Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: Chemical Mechanical Polishing Composition and Method For Polishing Germanium-Antimony-Tellurium Alloys

Inventors:  Jaeseok Lee (Wilmington, DE, US)  Yi Guo (Newark, DE, US)  Yi Guo (Newark, DE, US)  Kancharla-Arun Kumar Reddy (Bear, DE, US)  Kancharla-Arun Kumar Reddy (Bear, DE, US)  Guangyun Zhang (Furlong, PA, US)  Guangyun Zhang (Furlong, PA, US)
IPC8 Class: AH01L21306FI
USPC Class: 438693
Class name: Combined mechanical and chemical material removal simultaneous (e.g., chemical-mechanical polishing, etc.) utilizing particulate abradant
Publication date: 2012-11-01
Patent application number: 20120276742



Abstract:

A method for chemical mechanical polishing of a substrate comprising a germanium-antimony-tellurium chalcogenide phase change alloy (GST) using a chemical mechanical polishing composition consisting essentially of, as initial components: water; an abrasive; a material selected from ethylene diamine tetra acetic acid and salts thereof; and an oxidizing agent; wherein the chemical mechanical polishing composition facilitates a high GST removal rate with low defectivity.

Claims:

1. A method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of, as initial components: water; 0.1 to 5 wt % of an abrasive; 0.001 to 5 wt % of material selected from ethylene diamine tetra acetic acid and salts thereof; 0.001 to 3 wt % of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the geranium-antimony-tellurium phase change alloy is removed from the substrate.

2. The method of claim 1, wherein the substrate further comprises Si3N4; wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; wherein at least some of the Si3N4 is removed from the substrate; and, wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to Si3N4 removal rate selectivity of ≧10:1.

3. The method of claim 1, wherein the substrate further comprises tetraethyl orthosilicate (TEOS); wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to TEOS removal rate selectivity of ≧10:1.

4. The method of claim 1, wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a platen speed of 60 revolutions per minute, a carrier speed of 55 revolutions per minute, a chemical mechanical polishing composition flow rate of 200 ml/min, and a nominal down force of 8.27 kPa (1.2 psi) on a 200 mm polishing machine where the chemical mechanical polishing pad comprises a polyurethane polishing layer containing polymeric hollow core microparticles and a polyurethane impregnated non-woven subpad.

5. The method of claim 4, wherein the substrate further comprises Si3N4; wherein at least some of the Si3N4 is removed from the substrate; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to Si3N4 removal rate selectivity of ≧15:1.

6. The method of claim 4, wherein the substrate further comprises tetraethyl orthosilicate (TEOS); wherein at least some of the TEOS is removed from the substrate; and, wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to TEOS removal rate selectivity of ≧15:1.

7. The method of claim 4, wherein the chemical mechanical polishing composition facilitates the germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a post polish SP1 defect count (>0.16 μm) of ≦300.

8. The method of claim 7, wherein ≧200 of the post polishing SP1 defects are tellurium residue defects.

9. The method of claim 8, wherein the substrate further comprises Si3N4; wherein at least some of the Si3N4 is removed from the substrate; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to Si3N4 removal rate selectivity of ≧15:1.

10. The method of claim 8, wherein the substrate further comprises tetraethyl orthosilicate (TEOS); wherein at least some of the TEOS is removed from the substrate; and, wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to TEOS removal rate selectivity of ≧15:1.

Description:

[0001] The present invention relates to a chemical mechanical polishing composition and methods of using the same. More particularly, the present invention relates to a chemical mechanical polishing composition for polishing a substrate having a germanium-antimony-tellurium phase change alloy.

[0002] Phase change random access memory (PRAM) devices that use phase change materials that can be electrically transitioned between an insulating, generally amorphous state and a conductive, generally crystalline state have become a leading candidate for the next generation of memory devices. These next generation PRAM devices may replace conventional solid state memory devices such as dynamic random access memory--DRAM--devices; static random access memory--SRAM--devices, erasable programmable read only memory--EPROM--devices, and electrically erasable programmable read only memory--EEPROM--devices that employ microelectronic circuit elements for each memory bit. These conventional solid state memory devices consume a lot of chip space to store information, thus limiting chip density; and are also relatively slow to program.

[0003] Phase change materials useful in PRAM devices include chalcogenide materials such as, germanium-tellurium (Ge--Te) and germanium-antimony-tellurium (Ge--Sb--Te) phase change alloys. The manufacture of PRAM devices include chemical mechanical polishing steps in which chalcogenide phase change materials are selectively removed and the device surface is planarized.

[0004] Tellurium tends to be relatively mobile in chalcogenide phase change alloy films. Under CMP conditions tellurium may tend to migrate and agglomerate on the surface of the wafer during planarization. This leads to films with non-homogenous compositions and surface characteristics that vary from one location to another across the wafer.

[0005] One polishing composition for polishing substrates having a chalcogenide phase change material is disclosed in United States Patent Application Publication No. 20070178700 to Dysard et al. Dysard et al. disclose a chemical mechanical polishing composition for polishing a phase change alloy containing substrate, the composition comprising: (a) a particulate abrasive material in an amount of not more than about 3 percent by weight; (b) at least one chelating agent capable of chelating the phase change alloy, a component thereof, or a substance formed from the phase change alloy material during chemical mechanical polishing; and (c) an aqueous carrier therefor.

[0006] There remains an ongoing need to develop new chemical mechanical polishing (CMP) compositions capable of selectively removing phase change materials with high removal rates, while also providing reduced total defects and Te residue defects.

[0007] The present invention provides a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of, as initial components: water; 0.1 to 5 wt % of an abrasive; 0.001 to 5 wt % of a material selected from ethylene diamine tetra acetic acid and salts thereof; 0.001 to 3 wt % of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the germanium-antimony-tellurium phase change alloy is removed from the substrate.

[0008] The present invention also provides a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of, as initial components: water; 0.1 to 5 wt % an abrasive; 0.001 to 5 wt % of ethylene diamine tetra acetic acid or a salt thereof; 0.001 to 3 wt % of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the germanium-antimony-tellurium phase change alloy is removed from the substrate; wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a platen speed of 60 revolutions per minute, a carrier speed of 55 revolutions per minute, a chemical mechanical polishing composition flow rate of 200 ml/min, and a nominal down force of 8.27 kPa (1.2 psi) on a 200 mm polishing machine where the chemical mechanical polishing pad comprises a polyurethane polishing layer containing polymeric hollow core microparticles and a polyurethane impregnated non-woven subpad.

[0009] The present invention also provides a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of, as initial components: water; 0.1 to 5 wt % of an abrasive; 0.001 to 5 wt % of ethylene diamine tetra acetic acid or a salt thereof; 0.001 to 3 wt % of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the germanium-antimony-tellurium phase change alloy is removed from the substrate; wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a platen speed of 60 revolutions per minute, a carrier speed of 55 revolutions per minute, a chemical mechanical polishing composition flow rate of 200 ml/min, and a nominal down force of 8.27 kPa (1.2 psi) on a 200 mm polishing machine where the chemical mechanical polishing pad comprises a polyurethane polishing layer containing polymeric hollow core microparticles and a polyurethane impregnated non-woven subpad; wherein the chemical mechanical polishing composition facilitates the germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a post polish SP1 defect count (>0.16 μm) of ≦300.

[0010] The present invention also provides a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of, as initial components: water; 0.1 to 5 wt % of an abrasive; 0.001 to 5 wt % of ethylene diamine tetra acetic acid or a salt thereof; 0.001 to 3 wt % of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the germanium-antimony-tellurium phase change alloy is removed from the substrate; wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a platen speed of 60 revolutions per minute, a carrier speed of 55 revolutions per minute, a chemical mechanical polishing composition flow rate of 200 ml/min, and a nominal down force of 8.27 kPa (1.2 psi) on a 200 mm polishing machine where the chemical mechanical polishing pad comprises a polyurethane polishing layer containing polymeric hollow core microparticles and a polyurethane impregnated non-woven subpad; wherein the chemical mechanical polishing composition facilitates the germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a post polish SP1 defect count (>0.16 ρm) of ≦300; wherein ≦200 of the post polishing SP1 defects are tellurium residue defects.

[0011] The present invention also provides a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of; as initial components: water; 0.1 to 5 wt % of an abrasive; 0.001 to 5 wt % of ethylene diamine tetra acetic acid or a salt thereof; 0.001 to 3 wt % of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the germanium-antimony-tellurium phase change alloy is removed from the substrate; wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a platen speed of 60 revolutions per minute, a carrier speed of 55 revolutions per minute, a chemical mechanical polishing composition flow rate of 200 ml/min, and a nominal down force of 8.27 kPa (1.2 psi) on a 200 mm polishing machine where the chemical mechanical polishing pad comprises a polyurethane polishing layer containing polymeric hollow core microparticles and a polyurethane impregnated non-woven subpad; wherein the chemical mechanical polishing composition facilitates the germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a post polish SP1 defect count (>0.16 μm) of ≦300; wherein ≦200 of the post polishing SP1 defects are tellurium residue defects; wherein the substrate further comprises Si3N4; wherein at least some of the Si3N4 is removed from the substrate; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to Si3N4 removal rate selectivity of ≧15:1.

[0012] The present invention also provides a method for chemical mechanical polishing of a substrate, comprising: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of, as initial components: water; 0.1 to 5 wt % of an abrasive; 0.001 to 5 wt % of ethylene diamine tetra acetic acid or a salt thereof; 0.001 to 3 wt % of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12; providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the germanium-antimony-tellurium phase change alloy is removed from the substrate; wherein the abrasive is a colloidal silica abrasive having an average particle size of 110 to 130 nm; and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a platen speed of 60 revolutions per minute, a carrier speed of 55 revolutions per minute, a chemical mechanical polishing composition flow rate of 200 ml/min, and a nominal down force of 8.27 kPa (1.2 psi) on a 200 mm polishing machine where the chemical mechanical polishing pad comprises a polyurethane polishing layer containing polymeric hollow core microparticles and a polyurethane impregnated non-woven subpad; wherein the chemical mechanical polishing composition facilitates the germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min with a post polish SP1 defect count (>0.16 μm) of ≦300; wherein ≦200 of the post polishing SP1 defects are tellurium residue defects; wherein the substrate further comprises tetraethyl orthosilicate (TEOS); wherein at least some of the TEOS is removed from the substrate; and, wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to TEOS removal rate selectivity of ≧15:1.

DETAILED DESCRIPTION

[0013] The chemical mechanical polishing method of the present invention is useful for polishing a substrate containing a chalcogenide phase change alloy. The chemical mechanical polishing composition used in the method of the present invention provides a high chalcogenide phase change alloy removal rate with favorable selectivity over additional materials on the substrate and with low total defects and low Te residue defects.

[0014] Substrates suitable for use in the method of the present invention for chemical mechanical polishing comprise a germanium-antimony-tellurium (GST) phase change alloy.

[0015] Substrates suitable for use in the method of the present invention for chemical mechanical polishing optionally further comprise an additional material selected from phosphor silicate glass (PSG), boro-phosphor silicate glass (BPSG), undoped silicate glass (USG), spin-on-glass (SOD), tetraethyl orthosilicate (TEOS), plasma-enhanced TEOS (PETEOS), flowable oxide (FOx), high-density plasma chemical vapor deposition (HDP-CVD) oxide, and silicon nitride (e.g., Si3N4). Preferably, the substrate further comprises an additional material selected from Si3N4 and TEOS.

[0016] Abrasives suitable for use in the chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention include, for example, inorganic oxides, inorganic hydroxides, inorganic hydroxide oxides, metal borides, metal carbides, metal nitrides, polymer particles and mixtures comprising at least one of the foregoing. Suitable inorganic oxides include, for example, silica (SiO2), alumina (Al2O3), zirconia (ZrO2), ceria (CeO2), manganese oxide (MnO2), titanium oxide (TiO2) or combinations comprising at least one of the foregoing oxides. Modified forms of these inorganic oxides, such as, organic polymer-coated inorganic oxide particles and inorganic coated particles can also be utilized if desired. Suitable metal carbides, boride and nitrides include, for example, silicon carbide, silicon nitride, silicon carbonitride (SiCN), boron carbide, tungsten carbide, zirconium carbide, aluminum boride, tantalum carbide, titanium carbide, or combinations comprising at least one of the foregoing metal carbides, boride and nitrides. Preferably, the abrasive used is a colloidal silica abrasive. More preferably, the abrasive used is a colloidal silica having an average particle size of 1 to 200 nm (more preferably 100 to 150 nm, most preferably 110 to 130 nm) as determined by well known laser light scattering techniques.

[0017] The chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention preferably comprises, as an initial component, 0.1 to 5 wt %, more preferably 0.5 to 4 wt %, still more preferably 1 to 4 wt %, yet still more preferably 3 to 4 wt % abrasive. Preferably, the abrasive is a colloidal silica abrasive. Most preferably, the chemical mechanical polishing composition of the present invention comprises, as an initial component, 3 to 4 wt % of a colloidal silica abrasive having an average particle size of 110 to 130 nm.

[0018] Preferably, the chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention comprises, as an initial component, 0.001 to 5 wt % (more preferably 0.01 to 5 wt %, most preferably 0.15 to 0.25 wt %) of a material selected from ethylene diamine tetra acetic acid and salts thereof (e.g., ethylene diamine tetra acetic acid dipotassium salt dihydrate).

[0019] Preferably, the chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention comprises, as an initial component, 0.001 to 3 wt % (more preferably 0.01 to 3 wt %, still more preferably 0.05 to 1 wt %, most preferably 0.25 to 0.75 wt %) of an oxidizing agent. Preferably, the oxidizing agent is hydrogen peroxide. Most preferably, the chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention comprises, as an initial component, 0.25 to 0.75 wt % of hydrogen peroxide.

[0020] Preferably, the water used in the chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention is at least one of deionized and distilled to limit incidental impurities.

[0021] The chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention optionally further comprises additional additives selected from pH adjusters, dispersants, surfactants, buffers and biocides.

[0022] The chemical mechanical polishing composition used in the chemical mechanical polishing method of the present invention has a pH of 7.1 to 12 (preferably 7.5 to 10, more preferably 7.5 to 9, most preferably 7.5 to 8.5). Acids suitable for adjusting the pH of the chemical mechanical polishing composition include, for example, nitric acid, sulfuric acid and hydrochloric acid. Bases suitable for adjusting the pH of the chemical mechanical polishing composition include, for example, ammonium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and bicarbonate; preferably tetramethylammonium hydroxide.

[0023] Optionally, in the chemical mechanical polishing method of the present invention, the substrate further comprises Si3N4; wherein at least some of the Si3N4 is removed from the substrate; and, wherein the chemical mechanical polishing composition used exhibits a germanium-antimony-tellurium phase change alloy to Si3N4 removal rate selectivity of ≧10:1 (more preferably ≧15:1; most preferably ≧18:1).

[0024] Optionally, in the chemical mechanical polishing method of the present invention, the substrate further comprises tetraethyl orthosilicate (TEOS); wherein at least some of the TEOS is removed from the substrate and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to TEOS removal rate selectivity of ≧10:1 (preferably ≧15:1).

[0025] Preferably, the chemical mechanical polishing method of the present invention, comprises: providing a substrate, wherein the substrate comprises a germanium-antimony-tellurium phase change alloy; providing a chemical mechanical polishing composition, wherein the chemical mechanical polishing composition consists essentially of, as initial components: water; 0.1 to 5 wt % (preferably 0.5 to 4 wt %, more preferably 1 to 4 wt %, most preferably 3 to 4 wt %) of an abrasive (preferably, wherein the abrasive is a colloidal silica abrasive having an average particle size of 1 to 200 nm, more preferably 100 to 150 nm, most preferably 110 to 130 nm); 0.001 to 5 wt % (preferably 0.01 to 5 wt %, more preferably 0.15 to 0.25 wt %) of a material selected from ethylene diamine tetra acetic acid and salts thereof; and 0.001 to 3 wt % (preferably 0.01 to 3 wt %, more preferably 0.05 to 1 wt %, most preferably 0.25 to 0.75 wt %) of an oxidizing agent, wherein the oxidizing agent is hydrogen peroxide; wherein the chemical mechanical polishing composition has a pH 7.1 to 12 (preferably 7.5 to 10, more preferably 7.5 to 9, most preferably 7.5 to 8.5); providing a chemical mechanical polishing pad; creating dynamic contact at an interface between the chemical mechanical polishing pad and the substrate; and dispensing the chemical mechanical polishing composition onto the chemical mechanical polishing pad at or near the interface between the chemical mechanical polishing pad and the substrate; wherein at least some of the germanium-antimony-tellurium phase change alloy is removed from the substrate; wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min (preferably ≧1,200 Å/min) with a platen speed of 60 revolutions per minute, a carrier speed of 55 revolutions per minute, a chemical mechanical polishing composition flow rate of 200 ml/min, and a nominal down force of 8.27 kPa (1.2 psi) on a 200 mm polishing machine where the chemical mechanical polishing pad comprises a polyurethane polishing layer containing polymeric hollow core microparticles and a polyurethane impregnated non-woven subpad; wherein the chemical mechanical polishing composition facilitates the germanium-antimony-tellurium phase change alloy removal rate of ≧1,000 Å/min (preferably ≧1,200 Å/min) with a post polish SP1 defect count (>0.16 μm) of ≦300 (more preferably 0 to 300, most preferably 0 to 270); wherein ≦200 (more preferably 0 to 200, most preferably 0 to 185) of the post polishing SP1 defects are tellurium residue defects; optionally, wherein the substrate further comprises Si3N4, wherein at least some of the Si3N4 is removed from the substrate and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to Si3N4 removal rate selectivity of ≧15:1 (preferably ≧18:1); and, optionally, wherein the substrate further comprises tetraethyl orthosilicate (TEOS), wherein at least some of the TEOS is removed from the substrate and wherein the chemical mechanical polishing composition exhibits a germanium-antimony-tellurium phase change alloy to TEOS removal rate selectivity of ≧15:1.

[0026] Some embodiments of the present invention will now be described in detail in the following Examples.

EXAMPLES

Chemical Mechanical Polishing Compositions

[0027] The chemical mechanical polishing compositions (CMPC's) tested are described in Table 1. The chemical mechanical polishing compositions A-D are comparative formulations, which are not within the scope of the claimed invention.

TABLE-US-00001 TABLE 1 EDTA* abrasive.sup..dagger-dbl. H2O2 CMPC (wt %) (wt %) (wt %) pH.sup.α 1 0.2 3.5 0.5 8 A -- 3.5 -- 8 B 0.2 3.5 -- 8 *ethylene diamine tetra acetic acid dipotassium salt dihydrate .sup..dagger-dbl.Klebosol ® K1630 colloidal silica having an average particle size of 120 nm manufactured by AZ Electronic Materials and commercially available from Rohm and Haas Electronic Materials CMP Inc. .sup.αAdjusted through the addition of tetramethylammonium hydroxide

Polishing Tests

[0028] Polishing experiments were performed on germanium-antimony-tellurium (GST) blanket wafers (Si/1 kÅ thermal oxide/200 Å TiN/1500 Å GST film) from SKW Associates Inc. using the chemical mechanical polishing compositions described in Table 1. The polishing experiments were performed using an Applied Materials, Inc. Mirra® 200 mm polishing machine equipped with an ISRM detector system using an IC1010® polyurethane polishing pad (commercially available from Rohm and Haas Electronic Materials CMP Inc.) under a 1.2 psi (8.27 kPa) down force, a chemical mechanical polishing composition flow rate of 200 ml/min, a platen speed of 60 rpm and a carrier speed of 55 rpm. A Diagrid® AD3BG-150855 diamond pad conditioner (commercially available from Kinik Company) was used to condition the polishing pad. The polishing pad was broken in with the conditioner using a down force of 14.0 lbs (6.35 kg) for 20 minutes then with a down force of 9.0 lbs (4.08 kg) for 10 minutes before polishing. The polishing pad was further conditioned in situ during wafer polishing using a down force of 9.0 lbs (4.08 kg). The GST removal rate data reported in Table 2 was determined using a Jordan Valley JVX-5200T metrology tool. Si3N4 and TEOS blanket wafers from SVTC and Advantiv respectively were also polished under the noted conditions. The Si3N4 and TEOS removal rates reported in Table 2 were determined by measuring the film thickness before and after polishing using a KLA-Tencor FX200 metrology tool. The defect count analysis for defects >0.16 μm was performed using SP1 metrology tool from KLA-Tencor. A given number (noted in TABLE 2) of randomly selected defects were reviewed using SEM EDR5200 metrology tool from KLA-Tencor to identify Te residue defects. The findings were then extrapolated for the remainder of the defects to estimate the total number of Te residue defects. The results of the polishing tests are presented in Table 2.

TABLE-US-00002 TABLE 2 GST TEOS Si3N4 removal removal removal SEM Te rate rate rate Total reviewed Residue CMPC (Å/min) (Å/min) (Å/min) Defect.sup.† Defects Defects 1 1289 83 70 261 100 180 A 204 85 58 806 100 467 B 276 133 97 881 100 150 .sup.†Total defects having a size >0.16 μm.


Patent applications by Guangyun Zhang, Furlong, PA US

Patent applications by Kancharla-Arun Kumar Reddy, Bear, DE US

Patent applications by Yi Guo, Newark, DE US

Patent applications in class Utilizing particulate abradant

Patent applications in all subclasses Utilizing particulate abradant


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
Chemical Mechanical Polishing Composition and Method For Polishing     Germanium-Antimony-Tellurium Alloys diagram and image
Similar patent applications:
DateTitle
2012-11-22Chemical mechanical polishing pad having a low defect window
2012-10-04Chemical mechanical polishing of group iii-nitride surfaces
2012-09-27Polishing method, polishing apparatus and polishing tool
2012-07-26Silicon polishing compositions with improved psd performance
2012-09-20Cmp polishing solution and polishing method
New patent applications in this class:
DateTitle
2019-05-16Apparatus and method for planarizing substrate
2017-08-17Method of polishing group iii-v materials
2016-12-29Chemical mechanical polishing pad and method of making same
2016-07-14Composite abrasive particles for chemical mechanical planarization composition and method of use thereof
2016-06-30Polishing compositions and methods for polishing cobalt films
New patent applications from these inventors:
DateTitle
2021-10-21Chemical mechanical polishing composition containing composite silica particles, method of making the silica composite particles and method of polishing a substrate
2015-12-31Chemical mechanical polishing composition and method for polishing tungsten
2015-03-19Low defect chemical mechanical polishing composition
2013-05-02Method of polishing using tunable polishing formulation
Top Inventors for class "Semiconductor device manufacturing: process"
RankInventor's name
1Shunpei Yamazaki
2Shunpei Yamazaki
3Kangguo Cheng
4Chen-Hua Yu
5Devendra K. Sadana
Website © 2025 Advameg, Inc.