Patent application number | Description | Published |
20100040763 | Preparation of Canola Protein Isolate Without Heat Treatment ("C200Ca") - The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein isolate which is soluble in an aqueous acidic environment. | 02-18-2010 |
20100041871 | Preparation of Canola Protein Isolate from Canola Oil Seeds ("Blendertein") - Canola protein isolate is recovered from canola oil seeds by crushing the oil seeds and extracting the crushed canola oil seeds. Fat co-extracted from the crushed oil seeds is removed from the aqueous canola protein solution which then is processed by the micellar route to obtain the canola protein isolate. | 02-18-2010 |
20100048874 | Colour reduction in canola protein isolate - In the recovery of canola protein isolates from canola oil seeds steps are taken to inhibit the formation of colouring components and to reduce the presence of materials tending to form colouring components, to obtain a lighter and less yellow canola protein isolate. | 02-25-2010 |
20100048875 | Soluble Canola Protein Isolate Production from PMM ("C307") - A soluble canola protein isolate is prepared from canola protein micellar mass by solubilizing the protein micellar mass in a calcium salt solution, preferably a calcium chloride solution, followed by dilution of the resulting canola protein solution. Following removal of the precipitate phytic acid, the aqueous canola protein solution is concentrated, optionally diafiltered, and acidified to a pH of about 2.5 to 4.0 to produce an acidified clear canola protein solution, which may be concentrated, subjected to a colour removal step and dried. The canola protein isolate so formed is soluble, transparent and heat stable in an acid aqueous environment and also is soluble at natural pH, without precipitation of protein. | 02-25-2010 |
20100098818 | Production of Soluble Protein Solutions from Soy ("S701") - A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product. | 04-22-2010 |
20100173064 | Novel canola protein isolate - A novel canola protein isolate consisting predominantly of 2S canola protein and having equal to better solubility properties and improved clarity properties in aqueous media, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed. | 07-08-2010 |
20100189853 | Production of Soluble Soy Protein Product from Soy Protein Micellar Mass ("S200Ca") - A soy protein product having a protein content of at least 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed from the supernatant from the precipitation of a soy protein micellar mass. A calcium salt or other divalent salt is added to the supernatant, before concentration, after initial concentration or after final concentration, to provide a conductivity of about 2 to about 30 mS. Precipitate is removed from the resulting solution and the pH of the clear soy protein solution is optionally adjusted to about 1.5 to about 4.4. The optionally pH-adjusted clear solution is concentrated to a concentration of about 50 to about 400 g/L and the clear concentrated protein solution is optionally diafiltered prior to drying. The soy protein product is soluble in acidic media and produces transparent, heat stable solutions at low pH values and, therefore, may be used for protein fortification of soft drinks and sports drinks. | 07-29-2010 |
20100221403 | Production of Soluble Soy Protein Product from Soy Protein Micellar Mass ("S300/S200") - A soy protein product having a protein content of at least 60 wt % (N×6.25) dry weight, preferably a soy protein isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by a soy protein micellar mass production route. The supernatant from the coalesced protein micellar mass may be processed to recover additional quantities of soy protein product. The soy protein product may be used for a fortification of soft drinks and sports drinks. | 09-02-2010 |
20100291285 | Production of canola protein product without heat treatment ("C200CaC") - The supernatant from the deposition of canola protein micellar mass is processed to provide a canola protein product having a protein content of about 60 to less than about 90 wt % (N×6.25) protein on a dry weight basis and which is soluble in an aqueous acidic environment. | 11-18-2010 |
20100330248 | Production of Acid Soluble Soy Protein Isolates ("S700") - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by extracting a soy protein source with a salt solution, preferably aqueous sodium chloride solution, to form an aqueous protein solution having a pH of about 1.5 to 11, preferably about 5 to about 7 and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 15 to about 85 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments. | 12-30-2010 |
20100330249 | Preparation of Soy Protein Isolate Using Calcium Chloride Extraction ("S703") - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate, is formed by a procedure in which soy protein is extracted from a soy source material using an aqueous calcium chloride solution at low pH, generally about 1.5 to about 5, and separating the resulting aqueous soy protein solution from residual soy protein source. The resulting clarified aqueous soy protein solution may be diluted and the pH adjusted within the range of 1.5-5.0. The solution may be concentrated by ultrafiltration, diafiltered and then dried to provide the soy protein product. The soy protein product is soluble in acidic medium and produces transparent, heat stable solutions and hence may be used for protein fortification of soft drinks and sports drinks. | 12-30-2010 |
20100330250 | Production of Acid Soluble Soy Protein Isolates ("S800") - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by extracting a soy protein source with water to form an aqueous protein solution having a pH of about 1.5 to about 11, preferably about 5 to about 7, and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 5 to about 30 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments. | 12-30-2010 |
20110038993 | Production of soluble protein solutions from soy ("S701" CIP) - A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product. | 02-17-2011 |
20110070343 | Canola protein product from supernatant - A novel canola protein product consisting predominantly of 2S canola protein and having improved solubility properties, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein, and a protein content of less than about 90 wt % (N×6.25) d.b. The novel canola protein isolate is formed by heat treatment or isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed. | 03-24-2011 |
20110165314 | pH Adjusted Soy Protein Isolate and Uses - pH-adjusted soy protein products, particularly isolates, that have a natural pH of about 6 and have a non-beany flavour are provided by the processing of soy protein product which is completely soluble in aqueous media at a pH of less than about 4.4 and heat stable in this pH range or a concentrated soy protein solution produced in the preparation of such soy protein product. | 07-07-2011 |
20110172395 | SOLUBLE CANOLA PROTEIN ISOLATE PRODUCTION - Canola protein isolates are provided which contain both albumin and globulin protein fractions that are soluble and transparent in an acidic aqueous environment. The canola protein isolates are completely soluble in water at low pH, low in phytic acid and useful in products for human consumption, pet foods and aquaculture. | 07-14-2011 |
20110172396 | SOLUBLE CANOLA PROTEIN ISOLATE PRODUCTION FROM PROTEIN MICELLAR MASS - A soluble canola protein isolate is prepared from canola protein micellar mass by solubilizing the protein micellar mass in a calcium salt solution, preferably a calcium chloride solution, followed by dilution of the resulting canola protein solution. Following removal of the precipitate phytic acid, the aqueous canola protein solution is concentrated, optionally diafiltered, and acidified to a pH of about 2.5 to 4.0 to produce an acidified clear canola protein solution, which may be concentrated, subjected to a colour removal step and dried. The canola protein isolate so formed is soluble, transparent and heat stable in an acid aqueous environment and also is soluble at natural pH, without precipitation of protein. | 07-14-2011 |
20110200720 | NOVEL CANOLA PROTEIN ISOLATE - A novel canola protein isolate consisting process predominantly of 2S canola protein and having equal to better solubility properties and improved clarity properties in aqueous media, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation isoelectric precipitation isoelectric precipitation of 7S protein which is sedimented and removed. | 08-18-2011 |
20110223295 | Preparation of soy protein isolate using calcium chloride extraction ("S703 CIP") - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by a procedure in which soy protein is extracted from a soy source material using an aqueous calcium chloride solution at low pH, generally about 1.5 to about 5, and separating the resulting aqueous soy protein solution from residual soy protein source. The resulting clarified aqueous soy protein solution may be diluted and the pH adjusted within the range of 1.5-5.0. The solution may be concentrated by ultrafiltration, diafiltered and then dried to provide the soy protein product. Alternatively, the concentrated and optionally diafiltered soy protein solution may be optionally adjusted in pH within the range of 1.5-7.0 then diluted into water to cause the formation of a precipitate, separating the precipitate from the diluting water (supernatant) and drying the separated soy protein to form a soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably a soy protein isolate having a protein content of at least about 90 wt % (N×6.25) d.b. The supernatant may be processed to form soy protein products having a protein content of at least about 60 wt % (N×6.25) d.b., preferably a soy protein isolate having a protein content of at least 90 wt % (N×6.25) d.b. Alternatively, the precipitate from the dilution step may be re-solubilized in the diluting water by adjustment of the pH to resolubilize the precipitate and form a protein solution. The soy protein solution may be concentrated while maintaining the ionic strength substantially constant by using a selective membrane technique followed by optional diafiltration and drying. The soy protein product is soluble in acidic medium and produces transparent, heat stable solutions and hence may be used for protein fortification of soft drinks and sports drinks. | 09-15-2011 |
20110236556 | PRODUCTION OF SOLUBLE PROTEIN SOLUTIONS FROM SOY ("S701") - A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product. | 09-29-2011 |
20120046449 | PRODUCTION OF PROTEIN SOLUTIONS FROM SOY - Soy protein products which can be reconstituted to provide an aqueous acidic solution having a preferred level of clarity are produced by extracting a soy protein source with an aqueous calcium chloride solution to cause solubilization of soy protein from the protein source and separating the resulting aqueous soy protein solution from residual soy protein source. Either, within about 20 minutes of separation step, the aqueous soy protein solution is diluted to a conductivity of less than about 90 mS and the pH of the aqueous soy protein solution is adjusted to about 1.5 to about 4.4 to produce an acidified soy protein solution having an absorbance of visible light at 600 nm (A600) of less than about 0.055, or, within about 40 minutes of the separation step, the aqueous soy protein solution is diluted to a conductivity of less than about 90 mS, the pH of the aqueous soy protein solution is adjusted to about 1.5 to about 4.4, the acidified soy protein solution is heat treated at a temperature of about 70° to about 160° C. for about 10 seconds to about 60 minutes to produce an acidified soy protein solution having an absorbance of visible light at 600 nm (A600) of less than about 0.055. The resulting acidified soy protein solution may be directly dried or further processed by concentration and diafiltration. Each of the steps of the process preferably is effected at a temperature of about 50° to about 60° C. | 02-23-2012 |
20120101259 | Counter-current extraction of oil seed protein source - A soy protein product, which may be an isolate, useful for the fortification of soft drinks and sports drinks without precipitation of protein, is prepared by extraction of a soy protein source using aqueous calcium salt solution in a counter-current operation in which the extracting aqueous calcium salt solution flows in counter-current direction to the flow of soy protein source, to form an aqueous soy protein solution, entrained fine particulates are at least partially removed from the aqueous soy protein solution and the pH of the resulting soy protein solution is adjusted to about pH 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration. | 04-26-2012 |
20120141651 | PREPARATION OF SOY PROTEIN ISOLATE USING CALCIUM CHLORIDE EXTRACTION ("S703") - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate, is formed by a procedure in which soy protein is extracted from a soy source material using an aqueous calcium chloride solution at low pH, generally about 1.5 to about 5, and separating the resulting aqueous soy protein solution from residual soy protein source. The resulting clarified aqueous soy protein solution may be diluted and the pH adjusted within the range of 1.5-5.0. The solution may be concentrated by ultrafiltration, diafiltered and then dried to provide the soy protein product. The soy protein product is soluble in acidic medium and produces transparent, heat stable solutions and hence may be used for protein fortification of soft drinks and sports drinks. | 06-07-2012 |
20120157661 | SOY PROTEIN PRODUCTS OF IMPROVED WATER-BINDING CAPACITY - Soy protein products are provided which lack the characteristic beany flavour of conventional soy protein isolates and can replace conventional isolates in various food products to provide food products having improved flavour. | 06-21-2012 |
20120164301 | PRODUCTION OF ACID SOLUBLE SOY PROTEIN ISOLATES ("S700") - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by extracting a soy protein source with a salt solution, preferably aqueous sodium chloride solution, to form an aqueous protein solution having a pH of about 1.5 to 11, preferably about 5 to about 7 and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 15 to about 85 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments. | 06-28-2012 |
20120171348 | PRODUCTION OF ACID SOLUBLE SOY PROTEIN ISOLATES ("S800") - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b., preferably an isolate having a protein content of at least about 90 wt % (N×6.25) d.b., is formed by extracting a soy protein source with water to form an aqueous protein solution having a pH of about 1.5 to about 11, preferably about 5 to about 7, and separating the resulting aqueous protein solution from residual soy protein source. The protein concentration of the aqueous protein solution is increased to about 50 to about 400 g/L while the ionic strength is maintained substantially constant by using a selective membrane technique. The resulting concentrated protein solution is optionally diafiltered and a calcium salt, preferably calcium chloride, is added to the concentrated and optionally diafiltered protein solution to a conductivity of 5 to about 30 mS. Precipitate formed as a result of the calcium salt addition is removed and the resulting clarified retentate is diluted into about 2 to about 20 volumes of water prior to acidification to a pH of about 1.5 to about 4.4 to produce an acidified clear protein solution. The acidified clear protein solution is then concentrated and optionally diafiltered and optionally dried. Variations of this procedure can be used to produce a soy protein product which is soluble, transparent and heat stable in acidic aqueous environments. | 07-05-2012 |
20120269948 | CANOLA PROTEIN PRODUCT FROM SUPERNATANT - A novel canola protein product consisting predominantly of 2S canola protein and having improved solubility properties, has an increased proportion of 2 S canola protein and a decreased proportion of 7S canola protein, and a protein content of less than about 90 wt % (N×6.25) d.b. The novel canola protein isolate is formed by heat treatment or isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed. | 10-25-2012 |
20120302735 | PRODUCTION OF SOY PROTEIN PRODUCT - A soy protein product having a protein content of at least about 60 wt % (N×6.25) d.b. is recovered in the processing of soy protein source material to form soy protein products wherein the soy protein source is extracted with calcium salt solution. The resulting soy protein solution is separated from the bulk of the residual soy protein source and then the soy protein solution is processed to remove finer residual solids, which are washed and dried to provide the soy protein product. | 11-29-2012 |
20120322980 | pH ADJUSTED SOY PROTEIN ISOLATE AND USES - pH-adjusted soy protein products, particularly isolates, that have a natural pH of about 6 and have a non-beany flavour are provided by the processing of soy protein product which is completely soluble in aqueous media at a pH of less than about 4.4 and heat stable in this pH range or a concentrated soy protein solution produced in the preparation of such soy protein product. | 12-20-2012 |
20130078355 | PRODUCTION OF SOLUBLE PROTEIN SOLUTIONS FROM SOY ("S701" CIP) - A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product. | 03-28-2013 |
20130216684 | NOVEL CANOLA PROTEIN ISOLATE - A novel canola protein isolate consisting predominantly of 2S canola protein and having equal to better solubility properties and improved clarity properties, has an increased proportion of 2S canola protein and a decreased proportion of 7S canola protein. The novel canola protein isolate is formed by heat treatment or isoelectric precipitation of aqueous supernatant from canola protein micelle formation and precipitation, to effect precipitation of 7S protein which is sedimented and removed. Alternatively, the novel canola protein isolate may be derived from a selective membrane procedure in which an aqueous canola protein solution containing 12S, 7S and 2S canola proteins is subjected to a first selective membrane technique to retain 12S and 7S canola proteins in a retentate, which is dried to provide a canola protein isolate consisting predominantly of 7S canola protein, and to permit 2S canola protein to pass through the membrane. The permeate is subjected to a second selective membrane technique to retain 2S canola protein and to permit low molecular weight contaminants to pass through the membrane, and the retentate from the latter membrane technique is dried. | 08-22-2013 |
20130217614 | PRODUCTION OF PROTEIN SOLUTIONS FROM SOY - Soy protein products which can be reconstituted to provide an aqueous acidic solution having a preferred level of clarity are produced by extracting a soy protein source with an aqueous calcium chloride solution to cause solubilization of soy protein from the protein source and separating the resulting aqueous soy protein solution from residual soy protein source. Either, within about 20 minutes of separation step, the aqueous soy protein solution is diluted to a conductivity of less than about 90 mS and the pH of the aqueous soy protein solution is adjusted to about 1.5 to about 4.4 to produce an acidified soy protein solution having an absorbance of visible light at 600 nm (A600) of less than about 0.055, or, within about 40 minutes of the separation step, the aqueous soy protein solution is diluted to a conductivity of less than about 90 mS, the pH of the aqueous soy protein solution is adjusted to about 1.5 to about 4.4, the acidified soy protein solution is heat treated at a temperature of about 70° to about 160° C. for about 10 seconds to about 60 minutes to produce an acidified soy protein solution having an absorbance of visible light at 600 nm (A600) of less than about 0.055. The resulting acidified soy protein solution may be directly dried or further processed by concentration and diafiltration. Each of the steps of the process preferably is effected at a temperature of about 50° to about 60° C. | 08-22-2013 |
20130253171 | COLOUR REDUCTION IN CANOLA PROTEIN ISOLATE - In the recovery of canola protein isolates from canola oil seeds steps are taken to inhibit the formation of colouring components and to reduce the presence of materials tending to form colouring components, to obtain a lighter and less yellow canola protein isolate. | 09-26-2013 |
20130281670 | SOLUBLE CANOLA PROTEIN ISOLATE PRODUCTION ("NUTRATEIN") - Canola protein isolates are provided which contain both albumin and globulin protein fractions that are soluble, transparent and heat stable in an acidic aqueous environment. The canola protein isolates are completely soluble in water at low pH, low in phytic acid and useful in products for human consumption, pet foods and aquaculture. | 10-24-2013 |
20130316069 | PRODUCTION OF SOLUBLE PROTEIN SOLUTIONS FROM SOY ("S701" CIP) - A soy protein product, which may be an isolate, produces transparent heat-stable solutions at low pH values and is useful for the fortification of soft drinks and sports drinks without precipitation of protein. The soy protein product is obtained by extracting a soy protein source material with an aqueous calcium salt solution to form an aqueous soy protein solution, separating the aqueous soy protein solution from residual soy protein source, adjusting the pH of the aqueous soy protein solution to a pH of about 1.5 to about 4.4 to produce an acidified clear soy protein solution, which may be dried, following optional concentration and diafiltration, to provide the soy protein product. | 11-28-2013 |
20130331551 | PREPARATION OF CANOLA PROTEIN ISOLATE FROM CANOLA OIL SEEDS ("BLENDERTEIN") - Canola protein isolate is recovered from canola oil seeds by crushing the oil seeds and extracting the crushed canola oil seeds. Fat co-extracted from the crushed oil seeds is removed from the aqueous canola protein solution which then is processed by the micellar route to obtain the canola protein isolate. | 12-12-2013 |
20140065289 | PH ADJUSTED SOY PROTEIN ISOLATE AND USES - pH-adjusted soy protein products, particularly isolates, that have a natural pH of about 6 and have a non-beany flavour are provided by the processing of soy protein product which is completely soluble in aqueous media at a pH of less than about 4.4 and heat stable in this pH range or a concentrated soy protein solution produced in the preparation of such soy protein product. | 03-06-2014 |
20140066597 | PREPARATION OF CANOLA PROTEIN ISOLATE AND USE IN AQUACULTURE - A canola protein isolate useful in aquaculture is formed by a procedure in which canola oil seed meal is extracted to cause solubilization of protein in the canola oil seed meal to form an aqueous protein solution having a protein content of about 5 to about 40 g/L and a pH of about 5 to about 6.8. After separation of the aqueous protein solution from the residual canola oil seed meal, the protein concentration is increased to at least about 50 g/L while maintaining the ionic strength substantially constant by using a selective membrane technique. The concentrated protein solution is dried to provide a canola protein isolate having a protein content of at least about 90 wt % (N×6.25) d.b. | 03-06-2014 |
20140256914 | PRODUCTION OF PULSE PROTEIN PRODUCT - A pulse protein product having a protein content of at least about 50 wt % (N×6.25) d.b. is recovered in the processing of pulse protein source material to form pulse protein products wherein the pulse protein source is extracted in one embodiment with calcium salt solution. The resulting pulse protein solution is separated from the bulk of the residual pulse protein source and then the pulse protein solution is processed to remove finer residual solids, which are optionally washed and then dried to provide the pulse protein product. In another embodiment, the pulse protein source is extracted with water, the bulk of the residual protein source removed and the resulting pulse protein solution treated with calcium salt to precipitate phytic acid. The precipitated phytic acid and any finer residual solids remaining in solution after the initial separation step are removed from the pulse protein solution then optionally washed and dried to provide the pulse protein product. | 09-11-2014 |