgctgaagct gatggatatc
300aagcgcgcca actatgacgc ggtgcttgat gttagcctgc gcggcacgct gctgatgtcg
360caggcggtta tccccaccat gcgggcgcaa aaatccggca gcatcgtctg catctcgtcc
420gtctccgccc agcgcggcgg cggtattttc ggcggaccgc actacagcgc ggcaaaagcc
480ggggtgctgg gtctggcgcg ggcgatggcg cgcgagcttg gcccggataa cgtccgcgtt
540aactgcatca ccccggggct gattcagacc gacattaccg ccggcaagct gactgatgac
600atgacggcca acattcttgc cggcattccg atgaaccgcc ttggcgacgc gatagacatc
660gcgcgcgccg cgctgttcct cggcagcgat ctttcctcct actccaccgg catcaccctg
720gacgttaacg gcggcatgtt aattcactaa
750134249PRTKlebsiella pneumoniae subsp. pneumoniae MGH78578 134Met Leu
Leu Lys Asp Lys Val Ala Ile Ile Thr Gly Ala Ala Ser Ala1 5
10 15Arg Gly Leu Gly Phe Ala Thr Ala
Lys Leu Phe Ala Glu Asn Gly Ala 20 25
30Lys Val Val Ile Ile Asp Leu Asn Gly Glu Ala Ser Lys Thr Ala
Ala 35 40 45Ala Ala Leu Gly Glu
Asp His Leu Gly Leu Ala Ala Asn Val Ala Asp 50 55
60Glu Val Gln Val Gln Ala Ala Ile Glu Gln Ile Leu Ala Lys
Tyr Gly65 70 75 80Arg
Val Asp Val Leu Val Asn Asn Ala Gly Ile Thr Gln Pro Leu Lys
85 90 95Leu Met Asp Ile Lys Arg Ala
Asn Tyr Asp Ala Val Leu Asp Val Ser 100 105
110Leu Arg Gly Thr Leu Leu Met Ser Gln Ala Val Ile Pro Thr
Met Arg 115 120 125Ala Gln Lys Ser
Gly Ser Ile Val Cys Ile Ser Ser Val Ser Ala Gln 130
135 140Arg Gly Gly Gly Ile Phe Gly Gly Pro His Tyr Ser
Ala Ala Lys Ala145 150 155
160Gly Val Leu Gly Leu Ala Arg Ala Met Ala Arg Glu Leu Gly Pro Asp
165 170 175Asn Val Arg Val Asn
Cys Ile Thr Pro Gly Leu Ile Gln Thr Asp Ile 180
185 190Thr Ala Gly Lys Leu Thr Asp Asp Met Thr Ala Asn
Ile Leu Ala Gly 195 200 205Ile Pro
Met Asn Arg Leu Gly Asp Ala Ile Asp Ile Ala Arg Ala Ala 210
215 220Leu Phe Leu Gly Ser Asp Leu Ser Ser Tyr Ser
Thr Gly Ile Thr Leu225 230 235
240Asp Val Asn Gly Gly Met Leu Ile His
245135750DNAKlebsiella pneumoniae subsp. pneumoniae MGH78578
135atgttattga aagataaagt cgccattatt actggcgcgg cctccgcacg cggtttgggc
60ttcgcgactg cgaaattatt cgccgaaaac ggcgcgaaag tggtcattat cgacctcaat
120ggcgaagcca gtaaaaccgc cgcggcggca ttaggcgaag accatctcgg cctggcggcc
180aacgtcgctg atgaagtgca ggtgcaggcg gccatcgaac agatcctggc gaaatacggt
240cgggttgatg tactggtcaa taacgccggg attacccagc cgctgaagct gatggatatc
300aagcgcgcca actatgacgc ggtgcttgat gttagcctgc gcggcacgct gctgatgtcg
360caggcggtta tccccaccat gcgggcgcaa aaatccggca gcatcgtctg catctcgtcc
420gtctccgccc agcgcggcgg cggtattttc ggcggaccgc actacagcgc ggcaaaagcc
480ggggtgctgg gtctggcgcg ggcgatggcg cgcgagcttg gcccggataa cgtccgcgtt
540aactgcatca ccccggggct gattcagacc gacattaccg ccggcaagct gactgatgac
600atgacggcca acattcttgc cggcattccg atgaaccgcc ttggcgacgc gatagacatc
660gcgcgcgccg cgctgttcct cggcagcgat ctttcctcct actccaccgg catcaccctg
720gacgttaacg gcggcatgtt aattcactaa
750136249PRTKlebsiella pneumoniae subsp. pneumoniae MGH78578 136Met Leu
Leu Lys Asp Lys Val Ala Ile Ile Thr Gly Ala Ala Ser Ala1 5
10 15Arg Gly Leu Gly Phe Ala Thr Ala
Lys Leu Phe Ala Glu Asn Gly Ala 20 25
30Lys Val Val Ile Ile Asp Leu Asn Gly Glu Ala Ser Lys Thr Ala
Ala 35 40 45Ala Ala Leu Gly Glu
Asp His Leu Gly Leu Ala Ala Asn Val Ala Asp 50 55
60Glu Val Gln Val Gln Ala Ala Ile Glu Gln Ile Leu Ala Lys
Tyr Gly65 70 75 80Arg
Val Asp Val Leu Val Asn Asn Ala Gly Ile Thr Gln Pro Leu Lys
85 90 95Leu Met Asp Ile Lys Arg Ala
Asn Tyr Asp Ala Val Leu Asp Val Ser 100 105
110Leu Arg Gly Thr Leu Leu Met Ser Gln Ala Val Ile Pro Thr
Met Arg 115 120 125Ala Gln Lys Ser
Gly Ser Ile Val Cys Ile Ser Ser Val Ser Ala Gln 130
135 140Arg Gly Gly Gly Ile Phe Gly Gly Pro His Tyr Ser
Ala Ala Lys Ala145 150 155
160Gly Val Leu Gly Leu Ala Arg Ala Met Ala Arg Glu Leu Gly Pro Asp
165 170 175Asn Val Arg Val Asn
Cys Ile Thr Pro Gly Leu Ile Gln Thr Asp Ile 180
185 190Thr Ala Gly Lys Leu Thr Asp Asp Met Thr Ala Asn
Ile Leu Ala Gly 195 200 205Ile Pro
Met Asn Arg Leu Gly Asp Ala Ile Asp Ile Ala Arg Ala Ala 210
215 220Leu Phe Leu Gly Ser Asp Leu Ser Ser Tyr Ser
Thr Gly Ile Thr Leu225 230 235
240Asp Val Asn Gly Gly Met Leu Ile His
245137714DNAKlebsiella pneumoniae subsp. pneumoniae MGH78578
137atgacagcgt ttcacaacaa atcagtgctg gttttaggcg ggagtcgggg aattggcgcg
60gcgatcgtca ggcgttttgt cgccgatggc gcgtcggtgg tgtttagcta ttccggttcg
120ccggaagcgg ccgagcggct ggcggcagag accggcagca cggcggtgca ggcggacagc
180gccgatcgcg atgcggtgat aagcctggtc cgcgacagcg gcccgctgga cgtgttagtg
240gtcaatgccg ggatcgcgct tttcggtgac gctctcgagc aggacagcga tgcaatcgat
300cgcctgttcc acatcaatat tcacgccccc taccatgcct ccgtcgaagc ggcgcgccgc
360atgccggaag gcgggcgcat tattgtcatc ggctcagtca atggcgatcg catgccgttg
420ccgggaatgg cggcctatgc gctcagcaaa tcggccctgc aggggctggc gcgcggcctg
480gcgcgggatt ttggcccgcg cggcatcacg gtcaacgtcg tccagcccgg cccaattgat
540accgacgcca acccggagaa cggcccgatg aaagagctga tgcacagctt tatggccatt
600aagcgccatg gccgtccgga agaggtggcg ggaatggtgg cgtggctggc cggtccggag
660gcgtcgtttg tcactggcgc catgcacacc atcgacggag cgtttggcgc ctga
714138237PRTKlebsiella pneumoniae subsp. pneumoniae MGH78578 138Met Thr
Ala Phe His Asn Lys Ser Val Leu Val Leu Gly Gly Ser Arg1 5
10 15Gly Ile Gly Ala Ala Ile Val Arg
Arg Phe Val Ala Asp Gly Ala Ser 20 25
30Val Val Phe Ser Tyr Ser Gly Ser Pro Glu Ala Ala Glu Arg Leu
Ala 35 40 45Ala Glu Thr Gly Ser
Thr Ala Val Gln Ala Asp Ser Ala Asp Arg Asp 50 55
60Ala Val Ile Ser Leu Val Arg Asp Ser Gly Pro Leu Asp Val
Leu Val65 70 75 80Val
Asn Ala Gly Ile Ala Leu Phe Gly Asp Ala Leu Glu Gln Asp Ser
85 90 95Asp Ala Ile Asp Arg Leu Phe
His Ile Asn Ile His Ala Pro Tyr His 100 105
110Ala Ser Val Glu Ala Ala Arg Arg Met Pro Glu Gly Gly Arg
Ile Ile 115 120 125Val Ile Gly Ser
Val Asn Gly Asp Arg Met Pro Leu Pro Gly Met Ala 130
135 140Ala Tyr Ala Leu Ser Lys Ser Ala Leu Gln Gly Leu
Ala Arg Gly Leu145 150 155
160Ala Arg Asp Phe Gly Pro Arg Gly Ile Thr Val Asn Val Val Gln Pro
165 170 175Gly Pro Ile Asp Thr
Asp Ala Asn Pro Glu Asn Gly Pro Met Lys Glu 180
185 190Leu Met His Ser Phe Met Ala Ile Lys Arg His Gly
Arg Pro Glu Glu 195 200 205Val Ala
Gly Met Val Ala Trp Leu Ala Gly Pro Glu Ala Ser Phe Val 210
215 220Thr Gly Ala Met His Thr Ile Asp Gly Ala Phe
Gly Ala225 230 235139750DNAKlebsiella
pneumoniae subp. pneumoniae MGH78578 139atgaacggcc tgctaaacgg taaacgtatt
gtcgtcaccg gtgcggcgcg cggtctcggg 60taccactttg ccgaagcctg cgccgctcag
ggcgcgacgg tggtgatgtg cgacatcctg 120cagggagagc tggcggaaag cgctcatcgc
ctgcagcaga agggctatca ggtcgaatct 180cacgccatcg atcttgccag tcaagcatcg
atcgagcagg tcttcagcgc catcggcgcg 240caggggtcta tcgatggctt agtcaataac
gcagcgatgg ccaccggcgt cggcggaaaa 300aatatgatcg attacgatcc ggatctgtgg
gatcgggtaa tgacggtcaa cgttaaaggc 360acctggttgg tgacccgcgc ggcggtaccg
ctgctgcgcg aaggggcggc gatcgtcaac 420gtcgcttcgg ataccgcgct gtggggcgcg
ccgcggctga tggcctatgt cgccagtaag 480ggcgcggtga ttgcgatgac ccgctccatg
gcccgcgagc tgggtgaaaa gcggatccgt 540atcaacgcca tcgcgccggg actgacccgc
gttgaggcca cggaatacgt tcccgccgag 600cgtcatcagc tgtatgagaa cggccgcgcg
ctcagcggcg cgcagcagcc ggaagatgtc 660accggcagcg tggtctggct gctgagcgat
ctttcgcgct ttatcaccgg ccaactgatc 720ccggtcaacg gcggttttgt ctttaactaa
750140249PRTKlebsiella pneumoniae
subsp. pneumoinae MGH78578 140Met Asn Gly Leu Leu Asn Gly Lys Arg Ile Val
Val Thr Gly Ala Ala1 5 10
15Arg Gly Leu Gly Tyr His Phe Ala Glu Ala Cys Ala Ala Gln Gly Ala
20 25 30Thr Val Val Met Cys Asp Ile
Leu Gln Gly Glu Leu Ala Glu Ser Ala 35 40
45His Arg Leu Gln Gln Lys Gly Tyr Gln Val Glu Ser His Ala Ile
Asp 50 55 60Leu Ala Ser Gln Ala Ser
Ile Glu Gln Val Phe Ser Ala Ile Gly Ala65 70
75 80Gln Gly Ser Ile Asp Gly Leu Val Asn Asn Ala
Ala Met Ala Thr Gly 85 90
95Val Gly Gly Lys Asn Met Ile Asp Tyr Asp Pro Asp Leu Trp Asp Arg
100 105 110Val Met Thr Val Asn Val
Lys Gly Thr Trp Leu Val Thr Arg Ala Ala 115 120
125Val Pro Leu Leu Arg Glu Gly Ala Ala Ile Val Asn Val Ala
Ser Asp 130 135 140Thr Ala Leu Trp Gly
Ala Pro Arg Leu Met Ala Tyr Val Ala Ser Lys145 150
155 160Gly Ala Val Ile Ala Met Thr Arg Ser Met
Ala Arg Glu Leu Gly Glu 165 170
175Lys Arg Ile Arg Ile Asn Ala Ile Ala Pro Gly Leu Thr Arg Val Glu
180 185 190Ala Thr Glu Tyr Val
Pro Ala Glu Arg His Gln Leu Tyr Glu Asn Gly 195
200 205Arg Ala Leu Ser Gly Ala Gln Gln Pro Glu Asp Val
Thr Gly Ser Val 210 215 220Val Trp Leu
Leu Ser Asp Leu Ser Arg Phe Ile Thr Gly Gln Leu Ile225
230 235 240Pro Val Asn Gly Gly Phe Val
Phe Asn 245141795DNAKlebsiella pneumoniae subsp.
pneumoniae MGH78578 141atgaatgcac aaattgaagg gcgcgtcgcg gtagtcaccg
gcggttcgtc aggaatcggc 60tttgaaacgc tgcgcctgct gctgggcgaa ggggcgaaag
tcgccttttg cggccgcaac 120ccggatcggc ttgccagcgc ccatgcggcg ttgcaaaacg
aatatccaga aggtgaggtg 180ttctcctggc gctgtgacgt actgaacgaa gctgaagttg
aggcgttcgc cgccgcggtc 240gccgcgcgtt tcggcggcgt cgatatgctg attaataacg
ccggccaggg ctatgtcgcc 300cacttcgccg atacgccacg tgaggcctgg ctgcacgaag
ccgaactgaa actgttcggc 360gtgattaacc cggtaaaggc ctttcagtcc ctgctagagg
cgtcggatat cgcctcgatt 420acctgtgtga actcgctgct ggcgttacag ccggaagagc
acatgatcgc cacctctgcc 480gcccgcgccg cgctgctcaa tatgacgctg actctgtcga
aagagctggt ggataaaggt 540attcgtgtga attccattct gctggggatg gtggagtccg
ggcagtggca gcgccgtttt 600gagagccgaa gcgataagag ccagagttgg cagcagtgga
ccgccgatat cgcccgtaag 660cgggggatcc cgatggcgcg tctcggtaag ccgcaggagc
cagcgcaagc gctgctattc 720ctcgcttcgc cgctggcctc ctttaccacc ggcgcggcgc
tggacgtttc cggcggtttc 780tgtcgccatc tgtaa
795142264PRTKlebsiella pneumoniae subsp.
pneumoniae MGH78578 142Met Asn Ala Gln Ile Glu Gly Arg Val Ala Val Val
Thr Gly Gly Ser1 5 10
15Ser Gly Ile Gly Phe Glu Thr Leu Arg Leu Leu Leu Gly Glu Gly Ala
20 25 30Lys Val Ala Phe Cys Gly Arg
Asn Pro Asp Arg Leu Ala Ser Ala His 35 40
45Ala Ala Leu Gln Asn Glu Tyr Pro Glu Gly Glu Val Phe Ser Trp
Arg 50 55 60Cys Asp Val Leu Asn Glu
Ala Glu Val Glu Ala Phe Ala Ala Ala Val65 70
75 80Ala Ala Arg Phe Gly Gly Val Asp Met Leu Ile
Asn Asn Ala Gly Gln 85 90
95Gly Tyr Val Ala His Phe Ala Asp Thr Pro Arg Glu Ala Trp Leu His
100 105 110Glu Ala Glu Leu Lys Leu
Phe Gly Val Ile Asn Pro Val Lys Ala Phe 115 120
125Gln Ser Leu Leu Glu Ala Ser Asp Ile Ala Ser Ile Thr Cys
Val Asn 130 135 140Ser Leu Leu Ala Leu
Gln Pro Glu Glu His Met Ile Ala Thr Ser Ala145 150
155 160Ala Arg Ala Ala Leu Leu Asn Met Thr Leu
Thr Leu Ser Lys Glu Leu 165 170
175Val Asp Lys Gly Ile Arg Val Asn Ser Ile Leu Leu Gly Met Val Glu
180 185 190Ser Gly Gln Trp Gln
Arg Arg Phe Glu Ser Arg Ser Asp Lys Ser Gln 195
200 205Ser Trp Gln Gln Trp Thr Ala Asp Ile Ala Arg Lys
Arg Gly Ile Pro 210 215 220Met Ala Arg
Leu Gly Lys Pro Gln Glu Pro Ala Gln Ala Leu Leu Phe225
230 235 240Leu Ala Ser Pro Leu Ala Ser
Phe Thr Thr Gly Ala Ala Leu Asp Val 245
250 255Ser Gly Gly Phe Cys Arg His Leu
2601431795DNAPseudomonas fluorescens 143cgccaagcaa tcgggctttg gggcagaatt
gggtcgcgaa gggcttgagg agtttgccca 60gtccaagatc atcaacgccg cgctataaat
taaaggatcc cccatggcga tgattacagg 120cggcgaactg gttgttcgca ccctaataaa
ggctggggtc gaacatctgt tcggcctgca 180cggcgcgcat atcgatacga tttttcaagc
ctgtctcgat catgatgtgc cgatcatcga 240cacccgccat gaggccgccg cagggcatgc
ggccgagggc tatgcccgcg ctggcgccaa 300gctgggcgtg gctggtcacg gcgggcgggg
gatttaccaa tgcggtcacg cccattgcca 360acgcttggct ggatcgcaag gccggtgtat
tcctcacccg ggatcgggcg cgctgcgtga 420tgatgaaacc aacacgttgc aggcggggat
tgatcaggtc gccatggcgg cgcccattac 480caaatgggcg catcgggtga tggcaaccga
gcatatccca cggctggtga tgcaggcgat 540ccgcgccgcg ttgagcgcgc cacgcgggcc
ggtgttgctg gatctgccgt gggatattct 600gatgaaccag attgatgagg atagcgtcat
tatccccgat ctggtcttgt ccgcgcatgg 660ggccagaccc gaccctgccg atctggatca
ggctctcgcg cttttgcgca aggcggagcg 720gccggtcatc gtgctcggct cagaagcctc
gcggacagcg cgcaagacgg cgcttagcgc 780cttcgtggcg gcgactggcg tgccggtgtt
tgccgattat gaagggctaa gcatgctctc 840ggggctgccc gatgctatgc ggggcgggct
ggtgcaaaac ctctattctt ttgccaaagc 900cgatgccgcg ccagatctcg tgctgatgct
gggggcgcgc tttggcctta acaccgggca 960tggatctggg cagttgatcc cccatagcgc
gcaggtcatt caggtcgacc ctgatgcctg 1020cgagctggga cgcctgcagg gcatcgctct
gggcattgtg gccgatgtgg gtgggaccat 1080cgaggctttg gcgcaggcca ccgcgcaaga
tgcggcttgg ccggatcgcg gcgactggtg 1140cgccaaagtg acggatctgg cgcaagagcg
ctatgccagc atcgctgcga aatcgagcag 1200cgagcatgcg ctccacccct ttcacgcctc
gcaggtcatt gccaaacacg tcgatgcagg 1260ggtgacggtg gtagcggatg gtgcgctgac
ctatctctgg ctgtccgaag tgatgagccg 1320cgtgaaaccc ggcggttttc tctgccacgg
ctatctaggc tcgatgggcg tgggcttcgg 1380cacggcgctg ggcgcgcaag tggccgatct
tgaagcaggc cgccgcacga tccttgtgac 1440cggcgatggc tcggtgggct atagcatcgg
tgaatttgat acgctggtgc gcaaacaatt 1500gccgctgatc gtcatcatca tgaacaacca
aagctggggg gcgacattgc atttccagca 1560attggccgtc ggccccaatc gcgtgacggg
cacccgtttg gaaaatggct cctatcacgg 1620ggtggccgcc gcctttggcg cggatggcta
tcatgtcgac agtgtggaga gcttttctgc 1680ggctctggcc caagcgctcg cccataatcg
ccccgcctgc atcaatgtcg cggtcgcgct 1740cgatccgatc ccgcccgaag aactcattct
gatcggcatg gaccccttcg catga 1795144563PRTPseudomonas fluorescens
144Met Ala Met Ile Thr Gly Gly Glu Leu Val Val Arg Thr Leu Ile Lys1
5 10 15Ala Gly Val Glu His Leu
Phe Gly Leu His Gly Ala His Ile Asp Thr 20 25
30Ile Phe Gln Ala Cys Leu Asp His Asp Val Pro Ile Ile
Asp Thr Arg 35 40 45His Glu Ala
Ala Ala Gly His Ala Ala Glu Gly Tyr Ala Arg Ala Gly 50
55 60Ala Lys Leu Gly Val Ala Gly His Gly Gly Arg Gly
Ile Tyr Gln Cys65 70 75
80Gly His Ala His Cys Gln Arg Leu Ala Gly Ser Gln Gly Arg Cys Ile
85 90 95Pro His Pro Gly Ser Gly
Ala Leu Arg Asp Asp Glu Thr Asn Thr Leu 100
105 110Gln Ala Gly Ile Asp Gln Val Ala Met Ala Ala Pro
Ile Thr Lys Trp 115 120 125Ala His
Arg Val Met Ala Thr Glu His Ile Pro Arg Leu Val Met Gln 130
135 140Ala Ile Arg Ala Ala Leu Ser Ala Pro Arg Gly
Pro Val Leu Leu Asp145 150 155
160Leu Pro Trp Asp Ile Leu Met Asn Gln Ile Asp Glu Asp Ser Val Ile
165 170 175Ile Pro Asp Leu
Val Leu Ser Ala His Gly Ala Arg Pro Asp Pro Ala 180
185 190Asp Leu Asp Gln Ala Leu Ala Leu Leu Arg Lys
Ala Glu Arg Pro Val 195 200 205Ile
Val Leu Gly Ser Glu Ala Ser Arg Thr Ala Arg Lys Thr Ala Leu 210
215 220Ser Ala Phe Val Ala Ala Thr Gly Val Pro
Val Phe Ala Asp Tyr Glu225 230 235
240Gly Leu Ser Met Leu Ser Gly Leu Pro Asp Ala Met Arg Gly Gly
Leu 245 250 255Val Gln Asn
Leu Tyr Ser Phe Ala Lys Ala Asp Ala Ala Pro Asp Leu 260
265 270Val Leu Met Leu Gly Ala Arg Phe Gly Leu
Asn Thr Gly His Gly Ser 275 280
285Gly Gln Leu Ile Pro His Ser Ala Gln Val Ile Gln Val Asp Pro Asp 290
295 300Ala Cys Glu Leu Gly Arg Leu Gln
Gly Ile Ala Leu Gly Ile Val Ala305 310
315 320Asp Val Gly Gly Thr Ile Glu Ala Leu Ala Gln Ala
Thr Ala Gln Asp 325 330
335Ala Ala Trp Pro Asp Arg Gly Asp Trp Cys Ala Lys Val Thr Asp Leu
340 345 350Ala Gln Glu Arg Tyr Ala
Ser Ile Ala Ala Lys Ser Ser Ser Glu His 355 360
365Ala Leu His Pro Phe His Ala Ser Gln Val Ile Ala Lys His
Val Asp 370 375 380Ala Gly Val Thr Val
Val Ala Asp Gly Ala Leu Thr Tyr Leu Trp Leu385 390
395 400Ser Glu Val Met Ser Arg Val Lys Pro Gly
Gly Phe Leu Cys His Gly 405 410
415Tyr Leu Gly Ser Met Gly Val Gly Phe Gly Thr Ala Leu Gly Ala Gln
420 425 430Val Ala Asp Leu Glu
Ala Gly Arg Arg Thr Ile Leu Val Thr Gly Asp 435
440 445Gly Ser Val Gly Tyr Ser Ile Gly Glu Phe Asp Thr
Leu Val Arg Lys 450 455 460Gln Leu Pro
Leu Ile Val Ile Ile Met Asn Asn Gln Ser Trp Gly Ala465
470 475 480Thr Leu His Phe Gln Gln Leu
Ala Val Gly Pro Asn Arg Val Thr Gly 485
490 495Thr Arg Leu Glu Asn Gly Ser Tyr His Gly Val Ala
Ala Ala Phe Gly 500 505 510Ala
Asp Gly Tyr His Val Asp Ser Val Glu Ser Phe Ser Ala Ala Leu 515
520 525Ala Gln Ala Leu Ala His Asn Arg Pro
Ala Cys Ile Asn Val Ala Val 530 535
540Ala Leu Asp Pro Ile Pro Pro Glu Glu Leu Ile Leu Ile Gly Met Asp545
550 555 560Pro Phe
Ala1459PRTArtificial SequenceA polypeptide that is similar to an
autotransporter adhesion or type I secretion target repeat. 145Gly
Gly Xaa Gly Xaa Asp Xaa Xaa Xaa1 514650DNAArtificial
SequencePrimer 146gtctttattc atatatatat cctccttaat tcaaccgttc aatcaccatc
5014730DNAArtificial SequencePrimer 147gggcggccgc
aaggggttcg cgttggccga
3014822DNAArtificial SequencePrimer 148ggagaaaata ccgcatcagg cg
2214932DNAArtificial SequencePrimer
149cgggatccaa gttgcaggat atgacgaaag cg
3215033DNAArtificial SequencePrimer 150gctctagaag attatccctg tctgcggaag
cgg 3315132DNAArtificial SequencePrimer
151gctctagagg ggtgcctaat gagtgagcta ac
3215233DNAArtificial SequencePrimer 152cgggatccgc gttaatattt tgttaaaatt
cgc 3315331DNAArtificial SequencePrimer
153gctctagagt ttatgtcgca cccgccgttg g
3115432DNAArtificial SequencePrimer 154cccaagctta gaaagggaaa ttgtggtagc
cc 3215531DNAArtificial SequencePrimer
155ggaattccat atgcgtccct ctgccccggc c
3115630DNAArtificial SequencePrimer 156cgggatcctt agaactgctt gggaagggag
3015750DNAArtificial SequencePrimer
157aggtacggtg aaataaagga ggatatacat atgtccaaaa agattgccgt
5015837DNAArtificial SequencePrimer 158ttttcctttt gcggccgccc cgctggcatc
gcctcac 3715950DNAArtificial SequencePrimer
159ggcgatgcca gcgtaaagga ggatatacat atgaaaaact ggaaaacaag
5016037DNAArtificial SequencePrimer 160ttttcctttt gcggccgccc cagcttagcg
ccttcta 3716131DNAArtificial SequencePrimer
161cccgagctct taggaggatt agtcatggaa c
3116232DNAArtificial SequencePrimer 162gctctagatt attttgaata atcgtagaaa
cc 3216342DNAArtificial sequencePrimer
163gctctagagg aggatatata tatgaaaaat tgtgtcatcg tc
4216430DNAArtificial SequencePrimer 164aactgcagtt aattcaaccg ttcaatcacc
3016546DNAArtificial SequencePrimer
165cgagctcagg aggatatata tatgaaaaat tgtgtcatcg tcagtg
4616650DNAArtificial SequencePrimer 166ggttgaatta aggaggatat atatatgaat
aaagacacac taatacctac 5016730DNAArtificial SequencePrimer
167cccaagctta gccggcaagt acacatcttc
3016846DNAArtificial SequencePrimer 168cgagctcagg aggatatata tatgaaaaat
tgtgtcatcg tcagtg 4616930DNAArtificial SequencePrimer
169cccaagctta gccggcaagt acacatcttc
3017040DNAArtificial SequencePrimer 170aaggaaaaaa gcggccgccc ctgaaccgac
gaccgggtcg 4017135DNAArtificial SequencePrimer
171cggggtaccg cggatacata tttgaatgta tttag
3517244DNAArtificial SequencePrimer 172aaggaaaaaa gcggccgcgc ggatacatat
ttgaatgtat ttag 4417343DNAArtificial SequencePrimer
173gctctagagg aggatatata tatggctaac tacttcaata cac
4317450DNAArtificial SequencePrimer 174tgctgttgcg ggttaaggag gatatatata
tgcctaagta ccgttccgcc 5017550DNAArtificial SequencePrimer
175aacggtactt aggcatatat atatcctcct taacccgcaa cagcaatacg
5017630DNAArtificial SequencePrimer 176acatgcatgc ttaacccccc agtttcgatt
3017743DNAArtificial SequencePrimer
177gctctagagg aggatatata tatggctaac tacttcaata cac
4317830DNAArtificial SequencePrimer 178acatgcatgc ttaacccccc agtttcgatt
3017943DNAArtificial SequencePrimer
179cccgagctca ggaggatata tatatggata aacagtatcc ggt
4318028DNAArtificial SequencePrimer 180gctctagatt acagaatttg actcaggt
2818145DNAArtificial SequencePrimer
181cccgagctca ggaggatata tatatgttga caaaagcaac aaaag
4518225DNAArtificial SequencePrimer 182ctctaaatct ctggaaaggg taccg
2518330DNAArtificial SequencePrimer
183gctctagatt agagagcttt cgttttcatg
3018445DNAArtificial SequencePrimer 184cccgagctca ggaggatata tatatgttga
caaaagcaac aaaag 4518530DNAArtificial SequencePrimer
185gctctagatt agagagcttt cgttttcatg
3018646DNAArtificial SequencePrimer 186cgagctcagg aggatatata tatgagccag
caagtcatta ttttcg 4618735DNAArtificial SequencePrimer
187aaaactgcag cgtttgatga cgtggacgat agcgg
3518846DNAArtificial SequencePrimer 188cgagctcagg aggatatata tatgagccag
caagtcatta ttttcg 4618950DNAArtificial SequencePrimer
189aggggtgtaa ggaggatata tatatggcta agacgttata cgaaaaattg
5019050DNAArtificial SequencePrimer 190cgtcttagcc atatatatat cctccttaca
ccccttctgc tacatagcgg 5019135DNAArtificial SequencePrimer
191aaaactgcag cgtttgatga cgtggacgat agcgg
3519246DNAArtificial SequencePrimer 192cgagctcagg aggatatata tatgagccag
caagtcatta ttttcg 4619335DNAArtificial SequencePrimer
193aaaactgcag cgtttgatga cgtggacgat agcgg
3519446DNAArtificial SequencePrimer 194cgagctcagg aggatatata tatgagccag
caagtcatta ttttcg 4619550DNAArtificial SequencePrimer
195gaaaccgtgt gaggaggata tatatatgtc gaagaattac catattgccg
5019650DNAArtificial SequencePrimer 196aggggtgtaa ggaggatata tatatggcta
agacgttata cgaaaaattg 5019750DNAArtificial SequencePrimer
197acattaaata aggaggatat atatatggca gagaaattta tcaaacacac
5019850DNAArtificial SequencePrimer 198attcttcgac atatatatat cctcctcaca
cggtttcctt gttgttttcg 5019950DNAArtificial SequencePrimer
199cgtcttagcc atatatatat cctccttaca ccccttctgc tacatagcgg
5020050DNAArtificial SequencePrimer 200tttctctgcc atatatatat cctccttatt
taatgttgcg aatgtcggcg 5020135DNAArtificial SequencePrimer
201aaaactgcag cgtttgatga cgtggacgat agcgg
3520246DNAArtificial SequencePrimer 202cgagctcagg aggatatata tatgagccag
caagtcatta ttttcg 4620335DNAArtificial SequencePrimer
203aaaactgcag cgtttgatga cgtggacgat agcgg
3520440DNAArtificial SequencePrimer 204aaggaaaaaa gcggccgccc ctgaaccgac
gaccgggtcg 4020535DNAArtificial SequencePrimer
205cggggtaccg cggatacata tttgaatgta tttag
3520642DNAArtificial SequencePrimer 206aaggaaaaaa gcggccgcac ttttcatact
cccgccattc ag 4220731DNAArtificial SequencePrimer
207caaaggccgt ctgcacgcgc cgaaaggcaa a
3120831DNAArtificial SequencePrimer 208tttgcctttc ggcgcgtgca gacggccttt g
3120935DNAArtificial SequencePrimer
209acatgcatgc cgtttgatga cgtggacgat agcgg
3521042DNAArtificial SequencePrimer 210aaggaaaaaa gcggccgcac ttttcatact
cccgccattc ag 4221135DNAArtificial SequencePrimer
211acatgcatgc cgtttgatga cgtggacgat agcgg
3521248DNAArtificial SequencePrimer 212cccgagctca ggaggatata tatatgaatt
atcagaacga cgatttac 4821350DNAArtificial SequencePrimer
213gcgtcgcggg taaggaggaa aattttatgt cctcacgtaa agagcttgcc
5021450DNAArtificial SequencePrimer 214gaactgctgt aaggaggtta aaattatgga
gaggattgtc gttactctcg 5021550DNAArtificial SequencePrimer
215caatcagcgt aaggaggtat atataatgaa aaccgtaact gtaaaagatc
5021650DNAArtificial SequencePrimer 216tacaccaggc ataaggagga attaattatg
gaaacctatg ctgtttttgg 5021750DNAArtificial SequencePrimer
217tacgtgagga cataaaattt tcctccttac ccgcgacgcg cttttactgc
5021850DNAArtificial SequencePrimer 218caatcctctc cataatttta acctccttac
agcagttctt ttgctttcgc 5021950DNAArtificial SequencePrimer
219caatcagcgt aaggaggtat atataatgaa aaccgtaact gtaaaagatc
5022050DNAArtificial SequencePrimer 220tacggttttc attatatata cctccttacg
ctgattgaca atcggcaatg 5022134DNAArtificial SequencePrimer
221acatgcatgc ttacgcggac aattcctcct gcaa
3422248DNAArtificial SequencePrimer 222cccgagctca ggaggatata tatatgaatt
atcagaacga cgatttac 4822334DNAArtificial SequencePrimer
223acatgcatgc ttacgcggac aattcctcct gcaa
3422448DNAArtificial SequencePrimer 224cccgagctca ggaggatata tatatgacat
cggaaaaccc gttactgg 4822550DNAArtificial SequencePrimer
225gatccaacct aaggaggaaa attttatgac acaacctctt tttctgatcg
5022650DNAArtificial SequencePrimer 226gatcaattgt taaggaggta tatataatgg
aatccctgac gttacaaccc 5022750DNAArtificial SequencePrimer
227caggcagcct aaggaggaat taattatggc tggaaacaca attggacaac
5022850DNAArtificial SequencePrimer 228aggttgtgtc ataaaatttt cctccttagg
ttggatcaac aggcactacg 5022950DNAArtificial SequencePrimer
229cagggattcc attatatata cctccttaac aattgatcgt ctgtgccagg
5023050DNAArtificial SequencePrimer 230gtttccagcc ataattaatt cctccttagg
ctgcctggct aatccgcgcc 5023135DNAArtificial SequencePrimer
231acatgcatgc ttaccagcgt ggaatatcag tcttc
3523248DNAArtificial SequencePrimer 232cccgagctca ggaggatata tatatgacat
cggaaaaccc gttactgg 4823335DNAArtificial SequencePrimer
233acatgcatgc ttaccagcgt ggaatatcag tcttc
3523448DNAArtificial SequencePrimer 234cccgagctca ggaggatata tatatggttg
ctgaattgac cgcattac 4823550DNAArtificial SequencePrimer
235aatcgccagt aaggaggaaa attttatgac acaacctctt tttctgatcg
5023650DNAArtificial SequencePrimer 236gatcaattgt taaggaggta tatataatgg
aatccctgac gttacaaccc 5023750DNAArtificial SequencePrimer
237caggcagcct aaggaggaat taattatggc tggaaacaca attggacaac
5023850DNAArtificial SequencePrimer 238gaggttgtgt cataaaattt tcctccttac
tggcgattgt cattcgcctg 5023950DNAArtificial SequencePrimer
239cagggattcc attatatata cctccttaac aattgatcgt ctgtgccagg
5024050DNAArtificial SequencePrimer 240gtttccagcc ataattaatt cctccttagg
ctgcctggct aatccgcgcc 5024135DNAArtificial SequencePrimer
241acatgcatgc ttaccagcgt ggaatatcag tcttc
3524248DNAArtificial SequencePrimer 242cccgagctca ggaggatata tatatggttg
ctgaattgac cgcattac 4824335DNAArtificial SequencePrimer
243acatgcatgc ttaccagcgt ggaatatcag tcttc
3524440DNAArtificial SequencePrimer 244aaggaaaaaa gcggccgccc ctgaaccgac
gaccgggtcg 4024532DNAArtificial SequencePrimer
245gctctagaac ttttcatact cccgccattc ag
3224634DNAArtificial SequencePrimer 246gctctagagc ggatacatat ttgaatgtat
ttag 3424744DNAArtificial SequencePrimer
247aaggaaaaaa gcggccgcgc ggatacatat ttgaatgtat ttag
4424826DNAArtificial SequencePrimer 248catgccatgg ctatgattac tggtgg
2624933DNAArtificial SequencePrimer
249ccccgagctc ttacgcgccg gattggaaat aca
3325031DNAArtificial SequencePrimer 250catgccatgg ccaaagttac aaatcaaaaa g
3125132DNAArtificial SequencePrimer
251cgagctctta aaatgatttt atatagatat cc
3225231DNAArtificial SequencePrimer 252catgccatgg gtattccaga aactcaaaaa g
3125331DNAArtificial SequencePrimer
253cccgagctct tatttagaag tgtcaacaac g
3125447DNAArtificial SequencePrimer 254ccccgagctc aggaggatat acatatgaat
aaagacacac taatacc 4725530DNAArtificial SequencePrimer
255cccaagctta gccggcaagt acacatcttc
3025645DNAArtificial SequencePrimer 256cccgagctca ggaggatata tatatgtata
cagtaggaga ttacc 4525733DNAArtificial SequencePrimer
257gctctagatt atgatttatt ttgttcagca aat
3325845DNAArtificial SequencePrimer 258cccgagctca ggaggatata tatatgtata
cagtaggaga ttacc 4525933DNAArtificial SequencePrimer
259gctctagatt atgatttatt ttgttcagca aat
3326046DNAArtificial SequencePrimer 260cgagctcagg aggatatata tatgaaaaaa
gtcgcacttg ttaccg 4626131DNAArtificial SequencePrimer
261ggccggcggc cgcgcgatgg cggtgaaagt g
3126250DNAArtificial SequencePrimer 262aactaatcta gaggaggata tatatatgag
catgacgttt tccggccagg 5026331DNAArtificial SequencePrimer
263ccttgcggag ggctcgatgg atgagttcga c
3126431DNAArtificial SequencePrimer 264cactttcacc gccatcgcgc ggccgccggc c
3126550DNAArtificial SequencePrimer
265gctcatatat atatcctcct ctagattagt taaacaccat cccgccgtcg
5026631DNAArtificial SequencePrimer 266gtcgaactca tccatcgagc cctccgcaag g
3126732DNAArtificial SequencePrimer
267cccaagctta gatcgcggtg gccccgccgt cg
3226846DNAArtificial SequencePrimer 268cgagctcagg aggatatata tatgaaaaaa
gtcgcacttg ttaccg 4626932DNAArtificial SequencePrimer
269cccaagctta gatcgcggtg gccccgccgt cg
3227043DNAArtificial SequencePrimer 270gctctagagg aggatttaaa aatggaaatt
aacgaaacgc tgc 4327145DNAArtificial SequencePrimer
271tccccgcggt taagcatggc gatcccgaaa tggaatccct ttgac
4527244DNAArtificial SequencePrimer 272ccgctcgagg aggatatata tatgagatcg
aaaagatttg aagc 4427330DNAArtificial SequencePrimer
273gctctagatt agccaagttc attgggatcg
3027433DNAArtificial SequencePrimer 274cggggtacca cttttcatac tcccgccatt
cag 3327525DNAArtificial SequencePrimer
275cggtaccctt tccagagatt tagag
2527630DNAArtificial SequencePrimer 276ggaattccat atgttcacaa cgtccgccta
3027727DNAArtificial SequencePrimer
277gcttgacggc catgtggccg aggccgc
2727827DNAArtificial SequencePrimer 278gcggcctcgg ccacatggcc gtcaagc
2727928DNAArtificial SequencePrimer
279cgggatcctt aggcggcctt ctggcgcg
2828030DNAArtificial SequencePrimer 280ggaattccat atggctattg caagaggtta
3028128DNAArtificial SequencePrimer
281cgggatcctt aagcgtcgag cgaggcca
2828230DNAArtificial SequencePrimer 282ggaattccat atgactaaaa caatgaaggc
3028327DNAArtificial SequencePrimer
283caccggggcc ggggtccggt attgcca
2728427DNAArtificial SequencePrimer 284tggcaatacc ggaccccggc cccggtg
2728528DNAArtificial SequencePrimer
285cgggatcctt aggcggcgag atccacga
2828630DNAArtificial SequencePrimer 286ggaattccat atgaccgggg cgaaccagcc
3028727DNAArtificial SequencePrimer
287atagccgctc atacgcctcg gttgcct
2728827DNAArtificial SequencePrimer 288aggcaaccga ggcgtatgag cggctat
2728928DNAArtificial SequencePrimer
289cgggatcctt aagcgccgtg cggaagga
2829030DNAArtificial SequencePrimer 290ggaattccat atgaccatgc atgccattca
3029128DNAArtificial SequencePrimer
291cgggatcctt attcggctgc aaattgca
2829230DNAArtificial SequencePrimer 292ggaattccat atgcgcgcgc tttattacga
3029328DNAArtificial SequencePrimer
293cgggatcctt attcgaaccg gtcgatga
2829430DNAArtificial SequencePrimer 294ggaattccat atgctggcga ttttctgtga
3029528DNAArtificial SequencePrimer
295cgggatcctt atgcgacctc caccatgc
2829630DNAArtificial SequencePrimer 296ggaattccat atgaaagcct tcgtcgtcga
3029728DNAArtificial SequencePrimer
297cgggatcctt aggatgcgta tgtaacca
2829830DNAArtificial SequencePrimer 298ggaattccat atgaaagcga ttgtcgccca
3029928DNAArtificial SequencePrimer
299cgggatcctt aggaaaaggc gatctgca
2830030DNAArtificial SequencePrimer 300ggaattccat atgccgatgg cgctcgggca
3030128DNAArtificial SequencePrimer
301cgggatcctt agaattcgat gacttgcc
2830230DNAArtificial SequencePrimer 302ggaattccat atgaaacatt ctcaggacaa
3030327DNAArtificial SequencePrimer
303gggcgccgat catgtggtgc gtttccg
2730427DNAArtificial SequencePrimer 304cggaaacgca ccacatgatc ggcgccc
2730528DNAArtificial SequencePrimer
305cgggatcctt atgccatacg ttccatat
2830630DNAArtificial SequencePrimer 306ggaattccat atgcagcgtt ttaccaacag
3030728DNAArtificial SequencePrimer
307cgggatcctt aggaaaacag gacgccgc
28308610PRTKlebsiella pneumoniae subsp. pneumoniae MGH 78578 308Met Arg
Tyr Ile Ala Gly Ile Asp Ile Gly Asn Ser Ser Thr Glu Val1 5
10 15Ala Leu Ala Thr Val Asp Asp Ala
Gly Val Leu Asn Ile Arg His Ser 20 25
30Ala Leu Ala Glu Thr Thr Gly Ile Lys Gly Thr Leu Arg Asn Val
Phe 35 40 45Gly Ile Gln Glu Ala
Leu Thr Gln Ala Ala Lys Ala Ala Gly Ile Gln 50 55
60Leu Ser Asp Ile Ser Leu Ile Arg Ile Asn Glu Ala Thr Pro
Val Ile65 70 75 80Gly
Asp Val Ala Met Glu Thr Ile Thr Glu Thr Ile Ile Thr Glu Ser
85 90 95Thr Met Ile Gly His Asn Pro
Lys Thr Pro Gly Gly Val Gly Leu Gly 100 105
110Val Gly Ile Thr Ile Thr Pro Glu Ala Leu Leu Ser Cys Ser
Ala Asp 115 120 125Thr Pro Tyr Ile
Leu Val Val Ser Ser Ala Phe Asp Phe Ala Asp Val 130
135 140Ala Ala Met Val Asn Ala Ala Thr Ala Ala Gly Tyr
Gln Ile Thr Gly145 150 155
160Ile Ile Leu Gln Gln Asp Asp Gly Val Leu Val Asn Asn Arg Leu Gln
165 170 175Gln Pro Leu Pro Val
Ile Asp Glu Val Gln His Ile Asp Arg Ile Pro 180
185 190Leu Gly Met Leu Ala Ala Val Glu Val Ala Leu Pro
Gly Lys Ile Ile 195 200 205Glu Thr
Leu Ser Asn Pro Tyr Gly Ile Ala Thr Val Phe Asp Leu Asn 210
215 220Ala Glu Glu Thr Lys Asn Ile Val Pro Met Ala
Arg Ala Leu Ile Gly225 230 235
240Asn Arg Ser Ala Val Val Val Lys Thr Pro Ser Gly Asp Val Lys Ala
245 250 255Arg Ala Ile Pro
Ala Gly Asn Leu Leu Leu Ile Ala Gln Gly Arg Ser 260
265 270Val Gln Val Asp Val Ala Ala Gly Ala Glu Ala
Ile Met Lys Ala Val 275 280 285Asp
Gly Cys Gly Lys Leu Asp Asn Val Ala Gly Glu Ala Gly Thr Asn 290
295 300Ile Gly Gly Met Leu Glu His Val Arg Gln
Thr Met Ala Glu Leu Thr305 310 315
320Asn Lys Pro Ala Gln Glu Ile Arg Ile Gln Asp Leu Leu Ala Val
Asp 325 330 335Thr Ala Val
Pro Val Ser Val Thr Gly Gly Leu Ala Gly Glu Phe Ser 340
345 350Leu Glu Gln Ala Val Gly Ile Ala Ser Met
Val Lys Ser Asp Arg Leu 355 360
365Gln Met Ala Leu Ile Ala Arg Glu Ile Glu His Lys Leu Gln Ile Ala 370
375 380Val Gln Val Gly Gly Ala Glu Ala
Glu Ala Ala Ile Leu Gly Ala Leu385 390
395 400Thr Thr Pro Gly Thr Thr Arg Pro Leu Ala Ile Leu
Asp Leu Gly Ala 405 410
415Gly Ser Thr Asp Ala Ser Ile Ile Asn Ala Gln Gly Glu Ile Ser Ala
420 425 430Thr His Leu Ala Gly Ala
Gly Asp Met Val Thr Met Ile Ile Ala Arg 435 440
445Glu Leu Gly Leu Glu Asp Arg Tyr Leu Ala Glu Glu Ile Lys
Lys Tyr 450 455 460Pro Leu Ala Lys Val
Glu Ser Leu Phe His Leu Arg His Glu Asp Gly465 470
475 480Ser Val Gln Phe Phe Pro Ser Ala Leu Pro
Pro Ala Val Phe Ala Arg 485 490
495Val Cys Val Val Lys Pro Asp Glu Leu Val Pro Leu Pro Gly Asp Leu
500 505 510Pro Leu Glu Lys Val
Arg Ala Ile Arg Arg Ser Ala Lys Ser Arg Val 515
520 525Phe Val Thr Asn Ala Leu Arg Ala Leu Arg Gln Val
Ser Pro Thr Gly 530 535 540Asn Ile Arg
Asp Ile Pro Phe Val Val Leu Val Gly Gly Ser Ser Leu545
550 555 560Asp Phe Glu Ile Pro Gln Leu
Val Thr Asp Ala Leu Ala His Tyr Arg 565
570 575Leu Val Ala Gly Arg Gly Asn Ile Arg Gly Cys Glu
Gly Pro Arg Asn 580 585 590Ala
Val Ala Ser Gly Leu Leu Leu Ser Trp Gln Lys Gly Gly Thr His 595
600 605Gly Glu 610309116PRTKlebsiella
pneumoniae subsp. pneumoniae MGH78578 309Met Glu Ser Ser Val Val Ala Pro
Ala Ile Val Ile Ala Val Thr Asp1 5 10
15Glu Cys Ser Glu Gln Trp Arg Asp Val Leu Leu Gly Ile Glu
Glu Glu 20 25 30Gly Ile Pro
Phe Val Leu Gln Pro Gln Thr Gly Gly Asp Leu Ile His 35
40 45His Ala Trp Gln Ala Ala Gln Arg Ser Pro Leu
Gln Val Gly Ile Ala 50 55 60Cys Asp
Arg Glu Arg Leu Ile Val His Tyr Lys Asn Leu Pro Ala Ser65
70 75 80Thr Pro Leu Phe Ser Leu Met
Tyr His Gln Asn Arg Leu Ala Arg Arg 85 90
95Asn Thr Gly Asn Asn Ala Ala Arg Leu Val Lys Gly Ile
Pro Phe Arg 100 105 110Asp Arg
His Ala 115310787PRTClostridium butyricum 310Met Ile Ser Lys Gly
Phe Ser Thr Gln Thr Glu Arg Ile Asn Ile Leu1 5
10 15Lys Ala Gln Ile Leu Asn Ala Lys Pro Cys Val
Glu Ser Glu Arg Ala 20 25
30Ile Leu Ile Thr Glu Ser Phe Lys Gln Thr Glu Gly Gln Pro Ala Ile
35 40 45Leu Arg Arg Ala Leu Ala Leu Lys
His Ile Leu Glu Asn Ile Pro Ile 50 55
60Thr Ile Arg Asp Gln Glu Leu Ile Val Gly Ser Leu Thr Lys Glu Pro65
70 75 80Arg Ser Ser Gln Val
Phe Pro Glu Phe Ser Asn Lys Trp Leu Gln Asp 85
90 95Glu Leu Asp Arg Leu Asn Lys Arg Thr Gly Asp
Ala Phe Gln Ile Ser 100 105
110Glu Glu Ser Lys Glu Lys Leu Lys Asp Val Phe Glu Tyr Trp Asn Gly
115 120 125Lys Thr Thr Ser Glu Leu Ala
Thr Ser Tyr Met Thr Glu Glu Thr Arg 130 135
140Glu Ala Val Asn Cys Asp Val Phe Thr Val Gly Asn Tyr Tyr Tyr
Asn145 150 155 160Gly Val
Gly His Val Ser Val Asp Tyr Gly Lys Val Leu Arg Val Gly
165 170 175Phe Asn Gly Ile Ile Asn Glu
Ala Lys Glu Gln Leu Glu Lys Asn Arg 180 185
190Ser Ile Asp Pro Asp Phe Ile Lys Lys Glu Lys Phe Leu Asn
Ser Val 195 200 205Ile Ile Ser Cys
Glu Ala Ala Ile Thr Tyr Val Asn Arg Tyr Ala Lys 210
215 220Lys Ala Lys Glu Ile Ala Asp Asn Thr Ser Asp Ala
Lys Arg Lys Ala225 230 235
240Glu Leu Asn Glu Ile Ala Lys Ile Cys Ser Lys Val Ser Gly Glu Gly
245 250 255Ala Lys Ser Phe Tyr
Glu Ala Cys Gln Leu Phe Trp Phe Ile His Ala 260
265 270Ile Ile Asn Ile Glu Ser Asn Gly His Ser Ile Ser
Pro Ala Arg Phe 275 280 285Asp Gln
Tyr Met Tyr Pro Tyr Tyr Glu Asn Asp Lys Asn Ile Thr Asp 290
295 300Lys Phe Ala Gln Glu Leu Ile Asp Cys Ile Trp
Ile Lys Leu Asn Asp305 310 315
320Ile Asn Lys Val Arg Asp Glu Ile Ser Thr Lys His Phe Gly Gly Tyr
325 330 335Pro Met Tyr Gln
Asn Leu Ile Val Gly Gly Gln Asn Ser Glu Gly Lys 340
345 350Asp Ala Thr Asn Lys Val Ser Tyr Met Ala Leu
Glu Ala Ala Val His 355 360 365Val
Lys Leu Pro Gln Pro Ser Leu Ser Val Arg Ile Trp Asn Lys Thr 370
375 380Pro Asp Glu Phe Leu Leu Arg Ala Ala Glu
Leu Thr Arg Glu Gly Leu385 390 395
400Gly Leu Pro Ala Tyr Tyr Asn Asp Glu Val Ile Ile Pro Ala Leu
Val 405 410 415Ser Arg Gly
Leu Thr Leu Glu Asp Ala Arg Asp Tyr Gly Ile Ile Gly 420
425 430Cys Val Glu Pro Gln Lys Pro Gly Lys Thr
Glu Gly Trp His Asp Ser 435 440
445Ala Phe Phe Asn Leu Ala Arg Ile Val Glu Leu Thr Ile Asn Ser Gly 450
455 460Phe Asp Lys Asn Lys Gln Ile Gly
Pro Lys Thr Gln Asn Phe Glu Glu465 470
475 480Met Lys Ser Phe Asp Glu Phe Met Lys Ala Tyr Lys
Ala Gln Met Glu 485 490
495Tyr Phe Val Lys His Met Cys Cys Ala Asp Asn Cys Ile Asp Ile Ala
500 505 510His Ala Glu Arg Ala Pro
Leu Pro Phe Leu Ser Ser Met Val Asp Asn 515 520
525Cys Ile Gly Lys Gly Lys Ser Leu Gln Asp Gly Gly Ala Glu
Tyr Asn 530 535 540Phe Ser Gly Pro Gln
Gly Val Gly Val Ala Asn Ile Gly Asp Ser Leu545 550
555 560Val Ala Val Lys Lys Ile Val Phe Asp Glu
Asn Lys Ile Thr Pro Ser 565 570
575Glu Leu Lys Lys Thr Leu Asn Asn Asp Phe Lys Asn Ser Glu Glu Ile
580 585 590Gln Ala Leu Leu Lys
Asn Ala Pro Lys Phe Gly Asn Asp Ile Asp Glu 595
600 605Val Asp Asn Leu Ala Arg Glu Gly Ala Leu Val Tyr
Cys Arg Glu Val 610 615 620Asn Lys Tyr
Thr Asn Pro Arg Gly Gly Asn Phe Gln Pro Gly Leu Tyr625
630 635 640Pro Ser Ser Ile Asn Val Tyr
Phe Gly Ser Leu Thr Gly Ala Thr Pro 645
650 655Asp Gly Arg Lys Ser Gly Gln Pro Leu Ala Asp Gly
Val Ser Pro Ser 660 665 670Arg
Gly Cys Asp Val Ser Gly Pro Thr Ala Ala Cys Asn Ser Val Ser 675
680 685Lys Leu Asp His Phe Ile Ala Ser Asn
Gly Thr Leu Phe Asn Gln Lys 690 695
700Phe His Pro Ser Ala Leu Lys Gly Asp Asn Gly Leu Met Asn Leu Ser705
710 715 720Ser Leu Ile Arg
Ser Tyr Phe Asp Gln Lys Gly Phe His Val Gln Phe 725
730 735Asn Val Ile Asp Lys Lys Ile Leu Leu Ala
Ala Gln Lys Asn Pro Glu 740 745
750Lys Tyr Gln Asp Leu Ile Val Arg Val Ala Gly Tyr Ser Ala Gln Phe
755 760 765Ile Ser Leu Asp Lys Ser Ile
Gln Asn Asp Ile Ile Ala Arg Thr Glu 770 775
780His Val Met785311304PRTClostridium buyricum 311Met Ser Lys Glu
Ile Lys Gly Val Leu Phe Asn Ile Gln Lys Phe Ser1 5
10 15Leu His Asp Gly Pro Gly Ile Arg Thr Ile
Val Phe Phe Lys Gly Cys 20 25
30Ser Met Ser Cys Leu Trp Cys Ser Asn Pro Glu Ser Gln Asp Ile Lys
35 40 45Pro Gln Val Met Phe Asn Lys Asn
Leu Cys Thr Lys Cys Gly Arg Cys 50 55
60Lys Ser Gln Cys Lys Ser Ala Ala Ile Asp Met Asn Ser Glu Tyr Arg65
70 75 80Ile Asp Lys Ser Lys
Cys Thr Glu Cys Thr Lys Cys Val Asp Asn Cys 85
90 95Leu Ser Gly Ala Leu Val Ile Glu Gly Arg Asn
Tyr Ser Val Glu Asp 100 105
110Val Ile Lys Glu Leu Lys Lys Asp Ser Val Gln Tyr Arg Arg Ser Asn
115 120 125Gly Gly Ile Thr Leu Ser Gly
Gly Glu Val Leu Leu Gln Pro Asp Phe 130 135
140Ala Val Glu Leu Leu Lys Glu Cys Lys Ser Tyr Gly Trp His Thr
Ala145 150 155 160Ile Glu
Thr Ala Met Tyr Val Asn Ser Glu Ser Val Lys Lys Val Ile
165 170 175Pro Tyr Ile Asp Leu Ala Met
Ile Asp Ile Lys Ser Met Asn Asp Glu 180 185
190Ile His Arg Lys Phe Thr Gly Val Ser Asn Glu Ile Ile Leu
Gln Asn 195 200 205Ile Lys Leu Ser
Asp Glu Leu Ala Lys Glu Ile Ile Ile Arg Ile Pro 210
215 220Val Ile Glu Gly Phe Asn Ala Asp Leu Gln Ser Ile
Gly Ala Ile Ala225 230 235
240Gln Phe Ser Lys Ser Leu Thr Asn Leu Lys Arg Ile Asp Leu Leu Pro
245 250 255Tyr His Asn Tyr Gly
Glu Asn Lys Tyr Gln Ala Ile Gly Arg Glu Tyr 260
265 270Ser Leu Lys Glu Leu Lys Ser Pro Ser Lys Asp Lys
Met Glu Arg Leu 275 280 285Lys Ala
Leu Val Glu Ile Met Gly Ile Pro Cys Thr Ile Gly Ala Glu 290
295 300312545PRTAzospirillum brasilense 312Met Lys
Leu Ala Glu Ala Leu Leu Arg Ala Leu Lys Asp Arg Gly Ala1 5
10 15Gln Ala Met Phe Gly Ile Pro Gly
Asp Phe Ala Leu Pro Phe Phe Lys 20 25
30Val Ala Glu Glu Thr Gln Ile Leu Pro Leu His Thr Leu Ser His
Glu 35 40 45Pro Ala Val Gly Phe
Ala Ala Asp Ala Ala Ala Arg Tyr Ser Ser Thr 50 55
60Leu Gly Val Ala Ala Val Thr Tyr Gly Ala Gly Ala Phe Asn
Met Val65 70 75 80Asn
Ala Val Ala Gly Ala Tyr Ala Glu Lys Ser Pro Val Val Val Ile
85 90 95Ser Gly Ala Pro Gly Thr Thr
Glu Gly Asn Ala Gly Leu Leu Leu His 100 105
110His Gln Gly Arg Thr Leu Asp Thr Gln Phe Gln Val Phe Lys
Glu Ile 115 120 125Thr Val Ala Gln
Ala Arg Leu Asp Asp Pro Ala Lys Ala Pro Ala Glu 130
135 140Ile Ala Arg Val Leu Gly Ala Ala Arg Ala Gln Ser
Arg Pro Val Tyr145 150 155
160Leu Glu Ile Pro Arg Asn Met Val Asn Ala Glu Val Glu Pro Val Gly
165 170 175Asp Asp Pro Ala Trp
Pro Val Asp Arg Asp Ala Leu Ala Ala Cys Ala 180
185 190Asp Glu Val Leu Ala Ala Met Arg Ser Ala Thr Ser
Pro Val Leu Met 195 200 205Val Cys
Val Glu Val Arg Arg Tyr Gly Leu Glu Ala Lys Val Ala Glu 210
215 220Leu Ala Gln Arg Leu Gly Val Pro Val Val Thr
Thr Phe Met Gly Arg225 230 235
240Gly Leu Leu Ala Asp Ala Pro Thr Pro Pro Leu Gly Thr Tyr Ile Gly
245 250 255Val Ala Gly Asp
Ala Glu Ile Thr Arg Leu Val Glu Glu Ser Asp Gly 260
265 270Leu Phe Leu Leu Gly Ala Ile Leu Ser Asp Thr
Asn Phe Ala Val Ser 275 280 285Gln
Arg Lys Ile Asp Leu Arg Lys Thr Ile His Ala Phe Asp Arg Ala 290
295 300Val Thr Leu Gly Tyr His Thr Tyr Ala Asp
Ile Pro Leu Ala Gly Leu305 310 315
320Val Asp Ala Leu Leu Glu Arg Leu Pro Pro Ser Asp Arg Thr Thr
Arg 325 330 335Gly Lys Glu
Pro His Ala Tyr Pro Thr Gly Leu Gln Ala Asp Gly Glu 340
345 350Pro Ile Ala Pro Met Asp Ile Ala Arg Ala
Val Asn Asp Arg Val Arg 355 360
365Ala Gly Gln Glu Pro Leu Leu Ile Ala Ala Asp Met Gly Asp Cys Leu 370
375 380Phe Thr Ala Met Asp Met Ile Asp
Ala Gly Leu Met Ala Pro Gly Tyr385 390
395 400Tyr Ala Gly Met Gly Phe Gly Val Pro Ala Gly Ile
Gly Ala Gln Cys 405 410
415Val Ser Gly Gly Lys Arg Ile Leu Thr Val Val Gly Asp Gly Ala Phe
420 425 430Gln Met Thr Gly Trp Glu
Leu Gly Asn Cys Arg Arg Leu Gly Ile Asp 435 440
445Pro Ile Val Ile Leu Phe Asn Asn Ala Ser Trp Glu Met Leu
Arg Thr 450 455 460Phe Gln Pro Glu Ser
Ala Phe Asn Asp Leu Asp Asp Trp Arg Phe Ala465 470
475 480Asp Met Ala Ala Gly Met Gly Gly Asp Gly
Val Arg Val Arg Thr Arg 485 490
495Ala Glu Leu Lys Ala Ala Leu Asp Lys Ala Phe Ala Thr Arg Gly Arg
500 505 510Phe Gln Leu Ile Glu
Ala Met Ile Pro Arg Gly Val Leu Ser Asp Thr 515
520 525Leu Ala Arg Phe Val Gln Gly Gln Lys Arg Leu His
Ala Ala Pro Arg 530 535
540Glu545313348PRTRhodococcus sp. ST-10 313Met Lys Ala Ile Gln Tyr Thr
Arg Ile Gly Ala Glu Pro Glu Leu Thr1 5 10
15Glu Ile Pro Lys Pro Glu Pro Gly Pro Gly Glu Val Leu
Leu Glu Val 20 25 30Thr Ala
Ala Gly Val Cys His Ser Asp Asp Phe Ile Met Ser Leu Pro 35
40 45Glu Glu Gln Tyr Thr Tyr Gly Leu Pro Leu
Thr Leu Gly His Glu Gly 50 55 60Ala
Gly Lys Val Ala Ala Val Gly Glu Gly Val Glu Gly Leu Asp Ile65
70 75 80Gly Thr Asn Val Val Val
Tyr Gly Pro Trp Gly Cys Gly Asn Cys Trp 85
90 95His Cys Ser Gln Gly Leu Glu Asn Tyr Cys Ser Arg
Ala Gln Glu Leu 100 105 110Gly
Ile Asn Pro Pro Gly Leu Gly Ala Pro Gly Ala Leu Ala Glu Phe 115
120 125Met Ile Val Asp Ser Pro Arg His Leu
Val Pro Ile Gly Asp Leu Asp 130 135
140Pro Val Lys Thr Val Pro Leu Thr Asp Ala Gly Leu Thr Pro Tyr His145
150 155 160Ala Ile Lys Arg
Ser Leu Pro Lys Leu Arg Gly Gly Ser Tyr Ala Val 165
170 175Val Ile Gly Thr Gly Gly Leu Gly His Val
Ala Ile Gln Leu Leu Arg 180 185
190His Leu Ser Ala Ala Thr Val Ile Ala Leu Asp Val Ser Ala Asp Lys
195 200 205Leu Glu Leu Ala Thr Lys Val
Gly Ala His Glu Val Val Leu Ser Asp 210 215
220Lys Asp Ala Ala Glu Asn Val Arg Lys Ile Thr Gly Ser Gln Gly
Ala225 230 235 240Ala Leu
Val Leu Asp Phe Val Gly Tyr Gln Pro Thr Ile Asp Thr Ala
245 250 255Met Ala Val Ala Gly Val Gly
Ser Asp Val Thr Ile Val Gly Ile Gly 260 265
270Asp Gly Gln Ala His Ala Lys Val Gly Phe Phe Gln Ser Pro
Tyr Glu 275 280 285Ala Ser Val Thr
Val Pro Tyr Trp Gly Ala Arg Asn Glu Leu Ile Glu 290
295 300Leu Ile Asp Leu Ala His Ala Gly Ile Phe Asp Ile
Ser Val Glu Thr305 310 315
320Phe Ser Leu Asp Asn Gly Ala Glu Ala Tyr Arg Arg Leu Ala Ala Gly
325 330 335Thr Leu Ser Gly Arg
Ala Val Val Val Pro Gly Leu 340
34531431DNAArtificial SequencePrimer 314catgccatgg gactggctga ggcactgctg
c 3131547DNAArtificial SequencePrimer
315cgagctcagg aggatatata tatgaaagct atccagtaca cccgtat
4731632DNAArtificial SequencePrimer 316cgagctctta ttcgcgcggt gccgcgtgca
gg 3231734DNAArtificial SequencePrimer
317gctctagatt acaggcccgg aaccacaacg gcgc
3431846DNAArtificial SequencePrimer 318ccgctcgagg aggatatata tatgatttct
aaaggcttta gcaccc 4631950DNAArtificial SequencePrimer
319acgtgatgta atctagagga ggatatatat atgagcaaag aaattaaagg
5032050DNAArtificial SequencePrimer 320tctttgctca tatatatatc ctcctctaga
ttacatcacg tgttcagtac 5032132DNAArtificial SequencePrimer
321cgagctctta ttcggcgcca atggtgcacg gg
3232246DNAArtificial SequencePrimer 322ccgctcgagg aggatatata tatgatttct
aaaggcttta gcaccc 4632332DNAArtificial SequencePrimer
323cgagctctta ttcggcgcca atggtgcacg gg
3232426DNAArtificial SequencePrimer 324cacccaagcg atagtttata tagcgt
2632520DNAArtificial SequencePrimer
325gaaatgaacg gatattacgt
2032619DNAArtificial SequencePrimer 326cggaacaggt gattgtggt
1932726DNAArtificial SequencePrimer
327caccgcccac ttcaagatga agctgt
2632826DNAArtificial SequencePrimer 328cacccaagcg atagtttata tagcgt
2632920DNAArtificial SequencePrimer
329gtggctaagt acatgccggt
2033035DNAArtificial SequencePrimer 330ggaattccat atgacaaaga atatgacgac
taaac 3533132DNAArtificial SequencePrimer
331cgggatcctt attatttccc ctgccctgca gt
3233232DNAArtificial SequencePrimer 332ggaattccat atgagctatc aaccactttt
ac 3233329DNAArtificial SequencePrimer
333cgggatcctt acagttgagc aaatgatcc
29
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20220290645 | ENGINE START CONTROL DEVICE |
20220290644 | SAFELY INITIATING AN AUTONOMOUS VEHICLE RIDE |
20220290643 | DAMPING INSULATOR FOR FUEL INJECTION DEVICE |
20220290642 | FUEL INJECTOR |
20220290641 | DUAL FUEL SYSTEM HAVING DUAL FUEL INJECTOR AND ENGINE OPERATING METHOD |