Patent application title: Vaccine Against African Horse Sickness Virus
Inventors:
Jules Maarten Minke (Corbas, FR)
Jules Maarten Minke (Corbas, FR)
Jean-Christophe Audonnet (Lyon, FR)
Jean-Christophe Audonnet (Lyon, FR)
Alan John Guthrie (Gauteng, ZA)
Nigel James Maclachlan (Davis, CA, US)
Jiansheng Yao (North York, CA)
Assignees:
Merial Limited
UNIVERSITY OF PRETORIA
THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
IPC8 Class: AA61K3915FI
USPC Class:
4241991
Class name: Drug, bio-affecting and body treating compositions antigen, epitope, or other immunospecific immunoeffector (e.g., immunospecific vaccine, immunospecific stimulator of cell-mediated immunity, immunospecific tolerogen, immunospecific immunosuppressor, etc.) recombinant virus encoding one or more heterologous proteins or fragments thereof
Publication date: 2014-05-01
Patent application number: 20140120133
Abstract:
The present invention provides vectors that contain and express in vivo
the genes encoding VP2 and VP5 of African Horse Sickness Virus or an
epitope thereof that elicits an immune response in a horse against
African horse sickness virus, compositions comprising said vectors,
methods of vaccination against African horse sickness virus, and kits for
use with such methods and compositions.Claims:
1-43. (canceled)
44. A vaccine composition comprising a recombinant poxvirus wherein the recombinant poxvirus comprises a nucleic acid molecule encoding an African Horse Sickness Virus (AHSV) VP2 polypeptide; and wherein the composition is capable of eliciting a protective immune response in an equine animal.
45. The composition of claim 44, wherein the nucleic acid encodes a polypeptide having an amino acid sequence as set forth in SEQ ID NO:1, 30, 44, 49, or 50-63.
46. The composition of claim 45, wherein the nucleic acid has the sequence as set forth in SEQ ID NO:4, 18, 28, 42 or 48.
47. The composition of claim 46 wherein the nucleic acid has the sequence as set forth in SEQ ID NO:18 or 28.
48. The composition of any one of claims 44 to 47 further comprising a carboxypolymethylene adjuvant.
49. The composition of claim 48 wherein the adjuvant is CARBOPOL® 974P.
50. The composition of claim 49 wherein the adjuvant is present in an amount of about 4 mg/mL.
51. An expression vector comprising a polynucleotide having the sequence as set forth in SEQ ID NO:4, 28, 42 or 48; wherein the vector is capable of eliciting a protective immune response in an equine animal against AHSV.
52. The vector of claim 51 wherein the nucleic acid has the sequence as set forth in SEQ ID NO:28.
53. The vector of claim 52, wherein the vector is a canarypox or a fowlpox vector.
54. The vector of claim 53, wherein the polynucleotide is operably linked to a promoter selected from the group consisting of H6 vaccinia promoter, I3L vaccinia promoter, 42K poxyiral promoter, 7.5K vaccinia promoter, and Pi vaccinia promoter.
55. An isolated host cell transformed with the vector of any one of claims 51 to 54.
56. A method for inducing a protective immunological response in an animal comprising administering to the animal an effective amount of the composition of claim 48.
57. A method of vaccinating an animal susceptible to African Horse Sickness comprising administering at least one dose of the composition of claim 48.
58. An isolated African Horse Sickness Virus AHSV4-Jane strain, having a nucleic acid sequence comprising the sequence as set forth in SEQ ID NO:48.
59. An isolated polypeptide having the sequence as set forth in SEQ ID NO: 1, 30, 44 or 49.
60. An isolated nucleic acid having the sequence as set forth in SEQ ID NO: 4, 18, 28, 42 or 48.
61. The nucleic acid of claim 60 having the sequence as set forth in SEQ ID NO:28.
Description:
INCORPORATION BY REFERENCE
[0001] This application claims benefit of the U.S. provisional application Ser. No. 61/108,075 filed on Oct. 24, 2008, and of U.S. provisional application Ser. No. 61/163,517 filed on Mar. 26, 2009.
[0002] The foregoing applications, and all documents cited therein or during their prosecution ("appln cited documents") and all documents cited or references in the appln cited documents, and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention.
FIELD OF THE INVENTION
[0003] The present invention relates to vaccination of a subject against African Horse Sickness Virus (AHSV). In particular, the invention pertains to the construction and use of recombinant vectors containing and expressing, in a host, one or more immunogenic proteins of African Horse Sickness Virus. The invention further relates to immunological compositions or vaccines which induce an immune response directed to African Horse Sickness Virus. The invention further relates to such compositions or vaccines which confer protective immunity against infection by African Horse Sickness Virus.
[0004] Several publications are referenced in this application. Full citation to these documents is found at the end of the specification preceding the claims, and/or where the document is cited. These documents pertain to the field of this invention; and, each of the documents cited or referenced in this application ("herein cited documents"), and each document cited or referenced in herein cited documents, are hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION
[0005] African Horse Sickness (AHS) is a serious, often fatal, arthropod-borne viral disease of horses and mules (African Horse Sickness, The Merck Veterinary Manual). The mortality rate can be as high as 95% in some forms of this disease. Asymptomatic or mild infections can occur in horses, as well as zebras and donkeys, especially horses that were previously infected with a different serotype of the virus. Infected animals or vectors may carry the virus into AHS-free regions. Some authors speculate that climate change could increase the risk for spread of arthropod-borne diseases such as African Horse Sickness, as recently has occurred with related bluetongue virus (Wilson A et al., Parasitol. Res. 2008; 103:69-77). Culicoides imicola, the principal vector for this disease, has made incursions into North Africa and southern Europe. Potential arthropod vectors also exist throughout virtually all regions of the world, including much of the United States and the rest of the Americas.
[0006] African Horse Sickness results from infection with the African Horse Sickness Virus, a member of the genus Orbivirus in the family Reoviridae. To date, 9 serotypes of African Horse Sickness Virus are known. African Horse Sickness Virus serotype 9 is widespread in endemic regions, while serotypes 1 to 8 are found primarily in limited geographic areas. Serotype 9 has been responsible for the majority of African Horse Sickness outbreaks outside Africa. Serotype 4 caused one outbreak in Spain and Portugal between 1987 and 1990 (Lubroth J., Equine Pract. 1988; 10:26-33).
[0007] Initial research on African Horse Sickness Virus resulted in the development of mouse-brain attenuated modified live virus vaccine to African Horse Sickness Virus in the 1930's. These vaccines were refined and resulted in the development of a tissue culture attenuated modified live virus (MLV) vaccine in the 1960's.
[0008] Despite the efficacy of this vaccine, it has some inherent limitations including vaccine reactions (including death) in individual animals, varied immune response in individual animals, difficulty in immunizing young animals with passive maternal immunity, possibility of reversion to virulence of vaccine virus, and recombination of vaccine strains following vaccination with possible reversion to virulence (du Plessis M. et al. 1998, Onderstepoort Journal of Veterinary Research 65: 321-329). There are also socio-economic implications with using the MLV vaccine. South Africa has a protocol that allows it to export horses to the European Union and a number of other countries. This protocol also makes it possible for horses from other countries to enter South Africa to compete in various events or stand at stud for a temporary period. The protocol is based on ensuring that horses are adequately vaccinated against African Horse Sickness Virus. Veterinary Authorities are aware of the possible dangers of using the MLV vaccine. Most of these problems would be greatly reduced by the development of alternate African Horse Sickness Virus vaccines.
[0009] The African Horse Sickness Virus genome is composed of ten double-stranded RNA segments (Oellermann, R. A. et al., 1970; Bremer, C. W. et al., 1976), which encode at least ten viral proteins. The genome segments are numbered 1-10 in order of their migration in PAGE. Seven of the viral proteins are structural and form the double-shelled virus particle. The outer capsid is composed of two major viral proteins, VP2 and VP5, which determine the antigenic variability of the African Horse Sickness Viruses, while the inner capsid is comprised of two major (VP3 and VP7) and three minor (VP1, VP4 and VP6) viral proteins (Lewis S A and Grubman M J, 1991); Martinez-Torrecuadrada J L et al., 1994); Bremer, C W, et al. 1990; Grubman, M. J. & Lewis, S. A., 1992). VP3 and VP7 are highly conserved among the nine serotypes (Oellermann et al., 1970; Bremer et al., 1990). At least three non-structural proteins, NS1, NS2 and NS3, have been identified (Huismans, H. & Els, H. J., 1979); van Staden, V. & Huismans, H., 1991); Mizukoshi, N. et al., 1992).
[0010] Recombinant canarypox viruses derived from attenuated viruses have been developed as vectors for the expression of heterologous viral genes. A number of these canarypox constructs have since been licensed as vaccines in many countries, including South Africa, the European Union and the United States of America for use in horses (Minke J M, et al., 2004a and b; Minke J M, et al., 2007; Siger L, et al. 2006) and other species (Poulet H, et al., 2003).
[0011] The fact that these vaccines only contain genes of the organism of interest makes them inherently safe (Minke J M, et al., 2004b). Furthermore, the onset of detectable neutralizing antibody is rapid even after a single dose of vaccine (Minke J M et al., 2004b). The inherent safety of such vaccines and the nature of the development of neutralizing antibody make such vaccines particularly attractive for use in epizootics (Minke J M et al., 2004a).
[0012] Previous studies have shown that horses develop neutralizing antibodies to AHS when they are inoculated with exogenously expressed VP2 and an appropriate adjuvant (Scanlen M, et al., 2002). Studies in sheep have shown that the neutralizing antibody response to Bluetongue Virus is enhanced by inoculation of sheep with virus-like particles in which VP2 and VP5 are co-expressed (Pearson L D, Roy P, 1993). A recombinant canarypox virus vaccine co-expressing the genes encoding for VP2 and VP5 outer capsid proteins of Bluetongue Virus has recently been shown to induce high levels of protection in sheep (Boone J D, et al., 2007).
[0013] It has not been shown that horses develop neutralizing antibodies to African Horse Sickness Virus when inoculated with a vector containing and co-expressing AHSV VP2 and VP5. It can thus be appreciated that the present invention fulfills a need in the art by providing a recombinant poxvirus including compositions and products therefrom, particularly ALVAC-based recombinants and compositions and products therefrom, especially such recombinants expressing AHSV VPs 2 and 5 or any combination thereof and compositions and products therefrom.
[0014] Citation or identification of any document in this application does not constitute an admission that such document is available as prior art to the present invention.
SUMMARY OF THE INVENTION
[0015] An object of this invention can be any one or all of providing recombinant vectors or viruses as well as methods for making such recombinant vectors or viruses, and providing compositions and/or vaccines as well as methods for treatment and prophylaxis of infection by African Horse Sickness Virus.
[0016] The invention provides a recombinant vector, such as a recombinant virus, e.g., a recombinant poxvirus, that comprises and expresses at least one exogenous nucleic acid molecule, wherein the at least one exogenous nucleic acid molecule may comprise a nucleic acid molecule encoding an immunogen or epitope of interest from an African Horse Sickness Virus especially a viral protein or portion thereof of an African Horse Sickness Virus.
[0017] The present invention further provides recombinant vectors wherein the African Horse Sickness Virus strain is 1, 2, 4, or 9.
[0018] The invention further provides immunological (or immunogenic), or vaccine compositions comprising such a virus or the expression product(s) of such a virus.
[0019] The invention further provides methods for inducing an immunological (or immunogenic) or protective response against African Horse Sickness Virus, as well as methods for preventing or treating African Horse Sickness Virus or disease state(s) caused by African Horse Sickness Virus, comprising administering the virus or an expression product of the virus, or a composition comprising the virus, or a composition comprising an expression product of the virus.
[0020] The invention also comprehends expression products from the virus as well as antibodies generated from the expression products or the expression thereof in vivo and uses for such products and antibodies, e.g., in diagnostic applications.
[0021] The invention further provides AHSV VP2 and VP5 polypeptides and polynucleotides encoding AHSV VP2 and VP5 polypeptides. The invention also provides a new AHS strain AHSV4-Jane.
[0022] These and other embodiments are described in, or are obvious from and encompassed by, the following Detailed Description.
BRIEF DESCRIPTION OF THE DRAWINGS
[0023] The following detailed description, given by way of example but not intended to limit the invention solely to the specific embodiments described, may best be understood in conjunction with the accompanying drawings, in which:
[0024] FIG. 1 provides the construction scheme for pLHD3460.4, the C3 donor plasmid for generation of an ALVAC recombinant expressing synthetic AHSV-4-VP2 (SEQ ID NO:1) and synthetic AHSV-4-VP5 (SEQ ID NO:2) proteins.
[0025] FIG. 2 provides the map and relevant SEQ ID NOs for pLHD3460.4 (pC3H6p synthetic AHSV-4-VP2/42Kp synthetic AHSV-4-VP5). pLHD3460.4=SEQ ID NO:6; AHSV-4 VP2 DNA (pLHD3460.4)--SEQ ID NO:4; AHSV-4 VP5 DNA (pLHD3460.4)--SEQ ID NO:5; predicted AA Seq. for AHSV-4 VP2 PRT (pLHD3460.4)--SEQ ID NO:1; predicted AA Seq. for AHSV-4 VP5 PRT (pLHD3460.4)=SEQ ID NO:2.
[0026] FIG. 3 provides the in vitro recombination scheme for vCP2377 (ALVAC C3H6p-synthetic AHSV-4-VP2/42Kp-synthetic AHSV-4-VP5).
[0027] FIG. 4 provides a theoretical restriction enzyme gel for the genomic DNA created in Vector NTI.
[0028] FIG. 5 provides the 0.8% agarose gel electrophoresis results of genomic DNA extraction of the P3 stock from vCP2377.6.1.1, followed by digestion with BamHI, HindIII or PstI.
[0029] FIG. 6 provides the Southern Blot analysis of vCP2377.6.1.1 using an AHSV-4-VP2 probe.
[0030] FIG. 7 provides Western blot results of the analysis of recombinant vCP2377 indicating the expression of the AHSV-4-VP5 protein.
[0031] FIG. 8 provides the immunoplaque results indicating 100% homogeneity of the vCP2377.6.1.1 population using mouse anti-AHSV VP5 mAb 10AE12 Passage 9 at a dilution of 1:100.
[0032] FIG. 9 provides a map of the primers used to amplify the C3R-AHSV insert-C3L fragment and the SEQ ID references for the recombinant vCP2377.6.1.1 sequences (SEQ ID NOs:17-21).
[0033] FIG. 10 shows the construction scheme for pCXL2415.1 (SEQ ID NO:22), the C3 donor plasmid for generation of an ALVAC recombinant expressing AHSV9-VP2 (SEQ ID NO:20) and AHSV9-VP5 (SEQ ID NO:21) proteins.
[0034] FIG. 11 provides the map and relevant SEQ ID NOs (18-21) for pCXL2415.1 (pALVAC C3 AHSV-9 H6 VP2 42K VP5).
[0035] FIG. 12 provides the in vitro recombination scheme for vCP2383 (ALVAC C3H6-synthetic AHSV9 VP2/42K-synthetic AHSV9 VP5).
[0036] FIG. 13 provides a theoretical restriction enzyme gel for the genomic DNA was created in Vector NTI.
[0037] FIG. 14 provides the 0.8% agarose gel electrophoresis results of genomic DNA extraction from vCP2383.3.1.1.1 and vCP2383.9.1.1.1, digested with BamH I, HindIII or XbaI.
[0038] FIG. 15 provides the Southern blot analysis of vCP2383 using an AHSV-4-VP5 probe.
[0039] FIG. 16 provides Western blot results of the analysis of recombinant vCP2383 indicating the expression of the AHSV9 VP5 protein.
[0040] FIG. 17 provides the immunoplaque results indicating 100% homogeneity of the vCP2383.3.1.1.1 population using mouse anti-AHSV VP5 mAb 10AE12 Passage 9 at a dilution of 1:100.
[0041] FIG. 18 provides a map of the primers used to amplify the entire C3L-H6 AHSV9 VP2-42K AHSV9 VP5-C3R fragment and the relevant SEQ ID NOs (27-31) for the recombinant vCP2383 sequences.
[0042] FIG. 19 provides the immunofluorescence results of anti-VP2 and anti-VP5 IFI from infected CEF cells.
[0043] FIGS. 20 A&B shows the results of western blot with infected and transfected CEF using anti-VP2 (A) and anti-VP5 (B).
[0044] FIG. 21 gives the results of the serum-virus neutralization test against AHSV-4 for 6 horses that were vaccinated using cpAHSV-4 (vCP2377). Results are shown for days 0, 28, and 42.
[0045] FIG. 22 shows the construction scheme for pJSY2247.2, the C3 donor plasmid for generation of an ALVAC recombinant expressing AHSV5-VP2 and VP5 proteins.
[0046] FIG. 23 provides the map and relevant SEQ ID NOs for pJSY2247.2 (pALVAC C3 AHSV5 H6 VP2 42K VP5) sequences.
[0047] FIG. 24 provides the in vitro recombination scheme for vCP2398 (ALVAC C3H6-synthetic AHSV5 VP2/42K-synthetic AHSV5 VP5).
[0048] FIG. 25 provides a theoretical restriction enzyme gel for the genomic vCP2398 DNA that was created in Vector NTI.
[0049] FIG. 26 provides an 0.8% agarose gel electrophoresis result of genomic DNA extraction from vCP2398.2.1.1 and 3.1.1, digested with BamHI, HindIII or PstI.
[0050] FIG. 27 provides the Southern blot analysis of vCP2398 using an AHSV5 VP2 specific probe.
[0051] FIG. 28 provides Western blot results of the analysis of recombinant vCP2398 indicating the expression of the AHSV5 VP5 protein.
[0052] FIG. 29 provides the immunoplaque results indicating 100% homogeneity of the vCP2383.2.1.1 population using mouse anti-AHSV VP5 mAb 10AE12 Passage at a dilution of 1:100.
[0053] FIG. 30 provides a map of the primers used to amplify the entire C3L-H6 AHSV5 VP2-42K AHSV5 VP5-C3R fragment for the recombinant vCP2398.
[0054] FIG. 31 provides 3 panels with AHSV challenge results from 8 vaccinated with vCP2377 (in part set forth by SEQ ID NO:17) and a control horse immunized with EIV-CP.
[0055] Panel A: Cycle threshold of qRT-PCR's for genes that encode AHSV NS2 and VP7 proteins (average of NS2 and VP7 profile shown). The presence of AHSV in the blood of the horse was determined by qRT-PCR assays that detect the individual genes encoding the VP7 and NS2 proteins of AHSV with samples being classified as positive if the fluorescence exceeded the threshold of 0.1 within a maximum of 40 cycles.
[0056] Panel B: Body temperature, IDEM
[0057] Panel C: Platelet count of 8 vaccinated with vCP2377 and an unvaccinated control horse after challenge with a virulent field strain of AHSV serotype 4.IDEM
[0058] FIG. 32 provides a chart that summarizes the SEQ ID NOs present in the sequence listing.
[0059] FIG. 33 provides a ClustalW alignment of AHSV-4/5/9 VP2 proteins (SEQ ID NOs:1, 44, 30).
[0060] FIG. 34 provides a ClustalW alignment of AHSV-4/5/9 VP5 proteins (SEQ ID NOs:2, 45, 31).
[0061] FIG. 35 provides a ClustalW alignment of synthetic AHSV-4-VP2 protein (SEQ ID NO:1) vs. the field isolate AHSV4 Jane Strain (SEQ ID NO:49). Percent identity is also indicated.
[0062] FIG. 36 provides a ClustalW alignment of synthetic AHSV-4-VP5 protein (SEQ ID NO:2) vs. the field isolate AHSV4 Jane Strain (SEQ ID NO:51). Percent identity is also indicated.
[0063] FIG. 37 provides a ClustalW alignment of synthetic AHSV-4-VP2 protein (SEQ ID NO:1) vs. multiple deposited AHSV-4-VP2 proteins (SEQ ID NOs:59-63). Percent identity table is provided.
[0064] FIG. 38 provides a ClustalW alignment of synthetic AHSV-4-VP5 protein (SEQ ID NO:2) vs. multiple deposited AHSV-4-VP5 proteins (SEQ ID NOs:52-58). Percent identity table is provided.
[0065] FIG. 39 provides a ClustalW alignment of codon-optimized AHSV4-VP2 (SEQ ID NO:04) vs. field isolate AHSV4-VP2 (SEQ ID NO:48). Percent identity is provided.
[0066] FIG. 40 provides a ClustalW alignment of codon-optimized AHSV4-VP5 (SEQ ID NO:05) vs. field isolate AHSV4-VP5 (SEQ ID NO:50). Percent identity is provided.
DETAILED DESCRIPTION
[0067] It is noted that in this disclosure and particularly in the claims and/or paragraphs, terms such as "comprises", "comprised", "comprising" and the like can have the meaning attributed to it in U.S. patent law; e.g., they can mean "includes", "included", "including", and the like; and that terms such as "consisting essentially of" and "consists essentially of" have the meaning ascribed to them in U.S. patent law, e.g., they allow for elements not explicitly recited, but exclude elements that are found in the prior art or that affect a basic or novel characteristic of the invention.
[0068] Unless otherwise noted, technical terms are used according to conventional usage. Definitions of common terms in molecular biology may be found in Benjamin Lewin, Genes V. published by Oxford University Press, 1994 (ISBN 0-19-854287-9); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0-632-02182-9); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 1-56081-569-8).
[0069] The singular terms "a," "an," and "the" include plural referents unless context clearly indicates otherwise. Similarly, the word "or" is intended to include "and" unless the context clearly indicate otherwise. The word "or" means any one member of a particular list and also includes any combination of members of that list.
[0070] The target species or subject (host) includes animal and human. The animal as used herein may be selected from the group consisting of equine (e.g., horse), canine (e.g., dogs, wolves, foxes, coyotes, jackals), feline (e.g., lions, tigers, domestic cats, wild cats, other big cats, and other felines including cheetahs and lynx), ovine (e.g., sheep), bovine (e.g., cattle), porcine (e.g., pig), avian (e.g., chicken, duck, goose, turkey, quail, pheasant, parrot, finches, hawk, crow, ostrich, emu and cassowary), primate (e.g., prosimian, tarsier, monkey, gibbon, ape), and fish. The term "animal" also includes an individual animal in all stages of development, including embryonic and fetal stages.
[0071] The terms "polypeptide" and "protein" are used interchangeably herein to refer to a polymer of consecutive amino acid residues.
[0072] The term "nucleic acid", "nucleotide", and "polynucleotide" refers to RNA or DNA and derivatives thereof, such as those containing modified backbones. It should be appreciated that the invention provides polynucleotides comprising sequences complementary to those described herein. Polynucleotides according to the invention can be prepared in different ways (e.g. by chemical synthesis, by gene cloning etc.) and can take various forms (e.g. linear or branched, single or double stranded, or a hybrid thereof, primers, probes etc.).
[0073] The term "gene" is used broadly to refer to any segment of polynucleotide associated with a biological function. Thus, genes or polynucleotides include introns and exons as in genomic sequence, or just the coding sequences as in cDNAs, such as an open reading frame (ORF), starting from the start codon (methionine codon) and ending with a termination signal (stop codon). Genes and polynucleotides can also include regions that regulate their expression, such as transcription initiation, translation and transcription termination. Thus, also included are promoters and ribosome binding regions (in general these regulatory elements lie approximately between 60 and 250 nucleotides upstream of the start codon of the coding sequence or gene; Doree S M et al.; Pandher K et al.; Chung J Y et al.), transcription terminators (in general the terminator is located within approximately 50 nucleotides downstream of the stop codon of the coding sequence or gene; Ward C K et al.). Gene or polynucleotide also refers to a nucleic acid fragment that expresses mRNA or functional RNA, or encodes a specific protein, and which includes regulatory sequences.
[0074] The term "immunogenic polypeptide" or "immunogenic fragment" as used herein refers to a polypeptide or a fragment of a polypeptide which comprises an allele-specific motif, an epitope or other sequence such that the polypeptide or the fragment will bind an MHC molecule and induce a cytotoxic T lymphocyte ("CTL") response, and/or a B cell response (for example, antibody production), and/or T-helper lymphocyte response, and/or a delayed type hypersensitivity (DTH) response against the antigen from which the immunogenic polypeptide or the immunogenic fragment is derived. A DTH response is an immune reaction in which T cell-dependent macrophage activation and inflammation cause tissue injury. A DTH reaction to the subcutaneous injection of antigen is often used as an assay for cell-mediated immunity.
[0075] By definition, an epitope is an antigenic determinant that is immunologically active in the sense that once administered to the host, it is able to evoke an immune response of the humoral (B cells) and/or cellular type (T cells). These are particular chemical groups or peptide sequences on a molecule that are antigenic. An antibody specifically binds a particular antigenic epitope on a polypeptide. Specific, non-limiting examples of an epitope include a tetra- to penta-peptide sequence in a polypeptide, a tri- to penta-glycoside sequence in a polysaccharide. In the animal most antigens will present several or even many antigenic determinants simultaneously. Such a polypeptide may also be qualified as an immunogenic polypeptide and the epitope may be identified as described further.
[0076] The term "purified" as used herein does not require absolute purity; rather, it is intended as a relative term. Thus, for example, a purified polypeptide preparation is one in which the polypeptide is more enriched than the polypeptide is in its natural environment. A polypeptide preparation is substantially purified such that the polypeptide represents several embodiments at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98%, of the total polypeptide content of the preparation. The same applies to polynucleotides. The polypeptides disclosed herein can be purified by any of the means known in the art.
[0077] A recombinant polynucleotide is one that has a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, for example, by genetic engineering techniques. In one embodiment, a recombinant polynucleotide encodes a fusion protein.
[0078] In one aspect, the present invention provides polypeptides from the African Horse Sickness Virus. In another aspect, the present invention provides a polypeptide having a sequence as set forth in SEQ ID NO: 1, 2, 20, 21, 30, 31, 35, 36, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, or 63, and variant or fragment thereof.
[0079] As used herein, the term "African Horse Sickness Virus protein or African Horse Sickness Virus polypeptide (AHSV VP)" may include AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, NS3, and their homologs, fragments and variants.
[0080] Homologs of viral proteins from African Horse Sickness virus are intended to be within the scope of the present invention. As used herein, the term "homologs" includes orthologs, analogs and paralogs. The term "analogs" refers to two polynucleotides or polypeptides that have the same or similar function, but that have evolved separately in unrelated organisms. The term "orthologs" refers to two polynucleotides or polypeptides from different species, but that have evolved from a common ancestral gene by speciation. Normally, orthologs encode polypeptides having the same or similar functions. The term "paralogs" refers to two polynucleotides or polypeptides that are related by duplication within a genome. Paralogs usually have different functions, but these functions may be related. Analogs, orthologs, and paralogs of a wild-type African Horse Sickness virus polypeptide can differ from the wild-type African Horse Sickness virus polypeptide by post-translational modifications, by amino acid sequence differences, or by both. In particular, homologs of the invention will generally exhibit at least 80-85%, 85-90%, 90-95%, or 95%, 96%, 97%, 98%, 99% sequence identity, with all or part of the wild-type African Horse Sickness virus polypeptide or polynucleotide sequences, and will exhibit a similar function.
[0081] In another aspect, the present invention provides an AHSV VP having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, 96%, 97%, 98% or 99% sequence identity to a polypeptide having a sequence as set forth in SEQ ID NO: 1, 2, 20, 21, 30, 31, 35, 36, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, or 63.
[0082] In yet another aspect, the present invention provides fragments and variants of the AHSV VPs identified above (SEQ ID NO: 1, 2, 20, 21, 30, 31, 35, 36, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, or 63) which may readily be prepared by one of skill in the art using well-known molecular biology techniques.
[0083] Variants are homologous AHSV VPs having an amino acid sequence at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence as set forth in SEQ ID NO: 1, 2, 20, 21, 30, 31, 35, 36, 44, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, or 63.
[0084] Variants include allelic variants. The term "allelic variant" refers to a polynucleotide or a polypeptide containing polymorphisms that lead to changes in the amino acid sequences of a protein and that exist within a natural population (e.g., a virus species or variety). Such natural allelic variations can typically result in 1-5% variance in a polynucleotide or a polypeptide. Allelic variants can be identified by sequencing the nucleic acid sequence of interest in a number of different species, which can be readily carried out by using hybridization probes to identify the same gene genetic locus in those species. Any and all such nucleic acid variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity of gene if interest, are intended to be within the scope of the invention.
[0085] A variant is any polypeptide from African Horse Sickness virus, capable of inducing in animals, such as equines, vaccinated with this polypeptide a specific cell-based immune response characterized by secretion of interferon gamma (IFN-gamma) upon stimulation by African Horse Sickness virus. Such IFN-gamma secretion may be demonstrated using in vitro methodology (i.e. QUANTIKINE® immunoassay from R&D Systems Inc. (catalog number# CAIF00); Djoba Siawaya J F et al.).
[0086] As used herein, the term "derivative" or "variant" refers to a polypeptide, or a nucleic acid encoding a polypeptide, that has one or more conservative amino acid variations or other minor modifications such that (1) the corresponding polypeptide has substantially equivalent function when compared to the wild type polypeptide or (2) an antibody raised against the polypeptide is immunoreactive with the wild-type polypeptide. These variants or derivatives include polypeptides having minor modifications of the African Horse Sickness virus polypeptide primary amino acid sequences that may result in peptides which have substantially equivalent activity as compared to the unmodified counterpart polypeptide. Such modifications may be deliberate, as by site-directed mutagenesis, or may be spontaneous. The term "variant" further contemplates deletions, additions and substitutions to the sequence, so long as the polypeptide functions to produce an immunological response as defined herein.
[0087] An immunogenic fragment of an African Horse Sickness virus polypeptide includes at least 8, 10, 15, or 20 consecutive amino acids, at least 21 amino acids, at least 23 amino acids, at least 25 amino acids, or at least 30 amino acids of an African Horse Sickness virus polypeptide having a sequence as set forth in SEQ ID NO: 1, 2, 20, 21, 30, 31, 35, 36, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or variants thereof. In another embodiment, a fragment of an African Horse Sickness virus includes a specific antigenic epitope found on a full-length African Horse Sickness virus polypeptide.
[0088] Procedures to determine fragments of polypeptide and epitope such as, generating overlapping peptide libraries (Hemmer B. et al.), Pepscan (Geysen H. M. et al., 1984; Geysen H. M. et al., 1985; Van der Zee R. et al.; Geysen H. M.) and algorithms (De Groot A. et al.; Hoop T. et al.; Parker K. et al.), can be used in the practice of the invention, without undue experimentation. Generally, antibodies specifically bind a particular antigenic epitope. Specific, non-limiting examples of epitopes include a tetra- to penta-peptide sequence in a polypeptide, a tri- to penta-glycoside sequence in a polysaccharide. In animals most antigens will present several or even many antigenic determinants simultaneously. Preferably wherein the epitope is a protein fragment of a larger molecule it will have substantially the same immunological activity as the total protein.
[0089] In another aspect, the present invention provides a polynucleotide encoding an AHSV VP, such as a polynucleotide encoding an AHSV VP having a sequence as set forth in SEQ ID NO: 1, 2, 20, 21, 30, 31, 35, 36, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63. In yet another aspect, the present invention provides a polynucleotide encoding a polypeptide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, 96%, 97%, 98% or 99% sequence identity to a polypeptide having a sequence as set forth in SEQ ID NO: 1, 2, 20, 21, 30, 31, 35, 36, 44, 45, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, or a conservative variant, an allelic variant, a homolog or an immunogenic fragment comprising at least eight or at east ten consecutive amino acids of one of these polypeptides, or a combination of these polypeptides.
[0090] In another aspect, the present invention provides a polynucleotide having a nucleotide sequence as set forth in SEQ ID NO: 3, 4, 5, 6, 17, 18, 19, 22, 27, 28, 29, 32, 33, 34, 41, 42, 43, 48, 50, or a variant thereof. In yet another aspect, the present invention provides a polynucleotide having at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 95%, 96%, 97%, 98% or 99% sequence identity to one of a polynucleotide having a sequence as set forth in SEQ ID NO: 3, 4, 5, 6, 17, 18, 19, 22, 27, 28, 29, 32, 33, 34, 41, 42, 43, 48, 50, or a variant thereof.
[0091] These polynucleotides may include DNA, cDNA, and RNA sequences that encode an AHSV VP. It is understood that all polynucleotides encoding an African Horse Sickness virus polypeptide are also included herein, as long as they encode a polypeptide with the recognized activity, such as the binding to an antibody that recognizes the polypeptide, the induction of an immune response to the polypeptide, or an effect on survival of African Horse Sickness when administered to a subject exposed to African Horse Sickness virus or who undergoes a decrease in a sign or a symptom of African Horse Sickness.
[0092] The polynucleotides of the disclosure include sequences that are degenerate as a result of the genetic code, e.g., optimized codon usage for a specific host. As used herein, "optimized" refers to a polynucleotide that is genetically engineered to increase its expression in a given species. To provide optimized polynucleotides coding for African Horse Sickness polypeptides, the DNA sequence of the African Horse Sickness virus protein gene can be modified to 1) comprise codons preferred by highly expressed genes in a particular species; 2) comprise an A+T or G+C content in nucleotide base composition to that substantially found in said species; 3) form an initiation sequence of said species; or 4) eliminate sequences that cause destabilization, inappropriate polyadenylation, degradation and termination of RNA, or that form secondary structure hairpins or RNA splice sites. Increased expression of African Horse Sickness protein in said species can be achieved by utilizing the distribution frequency of codon usage in eukaryotes and prokaryotes, or in a particular species. The term "frequency of preferred codon usage" refers to the preference exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. There are 20 natural amino acids, most of which are specified by more than one codon. Therefore, all degenerate nucleotide sequences are included in the disclosure as long as the amino acid sequence of the African Horse Sickness virus polypeptide encoded by the nucleotide sequence is functionally unchanged.
[0093] The sequence identity between two amino acid sequences may be established by the NCBI (National Center for Biotechnology Information) pairwise blast and the blosum62 matrix, using the standard parameters (see, e.g., the BLAST or BLASTX algorithm available on the "National Center for Biotechnology Information" (NCBI, Bethesda, Md., USA) server, as well as in Altschul et al.; and thus, this document speaks of using the algorithm or the BLAST or BLASTX and BLOSUM62 matrix by the term "blasts").
[0094] Sequence identity between two nucleotide sequences also may be determined using the "Align" program of Myers and Miller, ("Optimal Alignments in Linear Space", CABIOS 4, 11-17, 1988) and available at NCBI, as well as the same or other programs available via the Internet at sites thereon such as the NCBI site.
[0095] Alternatively or additionally, the term "identity", for instance, with respect to a nucleotide or amino acid sequence, may indicate a quantitative measure of homology between two sequences. The percent sequence homology may be calculated as: (Nref-Ndif)*100/Nref, wherein Ndif is the total number of non-identical residues in the two sequences when aligned and wherein Nref is the number of residues in one of the sequences. Hence, the DNA sequence AGTCAGTC will have a sequence identity of 75% with the sequence AATCAATC (Nref=8; Ndif=2).
[0096] Alternatively or additionally, "identity" with respect to sequences can refer to the number of positions with identical nucleotides or amino acids divided by the number of nucleotides or amino acids in the shorter of the two sequences wherein alignment of the two sequences can be determined in accordance with the Wilbur and Lipman algorithm (Wilbur and Lipman), for instance, using a window size of 20 nucleotides, a word length of 4 nucleotides, and a gap penalty of 4, and computer-assisted analysis and interpretation of the sequence data including alignment can be conveniently performed using commercially available programs (e.g., Intelligenetics® Suite, Intelligenetics Inc. CA). When RNA sequences are said to be similar, or have a degree of sequence identity or homology with DNA sequences, thymidine (T) in the DNA sequence is considered equal to uracil (U) in the RNA sequence. Thus, RNA sequences are within the scope of the invention and can be derived from DNA sequences, by thymidine (T) in the DNA sequence being considered equal to uracil (U) in RNA sequences.
[0097] The sequence identity or sequence similarity of two amino acid sequences, or the sequence identity between two nucleotide sequences can be determined using Vector NTI software package (Invitrogen, 1600 Faraday Ave., Carlsbad, Calif.).
[0098] The following documents provide algorithms for comparing the relative identity or homology of sequences, and additionally or alternatively with respect to the foregoing, the teachings in these references can be used for determining percent homology or identity: Needleman S B and Wunsch C D; Smith T F and Waterman M S; Smith T F, Waterman M S and Sadler J R; Feng D F and Dolittle R F; Higgins D G and Sharp P M; Thompson J D, Higgins D G and Gibson T J; and, Devereux J, Haeberlie P and Smithies O. And, without undue experimentation, the skilled artisan can consult with many other programs or references for determining percent homology.
[0099] The African Horse Sickness virus polynucleotides may include a recombinant DNA which is incorporated into a vector, into an autonomously replicating plasmid or virus, or into the genomic DNA of a prokaryote or eukaryote, or which exists as a separate molecule (for example, a cDNA) independent of other sequences.
[0100] Recombinant vectors disclosed herein may include a polynucleotide encoding a polypeptide, a variant thereof or a fragment thereof. Recombinant vectors may include plasmids and viral vectors and may be used for in vitro or in vivo expression. Recombinant vectors may include further a signal peptide. Signal peptides are short peptide chain (3-60 amino acids long) that direct the post-translational transport of a protein (which are synthesized in the cytosol) to certain organelles such as the nucleus, mitochondrial matrix, endoplasmic reticulum, chloroplast, apoplast and peroxisome. The signal sequence may be the natural sequence from the African Horse Sickness virus protein or a peptide signal from a secreted protein e.g. the signal peptide from the tissue plasminogen activator protein (tPA), in particular the human tPA (S. Friezner Degen et al.; R. Rickles et al.; D. Berg. et al.), or the signal peptide from the Insulin-like growth factor 1 (IGF1), in particular the equine IGF1 (K. Otte et al.), the canine IGF1 (P. Delafontaine et al.), the feline IGF1 (WO03/022886), the bovine IGF1 (S. Lien et al.), the porcine IGF1 (M. Muller et al.), the chicken IGF1 (Y. Kajimoto et al.), the turkey IGF1 (GenBank accession number AF074980). The signal peptide from IGF1 may be natural or optimized which may be achieved by removing cryptic splice sites and/or by adapting the codon usage. Upon translation, the unprocessed polypeptide may be cleaved at a cleavage site to lead to the mature polypeptide. The cleavage site may be predicted using the method of Von Heijne (1986).
[0101] A plasmid may include a DNA transcription unit, for instance a nucleic acid sequence that permits it to replicate in a host cell, such as an origin of replication (prokaryotic or eukaryotic). A plasmid may also include one or more selectable marker genes and other genetic elements known in the art. Circular and linear forms of plasmids are encompassed in the present disclosure.
[0102] In a further aspect, the present invention relates to a vaccine composition or a pharmaceutical composition for inducing an immunological or protective response in a host animal inoculated with the composition. The composition includes a carrier or diluent or excipient and/or adjuvant, and a recombinant vector, such as a recombinant virus. The recombinant virus can be a modified recombinant virus; for instance, a recombinant of a virus that has inactivated therein (e.g., disrupted or deleted) virus-encoded genetic functions. A modified recombinant virus can have inactivated therein virus-encoded nonessential genetic functions; for instance, so that the recombinant virus has attenuated virulence and enhanced safety. The virus used in the composition according to the present invention is advantageously a poxvirus, such as a vaccinia virus or raccoonpox virus or preferably an avipox virus, e.g., a fowlpox virus or more preferably a canarypox virus; and more advantageously, an ALVAC virus. It is advantageous that the recombinant vector or recombinant virus have expression without replication in mammalian species. In another aspect, the present invention relates to recombinant vectors comprising at least one nucleic acid molecule encoding one or more African Horse Sickness Virus (AHSV) antigen(s). It further relates to vaccines or immunogenic compositions comprising an effective amount to elicit a protective immune response in a subject of a recombinant avipox vector comprising at least one nucleic acid molecule encoding one or more African Horse Sickness Virus (AHSV) antigen(s). It further relates to corresponding methods of vaccinating a subject against African Horse Sickness Virus.
[0103] The pharmaceutically acceptable vehicles or excipients of use are conventional. Remington's Pharmaceutical Sciences, by E. W. Martin, Mack Publishing Co., Easton, Pa., 15th Edition (1975), describes compositions and formulations suitable for pharmaceutical delivery of the polypeptides, plasmids, viral vectors herein disclosed. In general, the nature of the vehicle or excipient will depend on the particular mode of administration being employed. For instance, parenteral formulations usually comprise injectable fluids that include pharmaceutically and physiologically acceptable fluids such as water, physiological saline, balanced salt solutions, aqueous dextrose, glycerol or the like as a vehicle. For solid compositions (for example, freeze-dried pastille, powder, pill, tablet, or capsule forms), conventional non-toxic solid vehicles or excipients can include, for example, pharmaceutical grades of mannitol, lactose, starch, or magnesium stearate. In addition to biologically neutral vehicles or excipients, immunogenic compositions to be administered can contain minor amounts of non-toxic auxiliary substances, such as wetting or emulsifying agents, preservatives, and pH buffering agents and the like, for example sodium acetate or sorbitan monolaurate.
[0104] The compositions or vaccines according to the instant invention may include vectors comprising one or more polynucleotide(s) encoding one or more AHSV VP(s) according to the present invention as described above.
[0105] Multiple insertions may be done in the same vector using different insertion sites or using the same insertion site. When the same insertion site is used, each polynucleotide insert, which may be any polynucleotide of the present invention aforementioned, may be inserted under the control of the same and/or different promoters. The insertion can be done tail-to-tail, head-to-head, tail-to-head, or head-to-tail. IRES elements (Internal Ribosome Entry Site, see EP 0803573) can also be used to separate and to express multiple inserts operably linked to the same and/or different promoters.
[0106] In one embodiment, the present invention relates to an expression vector comprising one or more polynucleotide(s) aforementioned. The expression vector may be an in vivo expression vector, or an in vitro expression vector.
[0107] In one embodiment, the recombinant vector or virus may include one or more heterologous nucleic acid molecule(s) that encodes one or more African Horse Sickness Virus (AHSV) antigen(s), immunogens, including epitopes or fragments thereof. The recombinant vector or modified recombinant virus may include, e.g., within the virus genome, such as within a non-essential region of the virus genome, a heterologous DNA sequence that encodes an immunogenic protein, e.g., derived from African Horse Sickness Virus viral protein(s), e.g., AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, NS3 or any combination thereof, preferably AHSV VPs 2 and 5, (wherein the immunogenic protein can be an epitope of interest, e.g., an epitope of interest from a protein expressed by any one or more of AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, NS3, e.g., an epitope of interest from AHSV VPs 2 and/or 5). The vector or virus is advantageously a poxvirus, such as a vaccinia virus or preferably an avipox virus, e.g., a fowlpox virus or more preferably a canarypox virus; and more advantageously, an ALVAC virus.
[0108] In another embodiment, the heterologous nucleic acid molecule that encodes one or more African Horse Sickness Virus (AHSV) antigen(s), immunogens, including epitopes or fragments thereof, e.g., derived from African Horse Sickness Virus viral protein(s), e.g., AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, NS3 or any combination thereof, preferably AHSV VPs 2 and 5, (wherein the immunogenic protein can be an epitope of interest, e.g., an epitope of interest from a protein expressed by any one or more of AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, or NS3, e.g., an epitope of interest from AHSV VPs 2 and/or 5) is operably linked to a promoter sequence and optionally to an enhancer. In an advantageous embodiment, the promoter sequence is selected from the group consisting of H6 vaccinia promoter, I3L vaccinia promoter, 42K poxyiral promoter, 7.5K vaccinia promoter, and Pi vaccinia promoter. More advantageously, the promoter sequence is the H6 vaccinia promoter or the 42K poxyiral promoter. More preferably, VP2 is operably linked to the H6 vaccinia promoter and VP5 is operably linked to the 42K poxyiral promoter.
[0109] In another embodiment, the heterologous nucleic acid molecule that encodes one or more African Horse Sickness Virus (AHSV) antigen(s), immunogens, including epitopes or fragments thereof, e.g., derived from African Horse Sickness Virus viral protein(s), e.g., AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, NS3, or any combination thereof, preferably AHSV VPs 2 and 5, (wherein the immunogenic protein can be an epitope of interest, e.g., an epitope of interest from a protein expressed by any one or more of AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, or NS3, e.g., an epitope of interest from AHSV VPs 2 and/or 5) is inserted into a vector comprising an insertion loci where in said loci comprise C5 and/or C6 and/or C3, and wherein the flanking sequences of the C6, C5 and/or C3 insertion loci promote homologous recombination of the African Horse Sickness Virus antigens with the cognate insertion locus.
[0110] In another embodiment, the heterologous nucleic acid molecule that encodes one or more African Horse Sickness Virus (AHSV) antigen(s), immunogens, including epitopes or fragments thereof, e.g., derived from African Horse Sickness Virus viral protein(s), e.g., AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, NS3, or any combination thereof, preferably AHSV VPs 2 and 5, (wherein the immunogenic protein can be an epitope of interest, e.g., an epitope of interest from a protein expressed by any one or more of AHSV VP1, VP2, VP3, VP4, NS1, VP5, VP6, VP7, NS2, or NS3, e.g., an epitope of interest from AHSV VPs 2 and/or 5) is inserted into a vector comprising an insertion loci where in said loci comprise C5 and/or C6 and/or C3, and wherein the flanking sequences of the C6, C5 and/or C3 insertion loci promote homologous recombination of the African Horse Sickness Virus antigens with the cognate insertion locus further wherein the flanking sequences comprise C3L and C3R open reading frames of avipox.
[0111] In another embodiment, the avipox vector is vCP2377 or vCP2383 or vCP2398.
[0112] The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, bacteriology, recombinant DNA technology, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Sambrook, et al. (1989); 1985); (M. J. Gait ed. 1984); (B. D. Hames & S. J. Higgins eds. 1984); (R. K. Freshney ed. 1986); (IRL press, 1986); Perbal, B., (1984); t (D. M. Weir and C. C. Blackwell eds., 1986.
[0113] In one aspect, the present invention provides a recombinant vector, e.g., virus such as a recombinant poxvirus containing therein a DNA sequence from African Horse Sickness Virus, e.g., in the virus (such as poxvirus) genome, advantageously a non-essential region of the virus, e.g., poxvirus genome. The poxvirus can be a vaccinia virus such as a NYVAC or NYVAC-based virus; and, the poxvirus is advantageously an avipox virus, such as fowlpox virus, especially an attenuated fowlpox virus, e.g., TROVAC, or a canarypox virus, preferably an attenuated canarypox virus, such as ALVAC. However, the vector in the invention may be any suitable recombinant virus or viral vector, such as a poxvirus (e.g., vaccinia virus, avipox virus, canarypox virus, fowlpox virus, raccoonpox virus, swinepox virus, etc.), adenovirus (e.g., canine adenovirus), herpesvirus, baculovirus, retrovirus, etc. (as in documents incorporated herein by reference); or the vector may be a plasmid.
[0114] The recombinant virus can be a modified recombinant virus; for instance, a recombinant of a virus that has inactivated therein (e.g., disrupted or deleted) virus-encoded genetic functions. A modified recombinant virus can have inactivated therein virus-encoded nonessential genetic functions; for instance, so that the recombinant virus has attenuated virulence and enhanced safety. The virus used in the composition according to the present invention is advantageously a poxvirus, such as a vaccinia virus or preferably an avipox virus, e.g., a fowlpox virus or more preferably a canarypox virus; and more advantageously, an ALVAC virus. It is advantageous that the recombinant vector or recombinant virus have expression without replication in mammalian species.
[0115] In one particular embodiment the viral vector is a poxvirus, e.g. a vaccinia virus or an attenuated vaccinia virus, (for instance, MVA, a modified Ankara strain obtained after more than 570 passages of the Ankara vaccine strain on chicken embryo fibroblasts; see Stickl & Hochstein-Mintzel, Munch. Med. Wschr., 1971, 113, 1149-1153; Sutter et al., Proc. Natl. Acad. Sci. U.S.A., 1992, 89, 10847-10851; available as ATCC VR-1508; or NYVAC, see U.S. Pat. No. 5,494,807, for instance, Examples 1 to 6 and et seq of U.S. Pat. No. 5,494,807 which discuss the construction of NYVAC, as well as variations of NYVAC with additional ORFs deleted from the Copenhagen strain vaccinia virus genome, as well as the insertion of heterologous coding nucleic acid molecules into sites of this recombinant, and also, the use of matched promoters; see also WO96/40241), an avipox virus or an attenuated avipox virus (e.g., canarypox, fowlpox, dovepox, pigeonpox, quailpox, ALVAC or TROVAC; see, e.g., U.S. Pat. Nos. 5,505,941, 5,494,807), swinepox, raccoonpox, camelpox, or myxomatosis virus.
[0116] Recombinant poxviruses can be constructed in two steps known in the art and analogous to the methods for creating synthetic recombinants of poxviruses such as the vaccinia virus and avipox virus described in U.S. Pat. Nos. 4,769,330; 4,722,848; 4,603,112; 5,110,587; 5,174,993; 5,494,807; 5,942,235, and 5,505,941, the disclosures of which are incorporated herein by reference. Alternatively, methods for making and/or administering a vector or recombinants or plasmid for expression of gene products of genes of the invention either in vivo or in vitro can be any desired method, e.g., a method which is by or analogous to the methods disclosed in, or disclosed in documents cited in: U.S. Pat. Nos. 6,130,066, 5,494,807, 5,514,375, 5,744,140, 5,744,141, 5,756,103, 5,762,938, 5,766,599, 5,990,091, 6,004,777, 6,130,066, 6,497,883, 6,464,984, 6,451,770, 6,391,314, 6,387,376, 6,376,473, 6,368,603, 6,348,196, 6,306,400, 6,228,846, 6,221,362, 6,217,883, 6,207,166, 6,207,165, 6,159,477, 6,153,199, 6,090,393, 6,074,649, 6,045,803, 6,033,670, 6,485,729, 6,103,526, 6,224,882, 6,312,682, 6,312,683, 6,348,450, 4,603,112; 4,769,330; 5,174,993; 5,505,941; 5,338,683; 5,494,807; 4,394,448; 4,722,848; 4,745,051; 4,769,331; 5,591,639; 5,589,466; 4,945,050; 5,677,178; 5,591,439; 5,552,143; 5,580,859; WO 94/16716; WO 96/39491; WO91/11525; WO 98/33510; WO 90/01543; EP 0 370 573; EP 265785; (Paoletti 1996); (Moss 1996); Richardson (Ed) (1995); (Smith, Summers et al. 1983); (Pennock, Shoemaker et al. 1984); (Roizman 1996); (Andreansky, He et al. 1996); (Robertson, Ooka et al. 1996); (Frolov, Hoffman et al. 1996); (Kitson, Burke et al. 1991); (Ballay, Levrero et al. 1985); (Graham 1990); (Prevec, Schneider et al. 1989); (Feigner, Kumar et al. 1994); (Ulmer, Donnelly et al. 1993); (McClements, Armstrong et al. 1996); (Ju, Edelstein et al. 1998); and (Robinson and Torres 1997).
[0117] Elements for the expression of the polynucleotide or polynucleotides are advantageously present in an inventive vector. In minimum manner, this comprises, consists essentially of, or consists of an initiation codon (ATG), a stop codon and a promoter, and optionally also a polyadenylation sequence for certain vectors such as plasmid and certain viral vectors, e.g., viral vectors other than poxviruses. When the polynucleotide encodes a protein fragment, e.g., advantageously, in the vector, an ATG is placed at 5' of the reading frame and a stop codon is placed at 3'. Other elements for controlling expression may be present, such as enhancer sequences, stabilizing sequences and signal sequences permitting the secretion of the protein.
[0118] Patent applications WO 90/11092, WO 93/19183, WO 94/21797 and WO 95/20660 have made use of the recently developed technique of polynucleotide vaccines. It is known that these vaccines use a plasmid capable of expressing, in the host cells, the antigen inserted into the plasmid. All routes of administration have been proposed (intraperitoneal, intravenous, intramuscular, transcutaneous, intradermal, mucosal and the like). Various means of vaccination can also be used, such as DNA deposited at the surface of gold particles and projected so as to penetrate into the animal's skin (Tang et al., 1992) and liquid jet injectors which make it possible to transfect the skin, muscle, fatty tissues as well as the mammary tissues (Furth et al., 1992). (See also U.S. Pat. Nos. 5,846,946, 5,620,896, 5,643,578, 5,580,589, 5,589,466, 5,693,622, and 5,703,055; Ulmer, J. B., et al., 1993; Robinson et al., 1997; Luke et al. 1997; Norman et al. 1997; Bourne et al., 1996; and, note that generally a plasmid for a vaccine or immunological composition can comprise DNA encoding an antigen operatively linked to regulatory sequences which control expression or expression and secretion of the antigen from a host cell, e.g., a mammalian cell; for instance, from upstream to downstream, DNA for a promoter, DNA for a eukaryotic leader peptide for secretion, DNA for the antigen, and DNA encoding a terminator.)
[0119] According to another embodiment of the invention, the poxvirus vector is a canarypox virus or a fowlpox virus vector, advantageously an attenuated canarypox virus or fowlpox virus. In this regard, reference is made to the canarypox available from the ATCC under access number VR-111. Attenuated canarypox viruses are described in U.S. Pat. No. 5,756,103 (ALVAC) and WO01/05934. Numerous fowlpox virus vaccination strains are also available, e.g. the DIFTOSEC CT strain marketed by MERIAL and the NOBILIS VARIOLE vaccine marketed by INTERVET; and, reference is also made to U.S. Pat. No. 5,766,599 which pertains to the attenuated fowlpox strain TROVAC.
[0120] When the expression vector is a vaccinia virus, insertion site or sites for the polynucleotide or polynucleotides to be expressed can be at the thymidine kinase (TK) gene or insertion site, the hemagglutinin (HA) gene or insertion site, the region encoding the inclusion body of the A type (ATI); see also documents cited herein, especially those pertaining to vaccinia virus. In the case of canarypox, the insertion site or sites can be ORF(s) C3, C5 and/or C6; see also documents cited herein, especially those pertaining to canarypox virus. In the case of fowlpox, the insertion site or sites can be ORFs F7 and/or F8; see also documents cited herein, especially those pertaining to fowlpox virus. The insertion site or sites for MVA virus area can be as in various publications, including Carroll M. W. et al., Vaccine, 1997, 15 (4), 387-394; Stittelaar K. J. et al., J. Virol., 2000, 74 (9), 4236-4243; Sutter G. et al., 1994, Vaccine, 12 (11), 1032-1040; and, in this regard it is also noted that the complete MVA genome is described in Antoine G., Virology, 1998, 244, 365-396, which enables the skilled artisan to use other insertion sites or other promoters.
[0121] In another embodiment of the present invention the polynucleotide to be expressed is inserted under the control of a specific poxvirus promoter, e.g., the vaccinia promoter 7.5 kDa (Cochran et al., J. Virology, 1985, 54, 30-35), the vaccinia promoter I3L (Riviere et al., J. Virology, 1992, 66, 3424-3434), the vaccinia promoter HA (Shida, Virology, 1986, 150, 451-457), the cowpox promoter ATI (Funahashi et al., J. Gen. Virol., 1988, 69, 35-47), the vaccinia promoter H6 (Taylor J. et al., Vaccine, 1988, 6, 504-508; Guo P. et al. J. Virol., 1989, 63, 4189-4198; Perkus M. et al., J. Virol., 1989, 63, 3829-3836), inter alia.
[0122] In another embodiment the viral vector is an adenovirus, such as a human adenovirus (HAV) or a canine adenovirus (CAV).
[0123] The recombinant viral vector-based vaccine may be combined with fMLP (N-formyl-methionyl-leucyl-phenylalanine; U.S. Pat. No. 6,017,537) and/or CARBOMER adjuvant (Pharmeuropa Vol.)
[0124] In another embodiment the viral vector may be, but is not limited to, an adenovirus of humans, porcines, opines, bovines, or avians. For the human adenovirus, in particular a serotype 5 adenovirus, rendered incompetent for replication by a deletion in the E1 region of the viral genome, in particular from about nucleotide 459 to about nucleotide 3510 by reference to the sequence of the hAd5 disclosed in GenBank under the accession number M73260 and in the referenced publication J. Chroboczek et al Virol. 1992, 186, 280-285. The deleted adenovirus is propagated in E1-expressing 293 (F. Graham et al J. Gen. Virol. 1977, 36, 59-72) or PER cells, in particular PER.C6 (F. Falloux et al Human Gene Therapy 1998, 9, 1909-1917). The human adenovirus can be deleted in the E3 region, in particular from about nucleotide 28592 to about nucleotide 30470. The deletion in the E1 region can be done in combination with a deletion in the E3 region (see, e.g. J. Shriver et al. Nature, 2002, 415, 331-335, F. Graham et al Methods in Molecular Biology Vol 0.7: Gene Transfer and Expression Protocols Edited by E. Murray, The Human Press Inc, 1991, p 109-128; Y. Ilan et al Proc. Natl. Acad. Sci. 1997, 94, 2587-2592; U.S. Pat. No. 6,133,028; U.S. Pat. No. 6,692,956; S. Tripathy et al Proc. Natl. Acad. Sci. 1994, 91, 11557-11561; B. Tapnell Adv. Drug Deliv. Rev. 1993, 12, 185-199; X. Danthinne et al Gene Therapy 2000, 7, 1707-1714; K. Berkner Bio Techniques 1988, 6, 616-629; K. Berkner et al Nucl. Acid Res. 1983, 11, 6003-6020; C. Chavier et al J. Virol. 1996, 70, 4805-4810). The insertion sites can be the E1 and/or E3 loci (region) eventually after a partial or complete deletion of the E1 and/or E3 regions. When the expression vector is an adenovirus, the polynucleotide to be expressed may be inserted under the control of a promoter functional in eukaryotic cells, such as a strong promoter, such as a cytomegalovirus immediate-early gene promoter (CMV-IE promoter), in particular the enhancer/promoter region from about nucleotide -734 to about nucleotide +7 in M. Boshart et al Cell 1985, 41, 521-530 or the enhancer/promoter region from the pCI vector from Promega Corp. The CMV-IE promoter is advantageously of murine or human origin. The promoter of the elongation factor 1α can also be used. A muscle specific promoter can also be used (X. Li et al Nat. Biotechnol. 1999, 17, 241-245). Strong promoters are also discussed herein in relation to plasmid vectors. In one embodiment, a splicing sequence can be located downstream of the enhancer/promoter region. For example, the intron 1 isolated from the CMV-IE gene (R. Stenberg et al J. Virol. 1984, 49, 190), the intron isolated from the rabbit or human β-globin gene, in particular the intron 2 from the β-globin gene, the intron isolated from the immunoglobulin gene, a splicing sequence from the SV40 early gene or the chimeric intron sequence isolated from the pCI vector from Promega Corp. comprising the human β-globin gene donor sequence fused to the mouse immunoglobulin acceptor sequence (from about nucleotide 890 to about nucleotide 1022 in Genbank under the accession number CVU47120). A poly(A) sequence and terminator sequence can be inserted downstream the polynucleotide to be expressed, e.g. a bovine growth hormone releasing hormone gene, in particular from about nucleotide 2339 to about nucleotide 2550 in Genbank under the accession number BOVGHRH (AF242855), a rabbit β-globin gene or a SV40 late gene polyadenylation signal.
[0125] In another embodiment the viral vector is a canine adenovirus, in particular a CAV-2 (see, e.g. L. Fischer et al. Vaccine, 2002, 20, 3485-3497; U.S. Pat. No. 5,529,780; U.S. Pat. No. 5,688,920; PCT Application No. WO95/14102). For CAV, the insertion sites can be in the E3 region and/or in the region located between the E4 region and the right ITR region (see U.S. Pat. No. 6,090,393; U.S. Pat. No. 6,156,567). In one embodiment the insert is under the control of a promoter, such as a cytomegalovirus immediate-early gene promoter (CMV-IE promoter) or a promoter already described for a human adenovirus vector. A poly(A) sequence and terminator sequence can be inserted downstream the polynucleotide to be expressed, e.g. a bovine growth hormone gene or a rabbit β-globin gene polyadenylation signal.
[0126] In another particular embodiment the viral vector is a herpesvirus such as an equine herpesvirus (EHV1-5), a porcine herpesvirus (PRV), a canine herpesvirus (CHV) or a feline herpesvirus (FHV). The insertion sites may be in the thymidine kinase gene, in the ORF3, or in the UL43 ORF (for CHV see U.S. Pat. No. 6,159,477). In one embodiment the polynucleotide to be expressed is inserted under the control of a promoter functional in eukaryotic cells, advantageously a CMV-IE promoter (murine or human). A poly(A) sequence and terminator sequence can be inserted downstream the polynucleotide to be expressed, e.g. bovine growth hormone or a rabbit β-globin gene polyadenylation signal.
[0127] More generally, the present invention encompasses in vivo expression vectors including any plasmid (EP-A2-1001025; Chaudhuri P.) containing and expressing in vivo in a host the polynucleotide or gene of African Horse Sickness virus polypeptide, variant thereof or fragment thereof and elements necessary for its in vivo expression.
[0128] According to a yet further embodiment of the invention, the expression vector is a plasmid vector or a DNA plasmid vector, in particular an in vivo expression vector. In a specific, non-limiting example, the pVR1020 or 1012 plasmid (VICAL Inc.; Luke C. et al., Journal of Infectious Diseases, 1997, 175, 91-97; Hartikka J. et al., Human Gene Therapy, 1996, 7, 1205-1217, see, e.g., U.S. Pat. Nos. 5,846,946 and 6,451,769) can be utilized as a vector for the insertion of a polynucleotide sequence. The pVR1020 plasmid is derived from pVR1012 and contains the human tPA signal sequence. In one embodiment the human tPA signal comprises from amino acid M(1) to amino acid S(23) in Genbank under the accession number HUMTPA14. In another specific, non-limiting example, the plasmid utilized as a vector for the insertion of a polynucleotide sequence can contain the signal peptide sequence of equine IGF1 from amino acid M(24) to amino acid A(48) in Genbank under the accession number U28070. Additional information on DNA plasmids which may be consulted or employed in the practice are found, for example, in U.S. Pat. Nos. 6,852,705; 6,818,628; 6,586,412; 6,576,243; 6,558,674; 6,464,984; 6,451,770; 6,376,473 and 6,221,362.
[0129] As used herein, the term "plasmid" may include any DNA transcription unit comprising a polynucleotide according to the invention and the elements necessary for its in vivo expression in a cell or cells of the desired host or target; and, in this regard, it is noted that a supercoiled or non-supercoiled, circular plasmid, as well as a linear form, are intended to be within the scope of the invention. The plasmids may also comprise other transcription-regulating elements such as, for example, stabilizing sequences of the intron type. In several embodiments, the plasmids may include the first intron of CMV-IE (WO 89/01036), the intron II of the rabbit beta-globin gene (van Ooyen et al.), the signal sequence of the protein encoded by the tissue plasminogen activator (tPA; Montgomery et al.), and/or a polyadenylation signal (polyA), in particular the polyA of the bovine growth hormone (bGH) gene (U.S. Pat. No. 5,122,458) or the polyA of the rabbit beta-globin gene or of SV40 virus.
[0130] Each plasmid comprises or contains or consists essentially of, in addition to the polynucleotide encoding an AHSV antigen, epitope or immunogen, optionally fused with a heterologous peptide sequence, variant, analog or fragment, operably linked to a promoter or under the control of a promoter or dependent upon a promoter. In general, it is advantageous to employ a strong promoter functional in eukaryotic cells. The preferred strong promoter is the immediate early cytomegalovirus promoter (CMV-IE) of human or murine origin, or optionally having another origin such as the rat or guinea pig. The CMV-IE promoter can comprise the actual promoter part, which may or may not be associated with the enhancer part. Reference can be made to EP-A-260 148, EP-A-323 597, U.S. Pat. Nos. 5,168,062, 5,385,839, and 4,968,615, as well as to PCT Application No WO87/03905. The CMV-IE promoter is advantageously a human CMV-IE (Boshart M. et al., Cell., 1985, 41, 521-530) or murine CMV-IE. A strong cellular promoter that may be usefully employed in the practice of the invention is the promoter of a gene of the cytoskeleton, such as the desmin promoter (Kwissa M. et al.), or the actin promoter (Miyazaki J. et al.). Functional sub fragments of these promoters, i.e., portions of these promoters that maintain adequate promoter activity, are included within the present invention, e.g. truncated CMV-IE promoters according to WO 98/00166 or U.S. Pat. No. 6,156,567 and may be used in the practice of the invention. A promoter useful in the practice of the invention consequently may include derivatives and/or sub fragments of a full-length promoter that maintain adequate promoter activity and hence function as a promoter, and which may advantageously have promoter activity that is substantially similar to that of the actual or full-length promoter from which the derivative or sub fragment is derived, e.g., akin to the activity of the truncated CMV-IE promoters of U.S. Pat. No. 6,156,567 in comparison to the activity of full-length CMV-IE promoters. Thus, a CMV-IE promoter in the practice of the invention may comprise or consist essentially of or consist of the promoter portion of the full-length promoter and/or the enhancer portion of the full-length promoter, as well as derivatives and/or sub fragments thereof.
[0131] In more general terms, the promoter has either a viral or a cellular origin. A strong viral promoter other than CMV-IE that may be usefully employed in the practice of the invention is the early/late promoter of the SV40 virus or the LTR promoter of the Rous sarcoma virus. A strong cellular promoter that may be usefully employed in the practice of the invention is the promoter of a gene of the cytoskeleton, such as e.g. the desmin promoter (Kwissa M. et al., Vaccine, 2000, 18, 2337-2344), or the actin promoter (Miyazaki J. et al., Gene, 1989, 79, 269-277).
[0132] Functional sub fragments of these promoters, i.e., portions of these promoters that maintain an adequate promoting activity, are included within the present invention, e.g. truncated CMV-IE promoters according to PCT Application No. WO98/00166 or U.S. Pat. No. 6,156,567 can be used in the practice of the invention. A promoter in the practice of the invention consequently includes derivatives and sub fragments of a full-length promoter that maintain an adequate promoting activity and hence function as a promoter, preferably promoting activity substantially similar to that of the actual or full-length promoter from which the derivative or sub fragment is derived, e.g., akin to the activity of the truncated CMV-IE promoters of U.S. Pat. No. 6,156,567 to the activity of full-length CMV-IE promoters. Thus, a CMV-IE promoter in the practice of the invention can comprise or consist essentially of or consist of the promoter portion of the full-length promoter and/or the enhancer portion of the full-length promoter, as well as derivatives and sub fragments.
[0133] Preferably, the plasmids comprise or consist essentially of other expression control elements. It is particularly advantageous to incorporate stabilizing sequence(s), e.g., intron sequence(s), preferably the first intron of the hCMV-IE (PCT Application No. WO89/01036), the intron II of the rabbit β-globin gene (van Ooyen et al., Science, 1979, 206, 337-344).
[0134] As to the polyadenylation signal (polyA) for the plasmids and viral vectors other than poxviruses, use can more be made of the poly(A) signal of the bovine growth hormone (bGH) gene (see U.S. Pat. No. 5,122,458), or the poly(A) signal of the rabbit β-globin gene or the poly(A) signal of the SV40 virus.
[0135] According to another embodiment of the invention, the expression vectors are expression vectors used for the in vitro expression of proteins in an appropriate cell system. The expressed proteins can be harvested in or from the culture supernatant after, or not after secretion (if there is no secretion a cell lysis typically occurs or is performed), optionally concentrated by concentration methods such as ultrafiltration and/or purified by purification means, such as affinity, ion exchange or gel filtration-type chromatography methods.
[0136] Isolation and purification of recombinantly expressed polypeptide may be carried out by conventional means including preparative chromatography (for example, size exclusion, ion exchange, affinity), selective precipitation and ultra-filtration. Examples of state of the art techniques that can be used, but not limited to, may be found in "Protein Purification Applications", Second Edition, edited by Simon Roe and available at Oxford University Press. Such a recombinantly expressed polypeptide is part of the present disclosure. The methods for production of any polypeptide according to the present invention as described above are also encompassed, in particular the use of a recombinant expression vector comprising a polynucleotide according to the disclosure and of a host cell.
[0137] The vaccines containing recombinant viral vectors according to the invention may be freeze-dried, advantageously with a stabilizer. Freeze-drying can be done according to well-known standard freeze-drying procedures. The pharmaceutically or veterinary acceptable stabilizers may be carbohydrates (e.g. sorbitol, mannitol, lactose, sucrose, glucose, dextran, trehalose), sodium glutamate (Tsvetkov T et al.; Israeli E et al.), proteins such as peptone, albumin, lactalbumin or casein, protein containing agents such as skimmed milk (Mills C K et al.; Wolff E et al.), and buffers (e.g. phosphate buffer, alkaline metal phosphate buffer). An adjuvant may be used to make soluble the freeze-dried preparations.
[0138] Any composition or vaccine according to the invention can also advantageously contain one or more adjuvant.
[0139] The plasmid-based vaccines may be formulated with cationic lipids, advantageously with DMRIE(N-(2-hydroxyethyl)-N,N-dimethyl-2,3-bis(tetradecyloxy)-1-propanammo- nium; WO96/34109), or in association with a neutral lipid, for example DOPE (dioleoyl-phosphatidyl-ethanolamine; Behr J. P.) to form DMRIE-DOPE. In one embodiment, the mixture is made extemporaneously, and before its administration it is advantageous to wait about 10 min to about 60 min, for example, about 30 min, for the appropriate complexation of the mixture. When DOPE is used, the molar ratio of DMRIE/DOPE can be from 95/5 to 5/95 and is advantageously 1/1. The weight ratio plasmid/DMRIE or DMRIE-DOPE adjuvant is, for example, from 50/1 to 1/10, from 10/1 to 1/5 or from 1/1 to 1/2.
[0140] Optionally a cytokine may be added to the composition, especially GM-CSF or cytokines inducing Th1 (e.g. IL12). These cytokines can be added to the composition as a plasmid encoding the cytokine protein. In one embodiment, the cytokines are from canine origin, e.g. canine GM-CSF which gene sequence has been deposited at the GenBank database (accession number S49738). This sequence can be used to create said plasmid in a manner similar to what was made in WO 00/77210.
[0141] A "host cell" denotes a prokaryotic or eukaryotic cell that has been genetically altered, or is capable of being genetically altered by administration of an exogenous polynucleotide, such as a recombinant plasmid or vector. When referring to genetically altered cells, the term refers both to the originally altered cell and to the progeny thereof. Advantageous host cells include, but are not limited to, baby hamster kidney (BHK) cells, colon carcinoma (Caco-2) cells, COS7 cells, MCF-7 cells, MCF-10A cells, Madin-Darby canine kidney (MDCK) lines, mink lung (Mv1Lu) cells, MRC-5 cells, U937 cells and VERO cells. Polynucleotides comprising a desired sequence can be inserted into a suitable cloning or expression vector, and the vector in turn can be introduced into a suitable host cell for replication and amplification. Polynucleotides can be introduced into host cells by any means known in the art. The vectors containing the polynucleotides of interest can be introduced into the host cell by any of a number of appropriate means, including direct uptake, endocytosis, transfection, f-mating, electroporation, transfection employing calcium chloride, rubidium chloride, calcium phosphate, DEAE-dextran, or other substances; microprojectile bombardment; lipofection; and infection (where the vector is infectious, for instance, a retroviral vector). The choice of introducing vectors or polynucleotides will often depend on features of the host cell.
[0142] The polynucleotide vaccines may use both naked DNAs and DNAs formulated, for example, inside liposomes or cationic lipids or with CpG's.
[0143] Nucleic acids which differ from native African Horse Sickness Virus nucleic acids due to degeneracy in the genetic code are also within the scope of the invention. For example, a number of amino acids are designated by more than one triplet. Codons that specify the same amino acid, or synonyms (for example, CAU and CAC are synonyms for histidine) may result in "silent" mutations which do not affect the amino acid sequence of the protein. DNA sequence variations that lead to changes in the amino acid sequences of the subject African Horse Sickness Virus proteins encoded by the recombinant vectors of the present invention are also encompassed by the present invention. Any and all such nucleotide variations and resulting amino acid variations are within the scope of this invention.
[0144] It is also possible to modify the structure of the subject African Horse Sickness Virus polypeptides encoded by the recombinant vectors of the present invention for such purposes as enhancing therapeutic or prophylactic efficacy (e.g., increasing immunogenicity of the polypeptide). Such modified polypeptides, when designed to retain at least one activity of the naturally-occurring form of the protein, are considered functional equivalents of the African Horse Sickness Virus polypeptides described in more detail herein. Such modified polypeptides can be produced, for instance, by amino acid substitution, deletion, or addition.
[0145] For instance, it is reasonable to expect, for example, that an isolated replacement of a leucine with an isoleucine or valine, an aspartate with a glutamate, a threonine with a serine, or a similar replacement of an amino acid with a structurally related amino acid (i.e., conservative mutations) will not have a major effect on the biological activity of the resulting molecule. Conservative replacements are those that take place within a family of amino acids that are related in their side chains. Genetically encoded amino acids can be divided into four families: (1) acidic=aspartate, glutamate; (2) basic=lysine, arginine, histidine; (3) nonpolar=alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan; and (4) uncharged polar=glycine, asparagine, glutamine, cysteine, serine, threonine, tyrosine. Phenylalanine, tryptophan, and tyrosine are sometimes classified jointly as aromatic amino acids. In similar fashion, the amino acid repertoire can be grouped as (1) acidic=aspartate, glutamate; (2) basic=lysine, arginine histidine, (3) aliphatic=glycine, alanine, valine, leucine, isoleucine, serine, threonine, with serine and threonine optionally be grouped separately as aliphatic-hydroxyl; (4) aromatic=phenylalanine, tyrosine, tryptophan; (5) amide=asparagine, glutamine; and (6) sulfur-containing=cysteine and methionine. (see, for example, Biochemistry, 2nd ed., Ed. by L. Stryer, W.H. Freeman and Co., 1981). Whether a change in the amino acid sequence of a polypeptide results in a functional homolog can be readily determined by assessing the ability of the variant polypeptide to produce a response in cells in a fashion similar to the wild-type protein.
[0146] As to epitopes of interest, reference is made to Kendrew, THE ENCYCLOPEDIA OF MOLECULAR BIOLOGY (Blackwell Science Ltd., 1995) and Sambrook, et al. 1982. An epitope of interest is an immunologically relevant region of an immunogen or immunologically active fragment thereof, e.g., from a pathogen or toxin of veterinary or human interest, e.g., African Horse Sickness Virus. One skilled in the art can determine an epitope or immunodominant region of a peptide or polypeptide and ergo the coding DNA therefore from the knowledge of the amino acid and corresponding DNA sequences of the peptide or polypeptide, as well as from the nature of particular amino acids (e.g., size, charge, etc.) and the codon dictionary, without undue experimentation.
[0147] The DNA sequence preferably encodes at least regions of the peptide that generate an antibody response or a T cell response. One method to determine T and B cell epitopes involves epitope mapping. The protein of interest is synthesized in short overlapping peptides (PEPSCAN). The individual peptides are then tested for their ability to bind to an antibody elicited by the native protein or to induce T cell or B cell activation. Janis Kuby, (1992).
[0148] Another method for determining an epitope of interest is to choose the regions of the protein that are hydrophilic. Hydrophilic residues are often on the surface of the protein and are therefore often the regions of the protein which are accessible to the antibody. Janis Kuby, (1992). Still another method for choosing an epitope of interest which can generate a T cell response is to identify from the protein sequence potential HLA anchor binding motifs which are peptide sequences which are known to be likely to bind to the MHC molecule.
[0149] The peptide which is a putative epitope of interest, to generate a T cell response, should be presented in a MHC complex. The peptide preferably contains appropriate anchor motifs for binding to the MHC molecules, and should bind with high enough affinity to generate an immune response.
[0150] Some guidelines in determining whether a protein is an epitope of interest which will stimulate a T cell response, include: Peptide length--the peptide should be at least 8 or 9 amino acids long to fit into the MHC class I complex and at least 13-25 amino acids long to fit into a class II MHC complex. This length is a minimum for the peptide to bind to the MHC complex. It is preferred for the peptides to be longer than these lengths because cells may cut the expressed peptides. The peptide should contain an appropriate anchor motif which will enable it to bind to the various class I or class II molecules with high enough specificity to generate an immune response (See Bocchia, M. et al.; Englehard, V H, (1994)). This can be done, without undue experimentation, by comparing the sequence of the protein of interest with published structures of peptides associated with the MHC molecules.
[0151] Further, the skilled artisan can ascertain an epitope of interest by comparing the protein sequence with sequences listed in the protein data base.
[0152] Even further, another method is simply to generate or express portions of a protein of interest, generate monoclonal antibodies to those portions of the protein of interest, and then ascertain whether those antibodies inhibit growth in vitro of the pathogen from which the from which the protein was derived. The skilled artisan can use the other guidelines set forth in this disclosure and in the art for generating or expressing portions of a protein of interest for analysis as to whether antibodies thereto inhibit growth in vitro.
[0153] In further embodiments, the invention provides a recombinant vector comprising one ore more nucleic acid(s) encoding one or more African Horse Sickness Virus protein, e.g., VP2 and or VP5, which has been modified from its native form to overcome an immunodominant non-neutralizing epitope. Immunodominant non-neutralizing epitopes act as decoys against neutralizing epitopes, for example, by directing an immune response away from a neutralizing epitope. Immunodominant non-neutralizing epitopes may be found in immunogenic proteins of pathogens, such as African Horse Sickness Virus.
[0154] The present invention encompasses recombinant vectors and modified recombinant viruses comprising nucleic acids encoding one or more African Horse Sickness Virus proteins that have been modified from their native form, e.g., by deletion(s) and/or insertion(s) and/or substitution of amino acid residue(s) in the native sequence.
[0155] As to "immunogenic composition", "immunological composition" and "vaccine", an immunological composition containing the vector (or an expression product thereof) elicits an immunological response--local or systemic. The response can, but need not be protective. An immunogenic composition containing the inventive recombinant or vector (or an expression product thereof) likewise elicits a local or systemic immunological response which can, but need not be, protective. A vaccine composition elicits a local or systemic protective response. Accordingly, the terms "immunological composition" and "immunogenic composition" include a "vaccine composition" (as the two former terms can be protective compositions). The invention comprehends immunological, immunogenic or vaccine compositions.
[0156] According to the present invention, the recombinant vector, e.g., virus such as poxvirus, expresses gene products of the foreign African Horse Sickness Virus gene(s) or nucleic acid molecule(s). Specific viral proteins of African Horse Sickness Virus or specific nucleic acid molecules encoding epitope(s) from specific African Horse Sickness Virus viral proteins is/are inserted into the recombinant vector e.g., virus such as poxvirus vector, and the resulting vector, e.g., recombinant virus such as poxvirus, is used to infect an animal or express the product(s) in vitro for administration to the animal. Expression in the animal of African Horse Sickness Virus gene products results in an immune response in the animal to African Horse Sickness Virus. Thus, the recombinant vector, e.g., virus such as recombinant poxvirus of the present invention may be used in an immunological composition or vaccine to provide a means to induce an immune response.
[0157] The administration procedure for a recombinant vector, e.g., recombinant virus such as recombinant poxvirus-AHSV or expression product thereof, as well as for compositions of the invention such as immunological or vaccine compositions or therapeutic compositions (e.g., compositions containing the recombinant vector or recombinant virus such as poxvirus or the expression product therefrom), can be via a parenteral route (intradermal, intramuscular or subcutaneous). Such an administration enables a systemic immune response, or humoral or cell-mediated responses.
[0158] The vector or recombinant virus-AHSV, e.g., poxvirus-AHSV, or expression product thereof, or composition containing such an expression product and/or vector or virus, can be administered to horses of any age or sex; for instance, to elicit an immunological response against African Horse Sickness Virus, e.g., to thereby prevent African Horse Sickness Virus and/or other pathologic sequelae associated with African Horse Sickness Virus. Advantageously, the vector or recombinant virus-AHSV, e.g., poxvirus-AHSV, or expression product thereof, or composition containing such an expression product and/or vector or virus, is administered to horses, including a newborn and/or to a pregnant mare to confer active immunity during gestation and/or passive immunity to the newborn through maternal antibodies. In a preferred embodiment, the invention provides for inoculation of a female horse (e.g., mare) with a composition comprising an immunogen from African Horse Sickness Virus or an epitope of interest from such an immunogen, e.g., an immunogen from AHSV VP2 and/or VP5 and/or an epitope of interest expressed by any one or more of these VPs or combinations of VPs, and/or with a vector expressing such an immunogen or epitope of interest. The inoculation can be prior to breeding; and/or prior to serving; and/or during gestation (or pregnancy), and/or prior to the perinatal period; and/or repeatedly over a lifetime. Advantageously, at least one inoculation is done before serving. It is also advantageously followed by an inoculation to be performed during gestation, e.g., at about mid-gestation (at about 5-6 months of gestation) and/or at the end of gestation (or at about 10-11 months of gestation). Thus, an advantageous regimen is an inoculation before serving and a booster inoculation during gestation. Thereafter, there can be reinoculation before each serving and/or during gestation at about mid-gestation (at about 5-6 months of gestation) and/or at the end of gestation (or at about 10-11 months of gestation). Preferably, reinoculation can be during gestation only. In another preferred embodiment, foals, such as foals from vaccinated females (e.g., inoculated as herein discussed), are inoculated within the first months of life, e.g., inoculation at three and/or four, and/or four and/or five, and five and/or six and six months of life. Even more advantageous, such foals are then boosted two (2) to eight (8) weeks later (after being first inoculated). Thus, both offspring, as well as the female horse (e.g., mare) can be administered compositions of the invention and/or can be the subject of performance of methods of the invention. Inoculations can be in the doses as herein described. With respect to the administration of poxvirus or virus compositions and maternal immunity, reference is made to U.S. Pat. No. 5,338,683.
[0159] With respect to dosages, routes of administration, formulations, adjuvants, and uses for recombinant viruses and expression products there of, compositions of the invention may be used for parenteral or mucosal administration, preferably by intradermal, subcutaneous or intramuscular routes. When mucosal administration is used, it is possible to use oral, ocular or nasal routes. The invention in yet a further aspect relates to the product of expression of the inventive recombinant or vector, e.g., virus, for instance, recombinant poxvirus, and uses therefore, such as to form an immunological or vaccine compositions for treatment, prevention, diagnosis or testing; and, to DNA from the recombinant or inventive virus, e.g., poxvirus, which is useful in constructing DNA probes and PCR primers.
[0160] The inventive recombinant vector or virus-AHSV (e.g., poxvirus-AHSV recombinants) immunological or vaccine compositions or therapeutic compositions, can be prepared in accordance with standard techniques well known to those skilled in the pharmaceutical or veterinary art. Such compositions can be administered in dosages and by techniques well known to those skilled in the veterinary arts taking into consideration such factors as the age, sex, weight, and the route of administration. The compositions can be administered alone, or can be co-administered or sequentially administered with compositions, e.g., with "other" immunological composition, or attenuated, inactivated, recombinant vaccine or therapeutic compositions thereby providing multivalent or "cocktail" or combination compositions of the invention and methods employing them. The composition may contain combinations of the African Horse Sickness Virus component (e.g., recombinant vector such as a plasmid or virus or poxvirus expressing an African Horse Sickness Virus immunogen or epitope of interest and/or African Horse Sickness Virus immunogen or epitope of interest) and one or more unrelated equine pathogen vaccines (e.g., epitope(s) of interest, immunogen(s) and/or recombinant vector or virus such as a recombinant virus, e.g., recombinant poxvirus expressing such epitope(s) or immunogen(s)) such as one or more immunogen or epitope of interest from one or more equine bacterial and/or viral pathogen(s), e.g., an epitope of interest or immunogen from one or more of: equine herpes virus (EHV), equine influenza virus (EIV), West Nile Virus (WNV) in horses, Eastern Equine Encephalomyelitis (EEE), Western Equine Encephalomyelitis (WEE), and Venezuelan Equine Encephalomyelitis (VEE), tetanus, rabies, and Potomac horse fever +EPM. Again, the ingredients and manner (sequential or co-administration) of administration, as well as dosages can be determined taking into consideration such factors as the age, sex, weight, and, the route of administration. In this regard, reference is made to U.S. Pat. No. 5,843,456, incorporated herein by reference, and directed to rabies compositions and combination compositions and uses thereof.
[0161] Examples of compositions of the invention include liquid preparations for mucosal administration, e.g., oral, nasal, ocular, etc., administration such as suspensions and, preparations for parenteral, subcutaneous, intradermal, intramuscular (e.g., injectable administration) such as sterile suspensions or emulsions. In such compositions the recombinant poxvirus or immunogens may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, or the like. The compositions can also be lyophilized or frozen. The compositions can contain auxiliary substances such as wetting or emulsifying agents, pH buffering agents, adjuvants, preservatives, and the like, depending upon the route of administration and the preparation desired.
[0162] The compositions can contain at least one adjuvant compound chosen from aluminum hydroxide, a metabolizable oil, comprising terpene hydrocarbons and a polyoxyethylene-polyoxypropylene block copolymer, the polymers of acrylic or methacrylic acid, the copolymers of maleic anhydride and alkenyl derivative and Immune-stimulating Complex Matrix (ISCOM) comprising glycosides of QUIL A, cholesterol, antigen, and/or phospholipids.
[0163] The preferred adjuvant compounds are the polymers of acrylic or methacrylic acid which are cross-linked, especially with polyalkenyl ethers of sugars or polyalcohols. These compounds are known by the term CARBOMER (Pharmeuropa Vol. 8, No. 2, June 1996). Persons skilled in the art can also refer to U.S. Pat. No. 2,909,462 (incorporated herein by reference) which describes such acrylic polymers cross-linked with a polyhydroxylated compound having at least 3 hydroxyl groups, preferably not more than 8, the hydrogen atoms of at least three hydroxyls being replaced by unsaturated aliphatic radicals having at least 2 carbon atoms. The preferred radicals are those containing from 2 to 4 carbon atoms, e.g. vinyls, allyls and other ethylenically unsaturated groups. The unsaturated radicals may themselves contain other substituents, such as methyl. The products sold under the name CARBOPOL® (BF Goodrich, Ohio, USA) are particularly appropriate. They are cross-linked with allyl sucrose or with allyl pentaerythritol. Among them, there may be mentioned CARBOPOL® 974P, 934P and 971P.
[0164] Among the copolymers of maleic anhydride and alkenyl derivative, the copolymers EMA® (Monsanto) which are copolymers of maleic anhydride and ethylene, linear or cross-linked, for example cross-linked with divinyl ether, are preferred. Reference may be made to J. Fields et al., 1960, incorporated herein by reference.
[0165] From the point of view of their structure, the polymers of acrylic or methacrylic acid and the copolymers EMA® are preferably formed of basic units of the following formula:
##STR00001##
[0166] in which:
[0167] R1 and R2, which are identical or different, represent H or CH3
[0168] x=0 or 1, preferably x=1
[0169] y=1 or 2, with x+y=2
[0170] For the copolymers EMA®, x=0 and y=2. For the carbomers, x=y=1.
[0171] The dissolution of these polymers in water leads to an acid solution which will be neutralized, preferably to physiological pH, in order to give the adjuvant solution into which the vaccine itself will be incorporated. The carboxyl groups of the polymer are then partly in COO.sup.- form.
[0172] Preferably, a solution of adjuvant according to the invention, especially of carbomer, is prepared in distilled water, preferably in the presence of sodium chloride, the solution obtained being at acidic pH. This stock solution is diluted by adding it to the desired quantity (for obtaining the desired final concentration), or a substantial part thereof, of water charged with NaCl, preferably physiological saline (NaCl 9 g/l) all at once in several portions with concomitant or subsequent neutralization (pH 7.3 to 7.4), preferably with NaOH. This solution at physiological pH will be used as it is for mixing with the vaccine, which may be especially stored in freeze-dried, liquid or frozen form.
[0173] The polymer concentration in the final vaccine composition will be 0.01% to 2% w/v, more particularly 0.06 to 1% w/v, preferably 0.1 to 0.6% w/v.
[0174] The compositions of the invention can also be formulated as oil in water or as water in oil in water emulsions, e.g. as in V. Ganne et al. (1994).
[0175] Standard texts, such as "REMINGTON'S PHARMACEUTICAL SCIENCE", 17th edition, 1985, incorporated herein by reference, may be consulted to prepare suitable preparations, without undue experimentation.
[0176] Compositions in forms for various administration routes are envisioned by the invention. And again, the effective dosage and route of administration are determined by known factors, such as age, sex, weight, and other screening procedures which are known and do not require undue experimentation. Dosages of each active agent can be as in herein cited documents (or documents referenced or cited in herein cited documents).
[0177] Recombinant vectors can be administered in a suitable amount to obtain in vivo expression corresponding to the dosages described herein and/or in herein cited documents. For instance, suitable ranges for viral suspensions can be determined empirically. The viral vector or recombinant in the invention can be administered to a horse or infected or transfected into cells in an amount of about at least 103 pfu; more preferably about 104 pfu to about 1010 pfu, e.g., about 105 pfu to about 109 pfu, for instance about 106 pfu to about 108 pfu, per dose, for example, per 2 mL dose. And, if more than one gene product is expressed by more than one recombinant, each recombinant can be administered in these amounts; or, each recombinant can be administered such that there is, in combination, a sum of recombinants comprising these amounts. In recombinant vector compositions employed in the invention, dosages can be as described in documents cited herein or as described herein or as in documents referenced or cited in herein cited documents. For instance, suitable quantities of each DNA in recombinant vector compositions can be 1 μg to 2 mg, preferably 50 μg to 1 mg. Documents cited herein (or documents cited or referenced in herein cited documents) regarding DNA vectors may be consulted by the skilled artisan to ascertain other suitable dosages for recombinant DNA vector compositions of the invention, without undue experimentation.
[0178] However, the dosage of the composition(s), concentration of components therein and timing of administering the composition(s), which elicit a suitable immunological response, can be determined by methods such as by antibody titrations of sera, e.g., by ELISA and/or seroneutralization assay analysis and/or by vaccination challenge evaluation in horse. Such determinations do not require undue experimentation from the knowledge of the skilled artisan, this disclosure and the documents cited herein. And, the time for sequential administrations can be likewise ascertained with methods ascertainable from this disclosure, and the knowledge in the art, without undue experimentation.
[0179] The African Horse Sickness Virus immunogen or epitope of interest can be obtained from any of the nine serotypes of African Horse Sickness Virus or can be obtained from in vitro recombinant expression of African Horse Sickness Virus gene(s) or portions thereof. Methods for making and/or using vectors (or recombinants) for expression and uses of expression products and products therefrom (such as antibodies) can be by or analogous to the methods disclosed in herein cited documents and documents referenced or cited in herein cited documents.
[0180] Suitable dosages can also be based upon the examples below.
[0181] The invention in a particular aspect is directed to recombinant poxviruses containing therein a DNA sequence from African Horse Sickness Virus, advantageously in a nonessential region of the poxvirus genome. The recombinant poxviruses express gene products of the foreign African Horse Sickness Virus gene. In particular, VP2 and VP5 genes encoding African Horse Sickness Virus viral proteins were isolated, characterized and inserted into ALVAC (canarypox vector) recombinants.
[0182] One embodiment of the invention relates to a new AHSV strain, namely AHSV4-Jane Strain.
[0183] Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the above paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.
[0184] The invention will now be further described by way of the following non-limiting examples.
EXAMPLES
[0185] Without further elaboration, it is believed that one skilled in the art can, using the preceding descriptions, practice the present invention to its fullest extent. The following detailed examples are to be construed as merely illustrative, and not limitations of the preceding disclosure in any way whatsoever. Those skilled in the art will promptly recognize appropriate variations from the procedures both as to reactants and as to reaction conditions and techniques.
[0186] Construction of DNA inserts, plasmids and recombinant viral vectors was carried out using the standard molecular biology techniques described by J. Sambrook et al. (Molecular Cloning: A Laboratory Manual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1989). All the restriction fragments used for the present invention were isolated using the "Geneclean" kit (BIO 101 Inc., La Jolla, Calif.).
Example 1
Construction of the Canarypox Recombinant Viral Vectors
[0187] Synthetic genes encoding the VP2 and VP5 proteins of African Horse Sickness Virus were used in the construction of a recombinant canarypox virus vector. Briefly, the L2 and M5 gene segments that respectively encode VP2 and VP5 of African Horse Sickness Virus serotypes 4, 5 and 9 were amplified by reverse-transcriptase polymerase chain reaction (RT-PCR) and sequenced using a protocol previously described by Bonneau K R, Mullens B A, (2001) Bonneau K R, et al. (1999).
[0188] The sequences of the L2/VP2 (SEQ ID NO:48) and M5/VP5 (SEQ ID NO:50) genes of a virulent field isolate of AHSV-4 (hereinafter referred to as "the AHSV4 Jane Strain") were compared to the published sequences of the same genes of other strains of AHS serotype 4 available at GenBank, and optimized synthetic sequences were then derived using GeneOptimizer® software (Geneart GmbH) for chemical synthesis of an array of oligonucleotides that encompass each individual gene. The oligonucleotides were assembled using a PCR-based strategy to generate the complete, full length synthetic VP2 and VP5 coding sequences. The synthetic genes encoding VP2 and VP5 were then subcloned into the canarypox virus vector to produce the AHSV-canarypox virus recombinant (AHSV-CP), essentially as previously described for the recombinant canarypox virus vectored West Nile virus (WNV-CP) vaccine (Minke J M, et al. 2004a).
[0189] Briefly, the synthetic gene encoding VP2 of AHSV-4 (SEQ ID NO:4) was subcloned into a canarypox C3 insertion vector (plasmid containing a vaccinia virus H6 promoter and the flanking arms of the canarypox C3 locus) to generate an expression cassette containing the VP2 (SEQ ID NO:4) gene under the control of the H6 promoter. Subsequently, an expression cassette containing the synthetic VP5 gene (SEQ ID NO:5) under the control of entomopoxvirus Amsacta moorei 42K promoter was constructed and cloned into H6-VP2 donor plasmid. The resultant insertion plasmid contained two expression cassettes, the VP2 gene (SEQ ID NO:4) under the control of the H6 promoter and the VP5 gene (SEQ ID NO:5) under the control of the 42K promoter, in a head-to-tail orientation.
[0190] To generate the AHSV-CP virus recombinant, the insertion plasmid was transfected into primary chicken embryo fibroblast (CEF) cells that were subsequently infected with canarypox virus. After 24 hours, the transfected-infected cells were harvested, sonicated and used for recombinant virus screening (Piccini A, et al. (1987)). The recombinant plaques were screened by in situ plaque lift hybridization method (Sambrook et al., 1982) using an AHSV-specific probe. After 4 sequential rounds of plaque purification, the recombinant confirmed by hybridization to be 100% positive for the African Horse Sickness Virus insert was amplified and used to prepare vaccine stocks that were stored at -80° C.
Example 2
Construction of the pLHD3460.4 Donor Plasmid Expressing the H6 Promoter-Driven Synthetic AHSV-4-VP2 and the 42K Promoter-Driven Synthetic AHSV-4-VP5
[0191] FIG. 1 shows the construction scheme for pLHD3460.4 (SEQ ID NO:6), the C3 donor plasmid for generation of the ALVAC recombinant expressing AHSV-4-VP2 and AHSV-4-VP5 viral proteins. The genes encoding AHSV-4-VP2 (SEQ ID NO:4) and AHSV-4-VP5 (SEQ ID NO:5) are synthetic with codon optimization for expression in mammalian cells. The synthetic AHSV-4-VP2 (SEQ ID NO:4) gene was placed under the control of vaccinia pC3H6p promoter and the synthetic AHSV-4-VP5 (SEQ ID NO:5) gene was placed under the control of vaccinia 42K promoter. The plasmid contains also a gene conferring ampicillin resistance.
[0192] The plasmid containing synthetic AHSV-4-VP2 gene was digested with BamHI and NruI. The resulting 3.2 Kb AHSV-4-VP2 insert was isolated and cloned into the BamHI/NruI sites of a shuttle vector prepared from pJY1107.5 (pF8 AIV H7N2 HA) to create pLHD3410.9 (pF8 H6p AHSV-4-VP2), which contains the NruI site of H6 promoter and the full length AHSV-4-VP2 followed by the XhoI site.
[0193] pLHD3410.9 was digested again with NruI and XhoI, and a 3.2 Kb DNA fragment comprising 3' NruI of the H6 promoter and the full-length AHSV-4-VP2 gene was isolated and cloned into the NruI/XhoI sites of an ALVAC C3 donor plasmid prepared from pJY1738.2 (pC3 H6p CPV-VP2) to create pLHD3426.1, an ALVAC C3 donor plasmid containing the H6p-AHSV-4-VP2 expression cassette.
[0194] An expression cassette 42Kp-AHSV-4-VP5 flanked by the SpeI site was PCR amplified using the plasmid containing AHSV-4-VP5 as the template and a pair of primers 13599.JY (SEQ ID NO:7) and 13600.JY (SEQ ID NO:8). Primer 13599.JY (SEQ ID NO:7) comprises the SpeI site and the sequence of 42K promoter followed by the 5' sequence of VP5. Primer 13600.JY (SEQ ID NO:8) consists of the 3' sequence of VP5 followed by T5NT and SpeI site. The amplified expression cassette was then cloned into pCR2.1, a TOPO vector, to create pCR2.1 42Kp AHSV-4-VP5, which was confirmed to contain the correct sequence.
[0195] Plasmid pCR2.1 AHSV-4-VP5 was digested with SpeI, and the 42Kp-VP5 expressing cassette was then isolated and cloned into the SpeI site of plasmid pLHD3426.1 to create an ALVAC C3 donor plasmid containing the double expression cassettes H6p-AHSV-4-VP2/42Kp-VP5 (pLHD3460.4), which was sequenced and confirmed to contain the correct sequences at set forth by SEQ ID NO:6.
[0196] The primers for amplification of 42Kp-AHSV-4-VP5 expressing cassette were as follows:
TABLE-US-00001 13599.JY (SEQ ID NO: 7) 5' TGACTAGTTCAAAATTGAAAATATATAATTACAATATAAAATGGGCAAGTTTACCAGCTTCCTGAAG SpeI 42Kp 13600.JY (SEQ ID NO: 8) 5' TTAACTAGTAGAAAAATCATCAGGCGATCTTCACGCCGTACAG SpeI T5NT
[0197] The predicted molecular weights were 124.3 kDa for AHSV-4-VP2 (SEQ ID NO:1), and 57 KDa for AHSV-4-VP5 (SEQ ID NO:2). The isoelectric points were 6.75 for AHSV-4-VP2 and 5.8 for AHSV-4-VP5. Both viral proteins were expressed primarily in the cytoplasm.
Example 3
Construction of Recombinant Viral Vector vCP2377 (ALVAC C3H6p-Synthetic AHSV-4-VP2/42Kp-Synthetic AHSV-4-VP5)
[0198] To produce the vCP2377 recombinant viral vector, the donor plasmid, pLHD3460.4 (SEQ ID NO:6), and the parental virus, ALVAC (4.4×1010 pfu/mL), were recombined in vitro using primary chicken embryo fibroblast (primary CEF, or CEF) cells. FIG. 3 outlines this procedure. Plaque hybridization by AHSV-4-VP5 specific probe was used to confirm recombinant viral vector.
[0199] The in vitro recombination (IVR) was performed by transfection of primary CEF cells with NotI-linearized donor plasmid pLHD3460.4 (15 μg) using Fugene reagent (Roche, Palo Alto, Calif. 94304-1353). The transfected cells were subsequently infected with ALVAC (4.4×1010 pfu/mL) as the rescue virus at a multiplicity of infection (MOI) of 10. After 24 hours, the transfected-infected cells were harvested, sonicated and used for recombinant virus screening.
[0200] The recombinant plaques were screened based on the plaque lift hybridization method (Sambrook et al., 1982) using an AHSV-4-VP5 specific probe which was labeled with horseradish peroxidase according to the manufacturer's protocol (Amersham, Alpharetta, Ga. 30058, Cat #RPN3001). After 3 sequential rounds of plaque purification, the recombinant designated as vCP2377.6.1.1 (partial sequence given by SEQ ID NO:17) was generated and confirmed by hybridization as 100% positive for the AHSV insert and 100% negative for the empty C3 site.
[0201] Single plaques were selected from the final round of plaque purification, and expanded to obtain P1 (T-25 flask), P2 (T-75 flask) and P3 (roller bottle) stocks to amplify vCP2377.6.1.1. The recombinant was re-confirmed at the P2 level by hybridization and found to be 100% positive for the insert and 100% negative for the empty C3 loci. The infected cell culture fluid from the roller bottles was harvested and concentrated to produce the virus stock (3.2 mL of vCP2377.6.1.1 at 1.2×1010 pfu/mL). Mouse anti-BTV4-VP2 mAb and mouse anti-VP5 AHSV mAb 10AE12 Passage 9 (Martinez-Torrecuadrada, J et al., Virology 257, 449-459, 1999) were used for Western blot and Immunoplaque (FIG. 7 and FIG. 8, respectively).
[0202] The cells used for in vitro recombination were primary chicken embryo fibroblast (primary CEF) cells grown in 10% Fetal bovine serum (FBS) (JRH bioscience, Lenexa, Kans. 66215: γ-irradiated cat #12107, Lot#1L0232), Dulbecco's modified Eagle's medium (DMEM) (Invitrogen/BRL/Gibco, Carlsbad, Calif., 92008-7321, cat #11960) supplemented with 4 mM Glutamine (Invitrogen/BRL/Gibco, Carlsbad, Calif., 92008-7321, cat #25030-081) and 1 mM Sodium Pyruvate (Invitrogen/BRL/Gibco cat #11360-070) in the presence of 1× antibiotics/antimycotics (P/S/A/A, Invitrogen/BRL/Gibco cat #15240-062). Fugene (Roche, Lot #181444). The final virus concentrates was re-suspended in 1 mM Tris, pH9.0.
Example 4
Analysis of Recombinant Viral Vector vCP2377 (ALVAC C3H6p-Synthetic AHSV-4-VP2/42Kp-synthetic AHSV-4-VP5)
[0203] The P3 stock was re-confirmed by hybridization, as 100% positive for the AHSV-4-VP2 and AHSV-4-VP5 inserts, and 100% negative for the empty C3 loci. A theoretical restriction map of the genomic DNA (FIG. 4) was created in Vector NTI (Invitrogen, Carlsbad, Calif.). To perform the real-life experiment, genomic DNA was extracted from vCP2377.6.1.1 virus concentrates and digested with BamHI, HindIII or PstI, and separated by 0.8% agarose gel electrophoresis (FIG. 5). The results revealed the correct insertion of the foreign gene sequence.
[0204] Southern Blot:
[0205] The genomic DNA digested with BamHI, HindIII, or PstI was transferred to nylon membrane and Southern blot analysis was performed by probing with the AHSV-4-VP2 probe. Bands of expected sizes were observed, namely 16047 bp, 6971 bp BamHI, 20660 bp HindIII and 13658 bp, 4061 bp PstI. The results indicated the correct insertion of AHSV-4-VP2 and AHSV-4-VP5 into the C3 loci. (FIG. 6).
[0206] Expression Analysis:
[0207] Primary CEF cells were infected with the P3 stock of vCP2377.6.1.1 at a MOI of 10 and incubated at 37° C. for 24 hrs. The cells and culture supernatant were then harvested. Sample proteins were separated on a 10% SDS-PAGE gel, transferred to IMMOBILON nylon membrane, and probed separately with the mouse anti-VP5 of AHSV (African horse sickness virus) 10AE12 Passage 9 antibody (Martinez-Torrecuadrada, J et al., 1999) at a dilution of 1:100. Peroxidase conjugated goat anti-mouse antiserum was used as a secondary antibody and the bands were visualized using Amersham detection regents. With the use of the mouse anti-AHSV VP5 mAb, the protein bands between 55 to 70 kDa were detected in the cell pellets of vCP2377.6.1.1, indicating the expression of the AHSV-4-VP5 protein. (FIG. 7). AHSV-4-VP5 protein expression was not detected in the culture medium. The expression of AHSV-4-VP2 expression was not detected by the mouse anti-BTV4-VP2 mAb (Merial proprietary material).
[0208] Immunoplaque:
[0209] The homogeneity of the vCP2377.6.1.1 population was 100% as evidenced by an immunoplaque assay, using mouse anti-AHSV VP5 mAb 10AE12 Passage 9 (Martinez-Torrecuadrada, J et al., 1999) at a dilution of 1:100 (FIG. 8). Anti-AHSV VP2 antibody was not available.
[0210] Sequence Analysis:
[0211] A more detailed analysis of the P3 stock genomic DNA was performed by using PCR amplification and sequence analysis of the flanking arms of the C3 locus and the AHSV-4-VP2 and AHSV-4-VP5 inserts. Primers 8103.JY (SEQ ID NO:13)/13616.LH (SEQ ID NO:15) and 13637.LH (SEQ ID NO:16)/8104.JY (SEQ ID NO:14) were used to amplify the entire C3R-AHSV-4-VP2/VP5-inserts-C3L fragment (FIG. 9). The resulting sequence, namely SEQ ID NO:17, indicated that the sequences of the AHSV-4-VP2 and AHSV-4-VP5 inserts and the C3 left and right arms around the AHSV inserts in vCP2377.6.1.1 were correct.
TABLE-US-00002 Primers for amplifying the AHSV-4-VP2 probe 13625.LH (SEQ ID NO: 9) 5' TACGACCACGGCACCGACATCATCT 3' 13632.LH (SEQ ID NO: 10) 5' TTTTCAGCTTCTTAAAGGCGTACTC 3' Primers for amplifying the AHSV-4-VP5 probe 13615.LH (SEQ ID NO: 11) 5'AAGAAGATGTACAAGCTGGCCGGCA 3' 13620.LH (SEQ ID NO: 12) 5' GCCGCTCGTATTCCTGCTTCACGAT 3' Primers for PCR amplification of the vCP2377 C3 arms plus insert 8103.JY (SEQ ID NO: 13) 5' GAGGCATCCAACATATAAAGAAGACTAAAG 3' 8104.JY (SEQ ID NO: 14) 5' TAGTTAAATACTCATAACTCATATCTG 3' 13616.LH (SEQ ID NO: 15) 5' TGCCGGCCAGCTTGTACATCTTCTT 3' 13637.LH (SEQ ID NO: 16) 5' CACCACACTGAAGCTGGACAGAAGA 3'
Example 5
Construction of pCXL2415.1 Donor Plasmid Expressing the H6 Promoter-Driven Synthetic AHSV-9-VP2 and the 42K Promoter-Driven Synthetic AHSV-9-VP5
[0212] The overall construction scheme for pCXL2415.1 (SEQ ID NO:22) is depicted in FIG. 10. The plasmid containing synthetic AHSV-9-VP2 (SEQ ID NO:28) was digested with NruI/BamHI, and the 3188 bp fragment was isolated and cloned into NruI/BamHI-linearized pJY1107.5 (pF8 H6p-AIV H7N2 HA). The resulting plasmid, pCXL2275.1 (pF8 H6p-AHSV-9-VP2), contains the NruI site of H6 promoter and the full length AHSV-9-VP2 followed by the XhoI site. After sequence confirmation, pCXL2275.1 was digested with NruI/XhoI, and the 3194 bp AHSV-9-VP2 fragment was isolated and cloned into NruI/XhoI-digested pJY1738.2 (the C3 ALVAC donor plasmid). The resulting plasmid, pCXL2328.4 (pC3 H6p-AHSV-9-VP2), contains the expression cassette H6p-AHSV-9-VP2.
[0213] To produce a 42Kp-AHSV-9-VP5 expression cassette, DNA encoding the AHSV-9 synthetic VP5 gene was PCR-amplified using 18020CXL (SEQ ID NO: 23) and 18021CXL (SEQ ID NO: 24) primers. The PCR product was subsequently cloned using TOPO pCR2.1 vector to create plasmid pCXL2313.2 (pCR2.1 42Kp-VP5). However, pCXL2313.2 was found to contain no TN5T sequence at the end of the VP5 gene due the design of primer 18020CXL. Therefore, a new set of primers, 18041CXL (SEQ ID NO:46) and 18042CXL (SEQ ID NO:47), was synthesized and used to introduce the T5NT sequence at the end of the VP5 gene in plasmid pCXL2313.2. The site-directed mutagenesis was carried out using Stratagene's QuickChange kit, and the resulting plasmid, pCXL2399.3, was sequenced and confirmed to contain the correct 42Kp-AHSV-9-VP5 expression cassette flanked by SpeI sites.
[0214] Plasmid pCXL2399.3 was subsequently digested with SpeI, and the 1556 bp fragment containing the 42Kp-AHSV-9-VP5 expression cassette was isolated and cloned into the SpeI site of plasmid pCXL2328.4 to create pCXL2415.1 (SEQ ID NO:22), which is an ALVAC C3 donor containing the double expression cassettes H6p-AHSV-9-VP2/42Kp-AHSV-9-VP5 in a head to tail orientation (FIG. 11). The predicted molecular weights for AHSV-9-VP2 and AHSV-9-VP5 are 123.5 kDa and 56.8 kDa, respectively. The isoelectric points for VP2 and VP5 are 8.14 and 5.96, respectively, and the proteins expressed largely in the cytoplasm.
Example 6
Construction of Recombinant Viral Vector vCP2383 (ALVAC C3H6p-Synthetic AHSV-9-VP2/42Kp-Synthetic AHSV-9-VP5)
[0215] The vCP2383 recombinant viral vector was produced according to the in vitro recombination (IVR) scheme depicted in FIG. 12. The IVR was performed by transfecting primary chicken embryonic fibroblast (CEF) cells with 13.2 μg SapI-linearized donor plasmid pCXL2415.1 using FuGENE® HD transfection reagent (Roche, Cat #04709705001). The transfected CEF cells were subsequently infected with ALVAC (4.4×1010 pfu/mL) as the rescue virus at a multiplicity of infection (MOI) of 10. After 24 hours, the transfected-infected cells were harvested, sonicated and used for recombinant virus screening.
[0216] The recombinant plaques were screened based on the plaque lift hybridization method (Sambrook et al., 1982) using AHSV-9-VP5 specific probe which was labeled with horseradish peroxidase according to the manufacturer's protocol (Amersham Cat# RPN3001). After 4 sequential rounds of plaque purification, the recombinant designated as vCP2383.3.1.1.1 and vCP2383.9.1.1.1 were generated and confirmed by hybridization as 100% positive for the AHSV insert and 100% negative for C3 loci. Single plaques were selected from the final round of plaque purification, and expanded to obtain P1 (T-25 flask), P2 (T-75 flask) and P3 (6× roller bottle) stocks to amplify vCP2383.3.1.1.1. The infected cell culture fluid from the roller bottles was harvested and concentrated to produce the virus stock (4.5 mL of vCP2383.3.1.1.1 at 2.2×1010 pfu/mL).
Example 7
Analysis of Recombinant Viral Vector vCP2383 (ALVAC C3H6p-Synthetic AHSV-9-VP2/42Kp-synthetic AHSV-9-VP5)
[0217] The P3 stock was re-confirmed by hybridization, as 100% positive for the AHSV-9-VP2 and AHSV-9-VP5 inserts, and 100% negative for the C3 loci.
[0218] Genomic Analysis:
[0219] A theoretical vCP2383 genomic DNA restriction enzyme gel was produced using Vector NTI (FIG. 13). To perform the real-life experiment, genomic DNA was extracted from vCP2383.3.1.1.1 and vCP2383.9.1.1.1, digested with BamHI, HindIII or XbaI, and separated by 0.8% agarose gel electrophoresis. The results revealed the correct insertion of the foreign gene sequence. (FIG. 14).
[0220] Southern Blot:
[0221] The genomic DNA digested with BamHI, HindIII, or XbaI was transferred to a nylon membrane and Southern blot analysis was performed by probing with the AHSV-9-VP5 probe. Bands of the expected sizes were observed, namely 4940 bp BamHI, 20633 bp HindIII and 9559 bp XbaI. The results indicated the correct insertion of AHSV-9-VP2 and AHSV-9-VP5 into the C3 loci (FIG. 15).
[0222] Expression Analysis:
[0223] Primary CEF cells were infected with the P3 stock of vCP2383.3.1.1.1 at a MOI of 10 and incubated at 37° C. for 26 hrs. The cells and culture supernatant were harvested and sample proteins were separated on a 10% SDS-PAGE gel, transferred to IMMOBILON nylon membrane, and probed separately with the mouse anti-VP5 of AHSV (African horse sickness virus) 10AE12 Passage 9 antibody (Martinez-Torrecuadrada, J et al., 1999) at a dilution of 1:100. Peroxidase conjugated goat anti-mouse antiserum was used as a secondary antibody and the bands were visualized using Amersham detection regents. With the mouse anti-AHSV VP5 mAb, the protein bands between 55 to 72 kDa were detected in the cell pellets of vCP2383.3.1.1.1, indicating the expression of the AHSV-9-VP5 protein (FIG. 16). AHSV9-VP5 protein expression was not detected in the culture medium. The expression of AHSV9-VP2 was not detected by the mouse anti-BTV4-VP2 mAb (Merial proprietary material).
[0224] Immunoplaque:
[0225] The homogeneity of the vCP2383.3.1.1.1 population was 100% as evidenced by an immunoplaque assay, using mouse anti-AHSV VP5 mAb 10AE12 Passage 9 (Martinez-Torrecuadrada, J et al., 1999) at a dilution of 1:100 (FIG. 17).
[0226] Sequence Analysis:
[0227] A more detailed analysis of the P3 stock genomic DNA was performed by PCR amplification and sequence analysis of the flanking arms of the C3 locus and the AHSV-9-VP2 (SEQ ID NO:28) and AHSV-9-VP5 (SEQ ID NO:29) inserts. Primers 8103.JY (SEQ ID NO:13) and 8104.JY (SEQ ID NO:14) (FIG. 18) were used to amplify the entire C3L-H6-AHSV-9-VP2-42K-AHSV-9-VP5-C3R fragment. The resulting sequence, namely SEQ ID NO:27, indicated that the sequences of the AHSV-9-VP2 (SEQ ID NO:28) and AHSV-9-VP5 (SEQ ID NO:29) inserts and the C3 left and right arms around the AHSV inserts in vCP2383.3.1.1.1 were correct.
TABLE-US-00003 Primers for amplifying the AHSV-9-VP5 probe 18020CXL (SEQ ID NO: 23) 5': CTAGACTAGTTTACTATCATTTCACGCCGAACAGCA 18021CXL (SEQ ID NO: 24) 5': GCAAGGACCAGAGCGAGCGGATCA Primers for amplifying the AHSV-9-VP2 probe 13660CXL (SEQ ID NO: 25) 5': AGGCCTTCGCCGGCAACAGCCTGCT 13665CXL (SEQ ID NO: 26) 5': AGGGCATCGATCAGGAACTCGCTCT Primers for PCR amplification of the vCP2383 C3 arms plus insert 8103.JY (SEQ ID NO: 13) 5': GAGGCATCCAACATATAAAGAAGACTAAAG 3' 8104.JY (SEQ ID NO: 14) 5': TAGTTAAATACTCATAACTCATATCTG 3'
Example 8
Construction of pJSY2247.2 (SEQ ID NO:32) Donor Plasmid Expressing the H6 Promoter-Driven Synthetic AHSV-5-VP2 and the 42K Promoter-Driven Synthetic AHSV-5-VP5
[0228] The overall construction scheme for pJSY2247.2 (SEQ ID NO:32) is depicted in FIG. 22. The plasmid containing synthetic AHSV-5-VP2 (SEQ ID NO:33) gene was digested with XhoI and NruI. The resulting AHSV-5-VP2 (SEQ ID NO:33) insert was isolated and cloned into the NruI/XhoI sites of an ALVAC C3 donor plasmid prepared from pJY1738.2 (pC3 H6p CPV-VP2) to create pJSY2245.1, an ALVAC C3 donor plasmid containing the H6p-AHSV-5-VP2 expression cassette.
[0229] An expression cassette 42Kp-AHSV-5-VP5 flanked by the SpeI site was isolated from the plasmid containing synthetic AHSV-5-VP5 (SEQ ID NO:34) by SpeI digestion, and was then cloned into the SpeI site of plasmid pJSY2245.1 to create an ALVAC C3 donor plasmid containing the double expression cassettes pJSY2247.2 (SEQ ID NO:32; H6p-AHSV-5-VP2/42Kp-VP5), which was sequenced and confirmed to contain the correct sequences. A diagram of the plasmid pJSY2247.2 and corresponding SEQ ID NOs are indicated in FIG. 23. The Molecular Weights for synthetic AHSV-5-VP2 (SEQ ID NO:35) and synthetic AHSV-5-VP5 (SEQ ID NO:36) were about 122.9 kDa and about 57.1 KDa, respectively. The isoelectric points for synthetic AHSV-5-VP2 (SEQ ID NO:35) and synthetic AHSV-5-VP5 (SEQ ID NO:36) were about 8.4 and 5.77, respectively. Both viral proteins were found primarily in the cytoplasm.
Example 9
Construction of Recombinant Viral Vector vCP2398 (SEQ ID NO:41) (H6-Synthetic AHSV-5-VP2-42K-Synthetic AHSV-5-VP5)
[0230] The vCP2398 (SEQ ID NO:41) recombinant viral vector was produced according to the in vitro recombination (IVR) scheme depicted in FIG. 24. The IVR was performed by transfecting primary CEF cells with 15 μg NotI-linearized pJSY2247.2 (SEQ ID NO:32) donor plasmid using FuGENE reagent (Roche, Cat #04709705001). The transfected cells were subsequently infected with ALVAC (1) (2×1010 pfu/mL HM1355) as the rescue virus at a MOI of 10. After 24 hours, the transfected-infected cells were harvested, sonicated and used for recombinant virus screening.
[0231] The recombinant plaques were screened based on the plaque lift hybridization method (Sambrook et al., 1982) using AHSV-5-VP2 specific probe which was labeled with horseradish peroxidase according to the manufacturer's protocol (Amersham Cat# RPN3001). After 3 sequential rounds of plaque purification, the recombinant designated as vCP2398.2.1.1 was generated and confirmed by hybridization as 100% positive for the AHSV insert and 100% negative for the empty C3 site
[0232] Single plaques were selected from the final round of plaque purification, and expanded to obtain P1 (T-25 flask), P2 (T-75 flask) and P3 (roller bottle) stocks to amplify vCP2398.2.1.1. The recombinant was re-confirmed at the P2 level by hybridization and found to be 100% positive for the insert and 100% negative for the empty C3 site. The infected cell culture fluid from the roller bottles was harvested and concentrated to produce the virus stock (2.6 mL of vCP2398.2.1.1 at 3.3×1010 pfu/mL).
Example 10
Analysis of Recombinant Viral Vector vCP2398 (SEQ ID NO:41) (H6-Synthetic AHSV-5-VP2-42K-Synthetic AHSV-5-VP5)
[0233] The P3 stock was re-confirmed by hybridization, as 100% positive for the AHSV-5-VP2 and AHSV-5-VP5 inserts, and 100% negative for the empty C3 site.
[0234] Genomic Analysis:
[0235] A theoretical restriction enzyme gel for the genomic DNA was created in Vector NTI and is shown in FIG. 25. The genomic DNA was extracted from vCP2398.2.1.1, digested with BamHI, HindIII or PstI, and separated by 0.8% agarose gel electrophoresis. The results revealed the correct insertion of the foreign gene sequence. (FIG. 26).
[0236] Southern Blot:
[0237] The genomic DNA digested with BamHI, HindIII, or PstI was transferred to the nylon membrane and Southern blot analysis was performed by probing with the AHSV-5-VP2 probe. Specific 20975 bp and 11899 bp BamHI, 4980 bp HindIII and 1818 bp PstI bands were observed at the expected sizes. The results indicated the correct insertion of AHSV-5-VP2 and AHSV-5-VP5 into the C3 locus (FIG. 27).
[0238] Expression Analysis:
[0239] Primary CEF cells were infected with the P3 stock of vCP2398.2.1.1 at a MOI of 10 and incubated at 37° C. for 24 hrs. The cells and culture supernatant were then harvested. Sample proteins were separated on a 10% SDS-PAGE gel, transferred to Immobilon nylon membrane, and probed separately with the mouse anti-VP5 of AHSV (African horse sickness virus) 10AE12 Passage 9 antibody (Martinez-Torrecuadrada, J et al., 1999) at a dilution of 1:100. Peroxidase conjugated goat anti-mouse antiserum was used as a secondary antibody and the bands were visualized using Amersham detection regents. With the use of the mouse anti-AHSV VP5 mAb, protein bands between 55 to 72 kDa were detected in the cell pellets of vCP2398.2.1.1, indicating the expression of the AHSV-5-VP5 protein (FIG. 28). AHSV-5-VP5 protein expression was not detected in the culture medium.
[0240] Immunoplaque:
[0241] The homogeneity of the vCP2398.2.1.1 population was 100% as evidenced by an immunoplaque assay, using mouse anti-AHSV VP5 mAb 10AE12 Passage 9 (Martinez-Torrecuadrada, J et al., 1999) at a dilution of 1:100 (FIG. 29).
[0242] Sequence Analysis:
[0243] A more detailed analysis of the P3 stock genomic DNA was performed by PCR amplification and sequence analysis of the flanking arms of the C3 locus and the AHSV-5-VP2 and AHSV-5-VP5 inserts. Primers 8103.JY/8104.JY were used to amplify the entire C3R-AHSV-5-VP2/VP5 inserts-C3L fragment. A primer map is shown in FIG. 30. The resulting sequence, namely SEQ ID NO:41, indicated that the sequences of the AHSV-5-VP2 and AHSV-5-VP5 inserts and the C3 left and right arms around the AHSV inserts in vCP2398.2.1.1 were correct.
TABLE-US-00004 Primers for amplifying the AHSV-5-VP2 probe: 18098.JY (SEQ ID NO: 37) 5'GGATCGAGCGGGACGAGCTGGACG 3' 18103.JY (SEQ ID NO: 38) 5'GCCAGCCGTACTGGAACTTGTAGC 3' Primers for amplifying the AHSV-5-VP5 probe: 18115.JY (SEQ ID NO: 39) 5' TGCTGGACCTGAGCGCCGAGGTGA 3' 18120.JY (SEQ ID NO: 40) 5' TCAGGCGATCTTCACGCCGAACAG 3' Primers for PCR amplification of the vCP2398 C3 arms plus insert: 8103.JY (SEQ ID NO: 13) 5' GAGGCATCCAACATATAAAGAAGACTAAAG 3' 8104.JY (SEQ ID NO: 14) 5' TAGTTAAATACTCATAACTCATATCTG 3'
Example 11
Production of Experimental Vaccines
[0244] Three different vaccines were produced using an active ingredient produced at the 5th passage after the master seed virus stock (MSV+5) after a culture of 4 days of the vCP2377 (produced according to EXAMPLE 6) on confluent monolayers of chicken embryo fibroblast (CEF) and treatment of the harvest. The MSV+5 passage is representative (from the genomic/genetic structure stability perspective) of the commercial vaccine product, and is typically used for producing commercial batches. The three vaccines (produced in GMP conditions) used CARBOMER as adjuvant (4 mg/mL) and are differentiated by their concentration of antigen. The specific CARBOMER used was CARBOMER®/CARBOPOL® 974P (Pharmaceutical grade, produced by Goodrich Chemicals Europe NV, Belgium). The concentration used was 4 mg/mL with 1 dose=1 mL. CARBOMER® 974P is used interchangeably with CARBOPOL® 974P throughout this application.
[0245] The infective titer of the active ingredient vCP2377 used in formulation of the vaccines was 8.89 Log 10CCID50/mL. The vaccine formulations also contained the following ingredients: an adjuvant made up of a 1.5% solution of carbomer in water for injection containing 0.1% NaCl; a diluent that was physiologically buffered at pH 7.1; and a 0.1N NaOH solution for pH regulation.
[0246] The active ingredient stored at -70° C. was thawed in a water bath (37° C.) no more than 72 hours before use. Immediately after thawing, they were stored at +5° C. In a sterile vessel with stirring system, 80% of the buffered physiological saline pH 7.1 for the formulation was introduced at room temperature. Under stirring was added the active ingredient. After homogenization, the 1.5% solution of CARBOMER® 974P was added slowly with pH regulation (pH 7.1) using NaOH 1N. During formulation, the pH value preferably remained between 6.5 and 7.3 and a final concentration of CARBOMER of 4 mg/mL. When all the CARBOMER® 974P was added, the remaining quantity of buffered physiological saline pH 7.1 was added under stirring to complete the final volume.
[0247] If necessary, the pH can be adjusted to 7.1±0.2 by addition of sodium hydroxide (1N) or hydrochloric acid (1N). The bulk was homogenized by stirring at a temperature not lower than +2° C. for at least 2 hours. The bulk obtained was stored at +5° C. (±3° C.) until filling. The composition of the vaccines is summarized in TABLE 1.
TABLE-US-00005 TABLE 1 Code Name Batch Volume (mL) Vaccine batch 87859A010 Target Formulation: 7.5 Log10 CCID50/mL vCP2377 8C23775E05 40.7 CARBOMER ® 974P 8CB011311H50 266.7 (1.5% solution) 1045001007 Buffered physiological 285142 668.6 saline pH 7.1 1045000842 NaOH 1N 283938 47.9 Vaccine batch 87859A020 Target Formulation: 7.2 Log10 CCID50/mL vCP2377 8C23775E05 20.4 CARBOMER ® 974P 8CB011311H50 266.7 (1.5% solution) 1045001007 Buffered physiological 285142 689.2 saline pH 7.1 1045000842 NaOH 1N 283938 47.7 Vaccine batch 87859A030 Target Formulation: 6.8 Log10 CCID50/mL vCP2377 8C23775E05 8.1 CARBOMER ® 974P 8CB011311H50 266.7 (1.5% solution) 1045001007 Buffered physiological 285142 701.3 saline pH 7.1 1045000842 NaOH 1N 283938 47.9
Example 12
Verification of the Identity of 3 Vaccine Batches Containing vCP2377 Recombinant Viral Vector Expressing Synthetic AHSV-4-VP2 and Synthetic AHSV-4-VP5 Capsid Proteins
[0248] The 3 vaccines containing vCP2377 adjuvanted with ® 974P were described according to the following: batch 87859A011, target titer 7.5 log 10 DICC50/mL, batch 87859A021, target titer 7.2 log 10 DICC50/mL, and batch 87859A031, target titer 6.8 log 10 DICC50/mL. The vCP2377 before formulation was vCP2377-1-CEPI 7007/17/07/07 and the titer was 8.3 log 10 DICC50/mL
[0249] A vaccine comprising two "non relevant" recombinant canarypox (EIV) adjuvanted with CARBOPOL® 974P was used as negative control (batch--76435V191, titer 7.34 log 10 DICC50/mL).
[0250] Methods:
[0251] The expression of viral proteins AHSV-4-VP2 and AHSV-4-VP5 was verified by indirect immunofluorescence and Western blot and was used to confirm the identity of the vaccines. The reagents included the following: anti-AHSV VP5 10AE12 (INGENASA, 28037 Madrid), pig polyclonal serums anti-VP2 serotype 4 AHSV (GENOVAC), anti-cMyc clone 4A6 (mouse monoclonal IgG1, Upstate, cat #05-724), anti-mouse IRDye800, anti-guinea pig IRDye800, anti-mouse Cy3, and anti-guinea pig Cy3. The plasmids encoding the synthetic AHSV-4-VP2 (SEQ ID NO:1) and AHSV-4-VP5 (SEQ ID NO:2) proteins were used as positive controls: pVR1012 (control plasmid without insert); pCG050 (synthetic AHSV-4-VP2 (SEQ ID NO:4) inserted in pVR1012); pCG042 (synthetic AHSV-4-VP5 (SEQ ID NO:5) inserted in pVR1012); and pCG049 (synthetic AHSV-4-VP2 (SEQ ID NO:4)+cMyc-tag inserted in pVR1012).
[0252] For the indirect immunofluorescence, recombinant viral vector infected/plasmid transfected chicken embryonic fibroblast (CEF) cells were plated into 96 well-plates (25000 cells/well). The cells were fixed about 24 h after transfection, which equates to about 72 h after infection. The cells were then labeled using anti-VP2 and anti-VP5 primary antibodies, followed by Cy3-linked secondary antibodies. Labeled cells were observed using fluorescent microscopy.
[0253] For the Western blot, recombinant viral vector infected/plasmid transfected CEF cells were plated into 6 cm dishes (1.10e6 cells/dish). The cells were harvested about 24 h after transfection which equates to about 72 h after infection. After penetration, the harvested samples were put on acrylamide Tris-Glycine 4-20% gel. After migration, the gels were transferred onto nitrocellulose membrane, probed with anti-VP2, anti-VP5, and anti-cMyc primary antibodies, and thereafter probed with IRDye800-linked secondary antibodies. The reading was performed using an Odyssey-LiCor scanner.
[0254] Results:
[0255] According to the immunofluorescence results, illustrated in FIG. 19, the VP5 protein expressed in CEF-infected cells by the 3 batches of vCP2377 adjuvanted with CARBOPOL, and with the vCP2377 before formulation (with vCP EIV as negative controls). The VP2 protein was correctly detected with a pool of 3 guinea pig serums in the vCP2377 before formulation and after formulation in the 3 batches of vCP. Nevertheless, the fluorescence was lesser with the pool of polyclonal antibodies as compared to the monoclonal anti-VP5 antibodies, and a small noise was shown on the vCP EIV negative controls.
[0256] Further, the reagents were validated using CEF transfected by plasmids encoding the individual proteins, including the control plasmid without insert (pVR1012), the synthetic AHSV-4-VP2 (SEQ ID NO:4) in pVR1012 (pCG050), the synthetic AHSV-4-VP5 (SEQ ID NO:5) in pVR1012 (pCG042), and the synthetic AHSV-4-VP2+his-tag in pVR1012 (pCG049). The VP5 protein was only shown in CEF transfected by the pCG042 plasmid. The VP2 protein was correctly detected in the CEF transfected by pCG050 and pCG049 plasmids. These results validated the technique and the reagents.
[0257] FIG. 20A shows the western blot performed on lysates from infected and transfected CEF, and indicates the expression of the VP2 serotype 4 AHSV protein. The VP2 protein was detected in each of the 3 batches of vCP2377 adjuvanted with CARBOPOL (identified as 9A011, 9A021 and 9A031), and in the vCP2377 before formulation. The CEF transfected by the plasmids pCG050 (VP2 in pVR1012) and pCG049 (VP2+c-myc in pVR1012) were used as positive controls, also expressed VP2. The processing with the anti-c-myc of the CEF transfected by pCG049 plasmid was used as transfection positive control.
[0258] As predicted, no signal was detected for CEF infected by vCP EIV, or for CEF transfected by pVR1012 and pCG042. Furthermore the anti-VP2 polyclonal antibodies were specific to the VP2 serotype 4 AHSV protein.
[0259] The FIG. 20B shows the western blot performed on lysates of infected and transfected CEF, and indicates the expression of the VP5 serotype 4 AHSV protein.
[0260] FIG. 20A shows the results of anti-VP5 western blot on infected and transfected CEF. The VP5 protein was detected in each of the 3 batches of vCP2377 adjuvanted with CARBOPOL® 974P and in the vCP2377 before formulation. The CEF transfected by the plasmids pCG042 (VP5 in pVR1012) also expressed VP5 protein.
[0261] As predicted, no signal was detected for CEF infected by vCP EIV, nor for CEF transfected by pVR1012, pCG050 and pCG049, showing that the anti-VP5 antibody is clearly specific to VP5 AHSV protein, as described in literature (Martinez-Torrecuadrada et al.; Virology, 257, 449-459; 1999).
IV. Conclusion
[0262] All the results given by indirect immunofluorescent and by western blot show that the three vCP2377 vaccines adjuvanted with CARBOPOL® 974P express VP2 and VP5 proteins of serotype 4 AHSV.
Example 13
Vaccine Dose Response in Horses
[0263] A. Experimental Animals
[0264] A total of 6 previously unvaccinated horses were used for immunogenicity studies. The animals were fed and managed according to standard procedures.
[0265] B. Immunogenicity in Unvaccinated Animals
[0266] In order to evaluate the immune response of horses to the candidate vaccine 6 previously unvaccinated foals were randomly paired in to 3 groups. Each group of 2 horses was vaccinated on Day 0 with 3 doses from one of three different batch preparations (Batches: 87859A011, 87859A021, and 87859A031) of the candidate vaccine (AHSV-CP). The different batches varied with respect to their target titers as shown in FIG. 21, namely 7.3, 6.96, and 6.28 Log10CCID50/mL. In each group, two of the doses were administered Intramuscularly (IM) on one side of the neck, and one dose was administered IM on the other side of the neck. On Day 28 horses were immunized IM in the neck with one dose of the same batch of vaccine administered at Day 0. Prior to receiving the primary dose of vaccine, blood samples were collected (Day 0) by jugular venepuncture into 2×7 mL tubes SST VACUTAINER tubes. In addition, blood samples were collected from all horses by jugular venepuncture into 2×7 ml SST VACUTAINER tubes on Day 28 and Day 42.
C. Analysis
[0267] Serum samples collected prior to the first vaccination, during the first vaccination period, at the time of the second vaccination and during the second vaccination period were subject to a group specific Elisa test for antibodies to African Horse Sickness Virus (Hamblin C, et al. (1990) Epidemiology and Infection 104: 303-312) and an AHS serotype 4 specific serum-virus neutralization test (Howell P G, (1962).
[0268] The results are shown in FIG. 21. At Day 0, all horses were negative with no detectable serum antibody titers against AHSV-4. On Day 28, four weeks after primary immunization, all of the horses that were immunized with vaccine from the batch with the highest titer (Log10CCID50/mL 7.3) developed neutralizing titers. On Day 28, 1 of 2 horses that were immunized with vaccine from the batch with the intermediate titer (Log10CCID50/mL 6.96) developed neutralizing titers. Finally, on Day 28, none of the horses that were immunized with vaccine from the batch with the lowest titer (Log10CCID50/mL 6.28) developed neutralizing titers. On Day 42, two weeks after administration of the booster dose, 5 of 6 horses had good antibody titers (FIG. 21). One horse (#53761) that was immunized with vaccine from the lowest titer batch (87859A031) was negative for antibodies to African Horse Sickness Virus.
Example 14
Vaccination of Horses with Recombinant Canarypox Viruses
[0269] Nine yearling Boerperd horses (5 males, 4 females) were procured from the Northern Cape Province, South Africa, a region free from reported AHS for at least the preceding 12 months. The horses were confirmed to be free of AHSV-specific antibodies by indirect enzyme linked immunosorbent assay (ELISA) that detects antibodies to the VP7 core protein that is common to viruses of the AHSV serogroup (Maree, S, and Paweska, J T., 2005). The horses were housed in vector-protected, isolation facilities throughout these studies. Two groups of four horses each (2 males and 2 females) were inoculated intramuscularly with 107.1 or 1064 TCID50/dose, respectively, of AHSV-CP in approximately 1 mL of diluent containing a CARBOPOL adjuvant. For ethical reasons, a single control horse was used to confirm the virulence of the challenge inoculum because this virus strain has previously been shown to cause severe or lethal disease in inoculated horses (Nurton, J. P., et al, 2001). The control horse was vaccinated with recombinant canarypox virus expressing the hemagglutinin protein of equine influenza virus (EI-CP; PROTEQFLU® equine influenza virus vaccine, Merial) that was administered according to the manufacturer's instructions. All horses were revaccinated 28 days later with the respective vaccine construct. The animals were co-housed regardless of vaccine type. All laboratory testing was done independent of knowledge of vaccination status.
A. Methods
[0270] AHSV Infection of Horses and Sample Collection
[0271] All 9 horses were challenged by intravenous inoculation of 105.5 TCID50 of AHSV-4 at 28 days after the second vaccination. The horses were evaluated daily for manifestations of African horse sickness for 23 days after inoculation. Blood was collected in EDTA VACUTAINER® tubes (Becton Dickinson) prior to challenge infection and at 2, 5, 7, 9, 12, 14, 16, 19, 21 and 23 days post-infection (DPI) for complete blood counts (CBC). Blood samples were also collected daily in EDTA VACUTAINER® tubes (Becton Dickinson) on days 0 through 23 DPI for quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and virus isolation in BHK-21 cells. Serum was collected in SST serum separator tubes (Becton Dickinson) from all horses immediately prior to vaccination and at two weekly intervals thereafter.
Clinical Laboratory Assays
[0272] Haematological analysis was done using an electronic cell counter (Coulter Electronics Inc.).
Virus Detection
[0273] The presence of AHSV in the blood of the horses was determined using qRT-PCR assays that detect the individual genes encoding the VP7 and NS2 proteins of AHSV (Quan, M. and A J Guthrie, 2009) with samples being classified as positive if the fluorescence exceeded the threshold of 0.1 within a maximum of 40 cycles. Virus isolation from blood was done in BHK-21 cells, as described by Quan, M. et al, 2008.
Serological Assays
[0274] Serotype-specific neutralizing antibodies to AHSV were detected by microneutralization assay using AHSV-4 as the challenge virus as described by Howell, P G et al, 2002. Antibody titers were recorded as the reciprocal of the highest final dilution of serum that provided at least 50% protection of the BHK-21 cell monolayer. A titer of >10 was considered significant.
Statistical Analysis
[0275] AHSV-4 neutralizing antibody titres at 8 weeks after primary vaccination and 6 weeks after AHSV infection were compared between the vaccine groups by Mann-Whitney U test with a P<0.05 being considered significant.
B. Analysis
[0276] Immunogenicity of AHSV-CP
[0277] All horses were seronegative by both ELISA and AHSV-4 microneutralization assays prior to vaccination, and all but two horses in TABLE 2 developed neutralizing antibodies to AHSV-4 after immunization with the AHSV-CP recombinant vector whereas the horse immunized with EIV-CP did not develop neutralizing antibodies to AHSV-4 (Table 2). At 8 weeks post-vaccination, AHSV-4 titres were significantly higher (P=0.021) in horses given the high vaccine dose than those in the low dose group, but this difference was less evident (P=0.057) at 6 weeks post infection. All horses remained healthy and showed no adverse effects after vaccination.
TABLE-US-00006 TABLE 2 Titers of African horse sickness serotype 4 neutralizing antibodies Post-vaccination titersa (weeks Post-infection titersa after primary (weeks after AHSV Treatment/ vaccination) infection) Horse ID 0 4 8 2 4 6 Vaccinated (AHSV-CP-107.1) 1 ≦10 ≦10 28 20 40 20 2 ≦10 ≦10 40 40 10 14 3 ≦10 ≦10 20 40 28 40 4 ≦10 ≦10 40 80 56 80 Vaccinated (AHSV-CP-106.4) 5 ≦10 ≦10 ≦10 ≦10 ≦10 ≦10 6 ≦10 ≦10 ≦10 10 ≦10 ≦10 7 ≦10 ≦10 14 40 20 10 8 ≦10 ≦10 10 56 56 14 Control (EIV-CP) 9 ≦10 ≦10 ≦10 10 160 224 aExpressed as the reciprocal of the highest dilution that provided >50% protection of the BHK-21cell monolayer.
C. Protection of Horses Immunized with AHSV-CP
[0278] The ability of AHSV-CP to protectively immunize horses was evaluated by comparing amounts of AHSV nucleic acid (Ct values) in the blood of AHSV-CP (vaccinates) and EIV-CP (control) immunized horses after challenge infection (FIG. 31, Panel A). Whereas AHSV nucleic acid was detected from 8 days post infection (DPI) of the control horse (EIV-CP), it was never detected in the blood of the vaccinated horses. Similarly, AHSV-4 was repeatedly isolated from the blood of the control horse but never from the vaccinated horses (data not shown).
[0279] The control (EIV-CP) horse developed clinical signs consistent with the "dikkop" or cardiac form of African horse sickness, whereas the vaccinated horses all remained normal throughout the study. Specifically, the control horse developed high fever and thrombocytopenia that coincided with increasing viral load in blood (FIG. 31, Panel B and C, respectively). The control horse also developed prominent oedema of the supraorbital fossae at 12 DPI, which persisted until 21 DPI.
D. Serological Responses of AHSV-CP Vaccinated and Control Horses after Challenge Exposure to AHSV-4
[0280] The serological responses of vaccinated (AHSV-CP) and control (EIV-CP) horses were determined following challenge infection with AHSV-4 by both SN (Table 2) and ELISA (data not shown) tests. The control horse seroconverted to AHSV by 4 weeks after challenge, as determined by SN assays, whilst none of the vaccinated horses did so. Furthermore, all the vaccinated horses remained negative for antibodies to VP7 by ELISA for the duration of the study. The lack of seroconversion of the vaccinated horses on SN assays and the failure to detect antibody to VP7 by ELISA suggests that virus replication was absent or minimal in the vaccinated horses. Similarly, the AHSV-4 neutralizing antibody after challenge infection in the control (WNV-CP) horse that was seronegative prior to challenge was considerably greater than the titres observed in the vaccinated horses at 4 and 6 weeks after infection.
CITED REFERENCES
[0281] 1. Andreansky, S. S., He, B. et al., The application of genetically engineered herpes simplex viruses to the treatment of experimental brain tumors (1996). Proc Natl Acad Sci USA 93(21): 11313-8.
[0282] 2. Ballay, A., Levrero, M. et al., In vitro and in vivo synthesis of the hepatitis B virus surface antigen and of the receptor for polymerized human serum albumin from recombinant human adenoviruses (1985). Embo J 4(13B): 3861-5.
[0283] 3. Bocchia, M. et al., Specific Binding of Leukemia Oncogene Fusion Protein Peptides to HLA Class I Molecules (2000). Blood 85: 2680-2684.
[0284] 4. Bonneau, K. R., Zhang, N., Zhu, J., Zhang, F., L1, Z., Zhang, K., Xiao, L., Xiang, W., MacLachlan, N. J., Sequence comparison of the L2 and S10 genes of bluetongue viruses from the United States and the People's Republic of China (1999). Virus Research 61: 153-160.
[0285] 5. Bonneau, K. R, Mullens, B. A, MacLachlan, N. J., Occurrence of genetic drift and founder effect during quasispecies evolution of the VP2 and NS3/NS3A genes of bluetongue virus upon passage between sheep, cattle, and Culicoides sonorensis (2001). Journal of Virology 75: 8298-8305.
[0286] 6. Boone, J. D., Balasuriya, U. B., Karaca, K., Audonnet, J. C., Yao, J., He, L., Nordgren, R., Monaco, F., Savini, G., Gardner, I. A., MacLachlan, N. J., Recombinant canarypox virus vaccine coexpressing genes encoding the VP2 and VP5 outer capsid proteins of bluetongue virus induces high level protection in sheep (2007). Vaccine 25: 672-678.
[0287] 7. Bourne, N., Stanberry, L. R., Bernstein, D. I. & Lew, D., DNA immunization against experimental genital herpes simplex virus infection (1996). Journal of Infectious Diseases 173, 800-7.
[0288] 8. Bremer, C. W., A gel electrophoretic study of the protein and nucleic acid components of African horsesickness virus (1976). Onderstepoort Journal of Veterinary Research 43, 193-199.
[0289] 9. Bremer, C. W., Huismans, H. & Van Dijk, A. A., Characterization and cloning of the African horsesickness virus genome (1990). Journal of General Virology 71, 793-799.
[0290] 10. du Plessis, M., Cloete M., Aitchison, H., Van Dijk, A. A., Protein aggregation complicates the development of baculovirus-expressed African horsesickness virus serotype 5 VP2 subunit vaccines (1998). Onderstepoort Journal of Veterinary Research 65: 321-329.
[0291] 11. Englehard, V. H., Structure of peptides associated with class I and class II MHC molecules (1994). Ann. Rev. Immunol. 12:181.
[0292] 12. Felgner, J. H., Kumar, R. et al., Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations (1994). J Biol Chem 269(4): 2550-61.
[0293] 13. Fields, J., et al., Synthetic polyelectrolytes as tumour inhibitors (Jun. 4, 1960). Nature 186, 778-780.
[0294] 14. Frolov, I., Hoffman, T. A., et al., Alphavirus-based expression vectors: strategies and applications (1996). Proc Natl Acad Sci USA 93(21), 11371-7.
[0295] 15. Furth, P a, Shamay A, Wall R J, Hennighausen L., Gene transfer into somatic tissues by jet injection (1992). Analytical Biochemistry, 205, 365-368.
[0296] 16. Ganne, V. et al., Enhancement of the efficacy of a replication-defective adenovirus-vectored vaccine by the addition of oil adjuvants (1994). Vaccine, 12, 1190-1196.
[0297] 17. Graham, F. L., Adenoviruses as expression vectors and recombinant vaccines (1990). Trends Biotechnol 8(4), 85-7.
[0298] 18. Grubman, M. J. & Lewis, S. A., Identification and characterization of the structural and nonstructural proteins of African horsesickness virus and determination of the genome coding assignments (1992). Virology 186, 444-451.
[0299] 19. Hamblin, C., Graham, S. D., Anderson, E. C., Crowther, J. R., A competitive ELISA for the detection of group-specific antibodies to African horse sickness virus, (1990). Epidemiology and Infection 104(2), 303-312 and an AHS serotype 4 specific serum-virus neutralization test.
[0300] 20. Howell, P G, The isolation and identification of further antigenic types of African horsesickness virus, (1962) Onderstepoort Journal of Veterinary Research 29, 139-149.
[0301] 21. Kuby, Janis (1992). Immunology, p. 81.
[0302] 22. Kuby, Janis, (1992). Immunology, pp. 79-80.
[0303] 23. Ju, Q., Edelstein, D., et al., Transduction of non-dividing adult human pancreatic beta cells by an integrating lentiviral vector (1998). Diabetologia 41(6): 736-9.
[0304] 24. Kendrew, John, (1995). The Encyclopedia of Molecular Biology (Blackwell Science Ltd.)
[0305] 25. Kitson, J. D., Burke, K. L., et al., Chimeric polioviruses that include sequences derived from two independent antigenic sites of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies against FMDV in guinea pigs (1991). J Virol 65(6), 3068-75.
[0306] 26. Lewis, S. A. and Grubman, M. J., VP2 is the major exposed protein on orbiviruses (1991). Archives of Virology 121, 233-236.
[0307] 27. Luke, et al., An OspA-based DNA vaccine protects mice against infection with Borrelia burgdorferi (1997). J. Infect. Dis. 175(1):91-97.
[0308] 28. Martinez-Torrecuadrada, J. L., Iwata, H, Venteo, A., Casal, I., Roy, P., Expression and characterization of the two outer capsid proteins of African horsesickness virus: The role of VP2 in virus neutralization (1994). Virology 202: 348-359.
[0309] 29. McClements, W. L., Armstrong, M. E. et al., Immunization with DNA vaccines encoding glycoprotein D or glycoprotein B, alone or in combination, induces protective immunity in animal models of herpes simplex virus-2 disease (1996). Proc Natl Acad Sci USA 93(21), 11414-20.
[0310] 30. Minke, J. M., Siger, L., Karaca, K., Austgen, L., Gordy, P., Bowen, R., Renshaw, R. W., Loosmore, S., Audonnet, J. C., Nordgren, B., Recombinant canarypoxvirus vaccine carrying the prM/E genes of West Nile virus protects horses against a West Nile virus-mosquito challenge (2004a). Arch. Virol. Suppl. 221-230.
[0311] 31. Minke, J. M., Audonnet, J. C., Fischer, L., Equine viral vaccines: the past, present and future (2004b). Veterinary Research 35: 425-443.
[0312] 32. Minke, J. M., Toulemonde, C. E., Coupie, H., Guigal, P. M., Dinic, S., Sindle, T., Jessett, D., Black, L., Bublot, M., Pardo, M. C., Audonnet, J. C., Efficacy of a canarypox-vectored recombinant vaccine expressing the hemagglutinin gene of equine influenza H3N8 virus in the protection of ponies from viral challenge (2007). American Journal of Veterinary Research 68: 213-219.
[0313] 33. Moss, B., Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety (1996). Proc Natl Acad Sci USA 93(21), 11341-8.
[0314] 34. Norman, J A, Hobart P, Manthorpe M, Felgner P, Wheeler C., Development of Improved vectors for DNA-based immunization and other gene therapy applications (1997). Vaccine, 15(8):801-803.
[0315] 35. Oellermann, R. A., Els, H. J. & Erasmus, B. J., Characterization of African horsesickness virus (1970). Archiv fur die gesamte Virusforschung 29, 163-174.
[0316] 36. Paoletti, E., Applications of pox virus vectors to vaccination: an update (1996). Proc Natl Acad Sci USA 93(21): 11349-53.
[0317] 37. Pearson, L. D., Roy, P., Genetically engineered multi-component virus-like particles as veterinary vaccines (1993). Immunol. Cell Biol. 71 (Pt 5), 381-389.
[0318] 38. Pennock, G. D., Shoemaker, C. et al., Strong and regulated expression of Escherichia coli beta-galactosidase in insect cells with a baculovirus vector (1984). Mol Cell Biol 4(3): 399-406.
[0319] 39. Piccini, A., Perkus, M. E., Paoletti, E., Vaccinia virus as an expression vector, (1987) Methods. Enzymol. 153: 545-563.
[0320] 40. Poulet, H., Brunet, S., Boularand, C., Guiot, A. L., Leroy, V., Tartaglia, J., Minke, J., Audonnet, J. C., Desmettre, P., Efficacy of a canarypox virus-vectored vaccine against feline leukaemia (2003). Veterinary Record 153: 141-145.
[0321] 41. Prevec, L., Schneider, M. et al., Use of human adenovirus-based vectors for antigen expression in animals (1989). J Gen Virol 70 (Pt 2), 429-34.
[0322] 42. Quan M, Van Vuuren M, Howell P G, Groenewald D, Guthrie A J. Molecular epidemiology of the African horse sickness virus S10 gene (2008). J Gen Virol May; 89(Pt 5):1159-68.
[0323] 43. Quan M, Guthrie A J., Development and optimisation of a quantitative duplex real-rime RT-PCR assay for African horse sickness virus (2009) J Virol Methods.
[0324] 44. Richardson, C. D., Methods in Molecular Biology (1995). Baculovirus Expression Protocols, Humana Press Inc. Vol. 39.
[0325] 45. Robertson, E. S., Ooka, T., et al., Epstein-Barr virus vectors for gene delivery to B lymphocytes (1996). Proc Natl Acad Sci USA 93(21), 11334-40.
[0326] 46. Robinson, H. L. and Torres, C. A., DNA vaccines (1997). Semin Immunol 9(5), 271-83.
[0327] 47. Roizman, B., The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors (1996). Proc Natl Acad Sci USA 93(21), 11307-12.
[0328] 48. Sambrook, Fritsch and Maniatis, Molecular Cloning, A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, 1982
[0329] 49. Sambrook, Fritsch & Maniatis, Molecular Cloning: A Laboratory Manual, Second Edition (1989); DNA Cloning, Vols. I and II (D. N. Glover ed. 1985); Oligonucleotide Synthesis (M. J. Gait ed. 1984); Nucleic Acid Hybridization (B. D. Hames & S. J. Higgins eds. 1984); Animal Cell Culture (R. K. Freshney ed. 1986)
[0330] 50. Scanlen, M., Paweska, J. T., Verschoor, J. A., Van Dijk, A. A., The protective efficacy of a recombinant VP2-based African horsesickness subunit vaccine candidate is determined by adjuvant (2002). Vaccine 20, 1079-1088.
[0331] 51. Siger, L., Bowen, R., Karaca, K., Murray, M., Jagannatha, S., Echols, B., Nordgren, R., Minke, J. M., Evaluation of the efficacy provided by a Recombinant Canarypox-Vectored Equine West Nile Virus vaccine against an experimental West Nile Virus intrathecal challenge in horses (2006). Vet. Ther. 7, 249-256.
[0332] 52. Smith, G. E., Summers, M. D., et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector (1983). Mol Cell Biol 3(12), 2156-65.
[0333] 53. Tang, D. C., DeVit, M. et al., Genetic immunization is a simple method for eliciting an immune response (1992). Nature 356(6365), 152-4.
[0334] 54. Ulmer, J. B., Donnelly, J. J., et al., Heterologous protection against influenza by injection of DNA encoding a viral protein (1993). Science 259(5102): 1745-9.
[0335] Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the appended paragraphs is not to be limited to particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope of the present invention.
Sequence CWU
1
1
6311060PRTartificial sequenceAHSV4-VP2 polypeptide encoded by
codon-optimized synthetic AHSV4-VP2 gene 1Met Ala Ser Glu Phe Gly Ile Leu
Met Thr Asn Glu Lys Phe Asp Pro 1 5 10
15 Ser Leu Glu Lys Thr Ile Cys Asp Val Ile Val Thr Lys
Lys Gly Arg 20 25 30
Val Lys His Lys Glu Val Asp Gly Val Cys Gly Tyr Glu Trp Asp Glu
35 40 45 Thr Asn His Arg
Phe Gly Leu Cys Glu Val Glu His Asp Met Ser Ile 50
55 60 Ser Glu Phe Met Tyr Asn Glu Ile
Arg Cys Glu Gly Ala Tyr Pro Ile 65 70
75 80 Phe Pro Arg Tyr Ile Ile Asp Thr Leu Lys Tyr Glu
Lys Phe Ile Asp 85 90
95 Arg Asn Asp His Gln Ile Arg Val Asp Arg Asp Asp Asn Glu Met Arg
100 105 110 Lys Ile Leu
Ile Gln Pro Tyr Ala Gly Glu Met Tyr Phe Ser Pro Glu 115
120 125 Cys Tyr Pro Ser Val Phe Leu Arg
Arg Glu Ala Arg Ser Gln Lys Leu 130 135
140 Asp Arg Ile Arg Asn Tyr Ile Gly Lys Arg Val Glu Phe
Tyr Glu Glu 145 150 155
160 Glu Ser Lys Arg Lys Ala Ile Leu Asp Gln Asn Lys Met Ser Lys Val
165 170 175 Glu Gln Trp Arg
Asp Ala Val Asn Glu Arg Ile Val Ser Ile Glu Pro 180
185 190 Lys Arg Gly Glu Cys Tyr Asp His Gly
Thr Asp Ile Ile Tyr Gln Phe 195 200
205 Ile Lys Lys Leu Arg Phe Gly Met Met Tyr Pro His Tyr Tyr
Val Leu 210 215 220
His Ser Asp Tyr Cys Ile Val Pro Asn Lys Gly Gly Thr Ser Ile Gly 225
230 235 240 Ser Trp His Ile Arg
Lys Arg Thr Glu Gly Asp Ala Lys Ala Ser Ala 245
250 255 Met Tyr Ser Gly Lys Gly Pro Leu Asn Asp
Leu Arg Val Lys Ile Glu 260 265
270 Arg Asp Asp Leu Ser Arg Glu Thr Ile Ile Gln Ile Ile Glu Tyr
Gly 275 280 285 Lys
Lys Phe Asn Ser Ser Ala Gly Asp Lys Gln Gly Asn Ile Ser Ile 290
295 300 Glu Lys Leu Val Glu Tyr
Cys Asp Phe Leu Thr Thr Phe Val His Ala 305 310
315 320 Lys Lys Lys Glu Glu Gly Glu Asp Asp Thr Ala
Arg Gln Glu Ile Arg 325 330
335 Lys Ala Trp Val Lys Gly Met Pro Tyr Met Asp Phe Ser Lys Pro Met
340 345 350 Lys Ile
Thr Arg Gly Phe Asn Arg Asn Met Leu Phe Phe Ala Ala Leu 355
360 365 Asp Ser Phe Arg Lys Arg Asn
Gly Val Asp Val Asp Pro Asn Lys Gly 370 375
380 Lys Trp Lys Glu His Ile Lys Glu Val Thr Glu Lys
Leu Lys Lys Ala 385 390 395
400 Gln Thr Glu Asn Gly Gly Gln Pro Cys Gln Val Ser Ile Asp Gly Val
405 410 415 Asn Val Leu
Thr Asn Val Asp Tyr Gly Thr Val Asn His Trp Ile Asp 420
425 430 Trp Val Thr Asp Ile Ile Met Val
Val Gln Thr Lys Arg Leu Val Lys 435 440
445 Glu Tyr Ala Phe Lys Lys Leu Lys Ser Glu Asn Leu Leu
Ala Gly Met 450 455 460
Asn Ser Leu Val Gly Val Leu Arg Cys Tyr Met Tyr Cys Leu Ala Leu 465
470 475 480 Ala Ile Tyr Asp
Phe Tyr Glu Gly Thr Ile Asp Gly Phe Lys Lys Gly 485
490 495 Ser Asn Ala Ser Ala Ile Ile Glu Thr
Val Ala Gln Met Phe Pro Asp 500 505
510 Phe Arg Arg Glu Leu Val Glu Lys Phe Gly Ile Asp Leu Arg
Met Lys 515 520 525
Glu Ile Thr Arg Glu Leu Phe Val Gly Lys Ser Met Thr Ser Lys Phe 530
535 540 Met Glu Glu Gly Glu
Tyr Gly Tyr Lys Phe Ala Tyr Gly Trp Arg Arg 545 550
555 560 Asp Gly Phe Ala Val Met Glu Asp Tyr Gly
Glu Ile Leu Thr Glu Lys 565 570
575 Val Glu Asp Leu Tyr Lys Gly Val Leu Leu Gly Arg Lys Trp Glu
Asp 580 585 590 Glu
Val Asp Asp Pro Glu Ser Tyr Phe Tyr Asp Asp Leu Tyr Thr Asn 595
600 605 Glu Pro His Arg Val Phe
Leu Ser Ala Gly Lys Asp Val Asp Asn Asn 610 615
620 Ile Thr Leu Arg Ser Ile Ser Gln Ala Glu Thr
Thr Tyr Leu Ser Lys 625 630 635
640 Arg Phe Val Ser Tyr Trp Tyr Arg Ile Ser Gln Val Glu Val Thr Lys
645 650 655 Ala Arg
Asn Glu Val Leu Asp Met Asn Glu Lys Gln Lys Pro Tyr Phe 660
665 670 Glu Phe Glu Tyr Asp Asp Phe
Lys Pro Cys Ser Ile Gly Glu Leu Gly 675 680
685 Ile His Ala Ser Thr Tyr Ile Tyr Gln Asn Leu Leu
Val Gly Arg Asn 690 695 700
Arg Gly Glu Glu Ile Leu Asp Ser Lys Glu Leu Val Trp Met Asp Met 705
710 715 720 Ser Leu Leu
Asn Phe Gly Ala Val Arg Ser His Asp Arg Cys Trp Ile 725
730 735 Ser Ser Ser Val Ala Ile Glu Val
Asn Leu Arg His Ala Leu Ile Val 740 745
750 Arg Ile Phe Ser Arg Phe Asp Met Met Ser Glu Arg Glu
Thr Phe Ser 755 760 765
Thr Ile Leu Glu Lys Val Met Glu Asp Val Lys Glu Leu Arg Phe Phe 770
775 780 Pro Thr Tyr Arg
His Tyr Tyr Leu Glu Thr Leu Gln Arg Val Phe Asn 785 790
795 800 Asp Glu Arg Arg Leu Glu Val Asp Asp
Phe Tyr Met Arg Leu Tyr Asp 805 810
815 Val Gln Thr Arg Glu Gln Ala Leu Asn Thr Phe Thr Asp Phe
His Arg 820 825 830
Cys Val Glu Ser Glu Leu Leu Leu Pro Thr Leu Lys Leu Asn Phe Leu
835 840 845 Leu Trp Ile Val
Phe Glu Met Glu Asn Val Glu Val Asn Ala Ala Tyr 850
855 860 Lys Arg His Pro Leu Leu Ile Ser
Thr Ala Lys Gly Leu Arg Val Ile 865 870
875 880 Gly Val Asp Ile Phe Asn Ser Gln Leu Ser Ile Ser
Met Ser Gly Trp 885 890
895 Ile Pro Tyr Val Glu Arg Met Cys Ala Glu Ser Lys Val Gln Thr Lys
900 905 910 Leu Thr Ala
Asp Glu Leu Lys Leu Lys Arg Trp Phe Ile Ser Tyr Tyr 915
920 925 Thr Thr Leu Lys Leu Asp Arg Arg
Ala Glu Pro Arg Met Ser Phe Lys 930 935
940 Phe Glu Gly Leu Ser Thr Trp Ile Gly Ser Asn Cys Gly
Gly Val Arg 945 950 955
960 Asp Tyr Val Ile Gln Met Leu Pro Thr Arg Lys Pro Lys Pro Gly Ala
965 970 975 Leu Met Val Val
Tyr Ala Arg Asp Ser Arg Ile Glu Trp Ile Glu Ala 980
985 990 Glu Leu Ser Gln Trp Leu Gln Met
Glu Gly Ser Leu Gly Leu Ile Leu 995 1000
1005 Val His Asp Ser Gly Ile Ile Asn Lys Ser Val
Leu Arg Ala Arg 1010 1015 1020
Thr Leu Lys Ile Tyr Asn Arg Gly Ser Met Asp Thr Leu Ile Leu
1025 1030 1035 Ile Ser Ser
Gly Val Tyr Thr Phe Gly Asn Lys Phe Leu Leu Ser 1040
1045 1050 Lys Leu Leu Ala Lys Thr Glu
1055 1060 2505PRTartificial sequenceAHSV4-VP5 polypeptide
encoded by codon-optimized synthetic AHSV4-VP5 gene 2Met Gly Lys Phe
Thr Ser Phe Leu Lys Arg Ala Gly Asn Ala Thr Lys 1 5
10 15 Arg Ala Leu Thr Ser Asp Ser Ala Lys
Lys Met Tyr Lys Leu Ala Gly 20 25
30 Lys Thr Leu Gln Arg Val Val Glu Ser Glu Val Gly Ser Ala
Ala Ile 35 40 45
Asp Gly Val Met Gln Gly Ala Ile Gln Ser Ile Ile Gln Gly Glu Asn 50
55 60 Leu Gly Asp Ser Ile
Lys Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65 70
75 80 Leu Glu Ser Ala Pro Asp Pro Leu Ser Pro
Gly Glu Gln Leu Leu Tyr 85 90
95 Asn Lys Val Ser Glu Ile Glu Lys Met Glu Lys Glu Asp Arg Val
Ile 100 105 110 Glu
Thr His Asn Ala Lys Ile Glu Glu Lys Phe Gly Lys Asp Leu Leu 115
120 125 Ala Ile Arg Lys Ile Val
Lys Gly Glu Val Asp Ala Glu Lys Leu Glu 130 135
140 Gly Asn Glu Ile Lys Tyr Val Glu Lys Ala Leu
Ser Gly Leu Leu Glu 145 150 155
160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Lys Leu Tyr Arg Ala Leu
165 170 175 Gln Thr
Glu Glu Asp Leu Arg Thr Arg Asp Glu Thr Arg Met Ile Asn 180
185 190 Glu Tyr Arg Glu Lys Phe Asp
Ala Leu Lys Glu Ala Ile Glu Ile Glu 195 200
205 Gln Gln Ala Thr His Asp Glu Ala Ile Gln Glu Met
Leu Asp Leu Ser 210 215 220
Ala Glu Val Ile Glu Thr Ala Ser Glu Glu Val Pro Ile Phe Gly Ala 225
230 235 240 Gly Ala Ala
Asn Val Ile Ala Thr Thr Arg Ala Ile Gln Gly Gly Leu 245
250 255 Lys Leu Lys Glu Ile Val Asp Lys
Leu Thr Gly Ile Asp Leu Ser His 260 265
270 Leu Lys Val Ala Asp Ile His Pro His Ile Ile Glu Lys
Ala Met Leu 275 280 285
Arg Asp Thr Val Thr Asp Lys Asp Leu Ala Met Ala Ile Lys Ser Lys 290
295 300 Val Asp Val Ile
Asp Glu Met Asn Val Glu Thr Gln His Val Ile Asp 305 310
315 320 Ala Val Leu Pro Ile Val Lys Gln Glu
Tyr Glu Arg His Asp Asn Lys 325 330
335 Tyr His Val Arg Ile Pro Gly Ala Leu Lys Ile His Ser Glu
His Thr 340 345 350
Pro Lys Ile His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Ser Val Phe
355 360 365 Met Cys Arg Ala
Ile Ala Pro His His Gln Gln Arg Ser Phe Phe Ile 370
375 380 Gly Phe Asp Leu Glu Ile Glu Tyr
Val His Phe Glu Asp Thr Ser Val 385 390
395 400 Glu Gly His Ile Leu His Gly Gly Ala Ile Thr Val
Glu Gly Arg Gly 405 410
415 Phe Arg Gln Ala Tyr Thr Glu Phe Met Asn Ala Ala Trp Gly Met Pro
420 425 430 Thr Thr Pro
Glu Leu His Lys Arg Lys Leu Gln Arg Ser Met Gly Thr 435
440 445 His Pro Ile Tyr Met Gly Ser Met
Asp Tyr Ala Ile Ser Tyr Glu Gln 450 455
460 Leu Val Ser Asn Ala Met Arg Leu Val Tyr Asp Ser Glu
Leu Gln Met 465 470 475
480 His Cys Leu Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn
485 490 495 Ala Leu Leu Tyr
Gly Val Lys Ile Ala 500 505
38550DNAartificial sequencepLHD3460.4 Plasmid (Left Arm to Right Arm)
comprising African Horse Virus 4 VP2 & VP5 coding sequences 3tgcggccgcg
tcgacatgca ttgttagttc tgtagatcag taacgtatag catacgagta 60taattatcgt
aggtagtagg tatcctaaaa taaatctgat acagataata actttgtaaa 120tcaattcagc
aatttctcta ttatcatgat aatgattaat acacagcgtg tcgttatttt 180ttgttacgat
agtatttcta aagtaaagag caggaatccc tagtataata gaaataatcc 240atatgaaaaa
tatagtaatg tacatatttc taatgttaac atatttatag gtaaatccag 300gaagggtaat
ttttacatat ctatatacgc ttattacagt tattaaaaat atacttgcaa 360acatgttaga
agtaaaaaag aaagaactaa ttttacaaag tgctttacca aaatgccaat 420ggaaattact
tagtatgtat ataatgtata aaggtatgaa tatcacaaac agcaaatcgg 480ctattcccaa
gttgagaaac ggtataatag atatatttct agataccatt aataacctta 540taagcttgac
gtttcctata atgcctacta agaaaactag aagatacata catactaacg 600ccatacgaga
gtaactactc atcgtataac tactgttgct aacagtgaca ctgatgttat 660aactcatctt
tgatgtggta taaatgtata ataactatat tacactggta ttttatttca 720gttatatact
atatagtatt aaaaattata tttgtataat tatattatta tattcagtgt 780agaaagtaaa
atactataaa tatgtatctc ttatttataa cttattagta aagtatgtac 840tattcagtta
tattgtttta taaaagctaa atgctactag attgatataa atgaatatgt 900aataaattag
taatgtagta tactaatatt aactcacatt tgactaatta gctataaaaa 960cccgggttaa
ttaattagtc atcaggcagg gcgagaacga gactatctgc tcgttaatta 1020attagagctt
ctttattcta tacttaaaaa gtgaaaataa atacaaaggt tcttgagggt 1080tgtgttaaat
tgaaagcgag aaataatcat aaattatttc attatcgcga tatccgttaa 1140gtttgtatcg
ta atg gcc agc gag ttc ggc atc ctg atg acc aac gag aag 1191
Met Ala Ser Glu Phe Gly Ile Leu Met Thr Asn Glu Lys
1 5 10 ttc gac ccc agc
ctg gaa aag acc atc tgc gac gtg atc gtg acc aag 1239Phe Asp Pro Ser
Leu Glu Lys Thr Ile Cys Asp Val Ile Val Thr Lys 15
20 25 aag ggc cgg gtc aag
cac aag gaa gtg gac ggc gtg tgc ggc tac gag 1287Lys Gly Arg Val Lys
His Lys Glu Val Asp Gly Val Cys Gly Tyr Glu 30
35 40 45 tgg gac gag acc aac
cac cgg ttc ggc ctg tgc gag gtg gag cac gac 1335Trp Asp Glu Thr Asn
His Arg Phe Gly Leu Cys Glu Val Glu His Asp 50
55 60 atg agc atc agc gag ttc
atg tac aac gag atc aga tgc gag ggc gcc 1383Met Ser Ile Ser Glu Phe
Met Tyr Asn Glu Ile Arg Cys Glu Gly Ala 65
70 75 tac ccc atc ttc ccc cgg tac
atc atc gac acc ctg aag tat gag aag 1431Tyr Pro Ile Phe Pro Arg Tyr
Ile Ile Asp Thr Leu Lys Tyr Glu Lys 80
85 90 ttc atc gac cgg aac gac cac
cag atc cgg gtg gac cgg gac gac aac 1479Phe Ile Asp Arg Asn Asp His
Gln Ile Arg Val Asp Arg Asp Asp Asn 95 100
105 gag atg cgg aag atc ctg atc cag
ccc tac gcc ggc gag atg tac ttc 1527Glu Met Arg Lys Ile Leu Ile Gln
Pro Tyr Ala Gly Glu Met Tyr Phe 110 115
120 125 agc ccc gag tgc tac ccc agc gtg ttc
ctg cgg cgg gag gcc aga agc 1575Ser Pro Glu Cys Tyr Pro Ser Val Phe
Leu Arg Arg Glu Ala Arg Ser 130
135 140 cag aag ctg gac cgg atc agg aac tac
atc ggc aag cgg gtg gag ttc 1623Gln Lys Leu Asp Arg Ile Arg Asn Tyr
Ile Gly Lys Arg Val Glu Phe 145 150
155 tac gag gaa gag agc aag cgg aag gcc atc
ctg gac cag aac aag atg 1671Tyr Glu Glu Glu Ser Lys Arg Lys Ala Ile
Leu Asp Gln Asn Lys Met 160 165
170 agc aag gtg gaa cag tgg cgg gac gcc gtg aac
gag cgg atc gtg agc 1719Ser Lys Val Glu Gln Trp Arg Asp Ala Val Asn
Glu Arg Ile Val Ser 175 180
185 atc gag ccc aag cgg ggc gag tgc tac gac cac
ggc acc gac atc atc 1767Ile Glu Pro Lys Arg Gly Glu Cys Tyr Asp His
Gly Thr Asp Ile Ile 190 195 200
205 tac cag ttc atc aag aag ctg cgg ttc ggc atg atg
tac ccc cac tac 1815Tyr Gln Phe Ile Lys Lys Leu Arg Phe Gly Met Met
Tyr Pro His Tyr 210 215
220 tac gtg ctg cac agc gac tac tgc atc gtg ccc aac aag
ggc ggc acc 1863Tyr Val Leu His Ser Asp Tyr Cys Ile Val Pro Asn Lys
Gly Gly Thr 225 230
235 agc atc ggc agc tgg cac atc cgg aag cgg acc gag ggc
gac gcc aag 1911Ser Ile Gly Ser Trp His Ile Arg Lys Arg Thr Glu Gly
Asp Ala Lys 240 245 250
gcc agc gcc atg tac agc ggc aag ggc ccc ctg aac gac ctg
cgg gtg 1959Ala Ser Ala Met Tyr Ser Gly Lys Gly Pro Leu Asn Asp Leu
Arg Val 255 260 265
aag atc gag cgg gac gac ctg agc cgg gag acc atc atc cag atc
atc 2007Lys Ile Glu Arg Asp Asp Leu Ser Arg Glu Thr Ile Ile Gln Ile
Ile 270 275 280
285 gag tac ggc aag aag ttc aac agc tct gcc ggc gac aag cag ggc
aac 2055Glu Tyr Gly Lys Lys Phe Asn Ser Ser Ala Gly Asp Lys Gln Gly
Asn 290 295 300
atc agc atc gag aag ctg gtc gag tac tgc gac ttc ctg acc acc ttc
2103Ile Ser Ile Glu Lys Leu Val Glu Tyr Cys Asp Phe Leu Thr Thr Phe
305 310 315
gtg cac gcc aag aag aag gaa gag ggc gag gac gac acc gcc agg cag
2151Val His Ala Lys Lys Lys Glu Glu Gly Glu Asp Asp Thr Ala Arg Gln
320 325 330
gaa atc cgg aag gcc tgg gtg aag gga atg ccc tac atg gac ttc agc
2199Glu Ile Arg Lys Ala Trp Val Lys Gly Met Pro Tyr Met Asp Phe Ser
335 340 345
aag ccc atg aag atc acc cgg ggc ttc aac cgg aat atg ctg ttc ttc
2247Lys Pro Met Lys Ile Thr Arg Gly Phe Asn Arg Asn Met Leu Phe Phe
350 355 360 365
gcc gcc ctg gac agc ttc cgg aag agg aac ggc gtg gac gtg gac ccc
2295Ala Ala Leu Asp Ser Phe Arg Lys Arg Asn Gly Val Asp Val Asp Pro
370 375 380
aat aag ggc aag tgg aaa gag cac atc aaa gag gtc acc gag aag ctg
2343Asn Lys Gly Lys Trp Lys Glu His Ile Lys Glu Val Thr Glu Lys Leu
385 390 395
aag aag gcc cag acc gag aac ggc ggc cag ccc tgc cag gtg tcc atc
2391Lys Lys Ala Gln Thr Glu Asn Gly Gly Gln Pro Cys Gln Val Ser Ile
400 405 410
gac ggc gtg aac gtg ctg acc aac gtg gac tac ggc acc gtg aac cac
2439Asp Gly Val Asn Val Leu Thr Asn Val Asp Tyr Gly Thr Val Asn His
415 420 425
tgg atc gac tgg gtg aca gac atc atc atg gtg gtg cag acc aag cgg
2487Trp Ile Asp Trp Val Thr Asp Ile Ile Met Val Val Gln Thr Lys Arg
430 435 440 445
ctg gtg aaa gag tac gcc ttt aag aag ctg aaa agc gag aac ctg ctg
2535Leu Val Lys Glu Tyr Ala Phe Lys Lys Leu Lys Ser Glu Asn Leu Leu
450 455 460
gcc ggc atg aac agc ctg gtc ggc gtg ctg cgg tgc tac atg tac tgc
2583Ala Gly Met Asn Ser Leu Val Gly Val Leu Arg Cys Tyr Met Tyr Cys
465 470 475
ctg gcc ctg gcc atc tac gac ttc tac gag ggc acc atc gat ggc ttc
2631Leu Ala Leu Ala Ile Tyr Asp Phe Tyr Glu Gly Thr Ile Asp Gly Phe
480 485 490
aag aag ggc agc aac gcc tcc gcc atc atc gag acc gtg gcc cag atg
2679Lys Lys Gly Ser Asn Ala Ser Ala Ile Ile Glu Thr Val Ala Gln Met
495 500 505
ttc ccc gac ttc cgg cgg gaa ctg gtg gag aag ttt ggc atc gac ctg
2727Phe Pro Asp Phe Arg Arg Glu Leu Val Glu Lys Phe Gly Ile Asp Leu
510 515 520 525
cgc atg aaa gag atc acc cgc gag ctg ttc gtg ggc aag agc atg acc
2775Arg Met Lys Glu Ile Thr Arg Glu Leu Phe Val Gly Lys Ser Met Thr
530 535 540
agc aag ttc atg gaa gag ggg gag tac ggc tac aag ttc gcc tac ggc
2823Ser Lys Phe Met Glu Glu Gly Glu Tyr Gly Tyr Lys Phe Ala Tyr Gly
545 550 555
tgg cgg agg gac ggc ttc gcc gtg atg gaa gat tac ggc gag atc ctg
2871Trp Arg Arg Asp Gly Phe Ala Val Met Glu Asp Tyr Gly Glu Ile Leu
560 565 570
aca gag aag gtg gag gac ctg tac aag ggg gtg ctg ctg ggc cgg aag
2919Thr Glu Lys Val Glu Asp Leu Tyr Lys Gly Val Leu Leu Gly Arg Lys
575 580 585
tgg gag gac gag gtg gac gac ccc gag agc tac ttc tac gac gac ctg
2967Trp Glu Asp Glu Val Asp Asp Pro Glu Ser Tyr Phe Tyr Asp Asp Leu
590 595 600 605
tac acc aac gag ccc cac cgg gtg ttc ctg agc gcc ggc aag gac gtg
3015Tyr Thr Asn Glu Pro His Arg Val Phe Leu Ser Ala Gly Lys Asp Val
610 615 620
gac aac aac atc acc ctg cgg agc atc agc cag gcc gag acc acc tac
3063Asp Asn Asn Ile Thr Leu Arg Ser Ile Ser Gln Ala Glu Thr Thr Tyr
625 630 635
ctg agc aag cgg ttc gtg agc tac tgg tac agg atc agc cag gtg gag
3111Leu Ser Lys Arg Phe Val Ser Tyr Trp Tyr Arg Ile Ser Gln Val Glu
640 645 650
gtg acc aag gcc cgg aac gag gtg ctg gac atg aac gag aag cag aag
3159Val Thr Lys Ala Arg Asn Glu Val Leu Asp Met Asn Glu Lys Gln Lys
655 660 665
ccc tac ttc gag ttc gag tac gac gac ttc aag ccc tgc tcc atc ggc
3207Pro Tyr Phe Glu Phe Glu Tyr Asp Asp Phe Lys Pro Cys Ser Ile Gly
670 675 680 685
gag ctg ggc atc cac gcc agc acc tac atc tac cag aat ctg ctg gtc
3255Glu Leu Gly Ile His Ala Ser Thr Tyr Ile Tyr Gln Asn Leu Leu Val
690 695 700
ggc agg aac cgg ggc gag gaa atc ctg gac agc aaa gaa ctg gtc tgg
3303Gly Arg Asn Arg Gly Glu Glu Ile Leu Asp Ser Lys Glu Leu Val Trp
705 710 715
atg gac atg agc ctg ctg aac ttc ggc gcc gtg cgg agc cac gac cgg
3351Met Asp Met Ser Leu Leu Asn Phe Gly Ala Val Arg Ser His Asp Arg
720 725 730
tgc tgg atc tct agc agc gtg gcc atc gag gtg aac ctg cgg cac gcc
3399Cys Trp Ile Ser Ser Ser Val Ala Ile Glu Val Asn Leu Arg His Ala
735 740 745
ctg atc gtg cgg atc ttc agc aga ttc gac atg atg agc gag aga gag
3447Leu Ile Val Arg Ile Phe Ser Arg Phe Asp Met Met Ser Glu Arg Glu
750 755 760 765
acc ttc agc acc atc ctg gaa aag gtc atg gaa gat gtg aaa gag ctg
3495Thr Phe Ser Thr Ile Leu Glu Lys Val Met Glu Asp Val Lys Glu Leu
770 775 780
cgg ttc ttc ccc acc tac cgg cac tac tac ctg gaa acc ctg cag cgg
3543Arg Phe Phe Pro Thr Tyr Arg His Tyr Tyr Leu Glu Thr Leu Gln Arg
785 790 795
gtg ttc aac gac gag cgg cgg ctg gaa gtg gat gac ttc tac atg cgg
3591Val Phe Asn Asp Glu Arg Arg Leu Glu Val Asp Asp Phe Tyr Met Arg
800 805 810
ctg tac gac gtg cag acc cgg gag cag gcc ctg aac acc ttc acc gac
3639Leu Tyr Asp Val Gln Thr Arg Glu Gln Ala Leu Asn Thr Phe Thr Asp
815 820 825
ttc cac aga tgc gtg gag agc gag ctg ctg ctg ccc acc ctg aag ctg
3687Phe His Arg Cys Val Glu Ser Glu Leu Leu Leu Pro Thr Leu Lys Leu
830 835 840 845
aac ttc ctg ctg tgg atc gtg ttc gag atg gaa aac gtg gag gtg aac
3735Asn Phe Leu Leu Trp Ile Val Phe Glu Met Glu Asn Val Glu Val Asn
850 855 860
gcc gcc tac aag cgg cac ccc ctg ctg atc tct acc gcc aag ggc ctg
3783Ala Ala Tyr Lys Arg His Pro Leu Leu Ile Ser Thr Ala Lys Gly Leu
865 870 875
agg gtg atc ggc gtg gac atc ttc aac agc cag ctg tcc atc agc atg
3831Arg Val Ile Gly Val Asp Ile Phe Asn Ser Gln Leu Ser Ile Ser Met
880 885 890
agc ggc tgg att ccc tac gtg gag cgg atg tgc gcc gag agc aaa gtg
3879Ser Gly Trp Ile Pro Tyr Val Glu Arg Met Cys Ala Glu Ser Lys Val
895 900 905
cag acc aaa ctg acc gcc gac gag ctg aaa ctg aag cgg tgg ttc atc
3927Gln Thr Lys Leu Thr Ala Asp Glu Leu Lys Leu Lys Arg Trp Phe Ile
910 915 920 925
agc tac tac acc aca ctg aag ctg gac aga aga gcc gag ccc cgg atg
3975Ser Tyr Tyr Thr Thr Leu Lys Leu Asp Arg Arg Ala Glu Pro Arg Met
930 935 940
agc ttc aag ttc gag ggc ctg agc acc tgg atc ggc agc aac tgt ggc
4023Ser Phe Lys Phe Glu Gly Leu Ser Thr Trp Ile Gly Ser Asn Cys Gly
945 950 955
ggc gtg cgg gac tac gtg atc cag atg ctg cct acc cgg aag ccc aag
4071Gly Val Arg Asp Tyr Val Ile Gln Met Leu Pro Thr Arg Lys Pro Lys
960 965 970
cct ggc gcc ctg atg gtg gtg tac gcc cgg gac agc cgg atc gag tgg
4119Pro Gly Ala Leu Met Val Val Tyr Ala Arg Asp Ser Arg Ile Glu Trp
975 980 985
atc gag gcc gag ctg tcc cag tgg ctg cag atg gaa ggc agc ctg ggc
4167Ile Glu Ala Glu Leu Ser Gln Trp Leu Gln Met Glu Gly Ser Leu Gly
990 995 1000 1005
ctg atc ctg gtg cac gac agc ggc atc atc aac aag agc gtg ctg
4212Leu Ile Leu Val His Asp Ser Gly Ile Ile Asn Lys Ser Val Leu
1010 1015 1020
agg gcc cgg acc ctg aaa atc tac aac cgg ggc agc atg gac acc
4257Arg Ala Arg Thr Leu Lys Ile Tyr Asn Arg Gly Ser Met Asp Thr
1025 1030 1035
ctg atc ctg atc agc tcc ggc gtg tac acc ttc ggc aac aag ttc
4302Leu Ile Leu Ile Ser Ser Gly Val Tyr Thr Phe Gly Asn Lys Phe
1040 1045 1050
ctg ctg tcc aag ctg ctg gcc aag acc gag tga tga ggatccctcg
4348Leu Leu Ser Lys Leu Leu Ala Lys Thr Glu
1055 1060
agtttttatt gactagttca aaattgaaaa tatataatta caatataaa atg ggc aag 4406
Met Gly Lys ttt acc
agc ttc ctg aag agg gcc ggc aac gcc acc aag cgg gcc 4451Phe Thr
Ser Phe Leu Lys Arg Ala Gly Asn Ala Thr Lys Arg Ala 1065
1070 1075 ctg acc agc
gac agc gcc aag aag atg tac aag ctg gcc ggc aag 4496Leu Thr Ser
Asp Ser Ala Lys Lys Met Tyr Lys Leu Ala Gly Lys 1080
1085 1090 acc ctg cag cgg
gtg gtg gag agc gaa gtg ggc agc gcc gcc atc 4541Thr Leu Gln Arg
Val Val Glu Ser Glu Val Gly Ser Ala Ala Ile 1095
1100 1105 gac ggc gtg atg cag
ggc gcc atc cag agc atc atc cag ggc gag 4586Asp Gly Val Met Gln
Gly Ala Ile Gln Ser Ile Ile Gln Gly Glu 1110
1115 1120 aac ctg ggc gac agc atc
aag cag gcc gtg atc ctg aac gtg gcc 4631Asn Leu Gly Asp Ser Ile
Lys Gln Ala Val Ile Leu Asn Val Ala 1125
1130 1135 ggc acc ctg gaa agc gcc
cct gac ccc ctg agc cct ggc gag cag 4676Gly Thr Leu Glu Ser Ala
Pro Asp Pro Leu Ser Pro Gly Glu Gln 1140
1145 1150 ctg ctg tac aac aag gtg
tcc gag atc gag aag atg gaa aag gaa 4721Leu Leu Tyr Asn Lys Val
Ser Glu Ile Glu Lys Met Glu Lys Glu 1155
1160 1165 gat cgg gtg atc gag acc
cac aac gcc aag atc gag gaa aag ttc 4766Asp Arg Val Ile Glu Thr
His Asn Ala Lys Ile Glu Glu Lys Phe 1170
1175 1180 ggc aag gac ctg ctg gcc
atc cgg aag atc gtg aag ggc gag gtg 4811Gly Lys Asp Leu Leu Ala
Ile Arg Lys Ile Val Lys Gly Glu Val 1185
1190 1195 gac gcc gag aag ctg gaa
ggc aac gag atc aag tac gtg gag aag 4856Asp Ala Glu Lys Leu Glu
Gly Asn Glu Ile Lys Tyr Val Glu Lys 1200
1205 1210 gcc ctg agc ggc ctg ctg
gaa atc ggc aag gat cag agc gag cgg 4901Ala Leu Ser Gly Leu Leu
Glu Ile Gly Lys Asp Gln Ser Glu Arg 1215
1220 1225 atc acc aag ctg tac cgg
gcc ctg cag acc gaa gag gac ctg cgg 4946Ile Thr Lys Leu Tyr Arg
Ala Leu Gln Thr Glu Glu Asp Leu Arg 1230
1235 1240 acc cgg gac gag acc cgg
atg atc aac gag tac cgg gag aag ttc 4991Thr Arg Asp Glu Thr Arg
Met Ile Asn Glu Tyr Arg Glu Lys Phe 1245
1250 1255 gac gcc ctg aaa gag gcc
atc gag atc gag cag cag gcc acc cac 5036Asp Ala Leu Lys Glu Ala
Ile Glu Ile Glu Gln Gln Ala Thr His 1260
1265 1270 gac gag gcc atc cag gaa
atg ctg gac ctg agc gcc gag gtg atc 5081Asp Glu Ala Ile Gln Glu
Met Leu Asp Leu Ser Ala Glu Val Ile 1275
1280 1285 gaa acc gcc agc gag gaa
gtg ccc atc ttt ggc gcc gga gcc gcc 5126Glu Thr Ala Ser Glu Glu
Val Pro Ile Phe Gly Ala Gly Ala Ala 1290
1295 1300 aac gtg atc gcc acc acc
cgg gcc att cag ggc ggc ctg aag ctg 5171Asn Val Ile Ala Thr Thr
Arg Ala Ile Gln Gly Gly Leu Lys Leu 1305
1310 1315 aag gaa atc gtg gac aag
ctg aca ggc atc gac ctg agc cac ctg 5216Lys Glu Ile Val Asp Lys
Leu Thr Gly Ile Asp Leu Ser His Leu 1320
1325 1330 aag gtg gcc gac atc cac
ccc cac atc atc gag aag gcc atg ctg 5261Lys Val Ala Asp Ile His
Pro His Ile Ile Glu Lys Ala Met Leu 1335
1340 1345 cgg gac acc gtg acc gac
aag gac ctg gct atg gcc atc aag agc 5306Arg Asp Thr Val Thr Asp
Lys Asp Leu Ala Met Ala Ile Lys Ser 1350
1355 1360 aag gtg gac gtg atc gac
gag atg aac gtg gag acc cag cac gtg 5351Lys Val Asp Val Ile Asp
Glu Met Asn Val Glu Thr Gln His Val 1365
1370 1375 atc gat gcc gtg ctg ccc
atc gtg aag cag gaa tac gag cgg cac 5396Ile Asp Ala Val Leu Pro
Ile Val Lys Gln Glu Tyr Glu Arg His 1380
1385 1390 gac aac aag tac cac gtg
aga atc cct ggc gcc ctg aag atc cac 5441Asp Asn Lys Tyr His Val
Arg Ile Pro Gly Ala Leu Lys Ile His 1395
1400 1405 agc gag cac acc ccc aag
atc cac atc tac acc acc ccc tgg gac 5486Ser Glu His Thr Pro Lys
Ile His Ile Tyr Thr Thr Pro Trp Asp 1410
1415 1420 agc gac tcc gtg ttc atg
tgc cgg gcc atc gcc ccc cac cat cag 5531Ser Asp Ser Val Phe Met
Cys Arg Ala Ile Ala Pro His His Gln 1425
1430 1435 cag cgg agc ttc ttc atc
ggc ttc gac ctg gaa atc gag tac gtg 5576Gln Arg Ser Phe Phe Ile
Gly Phe Asp Leu Glu Ile Glu Tyr Val 1440
1445 1450 cac ttc gag gac acc agc
gtg gag ggc cac atc ctg cac ggc gga 5621His Phe Glu Asp Thr Ser
Val Glu Gly His Ile Leu His Gly Gly 1455
1460 1465 gcc atc acc gtg gag ggc
agg ggc ttc cgg cag gcc tac acc gag 5666Ala Ile Thr Val Glu Gly
Arg Gly Phe Arg Gln Ala Tyr Thr Glu 1470
1475 1480 ttc atg aac gcc gcc tgg
ggc atg cct acc acc ccc gag ctg cac 5711Phe Met Asn Ala Ala Trp
Gly Met Pro Thr Thr Pro Glu Leu His 1485
1490 1495 aag cgg aag ctg cag cgg
agc atg ggc acc cac ccc atc tac atg 5756Lys Arg Lys Leu Gln Arg
Ser Met Gly Thr His Pro Ile Tyr Met 1500
1505 1510 ggc agc atg gac tac gcc
atc agc tac gag cag ctg gtg tcc aat 5801Gly Ser Met Asp Tyr Ala
Ile Ser Tyr Glu Gln Leu Val Ser Asn 1515
1520 1525 gcc atg cgg ctg gtg tac
gac agc gag ctg cag atg cac tgc ctg 5846Ala Met Arg Leu Val Tyr
Asp Ser Glu Leu Gln Met His Cys Leu 1530
1535 1540 aga ggc ccc ctg aag ttc
cag cgg cgg acc ctg atg aac gcc ctg 5891Arg Gly Pro Leu Lys Phe
Gln Arg Arg Thr Leu Met Asn Ala Leu 1545
1550 1555 ctg tac ggc gtg aag atc
gcc tga tga tttttctact agttaatcaa 5938Leu Tyr Gly Val Lys Ile
Ala 1560
1565 ataaaaagca tacaagctat
tgcttcgcta tcgttacaaa atggcaggaa ttttgtgtaa 5998actaagccac atacttgcca
atgaaaaaaa tagtagaaag gatactattt taatgggatt 6058agatgttaag gttccttggg
attatagtaa ctgggcatct gttaactttt acgacgttag 6118gttagatact gatgttacag
attataataa tgttacaata aaatacatga caggatgtga 6178tatttttcct catataactc
ttggaatagc aaatatggat caatgtgata gatttgaaaa 6238tttcaaaaag caaataactg
atcaagattt acagactatt tctatagtct gtaaagaaga 6298gatgtgtttt cctcagagta
acgcctctaa acagttggga gcgaaaggat gcgctgtagt 6358tatgaaactg gaggtatctg
atgaacttag agccctaaga aatgttctgc tgaatgcggt 6418accctgttcg aaggacgtgt
ttggtgatat cacagtagat aatccgtgga atcctcacat 6478aacagtagga tatgttaagg
aggacgatgt cgaaaacaag aaacgcctaa tggagtgcat 6538gtccaagttt agggggcaag
aaatacaagt tctaggatgg tattaataag tatctaagta 6598tttggtataa tttattaaat
agtataatta taacaaataa taaataacat gataacggtt 6658tttattagaa taaaatagag
ataatatcat aatgatatat aatacttcat taccagaaat 6718gagtaatgga agacttataa
atgaactgca taaagctata aggtatagag atataaattt 6778agtaaggtat atacttaaaa
aatgcaaata caataacgta aatatactat caacgtcttt 6838gtatttagcc gtaagtattt
ctgatataga aatggtaaaa ttattactag aacacggtgc 6898cgatatttta aaatgtaaaa
atcctcctct tcataaagct gctagtttag ataatacaga 6958aattgctaaa ctactaatag
attctggcgc tgacatagaa cagatacatt ctggaaatag 7018tccgttatat atttctgtat
atagaaacaa taagtcatta actagatatt tattaaaaaa 7078aggtgttaat tgtaatagat
tctttctaaa ttattacgat gtactgtatg ataagatatc 7138tgatgatatg tataaaatat
ttatagattt taatattgat cttaatatac aaactagaaa 7198ttttgaaact ccgttacatt
acgctataaa gtataagaat atagatttaa ttaggatatt 7258gttagataat agtattaaaa
tagataaaag tttatttttg cataaacagt atctcataaa 7318ggcacttaaa aataattgta
gttacgatat aatagcgtta cttataaatc acggagtgcc 7378tataaacgaa caagatgatt
taggtaaaac cccattacat cattcggtaa ttaatagaag 7438aaaagatgta acagcacttc
tgttaaatct aggagctgat ataaacgtaa tagatgactg 7498tatgggcagt cccttacatt
acgctgtttc acgtaacgat atcgaaacaa caaagacact 7558tttagaaaga ggatctaatg
ttaatgtggt taataatcat atagataccg ttctaaatat 7618agctgttgca tctaaaaaca
aaactatagt aaacttatta ctgaagtacg gtactgatac 7678aaagttggta ggattagata
aacatgttat tcacatagct atagaaatga aagatattaa 7738tatactgaat gcgatcttat
tatatggttg ctatgtaaac gtctataatc ataaaggttt 7798cactcctcta tacatggcag
ttagttctat gaaaacagaa tttgttaaac tcttacttga 7858ccacggtgct tacgtaaatg
ctaaagctaa gttatctgga aatactcctt tacataaagc 7918tatgttatct aatagtttta
ataatataaa attactttta tcttataacg ccgactataa 7978ttctctaaat aatcacggta
atacgcctct aacttgtgtt agctttttag atgacaagat 8038agctattatg ataatatcta
aaatgatgtt agaaatatct aaaaatcctg aaatagctaa 8098ttcagaaggt tttatagtaa
acatggaaca tataaacagt aataaaagac tactatctat 8158aaaagaatca tgcgaaaaag
aactagatgt tataacacat ataaagttaa attctatata 8218ttcttttaat atctttcttg
acaataacat agatcttatg gtaaagttcg taactaatcc 8278tagagttaat aagatacctg
catgtatacg tatatatagg gaattaatac ggaaaaataa 8338atcattagct tttcatagac
atcagctaat agttaaagct gtaaaagaga gtaagaatct 8398aggaataata ggtaggttac
ctatagatat caaacatata ataatggaac tattaagtaa 8458taatgattta cattctgtta
tcaccagctg ttgtaaccca gtagtataaa gagctcgaat 8518taattcactg gccgtcgttt
tacaacgtcg tg 855043180DNAartificial
sequenceCodon-optimized synthetic AHSV4-VP2 gene 4atggccagcg agttcggcat
cctgatgacc aacgagaagt tcgaccccag cctggaaaag 60accatctgcg acgtgatcgt
gaccaagaag ggccgggtca agcacaagga agtggacggc 120gtgtgcggct acgagtggga
cgagaccaac caccggttcg gcctgtgcga ggtggagcac 180gacatgagca tcagcgagtt
catgtacaac gagatcagat gcgagggcgc ctaccccatc 240ttcccccggt acatcatcga
caccctgaag tatgagaagt tcatcgaccg gaacgaccac 300cagatccggg tggaccggga
cgacaacgag atgcggaaga tcctgatcca gccctacgcc 360ggcgagatgt acttcagccc
cgagtgctac cccagcgtgt tcctgcggcg ggaggccaga 420agccagaagc tggaccggat
caggaactac atcggcaagc gggtggagtt ctacgaggaa 480gagagcaagc ggaaggccat
cctggaccag aacaagatga gcaaggtgga acagtggcgg 540gacgccgtga acgagcggat
cgtgagcatc gagcccaagc ggggcgagtg ctacgaccac 600ggcaccgaca tcatctacca
gttcatcaag aagctgcggt tcggcatgat gtacccccac 660tactacgtgc tgcacagcga
ctactgcatc gtgcccaaca agggcggcac cagcatcggc 720agctggcaca tccggaagcg
gaccgagggc gacgccaagg ccagcgccat gtacagcggc 780aagggccccc tgaacgacct
gcgggtgaag atcgagcggg acgacctgag ccgggagacc 840atcatccaga tcatcgagta
cggcaagaag ttcaacagct ctgccggcga caagcagggc 900aacatcagca tcgagaagct
ggtcgagtac tgcgacttcc tgaccacctt cgtgcacgcc 960aagaagaagg aagagggcga
ggacgacacc gccaggcagg aaatccggaa ggcctgggtg 1020aagggaatgc cctacatgga
cttcagcaag cccatgaaga tcacccgggg cttcaaccgg 1080aatatgctgt tcttcgccgc
cctggacagc ttccggaaga ggaacggcgt ggacgtggac 1140cccaataagg gcaagtggaa
agagcacatc aaagaggtca ccgagaagct gaagaaggcc 1200cagaccgaga acggcggcca
gccctgccag gtgtccatcg acggcgtgaa cgtgctgacc 1260aacgtggact acggcaccgt
gaaccactgg atcgactggg tgacagacat catcatggtg 1320gtgcagacca agcggctggt
gaaagagtac gcctttaaga agctgaaaag cgagaacctg 1380ctggccggca tgaacagcct
ggtcggcgtg ctgcggtgct acatgtactg cctggccctg 1440gccatctacg acttctacga
gggcaccatc gatggcttca agaagggcag caacgcctcc 1500gccatcatcg agaccgtggc
ccagatgttc cccgacttcc ggcgggaact ggtggagaag 1560tttggcatcg acctgcgcat
gaaagagatc acccgcgagc tgttcgtggg caagagcatg 1620accagcaagt tcatggaaga
gggggagtac ggctacaagt tcgcctacgg ctggcggagg 1680gacggcttcg ccgtgatgga
agattacggc gagatcctga cagagaaggt ggaggacctg 1740tacaaggggg tgctgctggg
ccggaagtgg gaggacgagg tggacgaccc cgagagctac 1800ttctacgacg acctgtacac
caacgagccc caccgggtgt tcctgagcgc cggcaaggac 1860gtggacaaca acatcaccct
gcggagcatc agccaggccg agaccaccta cctgagcaag 1920cggttcgtga gctactggta
caggatcagc caggtggagg tgaccaaggc ccggaacgag 1980gtgctggaca tgaacgagaa
gcagaagccc tacttcgagt tcgagtacga cgacttcaag 2040ccctgctcca tcggcgagct
gggcatccac gccagcacct acatctacca gaatctgctg 2100gtcggcagga accggggcga
ggaaatcctg gacagcaaag aactggtctg gatggacatg 2160agcctgctga acttcggcgc
cgtgcggagc cacgaccggt gctggatctc tagcagcgtg 2220gccatcgagg tgaacctgcg
gcacgccctg atcgtgcgga tcttcagcag attcgacatg 2280atgagcgaga gagagacctt
cagcaccatc ctggaaaagg tcatggaaga tgtgaaagag 2340ctgcggttct tccccaccta
ccggcactac tacctggaaa ccctgcagcg ggtgttcaac 2400gacgagcggc ggctggaagt
ggatgacttc tacatgcggc tgtacgacgt gcagacccgg 2460gagcaggccc tgaacacctt
caccgacttc cacagatgcg tggagagcga gctgctgctg 2520cccaccctga agctgaactt
cctgctgtgg atcgtgttcg agatggaaaa cgtggaggtg 2580aacgccgcct acaagcggca
ccccctgctg atctctaccg ccaagggcct gagggtgatc 2640ggcgtggaca tcttcaacag
ccagctgtcc atcagcatga gcggctggat tccctacgtg 2700gagcggatgt gcgccgagag
caaagtgcag accaaactga ccgccgacga gctgaaactg 2760aagcggtggt tcatcagcta
ctacaccaca ctgaagctgg acagaagagc cgagccccgg 2820atgagcttca agttcgaggg
cctgagcacc tggatcggca gcaactgtgg cggcgtgcgg 2880gactacgtga tccagatgct
gcctacccgg aagcccaagc ctggcgccct gatggtggtg 2940tacgcccggg acagccggat
cgagtggatc gaggccgagc tgtcccagtg gctgcagatg 3000gaaggcagcc tgggcctgat
cctggtgcac gacagcggca tcatcaacaa gagcgtgctg 3060agggcccgga ccctgaaaat
ctacaaccgg ggcagcatgg acaccctgat cctgatcagc 3120tccggcgtgt acaccttcgg
caacaagttc ctgctgtcca agctgctggc caagaccgag 318051521DNAartificial
sequenceCodon-optimized synthetic AHSV4-VP5 gene 5atgggcaagt ttaccagctt
cctgaagagg gccggcaacg ccaccaagcg ggccctgacc 60agcgacagcg ccaagaagat
gtacaagctg gccggcaaga ccctgcagcg ggtggtggag 120agcgaagtgg gcagcgccgc
catcgacggc gtgatgcagg gcgccatcca gagcatcatc 180cagggcgaga acctgggcga
cagcatcaag caggccgtga tcctgaacgt ggccggcacc 240ctggaaagcg cccctgaccc
cctgagccct ggcgagcagc tgctgtacaa caaggtgtcc 300gagatcgaga agatggaaaa
ggaagatcgg gtgatcgaga cccacaacgc caagatcgag 360gaaaagttcg gcaaggacct
gctggccatc cggaagatcg tgaagggcga ggtggacgcc 420gagaagctgg aaggcaacga
gatcaagtac gtggagaagg ccctgagcgg cctgctggaa 480atcggcaagg atcagagcga
gcggatcacc aagctgtacc gggccctgca gaccgaagag 540gacctgcgga cccgggacga
gacccggatg atcaacgagt accgggagaa gttcgacgcc 600ctgaaagagg ccatcgagat
cgagcagcag gccacccacg acgaggccat ccaggaaatg 660ctggacctga gcgccgaggt
gatcgaaacc gccagcgagg aagtgcccat ctttggcgcc 720ggagccgcca acgtgatcgc
caccacccgg gccattcagg gcggcctgaa gctgaaggaa 780atcgtggaca agctgacagg
catcgacctg agccacctga aggtggccga catccacccc 840cacatcatcg agaaggccat
gctgcgggac accgtgaccg acaaggacct ggctatggcc 900atcaagagca aggtggacgt
gatcgacgag atgaacgtgg agacccagca cgtgatcgat 960gccgtgctgc ccatcgtgaa
gcaggaatac gagcggcacg acaacaagta ccacgtgaga 1020atccctggcg ccctgaagat
ccacagcgag cacaccccca agatccacat ctacaccacc 1080ccctgggaca gcgactccgt
gttcatgtgc cgggccatcg ccccccacca tcagcagcgg 1140agcttcttca tcggcttcga
cctggaaatc gagtacgtgc acttcgagga caccagcgtg 1200gagggccaca tcctgcacgg
cggagccatc accgtggagg gcaggggctt ccggcaggcc 1260tacaccgagt tcatgaacgc
cgcctggggc atgcctacca cccccgagct gcacaagcgg 1320aagctgcagc ggagcatggg
cacccacccc atctacatgg gcagcatgga ctacgccatc 1380agctacgagc agctggtgtc
caatgccatg cggctggtgt acgacagcga gctgcagatg 1440cactgcctga gaggccccct
gaagttccag cggcggaccc tgatgaacgc cctgctgtac 1500ggcgtgaaga tcgcctgatg a
1521611158DNAArtificial
sequenceTheoretical sequence for pLHD3460.4 (pC3 H6p synthetic AHSV4
VP2/42Kp synthetic AHSV4 VP5) - entire plasmid 6tgcggccgcg tcgacatgca
ttgttagttc tgtagatcag taacgtatag catacgagta 60taattatcgt aggtagtagg
tatcctaaaa taaatctgat acagataata actttgtaaa 120tcaattcagc aatttctcta
ttatcatgat aatgattaat acacagcgtg tcgttatttt 180ttgttacgat agtatttcta
aagtaaagag caggaatccc tagtataata gaaataatcc 240atatgaaaaa tatagtaatg
tacatatttc taatgttaac atatttatag gtaaatccag 300gaagggtaat ttttacatat
ctatatacgc ttattacagt tattaaaaat atacttgcaa 360acatgttaga agtaaaaaag
aaagaactaa ttttacaaag tgctttacca aaatgccaat 420ggaaattact tagtatgtat
ataatgtata aaggtatgaa tatcacaaac agcaaatcgg 480ctattcccaa gttgagaaac
ggtataatag atatatttct agataccatt aataacctta 540taagcttgac gtttcctata
atgcctacta agaaaactag aagatacata catactaacg 600ccatacgaga gtaactactc
atcgtataac tactgttgct aacagtgaca ctgatgttat 660aactcatctt tgatgtggta
taaatgtata ataactatat tacactggta ttttatttca 720gttatatact atatagtatt
aaaaattata tttgtataat tatattatta tattcagtgt 780agaaagtaaa atactataaa
tatgtatctc ttatttataa cttattagta aagtatgtac 840tattcagtta tattgtttta
taaaagctaa atgctactag attgatataa atgaatatgt 900aataaattag taatgtagta
tactaatatt aactcacatt tgactaatta gctataaaaa 960cccgggttaa ttaattagtc
atcaggcagg gcgagaacga gactatctgc tcgttaatta 1020attagagctt ctttattcta
tacttaaaaa gtgaaaataa atacaaaggt tcttgagggt 1080tgtgttaaat tgaaagcgag
aaataatcat aaattatttc attatcgcga tatccgttaa 1140gtttgtatcg ta atg gcc
agc gag ttc ggc atc ctg atg acc aac gag aag 1191 Met Ala
Ser Glu Phe Gly Ile Leu Met Thr Asn Glu Lys 1
5 10 ttc gac ccc agc ctg gaa
aag acc atc tgc gac gtg atc gtg acc aag 1239Phe Asp Pro Ser Leu Glu
Lys Thr Ile Cys Asp Val Ile Val Thr Lys 15
20 25 aag ggc cgg gtc aag cac
aag gaa gtg gac ggc gtg tgc ggc tac gag 1287Lys Gly Arg Val Lys His
Lys Glu Val Asp Gly Val Cys Gly Tyr Glu 30 35
40 45 tgg gac gag acc aac cac cgg
ttc ggc ctg tgc gag gtg gag cac gac 1335Trp Asp Glu Thr Asn His Arg
Phe Gly Leu Cys Glu Val Glu His Asp 50
55 60 atg agc atc agc gag ttc atg tac
aac gag atc aga tgc gag ggc gcc 1383Met Ser Ile Ser Glu Phe Met Tyr
Asn Glu Ile Arg Cys Glu Gly Ala 65
70 75 tac ccc atc ttc ccc cgg tac atc
atc gac acc ctg aag tat gag aag 1431Tyr Pro Ile Phe Pro Arg Tyr Ile
Ile Asp Thr Leu Lys Tyr Glu Lys 80 85
90 ttc atc gac cgg aac gac cac cag atc
cgg gtg gac cgg gac gac aac 1479Phe Ile Asp Arg Asn Asp His Gln Ile
Arg Val Asp Arg Asp Asp Asn 95 100
105 gag atg cgg aag atc ctg atc cag ccc tac
gcc ggc gag atg tac ttc 1527Glu Met Arg Lys Ile Leu Ile Gln Pro Tyr
Ala Gly Glu Met Tyr Phe 110 115
120 125 agc ccc gag tgc tac ccc agc gtg ttc ctg
cgg cgg gag gcc aga agc 1575Ser Pro Glu Cys Tyr Pro Ser Val Phe Leu
Arg Arg Glu Ala Arg Ser 130 135
140 cag aag ctg gac cgg atc agg aac tac atc ggc
aag cgg gtg gag ttc 1623Gln Lys Leu Asp Arg Ile Arg Asn Tyr Ile Gly
Lys Arg Val Glu Phe 145 150
155 tac gag gaa gag agc aag cgg aag gcc atc ctg gac
cag aac aag atg 1671Tyr Glu Glu Glu Ser Lys Arg Lys Ala Ile Leu Asp
Gln Asn Lys Met 160 165
170 agc aag gtg gaa cag tgg cgg gac gcc gtg aac gag
cgg atc gtg agc 1719Ser Lys Val Glu Gln Trp Arg Asp Ala Val Asn Glu
Arg Ile Val Ser 175 180 185
atc gag ccc aag cgg ggc gag tgc tac gac cac ggc acc
gac atc atc 1767Ile Glu Pro Lys Arg Gly Glu Cys Tyr Asp His Gly Thr
Asp Ile Ile 190 195 200
205 tac cag ttc atc aag aag ctg cgg ttc ggc atg atg tac ccc
cac tac 1815Tyr Gln Phe Ile Lys Lys Leu Arg Phe Gly Met Met Tyr Pro
His Tyr 210 215
220 tac gtg ctg cac agc gac tac tgc atc gtg ccc aac aag ggc
ggc acc 1863Tyr Val Leu His Ser Asp Tyr Cys Ile Val Pro Asn Lys Gly
Gly Thr 225 230 235
agc atc ggc agc tgg cac atc cgg aag cgg acc gag ggc gac gcc
aag 1911Ser Ile Gly Ser Trp His Ile Arg Lys Arg Thr Glu Gly Asp Ala
Lys 240 245 250
gcc agc gcc atg tac agc ggc aag ggc ccc ctg aac gac ctg cgg gtg
1959Ala Ser Ala Met Tyr Ser Gly Lys Gly Pro Leu Asn Asp Leu Arg Val
255 260 265
aag atc gag cgg gac gac ctg agc cgg gag acc atc atc cag atc atc
2007Lys Ile Glu Arg Asp Asp Leu Ser Arg Glu Thr Ile Ile Gln Ile Ile
270 275 280 285
gag tac ggc aag aag ttc aac agc tct gcc ggc gac aag cag ggc aac
2055Glu Tyr Gly Lys Lys Phe Asn Ser Ser Ala Gly Asp Lys Gln Gly Asn
290 295 300
atc agc atc gag aag ctg gtc gag tac tgc gac ttc ctg acc acc ttc
2103Ile Ser Ile Glu Lys Leu Val Glu Tyr Cys Asp Phe Leu Thr Thr Phe
305 310 315
gtg cac gcc aag aag aag gaa gag ggc gag gac gac acc gcc agg cag
2151Val His Ala Lys Lys Lys Glu Glu Gly Glu Asp Asp Thr Ala Arg Gln
320 325 330
gaa atc cgg aag gcc tgg gtg aag gga atg ccc tac atg gac ttc agc
2199Glu Ile Arg Lys Ala Trp Val Lys Gly Met Pro Tyr Met Asp Phe Ser
335 340 345
aag ccc atg aag atc acc cgg ggc ttc aac cgg aat atg ctg ttc ttc
2247Lys Pro Met Lys Ile Thr Arg Gly Phe Asn Arg Asn Met Leu Phe Phe
350 355 360 365
gcc gcc ctg gac agc ttc cgg aag agg aac ggc gtg gac gtg gac ccc
2295Ala Ala Leu Asp Ser Phe Arg Lys Arg Asn Gly Val Asp Val Asp Pro
370 375 380
aat aag ggc aag tgg aaa gag cac atc aaa gag gtc acc gag aag ctg
2343Asn Lys Gly Lys Trp Lys Glu His Ile Lys Glu Val Thr Glu Lys Leu
385 390 395
aag aag gcc cag acc gag aac ggc ggc cag ccc tgc cag gtg tcc atc
2391Lys Lys Ala Gln Thr Glu Asn Gly Gly Gln Pro Cys Gln Val Ser Ile
400 405 410
gac ggc gtg aac gtg ctg acc aac gtg gac tac ggc acc gtg aac cac
2439Asp Gly Val Asn Val Leu Thr Asn Val Asp Tyr Gly Thr Val Asn His
415 420 425
tgg atc gac tgg gtg aca gac atc atc atg gtg gtg cag acc aag cgg
2487Trp Ile Asp Trp Val Thr Asp Ile Ile Met Val Val Gln Thr Lys Arg
430 435 440 445
ctg gtg aaa gag tac gcc ttt aag aag ctg aaa agc gag aac ctg ctg
2535Leu Val Lys Glu Tyr Ala Phe Lys Lys Leu Lys Ser Glu Asn Leu Leu
450 455 460
gcc ggc atg aac agc ctg gtc ggc gtg ctg cgg tgc tac atg tac tgc
2583Ala Gly Met Asn Ser Leu Val Gly Val Leu Arg Cys Tyr Met Tyr Cys
465 470 475
ctg gcc ctg gcc atc tac gac ttc tac gag ggc acc atc gat ggc ttc
2631Leu Ala Leu Ala Ile Tyr Asp Phe Tyr Glu Gly Thr Ile Asp Gly Phe
480 485 490
aag aag ggc agc aac gcc tcc gcc atc atc gag acc gtg gcc cag atg
2679Lys Lys Gly Ser Asn Ala Ser Ala Ile Ile Glu Thr Val Ala Gln Met
495 500 505
ttc ccc gac ttc cgg cgg gaa ctg gtg gag aag ttt ggc atc gac ctg
2727Phe Pro Asp Phe Arg Arg Glu Leu Val Glu Lys Phe Gly Ile Asp Leu
510 515 520 525
cgc atg aaa gag atc acc cgc gag ctg ttc gtg ggc aag agc atg acc
2775Arg Met Lys Glu Ile Thr Arg Glu Leu Phe Val Gly Lys Ser Met Thr
530 535 540
agc aag ttc atg gaa gag ggg gag tac ggc tac aag ttc gcc tac ggc
2823Ser Lys Phe Met Glu Glu Gly Glu Tyr Gly Tyr Lys Phe Ala Tyr Gly
545 550 555
tgg cgg agg gac ggc ttc gcc gtg atg gaa gat tac ggc gag atc ctg
2871Trp Arg Arg Asp Gly Phe Ala Val Met Glu Asp Tyr Gly Glu Ile Leu
560 565 570
aca gag aag gtg gag gac ctg tac aag ggg gtg ctg ctg ggc cgg aag
2919Thr Glu Lys Val Glu Asp Leu Tyr Lys Gly Val Leu Leu Gly Arg Lys
575 580 585
tgg gag gac gag gtg gac gac ccc gag agc tac ttc tac gac gac ctg
2967Trp Glu Asp Glu Val Asp Asp Pro Glu Ser Tyr Phe Tyr Asp Asp Leu
590 595 600 605
tac acc aac gag ccc cac cgg gtg ttc ctg agc gcc ggc aag gac gtg
3015Tyr Thr Asn Glu Pro His Arg Val Phe Leu Ser Ala Gly Lys Asp Val
610 615 620
gac aac aac atc acc ctg cgg agc atc agc cag gcc gag acc acc tac
3063Asp Asn Asn Ile Thr Leu Arg Ser Ile Ser Gln Ala Glu Thr Thr Tyr
625 630 635
ctg agc aag cgg ttc gtg agc tac tgg tac agg atc agc cag gtg gag
3111Leu Ser Lys Arg Phe Val Ser Tyr Trp Tyr Arg Ile Ser Gln Val Glu
640 645 650
gtg acc aag gcc cgg aac gag gtg ctg gac atg aac gag aag cag aag
3159Val Thr Lys Ala Arg Asn Glu Val Leu Asp Met Asn Glu Lys Gln Lys
655 660 665
ccc tac ttc gag ttc gag tac gac gac ttc aag ccc tgc tcc atc ggc
3207Pro Tyr Phe Glu Phe Glu Tyr Asp Asp Phe Lys Pro Cys Ser Ile Gly
670 675 680 685
gag ctg ggc atc cac gcc agc acc tac atc tac cag aat ctg ctg gtc
3255Glu Leu Gly Ile His Ala Ser Thr Tyr Ile Tyr Gln Asn Leu Leu Val
690 695 700
ggc agg aac cgg ggc gag gaa atc ctg gac agc aaa gaa ctg gtc tgg
3303Gly Arg Asn Arg Gly Glu Glu Ile Leu Asp Ser Lys Glu Leu Val Trp
705 710 715
atg gac atg agc ctg ctg aac ttc ggc gcc gtg cgg agc cac gac cgg
3351Met Asp Met Ser Leu Leu Asn Phe Gly Ala Val Arg Ser His Asp Arg
720 725 730
tgc tgg atc tct agc agc gtg gcc atc gag gtg aac ctg cgg cac gcc
3399Cys Trp Ile Ser Ser Ser Val Ala Ile Glu Val Asn Leu Arg His Ala
735 740 745
ctg atc gtg cgg atc ttc agc aga ttc gac atg atg agc gag aga gag
3447Leu Ile Val Arg Ile Phe Ser Arg Phe Asp Met Met Ser Glu Arg Glu
750 755 760 765
acc ttc agc acc atc ctg gaa aag gtc atg gaa gat gtg aaa gag ctg
3495Thr Phe Ser Thr Ile Leu Glu Lys Val Met Glu Asp Val Lys Glu Leu
770 775 780
cgg ttc ttc ccc acc tac cgg cac tac tac ctg gaa acc ctg cag cgg
3543Arg Phe Phe Pro Thr Tyr Arg His Tyr Tyr Leu Glu Thr Leu Gln Arg
785 790 795
gtg ttc aac gac gag cgg cgg ctg gaa gtg gat gac ttc tac atg cgg
3591Val Phe Asn Asp Glu Arg Arg Leu Glu Val Asp Asp Phe Tyr Met Arg
800 805 810
ctg tac gac gtg cag acc cgg gag cag gcc ctg aac acc ttc acc gac
3639Leu Tyr Asp Val Gln Thr Arg Glu Gln Ala Leu Asn Thr Phe Thr Asp
815 820 825
ttc cac aga tgc gtg gag agc gag ctg ctg ctg ccc acc ctg aag ctg
3687Phe His Arg Cys Val Glu Ser Glu Leu Leu Leu Pro Thr Leu Lys Leu
830 835 840 845
aac ttc ctg ctg tgg atc gtg ttc gag atg gaa aac gtg gag gtg aac
3735Asn Phe Leu Leu Trp Ile Val Phe Glu Met Glu Asn Val Glu Val Asn
850 855 860
gcc gcc tac aag cgg cac ccc ctg ctg atc tct acc gcc aag ggc ctg
3783Ala Ala Tyr Lys Arg His Pro Leu Leu Ile Ser Thr Ala Lys Gly Leu
865 870 875
agg gtg atc ggc gtg gac atc ttc aac agc cag ctg tcc atc agc atg
3831Arg Val Ile Gly Val Asp Ile Phe Asn Ser Gln Leu Ser Ile Ser Met
880 885 890
agc ggc tgg att ccc tac gtg gag cgg atg tgc gcc gag agc aaa gtg
3879Ser Gly Trp Ile Pro Tyr Val Glu Arg Met Cys Ala Glu Ser Lys Val
895 900 905
cag acc aaa ctg acc gcc gac gag ctg aaa ctg aag cgg tgg ttc atc
3927Gln Thr Lys Leu Thr Ala Asp Glu Leu Lys Leu Lys Arg Trp Phe Ile
910 915 920 925
agc tac tac acc aca ctg aag ctg gac aga aga gcc gag ccc cgg atg
3975Ser Tyr Tyr Thr Thr Leu Lys Leu Asp Arg Arg Ala Glu Pro Arg Met
930 935 940
agc ttc aag ttc gag ggc ctg agc acc tgg atc ggc agc aac tgt ggc
4023Ser Phe Lys Phe Glu Gly Leu Ser Thr Trp Ile Gly Ser Asn Cys Gly
945 950 955
ggc gtg cgg gac tac gtg atc cag atg ctg cct acc cgg aag ccc aag
4071Gly Val Arg Asp Tyr Val Ile Gln Met Leu Pro Thr Arg Lys Pro Lys
960 965 970
cct ggc gcc ctg atg gtg gtg tac gcc cgg gac agc cgg atc gag tgg
4119Pro Gly Ala Leu Met Val Val Tyr Ala Arg Asp Ser Arg Ile Glu Trp
975 980 985
atc gag gcc gag ctg tcc cag tgg ctg cag atg gaa ggc agc ctg ggc
4167Ile Glu Ala Glu Leu Ser Gln Trp Leu Gln Met Glu Gly Ser Leu Gly
990 995 1000 1005
ctg atc ctg gtg cac gac agc ggc atc atc aac aag agc gtg ctg
4212Leu Ile Leu Val His Asp Ser Gly Ile Ile Asn Lys Ser Val Leu
1010 1015 1020
agg gcc cgg acc ctg aaa atc tac aac cgg ggc agc atg gac acc
4257Arg Ala Arg Thr Leu Lys Ile Tyr Asn Arg Gly Ser Met Asp Thr
1025 1030 1035
ctg atc ctg atc agc tcc ggc gtg tac acc ttc ggc aac aag ttc
4302Leu Ile Leu Ile Ser Ser Gly Val Tyr Thr Phe Gly Asn Lys Phe
1040 1045 1050
ctg ctg tcc aag ctg ctg gcc aag acc gag tga tga ggatccctcg
4348Leu Leu Ser Lys Leu Leu Ala Lys Thr Glu
1055 1060
agtttttatt gactagttca aaattgaaaa tatataatta caatataaa atg ggc aag 4406
Met Gly Lys ttt acc
agc ttc ctg aag agg gcc ggc aac gcc acc aag cgg gcc 4451Phe Thr
Ser Phe Leu Lys Arg Ala Gly Asn Ala Thr Lys Arg Ala 1065
1070 1075 ctg acc agc
gac agc gcc aag aag atg tac aag ctg gcc ggc aag 4496Leu Thr Ser
Asp Ser Ala Lys Lys Met Tyr Lys Leu Ala Gly Lys 1080
1085 1090 acc ctg cag cgg
gtg gtg gag agc gaa gtg ggc agc gcc gcc atc 4541Thr Leu Gln Arg
Val Val Glu Ser Glu Val Gly Ser Ala Ala Ile 1095
1100 1105 gac ggc gtg atg cag
ggc gcc atc cag agc atc atc cag ggc gag 4586Asp Gly Val Met Gln
Gly Ala Ile Gln Ser Ile Ile Gln Gly Glu 1110
1115 1120 aac ctg ggc gac agc atc
aag cag gcc gtg atc ctg aac gtg gcc 4631Asn Leu Gly Asp Ser Ile
Lys Gln Ala Val Ile Leu Asn Val Ala 1125
1130 1135 ggc acc ctg gaa agc gcc
cct gac ccc ctg agc cct ggc gag cag 4676Gly Thr Leu Glu Ser Ala
Pro Asp Pro Leu Ser Pro Gly Glu Gln 1140
1145 1150 ctg ctg tac aac aag gtg
tcc gag atc gag aag atg gaa aag gaa 4721Leu Leu Tyr Asn Lys Val
Ser Glu Ile Glu Lys Met Glu Lys Glu 1155
1160 1165 gat cgg gtg atc gag acc
cac aac gcc aag atc gag gaa aag ttc 4766Asp Arg Val Ile Glu Thr
His Asn Ala Lys Ile Glu Glu Lys Phe 1170
1175 1180 ggc aag gac ctg ctg gcc
atc cgg aag atc gtg aag ggc gag gtg 4811Gly Lys Asp Leu Leu Ala
Ile Arg Lys Ile Val Lys Gly Glu Val 1185
1190 1195 gac gcc gag aag ctg gaa
ggc aac gag atc aag tac gtg gag aag 4856Asp Ala Glu Lys Leu Glu
Gly Asn Glu Ile Lys Tyr Val Glu Lys 1200
1205 1210 gcc ctg agc ggc ctg ctg
gaa atc ggc aag gat cag agc gag cgg 4901Ala Leu Ser Gly Leu Leu
Glu Ile Gly Lys Asp Gln Ser Glu Arg 1215
1220 1225 atc acc aag ctg tac cgg
gcc ctg cag acc gaa gag gac ctg cgg 4946Ile Thr Lys Leu Tyr Arg
Ala Leu Gln Thr Glu Glu Asp Leu Arg 1230
1235 1240 acc cgg gac gag acc cgg
atg atc aac gag tac cgg gag aag ttc 4991Thr Arg Asp Glu Thr Arg
Met Ile Asn Glu Tyr Arg Glu Lys Phe 1245
1250 1255 gac gcc ctg aaa gag gcc
atc gag atc gag cag cag gcc acc cac 5036Asp Ala Leu Lys Glu Ala
Ile Glu Ile Glu Gln Gln Ala Thr His 1260
1265 1270 gac gag gcc atc cag gaa
atg ctg gac ctg agc gcc gag gtg atc 5081Asp Glu Ala Ile Gln Glu
Met Leu Asp Leu Ser Ala Glu Val Ile 1275
1280 1285 gaa acc gcc agc gag gaa
gtg ccc atc ttt ggc gcc gga gcc gcc 5126Glu Thr Ala Ser Glu Glu
Val Pro Ile Phe Gly Ala Gly Ala Ala 1290
1295 1300 aac gtg atc gcc acc acc
cgg gcc att cag ggc ggc ctg aag ctg 5171Asn Val Ile Ala Thr Thr
Arg Ala Ile Gln Gly Gly Leu Lys Leu 1305
1310 1315 aag gaa atc gtg gac aag
ctg aca ggc atc gac ctg agc cac ctg 5216Lys Glu Ile Val Asp Lys
Leu Thr Gly Ile Asp Leu Ser His Leu 1320
1325 1330 aag gtg gcc gac atc cac
ccc cac atc atc gag aag gcc atg ctg 5261Lys Val Ala Asp Ile His
Pro His Ile Ile Glu Lys Ala Met Leu 1335
1340 1345 cgg gac acc gtg acc gac
aag gac ctg gct atg gcc atc aag agc 5306Arg Asp Thr Val Thr Asp
Lys Asp Leu Ala Met Ala Ile Lys Ser 1350
1355 1360 aag gtg gac gtg atc gac
gag atg aac gtg gag acc cag cac gtg 5351Lys Val Asp Val Ile Asp
Glu Met Asn Val Glu Thr Gln His Val 1365
1370 1375 atc gat gcc gtg ctg ccc
atc gtg aag cag gaa tac gag cgg cac 5396Ile Asp Ala Val Leu Pro
Ile Val Lys Gln Glu Tyr Glu Arg His 1380
1385 1390 gac aac aag tac cac gtg
aga atc cct ggc gcc ctg aag atc cac 5441Asp Asn Lys Tyr His Val
Arg Ile Pro Gly Ala Leu Lys Ile His 1395
1400 1405 agc gag cac acc ccc aag
atc cac atc tac acc acc ccc tgg gac 5486Ser Glu His Thr Pro Lys
Ile His Ile Tyr Thr Thr Pro Trp Asp 1410
1415 1420 agc gac tcc gtg ttc atg
tgc cgg gcc atc gcc ccc cac cat cag 5531Ser Asp Ser Val Phe Met
Cys Arg Ala Ile Ala Pro His His Gln 1425
1430 1435 cag cgg agc ttc ttc atc
ggc ttc gac ctg gaa atc gag tac gtg 5576Gln Arg Ser Phe Phe Ile
Gly Phe Asp Leu Glu Ile Glu Tyr Val 1440
1445 1450 cac ttc gag gac acc agc
gtg gag ggc cac atc ctg cac ggc gga 5621His Phe Glu Asp Thr Ser
Val Glu Gly His Ile Leu His Gly Gly 1455
1460 1465 gcc atc acc gtg gag ggc
agg ggc ttc cgg cag gcc tac acc gag 5666Ala Ile Thr Val Glu Gly
Arg Gly Phe Arg Gln Ala Tyr Thr Glu 1470
1475 1480 ttc atg aac gcc gcc tgg
ggc atg cct acc acc ccc gag ctg cac 5711Phe Met Asn Ala Ala Trp
Gly Met Pro Thr Thr Pro Glu Leu His 1485
1490 1495 aag cgg aag ctg cag cgg
agc atg ggc acc cac ccc atc tac atg 5756Lys Arg Lys Leu Gln Arg
Ser Met Gly Thr His Pro Ile Tyr Met 1500
1505 1510 ggc agc atg gac tac gcc
atc agc tac gag cag ctg gtg tcc aat 5801Gly Ser Met Asp Tyr Ala
Ile Ser Tyr Glu Gln Leu Val Ser Asn 1515
1520 1525 gcc atg cgg ctg gtg tac
gac agc gag ctg cag atg cac tgc ctg 5846Ala Met Arg Leu Val Tyr
Asp Ser Glu Leu Gln Met His Cys Leu 1530
1535 1540 aga ggc ccc ctg aag ttc
cag cgg cgg acc ctg atg aac gcc ctg 5891Arg Gly Pro Leu Lys Phe
Gln Arg Arg Thr Leu Met Asn Ala Leu 1545
1550 1555 ctg tac ggc gtg aag atc
gcc tga tga tttttctact agttaatcaa 5938Leu Tyr Gly Val Lys Ile
Ala 1560
1565 ataaaaagca tacaagctat
tgcttcgcta tcgttacaaa atggcaggaa ttttgtgtaa 5998actaagccac atacttgcca
atgaaaaaaa tagtagaaag gatactattt taatgggatt 6058agatgttaag gttccttggg
attatagtaa ctgggcatct gttaactttt acgacgttag 6118gttagatact gatgttacag
attataataa tgttacaata aaatacatga caggatgtga 6178tatttttcct catataactc
ttggaatagc aaatatggat caatgtgata gatttgaaaa 6238tttcaaaaag caaataactg
atcaagattt acagactatt tctatagtct gtaaagaaga 6298gatgtgtttt cctcagagta
acgcctctaa acagttggga gcgaaaggat gcgctgtagt 6358tatgaaactg gaggtatctg
atgaacttag agccctaaga aatgttctgc tgaatgcggt 6418accctgttcg aaggacgtgt
ttggtgatat cacagtagat aatccgtgga atcctcacat 6478aacagtagga tatgttaagg
aggacgatgt cgaaaacaag aaacgcctaa tggagtgcat 6538gtccaagttt agggggcaag
aaatacaagt tctaggatgg tattaataag tatctaagta 6598tttggtataa tttattaaat
agtataatta taacaaataa taaataacat gataacggtt 6658tttattagaa taaaatagag
ataatatcat aatgatatat aatacttcat taccagaaat 6718gagtaatgga agacttataa
atgaactgca taaagctata aggtatagag atataaattt 6778agtaaggtat atacttaaaa
aatgcaaata caataacgta aatatactat caacgtcttt 6838gtatttagcc gtaagtattt
ctgatataga aatggtaaaa ttattactag aacacggtgc 6898cgatatttta aaatgtaaaa
atcctcctct tcataaagct gctagtttag ataatacaga 6958aattgctaaa ctactaatag
attctggcgc tgacatagaa cagatacatt ctggaaatag 7018tccgttatat atttctgtat
atagaaacaa taagtcatta actagatatt tattaaaaaa 7078aggtgttaat tgtaatagat
tctttctaaa ttattacgat gtactgtatg ataagatatc 7138tgatgatatg tataaaatat
ttatagattt taatattgat cttaatatac aaactagaaa 7198ttttgaaact ccgttacatt
acgctataaa gtataagaat atagatttaa ttaggatatt 7258gttagataat agtattaaaa
tagataaaag tttatttttg cataaacagt atctcataaa 7318ggcacttaaa aataattgta
gttacgatat aatagcgtta cttataaatc acggagtgcc 7378tataaacgaa caagatgatt
taggtaaaac cccattacat cattcggtaa ttaatagaag 7438aaaagatgta acagcacttc
tgttaaatct aggagctgat ataaacgtaa tagatgactg 7498tatgggcagt cccttacatt
acgctgtttc acgtaacgat atcgaaacaa caaagacact 7558tttagaaaga ggatctaatg
ttaatgtggt taataatcat atagataccg ttctaaatat 7618agctgttgca tctaaaaaca
aaactatagt aaacttatta ctgaagtacg gtactgatac 7678aaagttggta ggattagata
aacatgttat tcacatagct atagaaatga aagatattaa 7738tatactgaat gcgatcttat
tatatggttg ctatgtaaac gtctataatc ataaaggttt 7798cactcctcta tacatggcag
ttagttctat gaaaacagaa tttgttaaac tcttacttga 7858ccacggtgct tacgtaaatg
ctaaagctaa gttatctgga aatactcctt tacataaagc 7918tatgttatct aatagtttta
ataatataaa attactttta tcttataacg ccgactataa 7978ttctctaaat aatcacggta
atacgcctct aacttgtgtt agctttttag atgacaagat 8038agctattatg ataatatcta
aaatgatgtt agaaatatct aaaaatcctg aaatagctaa 8098ttcagaaggt tttatagtaa
acatggaaca tataaacagt aataaaagac tactatctat 8158aaaagaatca tgcgaaaaag
aactagatgt tataacacat ataaagttaa attctatata 8218ttcttttaat atctttcttg
acaataacat agatcttatg gtaaagttcg taactaatcc 8278tagagttaat aagatacctg
catgtatacg tatatatagg gaattaatac ggaaaaataa 8338atcattagct tttcatagac
atcagctaat agttaaagct gtaaaagaga gtaagaatct 8398aggaataata ggtaggttac
ctatagatat caaacatata ataatggaac tattaagtaa 8458taatgattta cattctgtta
tcaccagctg ttgtaaccca gtagtataaa gagctcgaat 8518taattcactg gccgtcgttt
tacaacgtcg tgactgggaa aaccctggcg ttacccaact 8578taatcgcctt gcagcacatc
cccctttcgc cagctggcgt aatagcgaag aggcccgcac 8638cgatcgccct tcccaacagt
tgcgcagcct gaatggcgaa tggcgcctga tgcggtattt 8698tctccttacg catctgtgcg
gtatttcaca ccgcatatgg tgcactctca gtacaatctg 8758ctctgatgcc gcatagttaa
gccagccccg acacccgcca acacccgctg acgcgccctg 8818acgggcttgt ctgctcccgg
catccgctta cagacaagct gtgaccgtct ccgggagctg 8878catgtgtcag aggttttcac
cgtcatcacc gaaacgcgcg agacgaaagg gcctcgtgat 8938acgcctattt ttataggtta
atgtcatgat aataatggtt tcttagacgt caggtggcac 8998ttttcgggga aatgtgcgcg
gaacccctat ttgtttattt ttctaaatac attcaaatat 9058gtatccgctc atgagacaat
aaccctgata aatgcttcaa taatattgaa aaaggaagag 9118tatgagtatt caacatttcc
gtgtcgccct tattcccttt tttgcggcat tttgccttcc 9178tgtttttgct cacccagaaa
cgctggtgaa agtaaaagat gctgaagatc agttgggtgc 9238acgagtgggt tacatcgaac
tggatctcaa cagcggtaag atccttgaga gttttcgccc 9298cgaagaacgt tttccaatga
tgagcacttt taaagttctg ctatgtggcg cggtattatc 9358ccgtattgac gccgggcaag
agcaactcgg tcgccgcata cactattctc agaatgactt 9418ggttgagtac tcaccagtca
cagaaaagca tcttacggat ggcatgacag taagagaatt 9478atgcagtgct gccataacca
tgagtgataa cactgcggcc aacttacttc tgacaacgat 9538cggaggaccg aaggagctaa
ccgctttttt gcacaacatg ggggatcatg taactcgcct 9598tgatcgttgg gaaccggagc
tgaatgaagc cataccaaac gacgagcgtg acaccacgat 9658gcctgtagca atggcaacaa
cgttgcgcaa actattaact ggcgaactac ttactctagc 9718ttcccggcaa caattaatag
actggatgga ggcggataaa gttgcaggac cacttctgcg 9778ctcggccctt ccggctggct
ggtttattgc tgataaatct ggagccggtg agcgtgggtc 9838tcgcggtatc attgcagcac
tggggccaga tggtaagccc tcccgtatcg tagttatcta 9898cacgacgggg agtcaggcaa
ctatggatga acgaaataga cagatcgctg agataggtgc 9958ctcactgatt aagcattggt
aactgtcaga ccaagtttac tcatatatac tttagattga 10018tttaaaactt catttttaat
ttaaaaggat ctaggtgaag atcctttttg ataatctcat 10078gaccaaaatc ccttaacgtg
agttttcgtt ccactgagcg tcagaccccg tagaaaagat 10138caaaggatct tcttgagatc
ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa 10198accaccgcta ccagcggtgg
tttgtttgcc ggatcaagag ctaccaactc tttttccgaa 10258ggtaactggc ttcagcagag
cgcagatacc aaatactgtc cttctagtgt agccgtagtt 10318aggccaccac ttcaagaact
ctgtagcacc gcctacatac ctcgctctgc taatcctgtt 10378accagtggct gctgccagtg
gcgataagtc gtgtcttacc gggttggact caagacgata 10438gttaccggat aaggcgcagc
ggtcgggctg aacggggggt tcgtgcacac agcccagctt 10498ggagcgaacg acctacaccg
aactgagata cctacagcgt gagctatgag aaagcgccac 10558gcttcccgaa gggagaaagg
cggacaggta tccggtaagc ggcagggtcg gaacaggaga 10618gcgcacgagg gagcttccag
ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg 10678ccacctctga cttgagcgtc
gatttttgtg atgctcgtca ggggggcgga gcctatggaa 10738aaacgccagc aacgcggcct
ttttacggtt cctggccttt tgctggcctt ttgctcacat 10798gttctttcct gcgttatccc
ctgattctgt ggataaccgt attaccgcct ttgagtgagc 10858tgataccgct cgccgcagcc
gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga 10918agagcgccca atacgcaaac
cgcctctccc cgcgcgttgg ccgattcatt aatgcagctg 10978gcacgacagg tttcccgact
ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta 11038gctcactcat taggcacccc
aggctttaca ctttatgctt ccggctcgta tgttgtgtgg 11098aattgtgagc ggataacaat
ttcacacagg aaacagctat gaccatgatt acgccaagct 11158767DNAArtificial
sequencePrimer for amplification of 42Kp-AHSV 4 VP5 expressing
cassette 7tgactagttc aaaattgaaa atatataatt acaatataaa atgggcaagt
ttaccagctt 60cctgaag
67843DNAArtificial sequencePrimer for amplification of
42Kp-AHSV 4 VP5 expressing cassette 8ttaactagta gaaaaatcat
caggcgatct tcacgccgta cag 43925DNAArtificial
SequencePrimers for amplifying the AHSV-4 VP2 probe for the
vCP2377.6.1.1 viral vector 9tacgaccacg gcaccgacat catct
251025DNAartificial sequencePrimers for
amplifying the AHSV-4 VP2 probe for the vCP2377.6.1.1 viral vector
10ttttcagctt cttaaaggcg tactc
251125DNAartificial sequencePrimers for amplifying the AHSV-4 VP5 probe
for the vCP2377.6.1.1 viral vector 11aagaagatgt acaagctggc cggca
251225DNAartificial sequencePrimers
for amplifying the AHSV-4 VP5 probe for the vCP2377.6.1.1 viral
vector 12gccgctcgta ttcctgcttc acgat
251330DNAartificial sequence8103.JY Primer for PCR amplification of
the vCP2377/vCP2383/vCP2398 C3 arms plus insert 13gaggcatcca
acatataaag aagactaaag
301427DNAartificial sequence8104.JY Primer for PCR amplification of the
vCP2377/vCP2383/vCP2398 C3 arms plus insert 14tagttaaata ctcataactc
atatctg 271525DNAartificial
sequence13616.LH Primer for PCR amplification of the vCP2377 C3 arms
plus insert 15tgccggccag cttgtacatc ttctt
251625DNAartificial sequence13637.LH Primer for PCR
amplification of the vCP2377 C3 arms plus insert 16caccacactg
aagctggaca gaaga
25178800DNAartificial sequencevCP2377.6.1.1 viral vector sequence from
left arm to right arm, including H6p-codon-optimized AHSV4-VP2,
42Kp-codon-optimized AHSV4-VP5 17atctgtcaac gtttctctaa gagattcata
ggtattatta ttacatcgat ctagaagtct 60aataactgct aagtatatta ttggatttaa
cgcgctataa acgcatccaa aacctacaaa 120tataggagaa gcttctctta tgaaacttct
taaagcttta ctcttactat tactactcaa 180aagagatatt acattaatta tgtgatgagg
catccaacat ataaagaaga ctaaagctgt 240agaagctgtt atgaagaata tcttatcaga
tatattagat gcattgttag ttctgtagat 300cagtaacgta tagcatacga gtataattat
cgtaggtagt aggtatccta aaataaatct 360gatacagata ataactttgt aaatcaattc
agcaatttct ctattatcat gataatgatt 420aatacacagc gtgtcgttat tttttgttac
gatagtattt ctaaagtaaa gagcaggaat 480ccctagtata atagaaataa tccatatgaa
aaatatagta atgtacatat ttctaatgtt 540aacatattta taggtaaatc caggaagggt
aatttttaca tatctatata cgcttattac 600agttattaaa aatatacttg caaacatgtt
agaagtaaaa aagaaagaac taattttaca 660aagtgcttta ccaaaatgcc aatggaaatt
acttagtatg tatataatgt ataaaggtat 720gaatatcaca aacagcaaat cggctattcc
caagttgaga aacggtataa tagatatatt 780tctagatacc attaataacc ttataagctt
gacgtttcct ataatgccta ctaagaaaac 840tagaagatac atacatacta acgccatacg
agagtaacta ctcatcgtat aactactgtt 900gctaacagtg acactgatgt tataactcat
ctttgatgtg gtataaatgt ataataacta 960tattacactg gtattttatt tcagttatat
actatatagt attaaaaatt atatttgtat 1020aattatatta ttatattcag tgtagaaagt
aaaatactat aaatatgtat ctcttattta 1080taacttatta gtaaagtatg tactattcag
ttatattgtt ttataaaagc taaatgctac 1140tagattgata taaatgaata tgtaataaat
tagtaatgta gtatactaat attaactcac 1200atttgactaa ttagctataa aaacccgggt
taattaatta gtcatcaggc agggcgagaa 1260cgagactatc tgctcgttaa ttaattagag
cttctttatt ctatacttaa aaagtgaaaa 1320taaatacaaa ggttcttgag ggttgtgtta
aattgaaagc gagaaataat cataaattat 1380ttcattatcg cgatatccgt taagtttgta
tcgtaatggc cagcgagttc ggcatcctga 1440tgaccaacga gaagttcgac cccagcctgg
aaaagaccat ctgcgacgtg atcgtgacca 1500agaagggccg ggtcaagcac aaggaagtgg
acggcgtgtg cggctacgag tgggacgaga 1560ccaaccaccg gttcggcctg tgcgaggtgg
agcacgacat gagcatcagc gagttcatgt 1620acaacgagat cagatgcgag ggcgcctacc
ccatcttccc ccggtacatc atcgacaccc 1680tgaagtatga gaagttcatc gaccggaacg
accaccagat ccgggtggac cgggacgaca 1740acgagatgcg gaagatcctg atccagccct
acgccggcga gatgtacttc agccccgagt 1800gctaccccag cgtgttcctg cggcgggagg
ccagaagcca gaagctggac cggatcagga 1860actacatcgg caagcgggtg gagttctacg
aggaagagag caagcggaag gccatcctgg 1920accagaacaa gatgagcaag gtggaacagt
ggcgggacgc cgtgaacgag cggatcgtga 1980gcatcgagcc caagcggggc gagtgctacg
accacggcac cgacatcatc taccagttca 2040tcaagaagct gcggttcggc atgatgtacc
cccactacta cgtgctgcac agcgactact 2100gcatcgtgcc caacaagggc ggcaccagca
tcggcagctg gcacatccgg aagcggaccg 2160agggcgacgc caaggccagc gccatgtaca
gcggcaaggg ccccctgaac gacctgcggg 2220tgaagatcga gcgggacgac ctgagccggg
agaccatcat ccagatcatc gagtacggca 2280agaagttcaa cagctctgcc ggcgacaagc
agggcaacat cagcatcgag aagctggtcg 2340agtactgcga cttcctgacc accttcgtgc
acgccaagaa gaaggaagag ggcgaggacg 2400acaccgccag gcaggaaatc cggaaggcct
gggtgaaggg aatgccctac atggacttca 2460gcaagcccat gaagatcacc cggggcttca
accggaatat gctgttcttc gccgccctgg 2520acagcttccg gaagaggaac ggcgtggacg
tggaccccaa taagggcaag tggaaagagc 2580acatcaaaga ggtcaccgag aagctgaaga
aggcccagac cgagaacggc ggccagccct 2640gccaggtgtc catcgacggc gtgaacgtgc
tgaccaacgt ggactacggc accgtgaacc 2700actggatcga ctgggtgaca gacatcatca
tggtggtgca gaccaagcgg ctggtgaaag 2760agtacgcctt taagaagctg aaaagcgaga
acctgctggc cggcatgaac agcctggtcg 2820gcgtgctgcg gtgctacatg tactgcctgg
ccctggccat ctacgacttc tacgagggca 2880ccatcgatgg cttcaagaag ggcagcaacg
cctccgccat catcgagacc gtggcccaga 2940tgttccccga cttccggcgg gaactggtgg
agaagtttgg catcgacctg cgcatgaaag 3000agatcacccg cgagctgttc gtgggcaaga
gcatgaccag caagttcatg gaagaggggg 3060agtacggcta caagttcgcc tacggctggc
ggagggacgg cttcgccgtg atggaagatt 3120acggcgagat cctgacagag aaggtggagg
acctgtacaa gggggtgctg ctgggccgga 3180agtgggagga cgaggtggac gaccccgaga
gctacttcta cgacgacctg tacaccaacg 3240agccccaccg ggtgttcctg agcgccggca
aggacgtgga caacaacatc accctgcgga 3300gcatcagcca ggccgagacc acctacctga
gcaagcggtt cgtgagctac tggtacagga 3360tcagccaggt ggaggtgacc aaggcccgga
acgaggtgct ggacatgaac gagaagcaga 3420agccctactt cgagttcgag tacgacgact
tcaagccctg ctccatcggc gagctgggca 3480tccacgccag cacctacatc taccagaatc
tgctggtcgg caggaaccgg ggcgaggaaa 3540tcctggacag caaagaactg gtctggatgg
acatgagcct gctgaacttc ggcgccgtgc 3600ggagccacga ccggtgctgg atctctagca
gcgtggccat cgaggtgaac ctgcggcacg 3660ccctgatcgt gcggatcttc agcagattcg
acatgatgag cgagagagag accttcagca 3720ccatcctgga aaaggtcatg gaagatgtga
aagagctgcg gttcttcccc acctaccggc 3780actactacct ggaaaccctg cagcgggtgt
tcaacgacga gcggcggctg gaagtggatg 3840acttctacat gcggctgtac gacgtgcaga
cccgggagca ggccctgaac accttcaccg 3900acttccacag atgcgtggag agcgagctgc
tgctgcccac cctgaagctg aacttcctgc 3960tgtggatcgt gttcgagatg gaaaacgtgg
aggtgaacgc cgcctacaag cggcaccccc 4020tgctgatctc taccgccaag ggcctgaggg
tgatcggcgt ggacatcttc aacagccagc 4080tgtccatcag catgagcggc tggattccct
acgtggagcg gatgtgcgcc gagagcaaag 4140tgcagaccaa actgaccgcc gacgagctga
aactgaagcg gtggttcatc agctactaca 4200ccacactgaa gctggacaga agagccgagc
cccggatgag cttcaagttc gagggcctga 4260gcacctggat cggcagcaac tgtggcggcg
tgcgggacta cgtgatccag atgctgccta 4320cccggaagcc caagcctggc gccctgatgg
tggtgtacgc ccgggacagc cggatcgagt 4380ggatcgaggc cgagctgtcc cagtggctgc
agatggaagg cagcctgggc ctgatcctgg 4440tgcacgacag cggcatcatc aacaagagcg
tgctgagggc ccggaccctg aaaatctaca 4500accggggcag catggacacc ctgatcctga
tcagctccgg cgtgtacacc ttcggcaaca 4560agttcctgct gtccaagctg ctggccaaga
ccgagtgatg aggatccctc gagtttttat 4620tgactagttc aaaattgaaa atatataatt
acaatataaa atgggcaagt ttaccagctt 4680cctgaagagg gccggcaacg ccaccaagcg
ggccctgacc agcgacagcg ccaagaagat 4740gtacaagctg gccggcaaga ccctgcagcg
ggtggtggag agcgaagtgg gcagcgccgc 4800catcgacggc gtgatgcagg gcgccatcca
gagcatcatc cagggcgaga acctgggcga 4860cagcatcaag caggccgtga tcctgaacgt
ggccggcacc ctggaaagcg cccctgaccc 4920cctgagccct ggcgagcagc tgctgtacaa
caaggtgtcc gagatcgaga agatggaaaa 4980ggaagatcgg gtgatcgaga cccacaacgc
caagatcgag gaaaagttcg gcaaggacct 5040gctggccatc cggaagatcg tgaagggcga
ggtggacgcc gagaagctgg aaggcaacga 5100gatcaagtac gtggagaagg ccctgagcgg
cctgctggaa atcggcaagg atcagagcga 5160gcggatcacc aagctgtacc gggccctgca
gaccgaagag gacctgcgga cccgggacga 5220gacccggatg atcaacgagt accgggagaa
gttcgacgcc ctgaaagagg ccatcgagat 5280cgagcagcag gccacccacg acgaggccat
ccaggaaatg ctggacctga gcgccgaggt 5340gatcgaaacc gccagcgagg aagtgcccat
ctttggcgcc ggagccgcca acgtgatcgc 5400caccacccgg gccattcagg gcggcctgaa
gctgaaggaa atcgtggaca agctgacagg 5460catcgacctg agccacctga aggtggccga
catccacccc cacatcatcg agaaggccat 5520gctgcgggac accgtgaccg acaaggacct
ggctatggcc atcaagagca aggtggacgt 5580gatcgacgag atgaacgtgg agacccagca
cgtgatcgat gccgtgctgc ccatcgtgaa 5640gcaggaatac gagcggcacg acaacaagta
ccacgtgaga atccctggcg ccctgaagat 5700ccacagcgag cacaccccca agatccacat
ctacaccacc ccctgggaca gcgactccgt 5760gttcatgtgc cgggccatcg ccccccacca
tcagcagcgg agcttcttca tcggcttcga 5820cctggaaatc gagtacgtgc acttcgagga
caccagcgtg gagggccaca tcctgcacgg 5880cggagccatc accgtggagg gcaggggctt
ccggcaggcc tacaccgagt tcatgaacgc 5940cgcctggggc atgcctacca cccccgagct
gcacaagcgg aagctgcagc ggagcatggg 6000cacccacccc atctacatgg gcagcatgga
ctacgccatc agctacgagc agctggtgtc 6060caatgccatg cggctggtgt acgacagcga
gctgcagatg cactgcctga gaggccccct 6120gaagttccag cggcggaccc tgatgaacgc
cctgctgtac ggcgtgaaga tcgcctgatg 6180atttttctac tagttaatca aataaaaagc
atacaagcta ttgcttcgct atcgttacaa 6240aatggcagga attttgtgta aactaagcca
catacttgcc aatgaaaaaa atagtagaaa 6300ggatactatt ttaatgggat tagatgttaa
ggttccttgg gattatagta actgggcatc 6360tgttaacttt tacgacgtta ggttagatac
tgatgttaca gattataata atgttacaat 6420aaaatacatg acaggatgtg atatttttcc
tcatataact cttggaatag caaatatgga 6480tcaatgtgat agatttgaaa atttcaaaaa
gcaaataact gatcaagatt tacagactat 6540ttctatagtc tgtaaagaag agatgtgttt
tcctcagagt aacgcctcta aacagttggg 6600agcgaaagga tgcgctgtag ttatgaaact
ggaggtatct gatgaactta gagccctaag 6660aaatgttctg ctgaatgcgg taccctgttc
gaaggacgtg tttggtgata tcacagtaga 6720taatccgtgg aatcctcaca taacagtagg
atatgttaag gaggacgatg tcgaaaacaa 6780gaaacgccta atggagtgca tgtccaagtt
tagggggcaa gaaatacaag ttctaggatg 6840gtattaataa gtatctaagt atttggtata
atttattaaa tagtataatt ataacaaata 6900ataaataaca tgataacggt ttttattaga
ataaaataga gataatatca taatgatata 6960taatacttca ttaccagaaa tgagtaatgg
aagacttata aatgaactgc ataaagctat 7020aaggtataga gatataaatt tagtaaggta
tatacttaaa aaatgcaaat acaataacgt 7080aaatatacta tcaacgtctt tgtatttagc
cgtaagtatt tctgatatag aaatggtaaa 7140attattacta gaacacggtg ccgatatttt
aaaatgtaaa aatcctcctc ttcataaagc 7200tgctagttta gataatacag aaattgctaa
actactaata gattctggcg ctgacataga 7260acagatacat tctggaaata gtccgttata
tatttctgta tatagaaaca ataagtcatt 7320aactagatat ttattaaaaa aaggtgttaa
ttgtaataga ttctttctaa attattacga 7380tgtactgtat gataagatat ctgatgatat
gtataaaata tttatagatt ttaatattga 7440tcttaatata caaactagaa attttgaaac
tccgttacat tacgctataa agtataagaa 7500tatagattta attaggatat tgttagataa
tagtattaaa atagataaaa gtttattttt 7560gcataaacag tatctcataa aggcacttaa
aaataattgt agttacgata taatagcgtt 7620acttataaat cacggagtgc ctataaacga
acaagatgat ttaggtaaaa ccccattaca 7680tcattcggta attaatagaa gaaaagatgt
aacagcactt ctgttaaatc taggagctga 7740tataaacgta atagatgact gtatgggcag
tcccttacat tacgctgttt cacgtaacga 7800tatcgaaaca acaaagacac ttttagaaag
aggatctaat gttaatgtgg ttaataatca 7860tatagatacc gttctaaata tagctgttgc
atctaaaaac aaaactatag taaacttatt 7920actgaagtac ggtactgata caaagttggt
aggattagat aaacatgtta ttcacatagc 7980tatagaaatg aaagatatta atatactgaa
tgcgatctta ttatatggtt gctatgtaaa 8040cgtctataat cataaaggtt tcactcctct
atacatggca gttagttcta tgaaaacaga 8100atttgttaaa ctcttacttg accacggtgc
ttacgtaaat gctaaagcta agttatctgg 8160aaatactcct ttacataaag ctatgttatc
taatagtttt aataatataa aattactttt 8220atcttataac gccgactata attctctaaa
taatcacggt aatacgcctc taacttgtgt 8280tagcttttta gatgacaaga tagctattat
gataatatct aaaatgatgt tagaaatatc 8340taaaaatcct gaaatagcta attcagaagg
ttttatagta aacatggaac atataaacag 8400taataaaaga ctactatcta taaaagaatc
atgcgaaaaa gaactagatg ttataacaca 8460tataaagtta aattctatat attcttttaa
tatctttctt gacaataaca tagatcttat 8520ggtaaagttc gtaactaatc ctagagttaa
taagatacct gcatgtatac gtatatatag 8580ggaattaata cggaaaaata aatcattagc
ttttcataga catcagctaa tagttaaagc 8640tgtaaaagag agtaagaatc taggaataat
aggtaggtta cctatagata tcaaacatat 8700aataatggaa ctattaagta ataatgattt
acattctgtt atcaccagct gttgtaaccc 8760agtagtataa agtgatttta ttcaattacg
aagataaaca 8800183156DNAartificial sequenceAHSV-9
VP2 from pCXL2415.1 18atggccttcg agttcggcat cctgcagacc gacaagatcc
gggagaacac cctggaaaag 60accaactgcg acgtgatcct gacccgggag aaccgcgtgc
gggccagaga agtggacggc 120gtgaagggct actactggga ggacaccgac caccggctgg
gcctgtgcga ggtggagcac 180accgtgagcg tgcgggactt catgtacaag cagaccaagt
gcgagggcag ctaccccgtg 240gtgcccctgt acatgatcga cgccatcaag tacggccgga
tgatcgaccg gaacgaccac 300cagatccggg tggacaagga cgacaagacc ctgttcaaga
tccaggtgca gccctacctg 360ggcgacgcct acttcagccc cgagcactac accgccacat
tcttcaagcg ggagcccctg 420cccatccacg tggacaccat ccgggactac atcggcaagc
ggatcaacta cttcgagcgg 480gagctgggca gcggcgtgag ggacgccaac ctggaaacca
tcgtgggcaa gtggaaggac 540aacacctaca agcggatcga gggcgaaaag accaccatgt
gcgtgcggca cgagcccgac 600agcgtgctgc agatcctgaa gaagatgcgg ttcggcatgc
tgtaccccaa ctactacatg 660ctgaacaccg gctacatcgt gaccgagagc agcaaaggcg
cccctctgaa ccggtggctg 720gtgaaagaac ggaccgtggg caaggtgaaa gccgccgagg
ccttcgccgg caacagcctg 780ctgaagaacc tggccagccg gatggaagat gaggaactga
gccgggagat catcgtggcc 840gtgatcaact acggcagcaa gttcggcacc agaagcggca
agaagaagga cctgatgacc 900atcgacaagc tggaaaagta ctgcgagagc ctgaccacct
tcgtgcaccg gaagaagcgg 960gacgagggcg acgacgagac cgccagggcc atcatccgga
accagtggat caagggcatg 1020cccagcatga acctgaagaa ggagatgaag gtctccaggg
gccctatcca gaactggtcc 1080ttcttcatga gcctggaagt gttcaagcgg aacaacaagg
tggacatcga ccccaaccac 1140gacacctgga agaaccacgt gaaagagatc cgcgagcgga
tgcagaagga acagagcgcc 1200aacagcaaca gccccctgaa gattcaggtg gacggggtgt
ccctgagcac cagcgagttc 1260tacggcaccg tggagcactg gatcgactgg gtggtggacc
tgatcatgct ggcccaggtc 1320aagcggctga tcaaagagta caagttcatc cggctggaaa
ccaccaacct gatggccggc 1380atgaacaagc tggtcggcgc cctgcggtgc tacgcctact
gcctgatcct ggccctgtac 1440gacttctacg gcgccgacat cgagggcttc gagaagggca
gcaacagcag cgccatcgtg 1500gagaccgtgg tgcagatgtt ccccaacttc aagcaggaaa
tccaggccaa cttcggcatc 1560aacctgaaca tcaaggacaa gaagcaggtc ctgttcgtcc
ggatggacat ggacagcgag 1620ttcagcgagg acgagcagaa gggctacatg ttcgagtacg
gctgggccaa gcgggaggaa 1680cggatctgga ccaactacgg cgacatcctg accgacctgg
tggagcagct gtacaagagc 1740atcctggacc acgaggaatg ggagaagatc gtggacgacc
ccgagcggta cttctacgac 1800gagctgttca acgccagccc cgagaccgtg ttcatcagca
agggctacga cctggacaac 1860aacatcgtga tcgagggcaa agtgggccag gacgtgacct
acttctccaa gcggttcgtg 1920agctactggt acagagtgcg gcaggtgcag accagcaagg
gcatcgagcg gcggagcatc 1980gaggacgtga agtaccggga gttcgacatc gagtccttca
agccctacgc catcggcgag 2040atcggcatcc acgccagcac ctacaagtac caggacctgc
tggccggacg gaaccggggc 2100gagaaggtga aagacagcca ggccctggtc tggtacgacc
tggccctgac caactacacc 2160ctggtccggc cccaggaccg gtgctggatc atgagctgca
ccgacagcga gtacaccctg 2220cggttcgcca tgatcaccat gatcttcgag agactgagcg
aggaaaccga cctgagctac 2280cacgacatcc tgctgagagt gagagagtac cccatccagt
ccttcgccag ctacaagcac 2340ttctacgtgc gggtgctgca gcatgtgttc agggactacc
aggaaatcga cgtcctggaa 2400ttctgcaccc ggatgctgga cccccggacc agagagagcg
gcctgaacaa gttcagccgg 2460ttcaagcagt ggcgggagag cgagttcctg atcgatgccc
tgaagatgaa cttcctgctg 2520tgggtggtgt tcgagctgga aaacatcgac gtggactaca
gcaagaagcg gcaccccctg 2580ctgatctcca ccgacaaggg cctgagagtg gtgcccgtgg
acctgttcaa tagcatgctg 2640tccgtgagca gcagcggctg gattccctac gtggagagag
tgtgcgagcg gagcgagatc 2700aagcggcggc tgaacgccga cgagctgaag ctgaagaact
ggttcatcgc ctactacatc 2760accctgcccc tgctgcggag agccgagccc cggatgagct
tcaagtacga gggcatcacc 2820acctggatcg gcagcaactg tggcggcgtg agagactacc
tgatccagat gctgcccgcc 2880aggaagccca agcccggcgt cctgattctg gcctatggcg
ccgagaccaa cgtggcctgg 2940ctgaaccacg ccctgcggga catcctgtcc ctggaaggca
gcctgggcat gatcatcatc 3000agcgacggca gcgtggtgaa caagagcaag ctgagagtgc
gggacatgaa aatctacaac 3060aggggcgagg tggaccggct gatcctgatc agctccggcg
actacacctt cggcaacaag 3120tacctgctgt ccaagctgat ggccaagatc gagcag
3156191509DNAartificial sequenceAHSV-9 VP5 from
pCXL2415.1 19atgggcaagt ttaccagctt cctgaagagg gccggcagcg ccaccaagaa
ggccctgacc 60agcgacgccg ccaagcggat gtacaagatg gccggcaaga ccctgcagaa
ggtcgtcgag 120agcgaagtgg gcagcgccgc catcgacggc gtgatgcagg gcaccatcca
gagcatcatc 180cagggcgaga acctgggcga cagcatcaag caggccgtga tcctgaacgt
ggccggcacc 240ctggaaagcg cccctgaccc cctgagccct ggcgagcagc tgctgtacaa
caaggtgtcc 300gagatcgagc gggccgagaa ggaagatcgg gtcatcgaga cccacaacaa
gaagatcatc 360gagaagtacg gcgaggacct gctgaagatc cggaagatca tgaagggcga
ggccgaggcc 420gagcagctgg aaggcaaaga gatggaatac gtcgaaaagg ccctgaaggg
catgctgcgg 480atcggcaagg accagagcga gcggatcacc cggctgtacc gggccctgca
gaccgaagag 540gacctgagaa ccagcgacga gacccggatg atcagcgagt accgggagaa
gttcgaggcc 600ctgaaacagg ccatcgagct ggaacagcag gccacccacg aggaagccgt
gcaggaaatg 660ctggacctga gcgccgaggt gatcgaaaca gccgccgagg aagtgcccgt
gtttggcgct 720ggggccgcta acgtggtggc cacaacccgg gccattcagg gcggcctgaa
gctgaaagag 780atcatcgaca agctgaccgg catcgacctg agccacctga aggtggccga
catccacccc 840cacatcatcg aaaaggccat gctgaagaac aagatccccg acaacgagct
ggccatggct 900atcaagagca aggtggaagt gatcgacgag atgaacaccg agaccgagca
cgtgatcgag 960agcatcatgc ccctggtgaa gaaggaatac gagaagcacg acaacaagta
ccacgtgaac 1020atccccagcg ccctgaagat ccacagcgag cacaccccca aggtgcacat
ctacaccacc 1080ccctgggaca gcgacaaggt gttcatctgc cggtgcatcg ccccccacca
tcagcagcgg 1140agcttcatga tcggcttcga cctggaaatc gagttcgtgt tctacgagga
caccagcgtg 1200gagggccaca tcatgcacgg cggagccgtg agcatcgagg gcaggggctt
ccggcaggcc 1260tacagcgagt tcatgaacgc cgcctggtcc atgcccagca cccccgagct
gcacaagcgg 1320cggctgcagc ggagcctggg cagccacccc atctacatgg gcagcatgga
ctacaccgtg 1380agctatgagc agctggtgtc caacgccatg aagctggtgt acgacaccga
cctgcagatg 1440cactgcctga gaggccccct gaagttccag cggcggaccc tgatgaacgc
cctgctgttc 1500ggcgtgaaa
1509201052PRTartificial sequencePredicted AHSV-9 amino acid
seq VP2 in pCXL2415.1 20Met Ala Phe Glu Phe Gly Ile Leu Gln Thr Asp
Lys Ile Arg Glu Asn 1 5 10
15 Thr Leu Glu Lys Thr Asn Cys Asp Val Ile Leu Thr Arg Glu Asn Arg
20 25 30 Val Arg
Ala Arg Glu Val Asp Gly Val Lys Gly Tyr Tyr Trp Glu Asp 35
40 45 Thr Asp His Arg Leu Gly Leu
Cys Glu Val Glu His Thr Val Ser Val 50 55
60 Arg Asp Phe Met Tyr Lys Gln Thr Lys Cys Glu Gly
Ser Tyr Pro Val 65 70 75
80 Val Pro Leu Tyr Met Ile Asp Ala Ile Lys Tyr Gly Arg Met Ile Asp
85 90 95 Arg Asn Asp
His Gln Ile Arg Val Asp Lys Asp Asp Lys Thr Leu Phe 100
105 110 Lys Ile Gln Val Gln Pro Tyr Leu
Gly Asp Ala Tyr Phe Ser Pro Glu 115 120
125 His Tyr Thr Ala Thr Phe Phe Lys Arg Glu Pro Leu Pro
Ile His Val 130 135 140
Asp Thr Ile Arg Asp Tyr Ile Gly Lys Arg Ile Asn Tyr Phe Glu Arg 145
150 155 160 Glu Leu Gly Ser
Gly Val Arg Asp Ala Asn Leu Glu Thr Ile Val Gly 165
170 175 Lys Trp Lys Asp Asn Thr Tyr Lys Arg
Ile Glu Gly Glu Lys Thr Thr 180 185
190 Met Cys Val Arg His Glu Pro Asp Ser Val Leu Gln Ile Leu
Lys Lys 195 200 205
Met Arg Phe Gly Met Leu Tyr Pro Asn Tyr Tyr Met Leu Asn Thr Gly 210
215 220 Tyr Ile Val Thr Glu
Ser Ser Lys Gly Ala Pro Leu Asn Arg Trp Leu 225 230
235 240 Val Lys Glu Arg Thr Val Gly Lys Val Lys
Ala Ala Glu Ala Phe Ala 245 250
255 Gly Asn Ser Leu Leu Lys Asn Leu Ala Ser Arg Met Glu Asp Glu
Glu 260 265 270 Leu
Ser Arg Glu Ile Ile Val Ala Val Ile Asn Tyr Gly Ser Lys Phe 275
280 285 Gly Thr Arg Ser Gly Lys
Lys Lys Asp Leu Met Thr Ile Asp Lys Leu 290 295
300 Glu Lys Tyr Cys Glu Ser Leu Thr Thr Phe Val
His Arg Lys Lys Arg 305 310 315
320 Asp Glu Gly Asp Asp Glu Thr Ala Arg Ala Ile Ile Arg Asn Gln Trp
325 330 335 Ile Lys
Gly Met Pro Ser Met Asn Leu Lys Lys Glu Met Lys Val Ser 340
345 350 Arg Gly Pro Ile Gln Asn Trp
Ser Phe Phe Met Ser Leu Glu Val Phe 355 360
365 Lys Arg Asn Asn Lys Val Asp Ile Asp Pro Asn His
Asp Thr Trp Lys 370 375 380
Asn His Val Lys Glu Ile Arg Glu Arg Met Gln Lys Glu Gln Ser Ala 385
390 395 400 Asn Ser Asn
Ser Pro Leu Lys Ile Gln Val Asp Gly Val Ser Leu Ser 405
410 415 Thr Ser Glu Phe Tyr Gly Thr Val
Glu His Trp Ile Asp Trp Val Val 420 425
430 Asp Leu Ile Met Leu Ala Gln Val Lys Arg Leu Ile Lys
Glu Tyr Lys 435 440 445
Phe Ile Arg Leu Glu Thr Thr Asn Leu Met Ala Gly Met Asn Lys Leu 450
455 460 Val Gly Ala Leu
Arg Cys Tyr Ala Tyr Cys Leu Ile Leu Ala Leu Tyr 465 470
475 480 Asp Phe Tyr Gly Ala Asp Ile Glu Gly
Phe Glu Lys Gly Ser Asn Ser 485 490
495 Ser Ala Ile Val Glu Thr Val Val Gln Met Phe Pro Asn Phe
Lys Gln 500 505 510
Glu Ile Gln Ala Asn Phe Gly Ile Asn Leu Asn Ile Lys Asp Lys Lys
515 520 525 Gln Val Leu Phe
Val Arg Met Asp Met Asp Ser Glu Phe Ser Glu Asp 530
535 540 Glu Gln Lys Gly Tyr Met Phe Glu
Tyr Gly Trp Ala Lys Arg Glu Glu 545 550
555 560 Arg Ile Trp Thr Asn Tyr Gly Asp Ile Leu Thr Asp
Leu Val Glu Gln 565 570
575 Leu Tyr Lys Ser Ile Leu Asp His Glu Glu Trp Glu Lys Ile Val Asp
580 585 590 Asp Pro Glu
Arg Tyr Phe Tyr Asp Glu Leu Phe Asn Ala Ser Pro Glu 595
600 605 Thr Val Phe Ile Ser Lys Gly Tyr
Asp Leu Asp Asn Asn Ile Val Ile 610 615
620 Glu Gly Lys Val Gly Gln Asp Val Thr Tyr Phe Ser Lys
Arg Phe Val 625 630 635
640 Ser Tyr Trp Tyr Arg Val Arg Gln Val Gln Thr Ser Lys Gly Ile Glu
645 650 655 Arg Arg Ser Ile
Glu Asp Val Lys Tyr Arg Glu Phe Asp Ile Glu Ser 660
665 670 Phe Lys Pro Tyr Ala Ile Gly Glu Ile
Gly Ile His Ala Ser Thr Tyr 675 680
685 Lys Tyr Gln Asp Leu Leu Ala Gly Arg Asn Arg Gly Glu Lys
Val Lys 690 695 700
Asp Ser Gln Ala Leu Val Trp Tyr Asp Leu Ala Leu Thr Asn Tyr Thr 705
710 715 720 Leu Val Arg Pro Gln
Asp Arg Cys Trp Ile Met Ser Cys Thr Asp Ser 725
730 735 Glu Tyr Thr Leu Arg Phe Ala Met Ile Thr
Met Ile Phe Glu Arg Leu 740 745
750 Ser Glu Glu Thr Asp Leu Ser Tyr His Asp Ile Leu Leu Arg Val
Arg 755 760 765 Glu
Tyr Pro Ile Gln Ser Phe Ala Ser Tyr Lys His Phe Tyr Val Arg 770
775 780 Val Leu Gln His Val Phe
Arg Asp Tyr Gln Glu Ile Asp Val Leu Glu 785 790
795 800 Phe Cys Thr Arg Met Leu Asp Pro Arg Thr Arg
Glu Ser Gly Leu Asn 805 810
815 Lys Phe Ser Arg Phe Lys Gln Trp Arg Glu Ser Glu Phe Leu Ile Asp
820 825 830 Ala Leu
Lys Met Asn Phe Leu Leu Trp Val Val Phe Glu Leu Glu Asn 835
840 845 Ile Asp Val Asp Tyr Ser Lys
Lys Arg His Pro Leu Leu Ile Ser Thr 850 855
860 Asp Lys Gly Leu Arg Val Val Pro Val Asp Leu Phe
Asn Ser Met Leu 865 870 875
880 Ser Val Ser Ser Ser Gly Trp Ile Pro Tyr Val Glu Arg Val Cys Glu
885 890 895 Arg Ser Glu
Ile Lys Arg Arg Leu Asn Ala Asp Glu Leu Lys Leu Lys 900
905 910 Asn Trp Phe Ile Ala Tyr Tyr Ile
Thr Leu Pro Leu Leu Arg Arg Ala 915 920
925 Glu Pro Arg Met Ser Phe Lys Tyr Glu Gly Ile Thr Thr
Trp Ile Gly 930 935 940
Ser Asn Cys Gly Gly Val Arg Asp Tyr Leu Ile Gln Met Leu Pro Ala 945
950 955 960 Arg Lys Pro Lys
Pro Gly Val Leu Ile Leu Ala Tyr Gly Ala Glu Thr 965
970 975 Asn Val Ala Trp Leu Asn His Ala Leu
Arg Asp Ile Leu Ser Leu Glu 980 985
990 Gly Ser Leu Gly Met Ile Ile Ile Ser Asp Gly Ser Val
Val Asn Lys 995 1000 1005
Ser Lys Leu Arg Val Arg Asp Met Lys Ile Tyr Asn Arg Gly Glu
1010 1015 1020 Val Asp Arg
Leu Ile Leu Ile Ser Ser Gly Asp Tyr Thr Phe Gly 1025
1030 1035 Asn Lys Tyr Leu Leu Ser Lys Leu
Met Ala Lys Ile Glu Gln 1040 1045
1050 21503PRTartificial sequencePredicted AHSV-9 amino acid seq
VP5 in pCXL2415.1 21Met Gly Lys Phe Thr Ser Phe Leu Lys Arg Ala Gly
Ser Ala Thr Lys 1 5 10
15 Lys Ala Leu Thr Ser Asp Ala Ala Lys Arg Met Tyr Lys Met Ala Gly
20 25 30 Lys Thr Leu
Gln Lys Val Val Glu Ser Glu Val Gly Ser Ala Ala Ile 35
40 45 Asp Gly Val Met Gln Gly Thr Ile
Gln Ser Ile Ile Gln Gly Glu Asn 50 55
60 Leu Gly Asp Ser Ile Lys Gln Ala Val Ile Leu Asn Val
Ala Gly Thr 65 70 75
80 Leu Glu Ser Ala Pro Asp Pro Leu Ser Pro Gly Glu Gln Leu Leu Tyr
85 90 95 Asn Lys Val Ser
Glu Ile Glu Arg Ala Glu Lys Glu Asp Arg Val Ile 100
105 110 Glu Thr His Asn Lys Lys Ile Ile Glu
Lys Tyr Gly Glu Asp Leu Leu 115 120
125 Lys Ile Arg Lys Ile Met Lys Gly Glu Ala Glu Ala Glu Gln
Leu Glu 130 135 140
Gly Lys Glu Met Glu Tyr Val Glu Lys Ala Leu Lys Gly Met Leu Arg 145
150 155 160 Ile Gly Lys Asp Gln
Ser Glu Arg Ile Thr Arg Leu Tyr Arg Ala Leu 165
170 175 Gln Thr Glu Glu Asp Leu Arg Thr Ser Asp
Glu Thr Arg Met Ile Ser 180 185
190 Glu Tyr Arg Glu Lys Phe Glu Ala Leu Lys Gln Ala Ile Glu Leu
Glu 195 200 205 Gln
Gln Ala Thr His Glu Glu Ala Val Gln Glu Met Leu Asp Leu Ser 210
215 220 Ala Glu Val Ile Glu Thr
Ala Ala Glu Glu Val Pro Val Phe Gly Ala 225 230
235 240 Gly Ala Ala Asn Val Val Ala Thr Thr Arg Ala
Ile Gln Gly Gly Leu 245 250
255 Lys Leu Lys Glu Ile Ile Asp Lys Leu Thr Gly Ile Asp Leu Ser His
260 265 270 Leu Lys
Val Ala Asp Ile His Pro His Ile Ile Glu Lys Ala Met Leu 275
280 285 Lys Asn Lys Ile Pro Asp Asn
Glu Leu Ala Met Ala Ile Lys Ser Lys 290 295
300 Val Glu Val Ile Asp Glu Met Asn Thr Glu Thr Glu
His Val Ile Glu 305 310 315
320 Ser Ile Met Pro Leu Val Lys Lys Glu Tyr Glu Lys His Asp Asn Lys
325 330 335 Tyr His Val
Asn Ile Pro Ser Ala Leu Lys Ile His Ser Glu His Thr 340
345 350 Pro Lys Val His Ile Tyr Thr Thr
Pro Trp Asp Ser Asp Lys Val Phe 355 360
365 Ile Cys Arg Cys Ile Ala Pro His His Gln Gln Arg Ser
Phe Met Ile 370 375 380
Gly Phe Asp Leu Glu Ile Glu Phe Val Phe Tyr Glu Asp Thr Ser Val 385
390 395 400 Glu Gly His Ile
Met His Gly Gly Ala Val Ser Ile Glu Gly Arg Gly 405
410 415 Phe Arg Gln Ala Tyr Ser Glu Phe Met
Asn Ala Ala Trp Ser Met Pro 420 425
430 Ser Thr Pro Glu Leu His Lys Arg Arg Leu Gln Arg Ser Leu
Gly Ser 435 440 445
His Pro Ile Tyr Met Gly Ser Met Asp Tyr Thr Val Ser Tyr Glu Gln 450
455 460 Leu Val Ser Asn Ala
Met Lys Leu Val Tyr Asp Thr Asp Leu Gln Met 465 470
475 480 His Cys Leu Arg Gly Pro Leu Lys Phe Gln
Arg Arg Thr Leu Met Asn 485 490
495 Ala Leu Leu Phe Gly Val Lys 500
2211131DNAartificial sequenceEntire plasmid pCXL2415.1 22ggaaacagct
atgaccatga ttacgccaag cttgcggccg cgtcgacatg cattgttagt 60tctgtagatc
agtaacgtat agcatacgag tataattatc gtaggtagta ggtatcctaa 120aataaatctg
atacagataa taactttgta aatcaattca gcaatttctc tattatcatg 180ataatgatta
atacacagcg tgtcgttatt ttttgttacg atagtatttc taaagtaaag 240agcaggaatc
cctagtataa tagaaataat ccatatgaaa aatatagtaa tgtacatatt 300tctaatgtta
acatatttat aggtaaatcc aggaagggta atttttacat atctatatac 360gcttattaca
gttattaaaa atatacttgc aaacatgtta gaagtaaaaa agaaagaact 420aattttacaa
agtgctttac caaaatgcca atggaaatta cttagtatgt atataatgta 480taaaggtatg
aatatcacaa acagcaaatc ggctattccc aagttgagaa acggtataat 540agatatattt
ctagatacca ttaataacct tataagcttg acgtttccta taatgcctac 600taagaaaact
agaagataca tacatactaa cgccatacga gagtaactac tcatcgtata 660actactgttg
ctaacagtga cactgatgtt ataactcatc tttgatgtgg tataaatgta 720taataactat
attacactgg tattttattt cagttatata ctatatagta ttaaaaatta 780tatttgtata
attatattat tatattcagt gtagaaagta aaatactata aatatgtatc 840tcttatttat
aacttattag taaagtatgt actattcagt tatattgttt tataaaagct 900aaatgctact
agattgatat aaatgaatat gtaataaatt agtaatgtag tatactaata 960ttaactcaca
tttgactaat tagctataaa aacccgggtt aattaattag tcatcaggca 1020gggcgagaac
gagactatct gctcgttaat taattagagc ttctttattc tatacttaaa 1080aagtgaaaat
aaatacaaag gttcttgagg gttgtgttaa attgaaagcg agaaataatc 1140ataaattatt
tcattatcgc gatatccgtt aagtttgtat cgta atg gcc ttc gag 1196
Met Ala Phe Glu
1 ttc ggc atc ctg
cag acc gac aag atc cgg gag aac acc ctg gaa aag 1244Phe Gly Ile Leu
Gln Thr Asp Lys Ile Arg Glu Asn Thr Leu Glu Lys 5
10 15 20 acc aac tgc gac gtg
atc ctg acc cgg gag aac cgc gtg cgg gcc aga 1292Thr Asn Cys Asp Val
Ile Leu Thr Arg Glu Asn Arg Val Arg Ala Arg 25
30 35 gaa gtg gac ggc gtg aag
ggc tac tac tgg gag gac acc gac cac cgg 1340Glu Val Asp Gly Val Lys
Gly Tyr Tyr Trp Glu Asp Thr Asp His Arg 40
45 50 ctg ggc ctg tgc gag gtg gag
cac acc gtg agc gtg cgg gac ttc atg 1388Leu Gly Leu Cys Glu Val Glu
His Thr Val Ser Val Arg Asp Phe Met 55
60 65 tac aag cag acc aag tgc gag
ggc agc tac ccc gtg gtg ccc ctg tac 1436Tyr Lys Gln Thr Lys Cys Glu
Gly Ser Tyr Pro Val Val Pro Leu Tyr 70 75
80 atg atc gac gcc atc aag tac ggc
cgg atg atc gac cgg aac gac cac 1484Met Ile Asp Ala Ile Lys Tyr Gly
Arg Met Ile Asp Arg Asn Asp His 85 90
95 100 cag atc cgg gtg gac aag gac gac aag
acc ctg ttc aag atc cag gtg 1532Gln Ile Arg Val Asp Lys Asp Asp Lys
Thr Leu Phe Lys Ile Gln Val 105
110 115 cag ccc tac ctg ggc gac gcc tac ttc
agc ccc gag cac tac acc gcc 1580Gln Pro Tyr Leu Gly Asp Ala Tyr Phe
Ser Pro Glu His Tyr Thr Ala 120 125
130 aca ttc ttc aag cgg gag ccc ctg ccc atc
cac gtg gac acc atc cgg 1628Thr Phe Phe Lys Arg Glu Pro Leu Pro Ile
His Val Asp Thr Ile Arg 135 140
145 gac tac atc ggc aag cgg atc aac tac ttc gag
cgg gag ctg ggc agc 1676Asp Tyr Ile Gly Lys Arg Ile Asn Tyr Phe Glu
Arg Glu Leu Gly Ser 150 155
160 ggc gtg agg gac gcc aac ctg gaa acc atc gtg
ggc aag tgg aag gac 1724Gly Val Arg Asp Ala Asn Leu Glu Thr Ile Val
Gly Lys Trp Lys Asp 165 170 175
180 aac acc tac aag cgg atc gag ggc gaa aag acc acc
atg tgc gtg cgg 1772Asn Thr Tyr Lys Arg Ile Glu Gly Glu Lys Thr Thr
Met Cys Val Arg 185 190
195 cac gag ccc gac agc gtg ctg cag atc ctg aag aag atg
cgg ttc ggc 1820His Glu Pro Asp Ser Val Leu Gln Ile Leu Lys Lys Met
Arg Phe Gly 200 205
210 atg ctg tac ccc aac tac tac atg ctg aac acc ggc tac
atc gtg acc 1868Met Leu Tyr Pro Asn Tyr Tyr Met Leu Asn Thr Gly Tyr
Ile Val Thr 215 220 225
gag agc agc aaa ggc gcc cct ctg aac cgg tgg ctg gtg aaa
gaa cgg 1916Glu Ser Ser Lys Gly Ala Pro Leu Asn Arg Trp Leu Val Lys
Glu Arg 230 235 240
acc gtg ggc aag gtg aaa gcc gcc gag gcc ttc gcc ggc aac agc
ctg 1964Thr Val Gly Lys Val Lys Ala Ala Glu Ala Phe Ala Gly Asn Ser
Leu 245 250 255
260 ctg aag aac ctg gcc agc cgg atg gaa gat gag gaa ctg agc cgg
gag 2012Leu Lys Asn Leu Ala Ser Arg Met Glu Asp Glu Glu Leu Ser Arg
Glu 265 270 275
atc atc gtg gcc gtg atc aac tac ggc agc aag ttc ggc acc aga agc
2060Ile Ile Val Ala Val Ile Asn Tyr Gly Ser Lys Phe Gly Thr Arg Ser
280 285 290
ggc aag aag aag gac ctg atg acc atc gac aag ctg gaa aag tac tgc
2108Gly Lys Lys Lys Asp Leu Met Thr Ile Asp Lys Leu Glu Lys Tyr Cys
295 300 305
gag agc ctg acc acc ttc gtg cac cgg aag aag cgg gac gag ggc gac
2156Glu Ser Leu Thr Thr Phe Val His Arg Lys Lys Arg Asp Glu Gly Asp
310 315 320
gac gag acc gcc agg gcc atc atc cgg aac cag tgg atc aag ggc atg
2204Asp Glu Thr Ala Arg Ala Ile Ile Arg Asn Gln Trp Ile Lys Gly Met
325 330 335 340
ccc agc atg aac ctg aag aag gag atg aag gtc tcc agg ggc cct atc
2252Pro Ser Met Asn Leu Lys Lys Glu Met Lys Val Ser Arg Gly Pro Ile
345 350 355
cag aac tgg tcc ttc ttc atg agc ctg gaa gtg ttc aag cgg aac aac
2300Gln Asn Trp Ser Phe Phe Met Ser Leu Glu Val Phe Lys Arg Asn Asn
360 365 370
aag gtg gac atc gac ccc aac cac gac acc tgg aag aac cac gtg aaa
2348Lys Val Asp Ile Asp Pro Asn His Asp Thr Trp Lys Asn His Val Lys
375 380 385
gag atc cgc gag cgg atg cag aag gaa cag agc gcc aac agc aac agc
2396Glu Ile Arg Glu Arg Met Gln Lys Glu Gln Ser Ala Asn Ser Asn Ser
390 395 400
ccc ctg aag att cag gtg gac ggg gtg tcc ctg agc acc agc gag ttc
2444Pro Leu Lys Ile Gln Val Asp Gly Val Ser Leu Ser Thr Ser Glu Phe
405 410 415 420
tac ggc acc gtg gag cac tgg atc gac tgg gtg gtg gac ctg atc atg
2492Tyr Gly Thr Val Glu His Trp Ile Asp Trp Val Val Asp Leu Ile Met
425 430 435
ctg gcc cag gtc aag cgg ctg atc aaa gag tac aag ttc atc cgg ctg
2540Leu Ala Gln Val Lys Arg Leu Ile Lys Glu Tyr Lys Phe Ile Arg Leu
440 445 450
gaa acc acc aac ctg atg gcc ggc atg aac aag ctg gtc ggc gcc ctg
2588Glu Thr Thr Asn Leu Met Ala Gly Met Asn Lys Leu Val Gly Ala Leu
455 460 465
cgg tgc tac gcc tac tgc ctg atc ctg gcc ctg tac gac ttc tac ggc
2636Arg Cys Tyr Ala Tyr Cys Leu Ile Leu Ala Leu Tyr Asp Phe Tyr Gly
470 475 480
gcc gac atc gag ggc ttc gag aag ggc agc aac agc agc gcc atc gtg
2684Ala Asp Ile Glu Gly Phe Glu Lys Gly Ser Asn Ser Ser Ala Ile Val
485 490 495 500
gag acc gtg gtg cag atg ttc ccc aac ttc aag cag gaa atc cag gcc
2732Glu Thr Val Val Gln Met Phe Pro Asn Phe Lys Gln Glu Ile Gln Ala
505 510 515
aac ttc ggc atc aac ctg aac atc aag gac aag aag cag gtc ctg ttc
2780Asn Phe Gly Ile Asn Leu Asn Ile Lys Asp Lys Lys Gln Val Leu Phe
520 525 530
gtc cgg atg gac atg gac agc gag ttc agc gag gac gag cag aag ggc
2828Val Arg Met Asp Met Asp Ser Glu Phe Ser Glu Asp Glu Gln Lys Gly
535 540 545
tac atg ttc gag tac ggc tgg gcc aag cgg gag gaa cgg atc tgg acc
2876Tyr Met Phe Glu Tyr Gly Trp Ala Lys Arg Glu Glu Arg Ile Trp Thr
550 555 560
aac tac ggc gac atc ctg acc gac ctg gtg gag cag ctg tac aag agc
2924Asn Tyr Gly Asp Ile Leu Thr Asp Leu Val Glu Gln Leu Tyr Lys Ser
565 570 575 580
atc ctg gac cac gag gaa tgg gag aag atc gtg gac gac ccc gag cgg
2972Ile Leu Asp His Glu Glu Trp Glu Lys Ile Val Asp Asp Pro Glu Arg
585 590 595
tac ttc tac gac gag ctg ttc aac gcc agc ccc gag acc gtg ttc atc
3020Tyr Phe Tyr Asp Glu Leu Phe Asn Ala Ser Pro Glu Thr Val Phe Ile
600 605 610
agc aag ggc tac gac ctg gac aac aac atc gtg atc gag ggc aaa gtg
3068Ser Lys Gly Tyr Asp Leu Asp Asn Asn Ile Val Ile Glu Gly Lys Val
615 620 625
ggc cag gac gtg acc tac ttc tcc aag cgg ttc gtg agc tac tgg tac
3116Gly Gln Asp Val Thr Tyr Phe Ser Lys Arg Phe Val Ser Tyr Trp Tyr
630 635 640
aga gtg cgg cag gtg cag acc agc aag ggc atc gag cgg cgg agc atc
3164Arg Val Arg Gln Val Gln Thr Ser Lys Gly Ile Glu Arg Arg Ser Ile
645 650 655 660
gag gac gtg aag tac cgg gag ttc gac atc gag tcc ttc aag ccc tac
3212Glu Asp Val Lys Tyr Arg Glu Phe Asp Ile Glu Ser Phe Lys Pro Tyr
665 670 675
gcc atc ggc gag atc ggc atc cac gcc agc acc tac aag tac cag gac
3260Ala Ile Gly Glu Ile Gly Ile His Ala Ser Thr Tyr Lys Tyr Gln Asp
680 685 690
ctg ctg gcc gga cgg aac cgg ggc gag aag gtg aaa gac agc cag gcc
3308Leu Leu Ala Gly Arg Asn Arg Gly Glu Lys Val Lys Asp Ser Gln Ala
695 700 705
ctg gtc tgg tac gac ctg gcc ctg acc aac tac acc ctg gtc cgg ccc
3356Leu Val Trp Tyr Asp Leu Ala Leu Thr Asn Tyr Thr Leu Val Arg Pro
710 715 720
cag gac cgg tgc tgg atc atg agc tgc acc gac agc gag tac acc ctg
3404Gln Asp Arg Cys Trp Ile Met Ser Cys Thr Asp Ser Glu Tyr Thr Leu
725 730 735 740
cgg ttc gcc atg atc acc atg atc ttc gag aga ctg agc gag gaa acc
3452Arg Phe Ala Met Ile Thr Met Ile Phe Glu Arg Leu Ser Glu Glu Thr
745 750 755
gac ctg agc tac cac gac atc ctg ctg aga gtg aga gag tac ccc atc
3500Asp Leu Ser Tyr His Asp Ile Leu Leu Arg Val Arg Glu Tyr Pro Ile
760 765 770
cag tcc ttc gcc agc tac aag cac ttc tac gtg cgg gtg ctg cag cat
3548Gln Ser Phe Ala Ser Tyr Lys His Phe Tyr Val Arg Val Leu Gln His
775 780 785
gtg ttc agg gac tac cag gaa atc gac gtc ctg gaa ttc tgc acc cgg
3596Val Phe Arg Asp Tyr Gln Glu Ile Asp Val Leu Glu Phe Cys Thr Arg
790 795 800
atg ctg gac ccc cgg acc aga gag agc ggc ctg aac aag ttc agc cgg
3644Met Leu Asp Pro Arg Thr Arg Glu Ser Gly Leu Asn Lys Phe Ser Arg
805 810 815 820
ttc aag cag tgg cgg gag agc gag ttc ctg atc gat gcc ctg aag atg
3692Phe Lys Gln Trp Arg Glu Ser Glu Phe Leu Ile Asp Ala Leu Lys Met
825 830 835
aac ttc ctg ctg tgg gtg gtg ttc gag ctg gaa aac atc gac gtg gac
3740Asn Phe Leu Leu Trp Val Val Phe Glu Leu Glu Asn Ile Asp Val Asp
840 845 850
tac agc aag aag cgg cac ccc ctg ctg atc tcc acc gac aag ggc ctg
3788Tyr Ser Lys Lys Arg His Pro Leu Leu Ile Ser Thr Asp Lys Gly Leu
855 860 865
aga gtg gtg ccc gtg gac ctg ttc aat agc atg ctg tcc gtg agc agc
3836Arg Val Val Pro Val Asp Leu Phe Asn Ser Met Leu Ser Val Ser Ser
870 875 880
agc ggc tgg att ccc tac gtg gag aga gtg tgc gag cgg agc gag atc
3884Ser Gly Trp Ile Pro Tyr Val Glu Arg Val Cys Glu Arg Ser Glu Ile
885 890 895 900
aag cgg cgg ctg aac gcc gac gag ctg aag ctg aag aac tgg ttc atc
3932Lys Arg Arg Leu Asn Ala Asp Glu Leu Lys Leu Lys Asn Trp Phe Ile
905 910 915
gcc tac tac atc acc ctg ccc ctg ctg cgg aga gcc gag ccc cgg atg
3980Ala Tyr Tyr Ile Thr Leu Pro Leu Leu Arg Arg Ala Glu Pro Arg Met
920 925 930
agc ttc aag tac gag ggc atc acc acc tgg atc ggc agc aac tgt ggc
4028Ser Phe Lys Tyr Glu Gly Ile Thr Thr Trp Ile Gly Ser Asn Cys Gly
935 940 945
ggc gtg aga gac tac ctg atc cag atg ctg ccc gcc agg aag ccc aag
4076Gly Val Arg Asp Tyr Leu Ile Gln Met Leu Pro Ala Arg Lys Pro Lys
950 955 960
ccc ggc gtc ctg att ctg gcc tat ggc gcc gag acc aac gtg gcc tgg
4124Pro Gly Val Leu Ile Leu Ala Tyr Gly Ala Glu Thr Asn Val Ala Trp
965 970 975 980
ctg aac cac gcc ctg cgg gac atc ctg tcc ctg gaa ggc agc ctg ggc
4172Leu Asn His Ala Leu Arg Asp Ile Leu Ser Leu Glu Gly Ser Leu Gly
985 990 995
atg atc atc atc agc gac ggc agc gtg gtg aac aag agc aag ctg
4217Met Ile Ile Ile Ser Asp Gly Ser Val Val Asn Lys Ser Lys Leu
1000 1005 1010
aga gtg cgg gac atg aaa atc tac aac agg ggc gag gtg gac cgg
4262Arg Val Arg Asp Met Lys Ile Tyr Asn Arg Gly Glu Val Asp Arg
1015 1020 1025
ctg atc ctg atc agc tcc ggc gac tac acc ttc ggc aac aag tac
4307Leu Ile Leu Ile Ser Ser Gly Asp Tyr Thr Phe Gly Asn Lys Tyr
1030 1035 1040
ctg ctg tcc aag ctg atg gcc aag atc gag cag tga tga ggatccctcg
4356Leu Leu Ser Lys Leu Met Ala Lys Ile Glu Gln
1045 1050
agtttttatt gactagttca aaattgaaaa tatataatta caatataaa atg ggc 4411
Met Gly aag ttt acc
agc ttc ctg aag agg gcc ggc agc gcc acc aag aag 4456Lys Phe Thr
Ser Phe Leu Lys Arg Ala Gly Ser Ala Thr Lys Lys 1055
1060 1065 gcc ctg acc agc
gac gcc gcc aag cgg atg tac aag atg gcc ggc 4501Ala Leu Thr Ser
Asp Ala Ala Lys Arg Met Tyr Lys Met Ala Gly 1070
1075 1080 aag acc ctg cag aag
gtc gtc gag agc gaa gtg ggc agc gcc gcc 4546Lys Thr Leu Gln Lys
Val Val Glu Ser Glu Val Gly Ser Ala Ala 1085
1090 1095 atc gac ggc gtg atg
cag ggc acc atc cag agc atc atc cag ggc 4591Ile Asp Gly Val Met
Gln Gly Thr Ile Gln Ser Ile Ile Gln Gly 1100
1105 1110 gag aac ctg ggc gac
agc atc aag cag gcc gtg atc ctg aac gtg 4636Glu Asn Leu Gly Asp
Ser Ile Lys Gln Ala Val Ile Leu Asn Val 1115
1120 1125 gcc ggc acc ctg gaa
agc gcc cct gac ccc ctg agc cct ggc gag 4681Ala Gly Thr Leu Glu
Ser Ala Pro Asp Pro Leu Ser Pro Gly Glu 1130
1135 1140 cag ctg ctg tac aac
aag gtg tcc gag atc gag cgg gcc gag aag 4726Gln Leu Leu Tyr Asn
Lys Val Ser Glu Ile Glu Arg Ala Glu Lys 1145
1150 1155 gaa gat cgg gtc atc
gag acc cac aac aag aag atc atc gag aag 4771Glu Asp Arg Val Ile
Glu Thr His Asn Lys Lys Ile Ile Glu Lys 1160
1165 1170 tac ggc gag gac ctg
ctg aag atc cgg aag atc atg aag ggc gag 4816Tyr Gly Glu Asp Leu
Leu Lys Ile Arg Lys Ile Met Lys Gly Glu 1175
1180 1185 gcc gag gcc gag cag
ctg gaa ggc aaa gag atg gaa tac gtc gaa 4861Ala Glu Ala Glu Gln
Leu Glu Gly Lys Glu Met Glu Tyr Val Glu 1190
1195 1200 aag gcc ctg aag ggc
atg ctg cgg atc ggc aag gac cag agc gag 4906Lys Ala Leu Lys Gly
Met Leu Arg Ile Gly Lys Asp Gln Ser Glu 1205
1210 1215 cgg atc acc cgg ctg
tac cgg gcc ctg cag acc gaa gag gac ctg 4951Arg Ile Thr Arg Leu
Tyr Arg Ala Leu Gln Thr Glu Glu Asp Leu 1220
1225 1230 aga acc agc gac gag
acc cgg atg atc agc gag tac cgg gag aag 4996Arg Thr Ser Asp Glu
Thr Arg Met Ile Ser Glu Tyr Arg Glu Lys 1235
1240 1245 ttc gag gcc ctg aaa
cag gcc atc gag ctg gaa cag cag gcc acc 5041Phe Glu Ala Leu Lys
Gln Ala Ile Glu Leu Glu Gln Gln Ala Thr 1250
1255 1260 cac gag gaa gcc gtg
cag gaa atg ctg gac ctg agc gcc gag gtg 5086His Glu Glu Ala Val
Gln Glu Met Leu Asp Leu Ser Ala Glu Val 1265
1270 1275 atc gaa aca gcc gcc
gag gaa gtg ccc gtg ttt ggc gct ggg gcc 5131Ile Glu Thr Ala Ala
Glu Glu Val Pro Val Phe Gly Ala Gly Ala 1280
1285 1290 gct aac gtg gtg gcc
aca acc cgg gcc att cag ggc ggc ctg aag 5176Ala Asn Val Val Ala
Thr Thr Arg Ala Ile Gln Gly Gly Leu Lys 1295
1300 1305 ctg aaa gag atc atc
gac aag ctg acc ggc atc gac ctg agc cac 5221Leu Lys Glu Ile Ile
Asp Lys Leu Thr Gly Ile Asp Leu Ser His 1310
1315 1320 ctg aag gtg gcc gac
atc cac ccc cac atc atc gaa aag gcc atg 5266Leu Lys Val Ala Asp
Ile His Pro His Ile Ile Glu Lys Ala Met 1325
1330 1335 ctg aag aac aag atc
ccc gac aac gag ctg gcc atg gct atc aag 5311Leu Lys Asn Lys Ile
Pro Asp Asn Glu Leu Ala Met Ala Ile Lys 1340
1345 1350 agc aag gtg gaa gtg
atc gac gag atg aac acc gag acc gag cac 5356Ser Lys Val Glu Val
Ile Asp Glu Met Asn Thr Glu Thr Glu His 1355
1360 1365 gtg atc gag agc atc
atg ccc ctg gtg aag aag gaa tac gag aag 5401Val Ile Glu Ser Ile
Met Pro Leu Val Lys Lys Glu Tyr Glu Lys 1370
1375 1380 cac gac aac aag tac
cac gtg aac atc ccc agc gcc ctg aag atc 5446His Asp Asn Lys Tyr
His Val Asn Ile Pro Ser Ala Leu Lys Ile 1385
1390 1395 cac agc gag cac acc
ccc aag gtg cac atc tac acc acc ccc tgg 5491His Ser Glu His Thr
Pro Lys Val His Ile Tyr Thr Thr Pro Trp 1400
1405 1410 gac agc gac aag gtg
ttc atc tgc cgg tgc atc gcc ccc cac cat 5536Asp Ser Asp Lys Val
Phe Ile Cys Arg Cys Ile Ala Pro His His 1415
1420 1425 cag cag cgg agc ttc
atg atc ggc ttc gac ctg gaa atc gag ttc 5581Gln Gln Arg Ser Phe
Met Ile Gly Phe Asp Leu Glu Ile Glu Phe 1430
1435 1440 gtg ttc tac gag gac
acc agc gtg gag ggc cac atc atg cac ggc 5626Val Phe Tyr Glu Asp
Thr Ser Val Glu Gly His Ile Met His Gly 1445
1450 1455 gga gcc gtg agc atc
gag ggc agg ggc ttc cgg cag gcc tac agc 5671Gly Ala Val Ser Ile
Glu Gly Arg Gly Phe Arg Gln Ala Tyr Ser 1460
1465 1470 gag ttc atg aac gcc
gcc tgg tcc atg ccc agc acc ccc gag ctg 5716Glu Phe Met Asn Ala
Ala Trp Ser Met Pro Ser Thr Pro Glu Leu 1475
1480 1485 cac aag cgg cgg ctg
cag cgg agc ctg ggc agc cac ccc atc tac 5761His Lys Arg Arg Leu
Gln Arg Ser Leu Gly Ser His Pro Ile Tyr 1490
1495 1500 atg ggc agc atg gac
tac acc gtg agc tat gag cag ctg gtg tcc 5806Met Gly Ser Met Asp
Tyr Thr Val Ser Tyr Glu Gln Leu Val Ser 1505
1510 1515 aac gcc atg aag ctg
gtg tac gac acc gac ctg cag atg cac tgc 5851Asn Ala Met Lys Leu
Val Tyr Asp Thr Asp Leu Gln Met His Cys 1520
1525 1530 ctg aga ggc ccc ctg
aag ttc cag cgg cgg acc ctg atg aac gcc 5896Leu Arg Gly Pro Leu
Lys Phe Gln Arg Arg Thr Leu Met Asn Ala 1535
1540 1545 ctg ctg ttc ggc gtg
aaa tga tagtaatttt tctactagtt aatcaaataa 5947Leu Leu Phe Gly Val
Lys 1550
1555 aaagcataca agctattgct
tcgctatcgt tacaaaatgg caggaatttt gtgtaaacta 6007agccacatac ttgccaatga
aaaaaatagt agaaaggata ctattttaat gggattagat 6067gttaaggttc cttgggatta
tagtaactgg gcatctgtta acttttacga cgttaggtta 6127gatactgatg ttacagatta
taataatgtt acaataaaat acatgacagg atgtgatatt 6187tttcctcata taactcttgg
aatagcaaat atggatcaat gtgatagatt tgaaaatttc 6247aaaaagcaaa taactgatca
agatttacag actatttcta tagtctgtaa agaagagatg 6307tgttttcctc agagtaacgc
ctctaaacag ttgggagcga aaggatgcgc tgtagttatg 6367aaactggagg tatctgatga
acttagagcc ctaagaaatg ttctgctgaa tgcggtaccc 6427tgttcgaagg acgtgtttgg
tgatatcaca gtagataatc cgtggaatcc tcacataaca 6487gtaggatatg ttaaggagga
cgatgtcgaa aacaagaaac gcctaatgga gtgcatgtcc 6547aagtttaggg ggcaagaaat
acaagttcta ggatggtatt aataagtatc taagtatttg 6607gtataattta ttaaatagta
taattataac aaataataaa taacatgata acggttttta 6667ttagaataaa atagagataa
tatcataatg atatataata cttcattacc agaaatgagt 6727aatggaagac ttataaatga
actgcataaa gctataaggt atagagatat aaatttagta 6787aggtatatac ttaaaaaatg
caaatacaat aacgtaaata tactatcaac gtctttgtat 6847ttagccgtaa gtatttctga
tatagaaatg gtaaaattat tactagaaca cggtgccgat 6907attttaaaat gtaaaaatcc
tcctcttcat aaagctgcta gtttagataa tacagaaatt 6967gctaaactac taatagattc
tggcgctgac atagaacaga tacattctgg aaatagtccg 7027ttatatattt ctgtatatag
aaacaataag tcattaacta gatatttatt aaaaaaaggt 7087gttaattgta atagattctt
tctaaattat tacgatgtac tgtatgataa gatatctgat 7147gatatgtata aaatatttat
agattttaat attgatctta atatacaaac tagaaatttt 7207gaaactccgt tacattacgc
tataaagtat aagaatatag atttaattag gatattgtta 7267gataatagta ttaaaataga
taaaagttta tttttgcata aacagtatct cataaaggca 7327cttaaaaata attgtagtta
cgatataata gcgttactta taaatcacgg agtgcctata 7387aacgaacaag atgatttagg
taaaacccca ttacatcatt cggtaattaa tagaagaaaa 7447gatgtaacag cacttctgtt
aaatctagga gctgatataa acgtaataga tgactgtatg 7507ggcagtccct tacattacgc
tgtttcacgt aacgatatcg aaacaacaaa gacactttta 7567gaaagaggat ctaatgttaa
tgtggttaat aatcatatag ataccgttct aaatatagct 7627gttgcatcta aaaacaaaac
tatagtaaac ttattactga agtacggtac tgatacaaag 7687ttggtaggat tagataaaca
tgttattcac atagctatag aaatgaaaga tattaatata 7747ctgaatgcga tcttattata
tggttgctat gtaaacgtct ataatcataa aggtttcact 7807cctctataca tggcagttag
ttctatgaaa acagaatttg ttaaactctt acttgaccac 7867ggtgcttacg taaatgctaa
agctaagtta tctggaaata ctcctttaca taaagctatg 7927ttatctaata gttttaataa
tataaaatta cttttatctt ataacgccga ctataattct 7987ctaaataatc acggtaatac
gcctctaact tgtgttagct ttttagatga caagatagct 8047attatgataa tatctaaaat
gatgttagaa atatctaaaa atcctgaaat agctaattca 8107gaaggtttta tagtaaacat
ggaacatata aacagtaata aaagactact atctataaaa 8167gaatcatgcg aaaaagaact
agatgttata acacatataa agttaaattc tatatattct 8227tttaatatct ttcttgacaa
taacatagat cttatggtaa agttcgtaac taatcctaga 8287gttaataaga tacctgcatg
tatacgtata tatagggaat taatacggaa aaataaatca 8347ttagcttttc atagacatca
gctaatagtt aaagctgtaa aagagagtaa gaatctagga 8407ataataggta ggttacctat
agatatcaaa catataataa tggaactatt aagtaataat 8467gatttacatt ctgttatcac
cagctgttgt aacccagtag tataaagagc tcgaattaat 8527tcactggccg tcgttttaca
acgtcgtgac tgggaaaacc ctggcgttac ccaacttaat 8587cgccttgcag cacatccccc
tttcgccagc tggcgtaata gcgaagaggc ccgcaccgat 8647cgcccttccc aacagttgcg
cagcctgaat ggcgaatggc gcctgatgcg gtattttctc 8707cttacgcatc tgtgcggtat
ttcacaccgc atatggtgca ctctcagtac aatctgctct 8767gatgccgcat agttaagcca
gccccgacac ccgccaacac ccgctgacgc gccctgacgg 8827gcttgtctgc tcccggcatc
cgcttacaga caagctgtga ccgtctccgg gagctgcatg 8887tgtcagaggt tttcaccgtc
atcaccgaaa cgcgcgagac gaaagggcct cgtgatacgc 8947ctatttttat aggttaatgt
catgataata atggtttctt agacgtcagg tggcactttt 9007cggggaaatg tgcgcggaac
ccctatttgt ttatttttct aaatacattc aaatatgtat 9067ccgctcatga gacaataacc
ctgataaatg cttcaataat attgaaaaag gaagagt 9124atg agt att caa cat
ttc cgt gtc gcc ctt att ccc ttt ttt gcg 9169Met Ser Ile Gln His
Phe Arg Val Ala Leu Ile Pro Phe Phe Ala 1560
1565 1570 gca ttt tgc ctt cct gtt ttt
gct cac cca gaa acg ctg gtg aaa 9214Ala Phe Cys Leu Pro Val Phe
Ala His Pro Glu Thr Leu Val Lys 1575
1580 1585 gta aaa gat gct gaa gat cag ttg ggt
gca cga gtg ggt tac atc 9259Val Lys Asp Ala Glu Asp Gln Leu Gly
Ala Arg Val Gly Tyr Ile 1590 1595
1600 gaa ctg gat ctc aac agc ggt aag atc ctt gag
agt ttt cgc ccc 9304Glu Leu Asp Leu Asn Ser Gly Lys Ile Leu Glu
Ser Phe Arg Pro 1605 1610
1615 gaa gaa cgt ttt cca atg atg agc act ttt aaa gtt ctg cta
tgt 9349Glu Glu Arg Phe Pro Met Met Ser Thr Phe Lys Val Leu Leu
Cys 1620 1625 1630
ggc gcg gta tta tcc cgt att gac gcc ggg caa gag caa ctc ggt
9394Gly Ala Val Leu Ser Arg Ile Asp Ala Gly Gln Glu Gln Leu Gly
1635 1640 1645 cgc cgc
ata cac tat tct cag aat gac ttg gtt gag tac tca cca 9439Arg Arg
Ile His Tyr Ser Gln Asn Asp Leu Val Glu Tyr Ser Pro
1650 1655 1660 gtc aca gaa aag
cat ctt acg gat ggc atg aca gta aga gaa tta 9484Val Thr Glu Lys
His Leu Thr Asp Gly Met Thr Val Arg Glu Leu 1665
1670 1675 tgc agt gct gcc ata acc
atg agt gat aac act gcg gcc aac tta 9529Cys Ser Ala Ala Ile Thr
Met Ser Asp Asn Thr Ala Ala Asn Leu 1680
1685 1690 ctt ctg aca acg atc gga gga ccg aag
gag cta acc gct ttt ttg 9574Leu Leu Thr Thr Ile Gly Gly Pro Lys
Glu Leu Thr Ala Phe Leu 1695 1700
1705 cac aac atg ggg gat cat gta act cgc ctt gat
cgt tgg gaa ccg 9619His Asn Met Gly Asp His Val Thr Arg Leu Asp
Arg Trp Glu Pro 1710 1715
1720 gag ctg aat gaa gcc ata cca aac gac gag cgt gac acc acg
atg 9664Glu Leu Asn Glu Ala Ile Pro Asn Asp Glu Arg Asp Thr Thr
Met 1725 1730 1735
cct gta gca atg gca aca acg ttg cgc aaa cta tta act ggc gaa
9709Pro Val Ala Met Ala Thr Thr Leu Arg Lys Leu Leu Thr Gly Glu
1740 1745 1750 cta ctt
act cta gct tcc cgg caa caa tta ata gac tgg atg gag 9754Leu Leu
Thr Leu Ala Ser Arg Gln Gln Leu Ile Asp Trp Met Glu
1755 1760 1765 gcg gat aaa gtt
gca gga cca ctt ctg cgc tcg gcc ctt ccg gct 9799Ala Asp Lys Val
Ala Gly Pro Leu Leu Arg Ser Ala Leu Pro Ala 1770
1775 1780 ggc tgg ttt att gct gat
aaa tct gga gcc ggt gag cgt ggg tct 9844Gly Trp Phe Ile Ala Asp
Lys Ser Gly Ala Gly Glu Arg Gly Ser 1785
1790 1795 cgc ggt atc att gca gca ctg ggg cca
gat ggt aag ccc tcc cgt 9889Arg Gly Ile Ile Ala Ala Leu Gly Pro
Asp Gly Lys Pro Ser Arg 1800 1805
1810 atc gta gtt atc tac acg acg ggg agt cag gca
act atg gat gaa 9934Ile Val Val Ile Tyr Thr Thr Gly Ser Gln Ala
Thr Met Asp Glu 1815 1820
1825 cga aat aga cag atc gct gag ata ggt gcc tca ctg att aag
cat 9979Arg Asn Arg Gln Ile Ala Glu Ile Gly Ala Ser Leu Ile Lys
His 1830 1835 1840
tgg taactgtcag accaagttta ctcatatata ctttagattg atttaaaact
10032Trp
tcatttttaa tttaaaagga tctaggtgaa gatccttttt gataatctca tgaccaaaat
10092cccttaacgt gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatc
10152ttcttgagat cctttttttc tgcgcgtaat ctgctgcttg caaacaaaaa aaccaccgct
10212accagcggtg gtttgtttgc cggatcaaga gctaccaact ctttttccga aggtaactgg
10272cttcagcaga gcgcagatac caaatactgt ccttctagtg tagccgtagt taggccacca
10332cttcaagaac tctgtagcac cgcctacata cctcgctctg ctaatcctgt taccagtggc
10392tgctgccagt ggcgataagt cgtgtcttac cgggttggac tcaagacgat agttaccgga
10452taaggcgcag cggtcgggct gaacgggggg ttcgtgcaca cagcccagct tggagcgaac
10512gacctacacc gaactgagat acctacagcg tgagctatga gaaagcgcca cgcttcccga
10572agggagaaag gcggacaggt atccggtaag cggcagggtc ggaacaggag agcgcacgag
10632ggagcttcca gggggaaacg cctggtatct ttatagtcct gtcgggtttc gccacctctg
10692acttgagcgt cgatttttgt gatgctcgtc aggggggcgg agcctatgga aaaacgccag
10752caacgcggcc tttttacggt tcctggcctt ttgctggcct tttgctcaca tgttctttcc
10812tgcgttatcc cctgattctg tggataaccg tattaccgcc tttgagtgag ctgataccgc
10872tcgccgcagc cgaacgaccg agcgcagcga gtcagtgagc gaggaagcgg aagagcgccc
10932aatacgcaaa ccgcctctcc ccgcgcgttg gccgattcat taatgcagct ggcacgacag
10992gtttcccgac tggaaagcgg gcagtgagcg caacgcaatt aatgtgagtt agctcactca
11052ttaggcaccc caggctttac actttatgct tccggctcgt atgttgtgtg gaattgtgag
11112cggataacaa tttcacaca
111312336DNAartificial sequence18020CXL Primer for amplifying the AHSV-9
VP5 probe for the vCP2383.3.1.1.1 viral vector 23ctagactagt
ttactatcat ttcacgccga acagca
362424DNAartificial sequence18021CXL Primer for amplifying the AHSV-9 VP5
probe for the vCP2383.3.1.1.1 viral vector 24gcaaggacca gagcgagcgg
atca 242525DNAartificial
sequence13660CXL Primer for amplifying the AHSV-9 VP2 probe for the
vCP2383.3.1.1.1 viral vector 25aggccttcgc cggcaacagc ctgct
252625DNAartificial sequence13665CXL Primer
for amplifying the AHSV-9 VP2 probe for the vCP2383.3.1.1.1 viral
vector 26agggcatcga tcaggaactc gctct
25278607DNAartificial sequencevCP2383 viral vector sequence from
left arm to right arm 27gaggcatcca acatataaag aagactaaag ctgtagaagc
tgttatgaag aatatcttat 60cagatatatt agatgcattg ttagttctgt agatcagtaa
cgtatagcat acgagtataa 120ttatcgtagg tagtaggtat cctaaaataa atctgataca
gataataact ttgtaaatca 180attcagcaat ttctctatta tcatgataat gattaataca
cagcgtgtcg ttattttttg 240ttacgatagt atttctaaag taaagagcag gaatccctag
tataatagaa ataatccata 300tgaaaaatat agtaatgtac atatttctaa tgttaacata
tttataggta aatccaggaa 360gggtaatttt tacatatcta tatacgctta ttacagttat
taaaaatata cttgcaaaca 420tgttagaagt aaaaaagaaa gaactaattt tacaaagtgc
tttaccaaaa tgccaatgga 480aattacttag tatgtatata atgtataaag gtatgaatat
cacaaacagc aaatcggcta 540ttcccaagtt gagaaacggt ataatagata tatttctaga
taccattaat aaccttataa 600gcttgacgtt tcctataatg cctactaaga aaactagaag
atacatacat actaacgcca 660tacgagagta actactcatc gtataactac tgttgctaac
agtgacactg atgttataac 720tcatctttga tgtggtataa atgtataata actatattac
actggtattt tatttcagtt 780atatactata tagtattaaa aattatattt gtataattat
attattatat tcagtgtaga 840aagtaaaata ctataaatat gtatctctta tttataactt
attagtaaag tatgtactat 900tcagttatat tgttttataa aagctaaatg ctactagatt
gatataaatg aatatgtaat 960aaattagtaa tgtagtatac taatattaac tcacatttga
ctaattagct ataaaaaccc 1020gggttaatta attagtcatc aggcagggcg agaacgagac
tatctgctcg ttaattaatt 1080agagcttctt tattctatac ttaaaaagtg aaaataaata
caaaggttct tgagggttgt 1140gttaaattga aagcgagaaa taatcataaa ttatttcatt
atcgcgatat ccgttaagtt 1200tgtatcgtaa tggccttcga gttcggcatc ctgcagaccg
acaagatccg ggagaacacc 1260ctggaaaaga ccaactgcga cgtgatcctg acccgggaga
accgcgtgcg ggccagagaa 1320gtggacggcg tgaagggcta ctactgggag gacaccgacc
accggctggg cctgtgcgag 1380gtggagcaca ccgtgagcgt gcgggacttc atgtacaagc
agaccaagtg cgagggcagc 1440taccccgtgg tgcccctgta catgatcgac gccatcaagt
acggccggat gatcgaccgg 1500aacgaccacc agatccgggt ggacaaggac gacaagaccc
tgttcaagat ccaggtgcag 1560ccctacctgg gcgacgccta cttcagcccc gagcactaca
ccgccacatt cttcaagcgg 1620gagcccctgc ccatccacgt ggacaccatc cgggactaca
tcggcaagcg gatcaactac 1680ttcgagcggg agctgggcag cggcgtgagg gacgccaacc
tggaaaccat cgtgggcaag 1740tggaaggaca acacctacaa gcggatcgag ggcgaaaaga
ccaccatgtg cgtgcggcac 1800gagcccgaca gcgtgctgca gatcctgaag aagatgcggt
tcggcatgct gtaccccaac 1860tactacatgc tgaacaccgg ctacatcgtg accgagagca
gcaaaggcgc ccctctgaac 1920cggtggctgg tgaaagaacg gaccgtgggc aaggtgaaag
ccgccgaggc cttcgccggc 1980aacagcctgc tgaagaacct ggccagccgg atggaagatg
aggaactgag ccgggagatc 2040atcgtggccg tgatcaacta cggcagcaag ttcggcacca
gaagcggcaa gaagaaggac 2100ctgatgacca tcgacaagct ggaaaagtac tgcgagagcc
tgaccacctt cgtgcaccgg 2160aagaagcggg acgagggcga cgacgagacc gccagggcca
tcatccggaa ccagtggatc 2220aagggcatgc ccagcatgaa cctgaagaag gagatgaagg
tctccagggg ccctatccag 2280aactggtcct tcttcatgag cctggaagtg ttcaagcgga
acaacaaggt ggacatcgac 2340cccaaccacg acacctggaa gaaccacgtg aaagagatcc
gcgagcggat gcagaaggaa 2400cagagcgcca acagcaacag ccccctgaag attcaggtgg
acggggtgtc cctgagcacc 2460agcgagttct acggcaccgt ggagcactgg atcgactggg
tggtggacct gatcatgctg 2520gcccaggtca agcggctgat caaagagtac aagttcatcc
ggctggaaac caccaacctg 2580atggccggca tgaacaagct ggtcggcgcc ctgcggtgct
acgcctactg cctgatcctg 2640gccctgtacg acttctacgg cgccgacatc gagggcttcg
agaagggcag caacagcagc 2700gccatcgtgg agaccgtggt gcagatgttc cccaacttca
agcaggaaat ccaggccaac 2760ttcggcatca acctgaacat caaggacaag aagcaggtcc
tgttcgtccg gatggacatg 2820gacagcgagt tcagcgagga cgagcagaag ggctacatgt
tcgagtacgg ctgggccaag 2880cgggaggaac ggatctggac caactacggc gacatcctga
ccgacctggt ggagcagctg 2940tacaagagca tcctggacca cgaggaatgg gagaagatcg
tggacgaccc cgagcggtac 3000ttctacgacg agctgttcaa cgccagcccc gagaccgtgt
tcatcagcaa gggctacgac 3060ctggacaaca acatcgtgat cgagggcaaa gtgggccagg
acgtgaccta cttctccaag 3120cggttcgtga gctactggta cagagtgcgg caggtgcaga
ccagcaaggg catcgagcgg 3180cggagcatcg aggacgtgaa gtaccgggag ttcgacatcg
agtccttcaa gccctacgcc 3240atcggcgaga tcggcatcca cgccagcacc tacaagtacc
aggacctgct ggccggacgg 3300aaccggggcg agaaggtgaa agacagccag gccctggtct
ggtacgacct ggccctgacc 3360aactacaccc tggtccggcc ccaggaccgg tgctggatca
tgagctgcac cgacagcgag 3420tacaccctgc ggttcgccat gatcaccatg atcttcgaga
gactgagcga ggaaaccgac 3480ctgagctacc acgacatcct gctgagagtg agagagtacc
ccatccagtc cttcgccagc 3540tacaagcact tctacgtgcg ggtgctgcag catgtgttca
gggactacca ggaaatcgac 3600gtcctggaat tctgcacccg gatgctggac ccccggacca
gagagagcgg cctgaacaag 3660ttcagccggt tcaagcagtg gcgggagagc gagttcctga
tcgatgccct gaagatgaac 3720ttcctgctgt gggtggtgtt cgagctggaa aacatcgacg
tggactacag caagaagcgg 3780caccccctgc tgatctccac cgacaagggc ctgagagtgg
tgcccgtgga cctgttcaat 3840agcatgctgt ccgtgagcag cagcggctgg attccctacg
tggagagagt gtgcgagcgg 3900agcgagatca agcggcggct gaacgccgac gagctgaagc
tgaagaactg gttcatcgcc 3960tactacatca ccctgcccct gctgcggaga gccgagcccc
ggatgagctt caagtacgag 4020ggcatcacca cctggatcgg cagcaactgt ggcggcgtga
gagactacct gatccagatg 4080ctgcccgcca ggaagcccaa gcccggcgtc ctgattctgg
cctatggcgc cgagaccaac 4140gtggcctggc tgaaccacgc cctgcgggac atcctgtccc
tggaaggcag cctgggcatg 4200atcatcatca gcgacggcag cgtggtgaac aagagcaagc
tgagagtgcg ggacatgaaa 4260atctacaaca ggggcgaggt ggaccggctg atcctgatca
gctccggcga ctacaccttc 4320ggcaacaagt acctgctgtc caagctgatg gccaagatcg
agcagtgatg aggatccctc 4380gagtttttat tgactagttc aaaattgaaa atatataatt
acaatataaa atgggcaagt 4440ttaccagctt cctgaagagg gccggcagcg ccaccaagaa
ggccctgacc agcgacgccg 4500ccaagcggat gtacaagatg gccggcaaga ccctgcagaa
ggtcgtcgag agcgaagtgg 4560gcagcgccgc catcgacggc gtgatgcagg gcaccatcca
gagcatcatc cagggcgaga 4620acctgggcga cagcatcaag caggccgtga tcctgaacgt
ggccggcacc ctggaaagcg 4680cccctgaccc cctgagccct ggcgagcagc tgctgtacaa
caaggtgtcc gagatcgagc 4740gggccgagaa ggaagatcgg gtcatcgaga cccacaacaa
gaagatcatc gagaagtacg 4800gcgaggacct gctgaagatc cggaagatca tgaagggcga
ggccgaggcc gagcagctgg 4860aaggcaaaga gatggaatac gtcgaaaagg ccctgaaggg
catgctgcgg atcggcaagg 4920accagagcga gcggatcacc cggctgtacc gggccctgca
gaccgaagag gacctgagaa 4980ccagcgacga gacccggatg atcagcgagt accgggagaa
gttcgaggcc ctgaaacagg 5040ccatcgagct ggaacagcag gccacccacg aggaagccgt
gcaggaaatg ctggacctga 5100gcgccgaggt gatcgaaaca gccgccgagg aagtgcccgt
gtttggcgct ggggccgcta 5160acgtggtggc cacaacccgg gccattcagg gcggcctgaa
gctgaaagag atcatcgaca 5220agctgaccgg catcgacctg agccacctga aggtggccga
catccacccc cacatcatcg 5280aaaaggccat gctgaagaac aagatccccg acaacgagct
ggccatggct atcaagagca 5340aggtggaagt gatcgacgag atgaacaccg agaccgagca
cgtgatcgag agcatcatgc 5400ccctggtgaa gaaggaatac gagaagcacg acaacaagta
ccacgtgaac atccccagcg 5460ccctgaagat ccacagcgag cacaccccca aggtgcacat
ctacaccacc ccctgggaca 5520gcgacaaggt gttcatctgc cggtgcatcg ccccccacca
tcagcagcgg agcttcatga 5580tcggcttcga cctggaaatc gagttcgtgt tctacgagga
caccagcgtg gagggccaca 5640tcatgcacgg cggagccgtg agcatcgagg gcaggggctt
ccggcaggcc tacagcgagt 5700tcatgaacgc cgcctggtcc atgcccagca cccccgagct
gcacaagcgg cggctgcagc 5760ggagcctggg cagccacccc atctacatgg gcagcatgga
ctacaccgtg agctatgagc 5820agctggtgtc caacgccatg aagctggtgt acgacaccga
cctgcagatg cactgcctga 5880gaggccccct gaagttccag cggcggaccc tgatgaacgc
cctgctgttc ggcgtgaaat 5940gatagtaatt tttctactag ttaatcaaat aaaaagcata
caagctattg cttcgctatc 6000gttacaaaat ggcaggaatt ttgtgtaaac taagccacat
acttgccaat gaaaaaaata 6060gtagaaagga tactatttta atgggattag atgttaaggt
tccttgggat tatagtaact 6120gggcatctgt taacttttac gacgttaggt tagatactga
tgttacagat tataataatg 6180ttacaataaa atacatgaca ggatgtgata tttttcctca
tataactctt ggaatagcaa 6240atatggatca atgtgataga tttgaaaatt tcaaaaagca
aataactgat caagatttac 6300agactatttc tatagtctgt aaagaagaga tgtgttttcc
tcagagtaac gcctctaaac 6360agttgggagc gaaaggatgc gctgtagtta tgaaactgga
ggtatctgat gaacttagag 6420ccctaagaaa tgttctgctg aatgcggtac cctgttcgaa
ggacgtgttt ggtgatatca 6480cagtagataa tccgtggaat cctcacataa cagtaggata
tgttaaggag gacgatgtcg 6540aaaacaagaa acgcctaatg gagtgcatgt ccaagtttag
ggggcaagaa atacaagttc 6600taggatggta ttaataagta tctaagtatt tggtataatt
tattaaatag tataattata 6660acaaataata aataacatga taacggtttt tattagaata
aaatagagat aatatcataa 6720tgatatataa tacttcatta ccagaaatga gtaatggaag
acttataaat gaactgcata 6780aagctataag gtatagagat ataaatttag taaggtatat
acttaaaaaa tgcaaataca 6840ataacgtaaa tatactatca acgtctttgt atttagccgt
aagtatttct gatatagaaa 6900tggtaaaatt attactagaa cacggtgccg atattttaaa
atgtaaaaat cctcctcttc 6960ataaagctgc tagtttagat aatacagaaa ttgctaaact
actaatagat tctggcgctg 7020acatagaaca gatacattct ggaaatagtc cgttatatat
ttctgtatat agaaacaata 7080agtcattaac tagatattta ttaaaaaaag gtgttaattg
taatagattc tttctaaatt 7140attacgatgt actgtatgat aagatatctg atgatatgta
taaaatattt atagatttta 7200atattgatct taatatacaa actagaaatt ttgaaactcc
gttacattac gctataaagt 7260ataagaatat agatttaatt aggatattgt tagataatag
tattaaaata gataaaagtt 7320tatttttgca taaacagtat ctcataaagg cacttaaaaa
taattgtagt tacgatataa 7380tagcgttact tataaatcac ggagtgccta taaacgaaca
agatgattta ggtaaaaccc 7440cattacatca ttcggtaatt aatagaagaa aagatgtaac
agcacttctg ttaaatctag 7500gagctgatat aaacgtaata gatgactgta tgggcagtcc
cttacattac gctgtttcac 7560gtaacgatat cgaaacaaca aagacacttt tagaaagagg
atctaatgtt aatgtggtta 7620ataatcatat agataccgtt ctaaatatag ctgttgcatc
taaaaacaaa actatagtaa 7680acttattact gaagtacggt actgatacaa agttggtagg
attagataaa catgttattc 7740acatagctat agaaatgaaa gatattaata tactgaatgc
gatcttatta tatggttgct 7800atgtaaacgt ctataatcat aaaggtttca ctcctctata
catggcagtt agttctatga 7860aaacagaatt tgttaaactc ttacttgacc acggtgctta
cgtaaatgct aaagctaagt 7920tatctggaaa tactccttta cataaagcta tgttatctaa
tagttttaat aatataaaat 7980tacttttatc ttataacgcc gactataatt ctctaaataa
tcacggtaat acgcctctaa 8040cttgtgttag ctttttagat gacaagatag ctattatgat
aatatctaaa atgatgttag 8100aaatatctaa aaatcctgaa atagctaatt cagaaggttt
tatagtaaac atggaacata 8160taaacagtaa taaaagacta ctatctataa aagaatcatg
cgaaaaagaa ctagatgtta 8220taacacatat aaagttaaat tctatatatt cttttaatat
ctttcttgac aataacatag 8280atcttatggt aaagttcgta actaatccta gagttaataa
gatacctgca tgtatacgta 8340tatataggga attaatacgg aaaaataaat cattagcttt
tcatagacat cagctaatag 8400ttaaagctgt aaaagagagt aagaatctag gaataatagg
taggttacct atagatatca 8460aacatataat aatggaacta ttaagtaata atgatttaca
ttctgttatc accagctgtt 8520gtaacccagt agtataaagt gattttattc aattacgaag
ataaacatta aatttgttaa 8580cagatatgag ttatgagtat ttaacta
8607283154DNAartificial sequenceAHSV-9 VP2 of
vCP2383 28atggccttcg agttcggcat cctgcagacc gacaagatcc gggagaacac
cctggaaaag 60accaactgcg acgtgatcct gacccgggag aaccgcgtgc gggccagaga
agtggacggc 120gtgaagggct actactggga ggacaccgac caccggctgg gcctgtgcga
ggtggagcac 180accgtgagcg tgcgggactt catgtacaag cagaccaagt gcgagggcag
ctaccccgtg 240gtgcccctgt acatgatcga cgccatcaag tacggccgga tgatcgaccg
gaacgaccac 300cagatccggg tggacaagga cgacaagacc ctgttcaaga tccaggtgca
gccctacctg 360ggcgacgcct acttcagccc cgagcactac accgccacat tcttcaagcg
ggagcccctg 420cccatccacg tggacaccat ccgggactac atcggcaagc ggatcaacta
cttcgagcgg 480gagctgggca gcggcgtgag ggacgccaac ctggaaacca tcgtgggcaa
gtggaaggac 540aacacctaca agcggatcga gggcgaaaag accaccatgt gcgtgcggca
cgagcccgac 600agcgtgctgc agatcctgaa gaagatgcgg ttcggcatgc tgtaccccaa
ctactacatg 660ctgaacaccg gctacatcgt gaccgagagc agcaaaggcg cccctctgaa
ccggtggctg 720gtgaaagaac ggaccgtggg caaggtgaaa gccgccgagg ccttcgccgg
caacagcctg 780ctgaagaacc tggccagccg gatggaagat gaggaactga gccgggagat
catcgtggcc 840gtgatcaact acggcagcaa gttcggcacc agaagcggca agaagaagga
cctgatgacc 900atcgacaagc tggaaaagta ctgcgagagc ctgaccacct tcgtgcaccg
gaagaagcgg 960gacgagggcg acgacgagac cgccagggcc atcatccgga accagtggat
caagggcatg 1020cccagcatga acctgaagaa ggagatgaag gtctccaggg gccctatcca
gaactggtcc 1080ttcttcatga gcctggaagt gttcaagcgg aacaacaagg tggacatcga
ccccaaccac 1140gacacctgga agaaccacgt gaaagagatc cgcgagcgga tgcagaagga
acagagcgcc 1200aacagcaaca gccccctgaa gattcaggtg gacggggtgt ccctgagcac
cagcgagttc 1260tacggcaccg tggagcactg gatcgactgg gtggtggacc tgatcatgct
ggcccaggtc 1320aagcggctga tcaaagagta caagttcatc cggctggaaa ccaccaacct
gatggccggc 1380atgaacaagc tggtcggcgc cctgcggtgc tacgcctact gcctgatcct
ggccctgtac 1440gacttctacg gcgccgacat cgagggcttc gagaagggca gcaacagcag
cgccatcgtg 1500gagaccgtgg tgcagatgtt ccccaacttc aagcaggaaa tccaggccaa
cttcggcatc 1560aacctgaaca tcaaggacaa gaagcaggtc ctgttcgtcc ggatggacat
ggacagcgag 1620ttcagcgagg acgagcagaa gggctacatg ttcgagtacg gctgggccaa
gcgggaggaa 1680cggatctgga ccaactacgg cgacatcctg accgacctgg tggagcagct
gtacaagagc 1740atcctggacc acgaggaatg ggagaagatc gtggacgacc ccgagcggta
cttctacgac 1800gagctgttca acgccagccc cgagaccgtg ttcatcagca agggctacga
cctggacaac 1860aacatcgtga tcgagggcaa agtgggccag gacgtgacct acttctccaa
gcggttcgtg 1920agctactggt acagagtgcg gcaggtgcag accagcaagg gcatcgagcg
gcggagcatc 1980gaggacgtga agtaccggga gttcgacatc gagtccttca agccctacgc
catcggcgag 2040atcggcatcc acgccagcac ctacaagtac caggacctgc tggccggacg
gaaccggggc 2100gagaaggtga aagacagcca ggccctggtc tggtacgacc tggccctgac
caactacacc 2160ctggtccggc cccaggaccg gtgctggatc atgagctgca ccgacagcga
gtacaccctg 2220cggttcgcca tgatcaccat gatcttcgag agactgagcg aggaaaccga
cctgagctac 2280cacgacatcc tgctgagagt gagagagtac cccatccagt ccttcgccag
ctacaagcac 2340ttctacgtgc gggtgctgca gcatgtgttc agggactacc aggaaatcga
cgtcctggaa 2400ttctgcaccc ggatgctgga cccccggacc agagagagcg gcctgaacaa
gttcagccgg 2460ttcaagcagt ggcgggagag cgagttcctg atcgatgccc tgaagatgaa
cttcctgctg 2520tgggtggtgt tcgagctgga aaacatcgac gtggactaca gcaagaagcg
gcaccccctg 2580ctgatctcca ccgacaaggg cctgagagtg gtgcccgtgg acctgttcaa
tagcatgctg 2640tccgtgagca gcagcggctg gattccctac gtggagagag tgtgcgagcg
gagcgagatc 2700aagcggcggc tgaacgccga cgagctgaag ctgaagaact ggttcatcgc
ctactacatc 2760accctgcccc tgctgcggag agccgagccc cggatgagct tcaagtacga
gggcatcacc 2820acctggatcg gcagcaactg tggcggcgtg agagactacc tgatccagat
gctgcccgcc 2880aggaagccca agcccggcgt cctgattctg gcctatggcg ccgagaccaa
cgtggcctgg 2940ctgaaccacg ccctgcggga catcctgtcc ctggaaggca gcctgggcat
gatcatcatc 3000agcgacggca gcgtggtgaa caagagcaag ctgagagtgc gggacatgaa
aatctacaac 3060aggggcgagg tggaccggct gatcctgatc agctccggcg actacacctt
cggcaacaag 3120tacctgctgt ccaagctgat ggccaagatc gagc
3154291509DNAartificial sequenceAHSV-9 VP5 of vCP2383
29atgggcaagt ttaccagctt cctgaagagg gccggcagcg ccaccaagaa ggccctgacc
60agcgacgccg ccaagcggat gtacaagatg gccggcaaga ccctgcagaa ggtcgtcgag
120agcgaagtgg gcagcgccgc catcgacggc gtgatgcagg gcaccatcca gagcatcatc
180cagggcgaga acctgggcga cagcatcaag caggccgtga tcctgaacgt ggccggcacc
240ctggaaagcg cccctgaccc cctgagccct ggcgagcagc tgctgtacaa caaggtgtcc
300gagatcgagc gggccgagaa ggaagatcgg gtcatcgaga cccacaacaa gaagatcatc
360gagaagtacg gcgaggacct gctgaagatc cggaagatca tgaagggcga ggccgaggcc
420gagcagctgg aaggcaaaga gatggaatac gtcgaaaagg ccctgaaggg catgctgcgg
480atcggcaagg accagagcga gcggatcacc cggctgtacc gggccctgca gaccgaagag
540gacctgagaa ccagcgacga gacccggatg atcagcgagt accgggagaa gttcgaggcc
600ctgaaacagg ccatcgagct ggaacagcag gccacccacg aggaagccgt gcaggaaatg
660ctggacctga gcgccgaggt gatcgaaaca gccgccgagg aagtgcccgt gtttggcgct
720ggggccgcta acgtggtggc cacaacccgg gccattcagg gcggcctgaa gctgaaagag
780atcatcgaca agctgaccgg catcgacctg agccacctga aggtggccga catccacccc
840cacatcatcg aaaaggccat gctgaagaac aagatccccg acaacgagct ggccatggct
900atcaagagca aggtggaagt gatcgacgag atgaacaccg agaccgagca cgtgatcgag
960agcatcatgc ccctggtgaa gaaggaatac gagaagcacg acaacaagta ccacgtgaac
1020atccccagcg ccctgaagat ccacagcgag cacaccccca aggtgcacat ctacaccacc
1080ccctgggaca gcgacaaggt gttcatctgc cggtgcatcg ccccccacca tcagcagcgg
1140agcttcatga tcggcttcga cctggaaatc gagttcgtgt tctacgagga caccagcgtg
1200gagggccaca tcatgcacgg cggagccgtg agcatcgagg gcaggggctt ccggcaggcc
1260tacagcgagt tcatgaacgc cgcctggtcc atgcccagca cccccgagct gcacaagcgg
1320cggctgcagc ggagcctggg cagccacccc atctacatgg gcagcatgga ctacaccgtg
1380agctatgagc agctggtgtc caacgccatg aagctggtgt acgacaccga cctgcagatg
1440cactgcctga gaggccccct gaagttccag cggcggaccc tgatgaacgc cctgctgttc
1500ggcgtgaaa
1509301051PRTartificial sequenceAHSV-9 VP2 amino acid seq of vCP2383
30Met Ala Phe Glu Phe Gly Ile Leu Gln Thr Asp Lys Ile Arg Glu Asn 1
5 10 15 Thr Leu Glu Lys
Thr Asn Cys Asp Val Ile Leu Thr Arg Glu Asn Arg 20
25 30 Val Arg Ala Arg Glu Val Asp Gly Val
Lys Gly Tyr Tyr Trp Glu Asp 35 40
45 Thr Asp His Arg Leu Gly Leu Cys Glu Val Glu His Thr Val
Ser Val 50 55 60
Arg Asp Phe Met Tyr Lys Gln Thr Lys Cys Glu Gly Ser Tyr Pro Val 65
70 75 80 Val Pro Leu Tyr Met
Ile Asp Ala Ile Lys Tyr Gly Arg Met Ile Asp 85
90 95 Arg Asn Asp His Gln Ile Arg Val Asp Lys
Asp Asp Lys Thr Leu Phe 100 105
110 Lys Ile Gln Val Gln Pro Tyr Leu Gly Asp Ala Tyr Phe Ser Pro
Glu 115 120 125 His
Tyr Thr Ala Thr Phe Phe Lys Arg Glu Pro Leu Pro Ile His Val 130
135 140 Asp Thr Ile Arg Asp Tyr
Ile Gly Lys Arg Ile Asn Tyr Phe Glu Arg 145 150
155 160 Glu Leu Gly Ser Gly Val Arg Asp Ala Asn Leu
Glu Thr Ile Val Gly 165 170
175 Lys Trp Lys Asp Asn Thr Tyr Lys Arg Ile Glu Gly Glu Lys Thr Thr
180 185 190 Met Cys
Val Arg His Glu Pro Asp Ser Val Leu Gln Ile Leu Lys Lys 195
200 205 Met Arg Phe Gly Met Leu Tyr
Pro Asn Tyr Tyr Met Leu Asn Thr Gly 210 215
220 Tyr Ile Val Thr Glu Ser Ser Lys Gly Ala Pro Leu
Asn Arg Trp Leu 225 230 235
240 Val Lys Glu Arg Thr Val Gly Lys Val Lys Ala Ala Glu Ala Phe Ala
245 250 255 Gly Asn Ser
Leu Leu Lys Asn Leu Ala Ser Arg Met Glu Asp Glu Glu 260
265 270 Leu Ser Arg Glu Ile Ile Val Ala
Val Ile Asn Tyr Gly Ser Lys Phe 275 280
285 Gly Thr Arg Ser Gly Lys Lys Lys Asp Leu Met Thr Ile
Asp Lys Leu 290 295 300
Glu Lys Tyr Cys Glu Ser Leu Thr Thr Phe Val His Arg Lys Lys Arg 305
310 315 320 Asp Glu Gly Asp
Asp Glu Thr Ala Arg Ala Ile Ile Arg Asn Gln Trp 325
330 335 Ile Lys Gly Met Pro Ser Met Asn Leu
Lys Lys Glu Met Lys Val Ser 340 345
350 Arg Gly Pro Ile Gln Asn Trp Ser Phe Phe Met Ser Leu Glu
Val Phe 355 360 365
Lys Arg Asn Asn Lys Val Asp Ile Asp Pro Asn His Asp Thr Trp Lys 370
375 380 Asn His Val Lys Glu
Ile Arg Glu Arg Met Gln Lys Glu Gln Ser Ala 385 390
395 400 Asn Ser Asn Ser Pro Leu Lys Ile Gln Val
Asp Gly Val Ser Leu Ser 405 410
415 Thr Ser Glu Phe Tyr Gly Thr Val Glu His Trp Ile Asp Trp Val
Val 420 425 430 Asp
Leu Ile Met Leu Ala Gln Val Lys Arg Leu Ile Lys Glu Tyr Lys 435
440 445 Phe Ile Arg Leu Glu Thr
Thr Asn Leu Met Ala Gly Met Asn Lys Leu 450 455
460 Val Gly Ala Leu Arg Cys Tyr Ala Tyr Cys Leu
Ile Leu Ala Leu Tyr 465 470 475
480 Asp Phe Tyr Gly Ala Asp Ile Glu Gly Phe Glu Lys Gly Ser Asn Ser
485 490 495 Ser Ala
Ile Val Glu Thr Val Val Gln Met Phe Pro Asn Phe Lys Gln 500
505 510 Glu Ile Gln Ala Asn Phe Gly
Ile Asn Leu Asn Ile Lys Asp Lys Lys 515 520
525 Gln Val Leu Phe Val Arg Met Asp Met Asp Ser Glu
Phe Ser Glu Asp 530 535 540
Glu Gln Lys Gly Tyr Met Phe Glu Tyr Gly Trp Ala Lys Arg Glu Glu 545
550 555 560 Arg Ile Trp
Thr Asn Tyr Gly Asp Ile Leu Thr Asp Leu Val Glu Gln 565
570 575 Leu Tyr Lys Ser Ile Leu Asp His
Glu Glu Trp Glu Lys Ile Val Asp 580 585
590 Asp Pro Glu Arg Tyr Phe Tyr Asp Glu Leu Phe Asn Ala
Ser Pro Glu 595 600 605
Thr Val Phe Ile Ser Lys Gly Tyr Asp Leu Asp Asn Asn Ile Val Ile 610
615 620 Glu Gly Lys Val
Gly Gln Asp Val Thr Tyr Phe Ser Lys Arg Phe Val 625 630
635 640 Ser Tyr Trp Tyr Arg Val Arg Gln Val
Gln Thr Ser Lys Gly Ile Glu 645 650
655 Arg Arg Ser Ile Glu Asp Val Lys Tyr Arg Glu Phe Asp Ile
Glu Ser 660 665 670
Phe Lys Pro Tyr Ala Ile Gly Glu Ile Gly Ile His Ala Ser Thr Tyr
675 680 685 Lys Tyr Gln Asp
Leu Leu Ala Gly Arg Asn Arg Gly Glu Lys Val Lys 690
695 700 Asp Ser Gln Ala Leu Val Trp Tyr
Asp Leu Ala Leu Thr Asn Tyr Thr 705 710
715 720 Leu Val Arg Pro Gln Asp Arg Cys Trp Ile Met Ser
Cys Thr Asp Ser 725 730
735 Glu Tyr Thr Leu Arg Phe Ala Met Ile Thr Met Ile Phe Glu Arg Leu
740 745 750 Ser Glu Glu
Thr Asp Leu Ser Tyr His Asp Ile Leu Leu Arg Val Arg 755
760 765 Glu Tyr Pro Ile Gln Ser Phe Ala
Ser Tyr Lys His Phe Tyr Val Arg 770 775
780 Val Leu Gln His Val Phe Arg Asp Tyr Gln Glu Ile Asp
Val Leu Glu 785 790 795
800 Phe Cys Thr Arg Met Leu Asp Pro Arg Thr Arg Glu Ser Gly Leu Asn
805 810 815 Lys Phe Ser Arg
Phe Lys Gln Trp Arg Glu Ser Glu Phe Leu Ile Asp 820
825 830 Ala Leu Lys Met Asn Phe Leu Leu Trp
Val Val Phe Glu Leu Glu Asn 835 840
845 Ile Asp Val Asp Tyr Ser Lys Lys Arg His Pro Leu Leu Ile
Ser Thr 850 855 860
Asp Lys Gly Leu Arg Val Val Pro Val Asp Leu Phe Asn Ser Met Leu 865
870 875 880 Ser Val Ser Ser Ser
Gly Trp Ile Pro Tyr Val Glu Arg Val Cys Glu 885
890 895 Arg Ser Glu Ile Lys Arg Arg Leu Asn Ala
Asp Glu Leu Lys Leu Lys 900 905
910 Asn Trp Phe Ile Ala Tyr Tyr Ile Thr Leu Pro Leu Leu Arg Arg
Ala 915 920 925 Glu
Pro Arg Met Ser Phe Lys Tyr Glu Gly Ile Thr Thr Trp Ile Gly 930
935 940 Ser Asn Cys Gly Gly Val
Arg Asp Tyr Leu Ile Gln Met Leu Pro Ala 945 950
955 960 Arg Lys Pro Lys Pro Gly Val Leu Ile Leu Ala
Tyr Gly Ala Glu Thr 965 970
975 Asn Val Ala Trp Leu Asn His Ala Leu Arg Asp Ile Leu Ser Leu Glu
980 985 990 Gly Ser
Leu Gly Met Ile Ile Ile Ser Asp Gly Ser Val Val Asn Lys 995
1000 1005 Ser Lys Leu Arg Val
Arg Asp Met Lys Ile Tyr Asn Arg Gly Glu 1010 1015
1020 Val Asp Arg Leu Ile Leu Ile Ser Ser Gly
Asp Tyr Thr Phe Gly 1025 1030 1035
Asn Lys Tyr Leu Leu Ser Lys Leu Met Ala Lys Ile Glu 1040
1045 1050 31503PRTartificial
sequenceAHSV-9 VP5 amino acid seq of vCP2383 31Met Gly Lys Phe Thr Ser
Phe Leu Lys Arg Ala Gly Ser Ala Thr Lys 1 5
10 15 Lys Ala Leu Thr Ser Asp Ala Ala Lys Arg Met
Tyr Lys Met Ala Gly 20 25
30 Lys Thr Leu Gln Lys Val Val Glu Ser Glu Val Gly Ser Ala Ala
Ile 35 40 45 Asp
Gly Val Met Gln Gly Thr Ile Gln Ser Ile Ile Gln Gly Glu Asn 50
55 60 Leu Gly Asp Ser Ile Lys
Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65 70
75 80 Leu Glu Ser Ala Pro Asp Pro Leu Ser Pro Gly
Glu Gln Leu Leu Tyr 85 90
95 Asn Lys Val Ser Glu Ile Glu Arg Ala Glu Lys Glu Asp Arg Val Ile
100 105 110 Glu Thr
His Asn Lys Lys Ile Ile Glu Lys Tyr Gly Glu Asp Leu Leu 115
120 125 Lys Ile Arg Lys Ile Met Lys
Gly Glu Ala Glu Ala Glu Gln Leu Glu 130 135
140 Gly Lys Glu Met Glu Tyr Val Glu Lys Ala Leu Lys
Gly Met Leu Arg 145 150 155
160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Arg Leu Tyr Arg Ala Leu
165 170 175 Gln Thr Glu
Glu Asp Leu Arg Thr Ser Asp Glu Thr Arg Met Ile Ser 180
185 190 Glu Tyr Arg Glu Lys Phe Glu Ala
Leu Lys Gln Ala Ile Glu Leu Glu 195 200
205 Gln Gln Ala Thr His Glu Glu Ala Val Gln Glu Met Leu
Asp Leu Ser 210 215 220
Ala Glu Val Ile Glu Thr Ala Ala Glu Glu Val Pro Val Phe Gly Ala 225
230 235 240 Gly Ala Ala Asn
Val Val Ala Thr Thr Arg Ala Ile Gln Gly Gly Leu 245
250 255 Lys Leu Lys Glu Ile Ile Asp Lys Leu
Thr Gly Ile Asp Leu Ser His 260 265
270 Leu Lys Val Ala Asp Ile His Pro His Ile Ile Glu Lys Ala
Met Leu 275 280 285
Lys Asn Lys Ile Pro Asp Asn Glu Leu Ala Met Ala Ile Lys Ser Lys 290
295 300 Val Glu Val Ile Asp
Glu Met Asn Thr Glu Thr Glu His Val Ile Glu 305 310
315 320 Ser Ile Met Pro Leu Val Lys Lys Glu Tyr
Glu Lys His Asp Asn Lys 325 330
335 Tyr His Val Asn Ile Pro Ser Ala Leu Lys Ile His Ser Glu His
Thr 340 345 350 Pro
Lys Val His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Lys Val Phe 355
360 365 Ile Cys Arg Cys Ile Ala
Pro His His Gln Gln Arg Ser Phe Met Ile 370 375
380 Gly Phe Asp Leu Glu Ile Glu Phe Val Phe Tyr
Glu Asp Thr Ser Val 385 390 395
400 Glu Gly His Ile Met His Gly Gly Ala Val Ser Ile Glu Gly Arg Gly
405 410 415 Phe Arg
Gln Ala Tyr Ser Glu Phe Met Asn Ala Ala Trp Ser Met Pro 420
425 430 Ser Thr Pro Glu Leu His Lys
Arg Arg Leu Gln Arg Ser Leu Gly Ser 435 440
445 His Pro Ile Tyr Met Gly Ser Met Asp Tyr Thr Val
Ser Tyr Glu Gln 450 455 460
Leu Val Ser Asn Ala Met Lys Leu Val Tyr Asp Thr Asp Leu Gln Met 465
470 475 480 His Cys Leu
Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn 485
490 495 Ala Leu Leu Phe Gly Val Lys
500 3211143DNAartificial sequencepJSY2247.2 plasmid
DNA sequence 32tgcggccgcg tcgacatgca ttgttagttc tgtagatcag taacgtatag
catacgagta 60taattatcgt aggtagtagg tatcctaaaa taaatctgat acagataata
actttgtaaa 120tcaattcagc aatttctcta ttatcatgat aatgattaat acacagcgtg
tcgttatttt 180ttgttacgat agtatttcta aagtaaagag caggaatccc tagtataata
gaaataatcc 240atatgaaaaa tatagtaatg tacatatttc taatgttaac atatttatag
gtaaatccag 300gaagggtaat ttttacatat ctatatacgc ttattacagt tattaaaaat
atacttgcaa 360acatgttaga agtaaaaaag aaagaactaa ttttacaaag tgctttacca
aaatgccaat 420ggaaattact tagtatgtat ataatgtata aaggtatgaa tatcacaaac
agcaaatcgg 480ctattcccaa gttgagaaac ggtataatag atatatttct agataccatt
aataacctta 540taagcttgac gtttcctata atgcctacta agaaaactag aagatacata
catactaacg 600ccatacgaga gtaactactc atcgtataac tactgttgct aacagtgaca
ctgatgttat 660aactcatctt tgatgtggta taaatgtata ataactatat tacactggta
ttttatttca 720gttatatact atatagtatt aaaaattata tttgtataat tatattatta
tattcagtgt 780agaaagtaaa atactataaa tatgtatctc ttatttataa cttattagta
aagtatgtac 840tattcagtta tattgtttta taaaagctaa atgctactag attgatataa
atgaatatgt 900aataaattag taatgtagta tactaatatt aactcacatt tgactaatta
gctataaaaa 960cccgggttaa ttaattagtc atcaggcagg gcgagaacga gactatctgc
tcgttaatta 1020attagagctt ctttattcta tacttaaaaa gtgaaaataa atacaaaggt
tcttgagggt 1080tgtgttaaat tgaaagcgag aaataatcat aaattatttc attatcgcga
tatccgttaa 1140gtttgtatcg taatggccag cgagttcggc gtgctgctga ccgacaaggt
ggaaggcgac 1200gccctggaaa agaccaactg cgaggtgatc ctgacccggt ccggcagagt
gcggcggaga 1260gaagtggacg gcgtgaaggg ctacgagtgg gagttcaccg accaccggct
gggcctgtgc 1320gagatcgagc acaccatgag catggccgat ttcttctaca accagatcaa
gtgcgagggc 1380gcctacccca tcttccccca ctacatcacc gacgtgctga agtacggcaa
gatggtggac 1440cggaacgacc accagatccg ggtggaccgg gacgtgaaag agctgtccaa
gatcctgatc 1500cagccctact tcggcgaggc ctacttcagc cccgagttct acaccagcac
cttcagcaag 1560cggcaggcca tccagatgaa cgtggagatg ctgcgggcct tcgtgcccaa
gcgggtggcc 1620ttctacgagg acgacatgcg gaggggcggc accatcgacg gcaactggat
cggcgccctg 1680caggcctgga agaagaaggc cgacctgcag atgagccggg agggcaacag
ccagaccaat 1740tgcgtggacc acaacgccga cgtgatctac cagcacatga agaagctgcg
gttcggcctg 1800ctgtaccccc actactacat gctgaacagc gagtacaccg tggaggaaaa
gagcaagggc 1860ggcctgatcg ccaactggct ggtgaaagag aaagccgccg gacgggccga
gaacagcccc 1920atgtacagcg gcgtgggccc cctgaacacc ctgcgggagc ggatcgagcg
ggacgagctg 1980gacgagaagg tgatccagga aatcatcgcc tacggcagca agttcagcac
ctacgccggc 2040acccggaccg gcgacctgac cctgaacgag ctggtgaagt actgcgagag
cctgaccacc 2100ttcgtgcaca agaagaagaa agagggcgag gacgagaccg ccagagagtt
cttcaagagc 2160aagtggattc agggcatgcc caagatgaac ttcgagaacg agatgatcat
gagccggaag 2220agctgggcca acaccaagtt cttttggagc atcgacatgt tcaagcggaa
caacggcgtg 2280gacatcgacc ccaacggcaa gaactggaag gactataaga agaagatcca
ggaacagctg 2340gacgaagccc agaagaagaa caacaacgag ccctacaaag tgatggtgga
cggggtgaac 2400atcatgacca acaagaaata cggcagcgtg gagaactggg tggactgggt
cgtgaactac 2460atcatgctgt cccacgtgaa gcggctggtg aaggactaca agttcaagcg
gctgaagccc 2520gacaacctga tgagcggcat gaacaaactg gtcggcgctc tcaggtgcta
cgcctactgc 2580ctgatcctgg ccctgtacga ccactttggc gaggatattg agggcttcaa
gaagggcacc 2640aacgccgcca gcatcgtgga gaccgtgagc cagatgttcc cccagttccg
gaaagaggtg 2700tccgagacct tcggcatcac cctgaatacc aaggacgtga agtacgagct
gttcatcgcc 2760cgggacatga gcgccaaaga ggcccagagc ggcgaagtgg gctacaagtt
ccagtacggc 2820tggcgcaaga ccgaccagaa agtgatgagc gactacgccg acatcctgag
cgagaaggtg 2880gaggccctgt accaggccct gctgtccggc cggaagtgga gcgacatcgc
cgacgacacc 2940gaggaatact tcatcgacga cctgtacgtg aacaagcccg accgggtgtt
cgagagagcc 3000ggcctggacc ccgagcggca catcaaggtg aaaggcgtga tgaatgagct
gaccacctac 3060ttctccaagc ggttcgtgag ctactggtac aagatcacca aagtggaggc
ccggaacctg 3120ctgaccctga ccgacatcgg cggcgacgcc aagaagtaca cccagttcga
ccccgacgac 3180ttcaagccca tggccgtggc cgagctggga gcccacgcct ccacctacgt
gtaccagaat 3240ctgatcctgg gccggaaccg gggcgagaag atcgacgacg ccaaagaaat
cgtgtggtac 3300gacctgtccc tgaccaactt tggctgctct cgcagcctgg acagctgctg
ggtgggcagc 3360gtggccagaa gcgagctgaa cctgcggttc cacctgatca gcgccatctt
cgagagatac 3420cagcacgacg ccaggcggag cagcttctac gagatcatct tcgacctgcc
cagcaagaaa 3480gagaagattt tccccagcta caagcactac tacgtggccc tgctgcagaa
catcttcaac 3540gacacccagc ggctggaagt gatggactac tgcgagcggc tgatgaaccc
cgagacccgg 3600atgagcgccc tgctgtctct gcaaggcttt aagaactgcg tggagagcga
gttcgtggcc 3660cccaccctga agatgaatgc cctgctgtgg gtgctggccg acatggaaaa
catcgacatc 3720aactacagca acaagcggat gcccctgctg ctgtccaccg agaagggcct
gcgggtgatc 3780tccatcgata tgtttaacgg catgctgggc gtgagctata gcggctggat
tccctacctg 3840gaacggatct gctccgaggt gaacctgcag cggcggctga gggccgacga
gctgaagctg 3900aagaagtggt tcatcagcta ctacgccacc tacgaggtgg agcggagagc
cgagcccagg 3960atgagcttca agatggaagg catcagcacc tggatcggca gcaactgtgg
cggcgtgcag 4020gactacgtgc tgcacctgat ccccagcagg cggcccaagc ctggcctgct
gttcctgatc 4080tacgccgacg acggcgacgt ggattgggtg gccaacatgc tgtccgatgt
gatcggcagc 4140gagggcagcc tgggcttcat cttcatcaac gaccggacct tcgtgaataa
gagccagctg 4200aaagtgcgga ccctgaaaat ctacaaccgg ggcatgctgg atcggctcat
cctgatttcc 4260ggcggcaact acaccttcgg caacaagttt ctgctgtcca agctgctggc
caagacagag 4320aaatgatgac tcgagttttt attgactagt tcaaaattga aaatatataa
ttacaatata 4380aaatgggcaa gttcaccagc tttctgaaga gggccggcag cgccaccaag
aaggccctga 4440ccagcgacac cgccaagcgg atgtacaaga tggccggcaa gaccctgcag
aaagtggtgg 4500agaacgaagt gggcagcgcc gccatcgacg gcgtgatgca gggcaccatc
cagagcatca 4560tccagggcga gaacctgggc gacagcatcc ggcaggccgt gatcctgaac
gtggccggca 4620ccctggaaag cgcccctgac cccctgagcc ctggcgagca gctgctgtac
aacaaggtgt 4680ccgagctgga acgggccgag aaagaagatc gggtcatcga gacccacaac
gagaagatca 4740tcgagaagta cggcgaggac ctgctgaaga tccggaagat catgaagggc
gaggccaagg 4800ccgagcagct ggaaggcaaa gaaatcgagt acgtggagat ggccctgaag
ggcatgctga 4860agattggcaa ggaccagagc gagcggatca cccagctgta ccgggccctg
cagaccgaag 4920aggacctgcg gaccagcgac gagacccgga tgatcaacga gtaccgggag
aagttcgacg 4980ccctgaagca ggccatcgaa ctggaacagc aggccaccca cgaggaagcc
gtgcaggaaa 5040tgctggacct gagcgccgag gtgatcgaaa cagccgccga ggaagtgccc
atctttggcg 5100ctggggctgc caacgtggtg gctactacca gggccgtgca gggcggcctg
aagctgaaag 5160agatcatcga caagctgacc ggcatcgacc tgagccacct gaaggtggcc
gacatccacc 5220cccacatcat cgaaaaggcc atgctgaaag acaagatccc cgacaacgag
ctggctatgg 5280ccatcaagag caaggtggaa gtgatcgacg agatgaacac cgagaccgag
cacgtgatcg 5340agagcatcat gcccctggtg aagaaagagt acgagaagca cgacaacaag
taccacgtga 5400acatccccag cgtgctgaaa atccacagcg agcacacccc caaggtgcac
atctacacca 5460ccccctggga cagcgacaag gtgttcatct gccggtgcat cgccccccac
catcagcaga 5520aaagcttcat gatcggcttc gacctggaaa tcgagtttgt gttctacgag
gacaccagcg 5580tggagggcca catcatgcac ggcggagccg tgctgatcga gggcaggggc
ttcaggcagg 5640cctacagcga gttcatgaac gccgcctggt ccatgcccag cacccccgag
ctgcacaagc 5700ggcggctgca gcggagcctg ggcagccacc ccatctacat gggcagcatg
gactacaccg 5760tgagctacga ccagctggtg tccaacgcca tgaagctggt gtacgacacc
gagctgcaga 5820tgcactgcct gagaggcccc ctgaagttcc agcggcggac cctgatgaac
gccctgctgt 5880tcggcgtgaa gatcgcctga tgatttttct actagttaat caaataaaaa
gcatacaagc 5940tattgcttcg ctatcgttac aaaatggcag gaattttgtg taaactaagc
cacatacttg 6000ccaatgaaaa aaatagtaga aaggatacta ttttaatggg attagatgtt
aaggttcctt 6060gggattatag taactgggca tctgttaact tttacgacgt taggttagat
actgatgtta 6120cagattataa taatgttaca ataaaataca tgacaggatg tgatattttt
cctcatataa 6180ctcttggaat agcaaatatg gatcaatgtg atagatttga aaatttcaaa
aagcaaataa 6240ctgatcaaga tttacagact atttctatag tctgtaaaga agagatgtgt
tttcctcaga 6300gtaacgcctc taaacagttg ggagcgaaag gatgcgctgt agttatgaaa
ctggaggtat 6360ctgatgaact tagagcccta agaaatgttc tgctgaatgc ggtaccctgt
tcgaaggacg 6420tgtttggtga tatcacagta gataatccgt ggaatcctca cataacagta
ggatatgtta 6480aggaggacga tgtcgaaaac aagaaacgcc taatggagtg catgtccaag
tttagggggc 6540aagaaataca agttctagga tggtattaat aagtatctaa gtatttggta
taatttatta 6600aatagtataa ttataacaaa taataaataa catgataacg gtttttatta
gaataaaata 6660gagataatat cataatgata tataatactt cattaccaga aatgagtaat
ggaagactta 6720taaatgaact gcataaagct ataaggtata gagatataaa tttagtaagg
tatatactta 6780aaaaatgcaa atacaataac gtaaatatac tatcaacgtc tttgtattta
gccgtaagta 6840tttctgatat agaaatggta aaattattac tagaacacgg tgccgatatt
ttaaaatgta 6900aaaatcctcc tcttcataaa gctgctagtt tagataatac agaaattgct
aaactactaa 6960tagattctgg cgctgacata gaacagatac attctggaaa tagtccgtta
tatatttctg 7020tatatagaaa caataagtca ttaactagat atttattaaa aaaaggtgtt
aattgtaata 7080gattctttct aaattattac gatgtactgt atgataagat atctgatgat
atgtataaaa 7140tatttataga ttttaatatt gatcttaata tacaaactag aaattttgaa
actccgttac 7200attacgctat aaagtataag aatatagatt taattaggat attgttagat
aatagtatta 7260aaatagataa aagtttattt ttgcataaac agtatctcat aaaggcactt
aaaaataatt 7320gtagttacga tataatagcg ttacttataa atcacggagt gcctataaac
gaacaagatg 7380atttaggtaa aaccccatta catcattcgg taattaatag aagaaaagat
gtaacagcac 7440ttctgttaaa tctaggagct gatataaacg taatagatga ctgtatgggc
agtcccttac 7500attacgctgt ttcacgtaac gatatcgaaa caacaaagac acttttagaa
agaggatcta 7560atgttaatgt ggttaataat catatagata ccgttctaaa tatagctgtt
gcatctaaaa 7620acaaaactat agtaaactta ttactgaagt acggtactga tacaaagttg
gtaggattag 7680ataaacatgt tattcacata gctatagaaa tgaaagatat taatatactg
aatgcgatct 7740tattatatgg ttgctatgta aacgtctata atcataaagg tttcactcct
ctatacatgg 7800cagttagttc tatgaaaaca gaatttgtta aactcttact tgaccacggt
gcttacgtaa 7860atgctaaagc taagttatct ggaaatactc ctttacataa agctatgtta
tctaatagtt 7920ttaataatat aaaattactt ttatcttata acgccgacta taattctcta
aataatcacg 7980gtaatacgcc tctaacttgt gttagctttt tagatgacaa gatagctatt
atgataatat 8040ctaaaatgat gttagaaata tctaaaaatc ctgaaatagc taattcagaa
ggttttatag 8100taaacatgga acatataaac agtaataaaa gactactatc tataaaagaa
tcatgcgaaa 8160aagaactaga tgttataaca catataaagt taaattctat atattctttt
aatatctttc 8220ttgacaataa catagatctt atggtaaagt tcgtaactaa tcctagagtt
aataagatac 8280ctgcatgtat acgtatatat agggaattaa tacggaaaaa taaatcatta
gcttttcata 8340gacatcagct aatagttaaa gctgtaaaag agagtaagaa tctaggaata
ataggtaggt 8400tacctataga tatcaaacat ataataatgg aactattaag taataatgat
ttacattctg 8460ttatcaccag ctgttgtaac ccagtagtat aaagagctcg aattaattca
ctggccgtcg 8520ttttacaacg tcgtgactgg gaaaaccctg gcgttaccca acttaatcgc
cttgcagcac 8580atcccccttt cgccagctgg cgtaatagcg aagaggcccg caccgatcgc
ccttcccaac 8640agttgcgcag cctgaatggc gaatggcgcc tgatgcggta ttttctcctt
acgcatctgt 8700gcggtatttc acaccgcata tggtgcactc tcagtacaat ctgctctgat
gccgcatagt 8760taagccagcc ccgacacccg ccaacacccg ctgacgcgcc ctgacgggct
tgtctgctcc 8820cggcatccgc ttacagacaa gctgtgaccg tctccgggag ctgcatgtgt
cagaggtttt 8880caccgtcatc accgaaacgc gcgagacgaa agggcctcgt gatacgccta
tttttatagg 8940ttaatgtcat gataataatg gtttcttaga cgtcaggtgg cacttttcgg
ggaaatgtgc 9000gcggaacccc tatttgttta tttttctaaa tacattcaaa tatgtatccg
ctcatgagac 9060aataaccctg ataaatgctt caataatatt gaaaaaggaa gagtatgagt
attcaacatt 9120tccgtgtcgc ccttattccc ttttttgcgg cattttgcct tcctgttttt
gctcacccag 9180aaacgctggt gaaagtaaaa gatgctgaag atcagttggg tgcacgagtg
ggttacatcg 9240aactggatct caacagcggt aagatccttg agagttttcg ccccgaagaa
cgttttccaa 9300tgatgagcac ttttaaagtt ctgctatgtg gcgcggtatt atcccgtatt
gacgccgggc 9360aagagcaact cggtcgccgc atacactatt ctcagaatga cttggttgag
tactcaccag 9420tcacagaaaa gcatcttacg gatggcatga cagtaagaga attatgcagt
gctgccataa 9480ccatgagtga taacactgcg gccaacttac ttctgacaac gatcggagga
ccgaaggagc 9540taaccgcttt tttgcacaac atgggggatc atgtaactcg ccttgatcgt
tgggaaccgg 9600agctgaatga agccatacca aacgacgagc gtgacaccac gatgcctgta
gcaatggcaa 9660caacgttgcg caaactatta actggcgaac tacttactct agcttcccgg
caacaattaa 9720tagactggat ggaggcggat aaagttgcag gaccacttct gcgctcggcc
cttccggctg 9780gctggtttat tgctgataaa tctggagccg gtgagcgtgg gtctcgcggt
atcattgcag 9840cactggggcc agatggtaag ccctcccgta tcgtagttat ctacacgacg
gggagtcagg 9900caactatgga tgaacgaaat agacagatcg ctgagatagg tgcctcactg
attaagcatt 9960ggtaactgtc agaccaagtt tactcatata tactttagat tgatttaaaa
cttcattttt 10020aatttaaaag gatctaggtg aagatccttt ttgataatct catgaccaaa
atcccttaac 10080gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga
tcttcttgag 10140atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg
ctaccagcgg 10200tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact
ggcttcagca 10260gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac
cacttcaaga 10320actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg
gctgctgcca 10380gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg
gataaggcgc 10440agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga
acgacctaca 10500ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc
gaagggagaa 10560aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg
agggagcttc 10620cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc
tgacttgagc 10680gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc
agcaacgcgg 10740cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt
cctgcgttat 10800cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc
gctcgccgca 10860gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc
ccaatacgca 10920aaccgcctct ccccgcgcgt tggccgattc attaatgcag ctggcacgac
aggtttcccg 10980actggaaagc gggcagtgag cgcaacgcaa ttaatgtgag ttagctcact
cattaggcac 11040cccaggcttt acactttatg cttccggctc gtatgttgtg tggaattgtg
agcggataac 11100aatttcacac aggaaacagc tatgaccatg attacgccaa gct
11143333171DNAartificial sequenceAHSV-5 VP2 in pJSY2247.2
33atggccagcg agttcggcgt gctgctgacc gacaaggtgg aaggcgacgc cctggaaaag
60accaactgcg aggtgatcct gacccggtcc ggcagagtgc ggcggagaga agtggacggc
120gtgaagggct acgagtggga gttcaccgac caccggctgg gcctgtgcga gatcgagcac
180accatgagca tggccgattt cttctacaac cagatcaagt gcgagggcgc ctaccccatc
240ttcccccact acatcaccga cgtgctgaag tacggcaaga tggtggaccg gaacgaccac
300cagatccggg tggaccggga cgtgaaagag ctgtccaaga tcctgatcca gccctacttc
360ggcgaggcct acttcagccc cgagttctac accagcacct tcagcaagcg gcaggccatc
420cagatgaacg tggagatgct gcgggccttc gtgcccaagc gggtggcctt ctacgaggac
480gacatgcgga ggggcggcac catcgacggc aactggatcg gcgccctgca ggcctggaag
540aagaaggccg acctgcagat gagccgggag ggcaacagcc agaccaattg cgtggaccac
600aacgccgacg tgatctacca gcacatgaag aagctgcggt tcggcctgct gtacccccac
660tactacatgc tgaacagcga gtacaccgtg gaggaaaaga gcaagggcgg cctgatcgcc
720aactggctgg tgaaagagaa agccgccgga cgggccgaga acagccccat gtacagcggc
780gtgggccccc tgaacaccct gcgggagcgg atcgagcggg acgagctgga cgagaaggtg
840atccaggaaa tcatcgccta cggcagcaag ttcagcacct acgccggcac ccggaccggc
900gacctgaccc tgaacgagct ggtgaagtac tgcgagagcc tgaccacctt cgtgcacaag
960aagaagaaag agggcgagga cgagaccgcc agagagttct tcaagagcaa gtggattcag
1020ggcatgccca agatgaactt cgagaacgag atgatcatga gccggaagag ctgggccaac
1080accaagttct tttggagcat cgacatgttc aagcggaaca acggcgtgga catcgacccc
1140aacggcaaga actggaagga ctataagaag aagatccagg aacagctgga cgaagcccag
1200aagaagaaca acaacgagcc ctacaaagtg atggtggacg gggtgaacat catgaccaac
1260aagaaatacg gcagcgtgga gaactgggtg gactgggtcg tgaactacat catgctgtcc
1320cacgtgaagc ggctggtgaa ggactacaag ttcaagcggc tgaagcccga caacctgatg
1380agcggcatga acaaactggt cggcgctctc aggtgctacg cctactgcct gatcctggcc
1440ctgtacgacc actttggcga ggatattgag ggcttcaaga agggcaccaa cgccgccagc
1500atcgtggaga ccgtgagcca gatgttcccc cagttccgga aagaggtgtc cgagaccttc
1560ggcatcaccc tgaataccaa ggacgtgaag tacgagctgt tcatcgcccg ggacatgagc
1620gccaaagagg cccagagcgg cgaagtgggc tacaagttcc agtacggctg gcgcaagacc
1680gaccagaaag tgatgagcga ctacgccgac atcctgagcg agaaggtgga ggccctgtac
1740caggccctgc tgtccggccg gaagtggagc gacatcgccg acgacaccga ggaatacttc
1800atcgacgacc tgtacgtgaa caagcccgac cgggtgttcg agagagccgg cctggacccc
1860gagcggcaca tcaaggtgaa aggcgtgatg aatgagctga ccacctactt ctccaagcgg
1920ttcgtgagct actggtacaa gatcaccaaa gtggaggccc ggaacctgct gaccctgacc
1980gacatcggcg gcgacgccaa gaagtacacc cagttcgacc ccgacgactt caagcccatg
2040gccgtggccg agctgggagc ccacgcctcc acctacgtgt accagaatct gatcctgggc
2100cggaaccggg gcgagaagat cgacgacgcc aaagaaatcg tgtggtacga cctgtccctg
2160accaactttg gctgctctcg cagcctggac agctgctggg tgggcagcgt ggccagaagc
2220gagctgaacc tgcggttcca cctgatcagc gccatcttcg agagatacca gcacgacgcc
2280aggcggagca gcttctacga gatcatcttc gacctgccca gcaagaaaga gaagattttc
2340cccagctaca agcactacta cgtggccctg ctgcagaaca tcttcaacga cacccagcgg
2400ctggaagtga tggactactg cgagcggctg atgaaccccg agacccggat gagcgccctg
2460ctgtctctgc aaggctttaa gaactgcgtg gagagcgagt tcgtggcccc caccctgaag
2520atgaatgccc tgctgtgggt gctggccgac atggaaaaca tcgacatcaa ctacagcaac
2580aagcggatgc ccctgctgct gtccaccgag aagggcctgc gggtgatctc catcgatatg
2640tttaacggca tgctgggcgt gagctatagc ggctggattc cctacctgga acggatctgc
2700tccgaggtga acctgcagcg gcggctgagg gccgacgagc tgaagctgaa gaagtggttc
2760atcagctact acgccaccta cgaggtggag cggagagccg agcccaggat gagcttcaag
2820atggaaggca tcagcacctg gatcggcagc aactgtggcg gcgtgcagga ctacgtgctg
2880cacctgatcc ccagcaggcg gcccaagcct ggcctgctgt tcctgatcta cgccgacgac
2940ggcgacgtgg attgggtggc caacatgctg tccgatgtga tcggcagcga gggcagcctg
3000ggcttcatct tcatcaacga ccggaccttc gtgaataaga gccagctgaa agtgcggacc
3060ctgaaaatct acaaccgggg catgctggat cggctcatcc tgatttccgg cggcaactac
3120accttcggca acaagtttct gctgtccaag ctgctggcca agacagagaa a
3171341515DNAartificial sequenceAHSV-5 VP5 of pJSY2247.2 34atgggcaagt
tcaccagctt tctgaagagg gccggcagcg ccaccaagaa ggccctgacc 60agcgacaccg
ccaagcggat gtacaagatg gccggcaaga ccctgcagaa agtggtggag 120aacgaagtgg
gcagcgccgc catcgacggc gtgatgcagg gcaccatcca gagcatcatc 180cagggcgaga
acctgggcga cagcatccgg caggccgtga tcctgaacgt ggccggcacc 240ctggaaagcg
cccctgaccc cctgagccct ggcgagcagc tgctgtacaa caaggtgtcc 300gagctggaac
gggccgagaa agaagatcgg gtcatcgaga cccacaacga gaagatcatc 360gagaagtacg
gcgaggacct gctgaagatc cggaagatca tgaagggcga ggccaaggcc 420gagcagctgg
aaggcaaaga aatcgagtac gtggagatgg ccctgaaggg catgctgaag 480attggcaagg
accagagcga gcggatcacc cagctgtacc gggccctgca gaccgaagag 540gacctgcgga
ccagcgacga gacccggatg atcaacgagt accgggagaa gttcgacgcc 600ctgaagcagg
ccatcgaact ggaacagcag gccacccacg aggaagccgt gcaggaaatg 660ctggacctga
gcgccgaggt gatcgaaaca gccgccgagg aagtgcccat ctttggcgct 720ggggctgcca
acgtggtggc tactaccagg gccgtgcagg gcggcctgaa gctgaaagag 780atcatcgaca
agctgaccgg catcgacctg agccacctga aggtggccga catccacccc 840cacatcatcg
aaaaggccat gctgaaagac aagatccccg acaacgagct ggctatggcc 900atcaagagca
aggtggaagt gatcgacgag atgaacaccg agaccgagca cgtgatcgag 960agcatcatgc
ccctggtgaa gaaagagtac gagaagcacg acaacaagta ccacgtgaac 1020atccccagcg
tgctgaaaat ccacagcgag cacaccccca aggtgcacat ctacaccacc 1080ccctgggaca
gcgacaaggt gttcatctgc cggtgcatcg ccccccacca tcagcagaaa 1140agcttcatga
tcggcttcga cctggaaatc gagtttgtgt tctacgagga caccagcgtg 1200gagggccaca
tcatgcacgg cggagccgtg ctgatcgagg gcaggggctt caggcaggcc 1260tacagcgagt
tcatgaacgc cgcctggtcc atgcccagca cccccgagct gcacaagcgg 1320cggctgcagc
ggagcctggg cagccacccc atctacatgg gcagcatgga ctacaccgtg 1380agctacgacc
agctggtgtc caacgccatg aagctggtgt acgacaccga gctgcagatg 1440cactgcctga
gaggccccct gaagttccag cggcggaccc tgatgaacgc cctgctgttc 1500ggcgtgaaga
tcgcc
1515351057PRTartificial sequenceAHSV-5 VP2 in pC3 H6p-AHSV 5-VP2/42Kp-VP5
(pJSY2247.2) 35Met Ala Ser Glu Phe Gly Val Leu Leu Thr Asp Lys Val
Glu Gly Asp 1 5 10 15
Ala Leu Glu Lys Thr Asn Cys Glu Val Ile Leu Thr Arg Ser Gly Arg
20 25 30 Val Arg Arg Arg
Glu Val Asp Gly Val Lys Gly Tyr Glu Trp Glu Phe 35
40 45 Thr Asp His Arg Leu Gly Leu Cys Glu
Ile Glu His Thr Met Ser Met 50 55
60 Ala Asp Phe Phe Tyr Asn Gln Ile Lys Cys Glu Gly Ala
Tyr Pro Ile 65 70 75
80 Phe Pro His Tyr Ile Thr Asp Val Leu Lys Tyr Gly Lys Met Val Asp
85 90 95 Arg Asn Asp His
Gln Ile Arg Val Asp Arg Asp Val Lys Glu Leu Ser 100
105 110 Lys Ile Leu Ile Gln Pro Tyr Phe Gly
Glu Ala Tyr Phe Ser Pro Glu 115 120
125 Phe Tyr Thr Ser Thr Phe Ser Lys Arg Gln Ala Ile Gln Met
Asn Val 130 135 140
Glu Met Leu Arg Ala Phe Val Pro Lys Arg Val Ala Phe Tyr Glu Asp 145
150 155 160 Asp Met Arg Arg Gly
Gly Thr Ile Asp Gly Asn Trp Ile Gly Ala Leu 165
170 175 Gln Ala Trp Lys Lys Lys Ala Asp Leu Gln
Met Ser Arg Glu Gly Asn 180 185
190 Ser Gln Thr Asn Cys Val Asp His Asn Ala Asp Val Ile Tyr Gln
His 195 200 205 Met
Lys Lys Leu Arg Phe Gly Leu Leu Tyr Pro His Tyr Tyr Met Leu 210
215 220 Asn Ser Glu Tyr Thr Val
Glu Glu Lys Ser Lys Gly Gly Leu Ile Ala 225 230
235 240 Asn Trp Leu Val Lys Glu Lys Ala Ala Gly Arg
Ala Glu Asn Ser Pro 245 250
255 Met Tyr Ser Gly Val Gly Pro Leu Asn Thr Leu Arg Glu Arg Ile Glu
260 265 270 Arg Asp
Glu Leu Asp Glu Lys Val Ile Gln Glu Ile Ile Ala Tyr Gly 275
280 285 Ser Lys Phe Ser Thr Tyr Ala
Gly Thr Arg Thr Gly Asp Leu Thr Leu 290 295
300 Asn Glu Leu Val Lys Tyr Cys Glu Ser Leu Thr Thr
Phe Val His Lys 305 310 315
320 Lys Lys Lys Glu Gly Glu Asp Glu Thr Ala Arg Glu Phe Phe Lys Ser
325 330 335 Lys Trp Ile
Gln Gly Met Pro Lys Met Asn Phe Glu Asn Glu Met Ile 340
345 350 Met Ser Arg Lys Ser Trp Ala Asn
Thr Lys Phe Phe Trp Ser Ile Asp 355 360
365 Met Phe Lys Arg Asn Asn Gly Val Asp Ile Asp Pro Asn
Gly Lys Asn 370 375 380
Trp Lys Asp Tyr Lys Lys Lys Ile Gln Glu Gln Leu Asp Glu Ala Gln 385
390 395 400 Lys Lys Asn Asn
Asn Glu Pro Tyr Lys Val Met Val Asp Gly Val Asn 405
410 415 Ile Met Thr Asn Lys Lys Tyr Gly Ser
Val Glu Asn Trp Val Asp Trp 420 425
430 Val Val Asn Tyr Ile Met Leu Ser His Val Lys Arg Leu Val
Lys Asp 435 440 445
Tyr Lys Phe Lys Arg Leu Lys Pro Asp Asn Leu Met Ser Gly Met Asn 450
455 460 Lys Leu Val Gly Ala
Leu Arg Cys Tyr Ala Tyr Cys Leu Ile Leu Ala 465 470
475 480 Leu Tyr Asp His Phe Gly Glu Asp Ile Glu
Gly Phe Lys Lys Gly Thr 485 490
495 Asn Ala Ala Ser Ile Val Glu Thr Val Ser Gln Met Phe Pro Gln
Phe 500 505 510 Arg
Lys Glu Val Ser Glu Thr Phe Gly Ile Thr Leu Asn Thr Lys Asp 515
520 525 Val Lys Tyr Glu Leu Phe
Ile Ala Arg Asp Met Ser Ala Lys Glu Ala 530 535
540 Gln Ser Gly Glu Val Gly Tyr Lys Phe Gln Tyr
Gly Trp Arg Lys Thr 545 550 555
560 Asp Gln Lys Val Met Ser Asp Tyr Ala Asp Ile Leu Ser Glu Lys Val
565 570 575 Glu Ala
Leu Tyr Gln Ala Leu Leu Ser Gly Arg Lys Trp Ser Asp Ile 580
585 590 Ala Asp Asp Thr Glu Glu Tyr
Phe Ile Asp Asp Leu Tyr Val Asn Lys 595 600
605 Pro Asp Arg Val Phe Glu Arg Ala Gly Leu Asp Pro
Glu Arg His Ile 610 615 620
Lys Val Lys Gly Val Met Asn Glu Leu Thr Thr Tyr Phe Ser Lys Arg 625
630 635 640 Phe Val Ser
Tyr Trp Tyr Lys Ile Thr Lys Val Glu Ala Arg Asn Leu 645
650 655 Leu Thr Leu Thr Asp Ile Gly Gly
Asp Ala Lys Lys Tyr Thr Gln Phe 660 665
670 Asp Pro Asp Asp Phe Lys Pro Met Ala Val Ala Glu Leu
Gly Ala His 675 680 685
Ala Ser Thr Tyr Val Tyr Gln Asn Leu Ile Leu Gly Arg Asn Arg Gly 690
695 700 Glu Lys Ile Asp
Asp Ala Lys Glu Ile Val Trp Tyr Asp Leu Ser Leu 705 710
715 720 Thr Asn Phe Gly Cys Ser Arg Ser Leu
Asp Ser Cys Trp Val Gly Ser 725 730
735 Val Ala Arg Ser Glu Leu Asn Leu Arg Phe His Leu Ile Ser
Ala Ile 740 745 750
Phe Glu Arg Tyr Gln His Asp Ala Arg Arg Ser Ser Phe Tyr Glu Ile
755 760 765 Ile Phe Asp Leu
Pro Ser Lys Lys Glu Lys Ile Phe Pro Ser Tyr Lys 770
775 780 His Tyr Tyr Val Ala Leu Leu Gln
Asn Ile Phe Asn Asp Thr Gln Arg 785 790
795 800 Leu Glu Val Met Asp Tyr Cys Glu Arg Leu Met Asn
Pro Glu Thr Arg 805 810
815 Met Ser Ala Leu Leu Ser Leu Gln Gly Phe Lys Asn Cys Val Glu Ser
820 825 830 Glu Phe Val
Ala Pro Thr Leu Lys Met Asn Ala Leu Leu Trp Val Leu 835
840 845 Ala Asp Met Glu Asn Ile Asp Ile
Asn Tyr Ser Asn Lys Arg Met Pro 850 855
860 Leu Leu Leu Ser Thr Glu Lys Gly Leu Arg Val Ile Ser
Ile Asp Met 865 870 875
880 Phe Asn Gly Met Leu Gly Val Ser Tyr Ser Gly Trp Ile Pro Tyr Leu
885 890 895 Glu Arg Ile Cys
Ser Glu Val Asn Leu Gln Arg Arg Leu Arg Ala Asp 900
905 910 Glu Leu Lys Leu Lys Lys Trp Phe Ile
Ser Tyr Tyr Ala Thr Tyr Glu 915 920
925 Val Glu Arg Arg Ala Glu Pro Arg Met Ser Phe Lys Met Glu
Gly Ile 930 935 940
Ser Thr Trp Ile Gly Ser Asn Cys Gly Gly Val Gln Asp Tyr Val Leu 945
950 955 960 His Leu Ile Pro Ser
Arg Arg Pro Lys Pro Gly Leu Leu Phe Leu Ile 965
970 975 Tyr Ala Asp Asp Gly Asp Val Asp Trp Val
Ala Asn Met Leu Ser Asp 980 985
990 Val Ile Gly Ser Glu Gly Ser Leu Gly Phe Ile Phe Ile Asn
Asp Arg 995 1000 1005
Thr Phe Val Asn Lys Ser Gln Leu Lys Val Arg Thr Leu Lys Ile 1010
1015 1020 Tyr Asn Arg Gly Met
Leu Asp Arg Leu Ile Leu Ile Ser Gly Gly 1025 1030
1035 Asn Tyr Thr Phe Gly Asn Lys Phe Leu Leu
Ser Lys Leu Leu Ala 1040 1045 1050
Lys Thr Glu Lys 1055 36505PRTartificial
sequenceAHSV-5 VP5 in pC3 H6p-AHSV 5-VP2/42Kp-VP5 (pJSY2247.2) 36Met
Gly Lys Phe Thr Ser Phe Leu Lys Arg Ala Gly Ser Ala Thr Lys 1
5 10 15 Lys Ala Leu Thr Ser Asp
Thr Ala Lys Arg Met Tyr Lys Met Ala Gly 20
25 30 Lys Thr Leu Gln Lys Val Val Glu Asn Glu
Val Gly Ser Ala Ala Ile 35 40
45 Asp Gly Val Met Gln Gly Thr Ile Gln Ser Ile Ile Gln Gly
Glu Asn 50 55 60
Leu Gly Asp Ser Ile Arg Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65
70 75 80 Leu Glu Ser Ala Pro
Asp Pro Leu Ser Pro Gly Glu Gln Leu Leu Tyr 85
90 95 Asn Lys Val Ser Glu Leu Glu Arg Ala Glu
Lys Glu Asp Arg Val Ile 100 105
110 Glu Thr His Asn Glu Lys Ile Ile Glu Lys Tyr Gly Glu Asp Leu
Leu 115 120 125 Lys
Ile Arg Lys Ile Met Lys Gly Glu Ala Lys Ala Glu Gln Leu Glu 130
135 140 Gly Lys Glu Ile Glu Tyr
Val Glu Met Ala Leu Lys Gly Met Leu Lys 145 150
155 160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Gln
Leu Tyr Arg Ala Leu 165 170
175 Gln Thr Glu Glu Asp Leu Arg Thr Ser Asp Glu Thr Arg Met Ile Asn
180 185 190 Glu Tyr
Arg Glu Lys Phe Asp Ala Leu Lys Gln Ala Ile Glu Leu Glu 195
200 205 Gln Gln Ala Thr His Glu Glu
Ala Val Gln Glu Met Leu Asp Leu Ser 210 215
220 Ala Glu Val Ile Glu Thr Ala Ala Glu Glu Val Pro
Ile Phe Gly Ala 225 230 235
240 Gly Ala Ala Asn Val Val Ala Thr Thr Arg Ala Val Gln Gly Gly Leu
245 250 255 Lys Leu Lys
Glu Ile Ile Asp Lys Leu Thr Gly Ile Asp Leu Ser His 260
265 270 Leu Lys Val Ala Asp Ile His Pro
His Ile Ile Glu Lys Ala Met Leu 275 280
285 Lys Asp Lys Ile Pro Asp Asn Glu Leu Ala Met Ala Ile
Lys Ser Lys 290 295 300
Val Glu Val Ile Asp Glu Met Asn Thr Glu Thr Glu His Val Ile Glu 305
310 315 320 Ser Ile Met Pro
Leu Val Lys Lys Glu Tyr Glu Lys His Asp Asn Lys 325
330 335 Tyr His Val Asn Ile Pro Ser Val Leu
Lys Ile His Ser Glu His Thr 340 345
350 Pro Lys Val His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Lys
Val Phe 355 360 365
Ile Cys Arg Cys Ile Ala Pro His His Gln Gln Lys Ser Phe Met Ile 370
375 380 Gly Phe Asp Leu Glu
Ile Glu Phe Val Phe Tyr Glu Asp Thr Ser Val 385 390
395 400 Glu Gly His Ile Met His Gly Gly Ala Val
Leu Ile Glu Gly Arg Gly 405 410
415 Phe Arg Gln Ala Tyr Ser Glu Phe Met Asn Ala Ala Trp Ser Met
Pro 420 425 430 Ser
Thr Pro Glu Leu His Lys Arg Arg Leu Gln Arg Ser Leu Gly Ser 435
440 445 His Pro Ile Tyr Met Gly
Ser Met Asp Tyr Thr Val Ser Tyr Asp Gln 450 455
460 Leu Val Ser Asn Ala Met Lys Leu Val Tyr Asp
Thr Glu Leu Gln Met 465 470 475
480 His Cys Leu Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn
485 490 495 Ala Leu
Leu Phe Gly Val Lys Ile Ala 500 505
3724DNAartificial sequence18098.JY Primer for amplifying the AHSV-5 VP2
probe for the vCP2398.2.1.1 viral vector 37ggatcgagcg ggacgagctg gacg
243824DNAartificial
sequence18103.JY Primer for amplifying the AHSV-5 VP2 probe for the
vCP2398.2.1.1 viral vector 38gccagccgta ctggaacttg tagc
243924DNAartificial sequence18115.JY Primer for
amplifying the AHSV-5 VP5 probe for the vCP2398.2.1.1 viral vector
39tgctggacct gagcgccgag gtga
244024DNAartificial sequence18120.JY Primer for amplifying the AHSV-5 VP5
probe for the vCP2398.2.1.1 viral vector 40tcaggcgatc ttcacgccga
acag 24418936DNAartificial
sequencevCP2398 viral vector sequence 41ctaagtatat tattggattt aacgcgctat
aaacgcatcc aaaacctaca aatataggag 60aagcttctct tatgaaactt cttaaagctt
tactcttact attactactc aaaagagata 120ttacattaat tatgtgatga ggcatccaac
atataaagaa gactaaagct gtagaagctg 180ttatgaagaa tatcttatca gatatattag
atgcattgtt agttctgtag atcagtaacg 240tatagcatac gagtataatt atcgtaggta
gtaggtatcc taaaataaat ctgatacaga 300taataacttt gtaaatcaat tcagcaattt
ctctattatc atgataatga ttaatacaca 360gcgtgtcgtt attttttgtt acgatagtat
ttctaaagta aagagcagga atccctagta 420taatagaaat aatccatatg aaaaatatag
taatgtacat atttctaatg ttaacatatt 480tataggtaaa tccaggaagg gtaattttta
catatctata tacgcttatt acagttatta 540aaaatatact tgcaaacatg ttagaagtaa
aaaagaaaga actaatttta caaagtgctt 600taccaaaatg ccaatggaaa ttacttagta
tgtatataat gtataaaggt atgaatatca 660caaacagcaa atcggctatt cccaagttga
gaaacggtat aatagatata tttctagata 720ccattaataa ccttataagc ttgacgtttc
ctataatgcc tactaagaaa actagaagat 780acatacatac taacgccata cgagagtaac
tactcatcgt ataactactg ttgctaacag 840tgacactgat gttataactc atctttgatg
tggtataaat gtataataac tatattacac 900tggtatttta tttcagttat atactatata
gtattaaaaa ttatatttgt ataattatat 960tattatattc agtgtagaaa gtaaaatact
ataaatatgt atctcttatt tataacttat 1020tagtaaagta tgtactattc agttatattg
ttttataaaa gctaaatgct actagattga 1080tataaatgaa tatgtaataa attagtaatg
tagtatacta atattaactc acatttgact 1140aattagctat aaaaacccgg gttaattaat
tagtcatcag gcagggcgag aacgagacta 1200tctgctcgtt aattaattag agcttcttta
ttctatactt aaaaagtgaa aataaataca 1260aaggttcttg agggttgtgt taaattgaaa
gcgagaaata atcataaatt atttcattat 1320cgcgatatcc gttaagtttg tatcgtaatg
gccagcgagt tcggcgtgct gctgaccgac 1380aaggtggaag gcgacgccct ggaaaagacc
aactgcgagg tgatcctgac ccggtccggc 1440agagtgcggc ggagagaagt ggacggcgtg
aagggctacg agtgggagtt caccgaccac 1500cggctgggcc tgtgcgagat cgagcacacc
atgagcatgg ccgatttctt ctacaaccag 1560atcaagtgcg agggcgccta ccccatcttc
ccccactaca tcaccgacgt gctgaagtac 1620ggcaagatgg tggaccggaa cgaccaccag
atccgggtgg accgggacgt gaaagagctg 1680tccaagatcc tgatccagcc ctacttcggc
gaggcctact tcagccccga gttctacacc 1740agcaccttca gcaagcggca ggccatccag
atgaacgtgg agatgctgcg ggccttcgtg 1800cccaagcggg tggccttcta cgaggacgac
atgcggaggg gcggcaccat cgacggcaac 1860tggatcggcg ccctgcaggc ctggaagaag
aaggccgacc tgcagatgag ccgggagggc 1920aacagccaga ccaattgcgt ggaccacaac
gccgacgtga tctaccagca catgaagaag 1980ctgcggttcg gcctgctgta cccccactac
tacatgctga acagcgagta caccgtggag 2040gaaaagagca agggcggcct gatcgccaac
tggctggtga aagagaaagc cgccggacgg 2100gccgagaaca gccccatgta cagcggcgtg
ggccccctga acaccctgcg ggagcggatc 2160gagcgggacg agctggacga gaaggtgatc
caggaaatca tcgcctacgg cagcaagttc 2220agcacctacg ccggcacccg gaccggcgac
ctgaccctga acgagctggt gaagtactgc 2280gagagcctga ccaccttcgt gcacaagaag
aagaaagagg gcgaggacga gaccgccaga 2340gagttcttca agagcaagtg gattcagggc
atgcccaaga tgaacttcga gaacgagatg 2400atcatgagcc ggaagagctg ggccaacacc
aagttctttt ggagcatcga catgttcaag 2460cggaacaacg gcgtggacat cgaccccaac
ggcaagaact ggaaggacta taagaagaag 2520atccaggaac agctggacga agcccagaag
aagaacaaca acgagcccta caaagtgatg 2580gtggacgggg tgaacatcat gaccaacaag
aaatacggca gcgtggagaa ctgggtggac 2640tgggtcgtga actacatcat gctgtcccac
gtgaagcggc tggtgaagga ctacaagttc 2700aagcggctga agcccgacaa cctgatgagc
ggcatgaaca aactggtcgg cgctctcagg 2760tgctacgcct actgcctgat cctggccctg
tacgaccact ttggcgagga tattgagggc 2820ttcaagaagg gcaccaacgc cgccagcatc
gtggagaccg tgagccagat gttcccccag 2880ttccggaaag aggtgtccga gaccttcggc
atcaccctga ataccaagga cgtgaagtac 2940gagctgttca tcgcccggga catgagcgcc
aaagaggccc agagcggcga agtgggctac 3000aagttccagt acggctggcg caagaccgac
cagaaagtga tgagcgacta cgccgacatc 3060ctgagcgaga aggtggaggc cctgtaccag
gccctgctgt ccggccggaa gtggagcgac 3120atcgccgacg acaccgagga atacttcatc
gacgacctgt acgtgaacaa gcccgaccgg 3180gtgttcgaga gagccggcct ggaccccgag
cggcacatca aggtgaaagg cgtgatgaat 3240gagctgacca cctacttctc caagcggttc
gtgagctact ggtacaagat caccaaagtg 3300gaggcccgga acctgctgac cctgaccgac
atcggcggcg acgccaagaa gtacacccag 3360ttcgaccccg acgacttcaa gcccatggcc
gtggccgagc tgggagccca cgcctccacc 3420tacgtgtacc agaatctgat cctgggccgg
aaccggggcg agaagatcga cgacgccaaa 3480gaaatcgtgt ggtacgacct gtccctgacc
aactttggct gctctcgcag cctggacagc 3540tgctgggtgg gcagcgtggc cagaagcgag
ctgaacctgc ggttccacct gatcagcgcc 3600atcttcgaga gataccagca cgacgccagg
cggagcagct tctacgagat catcttcgac 3660ctgcccagca agaaagagaa gattttcccc
agctacaagc actactacgt ggccctgctg 3720cagaacatct tcaacgacac ccagcggctg
gaagtgatgg actactgcga gcggctgatg 3780aaccccgaga cccggatgag cgccctgctg
tctctgcaag gctttaagaa ctgcgtggag 3840agcgagttcg tggcccccac cctgaagatg
aatgccctgc tgtgggtgct ggccgacatg 3900gaaaacatcg acatcaacta cagcaacaag
cggatgcccc tgctgctgtc caccgagaag 3960ggcctgcggg tgatctccat cgatatgttt
aacggcatgc tgggcgtgag ctatagcggc 4020tggattccct acctggaacg gatctgctcc
gaggtgaacc tgcagcggcg gctgagggcc 4080gacgagctga agctgaagaa gtggttcatc
agctactacg ccacctacga ggtggagcgg 4140agagccgagc ccaggatgag cttcaagatg
gaaggcatca gcacctggat cggcagcaac 4200tgtggcggcg tgcaggacta cgtgctgcac
ctgatcccca gcaggcggcc caagcctggc 4260ctgctgttcc tgatctacgc cgacgacggc
gacgtggatt gggtggccaa catgctgtcc 4320gatgtgatcg gcagcgaggg cagcctgggc
ttcatcttca tcaacgaccg gaccttcgtg 4380aataagagcc agctgaaagt gcggaccctg
aaaatctaca accggggcat gctggatcgg 4440ctcatcctga tttccggcgg caactacacc
ttcggcaaca agtttctgct gtccaagctg 4500ctggccaaga cagagaaatg atgactcgag
tttttattga ttcaaaattg aaaatatata 4560attacaatat aaaatgggca agttcaccag
ctttctgaag agggccggca gcgccaccaa 4620gaaggccctg accagcgaca ccgccaagcg
gatgtacaag atggccggca agaccctgca 4680gaaagtggtg gagaacgaag tgggcagcgc
cgccatcgac ggcgtgatgc agggcaccat 4740ccagagcatc atccagggcg agaacctggg
cgacagcatc cggcaggccg tgatcctgaa 4800cgtggccggc accctggaaa gcgcccctga
ccccctgagc cctggcgagc agctgctgta 4860caacaaggtg tccgagctgg aacgggccga
gaaagaagat cgggtcatcg agacccacaa 4920cgagaagatc atcgagaagt acggcgagga
cctgctgaag atccggaaga tcatgaaggg 4980cgaggccaag gccgagcagc tggaaggcaa
agaaatcgag tacgtggaga tggccctgaa 5040gggcatgctg aagattggca aggaccagag
cgagcggatc acccagctgt accgggccct 5100gcagaccgaa gaggacctgc ggaccagcga
cgagacccgg atgatcaacg agtaccggga 5160gaagttcgac gccctgaagc aggccatcga
actggaacag caggccaccc acgaggaagc 5220cgtgcaggaa atgctggacc tgagcgccga
ggtgatcgaa acagccgccg aggaagtgcc 5280catctttggc gctggggctg ccaacgtggt
ggctactacc agggccgtgc agggcggcct 5340gaagctgaaa gagatcatcg acaagctgac
cggcatcgac ctgagccacc tgaaggtggc 5400cgacatccac ccccacatca tcgaaaaggc
catgctgaaa gacaagatcc ccgacaacga 5460gctggctatg gccatcaaga gcaaggtgga
agtgatcgac gagatgaaca ccgagaccga 5520gcacgtgatc gagagcatca tgcccctggt
gaagaaagag tacgagaagc acgacaacaa 5580gtaccacgtg aacatcccca gcgtgctgaa
aatccacagc gagcacaccc ccaaggtgca 5640catctacacc accccctggg acagcgacaa
ggtgttcatc tgccggtgca tcgcccccca 5700ccatcagcag aaaagcttca tgatcggctt
cgacctggaa atcgagtttg tgttctacga 5760ggacaccagc gtggagggcc acatcatgca
cggcggagcc gtgctgatcg agggcagggg 5820cttcaggcag gcctacagcg agttcatgaa
cgccgcctgg tccatgccca gcacccccga 5880gctgcacaag cggcggctgc agcggagcct
gggcagccac cccatctaca tgggcagcat 5940ggactacacc gtgagctacg accagctggt
gtccaacgcc atgaagctgg tgtacgacac 6000cgagctgcag atgcactgcc tgagaggccc
cctgaagttc cagcggcgga ccctgatgaa 6060cgccctgctg ttcggcgtga agatcgcctg
atgatttttc tactagttaa tcaaataaaa 6120agcatacaag ctattgcttc gctatcgtta
caaaatggca ggaattttgt gtaaactaag 6180ccacatactt gccaatgaaa aaaatagtag
aaaggatact attttaatgg gattagatgt 6240taaggttcct tgggattata gtaactgggc
atctgttaac ttttacgacg ttaggttaga 6300tactgatgtt acagattata ataatgttac
aataaaatac atgacaggat gtgatatttt 6360tcctcatata actcttggaa tagcaaatat
ggatcaatgt gatagatttg aaaatttcaa 6420aaagcaaata actgatcaag atttacagac
tatttctata gtctgtaaag aagagatgtg 6480ttttcctcag agtaacgcct ctaaacagtt
gggagcgaaa ggatgcgctg tagttatgaa 6540actggaggta tctgatgaac ttagagccct
aagaaatgtt ctgctgaatg cggtaccctg 6600ttcgaaggac gtgtttggtg atatcacagt
agataatccg tggaatcctc acataacagt 6660aggatatgtt aaggaggacg atgtcgaaaa
caagaaacgc ctaatggagt gcatgtccaa 6720gtttaggggg caagaaatac aagttctagg
atggtattaa taagtatcta agtatttggt 6780ataatttatt aaatagtata attataacaa
ataataaata acatgataac ggtttttatt 6840agaataaaat agagataata tcataatgat
atataatact tcattaccag aaatgagtaa 6900tggaagactt ataaatgaac tgcataaagc
tataaggtat agagatataa atttagtaag 6960gtatatactt aaaaaatgca aatacaataa
cgtaaatata ctatcaacgt ctttgtattt 7020agccgtaagt atttctgata tagaaatggt
aaaattatta ctagaacacg gtgccgatat 7080tttaaaatgt aaaaatcctc ctcttcataa
agctgctagt ttagataata cagaaattgc 7140taaactacta atagattctg gcgctgacat
agaacagata cattctggaa atagtccgtt 7200atatatttct gtatatagaa acaataagtc
attaactaga tatttattaa aaaaaggtgt 7260taattgtaat agattctttc taaattatta
cgatgtactg tatgataaga tatctgatga 7320tatgtataaa atatttatag attttaatat
tgatcttaat atacaaacta gaaattttga 7380aactccgtta cattacgcta taaagtataa
gaatatagat ttaattagga tattgttaga 7440taatagtatt aaaatagata aaagtttatt
tttgcataaa cagtatctca taaaggcact 7500taaaaataat tgtagttacg atataatagc
gttacttata aatcacggag tgcctataaa 7560cgaacaagat gatttaggta aaaccccatt
acatcattcg gtaattaata gaagaaaaga 7620tgtaacagca cttctgttaa atctaggagc
tgatataaac gtaatagatg actgtatggg 7680cagtccctta cattacgctg tttcacgtaa
cgatatcgaa acaacaaaga cacttttaga 7740aagaggatct aatgttaatg tggttaataa
tcatatagat accgttctaa atatagctgt 7800tgcatctaaa aacaaaacta tagtaaactt
attactgaag tacggtactg atacaaagtt 7860ggtaggatta gataaacatg ttattcacat
agctatagaa atgaaagata ttaatatact 7920gaatgcgatc ttattatatg gttgctatgt
aaacgtctat aatcataaag gtttcactcc 7980tctatacatg gcagttagtt ctatgaaaac
agaatttgtt aaactcttac ttgaccacgg 8040tgcttacgta aatgctaaag ctaagttatc
tggaaatact cctttacata aagctatgtt 8100atctaatagt tttaataata taaaattact
tttatcttat aacgccgact ataattctct 8160aaataatcac ggtaatacgc ctctaacttg
tgttagcttt ttagatgaca agatagctat 8220tatgataata tctaaaatga tgttagaaat
atctaaaaat cctgaaatag ctaattcaga 8280aggttttata gtaaacatgg aacatataaa
cagtaataaa agactactat ctataaaaga 8340atcatgcgaa aaagaactag atgttataac
acatataaag ttaaattcta tatattcttt 8400taatatcttt cttgacaata acatagatct
tatggtaaag ttcgtaacta atcctagagt 8460taataagata cctgcatgta tacgtatata
tagggaatta atacggaaaa ataaatcatt 8520agcttttcat agacatcagc taatagttaa
agctgtaaaa gagagtaaga atctaggaat 8580aataggtagg ttacctatag atatcaaaca
tataataatg gaactattaa gtaataatga 8640tttacattct gttatcacca gctgttgtaa
cccagtagta taaagtgatt ttattcaatt 8700acgaagataa acattaaatt tgttaacaga
tatgagttat gagtatttaa ctaaagttac 8760tttaggtaca aataaaatat tatgtaatat
aatagaaaat tatcttgagt cttcatttcc 8820atcaccgtct aaatttatta ttaaaacctt
attatataag gctgttgagt ttagaaatgt 8880aaatgctgta aaaaaaatat tacagaatga
tattgaatat gttaaagtag atagtc 8936423171DNAartificial sequenceAHSV-5
VP2 of vCP2398 42atggccagcg agttcggcgt gctgctgacc gacaaggtgg aaggcgacgc
cctggaaaag 60accaactgcg aggtgatcct gacccggtcc ggcagagtgc ggcggagaga
agtggacggc 120gtgaagggct acgagtggga gttcaccgac caccggctgg gcctgtgcga
gatcgagcac 180accatgagca tggccgattt cttctacaac cagatcaagt gcgagggcgc
ctaccccatc 240ttcccccact acatcaccga cgtgctgaag tacggcaaga tggtggaccg
gaacgaccac 300cagatccggg tggaccggga cgtgaaagag ctgtccaaga tcctgatcca
gccctacttc 360ggcgaggcct acttcagccc cgagttctac accagcacct tcagcaagcg
gcaggccatc 420cagatgaacg tggagatgct gcgggccttc gtgcccaagc gggtggcctt
ctacgaggac 480gacatgcgga ggggcggcac catcgacggc aactggatcg gcgccctgca
ggcctggaag 540aagaaggccg acctgcagat gagccgggag ggcaacagcc agaccaattg
cgtggaccac 600aacgccgacg tgatctacca gcacatgaag aagctgcggt tcggcctgct
gtacccccac 660tactacatgc tgaacagcga gtacaccgtg gaggaaaaga gcaagggcgg
cctgatcgcc 720aactggctgg tgaaagagaa agccgccgga cgggccgaga acagccccat
gtacagcggc 780gtgggccccc tgaacaccct gcgggagcgg atcgagcggg acgagctgga
cgagaaggtg 840atccaggaaa tcatcgccta cggcagcaag ttcagcacct acgccggcac
ccggaccggc 900gacctgaccc tgaacgagct ggtgaagtac tgcgagagcc tgaccacctt
cgtgcacaag 960aagaagaaag agggcgagga cgagaccgcc agagagttct tcaagagcaa
gtggattcag 1020ggcatgccca agatgaactt cgagaacgag atgatcatga gccggaagag
ctgggccaac 1080accaagttct tttggagcat cgacatgttc aagcggaaca acggcgtgga
catcgacccc 1140aacggcaaga actggaagga ctataagaag aagatccagg aacagctgga
cgaagcccag 1200aagaagaaca acaacgagcc ctacaaagtg atggtggacg gggtgaacat
catgaccaac 1260aagaaatacg gcagcgtgga gaactgggtg gactgggtcg tgaactacat
catgctgtcc 1320cacgtgaagc ggctggtgaa ggactacaag ttcaagcggc tgaagcccga
caacctgatg 1380agcggcatga acaaactggt cggcgctctc aggtgctacg cctactgcct
gatcctggcc 1440ctgtacgacc actttggcga ggatattgag ggcttcaaga agggcaccaa
cgccgccagc 1500atcgtggaga ccgtgagcca gatgttcccc cagttccgga aagaggtgtc
cgagaccttc 1560ggcatcaccc tgaataccaa ggacgtgaag tacgagctgt tcatcgcccg
ggacatgagc 1620gccaaagagg cccagagcgg cgaagtgggc tacaagttcc agtacggctg
gcgcaagacc 1680gaccagaaag tgatgagcga ctacgccgac atcctgagcg agaaggtgga
ggccctgtac 1740caggccctgc tgtccggccg gaagtggagc gacatcgccg acgacaccga
ggaatacttc 1800atcgacgacc tgtacgtgaa caagcccgac cgggtgttcg agagagccgg
cctggacccc 1860gagcggcaca tcaaggtgaa aggcgtgatg aatgagctga ccacctactt
ctccaagcgg 1920ttcgtgagct actggtacaa gatcaccaaa gtggaggccc ggaacctgct
gaccctgacc 1980gacatcggcg gcgacgccaa gaagtacacc cagttcgacc ccgacgactt
caagcccatg 2040gccgtggccg agctgggagc ccacgcctcc acctacgtgt accagaatct
gatcctgggc 2100cggaaccggg gcgagaagat cgacgacgcc aaagaaatcg tgtggtacga
cctgtccctg 2160accaactttg gctgctctcg cagcctggac agctgctggg tgggcagcgt
ggccagaagc 2220gagctgaacc tgcggttcca cctgatcagc gccatcttcg agagatacca
gcacgacgcc 2280aggcggagca gcttctacga gatcatcttc gacctgccca gcaagaaaga
gaagattttc 2340cccagctaca agcactacta cgtggccctg ctgcagaaca tcttcaacga
cacccagcgg 2400ctggaagtga tggactactg cgagcggctg atgaaccccg agacccggat
gagcgccctg 2460ctgtctctgc aaggctttaa gaactgcgtg gagagcgagt tcgtggcccc
caccctgaag 2520atgaatgccc tgctgtgggt gctggccgac atggaaaaca tcgacatcaa
ctacagcaac 2580aagcggatgc ccctgctgct gtccaccgag aagggcctgc gggtgatctc
catcgatatg 2640tttaacggca tgctgggcgt gagctatagc ggctggattc cctacctgga
acggatctgc 2700tccgaggtga acctgcagcg gcggctgagg gccgacgagc tgaagctgaa
gaagtggttc 2760atcagctact acgccaccta cgaggtggag cggagagccg agcccaggat
gagcttcaag 2820atggaaggca tcagcacctg gatcggcagc aactgtggcg gcgtgcagga
ctacgtgctg 2880cacctgatcc ccagcaggcg gcccaagcct ggcctgctgt tcctgatcta
cgccgacgac 2940ggcgacgtgg attgggtggc caacatgctg tccgatgtga tcggcagcga
gggcagcctg 3000ggcttcatct tcatcaacga ccggaccttc gtgaataaga gccagctgaa
agtgcggacc 3060ctgaaaatct acaaccgggg catgctggat cggctcatcc tgatttccgg
cggcaactac 3120accttcggca acaagtttct gctgtccaag ctgctggcca agacagagaa a
3171431515DNAartificial sequenceAHSV-5 VP5 of vCP2398
43atgggcaagt tcaccagctt tctgaagagg gccggcagcg ccaccaagaa ggccctgacc
60agcgacaccg ccaagcggat gtacaagatg gccggcaaga ccctgcagaa agtggtggag
120aacgaagtgg gcagcgccgc catcgacggc gtgatgcagg gcaccatcca gagcatcatc
180cagggcgaga acctgggcga cagcatccgg caggccgtga tcctgaacgt ggccggcacc
240ctggaaagcg cccctgaccc cctgagccct ggcgagcagc tgctgtacaa caaggtgtcc
300gagctggaac gggccgagaa agaagatcgg gtcatcgaga cccacaacga gaagatcatc
360gagaagtacg gcgaggacct gctgaagatc cggaagatca tgaagggcga ggccaaggcc
420gagcagctgg aaggcaaaga aatcgagtac gtggagatgg ccctgaaggg catgctgaag
480attggcaagg accagagcga gcggatcacc cagctgtacc gggccctgca gaccgaagag
540gacctgcgga ccagcgacga gacccggatg atcaacgagt accgggagaa gttcgacgcc
600ctgaagcagg ccatcgaact ggaacagcag gccacccacg aggaagccgt gcaggaaatg
660ctggacctga gcgccgaggt gatcgaaaca gccgccgagg aagtgcccat ctttggcgct
720ggggctgcca acgtggtggc tactaccagg gccgtgcagg gcggcctgaa gctgaaagag
780atcatcgaca agctgaccgg catcgacctg agccacctga aggtggccga catccacccc
840cacatcatcg aaaaggccat gctgaaagac aagatccccg acaacgagct ggctatggcc
900atcaagagca aggtggaagt gatcgacgag atgaacaccg agaccgagca cgtgatcgag
960agcatcatgc ccctggtgaa gaaagagtac gagaagcacg acaacaagta ccacgtgaac
1020atccccagcg tgctgaaaat ccacagcgag cacaccccca aggtgcacat ctacaccacc
1080ccctgggaca gcgacaaggt gttcatctgc cggtgcatcg ccccccacca tcagcagaaa
1140agcttcatga tcggcttcga cctggaaatc gagtttgtgt tctacgagga caccagcgtg
1200gagggccaca tcatgcacgg cggagccgtg ctgatcgagg gcaggggctt caggcaggcc
1260tacagcgagt tcatgaacgc cgcctggtcc atgcccagca cccccgagct gcacaagcgg
1320cggctgcagc ggagcctggg cagccacccc atctacatgg gcagcatgga ctacaccgtg
1380agctacgacc agctggtgtc caacgccatg aagctggtgt acgacaccga gctgcagatg
1440cactgcctga gaggccccct gaagttccag cggcggaccc tgatgaacgc cctgctgttc
1500ggcgtgaaga tcgcc
1515441057PRTartificial sequencePredicted Amino Acid Sequence for AHSV-5
VP2 of vCP2398 44Met Ala Ser Glu Phe Gly Val Leu Leu Thr Asp Lys Val
Glu Gly Asp 1 5 10 15
Ala Leu Glu Lys Thr Asn Cys Glu Val Ile Leu Thr Arg Ser Gly Arg
20 25 30 Val Arg Arg Arg
Glu Val Asp Gly Val Lys Gly Tyr Glu Trp Glu Phe 35
40 45 Thr Asp His Arg Leu Gly Leu Cys Glu
Ile Glu His Thr Met Ser Met 50 55
60 Ala Asp Phe Phe Tyr Asn Gln Ile Lys Cys Glu Gly Ala
Tyr Pro Ile 65 70 75
80 Phe Pro His Tyr Ile Thr Asp Val Leu Lys Tyr Gly Lys Met Val Asp
85 90 95 Arg Asn Asp His
Gln Ile Arg Val Asp Arg Asp Val Lys Glu Leu Ser 100
105 110 Lys Ile Leu Ile Gln Pro Tyr Phe Gly
Glu Ala Tyr Phe Ser Pro Glu 115 120
125 Phe Tyr Thr Ser Thr Phe Ser Lys Arg Gln Ala Ile Gln Met
Asn Val 130 135 140
Glu Met Leu Arg Ala Phe Val Pro Lys Arg Val Ala Phe Tyr Glu Asp 145
150 155 160 Asp Met Arg Arg Gly
Gly Thr Ile Asp Gly Asn Trp Ile Gly Ala Leu 165
170 175 Gln Ala Trp Lys Lys Lys Ala Asp Leu Gln
Met Ser Arg Glu Gly Asn 180 185
190 Ser Gln Thr Asn Cys Val Asp His Asn Ala Asp Val Ile Tyr Gln
His 195 200 205 Met
Lys Lys Leu Arg Phe Gly Leu Leu Tyr Pro His Tyr Tyr Met Leu 210
215 220 Asn Ser Glu Tyr Thr Val
Glu Glu Lys Ser Lys Gly Gly Leu Ile Ala 225 230
235 240 Asn Trp Leu Val Lys Glu Lys Ala Ala Gly Arg
Ala Glu Asn Ser Pro 245 250
255 Met Tyr Ser Gly Val Gly Pro Leu Asn Thr Leu Arg Glu Arg Ile Glu
260 265 270 Arg Asp
Glu Leu Asp Glu Lys Val Ile Gln Glu Ile Ile Ala Tyr Gly 275
280 285 Ser Lys Phe Ser Thr Tyr Ala
Gly Thr Arg Thr Gly Asp Leu Thr Leu 290 295
300 Asn Glu Leu Val Lys Tyr Cys Glu Ser Leu Thr Thr
Phe Val His Lys 305 310 315
320 Lys Lys Lys Glu Gly Glu Asp Glu Thr Ala Arg Glu Phe Phe Lys Ser
325 330 335 Lys Trp Ile
Gln Gly Met Pro Lys Met Asn Phe Glu Asn Glu Met Ile 340
345 350 Met Ser Arg Lys Ser Trp Ala Asn
Thr Lys Phe Phe Trp Ser Ile Asp 355 360
365 Met Phe Lys Arg Asn Asn Gly Val Asp Ile Asp Pro Asn
Gly Lys Asn 370 375 380
Trp Lys Asp Tyr Lys Lys Lys Ile Gln Glu Gln Leu Asp Glu Ala Gln 385
390 395 400 Lys Lys Asn Asn
Asn Glu Pro Tyr Lys Val Met Val Asp Gly Val Asn 405
410 415 Ile Met Thr Asn Lys Lys Tyr Gly Ser
Val Glu Asn Trp Val Asp Trp 420 425
430 Val Val Asn Tyr Ile Met Leu Ser His Val Lys Arg Leu Val
Lys Asp 435 440 445
Tyr Lys Phe Lys Arg Leu Lys Pro Asp Asn Leu Met Ser Gly Met Asn 450
455 460 Lys Leu Val Gly Ala
Leu Arg Cys Tyr Ala Tyr Cys Leu Ile Leu Ala 465 470
475 480 Leu Tyr Asp His Phe Gly Glu Asp Ile Glu
Gly Phe Lys Lys Gly Thr 485 490
495 Asn Ala Ala Ser Ile Val Glu Thr Val Ser Gln Met Phe Pro Gln
Phe 500 505 510 Arg
Lys Glu Val Ser Glu Thr Phe Gly Ile Thr Leu Asn Thr Lys Asp 515
520 525 Val Lys Tyr Glu Leu Phe
Ile Ala Arg Asp Met Ser Ala Lys Glu Ala 530 535
540 Gln Ser Gly Glu Val Gly Tyr Lys Phe Gln Tyr
Gly Trp Arg Lys Thr 545 550 555
560 Asp Gln Lys Val Met Ser Asp Tyr Ala Asp Ile Leu Ser Glu Lys Val
565 570 575 Glu Ala
Leu Tyr Gln Ala Leu Leu Ser Gly Arg Lys Trp Ser Asp Ile 580
585 590 Ala Asp Asp Thr Glu Glu Tyr
Phe Ile Asp Asp Leu Tyr Val Asn Lys 595 600
605 Pro Asp Arg Val Phe Glu Arg Ala Gly Leu Asp Pro
Glu Arg His Ile 610 615 620
Lys Val Lys Gly Val Met Asn Glu Leu Thr Thr Tyr Phe Ser Lys Arg 625
630 635 640 Phe Val Ser
Tyr Trp Tyr Lys Ile Thr Lys Val Glu Ala Arg Asn Leu 645
650 655 Leu Thr Leu Thr Asp Ile Gly Gly
Asp Ala Lys Lys Tyr Thr Gln Phe 660 665
670 Asp Pro Asp Asp Phe Lys Pro Met Ala Val Ala Glu Leu
Gly Ala His 675 680 685
Ala Ser Thr Tyr Val Tyr Gln Asn Leu Ile Leu Gly Arg Asn Arg Gly 690
695 700 Glu Lys Ile Asp
Asp Ala Lys Glu Ile Val Trp Tyr Asp Leu Ser Leu 705 710
715 720 Thr Asn Phe Gly Cys Ser Arg Ser Leu
Asp Ser Cys Trp Val Gly Ser 725 730
735 Val Ala Arg Ser Glu Leu Asn Leu Arg Phe His Leu Ile Ser
Ala Ile 740 745 750
Phe Glu Arg Tyr Gln His Asp Ala Arg Arg Ser Ser Phe Tyr Glu Ile
755 760 765 Ile Phe Asp Leu
Pro Ser Lys Lys Glu Lys Ile Phe Pro Ser Tyr Lys 770
775 780 His Tyr Tyr Val Ala Leu Leu Gln
Asn Ile Phe Asn Asp Thr Gln Arg 785 790
795 800 Leu Glu Val Met Asp Tyr Cys Glu Arg Leu Met Asn
Pro Glu Thr Arg 805 810
815 Met Ser Ala Leu Leu Ser Leu Gln Gly Phe Lys Asn Cys Val Glu Ser
820 825 830 Glu Phe Val
Ala Pro Thr Leu Lys Met Asn Ala Leu Leu Trp Val Leu 835
840 845 Ala Asp Met Glu Asn Ile Asp Ile
Asn Tyr Ser Asn Lys Arg Met Pro 850 855
860 Leu Leu Leu Ser Thr Glu Lys Gly Leu Arg Val Ile Ser
Ile Asp Met 865 870 875
880 Phe Asn Gly Met Leu Gly Val Ser Tyr Ser Gly Trp Ile Pro Tyr Leu
885 890 895 Glu Arg Ile Cys
Ser Glu Val Asn Leu Gln Arg Arg Leu Arg Ala Asp 900
905 910 Glu Leu Lys Leu Lys Lys Trp Phe Ile
Ser Tyr Tyr Ala Thr Tyr Glu 915 920
925 Val Glu Arg Arg Ala Glu Pro Arg Met Ser Phe Lys Met Glu
Gly Ile 930 935 940
Ser Thr Trp Ile Gly Ser Asn Cys Gly Gly Val Gln Asp Tyr Val Leu 945
950 955 960 His Leu Ile Pro Ser
Arg Arg Pro Lys Pro Gly Leu Leu Phe Leu Ile 965
970 975 Tyr Ala Asp Asp Gly Asp Val Asp Trp Val
Ala Asn Met Leu Ser Asp 980 985
990 Val Ile Gly Ser Glu Gly Ser Leu Gly Phe Ile Phe Ile Asn
Asp Arg 995 1000 1005
Thr Phe Val Asn Lys Ser Gln Leu Lys Val Arg Thr Leu Lys Ile 1010
1015 1020 Tyr Asn Arg Gly Met
Leu Asp Arg Leu Ile Leu Ile Ser Gly Gly 1025 1030
1035 Asn Tyr Thr Phe Gly Asn Lys Phe Leu Leu
Ser Lys Leu Leu Ala 1040 1045 1050
Lys Thr Glu Lys 1055 45505PRTartificial
sequencePredicted Amino Acid Sequence for AHSV-5 VP5 of vCP2398
45Met Gly Lys Phe Thr Ser Phe Leu Lys Arg Ala Gly Ser Ala Thr Lys 1
5 10 15 Lys Ala Leu Thr
Ser Asp Thr Ala Lys Arg Met Tyr Lys Met Ala Gly 20
25 30 Lys Thr Leu Gln Lys Val Val Glu Asn
Glu Val Gly Ser Ala Ala Ile 35 40
45 Asp Gly Val Met Gln Gly Thr Ile Gln Ser Ile Ile Gln Gly
Glu Asn 50 55 60
Leu Gly Asp Ser Ile Arg Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65
70 75 80 Leu Glu Ser Ala Pro
Asp Pro Leu Ser Pro Gly Glu Gln Leu Leu Tyr 85
90 95 Asn Lys Val Ser Glu Leu Glu Arg Ala Glu
Lys Glu Asp Arg Val Ile 100 105
110 Glu Thr His Asn Glu Lys Ile Ile Glu Lys Tyr Gly Glu Asp Leu
Leu 115 120 125 Lys
Ile Arg Lys Ile Met Lys Gly Glu Ala Lys Ala Glu Gln Leu Glu 130
135 140 Gly Lys Glu Ile Glu Tyr
Val Glu Met Ala Leu Lys Gly Met Leu Lys 145 150
155 160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Gln
Leu Tyr Arg Ala Leu 165 170
175 Gln Thr Glu Glu Asp Leu Arg Thr Ser Asp Glu Thr Arg Met Ile Asn
180 185 190 Glu Tyr
Arg Glu Lys Phe Asp Ala Leu Lys Gln Ala Ile Glu Leu Glu 195
200 205 Gln Gln Ala Thr His Glu Glu
Ala Val Gln Glu Met Leu Asp Leu Ser 210 215
220 Ala Glu Val Ile Glu Thr Ala Ala Glu Glu Val Pro
Ile Phe Gly Ala 225 230 235
240 Gly Ala Ala Asn Val Val Ala Thr Thr Arg Ala Val Gln Gly Gly Leu
245 250 255 Lys Leu Lys
Glu Ile Ile Asp Lys Leu Thr Gly Ile Asp Leu Ser His 260
265 270 Leu Lys Val Ala Asp Ile His Pro
His Ile Ile Glu Lys Ala Met Leu 275 280
285 Lys Asp Lys Ile Pro Asp Asn Glu Leu Ala Met Ala Ile
Lys Ser Lys 290 295 300
Val Glu Val Ile Asp Glu Met Asn Thr Glu Thr Glu His Val Ile Glu 305
310 315 320 Ser Ile Met Pro
Leu Val Lys Lys Glu Tyr Glu Lys His Asp Asn Lys 325
330 335 Tyr His Val Asn Ile Pro Ser Val Leu
Lys Ile His Ser Glu His Thr 340 345
350 Pro Lys Val His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Lys
Val Phe 355 360 365
Ile Cys Arg Cys Ile Ala Pro His His Gln Gln Lys Ser Phe Met Ile 370
375 380 Gly Phe Asp Leu Glu
Ile Glu Phe Val Phe Tyr Glu Asp Thr Ser Val 385 390
395 400 Glu Gly His Ile Met His Gly Gly Ala Val
Leu Ile Glu Gly Arg Gly 405 410
415 Phe Arg Gln Ala Tyr Ser Glu Phe Met Asn Ala Ala Trp Ser Met
Pro 420 425 430 Ser
Thr Pro Glu Leu His Lys Arg Arg Leu Gln Arg Ser Leu Gly Ser 435
440 445 His Pro Ile Tyr Met Gly
Ser Met Asp Tyr Thr Val Ser Tyr Asp Gln 450 455
460 Leu Val Ser Asn Ala Met Lys Leu Val Tyr Asp
Thr Glu Leu Gln Met 465 470 475
480 His Cys Leu Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn
485 490 495 Ala Leu
Leu Phe Gly Val Lys Ile Ala 500 505
4643DNAartificial sequence18041 CXL mutagenesis primer 46cggcgtgaaa
tgatagtaat ttttctacta gtctagaagg gcg
434743DNAartificial sequence18042 CXL mutagenesis primer 47cgcccttcta
gactagtaga aaaattacta tcatttcacg ccg
43483180DNAartificial sequenceAHSV4-Jane Strain-L2/VP2 gene 48atggcgtccg
agtttggaat attgatgaca aatgaaaaat ttgacccaag cttagagaaa 60accatttgcg
atgttatagt tacgaagaag ggaagagtga agcataaaga ggtggatggc 120gtatgtggat
acgagtggga tgaaacgaat caccgattcg gattgtgtaa ggtggaacac 180gacatgtcta
tatcggaatt tatgtacaat gagatcagat gtgagggggc atatccaatt 240tttccgcgtt
atataattga tacgttaaaa tacgagaaat ttattgatag gaatgaccat 300caaattagag
tggatagaga tgataacgaa atgaggaaaa tattgataca gccgtatgca 360ggtgagatgt
acttttcgcc ggaatgttat ccgagcgttt ttcttcggag ggaagcgcga 420agtcaaaagc
ttgatcggat tcggaattat attggaaaga gagtcgaatt ttatgaagag 480gagagtaaga
gaaaagcaat ccttgatcag aataagatgt ctaaggttga acaatggaga 540gatgcggtta
atgaaaggat tgtgagtatc gaaccaaagc gaggtgagtg ctatgatcac 600ggaaccgaca
ttatctacca attcataaaa aagctgagat ttggaatgat gtacccacac 660tattatgttt
tgcatagtga ttactgtatt gtaccaaata aggggggaac tagtattgga 720tcatggcata
taagaaaacg tactgagggt gatgcgaaag cttctgctat gtattctgga 780aaaggtccac
tgaatgactt acgagttaaa attgagcggg atgatttatc tcgagagaca 840attattcaga
tcattgagta cggtaagaaa tttaattcat cagcaggtga taagcagggg 900aacatttcaa
ttgaaaaatt ggtagagtat tgtgattttt tgacaacatt cgttcatgcg 960aagaagaaag
aagagggtga ggatgatact gctcgacagg agataagaaa agcatgggtt 1020aaggggatgc
cttatatgga tttctcaaaa ccgatgaaaa tcacgcgtgg attcaacaga 1080aatatgcttt
tccttgcggc gctcgattca ttcagaaaga ggaacggtgt agatgttgat 1140ccgaataagg
gtaagtggaa agaacatata aaggaggtaa ccgaaaaatt gaagaaagcg 1200caaaccgaaa
atggaggaca accatgccaa gtgtcgatcg atggagtaaa cgtcttgact 1260aacgtagatt
acggtacggt taatcattgg atagattggg taacagatat aattatggtt 1320gtacaaacta
aacgtttggt gaaagagtat gcatttaaaa aactaaagag cgaaaactta 1380cttgctggaa
tgaatagttt agttggggta ttaagatgtt atatgtattg cttagcttta 1440gcgatctatg
atttttatga agggactatt gatggtttta agaaaggctc gaatgcttcc 1500gctatcattg
aaactgtcgc gcagatgttt ccggactttc gcagagagct tgtcgaaaaa 1560ttcggtatag
atttaaggat gaaggaaatc acgcgtgagt tgtttgttgg taagagcatg 1620acgtcaaaat
ttatggagga aggtgaatat ggatataagt tcgcctatgg atggcgtagg 1680gatggcttcg
cggtgatgga agattacgga gaaattttga cagaaaaagt ggaggaccta 1740tataagggtg
tacttttagg acgaaagtgg gaggatgagg ttgatgatcc agagagttat 1800ttttatgatg
atctttatac taatgagccc cacagagtgt ttctaagcgc aggaaaggat 1860gtggataata
atatcacgct tcgatcgatt tcgcaggcgg aaaccacgta tctatcgaaa 1920cgtttcgtat
catattggta tagaatatca caagttgaag taacgaaggc gcgtaatgaa 1980gttctggaca
tgaatgagaa acagaagccg tattttgaat ttgaatatga tgatttcaaa 2040ccctgttcaa
ttggagagtt ggggatccat gcatccacat atatatatca gaacctactg 2100gtcggacgta
atagaggtga ggaaatactt gattcgaaag agctcgtctg gatggatatg 2160tcacttttaa
attttggagc ggtcagatct cacgataggt gctggatctc ctcaagcgtc 2220gcgattgagg
tgaatttacg tcatgcacta atagttagga ttttttcacg ctttgacatg 2280atgtcggaaa
gagaaacgtt ttcaaccatt ttagaaaaag tcatggagga tgtgaaagag 2340ttgagatttt
tcccgacata tcgtcattat tatttggaaa ctctccaacg tgtctttaac 2400gatgagagac
gcttagaagt tgatgacttt tatatgaggt tatatgatgt gcagacaagg 2460gagcaggcac
taaatacttt cacggatttt cacaggtgtg ttgagtcgga actgctctta 2520ccgacactta
aacttaactt tctgctgtgg attgtttttg aaatggaaaa tgttgaagtg 2580aacgcggcgt
acaagcgtca tccgctttta atctcaactg ccaaagggtt aagggttatc 2640ggcgttgata
ttttcaactc acagctttcg atatcaatga gcggatggat tccgtatgtc 2700gaacggatgt
gcgcggagag taaagttcaa acaaaattga cggctgatga gctgaaattg 2760aagaggtggt
tcatctcata ttatacgacg ttgaaattgg accgcagagc ggagccacgt 2820atgagtttca
aatttgaggg gttgagtaca tggatcggtt cgaactgcgg aggtgttagg 2880gattacgtaa
tacagatgct tcctaccaga aaacctaaac cgggagcttt gatggtggta 2940tacgcgcggg
attcgagaat cgagtggatc gaagcagagc tatcacagtg gctgcaaatg 3000gaaggttcgc
ttggtttgat cctcgttcat gattcaggta taataaataa gagcgtattg 3060agagcgagaa
ctctgaaaat ttacaatagg ggttcgatgg atactttaat tctaatttcg 3120agtggagttt
acactttcgg aaataaattc ttgttgtcga agttactcgc aaaaacagaa
3180491060PRTartificial sequenceAHSV4-Jane Strain-VP2 predicted AA
sequence 49Met Ala Ser Glu Phe Gly Ile Leu Met Thr Asn Glu Lys Phe Asp
Pro 1 5 10 15 Ser
Leu Glu Lys Thr Ile Cys Asp Val Ile Val Thr Lys Lys Gly Arg
20 25 30 Val Lys His Lys Glu
Val Asp Gly Val Cys Gly Tyr Glu Trp Asp Glu 35
40 45 Thr Asn His Arg Phe Gly Leu Cys Lys
Val Glu His Asp Met Ser Ile 50 55
60 Ser Glu Phe Met Tyr Asn Glu Ile Arg Cys Glu Gly Ala
Tyr Pro Ile 65 70 75
80 Phe Pro Arg Tyr Ile Ile Asp Thr Leu Lys Tyr Glu Lys Phe Ile Asp
85 90 95 Arg Asn Asp His
Gln Ile Arg Val Asp Arg Asp Asp Asn Glu Met Arg 100
105 110 Lys Ile Leu Ile Gln Pro Tyr Ala Gly
Glu Met Tyr Phe Ser Pro Glu 115 120
125 Cys Tyr Pro Ser Val Phe Leu Arg Arg Glu Ala Arg Ser Gln
Lys Leu 130 135 140
Asp Arg Ile Arg Asn Tyr Ile Gly Lys Arg Val Glu Phe Tyr Glu Glu 145
150 155 160 Glu Ser Lys Arg Lys
Ala Ile Leu Asp Gln Asn Lys Met Ser Lys Val 165
170 175 Glu Gln Trp Arg Asp Ala Val Asn Glu Arg
Ile Val Ser Ile Glu Pro 180 185
190 Lys Arg Gly Glu Cys Tyr Asp His Gly Thr Asp Ile Ile Tyr Gln
Phe 195 200 205 Ile
Lys Lys Leu Arg Phe Gly Met Met Tyr Pro His Tyr Tyr Val Leu 210
215 220 His Ser Asp Tyr Cys Ile
Val Pro Asn Lys Gly Gly Thr Ser Ile Gly 225 230
235 240 Ser Trp His Ile Arg Lys Arg Thr Glu Gly Asp
Ala Lys Ala Ser Ala 245 250
255 Met Tyr Ser Gly Lys Gly Pro Leu Asn Asp Leu Arg Val Lys Ile Glu
260 265 270 Arg Asp
Asp Leu Ser Arg Glu Thr Ile Ile Gln Ile Ile Glu Tyr Gly 275
280 285 Lys Lys Phe Asn Ser Ser Ala
Gly Asp Lys Gln Gly Asn Ile Ser Ile 290 295
300 Glu Lys Leu Val Glu Tyr Cys Asp Phe Leu Thr Thr
Phe Val His Ala 305 310 315
320 Lys Lys Lys Glu Glu Gly Glu Asp Asp Thr Ala Arg Gln Glu Ile Arg
325 330 335 Lys Ala Trp
Val Lys Gly Met Pro Tyr Met Asp Phe Ser Lys Pro Met 340
345 350 Lys Ile Thr Arg Gly Phe Asn Arg
Asn Met Leu Phe Leu Ala Ala Leu 355 360
365 Asp Ser Phe Arg Lys Arg Asn Gly Val Asp Val Asp Pro
Asn Lys Gly 370 375 380
Lys Trp Lys Glu His Ile Lys Glu Val Thr Glu Lys Leu Lys Lys Ala 385
390 395 400 Gln Thr Glu Asn
Gly Gly Gln Pro Cys Gln Val Ser Ile Asp Gly Val 405
410 415 Asn Val Leu Thr Asn Val Asp Tyr Gly
Thr Val Asn His Trp Ile Asp 420 425
430 Trp Val Thr Asp Ile Ile Met Val Val Gln Thr Lys Arg Leu
Val Lys 435 440 445
Glu Tyr Ala Phe Lys Lys Leu Lys Ser Glu Asn Leu Leu Ala Gly Met 450
455 460 Asn Ser Leu Val Gly
Val Leu Arg Cys Tyr Met Tyr Cys Leu Ala Leu 465 470
475 480 Ala Ile Tyr Asp Phe Tyr Glu Gly Thr Ile
Asp Gly Phe Lys Lys Gly 485 490
495 Ser Asn Ala Ser Ala Ile Ile Glu Thr Val Ala Gln Met Phe Pro
Asp 500 505 510 Phe
Arg Arg Glu Leu Val Glu Lys Phe Gly Ile Asp Leu Arg Met Lys 515
520 525 Glu Ile Thr Arg Glu Leu
Phe Val Gly Lys Ser Met Thr Ser Lys Phe 530 535
540 Met Glu Glu Gly Glu Tyr Gly Tyr Lys Phe Ala
Tyr Gly Trp Arg Arg 545 550 555
560 Asp Gly Phe Ala Val Met Glu Asp Tyr Gly Glu Ile Leu Thr Glu Lys
565 570 575 Val Glu
Asp Leu Tyr Lys Gly Val Leu Leu Gly Arg Lys Trp Glu Asp 580
585 590 Glu Val Asp Asp Pro Glu Ser
Tyr Phe Tyr Asp Asp Leu Tyr Thr Asn 595 600
605 Glu Pro His Arg Val Phe Leu Ser Ala Gly Lys Asp
Val Asp Asn Asn 610 615 620
Ile Thr Leu Arg Ser Ile Ser Gln Ala Glu Thr Thr Tyr Leu Ser Lys 625
630 635 640 Arg Phe Val
Ser Tyr Trp Tyr Arg Ile Ser Gln Val Glu Val Thr Lys 645
650 655 Ala Arg Asn Glu Val Leu Asp Met
Asn Glu Lys Gln Lys Pro Tyr Phe 660 665
670 Glu Phe Glu Tyr Asp Asp Phe Lys Pro Cys Ser Ile Gly
Glu Leu Gly 675 680 685
Ile His Ala Ser Thr Tyr Ile Tyr Gln Asn Leu Leu Val Gly Arg Asn 690
695 700 Arg Gly Glu Glu
Ile Leu Asp Ser Lys Glu Leu Val Trp Met Asp Met 705 710
715 720 Ser Leu Leu Asn Phe Gly Ala Val Arg
Ser His Asp Arg Cys Trp Ile 725 730
735 Ser Ser Ser Val Ala Ile Glu Val Asn Leu Arg His Ala Leu
Ile Val 740 745 750
Arg Ile Phe Ser Arg Phe Asp Met Met Ser Glu Arg Glu Thr Phe Ser
755 760 765 Thr Ile Leu Glu
Lys Val Met Glu Asp Val Lys Glu Leu Arg Phe Phe 770
775 780 Pro Thr Tyr Arg His Tyr Tyr Leu
Glu Thr Leu Gln Arg Val Phe Asn 785 790
795 800 Asp Glu Arg Arg Leu Glu Val Asp Asp Phe Tyr Met
Arg Leu Tyr Asp 805 810
815 Val Gln Thr Arg Glu Gln Ala Leu Asn Thr Phe Thr Asp Phe His Arg
820 825 830 Cys Val Glu
Ser Glu Leu Leu Leu Pro Thr Leu Lys Leu Asn Phe Leu 835
840 845 Leu Trp Ile Val Phe Glu Met Glu
Asn Val Glu Val Asn Ala Ala Tyr 850 855
860 Lys Arg His Pro Leu Leu Ile Ser Thr Ala Lys Gly Leu
Arg Val Ile 865 870 875
880 Gly Val Asp Ile Phe Asn Ser Gln Leu Ser Ile Ser Met Ser Gly Trp
885 890 895 Ile Pro Tyr Val
Glu Arg Met Cys Ala Glu Ser Lys Val Gln Thr Lys 900
905 910 Leu Thr Ala Asp Glu Leu Lys Leu Lys
Arg Trp Phe Ile Ser Tyr Tyr 915 920
925 Thr Thr Leu Lys Leu Asp Arg Arg Ala Glu Pro Arg Met Ser
Phe Lys 930 935 940
Phe Glu Gly Leu Ser Thr Trp Ile Gly Ser Asn Cys Gly Gly Val Arg 945
950 955 960 Asp Tyr Val Ile Gln
Met Leu Pro Thr Arg Lys Pro Lys Pro Gly Ala 965
970 975 Leu Met Val Val Tyr Ala Arg Asp Ser Arg
Ile Glu Trp Ile Glu Ala 980 985
990 Glu Leu Ser Gln Trp Leu Gln Met Glu Gly Ser Leu Gly Leu
Ile Leu 995 1000 1005
Val His Asp Ser Gly Ile Ile Asn Lys Ser Val Leu Arg Ala Arg 1010
1015 1020 Thr Leu Lys Ile Tyr
Asn Arg Gly Ser Met Asp Thr Leu Ile Leu 1025 1030
1035 Ile Ser Ser Gly Val Tyr Thr Phe Gly Asn
Lys Phe Leu Leu Ser 1040 1045 1050
Lys Leu Leu Ala Lys Thr Glu 1055 1060
501566DNAartificial sequenceAHSV4-Jane Strain-L2/VP5 gene 50gttaattttt
ccagaagcca tgggaaagtt cacatctttt ttgaagcgcg cgggcaatgc 60gaccaagagg
gcgctgacgt cggattcagc aaagaagatg tataagttgg cggggaaaac 120gttacagaga
gtggtagaaa gtgaagttgg aagtgcagcg atcgatggcg tgatgcaggg 180ggcgatacaa
agcataatac aaggcgaaaa ccttggtgat tcaattaagc aggcggttat 240tttaaatgtt
gcggggacat tggaatcggc gccagacccg ttgagcccag gggagcagct 300cctttacaat
aaggtttctg aaatcgagaa aatggaaaaa gaggatcgag tgattgaaac 360acacaatgcg
aaaatagaag aaaaatttgg taaagattta ttagcgattc gaaagattgt 420gaaaggcgag
gttgatgcag aaaagctgga aggtaacgaa attaagtacg tagaaaaagc 480gcttagcggt
ttgctggaga tagggaaaga tcagtcagaa cgcattacaa agctatatcg 540cgcgttacaa
acagaggaag atttgcggac acgagatgag actagaatga taaacgaata 600tagagaaaaa
tttgacgcgt tgaaagaagc gattgaaatc gagcagcaag cgacacatga 660tgaggcgatt
caagagatgc tcgacttaag cgcggaagta attgagactg cgtcggagga 720ggtaccaatc
ttcggcgctg gggcggcgaa cgttatcgcc acaacccgcg caatacaggg 780ggggttaaaa
ctaaaggaaa ttgttgataa gcttacgggc atagatttga gccatttgaa 840ggtggccgac
attcatccac acatcattga aaaggcaatg ctacgtgata ctgtaacgga 900caaagatttg
gcgatggcaa ttaagtcaaa agtggatgta attgacgaga tgaacgtaga 960aacgcagcac
gtaatcgatg ccgttctacc gatagttaaa caagaatatg agagacatga 1020taacaaatat
catgttagga tcccaggtgc attgaagata cattcagagc acacgcctaa 1080gatacatata
tatacgaccc catgggattc ggatagcgtc ttcatgtgta gagccattgc 1140accgcatcat
caacaacgaa gctttttcat tggatttgat ctagaaattg aatatgtcca 1200ttttgaagat
acttcagttg agggacatat attacatgga ggggcaataa ccgttgaggg 1260tagaggattt
cgacaggcgt atactgagtt catgaatgca gcgtggggga tgccaacaac 1320cccagagctc
cataaacgta agctacaaag gagtatggga actcatccga tctatatggg 1380atcgatggat
tacgctataa gctacgaaca gctggtttct aacgcgatga gattagttta 1440tgattccgag
ttacaaatgc attgtctccg tgggcctcta aaatttcaac gccgcacgct 1500aatgaacgcg
cttctatatg gtgtgaaaat agcttgaaag cctcacggcg cggagaaaac 1560acatac
156651505PRTartificial sequenceAHSV4-Jane Strain-VP5 predicted AA
sequence 51Met Gly Lys Phe Thr Ser Phe Leu Lys Arg Ala Gly Asn Ala Thr
Lys 1 5 10 15 Arg
Ala Leu Thr Ser Asp Ser Ala Lys Lys Met Tyr Lys Leu Ala Gly
20 25 30 Lys Thr Leu Gln Arg
Val Val Glu Ser Glu Val Gly Ser Ala Ala Ile 35
40 45 Asp Gly Val Met Gln Gly Ala Ile Gln
Ser Ile Ile Gln Gly Glu Asn 50 55
60 Leu Gly Asp Ser Ile Lys Gln Ala Val Ile Leu Asn Val
Ala Gly Thr 65 70 75
80 Leu Glu Ser Ala Pro Asp Pro Leu Ser Pro Gly Glu Gln Leu Leu Tyr
85 90 95 Asn Lys Val Ser
Glu Ile Glu Lys Met Glu Lys Glu Asp Arg Val Ile 100
105 110 Glu Thr His Asn Ala Lys Ile Glu Glu
Lys Phe Gly Lys Asp Leu Leu 115 120
125 Ala Ile Arg Lys Ile Val Lys Gly Glu Val Asp Ala Glu Lys
Leu Glu 130 135 140
Gly Asn Glu Ile Lys Tyr Val Glu Lys Ala Leu Ser Gly Leu Leu Glu 145
150 155 160 Ile Gly Lys Asp Gln
Ser Glu Arg Ile Thr Lys Leu Tyr Arg Ala Leu 165
170 175 Gln Thr Glu Glu Asp Leu Arg Thr Arg Asp
Glu Thr Arg Met Ile Asn 180 185
190 Glu Tyr Arg Glu Lys Phe Asp Ala Leu Lys Glu Ala Ile Glu Ile
Glu 195 200 205 Gln
Gln Ala Thr His Asp Glu Ala Ile Gln Glu Met Leu Asp Leu Ser 210
215 220 Ala Glu Val Ile Glu Thr
Ala Ser Glu Glu Val Pro Ile Phe Gly Ala 225 230
235 240 Gly Ala Ala Asn Val Ile Ala Thr Thr Arg Ala
Ile Gln Gly Gly Leu 245 250
255 Lys Leu Lys Glu Ile Val Asp Lys Leu Thr Gly Ile Asp Leu Ser His
260 265 270 Leu Lys
Val Ala Asp Ile His Pro His Ile Ile Glu Lys Ala Met Leu 275
280 285 Arg Asp Thr Val Thr Asp Lys
Asp Leu Ala Met Ala Ile Lys Ser Lys 290 295
300 Val Asp Val Ile Asp Glu Met Asn Val Glu Thr Gln
His Val Ile Asp 305 310 315
320 Ala Val Leu Pro Ile Val Lys Gln Glu Tyr Glu Arg His Asp Asn Lys
325 330 335 Tyr His Val
Arg Ile Pro Gly Ala Leu Lys Ile His Ser Glu His Thr 340
345 350 Pro Lys Ile His Ile Tyr Thr Thr
Pro Trp Asp Ser Asp Ser Val Phe 355 360
365 Met Cys Arg Ala Ile Ala Pro His His Gln Gln Arg Ser
Phe Phe Ile 370 375 380
Gly Phe Asp Leu Glu Ile Glu Tyr Val His Phe Glu Asp Thr Ser Val 385
390 395 400 Glu Gly His Ile
Leu His Gly Gly Ala Ile Thr Val Glu Gly Arg Gly 405
410 415 Phe Arg Gln Ala Tyr Thr Glu Phe Met
Asn Ala Ala Trp Gly Met Pro 420 425
430 Thr Thr Pro Glu Leu His Lys Arg Lys Leu Gln Arg Ser Met
Gly Thr 435 440 445
His Pro Ile Tyr Met Gly Ser Met Asp Tyr Ala Ile Ser Tyr Glu Gln 450
455 460 Leu Val Ser Asn Ala
Met Arg Leu Val Tyr Asp Ser Glu Leu Gln Met 465 470
475 480 His Cys Leu Arg Gly Pro Leu Lys Phe Gln
Arg Arg Thr Leu Met Asn 485 490
495 Ala Leu Leu Tyr Gly Val Lys Ile Ala 500
505 52505PRTartificial sequenceAHSV4-VP5 - B4UUP0 52Met Gly Lys
Phe Thr Ser Phe Leu Lys Arg Ala Gly Asn Ala Thr Lys 1 5
10 15 Arg Ala Leu Thr Ser Asp Ser Ala
Lys Lys Met Tyr Lys Leu Ala Gly 20 25
30 Lys Thr Leu Gln Arg Val Val Glu Ser Glu Val Gly Ser
Ala Ala Ile 35 40 45
Asp Gly Val Met Gln Gly Ala Ile Gln Ser Ile Ile Gln Gly Glu Asn 50
55 60 Leu Gly Asp Ser
Ile Lys Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65 70
75 80 Leu Glu Ser Ala Pro Asp Pro Leu Ser
Pro Gly Glu Gln Leu Leu Tyr 85 90
95 Asn Lys Val Ser Glu Ile Glu Lys Met Glu Lys Glu Asp Arg
Val Ile 100 105 110
Glu Thr His Asn Ala Lys Ile Glu Glu Lys Phe Gly Lys Asp Leu Leu
115 120 125 Ala Ile Arg Lys
Ile Val Lys Gly Glu Val Asp Ala Glu Lys Leu Glu 130
135 140 Gly Asn Glu Ile Lys Tyr Val Glu
Lys Ala Leu Ser Gly Leu Leu Glu 145 150
155 160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Lys Leu
Tyr Arg Ala Leu 165 170
175 Gln Thr Glu Glu Asp Leu Arg Thr Arg Asp Glu Thr Arg Met Ile Asn
180 185 190 Glu Tyr Arg
Glu Lys Phe Asp Ala Leu Lys Glu Ala Ile Glu Ile Glu 195
200 205 Gln Gln Ala Thr His Asp Glu Ala
Ile Gln Glu Met Leu Asp Leu Ser 210 215
220 Ala Glu Val Ile Glu Thr Ala Ser Glu Glu Val Pro Ile
Phe Gly Ala 225 230 235
240 Gly Ala Ala Asn Val Ile Ala Thr Thr Arg Ala Ile Gln Gly Gly Leu
245 250 255 Lys Leu Lys Glu
Ile Val Asp Lys Leu Thr Gly Ile Asp Leu Ser His 260
265 270 Leu Lys Val Ala Asp Ile His Pro His
Ile Ile Glu Lys Ala Met Leu 275 280
285 Arg Asp Thr Val Thr Asp Lys Asp Leu Ala Met Ala Ile Lys
Ser Lys 290 295 300
Val Asp Val Ile Asp Glu Met Asn Val Glu Thr Gln His Val Ile Asp 305
310 315 320 Ala Val Leu Pro Ile
Val Lys Gln Glu Tyr Glu Lys His Asp Asn Lys 325
330 335 Tyr His Val Arg Ile Pro Gly Ala Leu Lys
Ile His Ser Glu His Thr 340 345
350 Pro Lys Ile His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Ser Val
Phe 355 360 365 Met
Cys Arg Ala Ile Ala Pro His His Gln Gln Arg Ser Phe Phe Ile 370
375 380 Gly Phe Asp Leu Glu Ile
Glu Tyr Val His Phe Glu Asp Thr Ser Val 385 390
395 400 Glu Gly His Ile Leu His Gly Gly Ala Ile Thr
Val Glu Gly Arg Gly 405 410
415 Phe Arg Gln Ala Tyr Thr Glu Phe Met Asn Ala Ala Trp Gly Met Pro
420 425 430 Thr Thr
Pro Glu Leu His Lys Arg Lys Leu Gln Arg Ser Met Gly Thr 435
440 445 His Pro Ile Tyr Met Gly Ser
Met Asp Tyr Ala Ile Ser Tyr Glu Gln 450 455
460 Leu Val Ser Asn Ala Met Arg Leu Val Tyr Asp Ser
Glu Leu Gln Met 465 470 475
480 His Cys Leu Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn
485 490 495 Ala Leu Leu
Tyr Gly Val Lys Ile Ala 500 505
53505PRTartificial sequenceAHSV4-VP5 - B4UUP1 53Met Gly Lys Phe Thr Ser
Phe Leu Lys Arg Thr Gly Ser Ala Thr Lys 1 5
10 15 Lys Ala Leu Thr Ser Asp Ala Ala Lys Arg Met
Tyr Lys Met Ala Gly 20 25
30 Lys Thr Leu Gln Lys Val Val Glu Ser Glu Val Gly Ser Ala Ala
Ile 35 40 45 Asp
Gly Val Met Gln Gly Thr Ile Gln Ser Ile Ile Gln Gly Glu Asn 50
55 60 Leu Gly Asp Ser Ile Lys
Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65 70
75 80 Leu Glu Ser Ala Pro Asp Pro Leu Ser Pro Gly
Glu Gln Leu Leu Tyr 85 90
95 Asn Lys Val Ser Glu Ile Glu Arg Ala Glu Lys Glu Asp Arg Val Ile
100 105 110 Glu Ile
His Asn Lys Lys Ile Val Glu Lys Tyr Gly Glu Asp Leu Leu 115
120 125 Lys Ile Arg Lys Ile Met Lys
Gly Glu Ala Glu Ala Glu Gln Leu Glu 130 135
140 Gly Lys Glu Met Glu Tyr Val Glu Lys Ala Leu Arg
Gly Met Leu Lys 145 150 155
160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Arg Leu Tyr Arg Ala Leu
165 170 175 Gln Thr Glu
Glu Asp Leu Arg Thr Ser Asp Glu Thr Arg Ile Ile Ser 180
185 190 Glu Tyr Arg Glu Lys Phe Asp Ala
Leu Lys Gln Ala Ile Glu Leu Glu 195 200
205 Gln Gln Ala Thr His Glu Glu Ala Val Gln Glu Met Leu
Asp Leu Ser 210 215 220
Ala Glu Val Ile Glu Thr Ala Ala Glu Glu Val Pro Val Phe Gly Ala 225
230 235 240 Gly Ala Ala Asn
Val Val Ala Thr Thr Arg Ala Ile Gln Gly Gly Leu 245
250 255 Lys Leu Lys Glu Ile Ile Asp Lys Leu
Thr Gly Ile Asp Leu Ser His 260 265
270 Leu Lys Val Ala Asp Ile His Pro His Ile Ile Glu Lys Ala
Met Leu 275 280 285
Lys Val Lys Ile Pro Asp Asn Glu Leu Ala Met Ala Ile Lys Ser Lys 290
295 300 Val Glu Val Val Asp
Glu Met Asn Thr Glu Thr Glu His Val Ile Glu 305 310
315 320 Ser Ile Met Pro Leu Val Lys Lys Glu Tyr
Glu Lys His Asp Asn Lys 325 330
335 Tyr His Val Asn Ile Pro Ser Ala Leu Lys Ile His Ser Glu Gln
Thr 340 345 350 Pro
Lys Val His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Lys Val Phe 355
360 365 Ile Cys Arg Cys Ile Ala
Pro His His Gln Gln Lys Ser Phe Met Ile 370 375
380 Gly Phe Asp Leu Glu Ile Glu Phe Val Phe Tyr
Glu Asp Thr Ser Val 385 390 395
400 Glu Gly His Ile Met His Gly Gly Ala Val Ser Ile Glu Gly Arg Gly
405 410 415 Phe Arg
Gln Ala Tyr Ser Glu Phe Met Asn Ala Ala Trp Ser Met Pro 420
425 430 Leu Thr Pro Glu Leu His Lys
Arg Arg Leu Gln Arg Ser Leu Gly Ser 435 440
445 His Pro Ile Tyr Met Gly Ser Met Asp Tyr Thr Ile
Ser Tyr Glu Gln 450 455 460
Leu Val Ser Asn Ala Met Lys Leu Val Tyr Asp Thr Asp Leu Gln Met 465
470 475 480 His Cys Leu
Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn 485
490 495 Ala Leu Leu Phe Gly Val Lys Val
Ala 500 505 54505PRTArtificial
SequenceAHSV4-VP5 - B4UUP2 54Met Gly Lys Phe Thr Ser Phe Leu Lys Arg Ala
Gly Ser Ala Thr Lys 1 5 10
15 Lys Ala Leu Thr Ser Asp Thr Ala Lys Arg Met Tyr Lys Met Ala Gly
20 25 30 Lys Thr
Leu Gln Lys Val Val Glu Ser Glu Val Gly Ser Ala Ala Ile 35
40 45 Asp Gly Val Met Gln Gly Thr
Ile Gln Ser Ile Ile Gln Gly Glu Asn 50 55
60 Leu Gly Asp Ser Ile Arg Gln Ala Val Ile Leu Asn
Val Ala Gly Thr 65 70 75
80 Leu Glu Ser Ala Pro Asp Pro Leu Ser Pro Gly Glu Gln Leu Leu Tyr
85 90 95 Asn Lys Val
Ala Glu Leu Glu Arg Ala Glu Lys Glu Asp Arg Val Ile 100
105 110 Glu Thr His Asn Glu Lys Ile Ile
Gln Glu Tyr Gly Lys Asp Leu Leu 115 120
125 Lys Ile Arg Lys Ile Met Lys Gly Glu Ala Lys Ala Glu
Gln Leu Glu 130 135 140
Gly Lys Glu Ile Glu Tyr Val Glu Met Ala Leu Lys Gly Met Leu Lys 145
150 155 160 Ile Gly Lys Asp
Gln Ser Glu Arg Ile Thr Gln Leu Tyr Arg Ala Leu 165
170 175 Gln Thr Glu Glu Asp Leu Arg Thr Ser
Asp Glu Thr Arg Met Ile Asn 180 185
190 Glu Tyr Arg Glu Lys Phe Asp Ala Leu Lys Gln Ala Ile Glu
Leu Glu 195 200 205
Gln Gln Ala Thr His Glu Glu Ala Val Gln Glu Met Leu Asp Leu Ser 210
215 220 Ala Glu Val Ile Glu
Thr Ala Ala Glu Glu Val Pro Ile Phe Gly Ala 225 230
235 240 Gly Ala Ala Asn Val Val Ala Thr Thr Arg
Ala Val Gln Gly Gly Leu 245 250
255 Lys Leu Lys Glu Ile Ile Asp Lys Leu Thr Gly Ile Asp Leu Ser
His 260 265 270 Leu
Lys Val Ala Asp Ile His Pro His Ile Ile Glu Lys Ala Ile Leu 275
280 285 Lys Asp Lys Ile Pro Asp
Ser Glu Leu Ala Met Ala Ile Lys Ser Lys 290 295
300 Val Glu Val Ile Asp Glu Met Asn Thr Glu Thr
Glu His Val Ile Lys 305 310 315
320 Ser Ile Met Pro Leu Val Lys Lys Glu Tyr Glu Lys His Asp Asn Lys
325 330 335 Tyr His
Val Asn Ile Pro Ser Val Leu Lys Ile His Ser Glu His Thr 340
345 350 Pro Lys Val His Ile Tyr Thr
Thr Pro Trp Asp Ser Asp Lys Val Phe 355 360
365 Ile Cys Arg Cys Ile Ala Pro His His Gln Gln Lys
Ser Phe Met Ile 370 375 380
Gly Phe Asp Leu Glu Ile Glu Phe Val Phe Tyr Glu Asp Thr Ser Val 385
390 395 400 Glu Gly His
Ile Met His Gly Gly Ala Val Ser Ile Glu Gly Arg Gly 405
410 415 Phe Arg Gln Ala Tyr Ser Glu Phe
Met Asn Ala Ala Trp Ser Met Pro 420 425
430 Ser Thr Pro Glu Leu His Lys Arg Arg Leu Gln Arg Ser
Leu Gly Ser 435 440 445
His Pro Ile Tyr Met Gly Ser Met Asp Tyr Thr Val Ser Tyr Asp Gln 450
455 460 Leu Val Ser Asn
Ala Met Lys Leu Val Tyr Asp Thr Glu Leu Gln Met 465 470
475 480 His Cys Leu Arg Gly Pro Leu Lys Phe
Gln Arg Arg Thr Leu Met Asn 485 490
495 Ala Leu Leu Phe Gly Val Lys Ile Ala 500
505 55505PRTArtificial SequenceAHSV4-VP5 - B4UUP3 55Met Gly
Lys Phe Thr Ser Phe Leu Lys Arg Ala Gly Ser Ala Thr Lys 1 5
10 15 Lys Ala Leu Thr Ser Asp Ala
Ala Lys Arg Met Tyr Lys Met Ala Gly 20 25
30 Lys Ala Leu Gln Lys Val Val Glu Ser Glu Val Gly
Ser Ala Ala Ile 35 40 45
Asp Gly Val Met Gln Gly Thr Phe Gln Ser Ile Ile Gln Gly Glu Asn
50 55 60 Leu Gly Asp
Ser Ile Lys Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65
70 75 80 Leu Glu Ser Ala Pro Asp Pro
Leu Ser Pro Gly Glu Gln Leu Leu Tyr 85
90 95 Asn Lys Val Ser Glu Ile Glu Arg Ala Glu Lys
Glu Asp Arg Val Ile 100 105
110 Glu Thr His Asn Lys Lys Ile Val Glu Lys Tyr Gly Glu Asp Leu
Leu 115 120 125 Lys
Ile Arg Lys Ile Met Lys Gly Glu Ala Glu Ala Glu Gln Leu Glu 130
135 140 Gly Lys Glu Met Glu Tyr
Val Glu Lys Ala Leu Arg Gly Met Leu Lys 145 150
155 160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Arg
Leu Tyr Arg Ala Leu 165 170
175 Gln Thr Glu Glu Asp Leu Arg Thr Ser Asp Glu Thr Arg Ile Ile Ser
180 185 190 Glu Tyr
Arg Glu Lys Phe Asp Ala Leu Lys Gln Ala Ile Glu Leu Glu 195
200 205 Gln Gln Ala Thr His Glu Glu
Ala Val Gln Glu Met Leu Asp Leu Ser 210 215
220 Ala Glu Val Ile Glu Thr Ala Ala Glu Glu Val Pro
Val Phe Gly Ala 225 230 235
240 Gly Ala Ala Asn Val Val Ala Thr Thr Arg Ala Ile Gln Gly Gly Leu
245 250 255 Lys Leu Lys
Glu Ile Ile Asp Lys Leu Thr Gly Ile Asp Leu Ser His 260
265 270 Leu Lys Val Ala Asp Ile His Pro
His Ile Ile Glu Lys Ala Met Leu 275 280
285 Lys Asp Lys Ile Pro Asp Asn Glu Leu Ala Met Ala Ile
Lys Ser Lys 290 295 300
Val Glu Val Val Asp Glu Met Asn Thr Glu Met Glu His Val Ile Glu 305
310 315 320 Ser Ile Met Pro
Leu Val Lys Lys Glu Tyr Glu Lys His Asp Asn Lys 325
330 335 Tyr His Val Asn Ile Pro Ser Ala Leu
Lys Ile His Ser Glu His Thr 340 345
350 Pro Lys Val His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Lys
Val Phe 355 360 365
Ile Cys Arg Cys Ile Ala Pro His His Gln Gln Arg Ser Phe Met Ile 370
375 380 Gly Phe Asp Leu Gly
Ile Glu Phe Val Phe Tyr Glu Asp Thr Ser Val 385 390
395 400 Glu Gly His Ile Met His Gly Gly Ala Val
Ser Ile Glu Gly Arg Gly 405 410
415 Phe Arg Gln Ala Tyr Ser Glu Phe Met Asn Ala Ala Trp Ser Met
Pro 420 425 430 Ser
Thr Pro Glu Leu His Lys Arg Arg Leu Gln Arg Ser Leu Gly Ser 435
440 445 His Pro Ile Tyr Met Gly
Ser Met Asp Tyr Thr Ile Ser Tyr Glu Gln 450 455
460 Leu Val Ser Asn Ala Met Lys Leu Val Tyr Asp
Thr Asp Leu Gln Met 465 470 475
480 His Cys Leu Arg Gly Pro Leu Lys Leu Gln Arg Arg Thr Leu Met Asn
485 490 495 Ala Leu
Leu Phe Gly Val Lys Val Ala 500 505
56505PRTArtificial SequenceAHSV4-VP5 - B4XIE4 56Met Gly Lys Phe Thr Ser
Phe Leu Lys Arg Ala Gly Ser Ala Thr Lys 1 5
10 15 Lys Ala Leu Thr Ser Asp Ala Ala Lys Arg Met
Tyr Lys Met Ala Gly 20 25
30 Lys Thr Leu Gln Lys Val Val Asp Ser Glu Val Gly Ser Ala Ala
Ile 35 40 45 Asp
Gly Val Met Gln Gly Thr Ile Gln Ser Ile Ile Gln Gly Glu Asn 50
55 60 Leu Gly Asp Ser Ile Lys
Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65 70
75 80 Leu Glu Ser Pro Pro Asp Pro Leu Ser Pro Gly
Glu Gln Leu Leu Tyr 85 90
95 Asn Lys Val Ser Lys Ile Glu Arg Ala Glu Lys Glu Asp Arg Val Ile
100 105 110 Glu Thr
His Asn Glu Lys Ile Ile Glu Lys Tyr Gly Glu Asp Leu Leu 115
120 125 Lys Ile Arg Lys Ile Met Lys
Gly Glu Ala Glu Ala Glu Gln Leu Glu 130 135
140 Gly Lys Glu Met Glu Tyr Val Glu Lys Ala Leu Lys
Gly Met Leu Lys 145 150 155
160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Arg Leu Tyr Arg Ala Leu
165 170 175 Gln Thr Glu
Glu Asp Leu Arg Thr Ser Asp Glu Thr Arg Met Ile Ser 180
185 190 Glu Tyr Arg Glu Lys Phe Asp Ala
Leu Lys Gln Ala Ile Glu Leu Glu 195 200
205 Gln Gln Ala Thr His Glu Glu Ala Val Gln Glu Met Leu
Asp Leu Ser 210 215 220
Ala Glu Val Ile Glu Thr Ala Ala Glu Asp Leu Pro Ile Phe Gly Ala 225
230 235 240 Gly Ala Ala Asn
Val Val Ala Thr Thr Arg Ala Ile Gln Gly Gly Leu 245
250 255 Lys Leu Lys Glu Ile Ile Asp Lys Leu
Thr Gly Ile Asp Leu Ser His 260 265
270 Leu Lys Val Ala Asp Ile His Pro His Ile Ile Glu Lys Ala
Met Leu 275 280 285
Lys Asp Lys Ile Pro Asp Asn Glu Leu Ala Met Ala Ile Lys Ser Lys 290
295 300 Val Glu Val Ile Asp
Glu Met Asn Thr Glu Thr Glu His Val Ile Glu 305 310
315 320 Ser Ile Met Pro Leu Val Lys Lys Glu Tyr
Glu Lys His Asp Asn Lys 325 330
335 Tyr His Val Asn Ile Pro Ser Ala Leu Lys Ile His Ser Glu His
Thr 340 345 350 Pro
Lys Val His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Lys Val Phe 355
360 365 Ile Cys Arg Cys Ile Ala
Pro His His Gln Gln Arg Ser Phe Met Ile 370 375
380 Gly Phe Asp Leu Glu Ile Glu Phe Val Phe Tyr
Glu Asp Thr Ser Val 385 390 395
400 Glu Gly His Ile Met His Gly Gly Ala Val Ser Ile Glu Gly Arg Gly
405 410 415 Phe Arg
Gln Ala Tyr Ser Glu Phe Met Asn Ala Ala Trp Ser Met Pro 420
425 430 Ser Thr Pro Glu Leu His Lys
Arg Arg Leu Gln Arg Ser Leu Gly Ser 435 440
445 His Pro Ile Tyr Met Gly Ser Met Asp Tyr Thr Val
Ser Tyr Glu Gln 450 455 460
Leu Val Ser Asn Ala Met Lys Leu Val Tyr Asp Thr Asp Leu Gln Met 465
470 475 480 His Cys Leu
Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn 485
490 495 Ala Leu Leu Phe Gly Val Lys Val
Ala 500 505 57505PRTArtificial
SequenceAHSV4-VP5 - B4XIE5 57Met Gly Lys Phe Thr Ser Phe Leu Lys Arg Ala
Gly Ser Ala Thr Lys 1 5 10
15 Lys Ala Leu Thr Ser Asp Ala Ala Lys Arg Met Tyr Lys Met Ala Gly
20 25 30 Lys Thr
Leu Gln Lys Val Val Glu Ser Glu Val Gly Ser Ala Ala Ile 35
40 45 Asp Gly Val Met Gln Gly Thr
Ile Gln Ser Ile Ile Gln Gly Glu Asn 50 55
60 Leu Gly Asp Ser Ile Lys Gln Ala Val Ile Leu Asn
Val Ala Gly Thr 65 70 75
80 Leu Glu Ser Ala Pro Asp Pro Leu Ser Pro Gly Glu Gln Leu Leu Tyr
85 90 95 Asn Lys Val
Ser Glu Ile Glu Arg Ala Glu Lys Glu Asp Arg Val Ile 100
105 110 Glu Thr His Asn Lys Lys Ile Val
Glu Lys Tyr Gly Glu Asp Leu Leu 115 120
125 Lys Ile Arg Lys Ile Met Lys Gly Glu Ala Glu Ala Glu
Gln Leu Glu 130 135 140
Gly Lys Glu Met Glu Tyr Val Glu Lys Ala Leu Arg Gly Met Leu Lys 145
150 155 160 Ile Gly Lys Asp
Gln Ser Glu Arg Ile Thr Arg Leu Tyr Arg Ala Leu 165
170 175 Gln Thr Glu Glu Asp Leu Arg Thr Ser
Asp Glu Thr Arg Ile Ile Ser 180 185
190 Glu Tyr Arg Glu Lys Phe Asp Ala Leu Lys Gln Ala Ile Glu
Leu Glu 195 200 205
Gln Gln Ala Thr His Glu Glu Ala Val Gln Glu Met Leu Asp Leu Ser 210
215 220 Ala Glu Val Ile Glu
Thr Ala Ala Glu Glu Val Pro Val Phe Gly Ala 225 230
235 240 Gly Ala Ala Asn Val Val Ala Thr Thr Arg
Ala Ile Gln Gly Gly Leu 245 250
255 Lys Leu Lys Glu Ile Ile Asp Lys Leu Thr Gly Ile Asp Leu Ser
His 260 265 270 Leu
Lys Val Ala Asp Ile His Pro His Ile Ile Glu Lys Ala Met Leu 275
280 285 Lys Asp Lys Ile Pro Asp
Asn Glu Leu Ala Met Ala Ile Lys Ser Lys 290 295
300 Val Glu Val Val Asp Glu Met Asn Thr Glu Thr
Glu His Val Ile Glu 305 310 315
320 Ser Ile Met Pro Leu Val Lys Lys Glu Tyr Glu Lys His Asp Asn Lys
325 330 335 Tyr His
Val Asn Ile Pro Ser Ala Leu Lys Ile His Ser Glu His Thr 340
345 350 Pro Lys Val His Ile Tyr Thr
Thr Pro Trp Asp Ser Asp Lys Val Phe 355 360
365 Ile Cys Arg Cys Ile Ala Pro His His Gln Gln Arg
Ser Phe Met Ile 370 375 380
Gly Phe Asp Leu Glu Ile Glu Phe Val Phe Tyr Glu Asp Thr Ser Val 385
390 395 400 Glu Gly His
Ile Met His Gly Gly Ala Val Ser Ile Glu Gly Arg Gly 405
410 415 Phe Arg Gln Ala Tyr Ser Glu Phe
Met Asn Ala Ala Trp Ser Met Pro 420 425
430 Ser Thr Pro Glu Leu His Lys Arg Arg Leu Gln Arg Ser
Leu Gly Ser 435 440 445
His Pro Ile Tyr Met Gly Ser Met Asp Tyr Thr Ile Ser Tyr Glu Gln 450
455 460 Leu Val Ser Asn
Ala Met Lys Leu Val Tyr Asp Thr Asp Leu Gln Met 465 470
475 480 His Cys Leu Arg Gly Pro Leu Lys Phe
Gln Arg Arg Thr Leu Met Asn 485 490
495 Ala Leu Leu Phe Gly Val Lys Val Ala 500
505 58505PRTArtificial SequenceAHSV4-VP5 - B4XIE7 58Met Gly
Lys Phe Thr Ser Phe Leu Lys Arg Ala Gly Asn Ala Thr Lys 1 5
10 15 Arg Ala Leu Thr Ser Asp Ser
Ala Lys Lys Met Tyr Lys Leu Ala Gly 20 25
30 Lys Thr Leu Gln Arg Val Val Glu Ser Glu Val Gly
Ser Ala Ala Ile 35 40 45
Asp Gly Val Met Gln Gly Ala Ile Gln Ser Ile Ile Gln Gly Glu Asn
50 55 60 Leu Gly Asp
Ser Ile Lys Gln Ala Val Ile Leu Asn Val Ala Gly Thr 65
70 75 80 Leu Glu Ser Ala Pro Asp Pro
Leu Ser Pro Gly Glu Arg Leu Leu Tyr 85
90 95 Asn Lys Val Ser Glu Ile Glu Lys Met Glu Lys
Glu Asp Arg Val Ile 100 105
110 Glu Thr His Asn Ala Lys Ile Glu Glu Lys Phe Gly Lys Asp Leu
Leu 115 120 125 Ala
Ile Arg Lys Ile Val Lys Gly Glu Val Asp Ala Glu Lys Leu Glu 130
135 140 Gly Asn Glu Ile Lys Tyr
Val Glu Lys Ala Leu Ser Gly Leu Leu Glu 145 150
155 160 Ile Gly Lys Asp Gln Ser Glu Arg Ile Thr Lys
Leu Tyr Arg Ala Leu 165 170
175 Gln Thr Glu Glu Asp Leu Arg Thr Arg Asp Glu Thr Arg Met Ile Asn
180 185 190 Glu Tyr
Arg Glu Lys Phe Asp Ala Leu Lys Glu Ala Ile Glu Ile Glu 195
200 205 Gln Gln Ala Thr His Asp Glu
Ala Ile Gln Glu Met Leu Asp Leu Ser 210 215
220 Ala Glu Val Ile Glu Thr Ala Ser Glu Glu Val Pro
Ile Phe Gly Ala 225 230 235
240 Gly Ala Ala Asn Val Ile Ala Thr Thr Arg Ala Ile Gln Gly Gly Leu
245 250 255 Lys Leu Lys
Glu Ile Val Asp Lys Leu Thr Gly Ile Asp Leu Ser His 260
265 270 Leu Lys Val Ala Asp Ile His Pro
His Ile Ile Glu Lys Ala Met Leu 275 280
285 Arg Asp Thr Val Thr Asp Lys Asp Leu Ala Met Ala Ile
Lys Ser Lys 290 295 300
Val Asp Val Ile Asp Glu Met Asn Val Glu Thr Gln His Val Ile Asp 305
310 315 320 Ala Val Leu Pro
Ile Val Lys Gln Glu Tyr Glu Lys His Asp Asn Lys 325
330 335 Tyr His Val Arg Ile Pro Gly Ala Leu
Lys Ile His Ser Glu His Thr 340 345
350 Pro Lys Ile His Ile Tyr Thr Thr Pro Trp Asp Ser Asp Ser
Val Phe 355 360 365
Met Cys Arg Ala Ile Ala Pro His His Gln Gln Arg Ser Phe Phe Ile 370
375 380 Gly Phe Asp Leu Glu
Ile Glu Tyr Val His Phe Glu Asp Thr Ser Val 385 390
395 400 Glu Gly His Ile Leu His Gly Gly Ala Ile
Thr Val Glu Gly Arg Gly 405 410
415 Phe Arg Gln Ala Tyr Thr Glu Phe Met Asn Ala Ala Trp Gly Met
Pro 420 425 430 Thr
Thr Pro Glu Leu His Lys Arg Lys Leu Gln Arg Ser Met Gly Thr 435
440 445 His Pro Ile Tyr Met Gly
Ser Met Asp Tyr Ala Ile Ser Tyr Glu Gln 450 455
460 Leu Val Ser Asn Ala Met Arg Leu Val Tyr Asp
Ser Glu Leu Gln Met 465 470 475
480 His Cys Leu Arg Gly Pro Leu Lys Phe Gln Arg Arg Thr Leu Met Asn
485 490 495 Ala Leu
Leu Tyr Gly Val Lys Ile Ala 500 505
591057PRTArtificial SequenceAHSV4-VP2 - B4UUN4_9REOV 59Met Ala Ser Glu
Phe Gly Ile Leu Leu Thr Ile Gln Ile Tyr Asp Gln 1 5
10 15 Thr Tyr Glu Lys Glu Lys Cys Asp Val
Ile Ile Thr Ala Glu Asn Ala 20 25
30 Val Arg Arg Val Glu Val Ala Gly Val Tyr Gly Tyr Glu Trp
Gly Ala 35 40 45
Thr Asn His Arg Leu Gly Leu Cys Glu Ile Glu Asn Thr Lys Ser Ile 50
55 60 Gly Arg Met Ile Tyr
Glu Gln Ile Arg Cys Glu Gly Ala Tyr Pro Ile 65 70
75 80 Phe Pro His Tyr Ile Thr Asp Thr Leu Lys
Tyr Gly Lys Ser Ile Asp 85 90
95 Arg Asn Asp Asn Gln Ile Arg Val Asp Arg Asp Asp Glu Arg Leu
Arg 100 105 110 Lys
Ile Lys Ile Gln Pro Tyr Phe Gly Glu Met Tyr Phe Ser Pro Glu 115
120 125 Asn Tyr Ile Thr Val Phe
Cys Lys Arg Gln Ala Ile Ser Gly Gln Ile 130 135
140 Glu Val Ser Arg Ser Ile Ile Gly Arg Arg Met
Lys Tyr Glu Glu Ser 145 150 155
160 Ala Glu Gln Thr Lys Gly Thr Ile Asn Ala Asn Lys Tyr Arg Leu Leu
165 170 175 Glu Lys
Trp Arg Asp Leu Ala Tyr Glu Gln Ile Glu Met Glu Gly Ser 180
185 190 Ser Glu Arg Cys Leu Thr His
Asn Thr Asp Pro Ile Tyr Gln Leu Ile 195 200
205 Lys Lys Met Arg Phe Gly Met Met Tyr Pro Val His
Tyr Ile Leu Asn 210 215 220
Asp Lys Tyr Lys Val Val Gln Glu Arg Ala Asp Met Gly Ile Glu Lys 225
230 235 240 Trp Leu Leu
Gln Lys Ile Gly Arg Gly Thr Gln Arg Arg Lys Ala Asp 245
250 255 Asp Gly Asp Asn Asp Thr Leu Leu
Gln Leu Glu Arg Met Met Ser Ser 260 265
270 Glu Glu Leu Glu Arg Pro Val Ile Glu Ser Val Ile Arg
Phe Gly Ser 275 280 285
Leu Tyr Asn Ala His Ala Gly Lys Lys Thr Gly Asp Ile Pro Leu Glu 290
295 300 Val Leu Ile Lys
Tyr Cys Asp Ser Leu Thr Thr Phe Val His Lys Lys 305 310
315 320 Asn Arg Glu Gly Gly Asp Asn Gln Thr
Ala Arg Asp Glu Ile Arg Arg 325 330
335 Ala Met Val Lys Asn Ile Pro Ser Met Lys Gln Glu Asn Gln
Met Lys 340 345 350
Val Thr Pro Asn Ile Arg Asn Phe Leu Phe Phe Ala Tyr Leu Asn Gly
355 360 365 Phe Lys Arg Asn
Asn Gly Val Asp Ile Asp Pro Asn Asn Gly Thr Trp 370
375 380 Ser Lys His Lys Thr Glu Val Lys
Lys Ile Leu Asp Glu Glu Gln Lys 385 390
395 400 Lys Asn Glu Asn Lys Pro Leu Lys Val Leu Ile Asp
Gly Ala Tyr Ile 405 410
415 Ser Thr Asp Ala Glu Tyr Gly Thr Val Ala His Trp Val Asp Trp Val
420 425 430 Val Asp Ile
Ile Met Thr Thr Gln Val Ser Arg Met Ile Lys Glu Tyr 435
440 445 Asn Phe Ile Arg Leu Lys Lys Asp
Gln Leu Ile Ser Gly Met Asn Lys 450 455
460 Leu Glu Asp Gly Val Lys Cys Tyr Ala Tyr Cys Leu Ile
Leu Ala Leu 465 470 475
480 Tyr Asp Phe His Gly Arg Glu Leu Asp Gly Phe Ala Gln Gly Thr Arg
485 490 495 Thr Ala Ala Ile
Val Glu Thr Val Ala Arg Met Phe Pro Asp Phe Arg 500
505 510 Ser Glu Val Ser Glu Lys Phe Gly Ile
Asp Leu Ala Val Ser Glu Glu 515 520
525 Ser Asp Glu Leu Phe Val Lys Lys Thr Met Val Ser Ser Phe
Ser Asp 530 535 540
Ser Gly Glu Met Gly Tyr Lys Phe Ile Phe Gly Trp Arg Lys Thr Asp 545
550 555 560 Phe Lys Val Glu Thr
Asp Tyr Gly Glu Ile Val Ser Asp Glu Val His 565
570 575 Arg Leu Tyr Gln Ala Ile Leu Asp Gly Lys
Glu Trp Ser Lys Glu Val 580 585
590 Asp Asp Pro Glu Lys Tyr Phe Val Asp Asp Leu Tyr Asn Arg Cys
Pro 595 600 605 Glu
Ser Ile Tyr Val Arg Asn Gly Val Asp Pro Asp Asn Lys Ile Met 610
615 620 Ile Lys Lys Arg Gly Leu
Val Gly Glu Gly Gln Arg His Phe Ser Ala 625 630
635 640 Arg Phe Val Ser Tyr Trp Tyr Glu Phe Gln Lys
Val Thr Ile Lys Ala 645 650
655 Asp Ser Lys Arg Leu Asp Ala Arg Gly Glu His Thr Gln Tyr His Glu
660 665 670 Ile Asp
Val Glu Asp Phe Lys Pro Cys Ala Ile Ala Glu Leu Gly Leu 675
680 685 His Cys Ser Thr Tyr Ile Tyr
Gln Asp Leu Leu Val Gly Ala Asn Arg 690 695
700 Gly Glu Tyr Val Lys Asp Ala Lys Glu Leu Val Trp
Phe Asp Ile Ala 705 710 715
720 Asn Thr Asn Tyr Asn Ile Thr Arg Pro Phe Asp Arg Cys Trp Pro Ser
725 730 735 Ser Cys Ala
Glu Ala Glu Leu Ser Leu Arg Phe His Leu Ile Thr Lys 740
745 750 Ile Phe Thr Arg Tyr Arg Gly Glu
Arg Thr Ser Phe Val Asp Ile Ile 755 760
765 Asn Glu Leu Ser Glu Arg Gly Tyr Val Lys His Asn Phe
Pro Ser Tyr 770 775 780
Lys His Tyr Tyr Leu Ser Val Ile Gln Thr Val Phe Glu Asp Gln Arg 785
790 795 800 Ala Ile Asp Pro
Leu Asp Phe Cys Ala Met Ile Ser Arg Asn Glu Thr 805
810 815 Arg Glu Ser Thr Leu Lys Gly Phe Ser
Met Phe Ala Ala Ile Val Lys 820 825
830 Ser Glu Arg Leu Ile Asp Thr Leu Phe Leu Asn Phe Leu Leu
Trp Ile 835 840 845
Val Phe Glu Met Glu Asn Val Asp Val Ser Ala Ala Asn Lys Arg His 850
855 860 Pro Leu Leu Ile Ser
His Glu Lys Gly Leu Arg Leu Ile Gly Val Asp 865 870
875 880 Leu Phe Asn Gly Ala Leu Ser Ile Ser Thr
Gly Gly Trp Ile Pro Tyr 885 890
895 Leu Glu Arg Ile Cys Ser Glu Glu Lys Ala Gln Arg Arg Leu Asn
Ala 900 905 910 Asp
Glu Leu Lys Ile Lys Ser Trp Phe Leu Thr Tyr Tyr Met Asn Leu 915
920 925 Ser Leu Glu Arg Arg Ala
Glu Pro Arg Met Ser Phe Lys Phe Glu Gly 930 935
940 Leu Thr Thr Trp Ile Gly Ser Asn Cys Gly Gly
Val Arg Asp Tyr Val 945 950 955
960 Val Gln Ala Leu Pro Met Arg Lys Pro Lys Pro Gly Leu Leu Met Val
965 970 975 Ile Tyr
Gly Asp Asp Gly Asp Ala Arg Trp Val Glu Trp Ala Met Lys 980
985 990 Asn Phe Thr Ala Val Asp Gly
Ser Leu Gly Phe Ile Tyr Ile Asp Arg 995 1000
1005 His Lys Leu Val Asn Lys Ser Asp Phe Arg
Val Arg Glu Met Lys 1010 1015 1020
Ile Tyr Asn Arg Gly Arg Leu Asp Arg Leu Ile Leu Ile Ser Ser
1025 1030 1035 Gly His
Tyr Thr Phe Gly Asn Lys Phe Leu Met Ser Lys Leu Leu 1040
1045 1050 Ala Lys Thr Glu 1055
601060PRTArtificial SequenceAHSV4-VP2 - B4UUN5_9REOV 60Met Ala Ser Glu
Phe Gly Ile Leu Met Thr Asn Glu Lys Phe Asp Pro 1 5
10 15 Ser Leu Glu Lys Thr Ile Cys Asp Val
Ile Val Thr Lys Lys Gly Arg 20 25
30 Val Lys His Lys Glu Val Asp Gly Val Cys Gly Tyr Glu Trp
Asp Glu 35 40 45
Thr Asn His Arg Phe Gly Leu Cys Glu Val Glu His Asp Met Ser Ile 50
55 60 Ser Glu Phe Met Tyr
Asn Glu Ile Arg Cys Glu Gly Ala Tyr Pro Ile 65 70
75 80 Phe Pro Arg Tyr Ile Ile Asp Thr Leu Lys
Tyr Glu Lys Phe Ile Asp 85 90
95 Arg Asn Asp His Gln Ile Arg Val Asp Arg Asp Asp Asn Glu Met
Arg 100 105 110 Lys
Ile Leu Ile Gln Pro Tyr Ala Gly Glu Met Tyr Phe Ser Pro Glu 115
120 125 Cys Tyr Pro Ser Val Phe
Leu Arg Arg Glu Ala Arg Ser Gln Lys Leu 130 135
140 Asp Arg Ile Arg Asn Tyr Ile Gly Lys Arg Val
Glu Phe Tyr Glu Glu 145 150 155
160 Glu Ser Lys Arg Lys Ala Ile Leu Asp Gln Asn Lys Met Ser Lys Val
165 170 175 Glu Gln
Trp Arg Asp Ala Val Asn Glu Arg Ile Val Ser Ile Glu Pro 180
185 190 Lys Arg Gly Glu Cys Tyr Asp
His Gly Thr Asp Ile Ile Tyr Gln Phe 195 200
205 Ile Lys Lys Leu Arg Phe Gly Met Met Tyr Pro His
Tyr Tyr Val Leu 210 215 220
Pro Ser Asp Tyr Cys Ile Val Pro Asn Lys Gly Gly Thr Ser Ile Gly 225
230 235 240 Ser Trp His
Ile Arg Lys Arg Thr Glu Gly Asp Ala Lys Val Ser Ala 245
250 255 Met Tyr Ser Gly Lys Gly Pro Leu
Asn Asp Leu Arg Val Lys Ile Glu 260 265
270 Arg Asp Asp Leu Ser Arg Glu Thr Ile Ile Gln Ile Ile
Glu Tyr Gly 275 280 285
Lys Lys Phe Asn Ser Ser Ala Gly Asp Lys Gln Gly Asn Ile Ser Ile 290
295 300 Glu Lys Leu Val
Glu Tyr Phe Asp Phe Leu Thr Thr Phe Val His Ala 305 310
315 320 Lys Lys Lys Glu Glu Gly Glu Asp Asp
Thr Ala Arg Gln Glu Ile Arg 325 330
335 Lys Ala Trp Val Lys Gly Met Pro Tyr Met Asp Phe Ser Lys
Pro Met 340 345 350
Lys Ile Thr Arg Gly Phe Asn Arg Asn Met Leu Phe Leu Ala Ala Leu
355 360 365 Asp Ser Phe Arg
Lys Arg Asn Gly Val Asp Val Asp Pro Asn Lys Gly 370
375 380 Lys Trp Lys Glu His Ile Lys Glu
Val Thr Glu Lys Leu Lys Lys Ala 385 390
395 400 Leu Thr Glu Asn Gly Gly Gln Pro Cys Gln Val Ser
Ile Asp Gly Val 405 410
415 Asn Val Leu Thr Asn Val Asp Tyr Gly Thr Val Asn His Trp Ile Asp
420 425 430 Trp Val Thr
Asp Ile Ile Met Val Val Gln Thr Lys Arg Leu Val Lys 435
440 445 Glu Tyr Ala Phe Lys Lys Leu Lys
Ser Glu Asn Leu Leu Ala Gly Met 450 455
460 Asn Ser Leu Val Gly Val Leu Arg Cys Tyr Met Tyr Cys
Leu Ala Leu 465 470 475
480 Ala Ile Tyr Asp Phe Tyr Glu Gly Thr Ile Asp Gly Phe Lys Lys Gly
485 490 495 Ser Asn Ala Ser
Ala Ile Ile Glu Thr Val Ala Gln Met Phe Pro Asp 500
505 510 Phe Arg Arg Glu Leu Val Glu Lys Phe
Gly Ile Asp Leu Arg Met Lys 515 520
525 Glu Ile Thr Arg Glu Leu Phe Val Gly Lys Ser Met Thr Ser
Lys Phe 530 535 540
Met Glu Glu Gly Glu Tyr Gly Tyr Lys Phe Ala Tyr Gly Trp Arg Arg 545
550 555 560 Asp Gly Phe Ala Val
Met Glu Asp Tyr Gly Glu Ile Leu Thr Glu Lys 565
570 575 Val Glu Asp Leu Tyr Lys Gly Val Leu Leu
Gly Arg Lys Trp Glu Asp 580 585
590 Glu Val Asp Asp Pro Glu Ser Tyr Phe Tyr Asp Asp Leu Tyr Thr
Asn 595 600 605 Glu
Pro His Arg Val Phe Leu Ser Ala Gly Lys Asp Val Asp Asn Asn 610
615 620 Ile Thr Leu Arg Ser Ile
Ser Gln Ala Glu Thr Thr Tyr Leu Ser Lys 625 630
635 640 Arg Phe Val Ser Tyr Trp Tyr Arg Ile Ser Gln
Val Glu Val Thr Lys 645 650
655 Ala Arg Asn Glu Val Leu Asp Met Asn Glu Lys Gln Lys Pro Tyr Phe
660 665 670 Glu Phe
Glu Tyr Asp Asp Phe Lys Pro Cys Ser Ile Gly Glu Leu Gly 675
680 685 Ile His Ala Ser Thr Tyr Ile
Tyr Gln Asn Leu Leu Val Gly Arg Asn 690 695
700 Arg Gly Glu Glu Ile Leu Asp Ser Lys Glu Leu Val
Trp Met Asp Met 705 710 715
720 Ser Leu Leu Asn Phe Gly Ala Val Arg Ser His Asp Arg Cys Trp Ile
725 730 735 Ser Ser Ser
Val Ala Ile Glu Val Asn Leu Arg His Ala Leu Ile Val 740
745 750 Arg Ile Phe Ser Arg Phe Asp Met
Met Ser Glu Arg Glu Thr Phe Ser 755 760
765 Thr Ile Leu Glu Lys Val Met Glu Asp Val Lys Glu Leu
Arg Phe Phe 770 775 780
Pro Thr Tyr Arg His Tyr Tyr Leu Glu Thr Leu Gln Arg Val Phe Asn 785
790 795 800 Asp Glu Arg Arg
Leu Glu Val Asp Asp Phe Tyr Met Arg Leu Tyr Asp 805
810 815 Val Gln Thr Arg Glu Gln Ala Leu Asn
Thr Phe Thr Asp Phe His Arg 820 825
830 Cys Val Glu Ser Glu Leu Leu Leu Pro Thr Leu Lys Leu Asn
Phe Leu 835 840 845
Leu Trp Ile Val Phe Glu Met Glu Asn Val Glu Val Asn Ala Ala Tyr 850
855 860 Lys Arg His Pro Leu
Leu Ile Ser Thr Ala Lys Gly Leu Arg Val Ile 865 870
875 880 Gly Val Asp Ile Phe Asn Ser Gln Leu Ser
Ile Ser Met Ser Gly Trp 885 890
895 Ile Pro Tyr Val Glu Arg Met Cys Ala Glu Ser Lys Val Gln Thr
Lys 900 905 910 Leu
Thr Ala Asp Glu Leu Lys Leu Lys Arg Trp Phe Ile Ser Tyr Tyr 915
920 925 Thr Thr Leu Lys Leu Asp
Arg Arg Ala Glu Pro Arg Met Ser Phe Lys 930 935
940 Phe Glu Gly Leu Ser Thr Trp Ile Gly Ser Asn
Cys Gly Gly Val Arg 945 950 955
960 Asp Tyr Val Ile Gln Met Leu Pro Thr Arg Lys Pro Lys Pro Gly Ala
965 970 975 Leu Met
Val Val Tyr Ala Arg Asp Ser Arg Ile Glu Trp Ile Glu Ala 980
985 990 Glu Leu Ser Gln Trp Leu Gln
Met Glu Gly Ser Leu Gly Leu Ile Leu 995 1000
1005 Val His Asp Ser Gly Ile Ile Asn Lys Ser
Val Leu Arg Ala Arg 1010 1015 1020
Thr Leu Lys Ile Tyr Asn Arg Gly Ser Met Asp Thr Leu Ile Leu
1025 1030 1035 Ile Ser
Ser Gly Val Tyr Thr Phe Gly Asn Lys Phe Leu Leu Ser 1040
1045 1050 Lys Leu Leu Ala Lys Thr Glu
1055 1060 611051PRTArtificial SequenceAHSV4-VP2 -
B4UUN6_9REOV 61Met Ala Ser Glu Phe Gly Ile Leu Ile Cys Asp Lys Leu Lys
Glu Asn 1 5 10 15
Thr Leu Glu Lys Thr Asn Cys Asp Val Ile Ile Thr Gly Val Gly Lys
20 25 30 Val Ser Val Arg Glu
Glu Asp Gly Ile Leu Gly Tyr Glu Trp Glu Glu 35
40 45 Thr Asn His Arg Leu Gly Leu Cys Glu
Ile Glu Asn Thr Val Ser Ile 50 55
60 Ser Asp Phe Val Tyr Lys Gln Ile Arg Cys Glu Gly Ala
Tyr Pro Ile 65 70 75
80 Leu Pro His Tyr Val Thr Asp Val Ile Lys Tyr Gly Met Val Ile Asp
85 90 95 Arg Asn Asp His
Gln Ile Arg Val Asp Arg Asp Glu Lys Ser Ile Gly 100
105 110 Lys Ile Gln Ile Gln Pro Tyr Phe Gly
Asp Met Tyr Phe Ser Pro Glu 115 120
125 Tyr Tyr Pro Ala Thr Phe Val Lys Arg Glu Pro Leu Pro Ile
Ser Val 130 135 140
Asp Met Ile Arg Asp Tyr Ile Gly Ala Arg Met Arg Lys Ile Glu Ala 145
150 155 160 Arg Ala Gly Arg Ile
Lys Glu Gly Gly Gly Asn Leu Leu Glu Cys Ala 165
170 175 Arg Arg Trp Glu Lys Ala Ala Tyr Glu Arg
Ile Glu Asn Glu Arg Ala 180 185
190 Leu Arg Cys Val Val His Glu Thr Asp Pro Thr Tyr Gln Ile Leu
Lys 195 200 205 Lys
Leu Arg Phe Gly Phe Ile Tyr Pro His Tyr Tyr Val Leu Asn Thr 210
215 220 Asp Tyr Asn Pro Thr Thr
Val Thr Arg Thr Ser Arg Ile Asn Asp Trp 225 230
235 240 Leu Leu Lys Glu Lys Thr Gln Gly Val Val Lys
Ala Ala Glu Ala Tyr 245 250
255 Ser Asp Asn Ala Glu Leu Lys Thr Leu Ala Glu Arg Met Glu Glu Glu
260 265 270 Glu Leu
Thr Val Asp Ile Ile Arg Ala Val Ile Arg Tyr Gly Ala Lys 275
280 285 Tyr Ala Thr Arg Ser Gly Met
Arg Glu Asp Thr Leu Ser Leu Gln Glu 290 295
300 Leu Asp Arg Tyr Cys Asp Ser Leu Thr Thr Phe Val
His Lys Lys Lys 305 310 315
320 Lys Asp Glu Gly Asp Asp Glu Thr Ala Arg Thr Ile Ile Arg Asn Gln
325 330 335 Trp Ile Lys
Gly Met Pro Arg Met Asp Phe Lys Lys Glu Met Lys Ile 340
345 350 Thr Arg Gly Pro Ile Ala Asn Trp
Ser Phe Phe Met Ser Ile Asp Ala 355 360
365 Phe Lys Arg Asn Asn Lys Val Asp Ile Asn Pro Asn His
Gln Thr Trp 370 375 380
Lys Asp His Ile Lys Glu Val Thr Asp Gln Met Asn Arg Ala Gln Gln 385
390 395 400 Gly Asn Asn Asn
Lys Pro Leu Lys Ile Gln Ile Asp Gly Val Ser Ile 405
410 415 Leu Thr Asn Glu Lys Tyr Gly Thr Val
Gly His Trp Val Asp Trp Val 420 425
430 Val Asp Leu Ile Met Leu Ala Gln Val Lys Met Leu Ile Lys
Glu Tyr 435 440 445
Lys Phe Lys Arg Leu Asn Ser Gln Asn Leu Met Ser Gly Met Asn Lys 450
455 460 Leu Val Gly Ala Leu
Arg Cys Tyr Ala Tyr Cys Leu Ile Leu Ala Leu 465 470
475 480 Tyr Asp Tyr Tyr Gly Gln Asp Ile Glu Gly
Phe Lys Lys Gly Ser Asn 485 490
495 Ser Ser Ala Ile Leu Glu Thr Val Ile Gln Met Phe Pro Asn Phe
Lys 500 505 510 Gln
Glu Ile Gln Ala Asn Phe Gly Ile Asn Leu Asn Ile Lys Asp Lys 515
520 525 Lys Gln Ser Leu Phe Val
Glu Arg Thr Met His Ser Asp Phe Ser Ser 530 535
540 Asn Glu Glu Tyr Gly Tyr Lys Phe Val Phe Gly
Trp Ala Ala Arg Gly 545 550 555
560 Glu Glu Val Leu Ser Asn Tyr Gly Asp Ile Leu Ser Asp Glu Val Glu
565 570 575 Glu Leu
Phe Thr Lys Leu Arg Lys Lys Glu His Trp Asp Lys Val Val 580
585 590 Glu Asp Pro Glu Ser Tyr Phe
Val Asp Glu Leu Tyr Gln Lys Asn Pro 595 600
605 Ala Glu Val Phe Phe Ser Ala Gly Tyr Asp Thr Asp
Gln Asn Val Val 610 615 620
Ile Asp Gly Lys Met Thr Glu Gly Val Thr Tyr Phe Ser Lys Arg Phe 625
630 635 640 Val Ser Tyr
Trp Tyr Arg Val Glu Lys Ile Thr Thr Lys His Leu Glu 645
650 655 Phe Leu Asn Glu Glu Gly Arg Lys
Val Ala Gln Phe Asp Phe Glu Asp 660 665
670 Tyr Lys Pro Met Ala Ile Gly Glu Met Gly Ile His Ala
Ser Thr Tyr 675 680 685
Lys Tyr Glu Ser Leu Leu Leu Gly Lys Asn Arg Gly Gln Lys Val Lys 690
695 700 Asp Ser Ile Ala
Leu Cys Asn Tyr Asp Leu Ala Leu Thr Asn Phe Glu 705 710
715 720 Val Ser Arg Arg Gln Asp Cys Cys Trp
Ile Ser Ser Cys Ser Ala Ile 725 730
735 Glu Leu Ser Met Arg Ala Asn Ile Thr Ile Ala Ile Phe Arg
Arg Ile 740 745 750
Glu Asp Arg Arg Tyr Glu Ser Phe Ala Lys Ile Leu Ser Gly Leu Ser
755 760 765 Gln Gln Gln Asp
Leu Tyr Phe Pro Thr Tyr Lys His Tyr Tyr Leu Phe 770
775 780 Val Leu Gln Lys Val Leu Arg Asp
Glu Arg Arg Ile Asp Gln Asn Arg 785 790
795 800 Met Cys Thr Glu Leu Phe Asp Ile Gln Arg Arg Arg
Gly Ile Leu Leu 805 810
815 Ser Phe Thr Thr Leu Arg Phe Trp Asn Asp Ser Glu Phe Leu Gly Asp
820 825 830 Thr Leu Met
Met Asn Phe Leu Leu Trp Val Val Phe Glu Met Glu Asn 835
840 845 Ile Asp Val Asp Tyr Gly Lys Lys
Trp His Pro Leu Leu Val Ser Ser 850 855
860 Glu Lys Gly Leu Arg Val Ile Ala Val Asp Val Phe Asn
Ser Met Met 865 870 875
880 Gly Val Ser Thr Ser Gly Trp Leu Pro Tyr Val Glu Arg Ile Cys Ser
885 890 895 Glu Ser Asp Met
Arg Arg Arg Leu Asn Ala Asp Glu Leu Glu Leu Lys 900
905 910 Arg Trp Phe Phe Asp Tyr Tyr Ala Thr
Leu Leu Leu Glu Arg Arg Gly 915 920
925 Glu Pro Arg Leu Ser Phe Lys Tyr Glu Gly Leu Thr Thr Trp
Ile Gly 930 935 940
Ser Asn Cys Gly Gly Val Arg Asp Tyr Val Val Gln Leu Leu Pro Met 945
950 955 960 Arg Lys Pro Lys Pro
Gly Leu Leu Cys Ile Ala Tyr Gly Asp Asp Val 965
970 975 Asn Val Gln Trp Val Glu His Glu Leu Arg
Asp Phe Leu Thr His Glu 980 985
990 Gly Ser Leu Gly Leu Val Val Ile Ser Gly Lys Met Leu Val
Asn Lys 995 1000 1005
Ser Lys Leu Arg Val Arg Asn Leu Lys Ile Tyr Asn Arg Gly Thr 1010
1015 1020 Leu Asp Ser Leu Phe
Leu Ile Ser Gly Gly Ser Tyr Thr Phe Gly 1025 1030
1035 Asn Lys Phe Leu Leu Ser Lys Leu Met Ala
Lys Ala Glu 1040 1045 1050
621057PRTartificial sequenceAHSV4-VP2 - B4UUN7_9REOV 62Met Ala Phe Glu
Phe Gly Ile Leu Leu Thr Glu Lys Val Glu Gly Asp 1 5
10 15 Ala Leu Glu Lys Thr Asn Cys Glu Val
Ile Ile Thr Lys Asn Gly Arg 20 25
30 Val Lys His Lys Glu Val Asp Gly Val Lys Gly Tyr Glu Trp
Glu Phe 35 40 45
Thr Asp His Arg Leu Gly Leu Cys Glu Glu Ser Tyr Leu Met Lys Met 50
55 60 Ala Glu Tyr Val Tyr
Thr Gln Thr Lys Cys Glu Gly Ala Tyr Pro Val 65 70
75 80 Phe Pro His Tyr Ile Thr Asp Val Leu Lys
Tyr Gly Val Met Val Asp 85 90
95 Arg Asn Asp His Gln Ile Arg Val Asp Arg Asp Val Lys Glu Leu
Gly 100 105 110 Lys
Ile Leu Ile Gln Pro Tyr Phe Gly Glu Val Phe Phe Ser Pro Glu 115
120 125 Phe Tyr Thr Ser Thr Phe
Leu Lys Arg Gln Ala Ile Asn Ser Asp Val 130 135
140 Glu Met Leu Arg Arg Ser Ile Pro Lys Arg Ile
Lys Tyr Phe Glu Asp 145 150 155
160 Gln Met Glu Leu Arg Lys Ser Val Asn Gly Asn Trp Ile Gly Thr Leu
165 170 175 His Lys
Trp Lys Glu Ser Val Asp Ala Arg Met Leu Glu Glu Gly Val 180
185 190 Gly Lys Lys Val Cys Val Ser
His Glu Thr Asp Val Val Tyr Gln Leu 195 200
205 Met Lys Lys Met Arg Phe Gly Leu Leu Tyr Pro His
Tyr Tyr Met Leu 210 215 220
Asn Asn Glu Tyr Val Val Lys Lys Glu Asn Val Asp Ala Leu Ile Gly 225
230 235 240 Ser Trp Leu
Ile Lys Glu Arg Ser Ser Gly Lys Ala Glu Tyr Ser Gln 245
250 255 Met Tyr Ser Gly Val Gly Pro Leu
Ser Gly Leu Arg Glu Arg Ile Glu 260 265
270 Lys Asp Glu Leu Asp Glu Lys Val Ile Gln Glu Ile Ile
Ala Tyr Gly 275 280 285
Ser Lys Phe Ser Thr Tyr Thr Gly Ala Lys His Gly Asp Ile Ser Leu 290
295 300 Lys Asp Leu Val
Glu Tyr Cys Glu Ser Leu Thr Thr Phe Val His Lys 305 310
315 320 Lys Lys Lys Asp Gly Glu Glu Glu Thr
Ala Arg Gln Phe Phe Lys Asn 325 330
335 Lys Trp Ile Gln Gly Met Pro Lys Met Asn Phe Glu Ser Glu
Met Lys 340 345 350
Val Ser Arg Gly Pro Trp Ala Asn Ile Gln Phe Phe Trp Ser Ile Asp
355 360 365 Met Phe Lys Arg
Asn Asn Gly Val Asp Ile Asp Pro Asn Gly Glu Asn 370
375 380 Trp Lys Lys Tyr Lys Ala Glu Val
Gln Glu Arg Leu Asn Glu Ala Gln 385 390
395 400 Lys Lys Asn Arg Asn Val Pro His Leu Met Leu Val
Asp Gly Val Asn 405 410
415 Ile Met Thr Asp Lys Lys Tyr Gly Thr Val Gln Asn Trp Val Asp Trp
420 425 430 Val Val Asn
Tyr Ile Met Leu Ser His Val Lys Arg Leu Val Lys Asp 435
440 445 Tyr Lys Phe Lys Arg Leu Gln Pro
Asp Asn Leu Met Ser Gly Met Asn 450 455
460 Lys Leu Val Gly Ala Leu Arg Cys Tyr Ala Tyr Cys Leu
Ile Leu Ala 465 470 475
480 Leu Tyr Asp His Phe Gly Ala Glu Ile Glu Gly Phe Arg Lys Gly Thr
485 490 495 Asn Ala Ala Ser
Ile Val Glu Thr Val Ser Gln Met Phe Pro Asn Phe 500
505 510 Arg Lys Glu Val Ser Glu Thr Phe Gly
Ile Asp Leu Lys Thr Lys Glu 515 520
525 Ile Lys His Glu Leu Phe Lys Ala Gln Asn Met Asn Val Lys
Ala Ala 530 535 540
Asp Val Gly Asp Tyr Gly Tyr Lys Phe Gln Tyr Gly Trp Thr Arg Thr 545
550 555 560 Ala Glu Gln Val Met
Ser Asp Tyr Gly Glu Ile Leu Thr Glu Glu Ile 565
570 575 Glu Thr Leu Tyr Gln Ser Ile Leu Ala Gly
Lys Glu Trp Glu Lys Val 580 585
590 Ser Asp Glu Thr Asp Val Tyr Phe Ile Asp Asp Leu Phe Ser Ser
Thr 595 600 605 Pro
Asp Lys Val Phe Arg Arg Val Gly Leu Asp Ser Gln Asn Asn Ile 610
615 620 Lys Ile Glu Gly Lys Met
Asn Glu Leu Thr Thr Tyr Phe Ser Lys Arg 625 630
635 640 Phe Val Thr Tyr Trp Tyr Lys Ile Thr Lys Val
Glu Lys Lys Asp Leu 645 650
655 Leu Ile Val Asn Asp Ile Tyr Asp Glu Lys Thr Glu Tyr Gln Gln Phe
660 665 670 Asp Pro
Asp Asp Phe Lys Pro Met Val Ile Gly Glu Met Gly Val His 675
680 685 Ala Ser Thr Tyr Ile Tyr Gln
Asn Leu Ile Leu Gly Arg Asn Arg Gly 690 695
700 Glu Arg Ile Val Asp Ser Lys Glu Ile Val Trp Tyr
Asp Leu Ser Leu 705 710 715
720 Thr Asn Phe Gly Leu Val Arg Ser Gln Asn Gln Cys Trp Ile Gly Ser
725 730 735 Ile Ser Asn
Phe Glu Leu Ser Met Arg Tyr His Ile Ile Thr Glu Ile 740
745 750 Phe Gln Arg Tyr Arg Val Asp Ser
Ala His Lys Ser Tyr His Glu Ile 755 760
765 Ile Ser Gly Leu Thr Lys Lys Asp Val Ile Leu Phe Pro
Ser Tyr Lys 770 775 780
His Tyr Tyr Val Arg Val Ile Gln Asp Val Phe Gln Asp Ser Gln Lys 785
790 795 800 Val Asp Val Leu
Asp Phe Cys Leu Arg Ile Ala Asn Pro Glu Thr Arg 805
810 815 Leu Ser Thr Leu Leu Lys Ile Gln Gly
Phe Arg Ala Cys Val Glu Ser 820 825
830 Glu Phe Leu Leu Pro Thr Leu His Leu Asn Phe Leu Ile Trp
Leu Leu 835 840 845
Ile Asp Met Glu Asn Gly Asp Ile Asn Tyr Ser Lys Lys Arg Leu Pro 850
855 860 Leu Leu Ile Ser Thr
Thr Asn Gly Leu Arg Val Met Ala Val Asp Ala 865 870
875 880 Phe Asn Asn Met Ile Ala Met Ser Tyr Ser
Gly Trp Leu Pro Tyr Leu 885 890
895 Glu Arg Ile Cys His Glu Thr Lys Gln Arg Thr Arg Leu Asn Ala
Asp 900 905 910 Glu
Leu Lys Leu Lys Lys Trp Phe Leu Asn Tyr Val Thr Lys Tyr Glu 915
920 925 Val Glu Arg Arg Ala Glu
Pro Arg Met Ser Phe Lys Met Glu Gly Ile 930 935
940 Thr Thr Trp Ile Gly Ser Asn Cys Gly Gly Val
Gln Asp Tyr Ile Leu 945 950 955
960 His Leu Ile Pro Ser Arg Lys Pro Lys Pro Gly Leu Leu Phe Leu Ile
965 970 975 Tyr Thr
Asp Ala Gly Asp Val Asp Trp Val Thr Arg Met Leu Tyr Asp 980
985 990 Val Cys Arg Leu Glu Gly Ser
Leu Gly Phe Ile Leu Ile Asp Asp Arg 995 1000
1005 Val Met Val Asn Lys Ser Gln Leu Arg Ala
Arg Ile Leu Lys Ile 1010 1015 1020
Tyr Asn Arg Gly Lys Leu Asp Lys Leu Ile Leu Ile Ser Gly Gly
1025 1030 1035 Asn Tyr
Thr Phe Gly Asn Lys Phe Leu Leu Ser Lys Leu Leu Ala 1040
1045 1050 Lys Thr Glu Lys 1055
631052PRTArtificial SequenceAHSV4-VP2 - B4UUN8_9REOV 63Met Ala Phe Glu
Phe Gly Ile Leu Gln Thr Asp Lys Ile Arg Glu Asn 1 5
10 15 Thr Leu Glu Lys Thr Asn Cys Asp Val
Ile Leu Thr Lys Glu Asn Arg 20 25
30 Val Arg Met Lys Glu Val Glu Gly Val Lys Gly Tyr Tyr Trp
Glu Asp 35 40 45
Thr Asp His Arg Leu Gly Leu Cys Glu Val Glu His Thr Val Ser Val 50
55 60 Arg Asp Phe Val Tyr
Lys Gln Thr Lys Cys Glu Gly Ser Tyr Pro Val 65 70
75 80 Val Pro Leu Tyr Met Ile Asp Ala Ile Lys
Tyr Gly Arg Met Ile Asp 85 90
95 Arg Asn Asp His Gln Ile Arg Val Asp Lys Asp Asp Lys Ile Leu
Ser 100 105 110 Lys
Ile Gln Val Gln Pro Tyr Leu Gly Asp Ala Tyr Phe Ser Pro Glu 115
120 125 Tyr Tyr Thr Ala Thr Phe
Phe Lys Arg Glu Pro Leu Pro Ile His Val 130 135
140 Asp Met Ile Arg Asp Tyr Ile Gly Lys Arg Ile
Asn Tyr Phe Glu Arg 145 150 155
160 Glu Leu Ser Gly Gly Val Arg Asp Ala Asn Leu Glu Met Ile Val Glu
165 170 175 Lys Trp
Lys Asp Asn Thr Tyr Lys Arg Ile Glu Gly Glu Lys Thr Thr 180
185 190 Met Cys Val Arg His Glu Pro
Asp Ser Val Leu Gln Met Leu Lys Lys 195 200
205 Met Arg Phe Gly Met Leu Tyr Pro Asn Tyr Tyr Met
Leu Asn Thr Asp 210 215 220
Tyr Ile Val Thr Glu Ser Ser Lys Glu Ala Pro Leu Asn Arg Trp Leu 225
230 235 240 Val Lys Glu
Lys Thr Val Gly Lys Val Lys Ala Ala Glu Ala Phe Ala 245
250 255 Gly Asn Ser Leu Leu Lys Ser Leu
Ala Ser Arg Met Glu Asp Glu Glu 260 265
270 Leu Ser Arg Glu Ile Ile Ile Ala Val Ile Asn Tyr Gly
Ser Lys Phe 275 280 285
Gly Thr Arg Ser Gly Lys Lys Lys Asp Leu Met Thr Ile Asp Lys Leu 290
295 300 Glu Lys Tyr Cys
Asp Ser Leu Thr Thr Phe Val His Lys Lys Lys Arg 305 310
315 320 Asp Glu Gly Asp Asp Glu Thr Ala Arg
Ala Ile Ile Arg Asn Gln Trp 325 330
335 Ile Lys Gly Met Pro Ser Met Asn Leu Lys Lys Glu Met Lys
Val Ser 340 345 350
Arg Gly Pro Ile Gln Asn Trp Ser Phe Phe Met Ser Leu Glu Met Phe
355 360 365 Lys Arg Asn Asn
Lys Val Asp Ile Asp Pro Asn His Asp Thr Trp Lys 370
375 380 Asn His Val Lys Glu Ile Arg Glu
Arg Met Gln Lys Glu Gln Ser Ala 385 390
395 400 Asn Ser Asn Ser Pro Leu Lys Ile Gln Val Asp Gly
Val Ser Leu Ser 405 410
415 Thr Gly Glu Phe Tyr Gly Thr Val Glu His Trp Ile Asp Trp Val Val
420 425 430 Asp Leu Ile
Met Leu Ala Gln Val Lys Arg Leu Ile Lys Glu Tyr Lys 435
440 445 Phe Val Arg Leu Glu Thr Ser Asn
Leu Met Ala Gly Met Asn Lys Leu 450 455
460 Val Gly Ala Leu Arg Cys Tyr Ala Tyr Cys Leu Ile Leu
Ala Leu Tyr 465 470 475
480 Asp Phe Tyr Gly Ala Asp Ile Glu Gly Phe Glu Lys Gly Ser Asn Ser
485 490 495 Ser Ala Ile Val
Glu Thr Val Val Gln Met Phe Pro Asn Phe Lys Gln 500
505 510 Glu Ile Gln Ala Asn Phe Gly Ile Asn
Leu Asn Ile Lys Asp Lys Lys 515 520
525 Gln Ala Leu Phe Val Arg Met Asp Met Asp Ser Glu Phe Ser
Glu Asp 530 535 540
Glu Gln Lys Gly Tyr Met Phe Glu Tyr Gly Trp Ala Lys Arg Glu Glu 545
550 555 560 Gln Ile Trp Ser Asn
Tyr Gly Asp Ile Leu Thr Asp Leu Val Glu Gln 565
570 575 Leu Tyr Lys Ser Ile Met Asn His Glu Glu
Trp Glu Lys Ile Val Asp 580 585
590 Asp Pro Glu Lys Tyr Phe Tyr Asp Asp Leu Phe Asn Ala Ser Pro
Glu 595 600 605 Thr
Ala Phe Ile Ser Lys Gly Tyr Asp Pro Asp Asn Asn Ile Val Ile 610
615 620 Glu Gly Lys Val Gly Gln
Asp Val Thr Tyr Phe Ser Lys Arg Phe Val 625 630
635 640 Ser Tyr Trp Tyr Arg Val Arg Gln Val Gln Thr
Ser Lys Gly Ala Glu 645 650
655 Arg Arg Ser Ile Glu Asp Val Lys Tyr Arg Glu Phe Asp Ile Glu Ser
660 665 670 Phe Lys
Pro Tyr Ala Ile Gly Glu Ile Gly Ile His Ala Ser Thr Tyr 675
680 685 Lys Tyr Leu Asp Leu Leu Ala
Gly Arg Asn Arg Gly Glu Lys Val Lys 690 695
700 Asp Ser Gln Ala Leu Val Trp Tyr Asp Phe Ala Leu
Thr Asn Tyr Thr 705 710 715
720 Leu Val Arg Pro Gln Asp Arg Cys Trp Ile Met Ser Cys Thr Asp Cys
725 730 735 Glu Tyr Thr
Leu Arg Phe Ala Thr Ile Thr Met Ile Phe Glu Arg Leu 740
745 750 Ser Glu Glu Ala Asp Leu Ser Tyr
His Asp Ile Leu Leu Lys Val Arg 755 760
765 Glu Tyr Pro Ile Gln Ser Phe Ala Ser Tyr Lys His Phe
Tyr Val Arg 770 775 780
Val Leu Gln His Val Phe Arg Asp Asn Gln Glu Ile Asp Val Leu Glu 785
790 795 800 Phe Cys Thr Arg
Met Leu Asp Pro Arg Thr Arg Glu Ala Gly Leu Asn 805
810 815 Lys Phe Ser Arg Phe Arg Gln Trp Arg
Glu Ser Glu Phe Leu Ile Asp 820 825
830 Ala Leu Lys Met Asn Phe Leu Leu Trp Val Val Phe Glu Leu
Glu Asn 835 840 845
Ile Asp Val Asp Tyr Ser Lys Lys Arg His Pro Leu Leu Ile Ser Thr 850
855 860 Asp Lys Gly Leu Arg
Val Val Ser Val Asp Leu Phe Asn Ser Met Leu 865 870
875 880 Ser Val Ser Leu Ser Gly Trp Ile Pro Tyr
Val Glu Arg Val Cys Glu 885 890
895 Arg Ser Glu Ala Lys Arg Arg Leu Asn Ala Asp Glu Leu Lys Leu
Lys 900 905 910 Asn
Trp Phe Ile Ala Tyr Tyr Val Thr Leu Pro Leu Leu Arg Arg Ala 915
920 925 Glu Pro Arg Met Ser Phe
Lys Tyr Glu Gly Ile Thr Thr Trp Ile Gly 930 935
940 Ser Asn Cys Gly Gly Val Arg Asp Tyr Leu Ile
Gln Met Leu Pro Ala 945 950 955
960 Arg Lys Pro Lys Pro Gly Val Leu Ile Leu Ala His Gly Ala Glu Ile
965 970 975 Asn Val
Ala Trp Leu Asn His Ala Leu Arg Asp Ile Leu Ser Leu Glu 980
985 990 Gly Ser Leu Gly Ile Ile Ile
Val Ser Asp Gly Ser Val Val Asn Lys 995 1000
1005 Ser Lys Leu Arg Val Arg Asp Met Lys Ile
Tyr Asn Arg Trp Glu 1010 1015 1020
Val Asp Arg Leu Ile Leu Ile Ser Ser Gly Asp Tyr Thr Phe Gly
1025 1030 1035 Asn Lys
Tyr Leu Leu Ser Lys Leu Met Ala Lys Ile Glu Gln 1040
1045 1050
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20210265509 | METHOD FOR MAKING SEMICONDUCTOR DEVICE INCLUDING A SUPERLATTICE WITH DIFFERENT NON-SEMICONDUCTOR MATERIAL MONOLAYERS |
20210265508 | STRUCTURE AND FORMATION METHOD OF SEMICONDUCTOR DEVICE WITH ISOLATION STRUCTURE |
20210265507 | SEMICONDUCTOR STRUCTURE AND MANUFACTURING METHOD FOR THE SEMICONDUCTOR STRUCTURE |
20210265506 | DISPLAY DEVICE AND METHOD OF MANUFACTURING THE SAME |
20210265505 | LIQUID CRYSTAL DISPLAY DEVICE |