Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Dingrong Bai

Dingrong Bai, Rutland, VT US

Patent application numberDescriptionPublished
20100018113ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.01-28-2010
20100031560ENGINEERED FUEL FEED STOCK USEFUL FOR DISPLACEMENT OF COAL IN COAL FIRING PLANTS - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including co-firing with coal and as substitutes for coal.02-11-2010
20100218419ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-02-2010
20110099890SORBENT CONTAINING ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.05-05-2011
20110209393ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-01-2011
20110209394ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-01-2011
20110209395ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-01-2011
20110209396ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-01-2011
20110209397ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-01-2011
20110209398ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-01-2011
20110209399ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.09-01-2011
20120210633SORBENT CONTAINING ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.08-23-2012
20120266793PROCESS FOR COGASIFYING AND COFIRING ENGINEERED FUEL WITH COAL - Described is an integrated process of cogasifying an engineered fuel, formulated to be suitable for working under reducing environment, with coal and cofiring another engineered fuel, formulated to be suitable for working under oxidizing environment, with coal to produce electric power.10-25-2012
20120304535SYSTEMS AND METHODS FOR PRODUCING ENGINEERED FUEL FEED STOCKS FROM WASTE MATERIAL - Systems and methods for producing engineered fuels from solid waste material are described herein. In some embodiments, a method includes receiving a waste stream at a multi-material processing platform and separating the waste stream to remove non-processable waste and marketable recyclables. The method further includes conveying processable materials to a material classification system and incorporating additives to produce an engineered fuel from the constituents of the waste stream.12-06-2012
20120304536Systems and Methods for Producing Engineered Fuel Feed Stocks from Waste Material - Systems and methods for producing engineered fuels from solid waste material are described herein. In some embodiments, a method includes receiving a waste stream at a multi-material processing platform and separating the waste stream to remove non-processable waste and marketable recyclables. The method further includes conveying processable materials to a material classification system and incorporating additives to produce an engineered fuel from the constituents of the waste stream.12-06-2012
20120305686Systems and Methods for Processing a Heterogeneous Waste Stream - Systems and methods for processing and sorting a municipal solid waste stream are described herein. A system can include a processing sub-system configured to receive a municipal solid waste stream and to remove the non-processable waste, a processing apparatus configured and disposed to receive constituents of the municipal solid waste stream from the processing sub-system and reduce the size of the constituents of the waste stream to an average particle size of less than about ¾ inch, and separators configured to sort the waste stream into constituents based on density.12-06-2012
20120305688SYSTEMS AND METHODS FOR PROCESSING A HETEROGENEOUS WASTE STREAM - Systems and methods for processing and sorting a municipal solid waste stream are described herein. A system can include a processing sub-system configured to receive a municipal solid waste stream and to remove the non-processable waste, a processing apparatus configured and disposed to receive constituents of the municipal solid waste stream from the processing sub-system and reduce the size of the constituents of the waste stream to an average particle size of less than about ¾ inch, and separators configured to sort the waste stream into constituents based on density.12-06-2012
20130055630Engineered Fuel Feed Stock - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.03-07-2013
20130097921ENGINEERED FUEL FEED STOCK USEFUL FOR DISPLACEMENT OF COAL IN COAL FIRING PLANTS - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including co-firing with coal and as substitutes for coal.04-25-2013
20130192128MITIGATION OF HARMFUL COMBUSTION EMISSIONS USING SORBENT CONTAINING ENGINEERED FUEL FEED STOCKS - The invention relates to the use of engineered fuel feedstocks to control the emission of sulfur-based, chlorine-based, nitrogen-based, or mercury-based pollutants, such as SO08-01-2013
20130240647SYSTEMS AND METHODS FOR PROCESSING A HETEROGENEOUS WASTE STREAM - Systems and methods for processing and sorting a municipal solid waste stream are described herein. A system can include a processing sub-system configured to receive a municipal solid waste stream and to remove the non-processable waste, a processing apparatus configured and disposed to receive constituents of the municipal solid waste stream from the processing sub-system and reduce the size of the constituents of the waste stream to an average particle size of less than about ¾ inch, and separators configured to sort the waste stream into constituents based on density.09-19-2013
20130298454ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, and methods of making the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels.11-14-2013
20130298455SYSTEMS AND METHODS FOR PRODUCING ENGINEERED FUEL FEEDSTOCKS WITH REDUCED CHLORINE CONTENT - Systems and methods for producing engineered fuels from municipal solid waste material are described herein. In some embodiments, a method includes combining a first waste stream that includes at least one of hard plastic, soft plastic and mixed plastic with a sorbent and increasing the temperature of the combined first waste stream and sorbent to a temperature of at least about 200° C. The method further includes combining the thermally treated first waste stream and sorbent with a second waste stream that includes fiber, and compressing the combined first waste stream, sorbent, and second waste stream to form a densified engineered fuel feedstock.11-14-2013
20130320118SYSTEMS AND METHODS FOR PROCESSING A HETEROGENEOUS WASTE STREAM - Systems and methods for processing and sorting a municipal solid waste stream are described herein. A system can include a processing sub-system configured to receive a municipal solid waste stream and to remove the non-processable waste, a processing apparatus configured and disposed to receive constituents of the municipal solid waste stream from the processing sub-system and reduce the size of the constituents of the waste stream to an average particle size of less than about ¾ inch, and separators configured to sort the waste stream into constituents based on density.12-05-2013
20140096441MITIGATION OF HARMFUL COMBUSTION EMISSIONS USING SORBENT CONTAINING ENGINEERED FUEL FEED STOCKS - The invention relates to the use of engineered fuel feedstocks to control the emission of sulfur-based, chlorine-based, nitrogen-based, or mercury-based pollutants, such as SO04-10-2014
20140157659SORBENT CONTAINING ENGINEERED FUEL FEED STOCK - Disclosed are novel engineered fuel feed stocks, feed stocks produced by the described processes, methods of making the fuel feed stocks, methods of producing energy from the fuel feed stocks. Components derived from processed MSW waste streams can be used to make such feed stocks which are substantially free of glass, metals, grit and noncombustibles and contain a sorbent. These feed stocks are useful for a variety of purposes including as gasification and combustion fuels. In addition, one or more sorbents can be added to the feed stocks in order to reduce the amount of a variety of pollutants present in traditional fuel and feed stocks, including, but not limited, sulfur and chlorine. Further, these feed stocks with added sorbent can mitigate corrosion, improve fuel conversion, extend power generating plant lifetime, reduce ash slagging, and reduced operating temperature.06-12-2014

Patent applications by Dingrong Bai, Rutland, VT US

Dingrong Bai, Dorval CA

Patent application numberDescriptionPublished
20090004516Fuel cell combined heat and power generation - A cogeneration system having flexible and controllable cogeneration loops. There is a first cogeneration loop to recover heat from a fuel cell power module, thereby producing a heat to electricity ratio between 0 and approximately 1.0. There is a second cogeneration loop to produce supplemental thermal energy for hot water generation and/or space heating. This loop can be connected or disconnected via switching valves depending on the thermal demands of hot water and/or space heating. This loop can also be useful to control the fuel processor temperature to prevent it from being overheated in cases when the fuel cell has low fuel utilization efficiency. With this second loop, it becomes possible to adjust the heat to electricity ratio at any desirable levels such as more than 2. It is also possible to produce the hot water at a higher temperature or superheated steam, which would have been difficult if only the first loop is used.01-01-2009
20100173216OPTIMIZING PERFORMANCE OF END CELLS IN A FUEL CELL STACK - There are described various techniques used to optimize end cell performance of a fuel cell stack, such as varying the thickness of a membrane throughout the stack, varying the material of the membrane throughout the stack, varying the size of the active area throughout the stack, and varying the catalyst loading throughout the stack.07-08-2010
20100190067MANAGEMENT OF FUEL CONTAMINATORS IN FUEL CELLS - There is described a method for managing a fuel cell system having a fuel contaminator present in an anode reactant, the method comprising: monitoring a fuel contaminator concentration in the anode reactant of a fuel cell stack, the fuel cell stack having a plurality of individual fuel cell units each having a membrane electrode assembly (MEA); detecting an increase in the fuel contaminator concentration in the anode reactant; and increasing, when the increase in fuel contaminator concentration is detected, a concentration of a compound that chemically reacts with the fuel contaminator in the anode reactant by a mass transfer through a membrane in the fuel cell system to reduce the fuel contaminator concentration.07-29-2010
20110027675FUEL CELL SYSTEM COMPRISING MODULAR DESIGN FEATURES - There is described a fuel cell power system including a fuel processor subsystem, a fuel cell subsystem, and a power conditioning subsystem. The fuel processor subsystem comprises a main module for producing hydrogen rich streams from a hydrocarbon fuel, a balance of plant module for auxiliary components, and a control and electronic module for monitoring and controlling the fuel processor subsystem. The fuel cell subsystem comprises a main module for generation of electric power and thermal energy from hydrogen rich streams produced by the fuel processor module and air, a balance of plant module for auxiliary components, and a control and electronic module for monitoring and controlling the fuel cell subsystem. Each module has individual components attached thereto, the modules being designed and manufactured separately and assembled together to form the respective subsystems.02-03-2011

Patent applications by Dingrong Bai, Dorval CA

Website © 2015 Advameg, Inc.