Patent application title: Humanized GM-CSF antibodies
Inventors:
Christoph Renner (Homburg, DE)
Antony Burgess (Parkville/melbourne, AU)
Andrew Scott (Parkville/melbourne, AU)
IPC8 Class: AC07K1624FI
USPC Class:
5303873
Class name: Globulins immunoglobulin, antibody, or fragment thereof, other than immunoglobulin antibody, or fragment thereof that is conjugated or adsorbed chimeric, mutated, or recombined hybrid (e.g., bifunctional, bispecific, rodent-human chimeric, single chain, rfv, immunoglobulin fusion protein, etc.)
Publication date: 2012-02-02
Patent application number: 20120029172
Abstract:
Chimeric antibodies, as well as fusion proteins which comprise chimeric
antibodies, are disclosed. The antibodies bind to GM-CSF, CD-30, and G250
antigen. The fusion proteins include biologically active portions of
tumor necrosis factor, or full length tumor necrosis factor. Expression
vectors adapted for production of the antibodies, as well as methods for
manufacturing these, are also disclosed.Claims:
1-16. (canceled)
17. An isolated, humanized antibody which specifically binds to granulocyte, macrophage, colony stimulating factor (GM-CSF, wherein a complementary determining region (CDR) of said humanized antibody is of non-human origin.
18. The isolated humanized antibody of claim 17, wherein said isolated humanized antibody comprises a light chain, complementary determining region (CDR) of murine origin.
19. The isolated humanized antibody of claim 17, wherein said isolated humanized antibody comprises a heavy chain, complementary determining region (CDR) of murine origin.
20. The isolated humanized antibody of claim 17, wherein said isolated humanized antibody comprise both a light chain, complementary determining region (CDR) of murine origin, and a heavy chain, complementary determining region (CDR) of murine origin.
21. The isolated humanized antibody of claim 17, wherein both of said CDRs have an amino acid sequence identical to the CDR sequences of murine 19/2 antibody.
Description:
RELATED APPLICATION
[0001] This application claims priority of application Ser. No. 60/355,838, filed Feb. 13, 2002, and incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] This invention relates to the field of molecular immunology, generally, and to vectors useful for expression of proteins, especially antibodies, such as fully human, humanized, and chimeric antibodies, as well as fusion proteins which incorporate the antibody and a protein or protein fragment, in eukaryotic cells, mammalian cells in particular. The resulting antibodies and fusion proteins are also a feature of the invention.
BACKGROUND AND PRIOR ART
[0003] One serious problem with using murine antibodies for therapeutic applications in humans is that they quickly raise a human anti-mouse response (HAMA) which reduces the efficacy of the antibody in patients, and prevents continued administration thereof. Parallel issues arise with the administration of antibodies from other, non-human species. One approach to overcoming this problem is to generate so-called "chimeric" antibodies. These can comprise murine variable regions, and human constant regions (Boulianne et al. (1984) Nature 312(5995): 643-646; incorporated by reference herein in its entirety). Although chimeric antibodies contain murine sequences and can elicit an anti-mouse response in humans (LoBuglio et al. (1989) Proc. Natl. Acad. Sci. USA 86(11): 4220-4224; incorporated by reference herein in its entirety), trials with chimeric antibodies in the area of hematological disease (e.g., Non-Hodgkin-Lymphoma; Witzig et al. (1999) J. Clin. Oncol. 17(12): 3793-3803; incorporated by reference herein in its entirety) or autoimmune disease (e.g., rheumatoid arthritis, chronic inflammatory bowel disease; Van den Bosch; et al, Lancet 356(9244):1821-2 (2000), incorporated by reference herein in its entirety) have led to FDA approval and demonstrate that these molecules have significant clinical potential and efficacy.
[0004] Recent studies have indicated that granulocyte-macrophage colony stimulating growth factor (GM-CSF) plays a role in the development of rheumatoid arthritis (RA) (Cook, et al., Arthritis Res. 2001, 3:293-298, incorporated by reference herein in its entirety) and possibly other inflammatory diseases and conditions. Therefore, it would be of interest to develop a drug which would block GM-CSF and its effect on cells. The present invention provides a chimeric antibody, targeting the GM-CSF molecule, which has blocking capacity.
[0005] The increased use of chimeric antibodies in therapeutic applications has created the need for expression vectors that effectively and efficiently produce high yields of functional chimeric antibodies in eukaryotic cells, such as mammalian cells, which are preferred for production. The present invention provides novel expression vectors, transformed host cells and methods for producing chimeric antibodies in mammalian cells, as well as the antibodies themselves and fusion proteins containing them.
BRIEF DESCRIPTION OF THE FIGURES
[0006] FIG. 1 shows the binding of recombinant, chimeric anti GM-CSF antibody via Western Blotting.
[0007] FIG. 2 shows the binding of the antibody via ELISA.
[0008] FIG. 3 shows the blocking effect of the antibody on GM-CSF growth dependent TF-1 cells.
[0009] FIG. 4 shows the blocking effect of the antibody on GM-CSF growth dependent AML-193 cells.
[0010] FIG. 5 shows results of an assay testing the effect of increasing concentration of murine or chimeric 19/2 mAbs, on TF-1 cells grown in the presence of a constant amount of human GM-CSF.
[0011] FIG. 6 parallels the experiment of FIG. 5, but uses the AML-153 cells.
[0012] FIG. 7 shows a schematic map of the two expression vectors used to prepare the recombinant antibodies.
SUMMARY OF INVENTION
[0013] The present invention provides expression vectors which are useful in the expression of proteins, such as antibodies, especially fully human, humanized or chimerized antibodies, and fusion proteins containing these. Both light chains and heavy chains can be expressed. The expression vectors of the present invention comprise a human elongation factor 1α (EF1α) promoter/enhancer sequence, an internal ribosome entry site (IRES) sequence (U.S. Pat. No. 4,937,190; incorporated herein in its entirety), a nucleotide sequence that confers neomycin resistance to a cell containing the expression vector, and a nucleotide sequence under control of a simian virus 40 promoter (SV40) that confers ampicillin resistance to a cell containing the expression vector. In a preferred embodiment, the EF1α promoter/enhancer sequence is upstream and adjacent to a nucleotide sequence encoding a chimeric light chain.
[0014] The expression vector of the present invention may contain a nucleotide sequence encoding any immunoglobulin light chain. In a preferred embodiment the light chain variable region is of murine origin, and the light chain constant region is either human kappa or human lambda. In a more preferred embodiment, the chimeric light chain variable region is derived from a murine antibody that binds to GM-CSF, CD-30, or G250 and in especially preferred embodiments, to the human forms of these molecules.
[0015] The present invention also provides a further expression vector useful in the expression of proteins, such as antibodies, especially fully human, humanized or chimeric antibodies, and fusion proteins containing these. This second embodiment differs from, the first in that instead of the neomycin resistance sequence, described supra, it comprises a nucleotide sequence which encodes dihydrofolate reductase or "dhfr," which generates resistance against the well known selection marker methotrexate. Such an expression vector may contain nucleotide sequences encoding any antibody or portion thereof, such as heavy or light chains of fully human, humanized or chimerized antibodies. In a preferred embodiment, a heavy chain is expressed, where the variable region is of murine origin, and the heavy chain constant region is human IgG1. In a more preferred embodiment, the chimeric heavy chain variable region is derived from a murine antibody that binds CD-30, GM-CSF or G250, preferably the human forms of these.
[0016] In another embodiment, the present invention provides host cells transformed or transfected with any one of the expression vectors of the present invention. In a preferred embodiment, a host cell, preferably a eukaryotic cell, more preferably a mammalian cell, is transformed or transfected with an expression vector comprising a chimeric immunoglobulin light chain and an expression vector comprising a chimeric immunoglobulin heavy chain. The present invention contemplates prokaryotic and eukaryotic cells, such as mammalian cells, insect cells, bacterial or fungal cells. In a preferred embodiment, the host cell is a human or Chinese Hamster Ovary ("CHO") cell.
[0017] The present invention also provides methods for the recombinant production of a chimeric immunoglobulin light or heavy chain comprising the step of culturing a transformed or transfected host cell of the present invention. In one embodiment, the methods of the present invention further comprise the isolation of the chimeric immunoglobulin light or heavy chain.
[0018] The present invention also provides methods for the recombinant production of a fully human, humanized or chimeric immunoglobulin comprising culturing a host cell that has been transformed or transfected with an expression vector comprising a chimeric immunoglobulin light chain and an expression vector comprising a chimeric immunoglobulin heavy chain, or an expression vector encodes both chains. In one embodiment, the methods of the present invention further comprise the self-assembly of the chimeric heavy and light chain immunoglobulins and isolation of the chimeric immunoglobulin. Methods for accomplishing this are well known in the art.
[0019] The present invention also provides the chimeric immunoglobulin light chain, heavy chain or assembled chimeric immunoglobulin produced by the methods of the present invention. In another embodiment, the present invention provides compositions comprising the chimeric immunoglobulin light chain, heavy chain or assembled chimeric immunoglobulin of the present invention and a pharmaceutically acceptable carrier.
DETAILED DESCRIPTION OF INVENTION
1. Definitions
[0020] As used herein "chimerized" refers to an immunoglobulin such as an antibody, wherein the heavy and light chains of the variable regions are not of human origin and wherein the constant regions of the heavy and light chains are of human origin.
[0021] "Humanized" refers to an immunoglobulin such as an antibody, wherein the amino acids directly involved in antigen binding, the so-called complementary determining regions (CDR), of the heavy and light chains are not of human origin, while the rest of the immunoglobulin molecule, the so-called framework regions of the variable heavy and light chains, and the constant regions of the heavy and light chains are of human origin.
[0022] "Fully human" refers to an immunoglobulin, such as an antibody, where the whole molecule is of human origin or consists of an amino acid sequence identical to a human form of the antibody.
[0023] "Immunoglobulin" or "antibody" refers to any member of a group of glycoproteins occurring in higher mammals that are major components of the immune system. As used herein, "immunoglobulins" and "antibodies" comprise four polypeptide chains--two identical light chains and two identical heavy chains that are linked together by disulfide bonds. An immunoglobulin molecule includes antigen binding domains, which each include the light chains and the end-terminal portion of the heavy chain, and the Fc region, which is necessary for a variety of functions, such as complement fixation. There are five classes of immunoglobulins wherein the primary structure of the heavy chain, in the Fc region, determines the immunoglobulin class. Specifically, the alpha, delta, epsilon, gamma, and mu chains correspond to IgA, IgD, IgE, IgG and IgM, respectively. As used herein "immunoglobulin" or "antibody" includes all subclasses of alpha, delta, epsilon, gamma, and mu and also refers to any natural (e.g., IgA and IgM) or synthetic multimers of the four-chain immunoglobulin structure.
[0024] "Antigen-binding fragment", "antigen-binding domain" and "Fab fragment" all refer to the about 45 kDa fragment obtained by papain digestion of an immunoglobulin molecule and consists of one intact light chain linked by a disulfide bond to the N-terminal portion of the contiguous heavy chain. As used herein, "F(ab)2 fragment" refers to the about 90 kDa protein produced by pepsin hydrolysis of an immunoglobulin molecule. It consists of the N-terminal pepsin cleavage product and contains both antigen binding fragments of a divalent immunoglobulin, such as IgD, IgE, and IgG. Neither the "antigen-binding fragment" nor "F(ab)2 fragment" contain the about 50 kDa Fc fragment produced by papain digestion of an immunoglobulin molecule that contains the C-terminal halves of the immunoglobulin heavy chains, which are linked by two disulfide bonds, and contain sites necessary for compliment fixation.
[0025] "Epitope" refers to an immunological determinant of an antigen that serves as an antibody-binding site. Epitopes can be structural or conformational.
[0026] "Hybridoma" refers to the product of a cell-fusion between a cultured neoplastic lymphocyte and a normal, primed B- or T-lymphocyte, which expresses the specific immune potential of the parent cell.
[0027] "Heavy chain" refers to the longer & heavier of the two types of polypeptide chain in immunoglobulin molecules that contain the antigenic determinants that differentiate the various Ig classes, e.g., IgA, IgD, IgE, IgG, IgM, and the domains necessary for complement fixation, placental transfer, mucosal secretion, and interaction with Fc receptors.
[0028] "Light chain" refers to the shorter & lighter of the two types of polypeptide chain in an Ig molecule of any class. Light chains, like heavy chains, comprise variable and constant regions.
[0029] "Heavy chain variable region" refers to the amino-terminal domain of the heavy chain that is involved in antigen binding and combines with the light chain variable region to form the antigen-binding domain of the immunoglobulin.
[0030] "Heavy chain constant region" refers to one of the three heavy chain domains that are carboxy-terminal portions of the heavy chain.
[0031] "Light chain variable region" refers to the amino-terminal domain of the light chain and is involved in antigen binding and combines with the heavy chain to form the antigen-binding region.
[0032] "Light chain constant region" refers to the one constant domain of each light chain. The light chain constant region consists of either kappa or lambda chains.
[0033] "Murine anti-human-GM-CSF 19/2 antibody" refers to a murine monoclonal antibody that is specific for human GM-CSF. This antibody is well known and it has been studied in detail. See Dempsey, et al, Hybridoma 9:545-58 (1990); Nice, et al, Growth Factors 3:159-169 (1990), both incorporated by reference.
[0034] "Effective amount" refers to an amount necessary to produce a desired effect.
[0035] "Antibody" refers to any glycoprotein of the immunoglobulin family that non-covalently, specifically, and reversibly binds a corresponding antigen.
[0036] "Monoclonal antibody" refers to an immunoglobulin produced by a single clone of antibody-producing cells. Unlike polyclonal antiserum, monoclonal antibodies are monospecific (e.g., specific for a single epitope of a single antigen).
[0037] "Granulocytes" include neutrophils, eosinophils, and basophils.
[0038] "GM-CSF" refers to a family of glycoprotein growth factors that control the production, differentiation, and function of granulocytes and monocytes-macrophages. Exemplary, but by no means the only form of such molecules, can be seen in U.S. Pat. No. 5,602,007, incorporated by reference.
[0039] "Inflammatory condition" refers to immune reactions that are either specific or non-specific. For example, a specific reaction is an immune reaction to an antigen. Examples of specific reactions include antibody responses to antigens, such as viruses and allergens, including delayed-type hypersensitivity, including psoriasis, asthma, delayed type hypersensitivity, inflammatory bowel disease, multiple sclerosis, viral pneumonia, bacterial pneumonia, and the like. A non-specific reaction is an inflammatory response that is mediated by leukocytes such as macrophages, eosinophils and neutrophils. Examples of non-specific reactions include the immediate swelling after a bee sting, and the collection of polymorphonuclear (PMN) leukocytes at sites of bacterial infection. Other "inflammatory conditions" within the scope of this invention include, e.g., autoimmune disorders such as psoriasis, rheumatoid arthritis, lupus, post-ischemic leukocyte mediated tissue damage (reperfusion injury), frost-bite injury or shock, acute leukocyte-mediated lung injury (acute respiratory distress syndrome or ARDS), asthma, traumatic shock, septic shock, nephritis, acute and chronic inflammation, and platelet-mediated pathologies such as ateriosclerosis and inappropriate blood clotting.
[0040] "Pharmaceutically acceptable carrier" refers to any carrier, solvent, diluent, vehicle, excipient, adjuvant, additive, preservative, and the like, including any combination thereof, that is routinely used in the art.
[0041] Physiological saline solution, for example, is a preferred carrier, but other pharmaceutically acceptable carriers are also contemplated by the present invention. The primary solvent in such a carrier may be either aqueous or non-aqueous. The carrier may contain other pharmaceutically acceptable excipients for modifying or maintaining pH, osmolarity, viscosity, clarity, color, sterility, stability, rate of dissolution, and/or odor. Similarly, the carrier may contain still other pharmaceutically acceptable excipients for modifying or maintaining the stability, rate of dissolution, release, or absorption or penetration across the blood-brain barrier.
[0042] The fully human, humanized or chimerized antibodies of the present invention may be administered orally, topically, parenterally, rectally or by inhalation spray in dosage unit formulations that contain conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles. As used herein, "parenterally" refers to subcutaneous, intravenous, intramuscular, intrasternal, intrathecal, and intracerebral injection, including infusion techniques.
[0043] The fully human, humanized or chimerized antibodies may be administered parenterally in a sterile medium. The antibodies, depending on the vehicle and concentration used, may be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle. The most preferred routes of administration of the pharmaceutical compositions of the invention are subcutaneous, intramuscular, intrathecal or intracerebral administration. Other embodiments of the present invention encompass administration of the composition in combination with one or more agents that are usually and customarily used to formulate dosages for parenteral administration in either unit dose or multi-dose form, or for direct infusion.
[0044] Active ingredient may be combined with the carrier materials in amounts necessary to produce single dosage forms. The amount of the active ingredient will vary, depending upon the type of antibody used, the host treated, the particular mode of administration, and the condition from which the subject suffers. Preferably, the amount of fully human, humanized or chimerized anti-GM-CSF immunoglobulin, for example, is a therapeutically effective amount which is sufficient to decrease an inflammatory response or ameliorate the symptoms of an inflammatory condition. It will be understood by those skilled in the art, however, that specific dosage levels for specific patients will depend upon a variety of factors, including the activity of the specific immunoglobulins utilized, the age, body weight, general health, sex, diet, time of administration, route of administration, and rate of excretion, drug combination and the severity of the particular disease undergoing therapy. Administration of the fully human, humanized or chimerized immunoglobulins of the present invention may require either one or multiple dosings.
[0045] Regardless of the manner of administration, however, the specific dose is calculated according to approximate body weight or body surface area of the patient. Further refinement of the dosing calculations necessary to optimize dosing for each of the contemplated formulations is routinely conducted by those of ordinary skill in the art without undue experimentation, especially in view of the dosage information and assays disclosed herein.
[0046] Without further description, it is believed that one of ordinary skill in the art can, using the preceding description and the following illustrative examples, make and utilize the compounds of the present invention and practice the claimed methods. The following working examples therefore, specifically point out preferred embodiments of the present invention, and are not to be construed as limiting in any way the remainder of the disclosure.
EXAMPLES
Example 1
Cloning Strategy for 19/2 Heavy (H) and Light (L) Variable (V)-Region Genes
[0047] Total RNA from the hybridoma producing murine 19/2 antibody was obtained by standard RNA isolation techniques (Chomczynski et al. (1987) Anal. Biochem. 162: 156-159; incorporated by reference herein in its entirety). First strand cDNA was prepared using a commercially available, first strand cDNA synthesis kit and priming with d(T)18 for both the heavy and light chains (Renner et al. (1998) Biotechniques 24(5): 720-722; incorporated by reference herein in its entirety). The resulting cDNA was subjected to PCR using combinations of primers for the heavy and light chains. The nucleotide sequences of the 5' primers for the heavy and light chains are shown in Tables 1 and 2 respectively. The 3' primers are shown in Table 3. The light chain primer hybridized within the mouse kappa constant region not far from the V-C junction. The heavy chain 3' primer hybridised within the CH-1 constant region of mouse heavy chain subgroup 1 not far from the V-CH1 junction.
TABLE-US-00001 TABLE 1 Oligonucleotide primers for the 5' region of Mouse Heavy Variable (MHV) domains. SEQ ID NO: 1 MHV-1: 5'ATGAAATGCAGCTGGGTCATSTTCTTC 3' 1 MHV-2: 5'ATGGGATGGAGCTRATCATSYTCTT 3' 2 MHV-3: 5'ATGAAGWTGTGGTTAAACTGGGTTTTT 3' 3 MHV-4: 5'ATGRACTTTGWYTCAGCTTGRTTT 3' 4 MHV-5: 5'ATGGACTCCAGGCTCAAMAGTTTTCCTT 3' 5 MHV-6: 5'ATGGCTGTCYTRGSGCTRCTCTTCTGC 3' 6 MHV-7: 5'ATGGRATGGAGCKGGRTCTTTMTCTT 3' 7 MHV-8: 5'ATGAGAGTGCTGATTCTTTTGTG 3' 8 MHV-9: 5'ATGGMTTGGGTGTGGAMCTTGCTATTCCTG 3' 9 MHV-10: 5'ATGGGCAGACTTACATTCTCATTCCTG 3' 10 MHV-11: 5'ATGGATTTTGGGCTGATTTTTTTTATTG 3' 11 MHV-12: 5'ATGATGGTGTTAAGTCTTCTGTACCTG 3' 12 NB KEY R = A/G, Y = T/C, W = A/T, K = T/G, M = A/C, S = C/G.
TABLE-US-00002 TABLE 2 Oligonucleotides primers for the 5' region of Mouse Kappa Variable (MKV) domains. SEQ ID NO: 1 MKV-1: 5'ATGAAGTTGCCTGTTAGGCTGTTGGTGCTG 3' 13 MKV-2: 5'ATGGAGWCAGACACACTCCTGYTATGGGT 3' 14 MKV-3: 5'ATGAGTGTGCTCACTCAGGTCCTGGSGTTG 3' 15 MKV-4: 5'ATGAGGRCCCCTGCTCAGWTTYTTGGMWTCTTG 3' 16 MKV-5: 5'ATGGATTTWCAGGTGCAGATTWTCAGCTTC 3' 17 MKV-6: 5'ATGAGGTKCYYTGYTSAGYTYCTGRGG 3' 18 MKV-7: 5'ATGGGCWTCAAGATGGAGTCACAKWYYCWGG 3' 19 MKV-8: 5'ATGTGGGGAYCTKTTTYCMMTTTTTCAATTG 3' 20 MKV-9: 5'ATGGTRTCCWCASCTCAGTTCCTTG 3' 21 MKV-10: 5'ATGTATATATGTTTGTTGTCTATTTCT 3' 22 MKV-11: 5'ATGGAAGCCCCAGCTCAGCTTCTCTTCC 3' 23 MKV-12: 5'ATGAAGTTTCCTTCTCAACTTCTGCTC 3' 24 NB KEY R = A/G, Y = T/C, W = A/T, K = T/G, M = A/C, S = C/G.
TABLE-US-00003 TABLE 3 Oligonucleotide primers for the 3' ends of mouse VH and VL genes. Light chain (MKC): 5'TGGATGGTGGGAAGATG 3' 25 Heavy chain (MHC): 5'CCAGTGGATAGACAGATG 3' 26
Example 2
Ig Sequences Cloned from the 19/2 Murine Hybridoma
[0048] Using the cloning strategy described, supra, PCR products for VH and VL of murine 19/2 were cloned using a commercially available product, and art recognized techniques. For the murine 19/2 VL region, PCR products were obtained using the mouse kappa constant region primer and primers MKV2 and MKV7 (SEQ ID NOS: 14 & 19). For the mouse 19/2 VH region, PCR products were obtained using the mouse gamma 1 constant region primer and primers MHV2, MHV5 and MHV7 (SEQ ID NOS: 2, 5 and 7). Extensive DNA sequencing of the cloned V-region inserts revealed two different light chain sequences and 2 different heavy chain sequences. Pseudogenes for heavy and light chain were amplified and were eliminated by standard sequence analyses. A novel immunoglobulin-coding sequence was determined for both the heavy and light chains. This is set forth at SEQ ID NOS: 27, 28, 29 & 30, which present the cDNA and amino acid sequences for the murine 19/2 heavy chain variable region (27 & 28), and the light chain variable region (29 & 30).
Example 3
Mouse 19/2 Heavy Chain Leader Sequence
[0049] When comparing the DNA sequence of the leader sequence for 19/2 heavy chain obtained with the primers described supra, with the database, it appeared that the 19/2 HC leader sequence is short (17 amino acids) and unique vis a vis public data bases. Specifically, amino acids 2, 3 and 5 were E, L & M, as compared to S, W & F in the data bases. As compared to the database, hydrophilic amino acids in the N-terminal region were separated by neutral or basic ones, respectively; however, since the influence of these changes on the secretory capability of the leader sequence is unclear, this sequence was unaltered in further experiments.
Example 4
Construction of Mouse-Human Chimeric Genes
[0050] The chimeric 19/2 antibody was designed to have the mouse 19/2 VL and VH regions linked to human kappa and gamma-1 constant regions, respectively. PCR primers were used to modify the 5'- and 3'-sequences flanking the cDNA sequences coding for the mouse 19/2 VL and VH regions. PCR primers specific for 19/2 light chain V-region were designed using the sequence of the 19/2 light chain V-region gene obtained. These adapted mouse 19/2 variable regions were then subcloned into mammalian cell expression vectors already containing the human kappa (pREN-Neo vector) or the gamma-1 (pREN-DHFR vector) constant regions. The vectors employ parts of the human elongation factor 1α (EF1α) promoter/enhancer sequence to efficiently transcribe the light and heavy chains. The vectors also contain an IRES sequence following the multiple cloning site to allow for stringent, bicistronic expression and control of the individual selection marker in CHO cells. This pair of vectors was used in all of the recombinant work described herein, i.e., to manufacture all chimeric antibodies. The expression vectors were designed to have the variable regions inserted as PmeI-BamHI DNA fragments. PCR primers were designed to introduce these restrictions sites at the 5'-(PmeI) and 3'-(BamHI) ends of the cDNAs coding for the V-regions. In addition, the PCR primers were designed to introduce a standard Kozak sequence (Kozak (1987) Nucleic Acids Res. 15(20): 8125-8148, incorporated by reference herein in its entirety) at the 5'-ends of both the light and heavy chain cDNAs to allow efficient translation, and to introduce splice donor sites at the 3'-ends of both the light and heavy chain cDNAs for the variable regions to be spliced to the constant regions. The PCR primers used for the construction of the chimeric 19/2 light and heavy chains were as follows: catgtttaaacgccfccaccatgggcttcaagatggagtca (5' end, light chain variable region, SEQ ID NO: 31); agaggatccactcacgtttcagttccacttggtcccag (3' end, SEQ ID NO: 32); catgtttaaacgccgccaccatggagctgatcatgctcttcct (primer for the 5' end of the heavy chain variable region, SEQ ID NO: 33); and agaggatccactcacctgaggagactctgagagtggt (primer for the 3' end of the heavy chain variable region, SEQ ID NO: 34). The DNA and amino acid sequences of the mouse 19/2 VL and VH regions were adapted for use from the construction of chimeric 19/2 light and heavy chains. The entire DNA sequences of mouse 19/2 light and heavy chains cloned into the eukaryotic expression vectors pREN-Neo and pREN-DHFR, respectively, are set forth as SEQ ID NO: 35 & 36, with the resulting light and heavy chains resulting in chimerized molecules. Specifically, in SEQ ID NO: 35, nucleotides 1357-1756 encode the murine, light chain sequence, with nucleotides 1763-2206 encoding the human kappa region. Within this sequence (1763-2206), a 120 base pair region constituting an intron and splice acceptor site begins at nucleotide 1886. Within SEQ ID NO: 36, nucleotides 1357-1770 encode the murine 9/2 heavy chain constant sequence with a splice donor site. Nucleotides 1777-2833 encode the human IgG1 constant region. Within this sequence, there is a 60 base pair intron region and splice acceptor site which precedes the coding region.
Example 5
[0051] The objective of the experiments described herein was to create stable cell lines expressing chimeric 19/2 (c19/2) anti-human GM-CSF monoclonal antibodies (mAb) in CHO (Chinese hamster ovary) DG44 cells and to test the secreted antibody for its binding properties. To do this, the DHFR negative CHO cell line DG044 was used. See Morris et al. (1990) Gene 94(2): 289-294; incorporated by reference herein in its entirety). The CHO cells were cultured in RPMI, supplemented with 10% FCS and Hypoxanthine-Thymidine. DNA for transfection was purified from E. coli cells using a commercially available product, and the instructions provided therein. All DNA preparations were examined by restriction enzyme digestion. Sequences of chimeric 19/2 mAb variable regions in their respective vectors were confirmed using an ABI PRISM 310 or LICOR Sequencer.
[0052] Vectors encoding heavy and light chains of chimeric 19/2 mAbs were co-transfected simultaneously into CHO DG44 cells growing at log phase, using electroporation (270V, 975 uF). Cells were plated in 10 cm dishes and cultured with standard medium. Twenty-four hours later, medium was harvested and replaced by fresh RPMI medium supplemented with 10% dialyzed FCS and 500 ug/mL geneticin. After the initial phase of cell killing was over (7-10 days), GMP-grade methotrexate was added at a concentration of 5 nM and gradually increased to 100 nM over the following weeks. Out-growing colonies were picked and screened for antibody production.
Example 6
PCR Amplification of Variable Chain DNA
[0053] CHO DG44 cells were centrifuged in an Eppendorf microcentrifuge, briefly, at full speed, washed once with PBS, and pelleted once again. Genomic DNA was prepared by ethanol precipitation after SDS lysis and Proteinase K treatment of the cell pellets.
[0054] A mixture containing one of the primer pairs described supra, dNTPs, buffer, and Pfu polymerase was used to amplify either the heavy or light chain variable region using genomic DNA as a template using methods well known in the art. The resulting PCR products were digested with the appropriate restriction enzyme and analysed by agarose gel electrophoresis to confirm their identity.
[0055] The primer pairs for the light chain were:
TABLE-US-00004 ttcttgaagt ctggtgatgc tgcc, (SEQ ID NO: 37) and caagctagcc ctctaagactc ctcccctgtt. (SEQ ID NO: 38)
[0056] For the light chain and SEQ ID NO: 37 plus
TABLE-US-00005 (SEQ ID NO: 39) gaactcgagt catttacccg gagacaggga gag
for the heavy chain.
[0057] The undigested heavy chain PCR product had a predicted size of 1200 base pairs, while the light chain PCR product had a predicted size of 800 base pairs. Identity was verified by restriction enzyme digest with BamHI.
Example 7
Dot-Blot Method for Measuring Assembled IgG1/Kappa Antibody in CHO Cell Supernatants
[0058] CHO cell lines were transfected with the corresponding plasmids. Geneticin resistant cells were obtained and these cells were further selected for resistance to methotrexate. Single colonies were picked after amplification and transferred into 24-well plates. Culture supernatant was tested for chimeric IgG 3-4 days later by standard Dot Blot assays.
[0059] Any positive colonies were sub-cloned and cultured to achieve sufficient antibody production. The chimeric 19/2 antibody was purified from the supernatant on protein G columns and tested for its specific binding with recombinant GM-CSF by Western Blot (FIG. 1) and ELISA (FIG. 2).
[0060] Finally, the identity of producer cell lines were confirmed using PCR amplification of both their heavy and light chain variable regions. The DNA sequence of the heavy chain variable region PCR products for chimeric 19/2 mAb transfected cells was confirmed.
Example 8
[0061] In order to optimize cell growth and antibody production, the CHODG44/pREN c19/2 cell line was first cultured in commercially available IMDM containing 10% FCS, at 37° C., in a 10% CO2 atmosphere. The cells were then weaned into serum free medium, and cultured in a custom made medium, i.e., IMDM SFII, with the following additives, at 37° C., in a 10% CO2 atmosphere.
TABLE-US-00006 Final Concentration Base IMDM Medium Pluronic F68 1.0 mg/ml Hypep 4601 1.0 mg/ml Hypep 4605 DEV 0.5 mg/ml HEPES 5.958 mg/ml Na2HCO3 3.024 mg/ml Additives Dextran sulfate 50.0 μg/ml Putrescine 100.0 nM Albumax I 2.0 mg/ml Choline chloride 1.0 mg/ml Trace elements FeSO4•7H20 0.8 μg/ml ZnSO4•7H20 1.0 μg/ml CuSO4•5H20 0.0025 μg/ml C6H5FeO.sub.7•H20 5.0 μg/ml IGF-1 50.0 ng/ml Transferrin 35.0 μg/ml Ethanolamine 50.0 μM Mercaptoethanol 50.0 μM
[0062] Culture supernatants were harvested asceptically, and then clarified by centrifugation. The antibodies were then purified by affinity chromatography on a 5 ml protein. A sepharose fast flow column that had been pre-equilibriated in 50 mM Tris-HCL, pH8, was used. The column was washed, 20 times, with this buffer, and any bound antibody was eluted using 50 mM sodium citrate, pH 3.0, and the eluate was then neutralized, immediately, using 1M Tris-HCl, pH8. Antibodies were concentrated with a centrifugal filter, and dialyzed overnight at 4° C. in PBS. The yield was about 4-5 mg/liter. The purity of the antibodies was examined via SDS-PAGE, under both reducing and non-reducing conditions, using a 4-20% gradient on the SDS-PAGE.
[0063] Purified antibodies migrated as a single band under non-reducing conditions, and separated into the heavy and light chains, as expected, under reducing conditions.
[0064] The antibodies were also analyzed via size exclusion chromatography, (0.5 mg/ml), on a precalibrated HPLC column. Running buffer (5% n-propanol/PBS (0.5 M phosphate, 0/25 M NaCl, pH 7.4)) was used, at a flow rate of 0.2 ml/min at a temperature of 22° C., which is ambient column temperature.
[0065] The analysis demonstrated the integrity of the antibodies, which had calculated molecular weights of 179 kilodaltons.
Example 9
[0066] The experiments described in this example were designed to determine the binding activity of the antibodies.
[0067] Biosensor analyses were carried out using a commercially available, BIAcore 2000, and a carboxymethyldetran coated sensor chip. The chip was derivatized with 1000, 300, or 100 RVs of recombinant human GM-CSF, on channels 1, 2, and 3 of the machine using standard amine coupling chemistry with channel 4 retained as the control blank channel.
[0068] Samples of the chimeric antibody were diluted in HBS buffer (10 mM HEPES, pH7.4, 150 mM NaCl, 3.4 mM di-NA-EDTA, 0.005% Tween-20), and aliquots were injected over the sensor chip at a flow rate of 1 μl/min. After injection, dissociation was monitored by allowing HBS buffer to flow over the chip surface for 5 minutes. Any bound antibody was then eluted, and the chip surface was regenerated, between samples, via injecting 40 μl of 100 mM HCl, pH 2.7, at a rate of 5 μl/min. In order to carry out kinetic analyses of the binding of the chimeric antibody, varying concentrations, ranging from 1-10 nM, were injected over the chip surface, and both apparent association ("Ka") and dissociation ("Kd") rate constants were calculated, using a Langmuir 1:1 binding model, with global and local fitting for calculation of Rmax, using B1Aevaluation V3.1 software.
[0069] The results indicated that the chimeric antibody had slightly higher affinity for rhGM-CSF than the murine antibody. The calculated Ka for the chimeric antibody was 5.1×105 M-1s-1 using 100 RU of GM-CSF. No dissociation was observed, regardless of analyte concentration, precluding Kd determination and indicating very high affinity.
[0070] Global fitting of Rmax, using the software referred to, gave an off rate of Kd=1.9×10-5 s-1 and a high affinity for the chimeric antibody of 2.69×1010 M-1.
Example 10
[0071] These experiments were designed to determine both the binding activity of the antibodies, and if they cross-reacted with each other.
[0072] Nunc plates were coated with recombinant human GM-CSF (1 μg/ml), in carbonate buffer (pH 9.6, 0.05 M), 50 μl/well, and were incubated at 4° C., overnight, and were then blocked with 3% FCS/PBS at room temperature, for one hour.
[0073] Half-log, serially diluted triplicate 100 μl samples of either murine or chimeric antibody (10 μg/ml) were added to each well, to yield final concentrations of from 1.0 ng/ml to 10 μg/ml. Following incubation for 1 hour at room temperature, either goat antimouse IgG or antihuman IgG, labelled with horseradish peroxidase (10 ul/well Fc specific; 1:1000 dilution in 1% FCS/PBS) were used to detect bound antibody. After extensive washings, the bound antibodies were visualized by the addition of ABTS substrate (100 μl/well).
[0074] Optical density was read at 415 nm in a microplate reader.
[0075] The same protocol for binding antibody to the solid phase was used to determine if the antibodies competed with each other. As in the experiments, supra, half-log, serially diluted 100 μl samples, in triplicate, of 10 μg/ml of the murine or chimeric antibody were combined with 20 μg/ml of competing antibody, and then 100 ml of the mixture was added to the coated ELISA plates. Incubation was as above, and anti-murine or anti-human IgG labelled with horseradish peroxidase was used, also as described supra.
[0076] The results indicated that the antibodies did compete for binding for recombinant human GM-CSF. A shift in the binding curve was effected by addition of the excess, competing antibody. This indicated binding to, and competition for, a common epitope.
Example 11
[0077] These experiments were designed to test the neutralizing activity of the anti-GM-CSF antibodies. Two human GM-CSF dependent cell lines, i.e., TF-1 and AML-193 were used. Growth curves were established, in the presence or absence of 0.5 ng/ml of recombinant human GM-CSF, and viable cell numbers were determined, via Trypan Blue exclusion, on day 0, 1, 2, 3, 5 and 7.
[0078] In a first bioassay, recombinant human GM-CSF, in amounts ranging from 0.0003 ng/ml up to 10 μg/ml, was mixed with anti-human GM-CSF antibodies, at a final concentration of 30 μg/ml, in 96 well, microtitre plates. Either TF-1 or AML-193 cells were added (103 cells/well), and plates were incubated at 37° C. for 7 days.
[0079] After this incubation period, the DNA proliferation marker MTS was added, at 20 μl/well. Dye incorporation was measured after 2 hours, by measuring light absorbance at A490nm.
[0080] Increased MTS dye incorporation was observed as the amount of rhGM-CSF in the medium increased. Total growth inhibition of both cell types was observed with the chimeric antibody when rhGM-CSF concentration was 0.1 ng/ml or less, and there was marked inhibition of cell growth at 0.3-10 ng/ml rhGM-CSF.
[0081] In contrast, while the murine antibody had a similar effect on AML-193 cells, it was less effective on TF-1 cells. These results are seen in FIGS. 3 and 4.
[0082] In a second bioassay TF-1 and AML-193 cells were grown in the presence of 0.5 ng/mL rhGM-CSF and increasing amounts of murine or chimeric 19/2 mAbs (0.003-100 μg/mL) were added to the culture media and the neutralizing activity assessed after 7 days culture. Results are shown in FIGS. 5 and 6 for the TF-1 and AML-193 cells, respectively. In agreement with the initial bioassay, the chimeric 19/2 demonstrated marked neutralizing activity of GM-CSF stimulated cell growth. A direct correlation was observed between increasing ch19/2 concentration and GM-CSF neutralizing activity plateaued at 3 μg/mL for both cell lines, with higher concentrations unable to effect a greater reduction in TF-1 or AML-193 cell growth. These observations may be due to lower affinity of the murine mAb or steric hindrance at the binding site on GM-CSF.
Example 12
[0083] Additional experiments were carried out to produce a chimeric, HRS-3 antibody. The murine form of this antibody is described by Hombach, et al, Int. J. Cancer 55:830-836 (1993), incorporated by reference. The murine antibody binds to CD-30 molecules.
[0084] The protocols set forth for production of chimeric, anti GM-CSF antibody set forth supra were used. Since the antibodies were different, and sequences were known, however, different primers were used. These primers serve to introduce splice sites into the cDNA sequences encoding the murine heavy chain and light chain variable regions, and are set forth at SEQ ID NOS: 44, 45, 46 & 47, with SEQ ID NOS: 44 & 45 the nucleotide and amino acid sequences of the heavy chain, and 46 & 47 comparable sequences for the light chain
[0085] The primers were:
TABLE-US-00007 (SEQ ID NO: 40) gcgccatggc ccaggtgcaa ctgcagcagt ca and (SEQ ID NO: 41) cagggatcca ctcacctgag gagacggtga ccgt,
and for the light chain:
TABLE-US-00008 (SEQ ID NO: 42) agcgccatgg acatcgagct cactcagtct cca and (SEQ ID NO: 43) cagggatcca actcacgtttg atttccagct tggt.
[0086] Following amplification, the murine heavy and light chain variable regions were cloned into the pREN Neo and pREN-DHFR sequences, which are set forth at SEQ ID NOS: 48 & 49, respectively. The cloning was possible because the amplification introduced PmeI and BamHI restriction sites into SEQ ID NO: 44, at nucleotides 1-7, and the final 6 nucleotides. Comparable sites are found at nucleotides 1340-1348, and 1357-1362 of SEQ ID NO: 48. Similarly, PmeI and BamHI restriction sites were introduced at nucleotides 1-8, and the last 6 nucleotides of SEQ ID NO: 47, such that this nucleotide sequence could be cloned into SEQ ID NO: 49, at positions 1337-1344, and 1349-1354.
[0087] The chimeric HRS-3 antibody was designed to have murine HRS-3 VL and VH regions linked to human kappa and gamma-1 constant regions, respectively. PCR primers were used to modify the 5'- and 3'-sequences flanking the cDNA sequences coding for the murine HRS-3 VL and VH regions. Modification included the insertion of a NcoI site at the 5' primer end and a splice donor site followed by a BamHI restriction site at the 3'-end of both the light and heavy chain cDNAs for the variable regions to be spliced to the constant regions. These adapted mouse HRS-3 variable regions were then subcloned through the NcoI/BamHI restriction sites into a prokaryotic vector harboring a 5'PmeI site followed by a 5' Kozak sequence and by a human antibody leader sequence. Sequences were cut from the prokaryotic vector by PmeI/BamHI digest and subcloned into mammalian cell expression vectors already containing the human kappa (pREN-Neo vector) or gamma-1 (pREN-DHFR vector) constant regions, described supra.
Example 13
[0088] Once the constructs were established, they were transfected into DGO44 cells, as described supra.
[0089] Positive colonies were sub-cloned, cultured to achieve sufficient antibody production, after which the antibodies were purified, on protein G columns via the Fc fragment.
[0090] The purified antibodies were analyzed via SDS-PAGE, following Laemmli, Nature 227:680-5 (1970), as modified by Renner, et al, Eur. J. Immunol 25:2027-35 (1995), incorporated by reference. Samples from different stages of purification were diluted, in either reducing or non-reducing buffer, and were separated on 10-12% polyacrylamide gel via electrophoreses followed by standard Coomassic staining.
[0091] The results were in accordance with production of a complete, chimeric antibody, as evidenced by the banding patterns found in both reducing and non-reducing solutions.
Example 14
[0092] The binding capacity of the chimeric HRS-3 antibody was determined via flow cytometry, in accordance with Renner, et al, supra. In brief, 1×106 cells of a target tumor line which expressed CD-30 were washed, twice, in PBS, and then incubated with varying concentration of antibody, at 4° C., for 30 minutes. The cells were then washed, and incubated with a secondary antibody, which was directed to the light chain, conjugated to either FITC or PE.
[0093] The results indicated that there was weak binding from cell culture supernatant purified from transfected CHO cells, and string binding with purified antibody. No binding was found when CD-30 negative tumor cells were used.
Example 15
[0094] The antibody dependent cellular toxicity (ADCC), and the complement dependent toxicity of the chimeric HRS-3 antibody were determined using a europium released assay, as described by Hombach, et al, supra, and Renner, et al, supra.
[0095] In brief, for the ADCC assay, peripheral blood lymphocytes were isolated from tow healthy donors, and used at an effector:target ratio of 10:1, with 10,000 europium labelled, CD-30 antigen positive L540CY tumor cells. Antibody was added at varying concentrations (10 μl, 0.1 and 0.01 μg/ml), as was a control of 0 μg/ml. The effect was compared to the murine antibody, a bispecific murine anti-CD16/CD30 antibody, and an irrelevant, chimeric IgG1 antibody. A CD30 negative line was also used. Maximum lysis was measured after 0.025% Triton was added, and all assays were carried out in triplicate.
[0096] The results indicated that the chimeric antibody performed better in the ADCC than the murine antibody.
[0097] In the CDC assays, 10,000 europium labelled cells (100 μg) (L540Y), were incubated, with 50, 5, 0.5, or 0.05 μg/ml antibody in a 50 μl volume. Freshly isolated complement (50 μl) was added, and the mixture was incubated for 2 hours, at 37° C. The murine antibody was also tested, as was an anti CD-16 antibody and a chimeric anti IgG antibody, which served as controls, as did a CD-30 negative cell.
[0098] As in the ADCC assay the chimeric antibody was superior in terms of percent lysis to all other antibodies tested.
Example 16
[0099] This example details the production of a fusion protein of a chimeric, G250 specific antibody, and tumor necrosis factor ("TNF" hereafter).
[0100] G250 is an antigen also now as "carbonic anhydrase 9," or "CA9," or "MN." The G250 antigen and the corresponding antibody was described as being associated with renal cancer carcinoma by Oosterwijk, et al, PCT/US88/01511. The G250 antibody has also been the subject of several clinical trials (Oosterwijk, et al., Int. J. Cancer 1986: Oct. 15, 38(4):489-494; Divgi, et al., Clin. Cancer Res. 1998: Nov. 4(11):2729-739.
[0101] Zavada, et al, have issued a series of patents in which the G250 antigen is referred to as "MN" or "MN/CAIX." See, e.g., U.S. Pat. Nos. 6,051,226; 6,027,887; 5,995,075, and 5,981,711, all of which are incorporated by reference. These parents provide details on the antigen, and describe various tumors in which it is found, including cervical cancer, bladder cancer, mammary carcinoma, uterine, cervical, ovarian, and endometrial cancer.
[0102] Recently, Ivanov, et al, Am. Journal of Pathology 158(3):905-919 (2001), conducted investigations of CA9 and CA12 on tumor cells, and cell lines.
[0103] cDNA sequences for the light and heavy variable regions of a murine. G250 specific antibody are known, and these include the endogenous antibody leader sequence. PCR primers were used to modify both the 5' and 3' regions, in order to introduce restriction sites necessary for the introduction of the coding sequences to the vectors employed, which were SEQ ID NOS: 48 & 49, supra. The cDNA sequence which encodes the murine G250 heavy chain variable region is set forth at SEQ ID NO: 50, with the amino acid sequence at SEQ ID NO: 51 and the light chain variable region, at SEQ ID NO: 52, with amino acid sequence at SEQ ID NO: 53. The first 8 nucleotides in each of SEQ ID NOS 50 & 52 represent a PmeI restriction site. The first 19 amino acids encoded by the nucleotide sequence represent the leader region, and the first 24 the leader sequence for the light chain. The last 6 nucleotides in each of SEQ ID NOS: 50 & 52 are a BamHI restriction site. The same protocol as was used for the HRS-3 chimera was used to splice these variable regions into SEQ ID NOS: 46 & 47.
[0104] To secure the cDNA encoding human TNF, a human leukocyte cDNA library was used. The peripheral blood lymphocytes were stimulated with PMA, and the cDNA for TNF was amplified, using standard methods. Restriction sites were introduced in the cDNA sequence, so that the cDNA for TNF was positioned right after the hinge region of the G250 heavy chain. A (Gly) Ser coding sequence linked the two. SEQ ID NOS: 54 & 55 set forth the nucleotide and amino acid sequences of a TNF fragment, and SEQ ID NO: 56, a construct wherein the human gamma-1 heavy chain is followed by the TNF coding sequence, right after the IgG1 hinge region.
[0105] Within SEQ ID NO: 56, nucleotides 1419-1754 encode a partial, human IgG1 constant region, containing the CH1 and hinge domain, preceded by a 60 base pair intron region and splice acceptor site. The linker, i.e., (Gly)4Ser is encoded by nucleotides 1755-1769. The coding sequence for the human TNF fragment is set forth at nucleotides 1776-2296.
[0106] The resulting constructs were transfected into host cells, as described supra, and expressed. Note that SEQ ID NO: 56 contains a variant of the heavy chain vector noted supra, as it contains the human CH1 and hinge regions, followed by the TNF encoding sequence.
[0107] Cells were transfected and cultured as described supra for the HRS-3 chimera, and amplification was carried out using the primers of SEQ ID NOS: 40-43, described supra. The predicted size of the amplification product was 1100 base pairs, and this was in fact confirmed.
[0108] Positive colonies were then sub-cloned and cultured, as described supra. The chimeric G250-TNF fusion proteins were purified using anion exchanged chromatography on DEAE columns, using 5 ml samples, and increased salt concentrations in the elution buffer (NaCl, 0→0.5 M) (pH 8). The purity of the fusion proteins was determined, on SDS-PAGE, under reducing conditions. Two bands, of 45 and 28 kDa, respectively, appeared, consistent with the production of a chimeric fusion protein.
[0109] The purity of the chimeric fusion protein was confirmed in a sandwich ELISA. In brief, plates were coated with 1:6000 dilutions of affinity purified, goat anti-human IgG serum, and incubated overnight. They were then blocked with 2% gelatin. Either cell culture supernatant, or purified antibody was added, at varying concentrations, and then contacted with biotinylated goat anti-human TNFα specific serum, at 0.1 μg/ml, followed by visualization with a standard streptavidin peroxidase reagent.
[0110] The ELISA confirmed the purity of the antibody.
Example 17
[0111] FACS was carried out, as described supra for the chimeric HRS-3 antibodies, this time using the fusion protein, and G250 positive tumor cells. Two different purification runs were tested, with chimeric G250 antibody as a positive control, and an irrelevant chimeric IgG1 antibody as a negative control.
[0112] The results indicated that the chimeric fusion protein bound as well as the chimeric antibody did. No binding was detected when G250 negative cells were used.
Example 18
[0113] These experiments were designed to determine if the fusion proteins retained the ability of TNF to mediate cell death.
[0114] This was accomplished using an MTT assay as described by Renner, et al, Eur. J. Immunol. 25:2027-2035 (1995), incorporated by reference, and TNF sensitive ("WEHI-R") cells. The WEHI cells were seeded at a density of 10,000 cells/well. Then, after 18 hours, sterile samples of the fusion protein, recombinant TNF, chimeric G250 antibody, or a negative control (plain medium), were added, at concentrations of 1.0×105, 1.0×102, 1, 1.0×10-2, 1.0×10-4, and 1.0×10-5 ng/ml, and the culture was incubated for additional period of from 48-72 hours. Any viable cells were detected, via standard methods, including Annexin V staining, and flow cytometry. To do this, 1×106 WEHI cells were incubated, overnight, with varying antibody concentrations, and dye positive cells were counted. The effect of antibody loaded tumor cells in WEHI killing was determined by pre-staining with commercially available PKH-26GL dye.
[0115] The chimeric fusion proteins were found to be as effective as recombinant TNF in killing cells.
Example 19
[0116] It is known that TNF stimulates H2O2 release by human leukocytes. The chimeric fusion proteins were tested for this property.
[0117] Granulocytes were isolated from blood samples via standard methods, and were resuspended in reaction buffer (KRPG=145 mM NaCl, 5 mM Na2HPO4, 4.8 mM KCl, 0.5 mM CaCl2, 1.2 mM MgSO4, 0.2 mM glucose, pH 7.35). This mix was added plates that had been precoated with fibronectin (1 μg/ml, 2 hours, 37° C.) to permit granulocyte adherence. Following this, 100 μl of a dye solution (10 ml KRPG+50 μl A6550+10 μl horseradish-peroxidase) were added and incubated for 15 minutes at 37° C. Granulocytes were added, at 30,000 cells per well, and then either buffer (KRPG), PMA (5 ng/ml), the chimeric fusion protein (1 μg/ml) plus recombinant human IFN-γ (100 μ/ml), or the fusion protein plus the recombinant IFN-γ (at the indicated concentrations), were added. H2O2 release was measured for 3 hours, using standard methods.
[0118] The PMA served as a positive control. The chimeric fusion protein induced H2O2 release significantly higher than antibody alone, and the H2O2 release increases even more when IFN-γ was added.
Sequence CWU
1
56127DNAArtificial SequenceOligonucleotide primer 1atgaaatgca gctgggtcat
sttcttc 27225DNAArtificial
SequenceOligonucleotide primer 2atgggatgga gctratcats ytctt
25327DNAArtificial SequenceOligonucleotide
primer 3atgaagwtgt ggttaaactg ggttttt
27424DNAArtificial SequenceOligonucleotide primer 4atgractttg
wytcagcttg rttt
24528DNAArtificial SequenceOligonucleotide primer 5atggactcca ggctcaamag
ttttcctt 28627DNAArtificial
SequenceOligonucleotide primer 6atggctgtcy trgsgctrct cttctgc
27726DNAArtificial SequenceOligonucleotide
primer 7atggratgga gckggrtctt tmtctt
26823DNAArtificial SequenceOligonucleotide primer 8atgagagtgc
tgattctttt gtg
23930DNAArtificial SequenceOligonucleotide primer 9atggmttggg tgtggamctt
gctattcctg 301027DNAArtificial
SequenceOligonucleotide primer 10atgggcagac ttacattctc attcctg
271128DNAArtificial SequenceOligonucleotide
primer 11atggattttg ggctgatttt ttttattg
281227DNAArtificial SequenceOligonucleotide primer 12atgatggtgt
taagtcttct gtacctg
271330DNAArtificial SequenceOligonucleotide primer 13atgaagttgc
ctgttaggct gttggtgctg
301429DNAArtificial SequenceOligonucleotide primer 14atggagwcag
acacactcct gytatgggt
291530DNAArtificial SequenceOligonucleotide primer 15atgagtgtgc
tcactcaggt cctggsgttg
301633DNAArtificial SequenceOligonucleotide primer 16atgaggrccc
ctgctcagwt tyttggmwtc ttg
331730DNAArtificial SequenceOligonucleotide primer 17atggatttwc
aggtgcagat twtcagcttc
301827DNAArtificial SequenceOligonucleotide primer 18atgaggtkcy
ytgytsagyt yctgrgg
271931DNAArtificial SequenceOligonucleotide primer 19atgggcwtca
agatggagtc acakwyycwg g
312031DNAArtificial SequenceOligonucleotide primer 20atgtggggay
ctktttycmm tttttcaatt g
312125DNAArtificial SequenceOligonucleotide primer 21atggtrtccw
casctcagtt ccttg
252227DNAArtificial SequenceOligonucleotide primer 22atgtatatat
gtttgttgtc tatttct
272328DNAArtificial SequenceOligonucleotide primer 23atggaagccc
cagctcagct tctcttcc
282427DNAArtificial SequenceOligonucleotide primer 24atgaagtttc
cttctcaact tctgctc
272517DNAArtificial SequenceOligonucleotide primer 25tggatggtgg gaagatg
172618DNAArtificial
SequenceOligonucleotide primer 26ccagtggata gacagatg
1827456DNAMus musculusmurine 19/2 heavy
chain variable region 27atggagctga tcatgctctt cctcctgtca ggaactgcag
gcgtccactc 50tgaggtccag cttcagcagt caggacctga actggtgaaa
cctggggcct 100cagtgaagat atcctgcaag gcttctggat acactttcac
tgactacaac 150atacactggg tgaaacagag ccatggaaag agccttgact
ggattggata 200tattgctcct tacagtggtg gtactggtta caaccaggag
ttcaagaaca 250gggccacatt gactgtagac aaatcctcca gcacagccta
catggagctc 300cgcagtctga catctgatga ctctgcagtc tattactgtg
ctagacgaga 350ccgtttccct tattactttg actactgggg ccaaggcacc
cctctcacag 400tctcctcagc caaaacgaca cccccatctg tctatccact
ggcaagggcg 450aattcc
45628139PRTMus musculusamino acid sequence for
murine 19/2 heavy chain variable region 28Met Glu Leu Ile Met Leu
Phe Leu Leu Ser Gly Thr Ala Gly Val His 5
10 15Ser Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu
Val Lys Pro Gly 20 25 30Ala
Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp 35
40 45Tyr Asn Ile His Trp Val Lys Gln Ser
His Gly Lys Ser Leu Asp Trp 50 55
60Ile Gly Tyr Ile Ala Pro Tyr Ser Gly Gly Thr Gly Tyr Asn Gln Glu65
70 75 80Phe Lys Asn Arg Ala
Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala 85
90 95Tyr Met Glu Leu Arg Ser Leu Thr Ser Asp Asp
Ser Ala Val Tyr Tyr 100 105
110Cys Ala Arg Arg Asp Arg Phe Pro Tyr Phe Asp Tyr Trp Gly Gln Gly
115 120 125Thr Thr Leu Arg Val Ser Ser
Val Ser Gly Ser 130 13529450DNAMus musculusmurine 19/2
light chain variable region 29atgggcttca agatggagtc acagatccag gtctttgtat
acatgttgct 50gtggttgtct ggtgttgatg gagacattgt gatgatccag
tctcaaaaat 100tcgtatccac atcagtagga gacagggtca atatcacctg
caaggccagt 150cagaatgtgg gaagtaatgt agcctggttg caacagaaac
ctggacaatc 200tcctaaaacg ctgatttact cggcatcgta ccggtccggt
cgagtccctg 250atcgcttcac aggcagtgga tctggaacag atttcattct
taccatcact 300actgtgcagt ctgaagactt ggcagaatat ttctgtcagc
aatttaacag 350gtctcctctc acgttcggtt ctgggaccaa gttggaactg
aaacgggctg 400atgctgcacc aactgtatcc atcttcccac catccagtaa
gggcgaattc 45030150PRTMus musculusamino acid sequence for
murine 19/2 light chain variable region 30Met Gly Phe Lys Met Glu
Ser Gln Ile Gln Val Phe Val Tyr Met Leu 5
10 15Leu Trp Leu Ser Gly Val Asp Gly Asp Ile Val Met
Ile Gln Ser Gln 20 25 30Lys
Phe Val Ser Thr Ser Val Gly Asp Arg Val Asn Ile Thr Cys Lys 35
40 45Ala Ser Gln Asn Val Gly Ser Asn Val
Ala Trp Leu Gln Gln Lys Pro 50 55
60Gly Gln Ser Pro Lys Thr Leu Ile Tyr Ser Ala Ser Tyr Arg Ser Gly65
70 75 80Arg Val Pro Asp Arg
Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Ile 85
90 95Leu Thr Ile Thr Thr Val Gln Ser Glu Asp Leu
Ala Glu Tyr Phe Cys 100 105
110Gln Gln Phe Asn Arg Ser Pro Leu Thr Phe Gly Ser Gly Thr Lys Leu
115 120 125Glu Leu Lys Arg Ala Asp Ala
Ala Pro Thr Val Ser Ile Phe Pro Pro 130 135
140Ser Ser Lys Gly Glu Phe145 1503141DNAArtificial
Sequenceprimer used for the construction of the chimeric 19/2 light
chain 31catgtttaaa cgccgccacc atgggcttca agatggagtc a
413238DNAArtificial Sequenceprimer used for the construction of the
chimeric 19/2 light chain 32agaggatcca ctcacgtttc agttccactt ggtcccag
383343DNAArtificial Sequenceprimer used for
the construction of the chimeric 19/2 heavy chain 33catgtttaaa
cgccgccacc atggagctga tcatgctctt cct
433437DNAArtificial Sequenceprimer used for the construction of the
chimeric 19/2 heavy chain 34agaggatcca ctcacctgag gagactctga gagtggt
37356159DNAArtificial SequencepREN 19/2 LC Neo
Vector 35ctcgagagcg ggcagtgagc gcaacgcaat taatgtgagt tagctcactc
50attaggcacc ccaggcttta cactttatgc tcccggctcg tatgttgtgt
100ggagattgtg agcggataac aatttcacac agaattcgtg aggctccggt
150gcccgtcagt gggcagagcg cacatcgccc acagtccccg agaagttggg
200gggaggggtc ggcaattgaa ccggtgccta gagaaggtgg cgcggggtaa
250actgggaaag tgatgtcgtg tactggctcc gcctttttcc cgagggtggg
300ggagaaccgt atataagtgc agtagtcgcc gtgaacgttc tttttcgcaa
350cgggtttgcc gccagaacac aggtaagtgc cgtgtgtggt tcccgcgggc
400ctggcctctt tacgggttat ggcccttgcg tgccttgaat tacttccacg
450cccctggctg cagtacgtga ttcttgatcc cgagcttcgg gttggaagtg
500ggtgggagag ttcgaggcct tgcgcttaag gagccccttc gcctcgtgct
550tgagttgagg cctggcctgg gcgctggggc cgccgcgtgc gaatctggtg
600gcaccttcgc gcctgtctcg ctgctttcga taagtctcta gccatttaaa
650atttttgatg acctgctgcg acgctttttt tctggcaaga tagtcttgta
700aatgcgggcc aagatctgca cactggtatt tcggtttttg gggccgcggg
750cggcgacggg gcccgtgcgt cccagcgcac atgttcggcg aggcggggcc
800tgcgagcgcg gccaccgaga atcggacggg ggtagtctca agctggccgg
850cctgctctgg tgcctggcct cgcgccgccg tgtatcgccc cgccctgggc
900ggcaaggctg gcccggtcgg caccagttgc gtgagcggaa agatggccgc
950ttcccggccc tgctgcaggg agctcaaaat ggaggacgcg gcgctcggga
1000gagcgggcgg gtgagtcacc cacacaaagg aaaagggcct ttccgtcctc
1050agccgtcgct tcatgtgact ccacggagta ccgggcgccg tccaggcacc
1100tcgattagtt ctcgagcttt tggagtacgt cgtctttagg ttggggggag
1150gggttttatg cgatggagtt tccccacact gagtgggtgg agactgaagt
1200taggccagct tggcacttga tgtaattctc cttggaattt gccctttttg
1250agtttggatc ttggttcatt ctcaagcctc agacagtggt tcaaagtttt
1300tttcttccat ttcaggtgta cgcgtctcgg gaagctttag tttaaacgcc
1350gccacc atg ggc ttc aag atg gag tca cag atc cag gtc ttt
1392 Met Gly Phe Lys Met Glu Ser Gln Ile Gln Val Phe
5 10gta tac atg ttg ctg tgg ttg tct ggt gtt gat
gga gac att 1434Val Tyr Met Leu Leu Trp Leu Ser Gly Val Asp
Gly Asp Ile 15 20 25gtg atg atc
cag tct caa aaa ttc gta tcc aca tca gta gga 1476Val Met Ile
Gln Ser Gln Lys Phe Val Ser Thr Ser Val Gly 30
35 40gac agg gtc aat atc acc tgc aag gcc agt cag aat
gtg gga 1518Asp Arg Val Asn Ile Thr Cys Lys Ala Ser Gln Asn
Val Gly 45 50agt aat gta gcc tgg ttg caa
cag aaa cct gga caa tct cct 1560Ser Asn Val Ala Trp Leu Gln
Gln Lys Pro Gly Gln Ser Pro55 60 65aaa
acg ctg att tac tcg gca tcg tac cgg tcc ggt cga gtc 1602Lys
Thr Leu Ile Tyr Ser Ala Ser Tyr Arg Ser Gly Arg Val 70
75 80cct gat cgc ttc aca ggc agt gga tct gga aca gat
ttc att 1644Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp
Phe Ile 85 90 95ctt acc atc act
act gtg cag tct gaa gac ttg gca gaa tat 1686Leu Thr Ile Thr
Thr Val Gln Ser Glu Asp Leu Ala Glu Tyr 100
105 110ttc tgt cag caa ttt aac agg tct cct ctc acg ttc
ggt tct 1728Phe Cys Gln Gln Phe Asn Arg Ser Pro Leu Thr Phe
Gly Ser 115 120ggg acc aag ttg gaa ctg aaa
cgt gagtggatcc atctgggata 1772Gly Thr Lys Leu Glu Leu Lys
Arg125 130agcatgctgt tttctgtctg tccctaacat gccctgtgat
tatgcgcaaa 1822caacacaccc aagggcagaa ctttgttact taaacaccat
cctgtttgct 1872tctttcctca gga act gtg gct gca cca tct gtc
ttc atc ttc 1915 Thr Val Ala Ala Pro Ser Val
Phe Ile Phe 135 140ccg cca tct gat
gag cag ttg aaa tct gga act gcc tct gtt 1957Pro Pro Ser Asp
Glu Gln Leu Lys Ser Gly Thr Ala Ser Val 145 150
155gtg tgc ctg ctg aat aac ttc tat ccc aga gag gcc aaa gta
1999Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Gly Ala Lys Val
160 165 170cag tgg aag gtg gat aac
gcc ctc caa tcg ggt aac tcc cag 2041Gln Trp Lys Val Asp Asn
Ala Leu Gln Ser Gly Asn Ser Gln 175 180gag
agt gtc aca gag cag gac agc aag gac agc acc tac agc 2083Glu
Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser185
190 195ctc agc agc acc ctg acg ctg agc aaa gca gac tac
gag aaa 2125Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr
Glu Lys 200 205 210cac aaa gtc tac gcc
tgc gaa gtc acc cat cag ggc ctg agc 2167His Lys Val Tyr Ala
Cys Glu Val Thr His Gln Gly Leu Ser 215 220
225tcg ccc gtc aca aag agc ttc aac agg gga gag tgt tga
2206Ser Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys 230
235gctagaacta actaactaag ctagcaacgg tttccctcta gcgggatcaa
2256ttccgccccc cccccctaac gttactggcc gaagccgctt ggaataaggc
2306cggtgtgcgt ttgtctatat gttattttcc accatattgc cgtcttttgg
2356caatgtgagg gcccggaaac ctggccctgt cttcttgacg agcattccta
2406ggggtctttc ccctctcgcc aaaggaatgc aaggtctgtt gaatgtcgtg
2456aaggaagcag ttcctctgga agcttcttga agacaaacaa cgtctgtagc
2506gaccctttgc aggcagcgga accccccacc tggcgacagg tgcctctgcg
2556gccaaaagcc acgtgtataa gatacacctg caaaggcggc acaaccccag
2606tgccacgttg tgagttggat agttgtggaa agagtcaaat ggctctcctc
2656aagcgtattc aacaaggggc tgaaggatgc ccagaaggta ccccattgta
2706tgggatctga tctggggcct cggtgcacat gctttacgtg tgtttagtcg
2756aggttaaaaa acgtctaggc cccccgaacc acggggacgt ggttttcctt
2806tgaaaaacac gataatacca tggttgaaca agatggattg cacgcaggtt
2856ctccggccgc ttgggtggag aggctattcg gctatgactg ggcacaacag
2906acaatcggct gctctgatgc cgccgtgttc cggctgtcag cgcaggggcg
2956cccggttctt tttgtcaaga ccgacctgtc cggtgccctg aatgaactgc
3006aggacgaggc agcgcggcta tcgtggctgg ccacgacggg cgttccttgc
3056gcagctgtgc tcgacgttgt cactgaagcg ggaagggact ggctgctatt
3106gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg
3156agaaagtatc catcatggct gatgcaatgc ggcggctgca tacgcttgat
3206ccggctacct gcccattcga ccaccaagcg aaacatcgca tcgagcgagc
3256acgtactcgg atggaagccg gtcttgtcga tcaggatgat ctggacgaag
3306agcatcaggg gctcgcgcca gccgaactgt tcgccaggct caaggcgcgc
3356atgcccgacg gcgaggatct cgtcgtgacc catggcgatg cctgcttgcc
3406gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc
3456ggctgggtgt ggcggaccgc tatcaggaca tagcgttggc tacccgtgat
3506attgctgaag agcttggcgg cgaatgggct gaccgcttcc tcgtgcttta
3556cggtatcgcc gctcccgatt cgcagcgcat cgccttctat cgccttcttg
3606acgagttctt ctgagtcgat cgacctggcg taatagcgaa gaggcccgca
3656ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga atgggacgcg
3706ccctgtagcg gcgcattaag cgcggcgggt gtggtggtta cgcgcagcgt
3756gaccgctaca cttgccagcg ccctagcgcc cgctcctttc gctttcttcc
3806cttcctttct cgccacgttc gccggctttc cccgtcaagc tctaaatcgg
3856gggctccctt tagggttccg atttagtgct ttacggcacc tcgaccccaa
3906aaaacttgat tagggtgatg gttcacgtag tgggccatcg ccctgataga
3956cggtttttcg cctttgacgt tggagtccac gttctttaat agtggactct
4006tgttccaaac tggaacaaca ctcaacccta tctcggtcta tttataaggg
4056attttgccga tttcggccta ttggttaaaa aatgagctga tttaacaaaa
4106tttaacgcga attttaacaa aatattaacg cttacaattt aggtggcact
4156tttcggggaa atgtgcgcgg aacccctata tttgtttatt tttctaaata
4206cattcaaata tgtatccgct catgagacaa taaccctgat aaatgcttca
4256ataatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc
4306ttattccctt ttttgcggca ttttgcctta ctgtttttgc tcacccagaa
4356acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg
4406ttacatcgaa ctggatctca acagcggtaa gatccttgag agttttcgcc
4456ccgaagaacg ttttccaatg atgagcactt ttaaagttct gctatgtggc
4506gcggtattat cccgtattga cgccgggcaa gagcaactcg gtcgccgcat
4556acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc
4606atattacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc
4656atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc
4706gaaggagcta accgcttttt tgcacaacat gggggatcat gtaactcgcc
4756ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt
4806gacaccacga tgcctgtagc aatggcaaca acgttgcgca aactattaac
4856tggcgaacta cttactctag cttcccggca acaattaata gactggatgg
4906aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc
4956tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat
5006cattgcagca ctggggccag atggtaagcc ctcccgtatc gtagttatct
5056acacgacggg gagtcaggca actatggatg aacgaaatag acagatcgct
5106gagataggtg cctcactgat taagcattgg taactgtcag accaagttta
5156ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga
5206tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt
5256gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatg
5306ttcttgagat cctttttttc tgcacgtaat ctgctgcttg caaacaaaaa
5356accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc
5406tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtc
5456cttctagtgt agccgtagtt aggccaccac ttcaagaact ctgtagcacc
5506gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg
5556gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat
5606aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt
5656ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag
5706aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc
5756ggcagggtcg gaacaggaga gcgcacgagg gagcttccag ggggaaacgc
5806ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc
5856gatttttgtg atgctcgtca ggggggcgga gcctatggaa aaacgccagc
5906aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat
5956gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct
6006ttgagtgagc tgataccgct cgccgcagcc gaacgaccga gcgcagcgag
6056tcagtgagcg aggaagcgga agagcgccca atacgcaaac cgcctctccc
6106cgcgcgttgg ccgattcatt aatgcaggta tcacgaggcc ctttcgtctt
6156cac
6159366579DNAArtificial SequencepREN 19/2 HC DHFR Vector 36ctcgagagcg
ggcagtgagc gcaacgcaat taatgtgagt tagctcactc 50attaggcacc
ccaggcttta cactttatgc tcccggctcg tatgttgtgt 100ggagattgtg
agcggataac aatttcacac agaattcgtg aggctccggt 150gcccgtcagt
gggcagagcg cacatcgccc acagtccccg agaagttggg 200gggaggggtc
ggcaattgaa ccggtgccta gagaaggtgg cgcggggtaa 250actgggaaag
tgatgtcgtg tactggctcc gcctttttcc cgagggtggg 300ggagaaccgt
atataagtgc agtagtcgcc gtgaacgttc tttttcgcaa 350cgggtttgcc
gccagaacac aggtaagtgc cgtgtgtggt tcccgcgggc 400ctggcctctt
tacgggttat ggcccttgcg tgccttgaat tacttccacg 450ggtgggagag
ttcgaggcct tgcgcttaag gagccccttc gcctcgtgct 500tgagttgagg
cctggcctgg gcgctggggc cgccgcgtgc gaatctggtg 550gcaccttcgc
gcctgtctcg ctgctttcga taagtctcta gccatttaaa 600atttttgatg
acctgctgcg acgctttttt tctggcaaga tagtcttgta 650aatgcgggcc
aagatctgca cactggtatt tcggtttttg gggccgcggg 700cggcgacggg
gcccgtgcgt cccagcgcac atgttcggcg aggcggggcc 750tgcgagcgcg
gccaccgaga atcggacggg ggtagtctca agctggccgg 800cctgctctgg
tgcctggcct cgcgccgccg tgtatcgccc cgccctgggc 850ggcaaggctg
gcccggtcgg caccagttgc gtgagcggaa agatggccgc 900ttcccggccc
tgctgcaggg agctcaaaat ggaggacgcg gcgctcggga 950gagcgggcgg
gtgagtcacc cacacaaagg aaaagggcct ttccgtcctc 1000agccgtcgct
tcatgtgact ccacggagta ccgggcgccg tccaggcacc 1050tcgattagtt
ctcgagcttt tggagtacgt cgtctttagg ttggggggag 1100gggttttatg
cgatggagtt tccccacact gagtgggtgg agactgaagt 1150taggccagct
tggcacttga tgtaattctc cttggaattt gccctttttg 1200agtttggatc
ttggttcatt ctcaagcctc agacagtggt tcaaagtttt 1250tttcttccat
ttcaggtgta cgcgtctcgg gaagctttag tttaaacgcc 1300gccacc atg
gag ctg atc atg ctc ttc ctc ctg tca gga act 1342 Met
Glu Leu Ile Met Leu Phe Leu Leu Ser Gly Thr 5
10gca ggc gtc cac tct gag gtc cag ctt cag cag tca gga cct
1384Ala Gly Val His Ser Glu Val Gln Leu Gln Gln Ser Gly Pro
15 20 25gaa ctg gtg aaa cct ggg gcc
tca gtg aag ata tcc tgc aag 1426Glu Leu Val Lys Pro Gly Ala
Ser Val Lys Ile Ser Cys Lys 30 35
40gct tct gga tac act ttc act gac tac aac ata cac tgg gtg
1468Ala Ser Gly Tyr Thr Phe Thr Asp Tyr Asn Ile His Trp Val
45 50aaa cag agc cat gga aag agc ctt gac tgg att gga
tat att 1510Lys Gln Ser His Gly Lys Ser Leu Asp Trp Ile Gly
Tyr Ile55 60 65gct cct tac agt ggt ggt
act ggt tac aac cag gag ttc aag 1552Ala Pro Tyr Ser Gly Gly
Thr Gly Tyr Asn Gln Glu Phe Lys 70 75
80aac agg gcc aca ttg act gta gac aaa tcc tcc agc aca gcc
1594Asn Arg Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala 85
90 95tac atg gag ctc cgc agt ctg aca tct
gat gac tct gca gtc 1636Tyr Met Glu Leu Arg Ser Leu Thr Ser
Asp Asp Ser Ala Val 100 105
110tat tac tgt gct aga cga gac cgt ttc cct tat tac ttt gac
1678Tyr Tyr Cys Ala Arg Arg Asp Arg Phe Pro Tyr Tyr Phe Asp
115 120tac tgg ggc caa ggc acc act ctc aga gtc tcc tca
gtg agt 1720Tyr Trp Gly Gln Gly Thr Thr Leu Arg Val Ser
Ser125 130 135ggatcctctg cgcctgggcc
cagctctgtc ccacaccgcg gtcacatggc 1770accacctctc ttgcagcc tcc
acc aag ggc cca tcg gtc ttc 1812 Ser
Thr Lys Gly Pro Ser Val Phe 140ccc ctg gca
ccc tcc tcc aag agc acc tct ggg ggc aca 1851Pro Leu Ala
Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr145 150
155gcg gcc ctg ggc tgc ctg gtc aag gac tac ttc ccc gaa ccg
1893Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro 160
165 170gtg acg gtg tcg tgg aac tca ggc gcc
ctg acc agc ggc gtg 1935Val Thr Val Ser Trp Asn Ser Gly Ala
Lys Thr Ser Gly Val 175 180
185cac acc ttc ccg gct gtc cta cag tcc tca gga ctc tac tcc
1977His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser
190 195ctc agc agc gtg gtg acc gtg ccc tcc agc agc ttg
ggc acc 2019Leu Ser Ser Val Val Ser Val Pro Ser Ser Ser Leu
Gly Thr200 205 210cag acc tac atc tgc aac
gtg aat cac aag ccc agc aac acc 2061Gln Thr Tyr Ile Cys Asn
Val Asn His Lys Pro Ser Asn Thr 215 220
225aag gtg gac aag aaa gtt gag ccc aaa tct tgt gac aaa act
2103Lys Val Asn Lys Lys Val Glu Pro Lys Ser Cys Asn Lys Thr 230
235 240cac aca tgc cca ccg tgc cca gca cct
gaa ctc ctg ggg gga 2145His Thr Cys Pro Pro Cys Pro Ala Pro
Glu Leu Leu Gly Gly 245 250
255ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag gac acc ctc
2187Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asn Thr Leu
260 265atg atc tcc cgg acc cct gag gtc aca tgc gtg gtg
gtg gac 2229Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val
Val Asn270 275 280gtg agc cac gaa gac cct
gag gtc aag ttc aac tgg tac gtg 2271Val Ser His Glu Asn Pro
Glu Val Lys Phe Asn Trp Tyr Val 285 290
295gac ggc gtg gag gtg cat aac gcc aag aca aag ccg cgg gag
2313Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 300
305 310gag cag tac aac agc acg tac cgg gtg
gtc agc gtc ctc acc 2355Glu Gln Tyr Asn Ser Thr Tyr Arg Val
Val Ser Val Leu Thr 315 320
325gtc ctg cac cag gac tgg ctg aat ggc aag gag tac aag tgc
2397Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
330 335aag gtc tcc aac aaa gcc ctc cca gcc ccc atc gag
aaa acc 2439Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
Lys Thr340 345 350atc tcc aaa gcc aaa ggg
cag ccc cga gaa cca cag gtg tac 2481Ile Ser Lys Ala Lys Gly
Gln Pro Arg Glu Pro Gln Val Tyr 355 360
365acc ctg ccc cca tcc cgg gag gag atg acc aag aac cag gtc
2523Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val 370
375 380agc ctg acc tgc ctg gtc aaa ggc ttc
tat ccc agc gac atc 2565Ser Leu Thr Cys Leu Val Lys Gly Phe
Tyr Pro Ser Asn Ile 385 390
395gcc gtg gag tgg gag agc aat ggg cag ccg gag aac aac tac
2607Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
400 405aag acc acg cct ccc gtg ctg gac tcc gac ggc tcc
ttc ttc 2649Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser
Phe Phe410 415 420ctc tac agc aag ctc acc
gtg gac aag agc agg tgg cag cag 2691Leu Tyr Ser Lys Leu Thr
Val Asp Lys Ser Arg Trp Gln Gln 425 430
435ggg aac gtc ttc tca tgc tcc gtg atg cat gag gct ctg cac
2733Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 440
445 450aac cac tac acg cag aag agc ctc tcc
ctg tct ccg ggt aaa 2775Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser Pro Gly Lys 455 460
465tga gctagaaact aactaagcta gcaacggttt ccctctagcg ggatcaattc
2828cgcccccccc ccctaacgtt actggccgaa gccgcttgga ataaggccgg
2878tgtgcgtttg tctatatgtt attttccacc atattgccgt cttttggcaa
2928tgtgagggcc cggaaacctg gccctgtctt cttgacgagc attcctaggg
2978gtctttcccc tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag
3028gaagcagttc ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac
3078cctttgcagg cagcggaacc ccccacctgg cgacaggtgc ctctgcggcc
3128aaaagccacg tgtataagat acacctgcaa aggcggcaca accccagtgc
3178cacgttgtga gttggatagt tgtggaaaga gtcaaatggc tctcctcaag
3228cgtattcaac aaggggctga aggatgccca gaaggtaccc cattgtatgg
3278gatctgatct ggggcctcgg tgcacatgct ttacgtgtgt ttagtcgagg
3328ttaaaaaacg tctaggcccc ccgaaccacg gggacgtggt tttcctttga
3378aaaacacgat aataccatgg ttcgaccatt gaactgcatc gtcgccgtgt
3428cccaaaatat ggggattggc aagaacggag acctaccctg gcctccgctc
3478aggaacgagt tcaagtactt ccaaagaatg accacaacct cttcagtgga
3528aggtaaacag aatctggtga ttatgggtag gaaaacctgg ttctccattc
3578ctgagaagaa tcgaccttta aaggacagaa ttaatggttc gatatagttc
3628tcagtagaga actcaaagaa ccaccacgag gagctcattt tcttgccaaa
3678agtttggatg atgccttaag acttattgaa caaccggaat tggcaagtaa
3728agtagacatg gtttggatag tcggaggcag ttctgtttac caggaagcca
3778tgaatcaacc aggccacctc agactctttg tgacaaggat catgcaggaa
3828tttgaaagtg acacgttttt cccagaaatt gatttgggga aatataaact
3878tctcccagaa tacccaggcg tcctctctga ggtccaggag gaaaaaggca
3928tcaagtataa gtttgaagtc tacgagaaga aagactaaca ggaagatgct
3978ttcaagttct ctgctcccct cctaaagcta tgcattttta taagaccatg
4028ggacttttgc tggtcgatcg acctggcgta atagcgaaga ggcccgcacc
4078gatcgccctt cccaacagtt gcgcagcctg aatggcgaat gggacgcgcc
4128ctgtagcggc gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga
4178ccgctacact tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct
4228tcctttctcg ccacgttcgc cggctttccc cgtcaagctc taaatcgggg
4278gctcccttta gggttccgat ttagtgcttt acggcacctc gaccccaaaa
4328aacttgatta gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg
4378gtttttcgcc tttgacgttg gagtccacgt tctttaatag tggactcttg
4428ttccaaactg gaacaacact caaccctatc tcggtctatt tataagggat
4478tttgccgatt tcggcctatt ggttaaaaaa tgagctgatt taacaaaatt
4528taacgcgaat tttaacaaaa tattaacgct tacaatttag gtggcacttt
4578tcggggaaat gtgcgcggaa cccctatatt tgtttatttt tctaaataca
4628ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat
4678aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt
4728attccctttt ttgcggcatt ttgccttact gtttttgctc acccagaaac
4778gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt
4828acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc
4878gaagaacgtt ttccaatgat gagcactttt aaagttctgc tatgtggcgc
4928ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac
4978actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat
5028attacggatg gcatgacagt aagagaatta tgcagtgctg ccataaccat
5078gagtgataac actgcggcca acttacttct gacaacgatc ggaggaccga
5128aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt
5178gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga
5228caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg
5278gcgaactact tactctagct tcccggcaac aattaataga ctggatggag
5328gcggataaag ttgcaggacc acttctgcgc tcggcccttc cggctggctg
5378gtttattgct gataaatctg gagccggtga gcgtgggtct cgcggtatca
5428ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac
5478acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga
5528gataggtgcc tcactgatta agcattggta actgtcagac caagtttact
5578catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc
5628taggtgaaga tcctttttga taatctcatg accaaaatcc cttaacgtga
5678gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatgtt
5728cttgagatcc tttttttctg cacgtaatct gctgcttgca aacaaaaaac
5778caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt
5828tttccgaagg taactggctt cagcagagcg cagataccaa atactgtcct
5878tctagtgtag ccgtagttag gccaccactt caagaactct gtagcaccgc
5928ctacatacct cgctctgcta atcctgttac cagtggctgc tgccagtggc
5978gataagtcgt gtcttaccgg gttggactca agacgatagt taccggataa
6028ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg
6078agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa
6128agcgccacgc ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg
6178cagggtcgga acaggagagc gcacgaggga gcttccaggg ggaaacgcct
6228ggtatcttta tagtcctgtc gggtttcgcc acctctgact tgagcgtcga
6278tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa
6328cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt
6378tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt
6428gagtgagctg ataccgctcg ccgcagccga acgaccgagc gcagcgagtc
6478agtgagcgag gaagcggaag agcgcccaat acgcaaaccg cctctccccg
6528cgcgttggcc gattcattaa tgcaggtatc acgaggccct ttcgtcttca
6578c
65793724DNAArtificial Sequenceprimer 37ttcttgaagt ctggtgatgc tgcc
243831DNAArtificial Sequenceprimer
38caagctagcc ctctaagact cctcccctgt t
313933DNAArtificial Sequenceprimer 39gaactcgagt catttacccg gagacaggga gag
334032DNAArtificial Sequenceprimer
40gcgccatggc ccaggtgcaa ctgcagcagt ca
324134DNAArtificial Sequenceprimer 41cagggatcca ctcacctgag gagacggtga
ccgt 344233DNAArtificial Sequenceprimer
42agcgccatgg acatcgagct cactcagtct cca
334335DNAArtificial Sequenceprimer 43cagggatcca actcacgttt gatttccagc
ttggt 3544465DNAMus Musculusnucleotide
sequence of murine heavy chain variable region 44gtttaaacgc
cgccaccatg aactggacct ggaccgtgtt ttgcctgctc 50gctgtggctc
ctggggccca cagcgccatg gcccaggtgc aactgcagca 100gtcaggggct
gagctggcta gacctggggc ttcagtgaag atgtcctgca 150aggcttctgg
ctacaccttt actacctaca caatacactg ggtaagacag 200aggcctggac
acgatctgga atggattgga tacattaatc ctagcagtgg 250atattctgac
tacaatcaaa gcttcaaggg caagaccaca ttgactgcag 300acaagtcctc
caacacagcc tacatgcaac tgaacagcct gacatctgag 350gactctgcgg
tctattactg tgcaagaaga gcggactatg gtaactacga 400atatacctgg
tttgcttact ggggccaagg gaccacggtc accgtctcct 450caggtgagtg
gatcc 46545145PRTMus
musculusamino acid sequence for murine heavy chain variable region
45Met Asn Trp Thr Trp Thr Val Phe Cys Leu Leu Ala Val Ala Pro Gly
5 10 15Ala His Ser Ala Met Ala
Gln Val Gln Leu Gln Gln Ser Gly Ala Glu 20 25
30Leu Ala Arg Pro Gly Ala Ser Val Lys Met Ser Cys Lys
Ala Ser Gly 35 40 45Tyr Thr Phe
Thr Thr Tyr Thr Ile His Trp Val Arg Gln Arg Pro Gly 50
55 60His Asp Leu Glu Trp Ile Gly Tyr Ile Asn Pro Ser
Ser Gly Tyr Ser65 70 75
80Asp Tyr Asn Gln Ser Phe Lys Gly Lys Thr Thr Leu Thr Ala Asp Lys
85 90 95Ser Ser Asn Thr Ala Tyr
Met Gln Leu Asn Ser Leu Thr Ser Glu Asp 100
105 110Ser Ala Val Tyr Tyr Cys Ala Arg Arg Ala Asp Tyr
Gly Asn Tyr Glu 115 120 125Tyr Thr
Trp Phe Ala Tyr Trp Gly Gln Gly Thr Thr Val Thr Val Ser 130
135 140Ser14546415DNAMus musculusnucleotide sequence
for murine light chain variable region 46gtttaaacgc cgccaccatg
aactggacct ggaccgtgtt ttgcctgctc 50gctgtggctc ctggggccca
cagcgccatg gacatcgagc tcactcagtc 100tccaaaattc atgtccacat
cagtaggaga cagggtcaac gtcacctaca 150aggccagtca gaatgtgggt
actaatgtag cctggtttca acaaaaacca 200gggcaatctc ctaaagttct
gatttactcg gcatcttacc gatacagtgg 250agtccctgat cgcttcacag
gcagtggatc tggaacagat ttcactctca 300ccatcagcaa tgtgcagtct
gaagacttgg cagagtattt ctgtcagcaa 350tatcacacct atcctctcac
gttcggaggg ggcaccaagc tggaaatcaa 400acgtgagttg gatcc
41547129PRTMus musculusamino
acid sequence for murine light chain variable region 47Met Asn Trp
Thr Trp Thr Val Phe Cys Leu Leu Ala Val Ala Pro Gly 5
10 15Ala His Ser Ala Met Asp Ile Glu Leu
Thr Gln Ser Pro Lys Phe Met 20 25
30Ser Thr Ser Val Gly Asp Arg Val Asn Val Thr Tyr Lys Ala Ser Gln
35 40 45Asn Val Gly Thr Asn Val Ala
Trp Phe Gln Gln Lys Pro Gly Gln Ser 50 55
60Pro Lys Val Leu Ile Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro65
70 75 80Asp Arg Phe Thr
Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile 85
90 95Ser Asn Val Gln Ser Glu Asp Leu Ala Glu
Tyr Phe Cys Gln Gln Tyr 100 105
110His Thr Tyr Pro Leu Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
115 120 125Arg 485759DNAArtificial
SequenceLight chain expression vector pREN-Neo. 48ctcgagagcg ggcagtgagc
gcaacgcaat taatgtgagt tagctcactc 50attaggcacc ccaggcttta
cactttatgc tcccggctcg tatgttgtgt 100ggagattgtg agcggataac
aatttcacac agaattcgtg aggctccggt 150gcccgtcagt gggcagagcg
cacatcgccc acagtccccg agaagttggg 200gggaggggtc ggcaattgaa
ccggtgccta gagaaggtgg cgcggggtaa 250actgggaaag tgatgtcgtg
tactggctcc gcctttttcc cgagggtggg 300ggagaaccgt atataagtgc
agtagtcgcc gtgaacgttc tttttcgcaa 350cgggtttgcc gccagaacac
aggtaagtgc cgtgtgtggt tcccgcgggc 400ctggcctctt tacgggttat
ggcccttgcg tgccttgaat tacttccacg 450cccctggctg cagtacgtga
ttcttgatcc cgagcttcgg gttggaagtg 500ggtgggagag ttcgaggcct
tgcgcttaag gagccccttc gcctcgtgct 550tgagttgagg cctggcctgg
gcgctggggc cgccgcgtgc gaatctggtg 600gcaccttcgc gcctgtctcg
ctgctttcga taagtctcta gccatttaaa 650atttttgatg acctgctgcg
acgctttttt tctggcaaga tagtcttgta 700aatgcgggcc aagatctgca
cactggtatt tcggtttttg gggccgcggg 750cggcgacggg gcccgtgcgt
cccagcgcac atgttcggcg aggcggggcc 800tgcgagcgcg gccaccgaga
atcggacggg ggtagtctca agctggccgg 850cctgctctgg tgcctggcct
cgcgccgccg tgtatcgccc cgccctgggc 900ggcaaggctg gcccggtcgg
caccagttgc gtgagcggaa agatggccgc 950ttcccggccc tgctgcaggg
agctcaaaat ggaggacgcg gcgctcggga 1000gagcgggcgg gtgagtcacc
cacacaaagg aaaagggcct ttccgtcctc 1050agccgtcgct tcatgtgact
ccacggagta ccgggcgccg tccaggcacc 1100tcgattagtt ctcgagcttt
tggagtacgt cgtctttagg ttggggggag 1150gggttttatg cgatggagtt
tccccacact gagtgggtgg agactgaagt 1200taggccagct tggcacttga
tgtaattctc cttggaattt gccctttttg 1250agtttggatc ttggttcatt
ctcaagcctc agacagtggt tcaaagtttt 1300tttcttccat ttcaggtgta
cgcgtctcgg gaagctttag tttaaacgcc 1350gtgagtggat ccatctggga
taagcatgct gttttctgtc tgtccctaac 1400atgccctgtg attatgcgca
aacaacacac ccaagggcag aactttgtta 1450cttaaacacc atcctgtttg
cttctttcct cagga act gtg gct gca cca 1500
Thr Val Ala Ala Pro
5tct gtc ttc atc ttc ccg cca tct gat gag cag ttg aaa tct
gga 1545Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser
Gly 10 15 20act gcc tct
gtt gtg tgc ctg ctg aat aac ttc tat ccc aga gag 1590Thr Ala Ser
Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu 25
30 35gcc aaa gta cag tgg aag gtg gat aac gcc
ctc caa tcg ggt aac 1635Ala Lys Val Gln Trp Lys Val Asp Asn Ala
Leu Gln Ser Gly Asn 40 45
50tcc cag gag agt gtc aca gag cag gac agc aag gac agc acc tac
1680Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr
55 60 65agc ctc agc agc acc ctg
acg ctg agc aaa gca gac tac gag aaa 1725Ser Leu Ser Ser Thr Leu
Thr Leu Ser Lys Ala Asp Tyr Glu Lys 70 75
80cac aaa gtc tac gcc tgc gaa gtc acc cat cag ggc ctg
agc tcg 1770His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu
Ser Ser 85 90 95ccc gtc
aca aag agc ttc aac agg gga gag tgt tga 1806Pro Val
Thr Lys Ser Phe Asn Arg Gly Glu Cys 100
105gctagaacta actaactaag ctagcaacgg tttccctcta gcgggatcaa
1856ttccgccccc cccccctaac gttactggcc gaagccgctt ggaataaggc
1906cggtgtgcgt ttgtctatat gttattttcc accatattgc cgtcttttgg
1956caatgtgagg gcccggaaac ctggccctgt cttcttgacg agcattccta
2006ggggtctttc ccctctcgcc aaaggaatgc aaggtctgtt gaatgtcgtg
2056aaggaagcag ttcctctgga agcttcttga agacaaacaa cgtctgtagc
2106gaccctttgc aggcagcgga accccccacc tggcgacagg tgcctctgcg
2156gccaaaagcc acgtgtataa gatacacctg caaaggcggc acaaccccag
2206tgccacgttg tgagttggat agttgtggaa agagtcaaat ggctctcctc
2256aagcgtattc aacaaggggc tgaaggatgc ccagaaggta ccccattgta
2306tgggatctga tctggggcct cggtgcacat gctttacgtg tgtttagtcg
2356aggttaaaaa acgtctaggc cccccgaacc acggggacgt ggttttcctt
2406tgaaaaacac gataatacca tggttgaaca agatggattg cacgcaggtt
2456ctccggccgc ttgggtggag aggctattcg gctatgactg ggcacaacag
2506acaatcggct gctctgatgc cgccgtgttc cggctgtcag cgcaggggcg
2556cccggttctt tttgtcaaga ccgacctgtc cggtgccctg aatgaactgc
2606aggacgaggc agcgcggcta tcgtggctgg ccacgacggg cgttccttgc
2656gcagctgtgc tcgacgttgt cactgaagcg ggaagggact ggctgctatt
2706gggcgaagtg ccggggcagg atctcctgtc atctcacctt gctcctgccg
2756agaaagtatc catcatggct gatgcaatgc ggcggctgca tacgcttgat
2806ccggctacct gcccattcga ccaccaagcg aaacatcgca tcgagcgagc
2856acgtactcgg atggaagccg gtcttgtcga tcaggatgat ctggacgaag
2906agcatcaggg gctcgcgcca gccgaactgt tcgccaggct caaggcgcgc
2956atgcccgacg gcgaggatct cgtcgtgacc catggcgatg cctgcttgcc
3006gaatatcatg gtggaaaatg gccgcttttc tggattcatc gactgtggcc
3056ggctgggtgt ggcggaccgc tatcaggaca tagcgttggc tacccgtgat
3106attgctgaag agcttggcgg cgaatgggct gaccgcttcc tcgtgcttta
3156cggtatcgcc gctcccgatt cgcagcgcat cgccttctat cgccttcttg
3206acgagttctt ctgagtcgat cgacctggcg taatagcgaa gaggcccgca
3256ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga atgggacgcg
3306ccctgtagcg gcgcattaag cgcggcgggt gtggtggtta cgcgcagcgt
3356gaccgctaca cttgccagcg ccctagcgcc cgctcctttc gctttcttcc
3406cttcctttct cgccacgttc gccggctttc cccgtcaagc tctaaatcgg
3456gggctccctt tagggttccg atttagtgct ttacggcacc tcgaccccaa
3506aaaacttgat tagggtgatg gttcacgtag tgggccatcg ccctgataga
3556cggtttttcg cctttgacgt tggagtccac gttctttaat agtggactct
3606tgttccaaac tggaacaaca ctcaacccta tctcggtcta tttataaggg
3656attttgccga tttcggccta ttggttaaaa aatgagctga tttaacaaaa
3706tttaacgcga attttaacaa aatattaacg cttacaattt aggtggcact
3756tttcggggaa atgtgcgcgg aacccctata tttgtttatt tttctaaata
3806cattcaaata tgtatccgct catgagacaa taaccctgat aaatgcttca
3856ataatattga aaaaggaaga gtatgagtat tcaacatttc cgtgtcgccc
3906ttattccctt ttttgcggca ttttgcctta ctgtttttgc tcacccagaa
3956acgctggtga aagtaaaaga tgctgaagat cagttgggtg cacgagtggg
4006ttacatcgaa ctggatctca acagcggtaa gatccttgag agttttcgcc
4056ccgaagaacg ttttccaatg atgagcactt ttaaagttct gctatgtggc
4106gcggtattat cccgtattga cgccgggcaa gagcaactcg gtcgccgcat
4156acactattct cagaatgact tggttgagta ctcaccagtc acagaaaagc
4206atattacgga tggcatgaca gtaagagaat tatgcagtgc tgccataacc
4256atgagtgata acactgcggc caacttactt ctgacaacga tcggaggacc
4306gaaggagcta accgcttttt tgcacaacat gggggatcat gtaactcgcc
4356ttgatcgttg ggaaccggag ctgaatgaag ccataccaaa cgacgagcgt
4406gacaccacga tgcctgtagc aatggcaaca acgttgcgca aactattaac
4456tggcgaacta cttactctag cttcccggca acaattaata gactggatgg
4506aggcggataa agttgcagga ccacttctgc gctcggccct tccggctggc
4556tggtttattg ctgataaatc tggagccggt gagcgtgggt ctcgcggtat
4606cattgcagca ctggggccag atggtaagcc ctcccgtatc gtagttatct
4656acacgacggg gagtcaggca actatggatg aacgaaatag acagatcgct
4706gagataggtg cctcactgat taagcattgg taactgtcag accaagttta
4756ctcatatata ctttagattg atttaaaact tcatttttaa tttaaaagga
4806tctaggtgaa gatccttttt gataatctca tgaccaaaat cccttaacgt
4856gagttttcgt tccactgagc gtcagacccc gtagaaaaga tcaaaggatg
4906ttcttgagat cctttttttc tgcacgtaat ctgctgcttg caaacaaaaa
4956accaccgcta ccagcggtgg tttgtttgcc ggatcaagag ctaccaactc
5006tttttccgaa ggtaactggc ttcagcagag cgcagatacc aaatactgtc
5056cttctagtgt agccgtagtt aggccaccac ttcaagaact ctgtagcacc
5106gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg
5156gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat
5206aaggcgcagc ggtcgggctg aacggggggt tcgtgcacac agcccagctt
5256ggagcgaacg acctacaccg aactgagata cctacagcgt gagctatgag
5306aaagcgccac gcttcccgaa gggagaaagg cggacaggta tccggtaagc
5356ggcagggtcg gaacaggaga gcgcacgagg gagcttccag ggggaaacgc
5406ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc
5456gatttttgtg atgctcgtca ggggggcgga gcctatggaa aaacgccagc
5506aacgcggcct ttttacggtt cctggccttt tgctggcctt ttgctcacat
5556gttctttcct gcgttatccc ctgattctgt ggataaccgt attaccgcct
5606ttgagtgagc tgataccgct cgccgcagcc gaacgaccga gcgcagcgag
5656tcagtgagcg aggaagcgga agagcgccca atacgcaaac cgcctctccc
5706cgcgcgttgg ccgattcatt aatgcaggta tcacgaggcc ctttcgtctt
5756cac
5759496207DNAArtificial SequenceHeavy chain expression vector pREN-DHFR.
49ctcgagagcg ggcagtgagc gcaacgcaat taatgtgagt tagctcactc
50attaggcacc ccaggcttta cactttatgc tcccggctcg tatgttgtgt
100ggagattgtg agcggataac aatttcacac agaattcgtg aggctccggt
150gcccgtcagt gggcagagcg cacatcgccc acagtccccg agaagttggg
200gggaggggtc ggcaattgaa ccggtgccta gagaaggtgg cgcggggtaa
250actgggaaag tgatgtcgtg tactggctcc gcctttttcc cgagggtggg
300ggagaaccgt atataagtgc agtagtcgcc gtgaacgttc tttttcgcaa
350cgggtttgcc gccagaacac aggtaagtgc cgtgtgtggt tcccgcgggc
400ctggcctctt tacgggttat ggcccttgcg tgccttgaat tacttccacg
450cccctggctg cagtacgtga ttcttgatcc cgagcttcgg gttggaagtg
500ggtgggagag ttcgaggcct tgcgcttaag gagccccttc gcctcgtgct
550tgagttgagg cctggcctgg gcgctggggc cgccgcgtgc gaatctggtg
600gcaccttcgc gcctgtctcg ctgctttcga taagtctcta gccatttaaa
650atttttgatg acctgctgcg acgctttttt tctggcaaga tagtcttgta
700aatgcgggcc aagatctgca cactggtatt tcggtttttg gggccgcggg
750cggcgacggg gcccgtgcgt cccagcgcac atgttcggcg aggcggggcc
800tgcgagcgcg gccaccgaga atcggacggg ggtagtctca agctggccgg
850cctgctctgg tgcctggcct cgcgccgccg tgtatcgccc cgccctgggc
900ggcaaggctg gcccggtcgg caccagttgc gtgagcggaa agatggccgc
950ttcccggccc tgctgcaggg agctcaaaat ggaggacgcg gcgctcggga
1000gagcgggcgg gtgagtcacc cacacaaagg aaaagggcct ttccgtcctc
1050agccgtcgct tcatgtgact ccacggagta ccgggcgccg tccaggcacc
1100tcgattagtt ctcgagcttt tggagtacgt cgtctttagg ttggggggag
1150gggttttatg cgatggagtt tccccacact gagtgggtgg agactgaagt
1200taggccagct tggcacttga tgtaattctc cttggaattt gccctttttg
1250agtttggatc ttggttcatt ctcaagcctc agacagtggt tcaaagtttt
1300cttccatttc aggtgtacgc gtctcgggaa gctttagttt aaacgcctgg
1350atcctctgcg cctgggccca gctctgtccc acaccgcggt cacatggcac
1400cacctctctt gcagcc tcc acc aag ggc cca tcg gtc ttc ccc ctg
1446 Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
5 10gca ccc tcc tcc aag agc acc
tct ggg ggc aca gcg gcc ctg ggc 1491Ala Pro Ser Ser Lys Ser Thr
Ser Gly Gly Thr Ala Ala Leu Gly 15 20
25tgc ctg gtc aag gac tac ttc ccc gaa ccg gtg acg gtg tcg
tgg 1536Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser
Trp 30 35 40aac tca ggc
gcc ctg acc agc ggc gtg cac acc ttc ccg gct gtc 1581Asn Ser Gly
Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 45
50 55cta cag tcc tca gga ctc tac tcc ctc agc
agc gtg gtg acc gtg 1626Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser
Ser Val Val Ser Val 60 65
70ccc tcc agc agc ttg ggc acc cag acc tac atc tgc aac gtg aat
1671Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn
75 80 85cac aag ccc agc aac acc
aag gtg gac aag aaa gtt gag ccc aaa 1716His Lys Pro Ser Asn Thr
Lys Val Asp Lys Lys Val Glu Pro Lys 90 95
100tct tgt gac aaa act cac aca tgc cca ccg tgc cca gca
cct gaa 1761Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala
Pro Glu 105 110 115ctc ctg
ggg gga ccg tca gtc ttc ctc ttc ccc cca aaa ccc aag 1806Leu Leu
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 120
125 130gac acc ctc atg atc tcc cgg acc cct
gag gtc aca tgc gtg gtg 1851Asp Thr Leu Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val Val 135 140
145gtg gac gtg agc cac gaa gac cct gag gtc aag ttc aac tgg tac
1896Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
150 155 160gtg gac ggc gtg gag gtg
cat aac gcc aag aca aag ccg cgg gag 1941Val Asp Gly Val Glu Val
His Asn Ala Lys Thr Lys Pro Arg Glu 165
170 175gag cag tac aac agc acg tac cgg gtg gtc agc gtc
ctc acc gtc 1986Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
Leu Thr Val 180 185 190ctg
cac cag gac tgg ctg aat ggc aag gag tac aag tgc aag gtc 2031Leu
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
195 200 205tcc aac aaa gcc ctc cca gcc
ccc atc gag aaa acc atc tcc aaa 2076Ser Asn Lys Ala Leu Pro Ala
Pro Ile Glu Lys Thr Ile Ser Lys 210 215
220gcc aaa ggg cag ccc cga gaa cca cag gtg tac acc ctg ccc
cca 2121Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro
Pro 225 230 235tcc cgg gag
gag atg acc aag aac cag gtc agc ctg acc tgc ctg 2166Ser Arg Glu
Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 240
245 250gtc aaa ggc ttc tat ccc agc gac atc gcc
gtg gag tgg gag agc 2211Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala
Val Glu Trp Glu Ser 255 260
265aat ggg cag ccg gag aac aac tac aag acc acg cct ccc gtg ctg
2256Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu
270 275 280gac tcc gac ggc tcc ttc
ttc ctc tac agc aag ctc acc gtg gac 2301Asp Ser Asp Gly Ser Phe
Phe Leu Tyr Ser Lys Leu Thr Val Asp 285
290 295aag agc agg tgg cag cag ggg aac gtc ttc tca tgc
tcc gtg atg 2346Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys
Ser Val Met 300 305 310cat
gag gct ctg cac aac cac tac acg cag aag agc ctc tcc ctg 2391His
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
315 320 325tct ccg ggt aaa tga gctagaaact
aactaagcta gcaacggttt 2436Ser Pro Gly Lysccctctagcg
ggatcaattc cgcccccccc ccctaacgtt actggccgaa 2486gccgcttgga
ataaggccgg tgtgcgtttg tctatatgtt attttccacc 2536atattgccgt
cttttggcaa tgtgagggcc cggaaacctg gccctgtctt 2586cttgacgagc
attcctaggg gtctttcccc tctcgccaaa ggaatgcaag 2636gtctgttgaa
tgtcgtgaag gaagcagttc ctctggaagc ttcttgaaga 2686caaacaacgt
ctgtagcgac cctttgcagg cagcggaacc ccccacctgg 2736cgacaggtgc
ctctgcggcc aaaagccacg tgtataagat acacctgcaa 2786aggcggcaca
accccagtgc cacgttgtga gttggatagt tgtggaaaga 2836gtcaaatggc
tctcctcaag cgtattcaac aaggggctga aggatgccca 2886gaaggtaccc
cattgtatgg gatctgatct ggggcctcgg tgcacatgct 2936ttacgtgtgt
ttagtcgagg ttaaaaaacg tctaggcccc ccgaaccacg 2986gggacgtggt
tttcctttga aaaacacgat aataccatgg ttcgaccatt 3036gaactgcatc
gtcgccgtgt cccaaaatat ggggattggc aagaacggag 3086acctaccctg
gcctccgctc aggaacgagt tcaagtactt ccaaagaatg 3136accacaacct
cttcagtgga aggtaaacag aatctggtga ttatgggtag 3186gaaaacctgg
ttctccattc ctgagaagaa tcgaccttta aaggacagaa 3236ttaatggttc
gatatagttc tcagtagaga actcaaagaa ccaccacgag 3286gagctcattt
tcttgccaaa agtttggatg atgccttaag acttattgaa 3336caaccggaat
tggcaagtaa agtagacatg gtttggatag tcggaggcag 3386ttctgtttac
caggaagcca tgaatcaacc aggccacctc agactctttg 3436tgacaaggat
catgcaggaa tttgaaagtg acacgttttt cccagaaatt 3486gatttgggga
aatataaact tctcccagaa tacccaggcg tcctctctga 3536ggtccaggag
gaaaaaggca tcaagtataa gtttgaagtc tacgagaaga 3586aagactaaca
ggaagatgct ttcaagttct ctgctcccct cctaaagcta 3636tgcattttta
taagaccatg ggacttttgc tggtcgatcg acctggcgta 3686atagcgaaga
ggcccgcacc gatcgccctt cccaacagtt gcgcagcctg 3736aatggcgaat
gggacgcgcc ctgtagcggc gcattaagcg cggcgggtgt 3786ggtggttacg
cgcagcgtga ccgctacact tgccagcgcc ctagcgcccg 3836ctcctttcgc
tttcttccct tcctttctcg ccacgttcgc cggctttccc 3886cgtcaagctc
taaatcgggg gctcccttta gggttccgat ttagtgcttt 3936acggcacctc
gaccccaaaa aacttgatta gggtgatggt tcacgtagtg 3986ggccatcgcc
ctgatagacg gtttttcgcc tttgacgttg gagtccacgt 4036tctttaatag
tggactcttg ttccaaactg gaacaacact caaccctatc 4086tcggtctatt
tataagggat tttgccgatt tcggcctatt ggttaaaaaa 4136tgagctgatt
taacaaaatt taacgcgaat tttaacaaaa tattaacgct 4186tacaatttag
gtggcacttt tcggggaaat gtgcgcggaa cccctatatt 4236tgtttatttt
tctaaataca ttcaaatatg tatccgctca tgagacaata 4286accctgataa
atgcttcaat aatattgaaa aaggaagagt atgagtattc 4336aacatttccg
tgtcgccctt attccctttt ttgcggcatt ttgccttact 4386gtttttgctc
acccagaaac gctggtgaaa gtaaaagatg ctgaagatca 4436gttgggtgca
cgagtgggtt acatcgaact ggatctcaac agcggtaaga 4486tccttgagag
ttttcgcccc gaagaacgtt ttccaatgat gagcactttt 4536aaagttctgc
tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga 4586gcaactcggt
cgccgcatac actattctca gaatgacttg gttgagtact 4636caccagtcac
agaaaagcat attacggatg gcatgacagt aagagaatta 4686tgcagtgctg
ccataaccat gagtgataac actgcggcca acttacttct 4736gacaacgatc
ggaggaccga aggagctaac cgcttttttg cacaacatgg 4786gggatcatgt
aactcgcctt gatcgttggg aaccggagct gaatgaagcc 4836ataccaaacg
acgagcgtga caccacgatg cctgtagcaa tggcaacaac 4886gttgcgcaaa
ctattaactg gcgaactact tactctagct tcccggcaac 4936aattaataga
ctggatggag gcggataaag ttgcaggacc acttctgcgc 4986tcggcccttc
cggctggctg gtttattgct gataaatctg gagccggtga 5036gcgtgggtct
cgcggtatca ttgcagcact ggggccagat ggtaagccct 5086cccgtatcgt
agttatctac acgacgggga gtcaggcaac tatggatgaa 5136cgaaatagac
agatcgctga gataggtgcc tcactgatta agcattggta 5186actgtcagac
caagtttact catatatact ttagattgat ttaaaacttc 5236atttttaatt
taaaaggatc taggtgaaga tcctttttga taatctcatg 5286accaaaatcc
cttaacgtga gttttcgttc cactgagcgt cagaccccgt 5336agaaaagatc
aaaggatgtt cttgagatcc tttttttctg cacgtaatct 5386gctgcttgca
aacaaaaaac caccgctacc agcggtggtt tgtttgccgg 5436atcaagagct
accaactctt tttccgaagg taactggctt cagcagagcg 5486cagataccaa
atactgtcct tctagtgtag ccgtagttag gccaccactt 5536caagaactct
gtagcaccgc ctacatacct cgctctgcta atcctgttac 5586cagtggctgc
tgccagtggc gataagtcgt gtcttaccgg gttggactca 5636agacgatagt
taccggataa ggcgcagcgg tcgggctgaa cggggggttc 5686gtgcacacag
cccagcttgg agcgaacgac ctacaccgaa ctgagatacc 5736tacagcgtga
gctatgagaa agcgccacgc ttcccgaagg gagaaaggcg 5786gacaggtatc
cggtaagcgg cagggtcgga acaggagagc gcacgaggga 5836gcttccaggg
ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc 5886acctctgact
tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc 5936ctatggaaaa
acgccagcaa cgcggccttt ttacggttcc tggccttttg 5986ctggcctttt
gctcacatgt tctttcctgc gttatcccct gattctgtgg 6036ataaccgtat
taccgccttt gagtgagctg ataccgctcg ccgcagccga 6086acgaccgagc
gcagcgagtc agtgagcgag gaagcggaag agcgcccaat 6136acgcaaaccg
cctctccccg cgcgttggcc gattcattaa tgcaggtatc 6186acgaggccct
ttcgtcttca c 620750444DNAMus
musculusmurine G250 heavy chain variable region 50gtttaaacgc cgccaccatg
aacttcgggc tcagattgat tttccttgtc 50ctggttttaa aaggtgtcct
gtgtgacgtg aagctcgtgg agtctggggc 100agccttagtg aagcttggag
ggtccctgaa actctcctgt gcagcctctg 150gattcacttt cagtaactat
tacatgtctt gggttcgcca gactccagag 200aagaggctgg agttggtcgc
agccattaat agtgatggtg gtatcaccta 250ctatctagac actgtgaagg
gccgattcac catttcaaga gacaatgcca 300agaacaccct gtacctgcaa
atgagcagtc tgaagtctga ggacacagcc 350ttgttttact gtgcaagaca
ccgctcaggc tacttttcta tggactactg 400gggtcaagga acctcagtca
ccgtctcctc aggtgagtgg atcc 44451140PRTMus
musculusamino acid sequence for murine G250 heavy chain variable
region 51Met Asn Phe Gly Leu Arg Leu Ile Phe Leu Val Leu Val Leu Lys Gly
5 10 15Val Leu Cys Asp
Val Lys Leu Val Glu Ser Gly Ala Ala Leu Val Lys 20
25 30Leu Gly Gly Ser Leu Lys Leu Ser Cys Ala Ala
Ser Gly Phe Thr Phe 35 40 45Ser
Asn Tyr Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu 50
55 60Glu Leu Val Ala Ala Ile Asn Ser Asp Gly
Gly Ile Thr Tyr Tyr Leu65 70 75
80Asp Thr Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys
Asn 85 90 95Thr Leu Tyr
Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu 100
105 110Phe Tyr Cys Ala Arg His Arg Ser Gly Tyr
Phe Ser Met Asp Tyr Trp 115 120
125Gly Gln Gly Thr Ser Val Thr Val Ser Ser Gly Glu 130
135 14052423DNAMus musculusmurine G250 light chain
variable region 52gtttaaacgc cgccaccatg ggcttcaaga tggagtttca tactcaggtc
50tttgtattcg tgtttctctg gttgtctggt gttgatggag acattgtgat
100gacccagtct caaagattca tgtccacaac agtaggagac agggtcagca
150tcacctgcaa ggccagtcag aatgtggttt ctgctgttgc ctggtatcaa
200cagaaaccag gacaatctcc taaactactg atttactcag catccaatcg
250gtacactgga gtccctgatc gcttcacagg cagtggatct gggacagatt
300tcactctcac cattagcaat atgcagtctg aagacctggc tgattttttc
350tgtcaacaat atagcaacta tccgtggacg ttcggtggag gcaccaagct
400ggaaatcaaa cgtgagtgga tcc
42353132PRTMus musculusamino acid sequence for murine G250 light
chain variable region 53Met Gly Phe Lys Met Glu Phe His Thr Gln Val Phe
Val Phe Val Phe 5 10
15Leu Trp Leu Ser Gly Val Asp Gly Asp Ile Val Met Thr Gln Ser Gln
20 25 30Arg Phe Met Ser Thr Thr Val
Gly Asp Arg Val Ser Ile Thr Cys Lys 35 40
45Ala Ser Gln Asn Val Val Ser Ala Val Ala Trp Tyr Gln Gln Lys
Pro 50 55 60Gly Gln Ser Pro Lys Leu
Leu Ile Tyr Ser Ala Ser Asn Arg Tyr Thr65 70
75 80Gly Val Pro Asp Arg Phe Thr Gly Ser Gly Ser
Gly Thr Asp Phe Thr 85 90
95Leu Thr Ile Ser Asn Met Gln Ser Glu Asp Leu Ala Asp Phe Phe Cys
100 105 110Gln Gln Tyr Ser Asn Tyr
Pro Trp Thr Phe Gly Gly Gly Thr Lys Leu 115 120
125Glu Ile Lys Arg 13054482DNAHomo sapiensnucleotide
sequence of a TNF fragment 54ccatggtctc atcttctcga accccgagtg acaagcctgt
agcccatgtt 50gtagcaaacc ctcaagctga ggggcagctc cagtggctga
accgccgggc 100caatgccctc ctggccaatg gcgtggagct gagagataac
cagctggtgg 150tgccatcaga gggcctgtac ctcatctact cccaggtcct
cttcaagggc 200caaggctgcc cctccaccca tgtgctcctc acccacacca
tcagccgcat 250cgccgtctcc taccagacca aggtcaacct cctctctgcc
atcaagagcc 300cctgccagag ggagacccca gagggggctg aggccaagcc
ctggtatgag 350cccatctatc tgggaggggt cttccagctg gagaagggtg
accgactcag 400cgctgagatc aatcggcccg actatctcga ctttgccgag
tctgggcagg 450tctactttgg gatcattgcc ctgtgatcta ga
48255157PRTHomo sapiensamino acid sequence of a
TNF fragment 55Met Val Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro Val Ala
His Val 5 10 15Val Ala
Asn Pro Gln Ala Glu Gly Gln Leu Gln Trp Leu Asn Arg Arg 20
25 30Ala Asn Ala Leu Leu Ala Asn Gly Val
Glu Leu Arg Asp Asn Gln Leu 35 40
45Val Val Pro Ser Glu Gly Leu Tyr Leu Ile Tyr Ser Gln Val Leu Phe 50
55 60Lys Gly Gln Gly Cys Pro Ser Thr His
Val Leu Leu Thr His Thr Ile65 70 75
80Ser Arg Ile Ala Val Ser Tyr Gln Thr Lys Val Asn Leu Leu
Ser Ala 85 90 95Ile Lys
Ser Pro Cys Gln Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys 100
105 110Pro Trp Tyr Glu Pro Ile Tyr Leu Gly
Gly Val Phe Gln Leu Glu Lys 115 120
125Gly Asp Arg Leu Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu Asp Phe
130 135 140Ala Glu Ser Gly Gln Val Tyr
Phe Gly Ile Ile Ala Leu145 150
155566047DNAArtificial SequenceHeavy chain expression vector
pREN-DHFR-TNF. 56ctcgagagcg ggcagtgagc gcaacgcaat taatgtgagt tagctcactc
50attaggcacc ccaggcttta cactttatgc tcccggctcg tatgttgtgt
100ggagattgtg agcggataac aatttcacac agaattcgtg aggctccggt
150gcccgtcagt gggcagagcg cacatcgccc acagtccccg agaagttggg
200gggaggggtc ggcaattgaa ccggtgccta gagaaggtgg cgcggggtaa
250actgggaaag tgatgtcgtg tactggctcc gcctttttcc cgagggtggg
300ggagaaccgt atataagtgc agtagtcgcc gtgaacgttc tttttcgcaa
350cgggtttgcc gccagaacac aggtaagtgc cgtgtgtggt tcccgcgggc
400ctggcctctt tacgggttat ggcccttgcg tgccttgaat tacttccacg
450cccctggctg cagtacgtga ttcttgatcc cgagcttcgg gttggaagtg
500ggtgggagag ttcgaggcct tgcgcttaag gagccccttc gcctcgtgct
550tgagttgagg cctggcctgg gcgctggggc cgccgcgtgc gaatctggtg
600gcaccttcgc gcctgtctcg ctgctttcga taagtctcta gccatttaaa
650atttttgatg acctgctgcg acgctttttt tctggcaaga tagtcttgta
700aatgcgggcc aagatctgca cactggtatt tcggtttttg gggccgcggg
750cggcgacggg gcccgtgcgt cccagcgcac atgttcggcg aggcggggcc
800tgcgagcgcg gccaccgaga atcggacggg ggtagtctca agctggccgg
850cctgctctgg tgcctggcct cgcgccgccg tgtatcgccc cgccctgggc
900ggcaaggctg gcccggtcgg caccagttgc gtgagcggaa agatggccgc
950ttcccggccc tgctgcaggg agctcaaaat ggaggacgcg gcgctcggga
1000gagcgggcgg gtgagtcacc cacacaaagg aaaagggcct ttccgtcctc
1050agccgtcgct tcatgtgact ccacggagta ccgggcgccg tccaggcacc
1100tcgattagtt ctcgagcttt tggagtacgt cgtctttagg ttggggggag
1150gggttttatg cgatggagtt tccccacact gagtgggtgg agactgaagt
1200taggccagct tggcacttga tgtaattctc cttggaattt gccctttttg
1250agtttggatc ttggttcatt ctcaagcctc agacagtggt tcaaagtttt
1300tttcttccat ttcaggtgta cgcgtctcgg gaagctttag tttaaacgcc
1350ggatcctctg cgcctgggcc cagctctgtc ccacaccgcg gtcacatggc
1400accacctctc ttgcagcc tcc acc aag ggc cca tcg gtc ttc ccc ctg
1448 Ser Thr Lys Gly Pro Ser Val Phe Pro Leu
5 10gca ccc tcc tcc aag agc
acc tct ggg ggc aca gcg gcc ctg ggc 1493Ala Pro Ser Ser Lys Ser
Thr Ser Gly Gly Thr Ala Ala Leu Gly 15 20
25tgc ctg gtc aag gac tac ttc ccc gaa ccg gtg acg gtg
tcg tgg 1538Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
Ser Trp 30 35 40aac tca
ggc gcc ctg acc agc ggc gtg cac acc ttc ccg gct gtc 1583Asn Ser
Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 45
50 55cta cag tcc tca gga ctc tac tcc ctc
agc agc gtg gtg acc gtg 1628Leu Gln Ser Ser Gly Leu Tyr Ser Leu
Ser Ser Val Val Ser Val 60 65
70ccc tcc agc agc ttg ggc acc cag acc tac atc tgc aac gtg aat
1673Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn
75 80 85cac aag ccc agc aac acc
aag gtg gac aag aaa gtt gag ccc aaa 1718His Lys Pro Ser Asn Thr
Lys Val Asp Lys Lys Val Glu Pro Lys 90 95
100tct tgt gac aaa act cac aca tgc cca ccg tgc cca ggt
gga ggt 1763Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro Gly
Gly Gly 105 110 115gga tca
cca atg gtc tca tct tct cga acc ccg agt gac aag cct 1808Gly Ser
Pro Met Val Ser Ser Ser Arg Thr Pro Ser Asp Lys Pro 120
125 130gta gcc cat gtt gta gca aac cct caa
gct gag ggg cag ctc cag 1853Val Ala His Val Val Ala Asn Pro Gln
Ala Glu Gly Gln Leu Gln 135 140
145tgg ctg aac cgc cgg gcc aat gcc ctc ctg gcc aat ggc gtg gag
1898Trp Leu Asn Arg Arg Ala Asn Ala Leu Leu Ala Asn Glu Val Glu
150 155 160ctg aga gat aac cag ctg
gtg gtg cca tca gag ggc ctg tac ctc 1943Leu Arg Asp Asn Gln Leu
Val Val Pro Ser Glu Gly Leu Tyr Leu 165
170 175atc tac tcc cag gtc ctc ttc aag ggc caa ggc tgc
ccc tcc acc 1988Ile Tyr Ser Gln Val Leu Phe Lys Gly Gln Gly Cys
Pro Ser Thr 180 185 190cat
gtg ctc ctc acc cac acc atc agc cgc atc gcc gtc tcc tac 2033His
Val Leu Leu Thr His Thr Ile Ser Arg Ile Ala Val Ser Tyr
195 200 205cag acc aag gtc aac ctc ctc
tct gcc atc aag agc ccc tgc cag 2078Gln Thr Lys Val Asn Leu Leu
Ser Ala Ile Lys Ser Pro Cys Gln 210 215
220agg gag acc cca gag ggg gct gag gcc aag ccc tgg tat gag
ccc 2123Arg Glu Thr Pro Glu Gly Ala Glu Ala Lys Pro Trp Tyr Glu
Pro 225 230 235atc tat ctg
gga ggg gtc ttc cag ctg gag aag ggt gac cga ctc 2168Ile Tyr Leu
Gly Gly Val Phe Gln Leu Glu Lys Gly Asp Arg Leu 240
245 250agc gct gag atc aat cgg ccc gac tat ctc
gac ttt gcc gag tct 2213Ser Ala Glu Ile Asn Arg Pro Asp Tyr Leu
Asp Phe Ala Glu Ser 255 260
265ggg cag gtc tac ttt ggg atc att gcc ctg tga tctagaaact
2256Gly Gln Val Tyr Phe Gly Ile Ile Ala Leu 270
275aactaagcta gcaacggttt ccctctagcg ggatcaattc cgcccccccc
2306ccctaacgtt actggccgaa gccgcttgga ataaggccgg tgtgcgtttg
2356tctatatgtt attttccacc atattgccgt cttttggcaa tgtgagggcc
2406cggaaacctg gccctgtctt cttgacgagc attcctaggg gtctttcccc
2456tctcgccaaa ggaatgcaag gtctgttgaa tgtcgtgaag gaagcagttc
2506ctctggaagc ttcttgaaga caaacaacgt ctgtagcgac cctttgcagg
2556cagcggaacc ccccacctgg cgacaggtgc ctctgcggcc aaaagccacg
2606tgtataagat acacctgcaa aggcggcaca accccagtgc cacgttgtga
2656gttggatagt tgtggaaaga gtcaaatggc tctcctcaag cgtattcaac
2706aaggggctga aggatgccca gaaggtaccc cattgtatgg gatctgatct
2756ggggcctcgg tgcacatgct ttacgtgtgt ttagtcgagg ttaaaaaacg
2806tctaggcccc ccgaaccacg gggacgtggt tttcctttga aaaacacgat
2856aataccatgg ttcgaccatt gaactgcatc gtcgccgtgt cccaaaatat
2906ggggattggc aagaacggag acctaccctg gcctccgctc aggaacgagt
2956tcaagtactt ccaaagaatg accacaacct cttcagtgga aggtaaacag
3006aatctggtga ttatgggtag gaaaacctgg ttctccattc ctgagaagaa
3056tcgaccttta aaggacagaa ttaatggttc gatatagttc tcagtagaga
3106actcaaagaa ccaccacgag gagctcattt tcttgccaaa agtttggatg
3156atgccttaag acttattgaa caaccggaat tggcaagtaa agtagacatg
3206gtttggatag tcggaggcag ttctgtttac caggaagcca tgaatcaacc
3256aggccacctc agactctttg tgacaaggat catgcaggaa tttgaaagtg
3306acacgttttt cccagaaatt gatttgggga aatataaact tctcccagaa
3356tacccaggcg tcctctctga ggtccaggag gaaaaaggca tcaagtataa
3406gtttgaagtc tacgagaaga aagactaaca ggaagatgct ttcaagttct
3456ctgctcccct cctaaagcta tgcattttta taagaccatg ggacttttgc
3506tggtcgatcg acctggcgta atagcgaaga ggcccgcacc gatcgccctt
3556cccaacagtt gcgcagcctg aatggcgaat gggacgcgcc ctgtagcggc
3606gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact
3656tgccagcgcc ctagcgcccg ctcctttcgc tttcttccct tcctttctcg
3706ccacgttcgc cggctttccc cgtcaagctc taaatcgggg gctcccttta
3756gggttccgat ttagtgcttt acggcacctc gaccccaaaa aacttgatta
3806gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg gtttttcgcc
3856tttgacgttg gagtccacgt tctttaatag tggactcttg ttccaaactg
3906gaacaacact caaccctatc tcggtctatt tataagggat tttgccgatt
3956tcggcctatt ggttaaaaaa tgagctgatt taacaaaatt taacgcgaat
4006tttaacaaaa tattaacgct tacaatttag gtggcacttt tcggggaaat
4056gtgcgcggaa cccctatatt tgtttatttt tctaaataca ttcaaatatg
4106tatccgctca tgagacaata accctgataa atgcttcaat aatattgaaa
4156aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt
4206ttgcggcatt ttgccttact gtttttgctc acccagaaac gctggtgaaa
4256gtaaaagatg ctgaagatca gttgggtgca cgagtgggtt acatcgaact
4306ggatctcaac agcggtaaga tccttgagag ttttcgcccc gaagaacgtt
4356ttccaatgat gagcactttt aaagttctgc tatgtggcgc ggtattatcc
4406cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca
4456gaatgacttg gttgagtact caccagtcac agaaaagcat attacggatg
4506gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac
4556actgcggcca acttacttct gacaacgatc ggaggaccga aggagctaac
4606cgcttttttg cacaacatgg gggatcatgt aactcgcctt gatcgttggg
4656aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg
4706cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg gcgaactact
4756tactctagct tcccggcaac aattaataga ctggatggag gcggataaag
4806ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct
4856gataaatctg gagccggtga gcgtgggtct cgcggtatca ttgcagcact
4906ggggccagat ggtaagccct cccgtatcgt agttatctac acgacgggga
4956gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc
5006tcactgatta agcattggta actgtcagac caagtttact catatatact
5056ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga
5106tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc
5156cactgagcgt cagaccccgt agaaaagatc aaaggatgtt cttgagatcc
5206tttttttctg cacgtaatct gctgcttgca aacaaaaaac caccgctacc
5256agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg
5306taactggctt cagcagagcg cagataccaa atactgtcct tctagtgtag
5356ccgtagttag gccaccactt caagaactct gtagcaccgc ctacatacct
5406cgctctgcta atcctgttac cagtggctgc tgccagtggc gataagtcgt
5456gtcttaccgg gttggactca agacgatagt taccggataa ggcgcagcgg
5506tcgggctgaa cggggggttc gtgcacacag cccagcttgg agcgaacgac
5556ctacaccgaa ctgagatacc tacagcgtga gctatgagaa agcgccacgc
5606ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga
5656acaggagagc gcacgaggga gcttccaggg ggaaacgcct ggtatcttta
5706tagtcctgtc gggtttcgcc acctctgact tgagcgtcga tttttgtgat
5756gctcgtcagg ggggcggagc ctatggaaaa acgccagcaa cgcggccttt
5806ttacggttcc tggccttttg ctggcctttt gctcacatgt tctttcctgc
5856gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg
5906ataccgctcg ccgcagccga acgaccgagc gcagcgagtc agtgagcgag
5956gaagcggaag agcgcccaat acgcaaaccg cctctccccg cgcgttggcc
6006gattcattaa tgcaggtatc acgaggccct ttcgtcttca c
6047
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20200160691 | ALERTHUB SYSTEM WITH TWO TOUCH BADGE |
20200160690 | METHODS AND SYSTEMS OF SMART CAMPUS SECURITY SHIELD |
20200160689 | LASER DAMAGE DETECTION MECHANISMS FOR SAFETY INTERLOCK AND FAULT DETECTION |
20200160688 | ALARM DEVICE |
20200160687 | SERVER AND NON-TRANSITORY RECORDING MEDIUM STORING PROGRAM |