Patent application title: SUPPLEMENTATION OF FATTY ACIDS FOR IMPROVING ALCOHOL PRODUCTIVITY
Inventors:
Keith H. Burlew (Middletown, DE, US)
Keith H. Burlew (Middletown, DE, US)
Robert Dicosimo (Chadds Ford, PA, US)
Michael Charles Grady (Oaklyn, NJ, US)
Michael Charles Grady (Oaklyn, NJ, US)
Ranjan Patnaik (Newark, DE, US)
Assignees:
BUTAMAX(TM) ADVANCED BIOFUELS LLC
IPC8 Class: AC12P716FI
USPC Class:
435160
Class name: Containing hydroxy group acyclic butanol
Publication date: 2011-12-22
Patent application number: 20110312053
Abstract:
Fatty acids derived from biomass at a step in a fermentation process can
be added to a fermentation medium comprising a recombinant microorganism
that produces a product alcohol. At least one of growth rate and
fermentable carbon consumption of the microorganism is greater in the
presence of the fatty acids than the growth rate and the fermentable
carbon consumption of the microorganism in the absence of the fatty
acids. The addition of the fatty acids can increase glucose consumption,
and can improve microorganism biomass production (cell growth/density)
and growth rate, thereby reducing production time and increasing
productivity of the fermentation process.Claims:
1. A method comprising: (a) providing a fermentation broth comprising a
recombinant microorganism that produces a product alcohol from a
fermentable carbon source, wherein the recombinant microorganism
comprises a reduction or elimination of pyruvate decarboxylase activity;
(b) contacting the fermentation broth with a fermentable carbon source
whereby the recombinant microorganism consumes the fermentable carbon
source and produces the product alcohol; and (c) contacting the
fermentation broth with fatty acids derived from biomass at a step in the
fermentation process, wherein at least one of (i) growth rate and (ii)
fermentable carbon consumption of the recombinant microorganism is
greater in the presence of the fatty acids than the growth rate and/or
the fermentable carbon consumption of the recombinant microorganism is in
the absence of the fatty acids.
2. The method of claim 1, wherein the fatty acids are selected from oleic acid, palmitic acid, myristic acid, and mixtures thereof.
3. The method of claim 1, wherein biomass is derived from corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, rye, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, sugar cane, soy, components obtained from milling of grains, cellulosic material, lignocellulosic material, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof.
4. The method of claim 1, wherein the product alcohol is butanol.
5. The method of claim 1, wherein steps (b) and (c) occur substantially simultaneously.
6. The method of claim 1, wherein the fermentable carbon source is derived from the biomass.
7. The method of claim 1, wherein the fermentation broth further comprises ethanol.
8. The method of claim 1, wherein the recombinant microorganism has a one or more pyruvate decarboxylase (PDC) gene deletions.
9. A method for producing a product alcohol comprising: (a) providing biomass comprising a fermentable carbon source and oil; (b) converting at least a portion of the oil into fatty acids to form a biomass comprising the fatty acids; (c) contacting the biomass with a fermentation broth comprising a recombinant microorganism capable of producing a product alcohol from a fermentable carbon source, and wherein the recombinant microorganism comprises a reduction or elimination of pyruvate decarboxylase activity; (d) contacting the fatty acids with the fermentation broth, wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the recombinant microorganism is greater in the presence of the fatty acids than the growth rate and/or the fermentable carbon consumption of the recombinant microorganism is in the absence of the fatty acids.
10. The method of claim 9, wherein the step (b) of converting at least a portion of the oil into fatty acids comprises contacting the oil with one or more substances capable of hydrolyzing the portion of the oil into fatty acids.
11. The method of claim 10, wherein the one or more substances comprise one or more enzymes.
12. The method of claim 11, wherein the one or more enzymes comprise lipase enzymes.
13. The method of claim 11, further comprising: prior to step (c), inactivating the one or more enzymes after at least a portion of the oil is hydrolyzed.
14. The method of claim 9, wherein one or more of steps (b), (c), and (d) occurs in the fermentation vessel.
15. The method of claim 9, wherein one or more of steps (b), (c), and (d) occurs substantially simultaneously.
16. The method of claim 9, wherein biomass is derived from corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, rye, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, sugar cane, soy, components obtained from milling of grains, cellulosic material, lignocellulosic material, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof.
17. The method of claim 9, wherein the fatty acids are selected from oleic acid, palmitic acid, myristic acid, and mixtures thereof.
18. The method of claim 9, further comprising fermenting the fermentable carbon source to produce product alcohol.
19. The method of claim 18, wherein the product alcohol is butanol.
20. The method of claim 9, wherein the fermentation broth further comprises ethanol.
21. The method of claim 9, wherein the recombinant microorganism has a one or more pyruvate decarboxylase (PDC) gene deletions.
22. The method of claim 9, further comprising: separating the oil from the biomass prior to the step (b) of converting at least a portion of the oil into fatty acids.
23. The method of claim 9, further comprising: liquefying the biomass to produce a liquefied biomass, wherein the liquefied biomass comprises oligosaccharides; and contacting the liquefied biomass with a saccharification enzyme capable of converting oligosaccharides into fermentable sugar to form a saccharified biomass, and wherein step (c) comprises contacting the saccharified biomass with the fermentation broth comprising a recombinant microorganism.
24. A method for producing a product alcohol comprising: (a) providing a feedstock; (b) liquefying said feedstock to create a feedstock slurry; (c) separating the feedstock slurry to produce a product comprising (i) an aqueous layer comprising a fermentable carbon source, (ii) an oil layer, and (iii) a solids layer; (d) obtaining an oil from the oil layer and converting at least a portion of the oil into fatty acids; (e) feeding the aqueous layer of (c) to a fermentation vessel containing a fermentation broth comprising a recombinant microorganism capable of producing a product alcohol from a fermentable carbon source, wherein the recombinant microorganism comprises a reduction or elimination of pyruvate decarboxylase activity; (f) fermenting the fermentable carbon source of the aqueous layer to produce the product alcohol; and (g) contacting the fermentation broth with the fatty acids, wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the recombinant microorganism is greater in the presence of the fatty acids than the growth rate and/or the fermentable carbon consumption of the recombinant microorganism is in the absence of the fatty acids.
25. The method of claim 24, wherein the step (d) of converting at least a portion of the oil into fatty acids comprises contacting the oil with one or more substances capable of hydrolyzing the portion of the oil into fatty acids.
26. The method of claim 25, wherein the one or more substances comprises one or more enzymes.
27. The method of claim 26, wherein the one or more enzymes comprises lipase enzymes.
28. The method of claim 24, wherein feedstock comprises one or more fermentable sugars derived from corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, rye, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, sugar cane, soy, components obtained from milling of grains, cellulosic material, lignocellulosic material, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof.
29. The method of claim 24, wherein the fatty acids are selected from oleic acid, palmitic acid, myristic acid, and mixtures thereof.
30. The method of claim 18, wherein the product alcohol is butanol.
31. The method of claim 24, wherein the recombinant microorganism has a one or more pyruvate decarboxylase (PDC) gene deletions.
32. A composition comprising a recombinant microorganism comprising a reduction or elimination of pyruvate decarboxylase activity and fatty acids.
Description:
[0001] This application claims the benefit of U.S. Provisional Application
No. 61/356,290, filed on Jun. 18, 2010; U.S. Provisional Application No.
61/368,451, filed on Jul. 28, 2010; U.S. Provisional Application No.
61/368,436, filed on Jul. 28, 2010; U.S. Provisional Application No.
61/368,444, filed on Jul. 28, 2010; U.S. Provisional Application No.
61/368,429, filed on Jul. 28, 2010; U.S. Provisional Application No.
61/379,546, filed on Sep. 2, 2010; and U.S. Provisional Application No.
61/440,034, filed on Feb. 7, 2011; U.S. patent application Ser. No.
13/160,766, filed on Jun. 15, 2011; the entire contents of which are all
herein incorporated by reference.
[0002] The Sequence Listing associated with this application is filed in electronic form via EFS-Web and hereby incorporated by reference into the specification in its entirety.
FIELD OF THE INVENTION
[0003] The present invention relates to the production of fermentative alcohols, such as butanol, and in particular to alcohol fermentation processes for achieving improved alcohol productivity in which the fermentative growth of recombinant microorganisms is in the presence of fatty acids derived from biomass at a step in the fermentation process.
BACKGROUND OF THE INVENTION
[0004] Alcohols have a variety of applications in industry and science such as a beverage (i.e., ethanol), fuel, reagents, solvents, and antiseptics. For example, butanol is an alcohol that is an important industrial chemical with a variety of applications including use as a fuel additive, as a feedstock chemical in the plastics industry, and as a food-grade extractant in the food and flavor industry. Accordingly, there is a high demand for alcohols such as butanol, as well as for efficient and environmentally-friendly production methods.
[0005] Production of alcohol such as butanol utilizing fermentation by microorganisms is one environmentally friendly production method. Microorganisms such as yeasts have been used for the production of alcohol products where naturally produced pyruvate is used as a starting substrate in their biosynthetic pathways. Butanol can be produced biologically as a by-product of yeast fermentation, but the yield can be typically very low. To enhance production of desired products such as butanol, yeasts have been engineered to express enzymes that alter endogenous biosynthetic pathways or introduce new pathways, and/or by disrupting expression of endogenous enzymes to alter metabolite flow. Introduced pathways that use cellular pyruvate as a substrate include pathways for production of, for example, isomers of butanol. Disruption of pyruvate decarboxylase has been used to increase pyruvate availability for pathways that produce desired products such as butanol. Additionally, recombinant microbial production hosts expressing a 1-butanol biosynthetic pathway (U.S. Patent Application Publication No. 2008/0182308A1), a 2-butanol biosynthetic pathway (U.S. Patent Application Publication Nos. 2007/0259410A1 and 2007/0292927), and an isobutanol biosynthetic pathway (U.S. Patent Application Publication No. 2007/0092957) have been described.
[0006] For example, Saccharomyces cerevisiae yeast can be metabolically engineered with disruptive mutations in the two primary pyruvate decarboxylase (PDC) genes. These genes, commonly referenced as PDC1 and PDC5, produce enzymes that are directly involved with ethanol production, and disruption of these genes has a negative impact on growth. Knock-out of pyruvate decarboxylase and alcohol dehydrogenase (ADH) alters the biosynthetic pathway resulting in the production of less fatty acid. Fatty acids are needed for cell wall formation and thus, necessary for cell growth. The importance of fatty acids for cell growth is demonstrated, for example, in Otoguro, et al., (J. Biochem. 89:523-529, 1981), which describes the effect of the antibiotic cerulenin, a known inhibitor of fatty acid synthesis, on cell growth. Cerulenin was added to a S. cerevisiae culture causing inhibition of the growth, but the growth was restored when oleic acid with certain saturated fatty acids (specifically, myristic acid, palmitic acid or pentadecanoic acid) was added.
[0007] Glucose metabolism in yeast generally follows a pathway of converting glucose to pyruvate to acetyl-CoA to cell mass. Correspondingly, there can be conversion of pyruvate to acetaldehyde to ethanol or a conversion of acetaldehyde to acetyl-CoA to fatty acid synthesis. With regard to recombinant microorganisms, a single PDC deletion reduces maximum growth but to a much lower extent. When only one PDC gene is disrupted, the other PDC gene is active enough to allow carbon flux to acetaldehyde and subsequently, ethanol and acetate. However, when butanol product is desired, ethanol production reduces butanol product yield on the substrate. The PDC genes are responsible for taking pyruvate to acetaldehyde, and the PDC1 and PDC5 double mutation prevents the production of acetaldehyde, altering the pathway to fatty acid biosynthesis and thereby inhibiting cell growth.
[0008] Thus, there exists a continuing need for methods for fermentative alcohol production using recombinant microorganisms in which growth rate and/or biomass production of the microorganisms can be improved despite reduction or elimination of fatty acid biosynthesis by the microorgansim. The present invention provides further related advantages, as will be made apparent by the description of the embodiments that follow.
BRIEF SUMMARY OF THE INVENTION
[0009] The present invention is directed to a method comprising: (a) providing a fermentation broth comprising a recombinant microorganism that produces a product alcohol from a fermentable carbon source, wherein the recombinant microorganism comprises a reduction or elimination of pyruvate decarboxylase activity; (b) contacting the fermentation broth with a fermentable carbon source whereby the recombinant microorganism consumes the fermentable carbon source and produces the product alcohol; and (c) contacting the fermentation broth with fatty acids derived from biomass at a step in the fermentation process, wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the recombinant microorganism is greater in the presence of the fatty acids than the growth rate and/or the fermentable carbon consumption of the recombinant microorganism is in the absence of the fatty acids. In a further embodiment, steps (b) and (c) occur substantially simultaneously. In one embodiment, the fatty acids are selected from oleic acid, palmitic acid, myristic acid, and mixtures thereof and in another embodiment, the biomass is derived from corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, rye, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, sugar cane, soy, components obtained from milling of grains, cellulosic material, lignocellulosic material, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof. In a further embodiment, the fermentable carbon source is derived from the biomass. In one embodiment, the product alcohol is butanol and in another embodiment, the fermentation broth further comprises ethanol. In another embodiment, the recombinant microorganism has a one or more pyruvate decarboxylase (PDC) gene deletions.
[0010] The present invention is also directed to a method for producing a product alcohol comprising: (a) providing biomass comprising a fermentable carbon source and oil; (b) converting at least a portion of the oil into fatty acids to form a biomass comprising the fatty acids; (c) contacting the biomass with a fermentation broth comprising a recombinant microorganism capable of producing a product alcohol from a fermentable carbon source, and wherein the recombinant microorganism comprises a reduction or elimination of pyruvate decarboxylase activity; (d) contacting the fatty acids with the fermentation broth, wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the recombinant microorganism is greater in the presence of the fatty acids than the growth rate and/or the fermentable carbon consumption of the recombinant microorganism is in the absence of the fatty acids. In a further embodiment, the step (b) of converting at least a portion of the oil into fatty acids comprises contacting the oil with one or more substances capable of hydrolyzing the portion of the oil into fatty acids. In one embodiment, the one or more substances comprise one or more enzymes and in another embodiment, the one or more enzymes comprise lipase enzymes. In a further embodiment, prior to step (c), the one or more enzymes may be inactivated after at least a portion of the oil is hydrolyzed. In one embodiment, one or more of steps (b), (c), and (d) occurs in the fermentation vessel and in another embodiment, one or more of steps (b), (c), and (d) occurs substantially simultaneously. In one embodiment, the method further comprises the step separating the oil from the biomass prior to the step (b) of converting at least a portion of the oil into fatty acids. In another embodiment, the method further comprises: liquefying the biomass to produce a liquefied biomass, wherein the liquefied biomass comprises oligosaccharides; and contacting the liquefied biomass with a saccharification enzyme capable of converting oligosaccharides into fermentable sugar to form a saccharified biomass, and wherein step (c) comprises contacting the saccharified biomass with the fermentation broth comprising a recombinant microorganism. In one embodiment, the fatty acids are selected from oleic acid, palmitic acid, myristic acid, and mixtures thereof and in another embodiment, the biomass is derived from corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, rye, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, sugar cane, soy, components obtained from milling of grains, cellulosic material, lignocellulosic material, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof. In one embodiment, the method further comprises the step of fermenting the fermentable carbon source to produce product alcohol. In one embodiment, the product alcohol is butanol and in another embodiment, the fermentation broth further comprises ethanol. In another embodiment, the recombinant microorganism has a one or more pyruvate decarboxylase (PDC) gene deletions.
[0011] Another method of the present invention includes a method for producing a product alcohol comprising: (a) providing a feedstock; (b) liquefying said feedstock to create a feedstock slurry; (c) separating the feedstock slurry to produce a product comprising (i) an aqueous layer comprising a fermentable carbon source, (ii) an oil layer, and (iii) a solids layer; (d) obtaining an oil from the oil layer and converting at least a portion of the oil into fatty acids; (e) feeding the aqueous layer of (c) to a fermentation vessel containing a fermentation broth comprising a recombinant microorganism capable of producing a product alcohol from a fermentable carbon source, wherein the recombinant microorganism comprises a reduction or elimination of pyruvate decarboxylase activity; (f) fermenting the fermentable carbon source of the aqueous layer to produce the product alcohol; and (g) contacting the fermentation broth with the fatty acids, wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the recombinant microorganism is greater in the presence of the fatty acids than the growth rate and/or the fermentable carbon consumption of the recombinant microorganism is in the absence of the fatty acids. In a further embodiment, the step (d) of converting at least a portion of the oil into fatty acids comprises contacting the oil with one or more substances capable of hydrolyzing the portion of the oil into fatty acids. In one embodiment, the one or more substances comprise one or more enzymes and in another embodiment, the one or more enzymes comprise lipase enzymes. In one embodiment, the fatty acids are selected from oleic acid, palmitic acid, myristic acid, and mixtures thereof and in another embodiment, the biomass is derived from corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, rye, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, sugar cane, soy, components obtained from milling of grains, cellulosic material, lignocellulosic material, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof. In one embodiment, the product alcohol is butanol. In another embodiment, the recombinant microorganism has a one or more pyruvate decarboxylase (PDC) gene deletions.
[0012] The present invention is also directed to a composition comprising a recombinant microorganism comprising a reduction or elimination of pyruvate decarboxylase activity and fatty acids.
[0013] Fatty acids (e.g., oleic acid, palmitic acid, and mixtures thereof) derived from biomass at a step in a fermentation process, can be added to a fermentation medium comprising a recombinant microorganism that produces a product alcohol. The microorganism can be yeast or other alcohol-producing microorganism. Also, the microorganism can have one or more PDC gene deletions and/or have reduced or eliminated pyruvate decarboxylase activity. The addition of fatty acids can increase glucose consumption, and can improve microorganism biomass production (cell growth) and growth rate. Improving growth rate can reduce production time and thereby increase productivity of the alcohol fermentation process.
[0014] In some embodiments, a method for producing a product alcohol in a fermentation process includes (a) providing a fermentation broth including a recombinant microorganism that produces a product alcohol from a fermentable carbon source; (b) contacting the fermentation broth with a fermentable carbon source whereby the microorganism consumes the fermentable carbon source and produces the product alcohol; and (c) contacting the fermentation broth with fatty acids derived from biomass at a step in the fermentation process, wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the microorganism is greater in the presence of the fatty acids than the growth rate and/or the fermentable carbon consumption of the microorganism in the absence of the fatty acids.
[0015] In some embodiments, the fatty acids are free fatty acids (FFA). In some embodiments, the fatty acids include oleic acid. In some embodiments, the fatty acids include saturated fatty acids. In some embodiments, the fatty acids include palmitic acid. In some embodiments, the fatty acids include myristic acid.
[0016] In some embodiments, the product alcohol is butanol.
[0017] In some embodiments, the fermentable carbon source is derived from the biomass. In some embodiments, the biomass includes corn and the fatty acids are corn oil fatty acids.
[0018] In some embodiments, the fermentation broth further includes ethanol. In some embodiments, the method further includes contacting the fermentation broth with ethanol.
[0019] In some embodiments, the step of contacting the fermentation broth with fatty acids includes contacting triglycerides derived from biomass with one or more enzymes capable of hydrolyzing triglycerides into free fatty acids, whereby the triglycerides are hydrolyzed into free fatty acids; and contacting the fermentation broth with the free fatty acids, wherein at least one of (i) the growth rate and (ii) the fermentable carbon consumption of the microorganism is greater in the presence of the free fatty acids than in the absence of the free fatty acids. In some embodiments, the one or more enzymes include lipase enzymes.
[0020] In some embodiments, the recombinant microorganism has a single pyruvate decarboxylase (PDC) gene deletion. In some embodiments, the recombinant microorganism has a double PDC gene deletion. In some embodiments, the recombinant microorganism has reduced or eliminated pyruvate decarboxylase activity.
[0021] In some embodiments, the concentration of the fatty acids in the fermentation broth is not greater than about 0.8 g/L.
[0022] In some embodiments, a method for producing a product alcohol from fermenting biomass includes (a) providing an aqueous biomass feedstream including water, fermentable carbon source, and an amount of oil, wherein the fermentable carbon source and the oil are both derived from said biomass; (b) hydrolyzing at least a portion of the oil into free fatty acids to form a biomass feedstream including the free fatty acids; (c) contacting a fermentation medium with the biomass feedstream in a fermentation vessel, the fermentation medium including a recombinant microorganism that produces a product alcohol; and (d) fermenting the fermentable carbon source in the fermentation vessel to produce said product alcohol, wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the microorganism is greater in the presence of the free fatty acids than the growth rate and/or the fermentable carbon consumption of the microorganism in the absence of the free fatty acids.
[0023] In some embodiments, the step (b) of hydrolyzing at least a portion of the oil into free fatty acids includes contacting the oil with a composition including one or more enzymes capable of hydrolyzing the portion of the oil into free fatty acids. In some embodiments, the method further includes, prior to step (c), inactivating the one or more enzymes after at least a portion of the oil is hydrolyzed.
[0024] In some embodiments, the aqueous biomass feedstream is a liquefied mash formed from a milled, unfractionated grain. In some embodiments, the milled, unfractionated grain is corn and the oil is corn oil.
[0025] In some embodiments, a method of producing a product alcohol includes (a) providing biomass including glucose and oil including an amount of triglycerides; (b) contacting the oil with a composition including one or more substances capable of converting the triglycerides into free fatty acids, whereby at least a portion of the triglycerides in the oil are converted into free fatty acids; (c) contacting the biomass with a fermentation broth including a microorganism capable of converting the glucose to a product alcohol, whereby a product alcohol is produced; and (d) contacting the free fatty acids with the fermentation broth, wherein at least one of (i) growth rate and (ii) glucose consumption of the microorganism is greater in the presence of the free fatty acids than the growth rate and/or the glucose consumption of the microorganism in the absence of the free fatty acids.
[0026] In some embodiments, the method further includes separating the oil of (a) from the biomass prior to the step (b) of contacting the oil with the one or more substances.
[0027] In some embodiments, step (b) of contacting the oil with a composition including one or more substances includes contacting the oil with one or more catalysts capable of hydrolyzing triglycerides into free fatty acids.
[0028] In some embodiments, step (b) of contacting the oil with a composition including one or more substances includes contacting the oil with one or more reactants or solvents capable of chemically reacting the triglycerides to obtain a reaction product including the free fatty acids.
[0029] In some embodiments, a method for producing butanol includes (a) providing biomass including starch and oil, wherein the oil includes an amount of glycerides; (b) liquefying the biomass to produce a liquefied biomass, wherein the liquefied biomass includes oligosaccharides hydrolyzed from the starch; (c) contacting the biomass of step (a) or the liquefied biomass of step (b) with a composition including one or more enzymes capable of converting the glycerides into free fatty acids, whereby at least a portion of the glycerides in the oil are converted into free fatty acids; (d) contacting the liquefied biomass with a saccharification enzyme capable of converting oligosaccharides into fermentable sugar including monomeric glucose; (e) contacting the liquefied biomass with a recombinant microorganism capable of converting the fermentable sugar to butanol whereby butanol is produced; and (f) contacting the free fatty acids with the recombinant microorganism, wherein at least one of (i) growth rate and (ii) glucose consumption of the recombinant microorganism is greater in the presence of the free fatty acids than the growth rate and/or the glucose consumption of the recombinant microorganism in the absence of the free fatty acids.
[0030] In some embodiments, a fermentation process to produce a product alcohol from a feedstock includes: (a) liquefying said feedstock to create a feedstock slurry; (b) centrifuging the feedstock slurry to produce a centrifuge product including (i) an aqueous layer including glucose, (ii) an oil layer including glycerides, and (iii) a solids layer; (c) hydrolyzing at least a portion of the glycerides into free fatty acids; (d) feeding the aqueous layer of (b) to a fermentation vessel containing a fermentation broth including a recombinant microorganism capable of producing a product alcohol from glucose; (e) fermenting the glucose of the aqueous layer to produce the product alcohol; and (f) contacting the fermentation broth with the free fatty acids, wherein at least one of (i) growth rate and (ii) glucose consumption of the microorganism is greater in the presence of the free fatty acids than the growth rate and/or the glucose consumption of the microorganism in the absence of the free fatty acids.
[0031] In some embodiments, the process to produce a product alcohol from a feedstock further includes, prior to the step of hydrolyzing the glycerides, feeding the glycerides to the fermentation vessel.
[0032] In some embodiments, a fermentation process includes (a) providing a fermentation broth including a recombinant microorganism that produces a product alcohol from a fermentable carbon source, a fermentable carbon source, a product alcohol, and oil derived from biomass, wherein the oil includes glycerides; (b) contacting the fermentation broth with a first extractant to form a two-phase mixture including an aqueous phase and an organic phase, wherein the product alcohol and the oil partition into the organic phase to form a product alcohol-containing organic phase; (c) separating the product alcohol-containing organic phase from the aqueous phase; (d) separating the product alcohol from the organic phase to produce a lean organic phase; (e) contacting the lean organic phase with a composition including one or more catalysts capable of hydrolyzing the glycerides into free fatty acids to produce a second extractant including at least a portion of the first extractant and free fatty acids; and (f) repeating step (b) by contacting the fermentation broth with the second extractant of step (e), wherein at least one of (i) growth rate and (ii) fermentable carbon consumption of the microorganism is greater in the presence of the free fatty acids than the growth rate and/or the fermentable carbon consumption of the microorganism in the absence of the free fatty acids.
BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES
[0033] The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
[0034] FIG. 1 schematically illustrates an exemplary method and system of the present invention, in which a liquefied biomass is contacted with one or more substances for lipid hydrolysis and fed to a fermentation vessel.
[0035] FIG. 2 schematically illustrates an exemplary method and system of the present invention, in which a liquefied and saccharified biomass is contacted with one or more substances for lipid hydrolysis and fed to a fermentation vessel.
[0036] FIG. 3 schematically illustrates an exemplary method and system of the present invention, in which undissolved solids and lipids are removed from a liquefied biomass before fermentation, and in which the removed lipids are hydrolyzed into free fatty acids using one or more substances, and the free fatty acids are fed to a fermentation vessel.
[0037] FIG. 4 schematically illustrates an exemplary method and system of the present invention, in which lipids derived from native oil are hydrolyzed into free fatty acids using one or more substances, and the free fatty acids are fed to a fermentation vessel.
[0038] FIG. 5 schematically illustrates an exemplary method and system of the present invention, in which biomass lipids present in an extractant exiting a fermentation vessel are converted into free fatty acids that are fed to a fermentation vessel.
[0039] FIG. 6 is a graph illustrating the effect that the presence of fatty acids in a fermentation vessel has on glucose consumption for butanologen strain NGCI-047.
[0040] FIG. 7 is a graph illustrating the effect that the presence of fatty acids in a fermentation vessel has on glucose consumption for butanologen strain NGCI-049.
[0041] FIG. 8 is a graph illustrating the effect that the presence of fatty acids in a fermentation vessel has on glucose consumption for butanologen strain NYLA84.
DETAILED DESCRIPTION OF THE INVENTION
[0042] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present application including the definitions will control. Also, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. All publications, patents and other references mentioned herein are incorporated by reference in their entireties for all purposes.
[0043] In order to further define this invention, the following terms and definitions are herein provided.
[0044] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having," "contains," or "containing," or any other variation thereof, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. For example, a composition, a mixture, a process, a method, an article, or an apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
[0045] Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances, that is, occurrences of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.
[0046] The term "invention" or "present invention" as used herein is a non-limiting term and is not intended to refer to any single embodiment of the particular invention but encompasses all possible embodiments as described in the application.
[0047] As used herein, the term "about" modifying the quantity of an ingredient or reactant of the invention employed refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or solutions in the real world; through inadvertent error in these procedures; through differences in the manufacture, source, or purity of the ingredients employed to make the compositions or to carry out the methods; and the like. The term "about" also encompasses amounts that differ due to different equilibrium conditions for a composition resulting from a particular initial mixture. Whether or not modified by the term "about," the claims include equivalents to the quantities. In one embodiment, the term "about" means within 10% of the reported numerical value, alternatively within 5% of the reported numerical value.
[0048] "Biomass" as used herein refers to a natural product containing hydrolyzable polysaccharides that provide fermentable sugars including any sugars and starch derived from natural resources such as corn, cane, wheat, cellulosic or lignocellulosic material and materials comprising cellulose, hemicellulose, lignin, starch, oligosaccharides, disaccharides and/or monosaccharides, and mixtures thereof. Biomass may also comprise additional components such as protein and/or lipids. Biomass may be derived from a single source or biomass can comprise a mixture derived from more than one source. For example, biomass may comprise a mixture of corn cobs and corn stover, or a mixture of grass and leaves. Biomass includes, but is not limited to, bioenergy crops, agricultural residues, municipal solid waste, industrial solid waste, sludge from paper manufacture, yard waste, wood and forestry waste. Examples of biomass include, but are not limited to, corn grain, corn cobs, crop residues such as corn husks, corn stover, grasses, wheat, rye, wheat straw, barley, barley straw, hay, rice straw, switchgrass, waste paper, sugar cane bagasse, sorghum, sugar cane, soy, components obtained from milling of grains, trees, branches, roots, leaves, wood chips, sawdust, shrubs and bushes, vegetables, fruits, flowers, animal manure, and mixtures thereof. For example, mash, juice, molasses, or hydrolysate may be formed from biomass by any processing known in the art for processing the biomass for purposes of fermentation such as by milling, treating, and/or liquefying and comprises fermentable sugar and may comprise water. For example, cellulosic and/or lignocellulosic biomass may be processed to obtain a hydrolysate containing fermentable sugars by any method known to one skilled in the art. A low ammonia pretreatment is disclosed in U.S. Patent Application Publication No. 2007/0031918A1, which is herein incorporated by reference. Enzymatic saccharification of cellulosic and/or lignocellulosic biomass typically makes use of an enzyme consortium for breaking down cellulose and hemicellulose to produce a hydrolysate containing sugars including glucose, xylose, and arabinose. (Saccharification enzymes suitable for cellulosic and/or lignocellulosic biomass are reviewed in Lynd, et al. (Microbiol. Mol. Biol. Rev. 66:506-577, 2002).
[0049] Mash, juice, molasses, or hydrolysate may include feedstock 12 and feedstock slurry 16 as described herein. An aqueous feedstream may be derived or formed from biomass by any processing known in the art for processing the biomass for purposes of fermentation such as by milling, treating, and/or liquefying and comprises fermentable carbon substrate (e.g., sugar) and may comprise water. An aqueous feedstream may include feedstock 12 and feedstock slurry 16 as described herein.
[0050] "Biomass production" as used herein refers to microorganism biomass production (i.e., cell biomass production or cell growth) such as during cultivation of microorganisms pre-fermentation or during fermentative growth of microorganisms.
[0051] "Feedstock" as used herein means a feed in a fermentation process, the feed containing a fermentable carbon source with or without undissolved solids, and where applicable, the feed containing the fermentable carbon source before or after the fermentable carbon source has been liberated from starch or obtained from the break down of complex sugars by further processing such as by liquefaction, saccharification, or other process. Feedstock includes or is derived from a biomass. Suitable feedstocks include, but are not limited to, rye, wheat, corn, cane, barley, cellulosic material, lignocellulosic material, or mixtures thereof.
[0052] "Fermentation broth" as used herein means the mixture of water, sugars, dissolved solids, optionally microorganisms producing alcohol, product alcohol, and all other constituents of the material held in the fermentation vessel in which product alcohol is being made by the reaction of sugars to alcohol, water, and carbon dioxide (CO2) by the microorganisms present. From time to time, as used herein the term "fermentation medium" and "fermented mixture" can be used synonymously with "fermentation broth."
[0053] "Fermentable carbon source" or "fermentable carbon substrate" as used herein means a carbon source capable of being metabolized (or "consumed") by the microorganisms disclosed herein for the production of fermentative alcohol. Suitable fermentable carbon sources include, but are not limited to, monosaccharides such as glucose or fructose; disaccharides such as lactose or sucrose; oligosaccharides; polysaccharides such as starch or cellulose; C5 sugars such as xylose and arabinose; one carbon substrates including methane; and mixtures thereof. The term "consumed" as used herein includes processes by which compounds, for example, organic compounds such as glucose are broken down by the action of enzymes from a cell which results in the production of energy that may be used by the cell.
[0054] "Fermentable sugar" as used herein refers to one or more sugars capable of being metabolized (or "consumed") by the microorganisms disclosed herein for the production of fermentative alcohol.
[0055] "Fermentation vessel" as used herein means the vessel in which the fermentation reaction is carried out whereby product alcohol such as butanol is made from sugars.
[0056] "Liquefaction vessel" as used herein means the vessel in which liquefaction is carried out. Liquefaction is the process in which oligosaccharides are liberated from the feedstock. In some embodiments where the feedstock is corn, oligosaccharides are liberated from the corn starch content during liquefaction.
[0057] "Saccharification vessel" as used herein means the vessel in which saccharification (i.e., the break down of oligosaccharides into monosaccharides) is carried out. Where fermentation and saccharification occur simultaneously, the saccharification vessel and the fermentation vessel may be one in the same vessel.
[0058] "Sugar" as used herein refers to oligosaccharides, disaccharides, monosaccharides, and/or mixtures thereof. The term "saccharide" also includes carbohydrates including starches, dextrans, glycogens, cellulose, pentosans, as well as sugars.
[0059] As used herein, "saccharification enzyme" means one or more enzymes that are capable of hydrolyzing polysaccharides and/or oligosaccharides, for example, alpha-1,4-glucosidic bonds of glycogen, or starch. Saccharification enzymes may include enzymes capable of hydrolyzing cellulosic or lignocellulosic materials as well.
[0060] "Undissolved solids" as used herein means non-fermentable portions of feedstock, for example, germ, fiber, and gluten.
[0061] "Product alcohol" as used herein refers to any alcohol that can be produced by a microorganism in a fermentation process that utilizes biomass as a source of fermentable carbon substrate. Product alcohols include, but are not limited to, C1 to C8 alkyl alcohols. In some embodiments, the product alcohols are C2 to C8 alkyl alcohols. In other embodiments, the product alcohols are C2 to C5 alkyl alcohols. It will be appreciated that C1 to C8 alkyl alcohols include, but are not limited to, methanol, ethanol, propanol, butanol, and pentanol. Likewise C2 to C8 alkyl alcohols include, but are not limited to, ethanol, propanol, butanol, and pentanol. "Alcohol" is also used herein with reference to a product alcohol.
[0062] "Butanol" as used herein refers with specificity to the butanol isomers 1-butanol (1-BuOH), 2-butanol (2-BuOH), tert-butanol, and/or isobutanol (iBuOH or i-BuOH or I-BUOH, also known as 2-methyl-1-propanol), either individually or as mixtures thereof. From time to time, when referring to esters of butanol, the terms "butyl esters" and "butanol esters" may be used interchangeably.
[0063] "Propanol" as used herein refers to the propanol isomers isopropanol or 1-propanol.
[0064] "Pentanol" as used herein refers to the pentanol isomers 1-pentanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 2,2-dimethyl-1-propanol, 3-pentanol, 2-pentanol, 3-methyl-2-butanol, or 2-methyl-2-butanol.
[0065] The term "alcohol equivalent" as used herein refers to the weight of alcohol that would be obtained by a perfect hydrolysis of an alcohol ester and the subsequent recovery of the alcohol from an amount of alcohol ester.
[0066] The term "aqueous phase titer" as used herein refers to the concentration of a particular alcohol (e.g., butanol) in the fermentation broth.
[0067] The term "effective titer" as used herein refers to the total amount of a particular alcohol (e.g., butanol) produced by fermentation or alcohol equivalent of the alcohol ester produced by alcohol esterification per liter of fermentation medium. For example, the effective titer of butanol in a unit volume of a fermentation includes: (i) the amount of butanol in the fermentation medium; (ii) the amount of butanol recovered from the organic extractant; (iii) the amount of butanol recovered from the gas phase, if gas stripping is used; and (iv) the alcohol equivalent of the butyl ester in either the organic or aqueous phase.
[0068] "In Situ Product Removal (ISPR)" as used herein means the selective removal of a specific fermentation product from a biological process such as fermentation, to control the product concentration in the biological process as the product is produced.
[0069] "Extractant" or "ISPR extractant" as used herein means an organic solvent used to extract any product alcohol such as butanol or used to extract any product alcohol ester produced by a catalyst from a product alcohol and a carboxylic acid or lipid. From time to time, as used herein the term "solvent" may be used synonymously with "extractant." For the processes described herein, extractants are water-immiscible.
[0070] The terms "water-immiscible" or "insoluble" refer to a chemical component such as an extractant or solvent, which is incapable of mixing with an aqueous solution such as a fermentation broth, in such a manner as to form one liquid phase.
[0071] The term "aqueous phase" as used herein refers to the aqueous phase of a biphasic mixture obtained by contacting a fermentation broth with a water-immiscible organic extractant. In an embodiment of a process described herein that includes fermentative extraction, the term "fermentation broth" then specifically refers to the aqueous phase in biphasic fermentative extraction.
[0072] The term "organic phase" as used herein refers to the non-aqueous phase of a biphasic mixture obtained by contacting a fermentation broth with a water-immiscible organic extractant.
[0073] The term "fatty acid" as used herein refers to a carboxylic acid (e.g., aliphatic monocarboxylic acid) having C4 to C28 carbon atoms (most commonly C12 to C24 carbon atoms), which is either saturated or unsaturated. Fatty acids may also be branched or unbranched. Fatty acids may be derived from, or contained in esterified form, in an animal or vegetable fat, oil, or wax. Fatty acids may occur naturally in the form of glycerides in fats and fatty oils or may be obtained by hydrolysis of fats or by synthesis. The term fatty acid may describe a single chemical species or a mixture of fatty acids. In addition, the term fatty acid also encompasses free fatty acids.
[0074] The term "fatty alcohol" as used herein refers to an alcohol having an aliphatic chain of C4 to C22 carbon atoms, which is either saturated or unsaturated.
[0075] The term "fatty aldehyde" as used herein refers to an aldehyde having an aliphatic chain of C4 to C22 carbon atoms, which is either saturated or unsaturated.
[0076] The term "carboxylic acid" as used herein refers to any organic compound with the general chemical formula --COOH in which a carbon atom is bonded to an oxygen atom by a double bond to make a carbonyl group (--C═O) and to a hydroxyl group (--OH) by a single bond. A carboxylic acid may be in the form of the protonated carboxylic acid, in the form of a salt of a carboxylic acid (e.g., an ammonium, sodium, or potassium salt), or as a mixture of protonated carboxylic acid and salt of a carboxylic acid. The term carboxylic acid may describe a single chemical species (e.g., oleic acid) or a mixture of carboxylic acids as can be produced, for example, by the hydrolysis of biomass-derived fatty acid esters or triglycerides, diglycerides, monoglycerides, and phospholipids.
[0077] "Native oil" as used herein refers to lipids obtained from plants (e.g., biomass) or animals. "Plant-derived oil" as used herein refers to lipids obtain from plants in particular. From time to time, "lipids" may be used synonymously with "oil" and "acyl glycerides." Native oils include, but are not limited to, tallow, corn, canola, capric/caprylic triglycerides, castor, coconut, cottonseed, fish, jojoba, lard, linseed, neetsfoot, oiticica, palm, peanut, rapeseed, rice, safflower, soya, sunflower, tung, jatropha, and vegetable oil blends.
[0078] The term "separation" as used herein is synonymous with "recovery" and refers to removing a chemical compound from an initial mixture to obtain the compound in greater purity or at a higher concentration than the purity or concentration of the compound in the initial mixture.
[0079] As used herein, "recombinant microorganism" refers to microorganisms such as bacteria or yeast, that are modified by use of recombinant DNA techniques, for example, by engineering a host cell to comprise a biosynthetic pathway such as a biosynthetic pathway to produce an alcohol such as butanol.
[0080] The present invention provides methods for producing product alcohol (e.g., fermentative alcohol) in which alcohol-producing microorganisms in a fermentation vessel are contacted with fatty acids which were derived from native oil such as biomass lipids at a step in a fermentation process. This fatty acid supplementation during the fermentative growth of the microorganism can increase the fermentable carbon consumption of the microorganisms, growth rate, and biomass production, particularly with regard to recombinant microorganisms that have reduced or eliminated pyruvate decarboxylase activity.
[0081] In some embodiments, glycerides in the oil can be chemically converted into fatty acids which are contacted with a fermentation broth including a recombinant microorganism that produces a product alcohol from fermentable carbon source. In other embodiments, the glycerides in the oil can be catalytically (e.g., enzymatically) hydrolyzed into fatty acids which are contacted with a fermentation broth including a recombinant microorganism. In some embodiments, the fatty acids can be obtained from hydrolysis of lipids found in the biomass which supplies the fermentable carbon source for fermentation. The fatty acids can also be used as an ISPR extractant to remove the product alcohol from the fermentation broth.
[0082] The fatty acids can be saturated, mono-unsaturated, poly-unsaturated, and mixtures thereof. For example, oil having a naturally-occurring fatty acid composition including a mixture of palmitic acid and oleic acid (e.g., corn oil) can be hydrolyzed to produce a mixture of free oleic acid and free palmitic acid which can be contacted with a fermentation broth in a fermentation vessel. In some embodiments, the concentration of the carboxylic acid (such as fatty acid) in the fermentation vessel exceeds the solubility limit in the aqueous phase and results in the production a two-phase fermentation mixture comprising an organic phase and an aqueous phase. In some embodiments, the concentration of carboxylic acids in the fermentation broth is typically not greater than about 0.8 g/L and is limited by the solubility of the carboxylic acid in the broth.
[0083] Growth rate and/or fermentable carbon consumption of the microorganism is greater in the presence of fatty acids than the growth rate and the fermentable carbon consumption of the microorganism in the absence of fatty acids. Correspondingly, fatty acid supplementation according to the methods of the present invention can achieve increased cell concentration and increased alcohol production than could be achieved in the absence of such fatty acid supplementation. In some embodiments, the microorganism may be a butanol-producing microorganism or other microorganism that typically requires supplementation of a 2-carbon substrate, for example, ethanol, to survive and grow. In such embodiments, the fatty acid supplementation according to methods of the present invention can allow such 2-carbon dependent microorganisms to survive and grow in the absence of ethanol supplementation. In some embodiments, the microorganisms can be deficient in production of acetyl-CoA from pyruvate. In some embodiments, the microorganism is metabolically engineered with disruptive mutations in one or more pyruvate decarboxylase (PDC) genes such that the pathway to fatty acid biosynthesis is modified. In some embodiments, the microorganism is metabolically engineered with disruptive mutations in two PDC genes such as genes PDC1 and PDC5, resulting in an altered pathway to fatty acid biosyntheses. Thus, the methods of the present invention can attain improved alcohol productivity by providing an optimal environment for fermentative growth of recombinant microorganisms.
[0084] The present invention will be described with reference to the Figures. FIG. 1 illustrates an exemplary process flow diagram for production of fermentative alcohol according to an embodiment of the present invention. As shown, a feedstock 12 can be introduced to an inlet in a liquefaction vessel 10 and liquefied to produce a feedstock slurry 16. Feedstock 12 contains hydrolysable starch that supplies a fermentable carbon source (e.g., fermentable sugar such as glucose), and can be a biomass such as, but not limited to, rye, wheat, corn, cane, barley, cellulosic material, lignocellulosic material, or mixtures thereof, or can otherwise be derived from a biomass. In some embodiments, feedstock 12 can be one or more components of a fractionated biomass and in other embodiments, feedstock 12 can be a milled, unfractionated biomass. In some embodiments, feedstock 12 can be corn such as dry milled, unfractionated corn kernels, and the undissolved solids can include germ, fiber, and gluten. The undissolved solids are non-fermentable portions of feedstock 12. For purposes of the discussion herein with reference to the embodiments shown in the Figures, feedstock 12 will often be described as constituting milled, unfractionated corn, in which the undissolved solids have not been separated therefrom. However, it should be understood that the exemplary methods and systems described herein can be modified for different feedstocks whether fractionated or not, as apparent to one of skill in the art. In some embodiments, feedstock 12 can be high-oleic corn, such that corn oil derived therefrom is a high-oleic corn oil having an oleic acid content of at least about 55 wt % oleic acid. In some embodiments, the oleic acid content in high-oleic corn oil can be up to about 65 wt % as compared with the oleic acid content in normal corn oil which is about 24 wt %. High-oleic oil can provide some advantages for use in the methods of the present invention, as hydrolysis of the oil provides free fatty acids having a high oleic acid content for contacting with a fermentation broth. In some embodiments, the fatty acids or mixtures thereof comprise unsaturated fatty acids. The presence of unsaturated fatty acids decreases the melting point providing advantages for handling. Of the unsaturated fatty acids, those which are monounsaturated, that is, possessing a single carbon-carbon double bond, may provide advantages with respect to melting point without sacrificing suitable thermal and oxidative stability for process considerations.
[0085] The process of liquefying feedstock 12 involves hydrolysis of polysaccharides in feedstock 12 into sugars including, for example, dextrins and oligosaccharides, and is a conventional process. Any known liquefying processes as well as the corresponding liquefaction vessel, normally utilized by the industry can be used including, but not limited to, the acid process, the acid-enzyme process, or the enzyme process. Such processes can be used alone or in combination. In some embodiments, the enzyme process can be utilized and an appropriate enzyme 14, for example, alpha-amylase, is introduced to an inlet in liquefaction vessel 10. Water can also be introduced to liquefaction vessel 10. In some embodiments, a saccharification enzyme, for example, glucoamylase, may also be introduced to liquefaction vessel 10. In additional embodiments, a lipase may also be introduced to liquefaction vessel 10 to catalyze the conversion of one or more components of the oil to free fatty acids.
[0086] Feedstock slurry 16 produced from liquefying feedstock 12 includes sugar, oil 26, and undissolved solids derived from the biomass from which feedstock 12 was formed. In some embodiments, the oil is in an amount of about 0 wt % to at least about 2 wt % of the fermentation broth composition. In some embodiments, the oil is in an amount of at least about 0.5 wt % of the feedstock. Feedstock slurry 16 can be discharged from an outlet of liquefaction vessel 10. In some embodiments, feedstock 12 is corn or corn kernels and therefore, feedstock slurry 16 is a corn mash slurry.
[0087] One or more substances 42 can be added to feedstock slurry 16. Substances 42 are capable of hydrolyzing glycerides in oil 26 to free fatty acids (FFA) 28. For example, when feedstock 12 is corn, then oil 26 is the feedstock's constituent corn oil and the free fatty acids 28 are corn oil fatty acids (COFA). Thus, after introduction of substances 42 to feedstock slurry 16, at least a portion of the glycerides in oil 26 are hydrolyzed to FFA 28 resulting in a feedstock slurry 18 having FFA 28.
[0088] In some embodiments, one or more substances 42 are one or more catalysts 42 capable of catalytically hydrolyzing glycerides in oil 26 to free fatty acids 28 (FFA). Thus, after introduction of catalyst 42 to feedstock slurry 16, at least a portion of the glycerides in oil 26 are hydrolyzed to FFA 28 resulting in a feedstock slurry 18 having FFA 28 and catalyst 42.
[0089] The resulting acid/oil composition from hydrolyzing oil 26 is typically at least about 17 wt % FFA. In some embodiments, the resulting acid/oil composition from hydrolyzing oil 26 is at least about 20 wt % FFA, at least about 25 wt % FFA, at least about 30 wt % FFA, at least about 35 wt % FFA, at least about 40 wt % FFA, at least about 45 wt % FFA, at least about 50 wt % FFA, at least about 55 wt % FFA, at least about 60 wt % FFA, at least about 65 wt % FFA, at least about 70 wt % FFA, at least about 75 wt % FFA, at least about 80 wt % FFA, at least about 85 wt % FFA, at least about 90 wt % FFA, at least about 95 wt % FFA, or at least about 99 wt % FFA.
[0090] Alternatively, in some embodiments, substance(s) 42 can alternatively constitute one or more reactants or solvents capable of chemically reacting oil 26 to FFA 28 for contacting with recombinant microorganism 32. For example, corn oil fatty acids can be synthesized from corn oil as oil 26 by base hydrolysis using NaOH and water as substances 42, as further described in co-pending, commonly owned U.S. Provisional Application Ser. No. 61/368,436, filed on Jul. 28, 2010, and incorporated herein in its entirety by reference thereto. Also, for example, corn oil triglycerides as oil 26 can be reacted with aqueous ammonium hydroxide as reactant 42 to obtain fatty acid (and fatty amide) as further described in Roe, et al., (Am. Oil Chem. Soc. 29:18-22, 1952), which is incorporated herein in its entirety by reference thereto. For purposes of the discussion herein with reference to the embodiments shown in the Figures, substance(s) 42 will often be described as constituting one or more catalysts as substance(s) 42 for the hydrolysis of biomass lipids to FFA 28 supplemented during fermentative growth of recombinant microorganism 32. However, it should be understood that the exemplary methods and systems described herein can be modified such that substance(s) 42 are reactant(s) and/or solvent(s) that are capable of chemically converting the biomass lipids into FFA 28.
[0091] In some embodiments, catalyst 42 can be one or more enzymes, for example, hydrolase enzymes such as lipase enzymes. Lipase enzymes used may be derived from any source including, for example, Absidia, Achromobacter, Aeromonas, Alcaligenes, Alternaria, Aspergillus, Achromobacter, Aureobasidium, Bacillus, Beauveria, Brochothrix, Candida, Chromobacter, Coprinus, Fusarium, Geotricum, Hansenula, Humicola, Hyphozyma, Lactobacillus, Metarhizium, Mucor, Nectria, Neurospora, Paecilomyces, Penicillium, Pseudomonas, Rhizoctonia, Rhizomucor, Rhizopus, Rhodosporidium, Rhodotorula, Saccharomyces, Sus, Sporobolomyces, Thermomyces, Thiarosporella, Trichoderma, Verticillium, and/or a strain of Yarrowia. In a preferred aspect, the source of the lipase is selected from the group consisting of Absidia blakesleena, Absidia corymbifera, Achromobacter iophagus, Alcaligenes sp., Alternaria brassiciola, Aspergillus flavus, Aspergillus niger, Aureobasidium pullulans, Bacillus pumilus, Bacillus strearothermophilus, Bacillus subtilis, Brochothrix thermosohata, Candida cylindracea (Candida rugosa), Candida paralipolytica, Candida Antarctica lipase A, Candida antartica lipase B, Candida ernobii, Candida deformans, Chromobacter viscosum, Coprinus cinerius, Fusarium oxysporum, Fusarium solani, Fusarium solani pisi, Fusarium roseum culmorum, Geotricum penicillatum, Hansenula anomala, Humicola brevispora, Humicola brevis var. thermoidea, Humicola insolens, Lactobacillus curvatus, Rhizopus oryzae, Penicillium cyclopium, Penicillium crustosum, Penicillium expansum, Penicillium sp. I, Penicillium sp. II, Pseudomonas aeruginosa, Pseudomonas alcaligenes, Pseudomonas cepacia (syn. Burkholderia cepacia), Pseudomonas fluorescens, Pseudomonas fragi, Pseudomonas maltophilia, Pseudomonas mendocina, Pseudomonas mephitica lipolytica, Pseudomonas alcaligenes, Pseudomonas plantari, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Pseudomonas stutzeri, and Pseudomonas wisconsinensis, Rhizoctonia solani, Rhizomucor miehei, Rhizopus japonicus, Rhizopus microsporus, Rhizopus nodosus, Rhodosporidium toruloides, Rhodotorula glutinis, Saccharomyces cerevisiae, Sporobolomyces shibatanus, Sus scrofa, Thermomyces lanuginosus (formerly Humicola lanuginose), Thiarosporella phaseolina, Trichoderma harzianum, Trichoderma reesei, and Yarrowia lipolytica. In a further preferred aspect, the lipase is selected from the group consisting of Thermomcyces lanuginosus, Aspergillus sp. lipase, Aspergillus niger lipase, Candida antartica lipase B, Pseudomonas sp. lipase, Penicillium roqueforti lipase, Penicillium camembertii lipase, Mucor javanicus lipase, Burkholderia cepacia lipase, Alcaligenes sp. lipase, Candida rugosa lipase, Candida parapsilosis lipase, Candida deformans lipase, lipases A and B from Geotrichum candidum, Neurospora crassa lipase, Nectria haematococca lipase, Fusarium heterosporum lipase Rhizopus delemar lipase, Rhizomucor miehei lipase, Rhizopus arrhizus lipase, and Rhizopus oryzae lipase. Suitable commercial lipase preparations suitable as enzyme catalyst 42 include, but are not limited to, Lipolase® 100 L, Lipex® 100L, Lipoclean® 2000T, Lipozyme® CALB L, Novozym® CALA L, and Palatase 20000L, available from Novozymes, or from Pseudomonas fluorescens, Pseudomonas cepacia, Mucor miehei, hog pancreas, Candida cylindracea, Rhizopus niveus, Candida antarctica, Rhizopus arrhizus or Aspergillus available from SigmaAldrich.
[0092] After at least a portion of the glycerides are hydrolyzed, in some embodiments, catalyst 42 can be inactivated. Any method known in the art can be used to render catalyst 42 inactive. For example, in some embodiments, catalyst 42 can be inactivated by the application of heat, and/or by adjusting the pH of the reaction mass to a pH where catalyst 42 is irreversibly inactivated, and/or by adding a chemical or biochemical species capable of selectively inactivating the catalyst activity. As shown, for example, in the embodiment of FIG. 1, heat q is applied to feedstock slurry 18, whereby catalyst 42 becomes inactive. The application of heat q can be applied to feedstock slurry 18 before feedstock slurry 18 is fed to a fermentation vessel 30. Heat-treated feedstock slurry 18 (with inactive catalyst 42) is then introduced into a fermentation vessel 30 along with a microorganism 32 to be included in a fermentation broth held in fermentation vessel 30. Alternatively, feedstock slurry 18 can be fed to fermentation vessel 30 and subjected to heat q while in the fermentation vessel, before fermentation vessel inoculation of microorganism 32. For example, in some embodiments, catalyst inactivation treatment can be achieved by heating feedstock slurry 18 with heat q to temperature of at least about 75° C. for at least about 5 minutes, at least about 75° C. for at least about 10 minutes, at least about 75° C. for at least about 15 minutes, at least about 80° C. for at least about 5 minutes, at least about 80° C. for at least about 10 minutes, at least about 80° C. for at least about 15 minutes, at least about 85° C. for at least about 5 minutes, at least about 85° C. for at least about 10 minutes, or at least about 85° C. for at least about 15 minutes. In some embodiments, after being subject to heat q, feedstock slurry 18 is cooled to an appropriate temperature for fermentation prior to introduction to fermentation vessel 30 (or prior to fermentation vessel inoculation in the case that the application of heat q is conducted in the fermentation vessel). For example, in some embodiments, the temperature of feedstock slurry 18 is about 30° C. prior to contacting with a fermentation broth.
[0093] Inactivation of catalyst 42 is preferred when it is desirable to prevent catalyst 42 from esterifying alcohol with fatty acids 28 in the fermentation vessel. In some embodiments, production of an alcohol ester by esterification of product alcohol in a fermentation medium with an organic acid (e.g., fatty acid) and a catalyst (e.g., lipase) is desirable, as further described in co-pending, commonly owned U.S. Provisional Application Ser. No. 61/368,429, filed on Jul. 28, 2010; U.S. Provisional Application Ser. No. 61/379,546, filed on Sep. 2, 2010; and U.S. Provisional Application Ser. No. 61/440,034, filed on Feb. 7, 2011; all incorporated herein in its entirety by reference thereto. For example, for butanol production, active catalyst 42 in fermentation vessel (introduced via slurry 18) can catalyze the esterification of the butanol with fatty acids 28 (introduced via slurry 18) to form fatty acid butyl esters (FABE) in situ. In such embodiments in which alcohol esters of fatty acids are desirable, the methods described herein can be modified so as to omit inactivated of catalyst 42 prior to contacting a fermentation broth including product alcohol. Thus, with reference to the exemplary process flow diagrams of FIG. 1-5, these alternative embodiments can be achieved by omitting the application of heat q to the process stream containing catalyst 42, such that catalyst 42 esterifies the product alcohol with fatty acids 28 in fermentation vessel 30. Moreover, in some embodiments, the exemplary process flow diagrams of FIG. 1-5 can be modified so as to omit heat q if unneeded for chemical conversion of oil 26 to FFA 28 using one or more reactants or solvents as the substance(s) 42 instead of catalysts 42.
[0094] Fermentation vessel 30 is configured to ferment slurry 18 to produce a product alcohol such as butanol. In particular, microorganism 32 metabolizes the fermentable sugar in slurry 18 and excretes a product alcohol. Microorganism 32 is selected from the group of bacteria, cyanobacteria, filamentous fungi, and yeast. In some embodiments, microorganism 32 can be a bacteria such as E. coli. In some embodiments, microorganism 32 can be a fermentative recombinant microorganism. The slurry can include sugar, for example, in the form of oligosaccharides and water, and can comprise less than about 20 g/L of monomeric glucose, more preferably less than about 10 g/L or less than about 5 g/L of monomeric glucose. Suitable methodology to determine the amount of monomeric glucose is well known in the art. Such suitable methods known in the art include HPLC.
[0095] In some embodiments, slurry 18 is subjected to a saccharification process in order to break the complex sugars (e.g., oligosaccharides) in slurry 18 into monosaccharides that can be readily metabolized by microorganism 32. Any known saccharification process that is routinely utilized by the industry, can be used including, but not limited to, the acid process, the acid-enzyme process, or the enzyme process. In some embodiments, simultaneous saccharification and fermentation (SSF) can occur inside fermentation vessel 30 as shown in FIG. 1. In some embodiments, an enzyme 38, such as glucoamylase, can be introduced to an inlet in fermentation vessel 30 in order to breakdown the starch or oligosaccharides to glucose capable of being metabolized by microorganism 32.
[0096] Optionally, ethanol 33 may be supplied to fermentation vessel 30 to be included in the fermentation broth. In some embodiments, when a recombinant microorganism having a butanol biosynthetic pathway is used as microorganism 32 for butanol production, microorganism 32 may require supplementation of a 2-carbon substrate (e.g., ethanol) to survive and grow. Thus, in some embodiments, ethanol 33 may be supplied to fermentation vessel 30.
[0097] However, it has been surprisingly found that methods of the present invention, in which free fatty acid (e.g., FFA 28) is present in the fermentation vessel, can allow reduction of the amount of ethanol 33 typically supplied for a given recombinant microorganism without detriment to the vitality of the recombinant microorganism. Further, in some embodiments, the methods of the present invention provide that the alcohol (e.g., butanol) production rate without ethanol supplementation to be comparable with the production rate that can be realized when ethanol 33 is supplemented. As further demonstrated by the comparative examples presented in the Examples 1-14 below, the butanol production rate when fatty acid but not ethanol is in the fermentation vessel can be greater than the butanol production rate when neither fatty acid nor ethanol is in the fermentation vessel. Thus, in some embodiments, the amount of ethanol 33 supplementation is reduced compared to conventional processes. For example, a typical amount of ethanol added to a fermentation vessel for microorganisms requiring supplementation of a 2-carbon substrate is about 5 g/L anhydrous ethanol (i.e., 5 g anhydrous ethanol per liter of fermentation medium). In some embodiments, the fermentation is not supplemented with any ethanol 33. In the latter case, the stream of ethanol 33 is entirely omitted from the fermentation vessel. Thus, in some embodiments of the present invention, it is possible to reduce or eliminate the cost associated with supplemental ethanol 33, as well as the inconvenience associated with storing vats of ethanol 33 and supplying it to the fermentation vessel during butanol fermentation. Moreover, regardless of ethanol supplementation, in some embodiments, the methods of the present invention can provide a higher rate of glucose uptake by microorganism 32 by virtue of the presence of fatty acids during the fermentation. According to the methods described herein, the fatty acids can be introduced into fermentation vessel 30 as FFA 28, hydrolyzed from feedstock oil 26 of slurry 16, or otherwise hydrolyzed from native oil such as biomass lipids at a step in the fermentation process. Fatty acids can also be introduced into fermentation vessel as an ISPR extractant 29.
[0098] In fermentation vessel 30, alcohol is produced by microorganism 32. In situ product removal (ISPR) can be utilized to remove the product alcohol from the fermentation broth. In some embodiments, ISPR includes liquid-liquid extraction. Liquid-liquid extraction can be performed according to the processes described in U.S. Patent Application Publication No. 2009/0305370, the disclosure of which is hereby incorporated in its entirety. U.S. Patent Application Publication No. 2009/0305370 describes methods for producing and recovering butanol from a fermentation broth using liquid-liquid extraction, the methods comprising the step of contacting the fermentation broth with a water-immiscible extractant to form a two-phase mixture comprising an aqueous phase and an organic phase. Typically, the extractant can be an organic extractant selected from the group consisting of saturated, mono-unsaturated, poly-unsaturated (and mixtures thereof) C12 to C22 fatty alcohols, C12 to C22 fatty acids, esters of C12 to C22 fatty acids, C12 to C22 fatty aldehydes, and mixtures thereof, which contacts a fermentation broth and forms a two-phase mixture comprising an aqueous phase and an organic phase. The extractant may also be an organic extractant selected from the group consisting of saturated, mono-unsaturated, poly-unsaturated (and mixtures thereof) C4 to C22 fatty alcohols, C4 to C28 fatty acids, esters of C4 to C28 fatty acids, C4 to C22 fatty aldehydes, and mixtures thereof, which contacts a fermentation broth and to form a two-phase mixture comprising an aqueous phase and an organic phase. Free fatty acids 28 from slurry 18 can also serve as an ISPR extractant 28. For example, when free fatty acids 28 are corn oil fatty acids (COFA), ISPR extractant 28 is COFA. ISPR extractant (FFA) 28 contacts the fermentation broth and forms a two-phase mixture comprising an aqueous phase 34 and an organic phase. The product alcohol present in the fermentation broth preferentially partitions into the organic phase to form an alcohol-containing organic phase 36. In some embodiments, fermentation vessel 30 has one or more inlets for receiving one or more additional ISPR extractants 29 which form a two-phase mixture comprising an aqueous phase and an organic phase, with the product alcohol partitioning into the organic phase.
[0099] The biphasic mixture can be removed from fermentation vessel 30 as stream 39 and introduced into a vessel 35, in which the alcohol-containing organic phase 36 is separated from the aqueous phase 34. The alcohol-containing organic phase 36 is separated from the aqueous phase 34 of the biphasic stream 39 using methods known in the art including, but not limited to, siphoning, decantation, aspiration, centrifugation, using a gravity settler, membrane-assisted phase splitting, and the like. All or part of the aqueous phase 34 can be recycled into fermentation vessel 30 as fermentation medium (as shown), or otherwise discarded and replaced with fresh medium, or treated for the removal of any remaining product alcohol and then recycled to fermentation vessel 30. Then, the alcohol-containing organic phase 36 is treated in a separator 50 to recover product alcohol 54, and the resulting alcohol-lean extractant 27 can then be recycled back into fermentation vessel 30, usually in combination with fresh FFA 28 from slurry 18 and/or with fresh extractant 29, for further extraction of the product alcohol. Alternatively, fresh FFA 28 (from slurry 18) and/or extractant 29 can be continuously added to the fermentation vessel to replace the ISPR extractant(s) removed in biphasic mixture stream 39.
[0100] In some embodiments, any additional ISPR extractant 29 can be an exogenous organic extractant such as oleyl alcohol, behenyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, 1-undecanol, oleic acid, lauric acid, myristic acid, stearic acid, methyl myristate, methyl oleate, undecanal, lauric aldehyde, 20-methylundecanal, and mixtures thereof. In some embodiments, ISPR extractant 29 can be a carboxylic acid or free fatty acid and in some embodiments, the carboxylic acid or free fatty acid have a chain of 4 to 28 carbons, 4 to 22 carbons in other embodiments, 8 to 22 carbons in other embodiments, 10 to 28 carbons in other embodiments, 7 to 22 carbons in other embodiments, 12 to 22 carbons in other embodiments, 4 to 18 carbons in other embodiments, 12 to 22 carbons in other embodiments, and 12 to 18 carbons in still other embodiments. In some embodiments, ISPR extractant 29 is one or more of the following fatty acids: azaleic, capric, caprylic, castor, coconut (i.e., as a naturally-occurring combination of fatty acids including lauric, myrisitic, palmitic, caprylic, capric, stearic, caproic, arachidic, oleic, and linoleic), dimer, isostearic, lauric, linseed, myristic, oleic, olive, palm oil, palmitic, palm kernel, peanut, pelargonic, ricinoleic, sebacic, soya, stearic acid, tall oil, tallow, #12 hydroxy stearic, or any seed oil. In some embodiments, ISPR extractant 29 is one or more of diacids, for example, azelaic acid and sebacic acid. Thus, in some embodiments, ISPR extractant 29 can be a mixture of two or more different fatty acids. In some embodiments, ISPR extractant 29 can be a free fatty acid derived from chemical or enzymatic hydrolysis of glycerides derived from native oil. For example, in some embodiments, ISPR extractant 29 can be free fatty acids 28' obtained by enzymatic hydrolysis of native oil such as biomass lipids as later described with reference to the embodiment of FIG. 4. In some embodiments, ISPR extractant 29 can be a fatty acid extractant selected from the group consisting of fatty acids, fatty alcohols, fatty amides, fatty acid methyl esters, lower alcohol esters of fatty acids, fatty acid glycol esters, hydroxylated triglycerides, and mixtures thereof, obtained from chemical conversion of native oil such as biomass lipids as described for example in co-pending, commonly owned U.S. Provisional Application Ser. No. 61/368,436, filed on Jul. 28, 2010. In such embodiments, the biomass lipids for producing extractant 29 can be from a same or different biomass source from which feedstock 12 is obtained. For example, in some embodiments, the biomass lipids for producing extractant 29 can be derived from soya, whereas the biomass source of feedstock 12 is corn. Any possible combination of different biomass sources for extractant 29 versus feedstock 12 can be used, as should be apparent to one of skill in the art. In some embodiments, additional ISPR extractant 29 includes COFA.
[0101] In situ extractive fermentation can be carried out in a batch mode or a continuous mode in fermentation vessel 30. For in situ extractive fermentation, the organic extractant can contact the fermentation medium at the start of the fermentation forming a biphasic fermentation medium. Alternatively, the organic extractant can contact the fermentation medium after the microorganism has achieved a desired amount of growth, which can be determined by measuring the optical density of the culture. Further, the organic extractant can contact the fermentation medium at a time at which the product alcohol level in the fermentation medium reaches a preselected level. In the case of butanol production, for example, the ISPR extractant can contact the fermentation medium at a time before the butanol concentration reaches a level which would be toxic to the microorganism. After contacting the fermentation medium with the ISPR extractant, the butanol product partitions into the extractant, decreasing the concentration in the aqueous phase containing the microorganism, thereby limiting the exposure of the production microorganism to the inhibitory butanol product.
[0102] The volume of the ISPR extractant to be used depends on a number of factors including the volume of the fermentation medium, the size of the fermentation vessel, the partition coefficient of the extractant for the butanol product, and the fermentation mode chosen, as described below. The volume of the extractant can be about 3% to about 60% of the fermentation vessel working volume. Depending on the efficiency of the extraction, the aqueous phase titer of butanol in the fermentation medium can be, for example, from about 1 g/L to about 85 g/L, from about 10 g/L to about 40 g/L, from about 10 g/L to about 20 g/L, from about 15 g/L to about 50 g/L or from about 20 g/L to about 60 g/L. In some embodiments, the resulting fermentation broth after alcohol esterification can comprise free (i.e., unesterified) alcohol and in some embodiments, the concentration of free alcohol in the fermentation broth after alcohol esterification is not greater than 1, 3, 6, 10, 15, 20, 25, 30 25, 40, 45, 50, 55, or 60 g/L when the product alcohol is butanol, or when the product alcohol is ethanol, the concentration of free alcohol in the fermentation broth after alcohol esterification is not greater than 15, 20, 25, 30 25, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 g/L. Without being held to theory, it is believed that higher butanol titer may obtained with the extractive fermentation method, in part, from the removal of the toxic butanol product from the fermentation medium, thereby keeping the level below that which is toxic to the microorganism.
[0103] In a batchwise mode of in situ extractive fermentation, a volume of organic extractant is added to the fermentation vessel and the extractant is not removed during the process. This mode requires a larger volume of organic extractant to minimize the concentration of the inhibitory butanol product in the fermentation medium. Consequently, the volume of the fermentation medium is less and the amount of product produced is less than that obtained using the continuous mode. For example, the volume of the extractant in the batchwise mode can be 20% to about 60% of the fermentation vessel working volume in one embodiment, and about 30% to about 60% in another embodiment.
[0104] Gas stripping (not shown) can be used concurrently with the ISPR extractant to remove the product alcohol from the fermentation medium.
[0105] In the embodiment of FIG. 1, the product alcohol is extracted from the fermentation broth in situ, with the separation of the biphasic mixture 39 occurring in a separate vessel 35. In some embodiments, separation of the biphasic mixture 39 can occur in the fermentation vessel, as shown in the embodiments of later described FIGS. 2 and 3 in which the alcohol-containing organic phase stream 36 exits directly from fermentation vessel 30. Aqueous phase stream 34 can also exit directly from fermentation vessel 30, be treated for the removal of any remaining product alcohol and recycled, or discarded and replaced with fresh fermentation medium. The extraction of the product alcohol by the organic extractant(s) can be done with or without the removal of the microorganism from the fermentation broth. The microorganism can be removed from the fermentation broth by means known in the art including, but not limited to, filtration or centrifugation. For example, aqueous phase stream 34 can include microorganism 32 such as yeast. Microorganism 32 can be easily separated from the aqueous phase stream, for example, in a centrifuge (not shown). Microorganism 32 can then be recycled to fermentation vessel 30 which over time can increase the production rate of alcohol production, thereby resulting in an increase in the efficiency of the alcohol production.
[0106] In a continuous mode of in situ extractive fermentation, the volume of the extractant can be about 3% to about 50% of the fermentation vessel working volume in one embodiment, about 3% to about 30% in another embodiment, 3% to about 20% in another embodiment; and 3% to about 10% in another embodiment. Because the product is continually removed from the reactor, a smaller volume of extractant is required enabling a larger volume of the fermentation medium to be used.
[0107] As an alternative to in situ extractive fermentation, the product alcohol can be extracted from the fermentation broth downstream of fermentation vessel 30. In such an instance, the fermentation broth can be removed from fermentation vessel 30 and introduced into vessel 35 for contacting with the ISPR extractant to obtain biphasic mixture 39 in vessel 35, which is then separated into the organic 36 and aqueous 34 phases. Alternatively, the ISPR extractant can be added to the fermentation broth in a separate vessel (not shown) prior to introduction to vessel 35.
[0108] As a non-limiting prophetic example, with reference to the embodiment of FIG. 1, an aqueous suspension of ground whole corn (as feedstock 12) which can nominally contain about 4 wt % corn oil, can be treated with amylase (as liquefaction enzyme 14) at about 85° C. to 120° C. for 30 minutes to 2 hours, and the resulting liquefied mash 16 cooled to between 65° C. and 30° C. and treated with 0.1 ppm to 10 ppm (in some embodiments, 0.5 ppm to 1.0 ppm) of lipase (as catalyst 42) at pH 4.5 to 7.5 (in some embodiments, between pH 5.5 and 6.5) for sufficient time to produce from at least 30% to as high as at least 99% conversion of the available fatty acid content in lipids to free fatty acids. Optionally, the liquefied and lipase-treated mash 18 can be heated to inactivate lipase 42 prior to fermentation. Mash 18 can be cooled to about 30° C. (e.g., using a heat-exchanger) and loaded to fermentation vessel 30 at about 25% to 30 wt % dry corn solids. Saccharification of the liquefied mash 18 during fermentation by the addition of glucoamylase (as saccharification enzyme 38) can result in the production of glucose. The resulting fermentation broth can contain significantly less than the amount of corn oil (e.g., about 1.2 wt % corn oil) that can be present in a fermentation broth using a liquefied mash that has not been treated with lipase 42. In particular, the lipase 42 treatment can result in the conversion of corn oil lipids 26 (triglycerides (TG)) into COFA as FFA 28 (and some diglycerides (DG) or monoglycerides (MG)) that contact with the fermentation broth. The growth rate and/or glucose consumption of the microorganism in the fermentation broth can be greater in the presence of the COFA than the growth rate and the fermentable carbon consumption of the microorganism in the absence of the fatty acids. For example, as later described below in the Examples, FIGS. 6-8 illustrate an increased glucose consumption by butanol-producing microorganisms in the presence of supplemented fatty acids.
[0109] In some embodiments, the system and processes of FIG. 1 can be modified such that feedstock slurry 16 (having oil 26) and catalyst 42 are introduced and contacted in fermentation vessel 30 so as to produce slurry 18 (having FFA 28). The fermentation vessel temperature can then be raised to heat inactivate catalyst 42. The fermentation vessel temperature can then be reduced, and the fermentation vessel can be inoculated with microorganism 32, whereby the sugars of slurry 18 can be fermented to produce a product alcohol.
[0110] In some embodiments, the system and processes of FIG. 1 can be modified such that simultaneous saccharification and fermentation (SSF) in fermentation vessel 30 is replaced with a separate saccharification vessel 60 (see FIG. 2) prior to fermentation vessel 30, as should be apparent to one of skill in the art. Thus, slurry 18 can be saccharified either before fermentation or during fermentation in an SSF process. It should also be apparent that catalyst 42 for hydrolysis of feedstock oil 26 can be introduced before, after, or contemporaneously with saccharification enzyme 38. Thus, in some embodiments, addition of enzyme 38 and catalyst 42 can be stepwise (e.g., catalyst 42, then enzyme 38, or vice versa), or substantially simultaneous (i.e., at exactly the same time as in the time it takes for a person or a machine to perform the addition in one stroke, or one enzyme/catalyst immediately following the other catalyst/enzyme as in the time it takes for a person or a machine to perform the addition in two strokes).
[0111] For example, as shown in the embodiment of FIG. 2, the system and processes of FIG. 1 can be modified such that simultaneous saccharification and fermentation (SSF) in fermentation vessel 30 is replaced with a separate saccharification vessel 60 prior to fermentation vessel 30. FIG. 2 is substantially identical to FIG. 1 except for the inclusion of a separate saccharification vessel 60 receiving enzyme 38, with catalyst 42 being introduced to a liquefied, saccharified feedstock stream 62. Feedstock slurry 16 is introduced into saccharification vessel 60 along with enzyme 38 such as glucoamylase, whereby sugars in the form of oligosaccharides in slurry 16 can be broken down into monosaccharides. A liquefied, saccharified feedstock stream 62 exits saccharification vessel 60 to which catalyst 42 is introduced. Feedstock stream 62 includes monosaccharides, oil 26, and undissolved solids derived from the feedstock. Oil 26 is hydrolyzed by the introduction of catalyst 42, resulting in a liquefied, saccharified feedstock slurry 64 having free fatty acids 28 and catalyst 42.
[0112] Alternatively, in some embodiments, catalyst 42 can be added with saccharification enzyme 38 to simultaneously produce glucose and hydrolyze oil lipids 26 to free fatty acids 28. The addition of enzyme 38 and catalyst 42 can be stepwise (e.g., catalyst 42, then enzyme 38, or vice versa) or simultaneous. Alternatively, in some embodiments, slurry 62 can be introduced to fermentation vessel, with catalyst 42 being added directly to the fermentation vessel 30.
[0113] In the embodiment of FIG. 2, heat q is applied to feedstock slurry 64, whereby catalyst 42 becomes inactive, and heat-treated slurry 64 is then introduced to fermentation vessel 30 along with alcohol-producing microorganism 32 which metabolizes monosaccharides to produce a product alcohol (e.g., butanol). Alternatively, slurry 64 can be fed to fermentation vessel 30 and subjected to heat q while in the fermentation vessel before inoculation of microorganism 32.
[0114] As described above with reference to FIG. 1, free fatty acids 28 can also serve as an ISPR extractant for preferentially partitioning the product alcohol from the aqueous phase. In some embodiments, one or more additional ISPR extractants 29 can also be introduced into fermentation vessel 30. Separation of the biphasic mixture occurs in fermentation vessel 30, whereby alcohol-containing organic phase stream 36 and aqueous phase stream 34 exit directly from fermentation vessel 30. Alternatively, separation of the biphasic mixture can be conducted in a separate vessel 35 as provided in the embodiments of FIG. 1. The remaining process operations of the embodiment of FIG. 2 are identical to FIG. 1 and therefore, will not be described in detail again.
[0115] In still other embodiments, oil 26 derived from feedstock 12 can be catalytically hydrolyzed into FFA 28 either prior to or during liquefaction, such that feedstock slurry 18 having FFA 28 exits directly from liquefaction vessel 10 and can be fed to fermentation vessel 30. For example, feedstock 12 having oil 26 can be fed to liquefaction vessel 10 along with catalyst 42 for hydrolysis of at least a portion of the glycerides in oil 26 into FFA 28. Enzyme 14 (e.g., alpha-amylase) which hydrolyzes the starch in feedstock 12 can also be introduced to vessel 10 to produce a liquefied feedstock. The addition of enzyme 14 and catalyst 42 can be stepwise or simultaneous. For example, catalyst 42 can be introduced, and then enzyme 14 can be introduced after at least a portion of oil 26 has been hydrolyzed. Alternatively, enzyme 14 can be introduced, and then catalyst 42 can be introduced. The liquefaction process can involve the application of heat q. In such embodiments, catalyst 42 can be introduced prior to or during liquefaction when the process temperature is below that which inactivates catalyst 42, so that oil 26 can be hydrolyzed. Thereafter, application of heat q can provide a two-fold purpose of liquefaction and inactivation of catalyst 42, if inactivation is desired.
[0116] In some embodiments including any of the earlier described embodiments with respect to FIGS. 1 and 2, undissolved solids can be removed from the feedstock slurry prior to introduction into fermentation vessel 30. For example, as shown in the embodiment of FIG. 3, feedstock slurry 16 is introduced into an inlet of a separator 20 which is configured to discharge the undissolved solids as a solid phase or wet cake 24. For example, in some embodiments, separator 20 may include a filter press, vacuum filtration, or a centrifuge for separating the undissolved solids from feedstock slurry 16. Optionally, in some embodiments, separator 20 can also be configured to remove some or substantially all of oil 26 present in feedstock slurry 16. In such embodiments, separator 20 can be any suitable separator known in the art for removing oil from an aqueous feedstream including, but not limited to, siphoning, aspiration, decantation, centrifugation, using a gravity settler, membrane-assisted phase splitting, and the like. The remaining feedstock including the sugar and water is discharged as an aqueous stream 22 to fermentation vessel 30.
[0117] In some embodiments, separator 20 removes oil 26 but not undissolved solids. Thus, aqueous stream 22 fed to fermentation vessel 30 includes undissolved solids. In some embodiments, separator 20 includes a tricanter centrifuge 20 that agitates or spins feedstock slurry 16 to produces a centrifuge product comprising an aqueous layer containing the sugar and water (i.e., stream 22), a solids layer containing the undissolved solids (i.e., wet cake 24), and an oil layer (i.e., oil stream 26). Methods and systems for removing undissolved solids from feedstock slurry 16 via centrifugation are described in detail in co-pending, commonly owned U.S. Provisional Application Ser. No. 61/356,290, filed Jun. 18, 2010, which is incorporated herein in its entirety by reference thereto.
[0118] In any case, catalyst 42 can be contacted with the removed oil 26 to produce a stream of FFA 28 including catalyst 42, as shown in FIG. 3. Heat q can then be applied to the stream of FFA 28, whereby catalyst 42 becomes inactive. The stream of FFA 28 and inactive catalyst 42 can then be introduced into fermentation vessel 30 along with stream 22 and microorganism 32. Alternatively, FFA 28 and active catalyst 42 can be fed to fermentation vessel 30 from vessel 40, and active catalyst 42 can thereafter be subjected to heat q and inactivated while in the fermentation vessel before inoculation of microorganism 32.
[0119] FFA 28 can serve as ISPR extractant 28 and forms a biphasic mixture in fermentation vessel 30. Product alcohol produced by SSF partitions into organic phase 36 constituted by FFA 28. In some embodiments, one or more additional ISPR extractants 29 can also be introduced into fermentation vessel 30. Thus, oil 26 (e.g., from feedstock) can be catalytically hydrolyzed to FFA 28, thereby decreasing the rate of build-up of lipids in an ISPR extractant while also producing an ISPR extractant. The organic phase 36 can be separated from the aqueous phase 34 of the biphasic mixture 39 at vessel 35. In some embodiments, separation of the biphasic mixture 39 can occur in the fermentation vessel, as shown in the embodiments of described in FIGS. 2 and 3 in which the alcohol-containing organic phase stream 36 exits directly from fermentation vessel 30. Organic phase 36 can be introduced to separator 50 for recovery of product alcohol 54 and optional recycle of recovered extractant 27 as shown in FIG. 1. The remaining process operations of the embodiment of FIG. 3 are identical to FIG. 1 and therefore, will not be described in detail again.
[0120] When wet cake 24 is removed via centrifuge 20, in some embodiments, a portion of the oil from feedstock 12, such as corn oil when the feedstock is corn, remains in wet cake 24. Wet cake 24 can be washed with additional water in the centrifuge once aqueous solution 22 has been discharged from the centrifuge 20. Washing wet cake 24 will recover the sugar (e.g., oligosaccharides) present in the wet cake and the recovered sugar and water can be recycled to the liquefaction vessel 10. After washing, wet cake 20 can be dried to form Dried Distillers' Grains with Solubles (DDGS) through any suitable known process. The formation of the DDGS from wet cake 24 formed in centrifuge 20 has several benefits. Since the undissolved solids do not go to the fermentation vessel, DDGS does not have trapped extractant and/or product alcohol such as butanol, it is not subjected to the conditions of the fermentation vessel, and it does not contact the microorganisms present in the fermentation vessel. All these benefits make it easier to process and sell DDGS, for example, as animal feed. In some embodiments, oil 26 is not discharged separately from wet cake 24, but rather oil 26 is included as part of wet cake 24 and is ultimately present in the DDGS. In such instances, the oil can be separated from the DDGS and converted to an ISPR extractant 29 for subsequent use in the same or different alcohol fermentation process. Methods and systems for removing undissolved solids from feedstock 16 via centrifugation are described in detail in co-pending, commonly owned U.S. Patent Application No. 61/356,290, filed Jun. 18, 2010, which is incorporated herein in its entirety by reference thereto.
[0121] In still other embodiments (not shown), saccharification can occur in a separate saccharification vessel 60 (see FIG. 2) which is located between separator 20 and liquefaction vessel 10, as should be apparent to one of skill in the art.
[0122] In still other embodiments as shown, for example, in the embodiment of FIG. 4, a native oil 26' is supplied to a vessel 40 to which catalyst 42 is also supplied, whereby at least a portion of glycerides in oil 26' are hydrolyzed to form FFA 28'. Catalyst 42 can be subsequently inactivated, such as by the application of heat q. A product stream from vessel 40 containing FFA 28' and inactive catalyst 42 are then introduced into fermentation vessel 30, along with aqueous feedstock stream 22 in which feedstock oil 26 and in some embodiments, the undissolved solids have been previously removed by means of separator 20 (see, e.g., the embodiment of FIG. 3). Saccharification enzyme 38 and microorganism 32 are also introduced into fermentation vessel 30, whereby a product alcohol is produced by SSF.
[0123] Alternatively, oil 26' and catalyst 42 can be fed directly to fermentation vessel 30 in which oil 26' is hydrolyzed to FFA 28', rather than using vessel 40. Thereafter, active catalyst 42 can be subjected to heat q and inactivated while in the fermentation vessel before inoculation of microorganism 32. Alternatively, FFA 28' and active catalyst 42 can be fed to fermentation vessel 30 from vessel 40, and active catalyst 42 can thereafter be subjected to heat q and inactivated while in the fermentation vessel before inoculation of microorganism 32. In such embodiments, feedstock slurry 16 including oil 26, rather than stream 22 in which oil 26 was removed, can be fed to fermentation vessel 30 and contacted with active catalyst 42. Active catalyst 42 can therefore be used to hydrolyze oil 26 into FFA 28, thereby reducing the loss and/or degradation of the partition coefficient of the extractant over time that is attributable to the presence of the oil in the fermentation vessel.
[0124] In some embodiments, the system and processes of FIG. 4 can be modified such that simultaneous saccharification and fermentation in fermentation vessel 30 is replaced with a separate saccharification vessel 60 prior to fermentation vessel 30, as should be apparent to one of skill in the art.
[0125] In some embodiments, native oil 26' can be tallow, corn, canola, capric/caprylic triglycerides, castor, coconut, cottonseed, fish, jojoba, lard, linseed, neetsfoot, oiticica, palm, peanut, rapeseed, rice, safflower, soya, sunflower, tung, jatropha, vegetable oil blends, and mixtures thereof. In some embodiments, native oil 26' is a mixture of two or more native oils, for example, a mixture of palm and soybean oils. In some embodiments, native oil 26' is a plant-derived oil. In some embodiments, the plant-derived oil can be, though not necessarily, derived from biomass that can be used in a fermentation process. The biomass can be the same or different source from which feedstock 12 (shown in FIG. 4 as stream 22) is obtained. Thus, for example, in some embodiments, oil 26' can be derived from corn, whereas feedstock 12 can be cane. For example, in some embodiments, oil 26' can be derived from corn and the biomass source of feedstock 12 is also corn. Any possible combination of different biomass sources for oil 26' versus feedstock 12 can be used as should be apparent to one of skill in the art. The remaining process operations of the embodiment of FIG. 4 are identical to FIG. 1 and therefore, will not be described in detail again.
[0126] In some embodiments of the present invention, biomass oil present in feedstock 12 can be converted to FFA 28 at a step following alcoholic fermentation. FFA 28 can then be introduced in the fermentation vessel, and contacted with fermentation broth for achieving improved growth rate and/or fermentable carbon consumption of the alcohol-producing microorganism. FFA 28 can as also serve as ISPR extractant 28. For example, in the embodiment of FIG. 5, feedstock 12 is liquefied to produced feedstock slurry 16 which includes oil 26 derived from the feedstock. Feedstock slurry 16 can also include undissolved solids from the feedstock. Alternatively, the undissolved solids can be separated from slurry 16 via a separator such as a centrifuge (not shown). Feedstock slurry 16 containing oil 26 is introduced directly to fermentation vessel 30 containing a fermentation broth including saccharification enzyme 38 and microorganism 32. A product alcohol is produced by SSF in fermentation vessel 30. Alternatively, in some embodiments, the process can be modified to include a separate saccharification vessel as discussed in connection with FIG. 2.
[0127] ISPR extractant 29 is introduced to fermentation vessel 30 to form a biphasic mixture, and the product alcohol is removed by partitioning into the organic phase of the ISPR extractant 29. Oil 26 also partitions into the organic phase. Separation of the biphasic mixture occurs in fermentation vessel 30, whereby alcohol-containing organic phase stream 36 and aqueous phase stream 34 exit directly from fermentation vessel 30. Alternatively, separation of the biphasic mixture can be conducted in a separate vessel 35 as provided in the embodiments of FIG. 1. Organic phase stream 36 including oil 26 is introduced into separator 50 to recover product alcohol 54 from extractant 29. The resulting alcohol-lean extractant 27 includes recovered extractant 29 and oil 26. Extractant 27 is contacted with catalyst 42, whereby at least a portion of glycerides in oil 26 are hydrolyzed to form FFA 28. Heat q can then be applied to extractant 27 including FFA 28 so as to inactivate catalyst 42 before being recycled back into fermentation vessel 30. Such recycled extractant stream 27 can be a separate stream or a combined stream with fresh, make-up extractant stream 29. The subsequent withdrawal of alcohol-containing organic phase 36 from fermentation vessel 30 can then include FFA 28 and ISPR extractant 29 (as fresh extractant 29 and recycled extractant 27), in addition to the product alcohol and additional oil 26 from newly introduced feedstock slurry 16. Organic phase 36 can then be treated to recover the product alcohol, and recycled back into fermentation vessel 30 after contacting with catalyst 42 for hydrolysis of additional oil 26, in the same manner as just described. In some embodiments, use of make-up ISPR extractant 29 can be phased out as the fermentation process is operated over time because the process itself can produce FFA 28 as a make-up ISPR extractant for extracting the product alcohol. Thus, the ISPR extractant can be the stream of recycled extractant 27 with FFA 28.
[0128] Thus, FIGS. 1-5 provide various non-limiting embodiments of methods and systems involving fermentation processes and FFAs 28 produced from hydrolysis of biomass derived oil 26, and FFAs 28' produced from catalytic hydrolysis of native oil 26' such as plant-derived oil that can be used for contacting with a microorganism during fermentative growth, whereby growth rate and/or fermentable carbon consumption of the microorganism is greater in the presence of the free fatty acids, allowing for improved alcohol productivity.
[0129] From the above discussion and the Examples, one skilled in the art can ascertain essential characteristics of the present invention and can make various changes and modifications of the invention to adapt to various uses and conditions without departing from the present invention. For example, in some embodiments, fatty acid supplementation according to the present invention can be employed pre-fermentation, that is, during seed culturing of microorganisms 32 prior to fermentation in fermentation vessel 30. Typically, microorganisms 32 such as yeast can be grown from a seed culture to a desired cell concentration before being harvested and inoculated into fermentation vessel 30, as known in the art. Thus, according to some embodiments, the seed culture medium can be contacted with FFA 28 whereby improved growth rates and microorganism biomass production can be achieved, which can reduce the pre-fermentation time associated with the seed culturing phase of an alcohol fermentation process. Thus, it should be apparent that fatty acid supplementation according to the present invention can be employed at various stages in an alcohol fermentation process, for example, during pre-fermentation culturing and fermentation, for improving overall process efficiency without departing from the present invention.
[0130] In some embodiments, including any of the aforementioned embodiments described with reference to FIGS. 1-5, the fermentation broth in fermentation vessel 30 includes at least one recombinant microorganism 32 which is genetically modified (that is, genetically engineered) to produce butanol via a biosynthetic pathway from at least one fermentable carbon source into butanol. In particular, recombinant microorganisms can be grown in a fermentation broth which contains suitable carbon substrates. Additional carbon substrates may include, but are not limited to, monosaccharides such as fructose; oligosaccharides such as lactose maltose, or sucrose; polysaccharides such as starch or cellulose; or mixtures thereof and unpurified mixtures from renewable feedstocks such as cheese whey permeate, cornsteep liquor, sugar beet molasses, and barley malt. Other carbon substrates may include ethanol, lactate, succinate, or glycerol.
[0131] Additionally, the carbon substrate may also be one-carbon substrates such as carbon dioxide or methanol for which metabolic conversion into key biochemical intermediates has been demonstrated. In addition to one and two carbon substrates, methylotrophic organisms are also known to utilize a number of other carbon containing compounds such as methylamine, glucosamine, and a variety of amino acids for metabolic activity. For example, methylotrophic yeasts are known to utilize the carbon from methylamine to form trehalose or glycerol (Bellion, et al., Microb. Growth C1-Compd., [Int. Symp.], 7th (1993), 415-32, Editor(s): Murrell, J. Collin; Kelly, Don P. Publisher: Intercept, Andover, UK). Similarly, various species of Candida will metabolize alanine or oleic acid (Sulter, et al., Arch. Microbiol. 153:485-489, 1990). Hence it is contemplated that the source of carbon utilized in the present invention may encompass a wide variety of carbon containing substrates and will only be limited by the choice of organism.
[0132] Although it is contemplated that all of the above mentioned carbon substrates and mixtures thereof are suitable, in some embodiments, the carbon substrates are glucose, fructose, and sucrose, or mixtures of these substrates with C5 sugars such as xylose and/or arabinose for yeast modified to use C5 sugars. Sucrose may be derived from renewable sugar sources such as sugar cane, sugar beets, cassava, sweet sorghum, and mixtures thereof. Glucose and dextrose may be derived from renewable grain sources through saccharification of starch based feedstocks including grains such as corn, wheat, rye, barley, oats, and mixtures thereof. In addition, fermentable sugars may be derived from renewable cellulosic or lignocellulosic biomass through processes of pretreatment and saccharification, as described in, for example, U.S. Patent Application Publication No. 2007/0031918 A1, which is herein incorporated by reference. In addition to an appropriate carbon source (from aqueous stream 22), fermentation broth must contain suitable minerals, salts, cofactors, buffers and other components, known to those skilled in the art, suitable for the growth of the cultures and promotion of an enzymatic pathway comprising a dihydroxyacid dehydratase (DHAD).
[0133] Recombinant microorganisms that produce butanol via a biosynthetic pathway can include a member of the genera Clostridium, Zymomonas, Escherichia, Salmonella, Serratia, Erwinia, Klebsiella, Shigella, Rhodococcus, Pseudomonas, Bacillus, Lactobacillus, Enterococcus, Alcaligenes, Klebsiella, Paenibacillus, Arthrobacter, Corynebacterium, Brevibacterium, Schizosaccharomyces, Kluyveromyces, Yarrowia, Pichia, Candida, Hansenula, or Saccharomyces. In one embodiment, recombinant microorganisms can be selected from the group consisting of Escherichia coli, Lactobacillus plantarum, and Saccharomyces cerevisiae. In one embodiment, the recombinant microorganism is a crabtree-positive yeast selected from Saccharomyces, Zygosaccharomyces, Schizosaccharomyces, Dekkera, Torulopsis, Brettanomyces, and some species of Candida. Species of crabtree-positive yeast include, but are not limited to, Saccharomyces cerevisiae, Saccharomyces kluyveri, Schizosaccharomyces pombe, Saccharomyces bayanus, Saccharomyces mikitae, Saccharomyces paradoxus, Zygosaccharomyces rouxii, and Candida glabrata. For example, the production of butanol utilizing fermentation by a microorganism, as well as which microorganisms produce butanol, is known and is disclosed, for example, in U.S. Patent Application Publication No. 2009/0305370, herein incorporated by reference. In some embodiments, microorganisms comprise a butanol biosynthetic pathway. Suitable isobutanol biosynthetic pathways are known in the art (see, e.g., U.S. Patent Application Publication No. 2007/0092957, herein incorporated by reference). In some embodiments, at least one, at least two, at least three, or at least four polypeptides catalyzing substrate to product conversions of a pathway are encoded by heterologous polynucleotides in the microorganism. In some embodiments, all polypeptides catalyzing substrate to product conversions of a pathway are encoded by heterologous polynucleotides in the microorganism. In some embodiments, the microorganism comprises a reduction or elimination of pyruvate decarboxylase activity. Microorganisms substantially free of pyruvate decarboxylase activity are described in U.S. Patent Application Publication No. 2009/0305363, herein incorporated by reference.
[0134] Construction of certain strains, including those used in the Examples, is provided herein.
Construction of Saccharomyces cerevisiae Strain BP1083 ("NGCI-070")
[0135] The strain BP1064 was derived from CEN.PK 113-7D (CBS 8340; Centraalbureau voor Schimmelcultures (CBS) Fungal Biodiversity Centre, Netherlands) and contains deletions of the following genes: URA3, HIS3, PDC1, PDC5, PDC6, and GPD2. BP1064 was transformed with plasmids pYZ090 (SEQ ID NO: 1, described in U.S. Provisional Application Ser. No. 61/246,844) and pLH468 (SEQ ID NO: 2) to create strain NGCI-070 (BP1083, PNY1504).
[0136] Deletions, which completely removed the entire coding sequence, were created by homologous recombination with PCR fragments containing regions of homology upstream and downstream of the target gene and either a G418 resistance marker or URA3 gene for selection of transformants. The G418 resistance marker, flanked by loxP sites, was removed using Cre recombinase. The URA3 gene was removed by homologous recombination to create a scarless deletion or if flanked by loxP sites, was removed using Cre recombinase.
[0137] The scarless deletion procedure was adapted from Akada, et al., (Yeast 23:399-405, 2006). In general, the PCR cassette for each scarless deletion was made by combining four fragments, A-B-U-C, by overlapping PCR. The PCR cassette contained a selectable/counter-selectable marker, URA3 (Fragment U), consisting of the native CEN.PK 113-7D URA3 gene, along with the promoter (250 bp upstream of the URA3 gene) and terminator (150 bp downstream of the URA3 gene). Fragments A and C, each 500 bp long, corresponded to the 500 bp immediately upstream of the target gene (Fragment A) and the 3' 500 bp of the target gene (Fragment C). Fragments A and C were used for integration of the cassette into the chromosome by homologous recombination. Fragment B (500 bp long) corresponded to the 500 bp immediately downstream of the target gene and was used for excision of the URA3 marker and Fragment C from the chromosome by homologous recombination, as a direct repeat of the sequence corresponding to Fragment B was created upon integration of the cassette into the chromosome. Using the PCR product ABUC cassette, the URA3 marker was first integrated into and then excised from the chromosome by homologous recombination. The initial integration deleted the gene, excluding the 3' 500 bp. Upon excision, the 3' 500 bp region of the gene was also deleted. For integration of genes using this method, the gene to be integrated was included in the PCR cassette between fragments A and B.
URA3 Deletion
[0138] To delete the endogenous URA3 coding region, a ura3::loxP-kanMX-loxP cassette was PCR-amplified from pLA54 template DNA (SEQ ID NO: 3). pLA54 contains the K. lactis TEF1 promoter and kanMX marker, and is flanked by loxP sites to allow recombination with Cre recombinase and removal of the marker. PCR was done using Phusion® DNA polymerase (New England BioLabs Inc., Ipswich, Mass.) and primers BK505 and BK506 (SEQ ID NOs: 4 and 5). The URA3 portion of each primer was derived from the 5' region upstream of the URA3 promoter and 3' region downstream of the coding region such that integration of the loxP-kanMX-loxP marker resulted in replacement of the URA3 coding region. The PCR product was transformed into CEN.PK 113-7D using standard genetic techniques (Methods in Yeast Genetics, 2005, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 201-202) and transformants were selected on YPD containing G418 (100 μg/mL) at 30° C. Transformants were screened to verify correct integration by PCR using primers LA468 and LA492 (SEQ ID NOs: 6 and 7) and designated CEN.PK 113-7D Δura3::kanMX.
HIS3 Deletion
[0139] The four fragments for the PCR cassette for the scarless HIS3 deletion were amplified using Phusion® High Fidelity PCR Master Mix (New England BioLabs Inc., Ipswich, Mass.) and CEN.PK 113-7D genomic DNA as template, prepared with a Gentra® Puregene® Yeast/Bact, kit (Qiagen, Valencia, Calif.). HIS3 Fragment A was amplified with primer oBP452 (SEQ ID NO: 14) and primer oBP453 (SEQ ID NO: 15) containing a 5' tail with homology to the 5' end of HIS3 Fragment B. HIS3 Fragment B was amplified with primer oBP454 (SEQ ID NO: 16) containing a 5' tail with homology to the 3' end of HIS3 Fragment A, and primer oBP455 (SEQ ID NO: 17) containing a 5' tail with homology to the 5' end of HIS3 Fragment U. HIS3 Fragment U was amplified with primer oBP456 (SEQ ID NO: 18) containing a 5' tail with homology to the 3' end of HIS3 Fragment B, and primer oBP457 (SEQ ID NO: 19) containing a 5' tail with homology to the 5' end of HIS3 Fragment C. HIS3 Fragment C was amplified with primer oBP458 (SEQ ID NO: 20) containing a 5' tail with homology to the 3' end of HIS3 Fragment U, and primer oBP459 (SEQ ID NO: 21). PCR products were purified with a PCR Purification kit (Qiagen, Valencia, Calif.). HIS3 Fragment AB was created by overlapping PCR by mixing HIS3 Fragment A and HIS3 Fragment B and amplifying with primers oBP452 (SEQ ID NO: 14) and oBP455 (SEQ ID NO: 17). HIS3 Fragment UC was created by overlapping PCR by mixing HIS3 Fragment U and HIS3 Fragment C and amplifying with primers oBP456 (SEQ ID NO: 18) and oBP459 (SEQ ID NO: 21). The resulting PCR products were purified on an agarose gel followed by a Gel Extraction kit (Qiagen, Valencia, Calif.). The HIS3 ABUC cassette was created by overlapping PCR by mixing HIS3 Fragment AB and HIS3 Fragment UC and amplifying with primers oBP452 (SEQ ID NO: 14) and oBP459 (SEQ ID NO: 21). The PCR product was purified with a PCR Purification kit (Qiagen, Valencia, Calif.).
[0140] Competent cells of CEN.PK 113-7D Δura3::kanMX were made and transformed with the HIS3 ABUC PCR cassette using a Frozen-EZ Yeast Transformation II® kit (Zymo Research Corporation, Irvine, Calif.). Transformation mixtures were plated on synthetic complete media lacking uracil supplemented with 2% glucose at 30° C. Transformants with a his3 knockout were screened for by PCR with primers oBP460 (SEQ ID NO: 22) and oBP461 (SEQ ID NO: 23) using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). A correct transformant was selected as strain CEN.PK 113-7D Δura3::kanMX Δhis3::URA3.
KanMX Marker Removal from the Δura3 Site and URA3 Marker Removal from the Δhis3 Site
[0141] The KanMX marker was removed by transforming CEN.PK 113-7D Δura3::kanMX Δhis3::URA3 with pRS423::PGAL1-cre (SEQ ID NO: 66, described in U.S. Provisional Application No. 61/290,639) using a Frozen-EZ Yeast Transformation II® kit (Zymo Research Corporation, Irvine, Calif.) and plating on synthetic complete medium lacking histidine and uracil supplemented with 2% glucose at 30° C. Transformants were grown in YP supplemented with 1% galactose at 30° C. for ˜6 hours to induce the Cre recombinase and KanMX marker excision and plated onto YPD (2% glucose) plates at 30° C. for recovery. An isolate was grown overnight in YPD and plated on synthetic complete medium containing 5-fluoro-orotic acid (5-FOA, 0.1%) at 30° C. to select for isolates that lost the URA3 marker. 5-FOA resistant isolates were grown in and plated on YPD for removal of the pRS423::PGAL1-cre plasmid. Isolates were checked for loss of the KanMX marker, URA3 marker, and pRS423::PGAL1-cre plasmid by assaying growth on YPD+G418 plates, synthetic complete medium lacking uracil plates, and synthetic complete medium lacking histidine plates. A correct isolate that was sensitive to G418 and auxotrophic for uracil and histidine was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 and designated as BP857. The deletions and marker removal were confirmed by PCR and sequencing with primers oBP450 (SEQ ID NO: 24) and oBP451 (SEQ ID NO: 25) for Δura3 and primers oBP460 (SEQ ID NO: 22) and oBP461 (SEQ ID NO: 23) for Δhis3 using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.).
PDC6 Deletion
[0142] The four fragments for the PCR cassette for the scarless PDC6 deletion were amplified using Phusion® High Fidelity PCR Master Mix (New England BioLabs Inc., Ipswich, Mass.) and CEN.PK 113-7D genomic DNA as template, prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). PDC6 Fragment A was amplified with primer oBP440 (SEQ ID NO: 26) and primer oBP441 (SEQ ID NO: 27) containing a 5' tail with homology to the 5' end of PDC6 Fragment B. PDC6 Fragment B was amplified with primer oBP442 (SEQ ID NO: 28), containing a 5' tail with homology to the 3' end of PDC6 Fragment A, and primer oBP443 (SEQ ID NO: 29) containing a 5' tail with homology to the 5' end of PDC6 Fragment U. PDC6 Fragment U was amplified with primer oBP444 (SEQ ID NO: 30) containing a 5' tail with homology to the 3' end of PDC6 Fragment B, and primer oBP445 (SEQ ID NO: 31) containing a 5' tail with homology to the 5' end of PDC6 Fragment C. PDC6 Fragment C was amplified with primer oBP446 (SEQ ID NO: 32) containing a 5' tail with homology to the 3' end of PDC6 Fragment U, and primer oBP447 (SEQ ID NO: 33). PCR products were purified with a PCR Purification kit (Qiagen, Valencia, Calif.). PDC6 Fragment AB was created by overlapping PCR by mixing PDC6 Fragment A and PDC6 Fragment B and amplifying with primers oBP440 (SEQ ID NO: 26) and oBP443 (SEQ ID NO: 29). PDC6 Fragment UC was created by overlapping PCR by mixing PDC6 Fragment U and PDC6 Fragment C and amplifying with primers oBP444 (SEQ ID NO: 30) and oBP447 (SEQ ID NO: 33). The resulting PCR products were purified on an agarose gel followed by a Gel Extraction kit (Qiagen, Valencia, Calif.). The PDC6 ABUC cassette was created by overlapping PCR by mixing PDC6 Fragment AB and PDC6 Fragment UC and amplifying with primers oBP440 (SEQ ID NO: 26) and oBP447 (SEQ ID NO: 33). The PCR product was purified with a PCR Purification kit (Qiagen, Valencia, Calif.).
[0143] Competent cells of CEN.PK 113-7D Δura3::loxP Δhis3 were made and transformed with the PDC6 ABUC PCR cassette using a Frozen-EZ Yeast Transformation II® kit (Zymo Research Corporation, Irvine, Calif.). Transformation mixtures were plated on synthetic complete media lacking uracil supplemented with 2% glucose at 30° C. Transformants with a pdc6 knockout were screened for by PCR with primers oBP448 (SEQ ID NO: 34) and oBP449 (SEQ ID NO: 35) using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). A correct transformant was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6::URA3.
[0144] CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6::URA3 was grown overnight in YPD and plated on synthetic complete medium containing 5-fluoro-orotic acid (0.1°)/0) at 30° C. to select for isolates that lost the URA3 marker. The deletion and marker removal were confirmed by PCR and sequencing with primers oBP448 (SEQ ID NO: 34) and oBP449 (SEQ ID NO: 35) using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). The absence of the PDC6 gene from the isolate was demonstrated by a negative PCR result using primers specific for the coding sequence of PDC6, oBP554 (SEQ ID NO: 36) and oBP555 (SEQ ID NO: 37). The correct isolate was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 and designated as BP891.
PDC1 Deletion ilvDSm Integration
[0145] The PDC1 gene was deleted and replaced with the ilvD coding region from Streptococcus mutans ATCC No. 700610. The A fragment followed by the ilvD coding region from Streptococcus mutans for the PCR cassette for the PDC1 deletion-ilvDSm integration was amplified using Phusion® High Fidelity PCR Master Mix (New England BioLabs Inc., Ipswich, Mass.) and NYLA83 (described herein and in U.S. Provisional Application No. 61/246,709) genomic DNA as template, prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). PDC1 Fragment A-ilvDSm (SEQ ID NO: 141) was amplified with primer oBP513 (SEQ ID NO: 38) and primer oBP515 (SEQ ID NO: 39) containing a 5' tail with homology to the 5' end of PDC1 Fragment B. The B, U, and C fragments for the PCR cassette for the PDC1 deletion-ilvDSm integration were amplified using Phusion® High Fidelity PCR Master Mix (New England BioLabs Inc., Ipswich, Mass.) and CEN.PK 113-7D genomic DNA as template, prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). PDC1 Fragment B was amplified with primer oBP516 (SEQ ID NO: 40) containing a 5' tail with homology to the 3' end of PDC1 Fragment A-ilvDSm, and primer oBP517 (SEQ ID NO: 41) containing a 5' tail with homology to the 5' end of PDC1 Fragment U. PDC1 Fragment U was amplified with primer oBP518 (SEQ ID NO: 42) containing a 5' tail with homology to the 3' end of PDC1 Fragment B, and primer oBP519 (SEQ ID NO: 43) containing a 5' tail with homology to the 5' end of PDC1 Fragment C. PDC1 Fragment C was amplified with primer oBP520 (SEQ ID NO: 44), containing a 5' tail with homology to the 3' end of PDC1 Fragment U, and primer oBP521 (SEQ ID NO: 45). PCR products were purified with a PCR Purification kit (Qiagen, Valencia, Calif. PDC1 Fragment A-ilvDSm-B was created by overlapping PCR by mixing PDC1 Fragment A-ilvDSm and PDC1 Fragment B and amplifying with primers oBP513 (SEQ ID NO: 38) and oBP517 (SEQ ID NO: 41). PDC1 Fragment UC was created by overlapping PCR by mixing PDC1 Fragment U and PDC1 Fragment C and amplifying with primers oBP518 (SEQ ID NO: 42) and oBP521 (SEQ ID NO: 45). The resulting PCR products were purified on an agarose gel followed by a Gel Extraction kit (Qiagen, Valencia, Calif.). The PDC1 A-ilvDSm-BUC cassette (SEQ ID NO: 142) was created by overlapping PCR by mixing PDC1 Fragment A-ilvDSm-B and PDC1 Fragment UC and amplifying with primers oBP513 (SEQ ID NO: 38) and oBP521 (SEQ ID NO: 45). The PCR product was purified with a PCR Purification kit (Qiagen, Valencia, Calif.).
[0146] Competent cells of CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 were made and transformed with the PDC1 A-ilvDSm-BUC PCR cassette using a Frozen-EZ Yeast Transformation II® kit (Zymo Research Corporation, Irvine, Calif.). Transformation mixtures were plated on synthetic complete media lacking uracil supplemented with 2% glucose at 30° C. Transformants with a pdc1 knockout ilvDSm integration were screened for by PCR with primers oBP511 (SEQ ID NO: 46) and oBP512 (SEQ ID NO: 47) using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). The absence of the PDC1 gene from the isolate was demonstrated by a negative PCR result using primers specific for the coding sequence of PDC1, oBP550 (SEQ ID NO: 48) and oBP551 (SEQ ID NO: 49). A correct transformant was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm-URA3.
[0147] CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm-URA3 was grown overnight in YPD and plated on synthetic complete medium containing 5-fluoro-orotic acid (0.1%) at 30° C. to select for isolates that lost the URA3 marker. The deletion of PDC1, integration of ilvDSm, and marker removal were confirmed by PCR and sequencing with primers oBP511 (SEQ ID NO: 46) and oBP512 (SEQ ID NO: 47) using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). The correct isolate was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm and designated as BP907.
PDC5 Deletion sadB Integration
[0148] The PDC5 gene was deleted and replaced with the sadB coding region from Achromobacter xylosoxidans. A segment of the PCR cassette for the PDC5 deletion-sadB integration was first cloned into plasmid pUC19-URA3MCS.
[0149] pUC19-URA3MCS is pUC19 based and contains the sequence of the URA3 gene from Saccaromyces cerevisiae situated within a multiple cloning site (MCS). pUC19 contains the pMB1 replicon and a gene coding for beta-lactamase for replication and selection in Escherichia coli. In addition to the coding sequence for URA3, the sequences from upstream and downstream of this gene were included for expression of the URA3 gene in yeast. The vector can be used for cloning purposes and can be used as a yeast integration vector.
[0150] The DNA encompassing the URA3 coding region along with 250 bp upstream and 150 bp downstream of the URA3 coding region from Saccaromyces cerevisiae CEN.PK 113-7D genomic DNA was amplified with primers oBP438 (SEQ ID NO: 12) containing BamHI, AscI, PmeI, and FseI restriction sites, and oBP439 (SEQ ID NO: 13) containing XbaI, PacI, and NotI restriction sites, using Phusion® High Fidelity PCR Master Mix (New England BioLabs Inc., Ipswich, Mass.). Genomic DNA was prepared using a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). The PCR product and pUC19 (SEQ ID NO: 144) were ligated with T4 DNA ligase after digestion with BamHI and XbaI to create vector pUC19-URA3MCS. The vector was confirmed by PCR and sequencing with primers oBP264 (SEQ ID NO: 10) and oBP265 (SEQ ID NO: 11).
[0151] The coding sequence of sadB and PDC5 Fragment B were cloned into pUC19-URA3MCS to create the sadB-BU portion of the PDC5 A-sadB-BUC PCR cassette. The coding sequence of sadB was amplified using pLH468-sadB (SEQ ID NO: 67) as template with primer oBP530 (SEQ ID NO: 50) containing an AscI restriction site, and primer oBP531 (SEQ ID NO: 51) containing a 5' tail with homology to the 5' end of PDC5 Fragment B. PDC5 Fragment B was amplified with primer oBP532 (SEQ ID NO: 52) containing a 5' tail with homology to the 3' end of sadB, and primer oBP533 (SEQ ID NO: 53) containing a PmeI restriction site. PCR products were purified with a PCR Purification kit (Qiagen, Valencia, Calif.). sadB-PDC5 Fragment B was created by overlapping PCR by mixing the sadB and PDC5 Fragment B PCR products and amplifying with primers oBP530 (SEQ ID NO: 50) and oBP533 (SEQ ID NO: 53). The resulting PCR product was digested with AscI and PmeI and ligated with T4 DNA ligase into the corresponding sites of pUC19-URA3MCS after digestion with the appropriate enzymes. The resulting plasmid was used as a template for amplification of sadB-Fragment B-Fragment U using primers oBP536 (SEQ ID NO: 54) and oBP546 (SEQ ID NO: 55) containing a 5' tail with homology to the 5' end of PDC5 Fragment C. PDC5 Fragment C was amplified with primer oBP547 (SEQ ID NO: 56) containing a 5' tail with homology to the 3' end of PDC5 sadB-Fragment B-Fragment U, and primer oBP539 (SEQ ID NO: 57). PCR products were purified with a PCR Purification kit (Qiagen, Valencia, Calif.). PDC5 sadB-Fragment B-Fragment U-Fragment C was created by overlapping PCR by mixing PDC5 sadB-Fragment B-Fragment U and PDC5 Fragment C and amplifying with primers oBP536 (SEQ ID NO: 54) and oBP539 (SEQ ID NO: 57). The resulting PCR product was purified on an agarose gel followed by a Gel Extraction kit (Qiagen, Valencia, Calif.). The PDC5 A-sadB-BUC cassette (SEQ ID NO: 143) was created by amplifying PDC5 sadB-Fragment B-Fragment U-Fragment C with primers oBP542 (SEQ ID NO: 58) containing a 5' tail with homology to the 50 nucleotides immediately upstream of the native PDC5 coding sequence, and oBP539 (SEQ ID NO: 57). The PCR product was purified with a PCR Purification kit (Qiagen, Valencia, Calif.).
[0152] Competent cells of CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm were made and transformed with the PDC5 A-sadB-BUC PCR cassette using a Frozen-EZ Yeast Transformation II® kit (Zymo Research Corporation, Irvine, Calif.). Transformation mixtures were plated on synthetic complete media lacking uracil supplemented with 1% ethanol (no glucose) at 30° C. Transformants with a pdc5 knockout sadB integration were screened for by PCR with primers oBP540 (SEQ ID NO: 59) and oBP541 (SEQ ID NO: 60) using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). The absence of the PDC5 gene from the isolate was demonstrated by a negative PCR result using primers specific for the coding sequence of PDC5, oBP552 (SEQ ID NO: 61) and oBP553 (SEQ ID NO: 62). A correct transformant was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm Δpdc5::sadB-URA3.
[0153] CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm Δpdc5::sadB-URA3 was grown overnight in YPE (1% ethanol) and plated on synthetic complete medium supplemented with ethanol (no glucose) and containing 5-fluoro-orotic acid (0.1%) at 30° C. to select for isolates that lost the URA3 marker. The deletion of PDC5, integration of sadB, and marker removal were confirmed by PCR with primers oBP540 (SEQ ID NO: 59) and oBP541 (SEQ ID NO: 60) using genomic DNA prepared with a Gentra® Puregene® Yeast/Bact. kit (Qiagen, Valencia, Calif.). The correct isolate was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm Δpdc5::sadB and designated as BP913.
GPD2 Deletion
[0154] To delete the endogenous GPD2 coding region, a gpd2::loxP-URA3-loxP cassette (SEQ ID NO: 145) was PCR-amplified using loxP-URA3-loxP (SEQ ID NO: 68) as template DNA. loxP-URA3-loxP contains the URA3 marker from (ATCC No. 77107) flanked by loxP recombinase sites. PCR was done using Phusion® DNA polymerase (New England BioLabs Inc., Ipswich, Mass.) and primers LA512 and LA513 (SEQ ID NOs: 8 and 9). The GPD2 portion of each primer was derived from the 5' region upstream of the GPD2 coding region and 3' region downstream of the coding region such that integration of the loxP-URA3-loxP marker resulted in replacement of the GPD2 coding region. The PCR product was transformed into BP913 and transformants were selected on synthetic complete media lacking uracil supplemented with 1% ethanol (no glucose). Transformants were screened to verify correct integration by PCR using primers oBP582 and AA270 (SEQ ID NOs: 63 and 64).
[0155] The URA3 marker was recycled by transformation with pRS423::PGAL1-cre (SEQ ID NO: 66) and plating on synthetic complete media lacking histidine supplemented with 1% ethanol at 30° C. Transformants were streaked on synthetic complete medium supplemented with 1% ethanol and containing 5-fluoro-orotic acid (0.1%) and incubated at 30° C. to select for isolates that lost the URA3 marker. 5-FOA resistant isolates were grown in YPE (1% ethanol) for removal of the pRS423::PGAL1-cre plasmid. The deletion and marker removal were confirmed by PCR with primers oBP582 (SEQ ID NO: 63) and oBP591 (SEQ ID NO: 65). The correct isolate was selected as strain CEN.PK 113-7D Δura3::loxP Δhis3 Δpdc6 Δpdc1::ilvDSm Δpdc5::sadB Δgpd2::loxP and designated as PNY1503 (BP1064).
[0156] BP1064 was transformed with plasmids pYZ090 (SEQ ID NO: 1) and pLH468 (SEQ ID NO: 2) to create strain NGCI-070 (BP1083; PNY1504).
Construction of Strains NYLA74, NYLA83, and NYLA84
[0157] Insertion-inactivation of endogenous PDC1 and PDC6 genes of S. cerevisiae. PDC1, PDC5, and PDC6 genes encode the three major isozymes of pyruvate decarboxylase is described as follows:
Construction of pRS425::GPM-sadB
[0158] A DNA fragment encoding a butanol dehydrogenase (SEQ ID NO: 70) from Achromobacter xylosoxidans (disclosed in U.S. Patent Application Publication No. 2009/0269823) was cloned. The coding region of this gene called sadB for secondary alcohol dehydrogenase (SEQ ID NO: 69) was amplified using standard conditions from A. xylosoxidans genomic DNA, prepared using a Gentra® Puregene® kit (Qiagen, Valencia, Calif.) following the recommended protocol for gram negative organisms using forward and reverse primers N473 and N469 (SEQ ID NOs: 74 and 75), respectively. The PCR product was TOPO®-Blunt cloned into pCR®4 BLUNT (Invitrogen®, Carlsbad, Calif.) to produce pCR4Blunt::sadB, which was transformed into E. coli Mach-1 cells. Plasmid was subsequently isolated from four clones, and the sequence verified.
[0159] The sadB coding region was PCR amplified from pCR4Blunt::sadB. PCR primers contained additional 5' sequences that would overlap with the yeast GPM1 promoter and the ADH1 terminator (N583 and N584, provided as SEQ ID NOs: 76 and 77). The PCR product was then cloned using "gap repair" methodology in Saccharomyces cerevisiae (Ma, et al., Gene 58:201-216, 1987) as follows. The yeast-E. coli shuttle vector pRS425::GPM::kivD::ADH which contains the GPM1 promoter (SEQ ID NO: 72), kivD coding region from Lactococcus lactis (SEQ ID NO: 71), and ADH1 terminator (SEQ ID NO: 73) (described in U.S. Patent Application Publication No. 2007/0092957 A1, Example 17) was digested with BbvCI and PacI restriction enzymes to release the kivD coding region. Approximately 1 μg of the remaining vector fragment was transformed into S. cerevisiae strain BY4741 along with 1 μg of sadB PCR product. Transformants were selected on synthetic complete medium lacking leucine. The proper recombination event, generating pRS425::GPM-sadB, was confirmed by PCR using primers N142 and N459 (SEQ ID NOs: 108 and 109).
Construction of pdc6:: PGPM1-sadB Integration Cassette and PDC6 Deletion:
[0160] A pdc6::PGPM1-sadB-ADH1t-URA3r integration cassette was made by joining the GPM-sadB-ADHt segment (SEQ ID NO: 79) from pRS425::GPM-sadB (SEQ ID NO: 78) to the URA3r gene from pUC19-URA3r. pUC19-URA3r (SEQ ID NO:80) contains the URA3 marker from pRS426 (ATCC No. 77107) flanked by 75 bp homologous repeat sequences to allow homologous recombination in vivo and removal of the URA3 marker. The two DNA segments were joined by SOE PCR (as described by Horton, et al., Gene 77:61-68, 1989) using as template pRS425::GPM-sadB and pUC19-URA3r plasmid DNAs, with Phusion® DNA polymerase (New England BioLabs Inc., Ipswich, Mass.) and primers 114117-11A through 114117-11D (SEQ ID NOs: 81, 82, 83, and 84), and 114117-13A and 114117-13B (SEQ ID NOs: 85 and 86).
[0161] The outer primers for the SOE PCR (114117-13A and 114117-13B) contained 5' and 3' ˜50 bp regions homologous to regions upstream and downstream of the PDC6 promoter and terminator, respectively. The completed cassette PCR fragment was transformed into BY4700 (ATCC No. 200866) and transformants were maintained on synthetic complete media lacking uracil and supplemented with 2% glucose at 30° C. using standard genetic techniques (Methods in Yeast Genetics, 2005, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 201-202). Transformants were screened by PCR using primers 112590-34G and 112590-34H (SEQ ID NOs: 87 and 88), and 112590-34F and 112590-49E (SEQ ID NOs: 89 and 90) to verify integration at the PDC6 locus with deletion of the PDC6 coding region. The URA3r marker was recycled by plating on synthetic complete media supplemented with 2% glucose and 5-FOA at 30° C. following standard protocols. Marker removal was confirmed by patching colonies from the 5-FOA plates onto SD-URA media to verify the absence of growth. The resulting identified strain has the genotype: BY4700 pdc6::PGPM1-sadB-ADH1t.
Construction of pdc1:: PPDC1-ilvD Integration Cassette and PDC1 Deletion:
[0162] A pdc1:: PPDC1-ilvD-FBA1t-URA3r integration cassette was made by joining the ilvD-FBA1t segment (SEQ ID NO: 91) from pLH468 (SEQ ID NO: 2) to the URA3r gene from pUC19-URA3r by SOE PCR (as described by Horton, et al., Gene 77:61-68, 1989) using as template pLH468 and pUC19-URA3r plasmid DNAs, with Phusion® DNA polymerase (New England BioLabs Inc., Ipswich, Mass.) and primers 114117-27A through 114117-27D (SEQ ID NOs: 111, 112, 113, and 114).
[0163] The outer primers for the SOE PCR (114117-27A and 114117-27D) contained 5' and 3' ˜50 bp regions homologous to regions downstream of the PDC1 promoter and downstream of the PDC1 coding sequence. The completed cassette PCR fragment was transformed into BY4700 pdc6::PGPM1-sadB-ADH1t and transformants were maintained on synthetic complete media lacking uracil and supplemented with 2% glucose at 30° C. using standard genetic techniques (Methods in Yeast Genetics, 2005, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 201-202). Transformants were screened by PCR using primers 114117-36D and 135 (SEQ ID NOs: 92 and 93), and primers 112590-49E and 112590-30F (SEQ ID NOs: 90 and 94) to verify integration at the PDC1 locus with deletion of the PDC1 coding sequence. The URA3r marker was recycled by plating on synthetic complete media supplemented with 2% glucose and 5-FOA at 30° C. following standard protocols. Marker removal was confirmed by patching colonies from the 5-FOA plates onto SD-URA media to verify the absence of growth. The resulting identified strain "NYLA67" has the genotype: BY4700 pdc6:: PGPM1-sadB-ADH1t pdc1:: PPDC1-ilvD-FBA1t.
HIS3 Deletion
[0164] To delete the endogenous HIS3 coding region, a his3::URA3r2 cassette was PCR-amplified from URA3r2 template DNA (SEQ ID NO: 95). URA3r2 contains the URA3 marker from pRS426 (ATCC No. 77107) flanked by 500 bp homologous repeat sequences to allow homologous recombination in vivo and removal of the URA3 marker. PCR was done using Phusion® DNA polymerase (New England BioLabs Inc., Ipswich, Mass.) and primers 114117-45A and 114117-45B (SEQ ID NOs: 96 and 97) which generated a ˜2.3 kb PCR product. The HIS3 portion of each primer was derived from the 5' region upstream of the HIS3 promoter and 3' region downstream of the coding region such that integration of the URA3r2 marker results in replacement of the HIS3 coding region. The PCR product was transformed into NYLA67 using standard genetic techniques (Methods in Yeast Genetics, 2005, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 201-202) and transformants were selected on synthetic complete media lacking uracil and supplemented with 2% glucose at 30° C. Transformants were screened to verify correct integration by replica plating of transformants onto synthetic complete media lacking histidine and supplemented with 2% glucose at 30° C. The URA3r marker was recycled by plating on synthetic complete media supplemented with 2% glucose and 5-FOA at 30° C. following standard protocols. Marker removal was confirmed by patching colonies from the 5-FOA plates onto SD-URA media to verify the absence of growth. The resulting identified strain, called NYLA73, has the genotype: BY4700 pdc6:: PGPM1-sadB-ADH1t pdc1:: PPDC1-ilvD-FBA1t Δhis3.
Construction of pdc5::kanMX Integration Cassette and PDC5 Deletion:
[0165] A pdc5::kanMX4 cassette was PCR-amplified from strain YLR134W chromosomal DNA (ATCC No. 4034091) using Phusion® DNA polymerase (New England BioLabs Inc., Ipswich, Mass.) and primers PDC5::KanMXF and PDC5::KanMXR (SEQ ID NOs: 98 and 99) which generated a ˜2.2 kb PCR product. The PDC5 portion of each primer was derived from the 5' region upstream of the PDC5 promoter and 3' region downstream of the coding region such that integration of the kanMX4 marker results in replacement of the PDC5 coding region. The PCR product was transformed into NYLA73 using standard genetic techniques (Methods in Yeast Genetics, 2005, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 201-202) and transformants were selected on YP media supplemented with 1% ethanol and geneticin (200 μg/mL) at 30° C. Transformants were screened by PCR to verify correct integration at the PDC locus with replacement of the PDC5 coding region using primers PDC5kofor and N175 (SEQ ID NOs: 100 and 101). The identified correct transformants have the genotype: BY4700 pdc6:: PGPM1-sadB-ADH1t pdc1:: PPDC1-ilvD-FBA1t Δhis3 pdc5::kanMX4. The strain was named NYLA74.
[0166] Plasmid vectors pRS423::CUP1-alsS+FBA-budA and pRS426::FBA-budC+GPM-sadB were transformed into NYLA74 to create a butanediol producing strain (NGCI-047).
[0167] Plasmid vectors pLH475-Z4B8 (SEQ ID NO: 140) and pLH468 were transformed into NYLA74 to create an isobutanol producing strain (NGCI-049).
Deletion of HXK2 (Hexokinase II):
[0168] A hxk2::URA3r cassette was PCR-amplified from URA3r2 template (described above) using Phusion® DNA polymerase (New England BioLabs Inc., Ipswich, Mass.) and primers 384 and 385 (SEQ ID NOs: 102 and 103) which generated a ˜2.3 kb PCR product. The HXK2 portion of each primer was derived from the 5' region upstream of the HXK2 promoter and 3' region downstream of the coding region such that integration of the URA3r2 marker results in replacement of the HXK2 coding region. The PCR product was transformed into NYLA73 using standard genetic techniques (Methods in Yeast Genetics, 2005, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., pp. 201-202) and transformants were selected on synthetic complete media lacking uracil and supplemented with 2% glucose at 30° C. Transformants were screened by PCR to verify correct integration at the HXK2 locus with replacement of the HXK2 coding region using primers N869 and N871 (SEQ ID NOs: 104 and 105). The URA3r2 marker was recycled by plating on synthetic complete media supplemented with 2% glucose and 5-FOA at 30° C. following standard protocols. Marker removal was confirmed by patching colonies from the 5-FOA plates onto SD-URA media to verify the absence of growth, and by PCR to verify correct marker removal using primers N946 and N947 (SEQ ID NOs: 106 and 107). The resulting identified strain named NYLA83 has the genotype: BY4700 pdc6:: PGPM1-sadB-ADH1t pdc1:: PPDC1-ilvD-FBA1t Δhis3 Δhxk2.
Construction of pdc5::kanMX Integration Cassette and PDC5 Deletion:
[0169] A pdc5::kanMX4 cassette was PCR-amplified as described above. The PCR fragment was transformed into NYLA83, and transformants were selected and screened as described above. The identified correct transformants named NYLA84 have the genotype: BY4700 pdc6:: PGPM1-sadB-ADH1t pdc1:: PPDC1-ilvD-FBA1t Δhis3 Δhxk2 pdc5::kanMX4.
[0170] Plasmid vectors pLH468 and pLH532 were simultaneously transformed into strain NYLA84 (BY4700 pdc6::PGPM1-sadB-ADH1t pdc1::PPDC1-ilvD-FBA1t Δhis3 Δhxk2 pdc5::kanMX4) using standard genetic techniques (Methods in Yeast Genetics, 2005, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) and the resulting "butanologen NYLA84" was maintained on synthetic complete media lacking histidine and uracil, and supplemented with 1 ethanol at 30° C.
Expression Vector pLH468
[0171] The pLH468 plasmid (SEQ ID NO:2) was constructed for expression of DHAD, KivD and HADH in yeast and is described in U.S. Patent Application Publication No. 2009/0305363, herein incorporated by reference. pLH486 was constructed to contain: a chimeric gene having the coding region of the ilvD gene from Streptococcus mutans (nt position 3313-4849) expressed from the S. cerevisiae FBA1 promoter (nt 2109-3105) followed by the FBA1 terminator (nt 4858-5857) for expression of DHAD; a chimeric gene having the coding region of codon optimized horse liver alcohol dehydrogenase (nt 6286-7413) expressed from the S. cerevisiae GPM1 promoter (nt 7425-8181) followed by the ADH1 terminator (nt 5962-6277) for expression of ADH; and a chimeric gene having the coding region of the codon-optimized kivD gene from Lactococcus lactis (nt 9249-10895) expressed from the TDH3 promoter (nt 10896-11918) followed by the TDH3 terminator (nt 8237-9235) for expression of KivD.
[0172] Coding regions for Lactococcus lactis ketoisovalerate decarboxylase (KivD) and horse liver alcohol dehydrogenase (HADH) were synthesized by DNA2.0, Inc. (Menlo Park, Calif.) based on codons that were optimized for expression in Saccharomyces cerevisiae (SEQ ID NO: 71 and 118, respectively) and provided in plasmids pKivDy-DNA2.0 and pHadhy-DNA2.0. The encoded proteins are SEQ ID NOs:117 and 119, respectively. Individual expression vectors for KivD and HADH were constructed. To assemble pLH467 (pRS426::PTDH3-kivDy-TDH3t), vector pNY8 (SEQ ID NO: 121; also named pRS426.GPD-ald-GPDt, described in U.S. Patent Application Publication No. 2008/0182308, Example 17, which is herein incorporated by reference) was digested with AscI and SfiI enzymes, thus excising the GPD promoter and the ald coding region. A TDH3 promoter fragment (SEQ ID NO: 122) from pNY8 was PCR amplified to add an AscI site at the 5' end and an SpeI site at the 3' end, using 5' primer OT1068 and 3' primer OT1067 (SEQ ID NOs: 123 and 124). The AscI/SfiI digested pNY8 vector fragment was ligated with the TDH3 promoter PCR product digested with AscI and SpeI and the SpeI-SfiI fragment containing the codon optimized kivD coding region isolated from the vector pKivD-DNA2.0. The triple ligation generated vector pLH467 (pRS426::PTDH3-kivDy-TDH3t). pLH467 was verified by restriction mapping and sequencing.
[0173] pLH435 (pRS425::PGPM1-Hadhy-ADH1t) was derived from vector pRS425::GPM-sadB (SEQ ID NO: 78) which is described in U.S. Provisional Application Ser. No. 61/058,970, Example 3, which is herein incorporated by reference. pRS425::GPM-sadB is the pRS425 vector (ATCC No. 77106) with a chimeric gene containing the GPM1 promoter (SEQ ID NO:72), coding region from a butanol dehydrogenase of Achromobacter xylosoxidans (sadB; DNA SEQ ID NO: 69; protein SEQ ID NO:70: disclosed in U.S. Patent Application Publication No. 2009/0269823), and ADH1 terminator (SEQ ID NO: 73). pRS425::GPMp-sadB contains BbvI and PacI sites at the 5' and 3' ends of the sadB coding region, respectively. A NheI site was added at the 5' end of the sadB coding region by site-directed mutagenesis using primers OT1074 and OT1075 (SEQ ID NOs: 126 and 127) to generate vector pRS425-GPMp-sadB-NheI, which was verified by sequencing. pRS425::PGPM1-sadB-NheI was digested with NheI and PacI to drop out the sadB coding region, and ligated with the NheI-PacI fragment containing the codon optimized HADH coding region from vector pHadhy-DNA2.0 to create pLH435.
[0174] To combine KivD and HADH expression cassettes in a single vector, yeast vector pRS411 (ATCC No. 87474) was digested with SacI and NotI, and ligated with the SacI-SalI fragment from pLH467 that contains the PTDH3-kivDy-TDH3t cassette together with the SalI-NotI fragment from pLH435 that contains the PGPM1-Hadhy-ADH1t cassette in a triple ligation reaction. This yielded the vector pRS411::PTDH3-kivDy-PGPM1-Hadhy (pLH441) which was verified by restriction mapping.
[0175] In order to generate a co-expression vector for all three genes in the lower isobutanol pathway: ilvD, kivDy, and Hadhy, pRS423 FBA ilvD(Strep) (SEQ ID NO: 128) which is described in U.S. Patent Application Publication No. 2010/0081154 as the source of the IlvD gene, was used. This shuttle vector contains an F1 origin of replication (nt 1423 to 1879) for maintenance in E. coli and a 2 micron origin (nt 8082 to 9426) for replication in yeast. The vector has an FBA1 promoter (nt 2111 to 3108; SEQ ID NO: 120) and FBA terminator (nt 4861 to 5860; SEQ ID NO: 129). In addition, it carries the H is marker (nt 504 to 1163) for selection in yeast and ampicillin resistance marker (nt 7092 to 7949) for selection in E. coli. The ilvD coding region (nt 3116 to 4828; SEQ ID NO: 115; protein SEQ ID NO: 116) from Streptococcus mutans UA159 (ATCC No. 700610) is between the FBA promoter and FBA terminator forming a chimeric gene for expression. In addition, there is a lumio tag fused to the ilvD coding region (nt 4829-4849).
[0176] The first step was to linearize pRS423 FBA ilvD(Strep) (also called pRS423-FBA(SpeI)-ilvD(Streptococcus mutans)-Lumio) with SacI and SacII (with SacII site blunt ended using T4 DNA polymerase), to give a vector with total length of 9,482 bp. The second step was to isolate the kivDy-hADHy cassette from pLH441 with SacI and KpnI (with KpnI site blunt ended using T4 DNA polymerase), which gives a 6,063 bp fragment. This fragment was ligated with the 9,482 bp vector fragment from pRS423-FBA(SpeI)-ilvD(Streptococcus mutans)-Lumio. This generated vector pLH468 (pRS423::PFBA1-ilvD(Strep) Lumio-FBA1t-PTDH3-kivDy-TDH3t-PGPM1-hadhy-ADH1t) which was confirmed by restriction mapping and sequencing.
pLH532 Construction
[0177] The pLH532 plasmid (SEQ ID NO: 130) was constructed for expression of ALS and KARI in yeast. pLH532 is a pHR81 vector (ATCC No. 87541) containing the following chimeric genes: 1) the CUP1 promoter (SEQ ID NO: 139), acetolactate synthase coding region from Bacillus subtilis (AlsS; SEQ ID NO: 137; protein SEQ ID NO: 138) and CYC1 terminator2 (SEQ ID NO: 133); 2) an ILV5 promoter (SEQ ID NO: 134), Pf5.IlvC coding region (SEQ ID NO: 132) and ILV5 terminator (SEQ ID NO: 135); and 3) the FBA1 promoter (SEQ ID NO: 136), S. cerevisiae KARI coding region (ILV5; SEQ ID NO: 131); and CYC1 terminator.
[0178] The Pf5.IlvC coding region is a sequence encoding KARI derived from Pseudomonas fluorescens that was described in U.S. Patent Application Publication No. 2009/0163376, which is herein incorporated by reference.
[0179] The Pf5.IlvC coding region was synthesized by DNA2.0, Inc. (Menlo Park, Calif.; SEQ ID NO: 132) based on codons that were optimized for expression in Saccharomyces cerevisiae.
pYZ090 Construction
[0180] pYZ090 (SEQ ID NO: 1) is based on the pHR81 (ATCC No. 87541) backbone and was constructed to contain a chimeric gene having the coding region of the alsS gene from Bacillus subtilis (nt position 457-2172) expressed from the yeast CUP1 promoter (nt 2-449) and followed by the CYC1 terminator (nt 2181-2430) for expression of ALS, and a chimeric gene having the coding region of the ilvC gene from Lactococcus lactis (nt 3634-4656) expressed from the yeast ILV5 promoter (2433-3626) and followed by the ILV5 terminator (nt 4682-5304) for expression of KARI.
pYZ067 Construction
[0181] pYZ067 was constructed to contain the following chimeric genes: 1) the coding region of the ilvD gene from S. mutans UA159 (nt position 2260-3971) expressed from the yeast FBA1 promoter (nt 1161-2250) followed by the FBA terminator (nt 4005-4317) for expression of dihydroxy acid dehydratase (DHAD), 2) the coding region for horse liver ADH (nt 4680-5807) expressed from the yeast GPM promoter (nt 5819-6575) followed by the ADH1 terminator (nt 4356-4671) for expression of alcohol dehydrogenase, and 3) the coding region of the KivD gene from Lacrococcus lactis (nt 7175-8821) expressed from the yeast TDH3 promoter (nt 8830-9493) followed by the TDH3 terminator (nt 5682-7161) for expression of ketoisovalerate decarboxylase.
pRS423::CUP1-alsS+FBA-budA and pRS426::FBA-budC+GPM-sadB and pLH475-Z4B8 Construction
[0182] Construction of pRS423::CUP1-alsS+FBA-budA and pRS426::FBA-budC+GPM-sadB and pLH475-Z4B8 is described in U.S. Patent Application Publication No. 2009/0305363, incorporated herein by reference.
EXAMPLES
[0183] The following nonlimiting examples will further illustrate the invention. It should be understood that, while the following examples involve corn as feedstock and COFA as ISPR extractant obtained from enzymatic hydrolysis of corn lipids, other biomass sources can be used for feedstock and enzymatic hydrolysis of biomass oil, without departing from the present invention.
[0184] As used herein, the meaning of abbreviations used was as follows: "g" means gram(s), "kg" means kilogram(s), "L" means liter(s), "mL" means milliliter(s), "μL" means microliter(s), "mL/L" means milliliter(s) per liter, "mL/min" means milliliter(s) per min, "DI" means deionized, "uM" means micrometer(s), "nm" means nanometer(s), "w/v" means weight/volume, "OD" means optical density, "OD600" means optical density at a wavelength of 600 nM, "dcw" means dry cell weight, "rpm" means revolutions per minute, "° C." means degree(s) Celsius, "° C./min" means degrees Celsius per minute, "slpm" means standard liter(s) per minute, "ppm" means part per million, "pdc" means pyruvate decarboxylase enzyme followed by the enzyme number.
General Methods
Seed Flask Growth
[0185] A Saccharomyces cerevisiae strain that was engineered to produce isobutanol from a carbohydrate source, with pdc1 deleted, pdc5 deleted, and pdc6 deleted, was grown to 0.55-1.1 g/L dcw (OD600 1.3-2.6--Thermo Helios α Thermo Fisher Scientific Inc., Waltham, Mass.) in seed flasks from a frozen culture. The culture was grown at 26° C. in an incubator rotating at 300 rpm. The frozen culture was previously stored at -80° C. The composition of the first seed flask medium was: [0186] 3.0 g/L dextrose [0187] 3.0 g/L ethanol, anhydrous [0188] 3.7 g/L ForMedium® Synthetic Complete Amino Acid (Kaiser) Drop-Out: without HIS, without URA (Reference No. DSCK162CK) [0189] 6.7 g/L Difco Yeast Nitrogen Base without amino acids (No. 291920)
[0190] Twelve milliliters from the first seed flask culture was transferred to a 2 L flask and grown at 30° C. in an incubator rotating at 300 rpm. The second seed flask has 220 mL of the following medium: [0191] 30.0 g/L dextrose [0192] 5.0 g/L ethanol, anhydrous [0193] 3.7 g/L ForMedium® Synthetic Complete Amino Acid (Kaiser) Drop-Out: without HIS, without URA (Reference No. DSCK162CK) [0194] 6.7 g/L Difco Yeast Nitrogen Base without amino acids (No. 291920) [0195] 0.2 M MES Buffer titrated to pH 5.5-6.0
[0196] The culture was grown to 0.55-1.1 g/L dcw (OD600 1.3-2.6). An addition of 30 mL of a solution containing 200 g/L peptone and 100 g/L yeast extract was added at this cell concentration. Then, an addition of 300 mL of 0.2 uM filter sterilized Cognis, 90-95% oleyl alcohol was added to the flask. The culture continues to grow to >4 g/L dcw (OD600>10) before being harvested and added to the fermentation.
Fermentation Preparation
Initial Fermentation Vessel Preparation
[0197] A glass jacked, 2 L fermentation vessel (Sartorius AG, Goettingen, Germany) was charged with house water to 66% of the liquefaction weight. A pH probe (Hamilton Easyferm Plus K8, part number: 238627, Hamilton Bonaduz AG, Bonaduz, Switzerland) was calibrated through the Sartorius DCU-3 Control Tower Calibration menu. The zero was calibrated at pH=7. The span was calibrated at pH=4. The probe was then placed into the fermentation vessel through the stainless steel head plate. A dissolved oxygen probe (pO2 probe) was also placed into the fermentation vessel through the head plate. Tubing used for delivering nutrients, seed culture, extracting solvent, and base were attached to the head plate and the ends were foiled. The entire fermentation vessel was placed into a Steris (Steris Corporation, Mentor, Ohio) autoclave and sterilized in a liquid cycle for 30 minutes.
[0198] The fermentation vessel was removed from the autoclave and placed on a load cell. The jacket water supply and return line was connected to the house water and clean drain, respectively. The condenser cooling water in and water out lines were connected to a 6-L recirculating temperature bath running at 7° C. The vent line that transfers the gas from the fermentation vessel was connected to a transfer line that was connected to a Thermo mass spectrometer (Prima dB, Thermo Fisher Scientific Inc., Waltham, Mass.). The sparger line was connected to the gas supply line. The tubing for adding nutrients, extract solvent, seed culture, and base was plumbed through pumps or clamped closed.
[0199] The fermentation vessel temperature was controlled at 55° C. with a thermocouple and house water circulation loop. Wet corn kernels (#2 yellow dent) were ground using a hammer mill with a 1.0 mm screen, and the resulting ground whole corn kernels were then added to the fermentation vessel at a charge that was 29-30% (dry corn solids weight) of the liquefaction reaction mass.
Lipase Treatment Pre-Liquefaction
[0200] A lipase enzyme stock solution was added to the fermentation vessel to a final lipase concentration of 10 ppm. The fermentation vessel was held at 55° C., 300 rpm, and 0.3 slpm N2 overlay for >6 hrs. After the lipase treatment was complete, liquefaction was performed as described below (Liquefaction).
Liquefaction
[0201] An alpha-amylase was added to the fermentation vessel per its specification sheet while the fermentation vessel was mixing at 300-1200 rpm, with sterile, house N2 being added at 0.3 slpm through the sparger. The temperature set-point was changed from 55° C. to 85° C. When the temperature was >80° C., the liquefaction cook time was started and the liquefaction cycle was held at >80° C. for 90-120 minutes. The fermentation vessel temperature set-point was set to the fermentation temperature of 30° C. after the liquefaction cycle was complete. N2 was redirected from the sparger to the head space to prevent foaming without the addition of a chemical antifoaming agent.
Lipase Treatment Post-Liquefaction
[0202] The fermentation vessel temperature was set to 55° C. instead of 30° C. after the liquefaction cycle was complete (Liquefaction). The pH was manually controlled at pH=5.8 by making bolus additions of acid or base when needed. A lipase enzyme stock solution was added to the fermentation vessel to a final lipase concentration of 10 ppm. The fermentation vessel was held at 55° C., 300 rpm, and 0.3 slpm N2 overlay for >6 hrs. After the Lipase Treatment was complete, the fermentation vessel temperature was set to 30° C.
Lipase Heat Inactivation Treatment (Heat Kill Treatment Method)
[0203] The fermentation vessel temperature was held at >80° C. for >15 minutes to inactivate the lipase. After the Heat Inactivation Treatment was complete, the fermentation vessel temperature was set to 30° C.
Nutrient Addition Prior to Inoculation
[0204] Ethanol (6.36 mL/L, post-inoculation volume, 200 proof, anhydrous) was added to the fermentation vessel just prior to inoculation. Thiamine was added to a final concentration of 20 mg/L and 100 mg/L nicotinic acid was also added just prior to inoculation.
Oleyl Alcohol or Corn Oil Fatty Acids Addition Prior to Inoculation
[0205] Added 1 L/L (post-inoculation volume) of oleyl alcohol or corn oil fatty acids immediately after inoculation.
Fermentation Vessel Inoculation
[0206] The fermentation vessels pO2 probe was calibrated to zero while N2 was being added to the fermentation vessel. The fermentation vessels pO2 probe was calibrated to its span with sterile air sparging at 300 rpm. The fermentation vessel was inoculated after the second seed flask with >4 g/L dcw. The shake flask was removed from the incubator/shaker for 5 minutes allowing a phase separation of the oleyl alcohol phase and the aqueous phase. The aqueous phase (110 mL) was transferred to a sterile, inoculation bottle. The inoculum was pumped into the fermentation vessel through a peristaltic pump.
Fermentation Vessel Operating Conditions
[0207] The fermentation vessel was operated at 30° C. for the entire growth and production stages. The pH was allowed to drop from a pH between 5.7-5.9 to a control set-point of 5.2 without adding any acid. The pH was controlled for the remainder of the growth and production stage at a pH=5.2 with ammonium hydroxide. Sterile air was added to the fermentation vessel, through the sparger, at 0.3 slpm for the remainder of the growth and production stages. The pO2 was set to be controlled at 3.0% by the Sartorius DCU-3 Control Box PID control loop, using stir control only, with the stirrer minimum being set to 300 rpm and the maximum being set to 2000 rpm. The glucose was supplied through simultaneous saccharification and fermentation of the liquified corn mash by adding a α-amylase (glucoamylase). The glucose was kept excess (1-50 g/L) for as long as starch was available for saccharification.
Analytical
Gas Analysis
[0208] Process air was analyzed on a Thermo Prima (Thermo Fisher Scientific Inc., Waltham, Mass.) mass spectrometer. This was the same process air that was sterilized and then added to each fermentation vessel. Each fermentation vessel's off-gas was analyzed on the same mass spectrometer. This Thermo Prima dB has a calibration check run every Monday morning at 6:00 am. The calibration check was scheduled through the Gas Works v1.0 (Thermo Fisher Scientific Inc., Waltham, Mass.) software associated with the mass spectrometer. The gas calibrated for were:
TABLE-US-00001 Calibration GAS Concentration mole % Cal Frequency Nitrogen 78% weekly Oxygen 21% weekly Isobutanol 0.2% yearly Argon 1% weekly Carbon Dioxide 0.03% weekly
[0209] Carbon dioxide was checked at 5% and 15% during calibration cycle with other known bottled gases. Oxygen was checked at 15% with other known bottled gases. Based on the analysis of the off-gas of each fermentation vessel, the amount of isobutanol stripped, oxygen consumed, and carbon dioxide respired into the off-gas was measured by using the mass spectrometer's mole fraction analysis and gas flow rates (mass flow controller) into the fermentation vessel. Calculate the gassing rate per hour and then integrating that rate over the course of the fermentation.
Biomass Measurement
[0210] A 0.08% Trypan Blue solution was prepared from a 1:5 dilution of 0.4% Trypan Blue in NaCl (VWR BDH8721-0) with 1×PBS. A 1.0 mL sample was pulled from a fermentation vessel and placed in a 1.5 mL Eppendorf centrifuge tube and centrifuged in an Eppendorf, 5415C at 14,000 rpm for 5 minutes. After centrifugation, the top solvent layer was removed with an m200 Variable Channel BioHit pipette with 20-200 μL BioHit pipette tips. Care was made not to remove the layer between the solvent and aqueous layers. Once the solvent layer was removed, the sample was re-suspended using a Vortex-Genie® set at 2700 rpm.
[0211] A series of dilutions was required to prepare the ideal concentration for hemacytometer counts. If the OD was 10, a 1:20 dilution would be performed to achieve 0.5 OD which would give the ideal amount of cells to be counted per square, 20-30. In order to reduce inaccuracy in the dilution due to corn solids, multiple dilutions with cut 100-1000 μL BioHit pipette tips were required. Approximately, 1 cm was cut off the tips to increase the opening which prevented the tip from clogging. For a 1:20 final dilution, an initial 1:1 dilution of fermentation sample and 0.9% NaCl solution was prepared. Then, a 1:1 dilution of the previous solution (i.e., the initial 1:1 dilution) and 0.9% NaCl solution (the second dilution) was generated followed by a 1:5 dilution of the second dilution and Trypan Blue Solution. Samples were vortexed between each dilution and cut tips were rinsed into the 0.9% NaCl and Trypan Blue solutions.
[0212] The cover slip was carefully placed on top of the hemacytometer (Hausser Scientific Bright-Line 1492). An aliquot (10 μL) was drawn of the final Trypan Blue dilution with an m20 Variable Channel BioHit pipette with 2-20 μL BioHit pipette tips and injected into the hemacytometer. The hemacytometer was placed on the Zeis Axioskop 40 microscope at 40× magnification. The center quadrant was broken into 25 squares and the four corner and center squares in both chambers were then counted and recorded. After both chambers were counted, the average was taken and multiplied by the dilution factor (20), then by 25 for the number for squares in the quadrant in the hemacytometer, and then divided by 0.0001 mL which is the volume of the quadrant that was counted. The sum of this calculation is the number cells per mL.
LC Analysis of Fermentation Products in the Aqueous Phase
[0213] Samples were refrigerated until ready for processing. Samples were removed from refrigeration and allowed to reach room temperature (about one hour). Approximately 300 μL of sample was transferred with a m1000 Variable Channel BioHit pipette with 100-1000 μL BioHit pipette tips into a 0.2 um centrifuge filter (Nanosep® MF modified nylon centrifuge filter), then centrifuged using a Eppendorf, 5415C for five minutes at 14,000 rpm. Approximately 200 μL of filtered sample was transferred into a 1.8 auto sampler vial with a 250 μL glass vial insert with polymer feet. A screw cap with PTFE septa was used to cap the vial before vortexing the sample with a Vortex-Genie® set at 2700 rpm.
[0214] Sample was then run on Agilent 1200 series LC equipped with binary, isocratic pumps, vacuum degasser, heated column compartment, sampler cooling system, UV DAD detector and R1 detector. The column used was an Aminex HPX-87H, 300×7.8 with a Bio-Rad Cation H refill, 30×4.6 guard column. Column temperature was 40° C., with a mobile phase of 0.01 N sulfuric acid at a flow rate of 0.6 mL/min for 40 minutes. Results are shown in Table 1.
TABLE-US-00002 TABLE 1 Retention times of fermentation products in aqueous phase HPLC 302/310 Range of UV Normalized to 10 μL RID Retention Standards, Retention injections FW Time, min g/L Time, min citric acid 192.12 8.025 0.3-17 7.616 glucose 180.16 8.83 0.5-71 pyruvic acid (Na) 110.04 9.388 0.1-5.2 8.5 A-Kiv (Na) 138.1 9.91 0.07-5.0 8.55 2,3- 156.1 10.972 0.2-8.8 10.529 dihydroxyisovaleric acid (Na) succinic acid 118.09 11.561 0.3-16 11.216 lactic acid (Li) 96.01 12.343 0.3-17 11.948 glycerol 92.09 12.974 0.8-39 formic acid 46.03 13.686 0.2-13 13.232 acetate (Na) 82.03 14.914 0.5-16 14.563 meso-butanediol 90.12 17.583 0.1-19 (+/-)-2,3-butanediol 90.12 18.4 0.2-19 isobutyric acid 88.11 19.685 0.1-8.0 19.277 ethanol 46.07 21.401 0.5-34 isobutyraldehyde 72.11 27.64 0.01-0.11 isobutanol 74.12 32.276 0.2-15 3-OH-2-butanone 88.11 0.1-11 17.151 (acetoin)
GC Analysis of Fermentation Products in the Solvent Phase
[0215] Samples were refrigerated until ready for processing. Samples were removed from refrigeration and allowed to reach room temperature (about one hour). Approximately 150 μL of sample was transferred using a m1000 Variable Channel BioHit pipette with 100-1000 μL BioHit pipette tips into a 1.8 auto sampler vial with a 250 μL glass vial insert with polymer feet. A screw cap with PTFE septa was used to cap the vial.
[0216] Sample was then run on Agilent 7890A GC with a 7683B injector and a G2614A auto sampler. The column was a HP-InnoWax column (30 m×0.32 mm ID, 0.25 μm film). The carrier gas was helium at a flow rate of 1.5 mL/min measured at 45° C. with constant head pressure; injector split was 1:50 at 225° C.; oven temperature was 45° C. for 1.5 minutes, 45° C. to 160° C. at 10° C./min for 0 minutes, then 230° C. at 35° C./min for 14 minutes for a run time of 29 minutes. Flame ionization detection was used at 260° C. with 40 mL/min helium makeup gas. Results are shown in Table 2.
TABLE-US-00003 TABLE 2 Retention times of fermentation products in solvent phase GC 302/310 Solvent Normalized to 10 μL Retention Range of Standards, injections FW Time, min g/L isobutyraldehyde 72.11 2.75 0.7-10.4 ethanol 46.07 3.62 0.5-34 isobutanol 74.12 5.53 0.2-16 3-OH-2-butanone (acetoin) 88.11 8.29 0.1-11 (+/-)-2,3-butanediol 90.12 10.94 0.1-19 isobutyric acid 88.11 11.907 0.1-7.9 meso-butanediol 90.12 11.26 0.1-6.5 glycerol 92.09 16.99 0.8-9
[0217] Samples analyzed for fatty acid butyl esters were run on Agilent 6890 GC with a 7683B injector and a G2614A auto sampler. The column was a HP-DB-FFAP column (15 meters×0.53 mm ID (Megabore), 1-micron film thickness column (30 m×0.32 mm ID, 0.25 μm film). The carrier gas was helium at a flow rate of 3.7 mL/min measured at 45° C. with constant head pressure; injector split was 1:50 at 225° C.; oven temperature was 100° C. for 2.0 minutes, 100° C. to 250° C. at 10° C./min, then 250° C. for 9 minutes for a run time of 26 minutes. Flame ionization detection was used at 300° C. with 40 mL/min helium makeup gas. The following GC standards (Nu-Chek Prep; Elysian, Minn.) were used to confirm the identity of fatty acid isobutyl ester products: iso-butyl palmitate, iso-butyl stearate, iso-butyl oleate, iso-butyl linoleate, iso-butyl linolenate, iso-butyl arachidate.
[0218] Examples 1-14 describe various fermentation conditions that may be used for the claimed methods. As an example, some fermentations were subjected to Lipase Treatment pre-liquefaction and others were subjected to Lipase Treatment post-liquefaction. In other examples, the fermentation was subjected to Heat inactivation Treatment. Following fermentation, the effective isobutanol titer (Eff Iso Titer) was measured, that is, the total grams of isobutanol produced per liter aqueous volume. Results are shown in Table 3.
Example 1
Control
[0219] Experiment identifier 2010Y014 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 2
[0220] Experiment identifier 2010Y015 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Lipase Treatment Post-Liquefaction method, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 3
[0221] Experiment identifier 2010Y016 included: Seed Flask Growth method, Initial Fermentation vessel Preparation method, Liquefaction method, Lipase Treatment Post-Liquefaction method, Nutrient Addition Prior to Inoculation method with the exception of the exclusion of ethanol, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 4
[0222] Experiment identifier 2010Y017 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Heat Kill Treatment method Post-Liquefaction, Nutrient Addition Prior to Inoculation method with the exception of the exclusion of ethanol, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 5
[0223] Experiment identifier 2010Y018 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Lipase Treatment Post-Liquefaction method with the exception of only adding 7.2 ppm lipase after liquefaction, Heat Kill Treatment method post-liquefaction, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 6
Control
[0224] Experiment identifier 2010Y019 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Heat Kill Treatment method Post-Liquefaction, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 7
Control
[0225] Experiment identifier 2010Y021 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Lipase Treatment Pre-Liquefaction method, the Liquefaction method, Heat Kill Treatment during liquefaction, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 8
[0226] Experiment identifier 2010Y022 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 9
[0227] Experiment identifier 2010Y023 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Lipase Treatment Post-Liquefaction method, no Heat Kill Treatment, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Corn oil fatty acids made from crude corn oil was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 10
[0228] Experiment identifier 2010Y024 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Lipase Treatment Pre-Liquefaction method, Liquefaction method, Heat Kill Treatment during liquefaction, Nutrient Addition Prior to Inoculation method with the exception of there being no addition of ethanol, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Oleyl alcohol was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 11
[0229] Experiment identifier 2010Y029 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Lipase Treatment Pre-Liquefaction method, Liquefaction method, Heat Kill Treatment during liquefaction, the Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Corn oil fatty acids made from crude corn oil was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 12
[0230] Experiment identifier 2010Y030 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Lipase Treatment Pre-Liquefaction method, Liquefaction method, Heat Kill Treatment during liquefaction, Nutrient Addition Prior to Inoculation method with the exception of there being no addition of ethanol, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Corn oil fatty acids made from crude corn oil was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 13
Control
[0231] Experiment identifier 2010Y031 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Lipase Treatment Post Liquefaction method, no Heat Kill Treatment, Nutrient Addition Prior to Inoculation method with the exception of there being no addition of ethanol, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Corn oil fatty acids made from crude corn oil was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
Example 14
[0232] Experiment identifier 2010Y032 included: Seed Flask Growth method, Initial Fermentation Vessel Preparation method, Liquefaction method, Lipase Treatment Post-Liquefaction method, no Heat Kill Treatment, Nutrient Addition Prior to Inoculation method, Fermentation Vessel Inoculation method, Fermentation Vessel Operating Conditions method, and all of the Analytical methods. Corn oil fatty acids made from crude corn oil was added in a single batch between 0.1-1.0 hr after inoculation. The butanologen was NGCI-070.
TABLE-US-00004 TABLE 3 Fermentation conditions for Examples 1-14 Max cell Eff Iso max Eff Experimental Count × Ethanol Heat Kill Titer Iso rate Example # Identifier Lipase 107 g/L Solvent Lipase g/L* g/L/h 1 2010Y014 none 27.2 5 Oleyl none 56.0 0.79 alcohol 2 2010Y015 10 ppm 31.5 5 Oleyl none 52.4 0.74 alcohol 3 2010Y016 10 ppm 6.7 0 Oleyl none 25.9 0.36 alcohol 4 2010Y017 none 7.9 0 Oleyl post- 17.2 0.25 alcohol liquefaction 5 2010Y018 7.2 ppm 16.2 5 Oleyl post- 45.8 0.66 alcohol liquefaction 6 2010Y019 none 17.5 5 Oleyl post- 48.1 0.69 alcohol liquefaction 7 2010Y021 10 ppm 21.2 5 Oleyl during 46.8 0.82 alcohol liquefaction 8 2010Y022 none 9 5 Oleyl during 56.2 0.87 alcohol liquefaction 9 2010Y023 10 ppm 12.8 5 Corn Oil none 60.3 1.3 Fatty Acids 10 2010Y024 10 ppm 25.3 0 Oleyl during 19.8 0.33 alcohol liquefaction 11 2010Y029 10 ppm 21.2 5 Corn Oil during 28.36 0.52 Fatty liquefaction Acids 12 2010Y030 10 ppm 9 0 Corn Oil during 12.71 0.24 Fatty liquefaction Acids 13 2010Y031 10 ppm 12.8 0 Corn Oil none 18.86 0.35 Fatty Acids 14 2010Y032 10 ppm 25.3 5 Corn Oil none 53.36 0.92 Fatty Acids *The "Eff Iso Titer g/L" = total grams of isobutanol produced per liter aqueous volume
Example 15
[0233] The experimental identifier was GLNOR432A. NGCI-047 (a butanediol producer) was grown in 25 mL medium in a 250 mL flask from a frozen vial to ˜1 OD. The pre-seed culture was transferred to a 2 L flask and grown to 1.7-1.8 OD. The medium for both flasks was:
[0234] 3.0 g/L dextrose
[0235] 3.0 g/L ethanol, anhydrous
[0236] 6.7 g/L Difco Yeast Nitrogen Base without amino acids (No. 291920)
[0237] 1.4 g/L Yeast Dropout Mix (Sigma Y2001)
[0238] 10 mL/L 1% w/v L-Leucine stock solution
[0239] 2 mL/L 1% w/v L-Tryptophan stock solution
[0240] A 1 L, Applikon fermentation vessel was inoculated with 60 mL of the seed flask. The fermentation vessel contained 700 mL of the following sterile medium:
[0241] 20.0 g/L dextrose
[0242] 8.0 mL/L ethanol, anhydrous
[0243] 6.7 g/L Difco Yeast Nitrogen Base without amino acids (No. 291920)
[0244] 2.8 g/L Yeast Dropout Mix (Sigma Y2001)
[0245] 20 mL/L 1% w/v L-Leucine stock solution
[0246] 4 mL/L 1% w/v L-Tryptophan stock solution
[0247] 0.5 mL Sigma 204 Antifoam
[0248] 0.8 mL/L 1% w/v Ergesterol solution in 1:1::Tween 80:Ethanol
[0249] The residual glucose was kept excess with a 50% w/w glucose solution. The dissolved oxygen concentration of the fermentation vessel was controlled at 30% with stir control. The pH was controlled at pH=5.5. The fermentation vessel was sparged with 0.3 slpm of sterile, house air. The temperature was controlled at 30° C.
Example 16
[0250] The experimental identifier was GLNOR434A. This example is the same as example 15 with the exception of the addition of 3 g of oleic acid and the addition of 3 g of palmitic acid prior to inoculation. NGCI-047 (a butanediol producer) was the biocatalyst.
[0251] FIG. 6 shows that there were more grams per liter of glucose consumed in the fermentation vessel that received the fatty acids. The squares represent the fermentation vessel that received oleic acid and palmitic acid. The circles represent the fermentation vessel that did not receive any extra fatty acids.
Example 17
[0252] The experimental identifier was GLNOR435A. This example was the same as example 15 except it was inoculated with NGCI-049 (an isobutanol producer).
Example 18
[0253] The experimental identifier was GLNOR437A. This example was the same as Example 16 except it was inoculated with NGCI-049 (an isobutanol producer).
[0254] FIG. 7 shows that there were more grams per liter of glucose consumed in the fermentation vessel that received the fatty acids. The squares represent the fermentation vessel that received oleic acid and palmitic acid. The circles represent the fermentation vessel that did not receive any extra fatty acids.
Example 19
[0255] The experimental identifier was 090420--3212. This example was run similarly to Example 15 except it was inoculated with butanologen NYLA84 (an isobutanol producer). This fermentation was run in a 1 L Sartorius fermentation vessel.
Example 20
[0256] The experimental identifier was 2009Y047. This example was run similarly to Example 16 except it was inoculated with butanologen NYLA84 (an isobutanol producer). This fermentation was run in a 1 L Sartorius fermentation.
[0257] FIG. 8 shows that there were more grams per liter of glucose consumed in the fermentation vessel that received the fatty acids. The squares represent the fermentation vessel that received oleic acid and palmitic acid. The circles represent the fermentation vessel that did not receive any extra fatty acids. The results of Examples 15 to 20 are shown in Table 4 which shows +/- fatty acid addition, maximum optical density, and g/L glucose consumed
TABLE-US-00005 TABLE 4 Fatty 69 hours g/L Experimental Acids 69 hours glucose Example # Identifier Strain Added Product OD600 consumed 15 GLNOR432A NYLA74 - butanediol 12.8 86.0 16 GLNOR434A NYLA74 + butanediol 23.1 95.9 17 GLNOR435A NYLA74 - isobutanol 2.4 16.9 18 GLNOR437A NYLA74 + isobutanol 4.5 18.3 19 090420_3212 NYLA84 - isobutanol 9.6 39.3 20 2009Y047 NYLA84 + isobutanol 20.2 49.1
Example 21
Lipase treatment of Liquefied Corn Mash for Simultaneous Saccharification and Fermentation with In-situ Product Removal Using Oleyl Alcohol
[0258] Samples of broth and oleyl alcohol taken from fermentations run as described above in Examples 1, 2, and 3 were analyzed for wt % lipid (derivatized as fatty acid methyl esters, FAME) and for wt % free fatty acid (FFA, derivatized as fatty acid methyl esters, FAME) according to the method described by E. G. Bligh and W. J. Dyer (Canadian Journal of Biochemistry and Physiology, 37:911-17, 1959, hereafter Reference 1). The liquefied corn mash that was prepared for each of the three fermentations was also analyzed for wt % lipid and for wt % FFA after treatment with Lipolase® 100 L (Novozymes) (10 ppm of Lipolase® total soluble protein (BCA protein analysis, Sigma Aldrich)) per kg of liquefaction reaction mass containing 30 wt % ground corn kernels). No lipase was added to the liquefied corn mash in Example 1 (control), and the fermentations described in Examples 2 and 3 containing liquefied corn mash treated with lipase (no heat inactivation of lipase) were identical except that no ethanol was added to the fermentation described in Example 3.
[0259] The % FFA in lipase-treated liquefied corn mash prepared for fermentations run as described in Examples 2 and 3 was 88% and 89%, respectively, compared to 31% without lipase treatment (Example 1). At 70 h (end of run (EOR)), the concentration of FFA in the OA phase of fermentations run as described in Examples 2 and 3 (containing active lipase) was 14% and 20%, respectively, and the corresponding increase in lipids (measured as corn oil fatty acid methyl ester derivatives) was determined by GC/MS to be due to the lipase-catalyzed esterification of COFA by OA, where COFA was first produced by lipase-catalyzed hydrolysis of corn oil in the liquefied corn mash. Results are shown in Table 5.
TABLE-US-00006 TABLE 5 Lipid and free fatty acid content of fermentations containing oleyl alcohol as ISPR solvent and active lipase time (h), lipids FFA lipids FFA lipids + fermentation lipase sample (wt %) (wt %) (g) (g) FFA (g) % FFA Example 1 none liq. mash 0.61 0.28 5.3 2.4 7.7 31 Example 1 none 0.8 h, broth 0.49 0.22 5.5 2.5 8.0 31 Example 1 none 31 h, broth 0.19 0.03 2.1 0.3 2.4 13 Example 1 none 31 h, OA 0.36 0.21 3.4 2.0 5.3 37 Example 1 none 70 h, broth 0.15 0.03 1.7 0.3 2.0 15 Example 1 none 70 h, OA 0.57 0.25 5.3 2.3 7.7 31 Example 2 10 ppm liq. mash 0.13 0.97 1.1 8.5 9.6 88 Example 2 10 ppm 0.8 h, broth 0.15 0.62 1.7 7.0 8.7 81 Example 2 10 ppm 31 h, broth 0.16 0.05 1.8 0.5 2.3 23 Example 2 10 ppm 31 h, OA 0.37 0.23 3.5 2.2 5.7 38 Example 2 10 ppm 70 h, broth 0.17 0.02 1.9 0.3 2.2 13 Example 2 10 ppm 70 h, OA 0.60 0.10 5.7 1.0 6.7 14 Example 3 10 ppm liq. mash 0.12 0.97 1.0 8.5 9.5 89 Example 3 10 ppm 0.8 h, broth 0.32 0.40 3.6 4.5 8.1 56 Example 3 10 ppm 31 h, broth 0.17 0.05 1.9 0.6 2.5 24 Example 3 10 ppm 31 h, OA 0.38 0.22 3.6 2.1 5.7 37 Example 3 10 ppm 70 h, broth 0.15 0.02 1.7 0.2 1.9 13 Example 3 10 ppm 70 h, OA 0.46 0.12 4.4 1.1 5.6 20
Example 22
Heat Inactivation of Lipase in Lipase-treated Liquefied Corn Mash to Limit Production of Oleyl Alcohol Esters of Corn Oil Free Fatty Acids
[0260] Tap water (918.4 g) was added to a jacketed 2-L resin kettle, then 474.6 g wet weight (417.6 g dry weight) of ground whole corn kernels (1.0 mm screen on hammer mill) was added with stirring. The mixture was heated to 55° C. with stirring at 300 rpm, and the pH adjusted to 5.8 with 2 N sulfuric acid. To the mixture was added 14.0 g of an aqueous solution containing 0.672 g of Spezyme®-FRED L (Genencor®, Palo Alto, Calif.), and the temperature of the mixture increased to 85° C. with stirring at 600 rpm and pH 5.8. After 120 minutes at 85° C., the mixture was cooled to 50° C. and 45.0 mL aliquots of the resulting liquefied corn mash were transferred to 50-mL polypropylene centrifuge tubes and stored frozen at -80° C.
[0261] In a first reaction, 50 g of liquefied corn mash prepared as described above was mixed with 10 ppm Lipolase® 100 L (Novozymes) for 6 h at 55° C. and with no inactivation of lipase at 85° C. for 1 h, the mixture was cooled to 30° C. In a second reaction, 50 g of liquefied corn mash was mixed with 10 ppm Lipolase® for 6 h at 55° C., then heated to 85° C. for 1 h (lipase inactivation), then cooled to 30° C. In a third reaction, 50 g of liquefied corn mash without added lipase was mixed for 6 h at 55° C., and with no heating at 85° C. for 1 h, the mixture was cooled to 30° C., 38 g of oleyl alcohol was added, and the resulting mixture stirred for 73 h at 30° C. In a fourth reaction, 50 g of liquefied corn mash without added lipase was mixed for 6 h at 55° C., then heated to 85° C. for 1 h, then cooled to 30° C. Each of the four reaction mixtures was sampled at 6 h, then 38 g of oleyl alcohol added, and the resulting mixtures stirred at 30° C. and sampled at 25 h and 73 h. Samples (both liquefied mash and oleyl alcohol (OA)) were analyzed for wt % lipid (derivatized as fatty acid methyl esters, FAME) and for wt % free fatty acid (FFA, derivatized as fatty acid methyl esters, FAME) according to the method described by Reference 1.
[0262] The % FFA in the OA phase of the second reaction run with heat inactivation of lipase prior to OA addition was 99% at 25 h and 95% at 73 h, compared to only 40% FFA and 21% FFA at 25 h and 73 h, respectively, when the lipase in lipase-treated liquefied corn mash was not heat inactivated (first reaction). No significant change in % FFA was observed in the two control reactions without added lipase. Results are shown in Table 6.
TABLE-US-00007 TABLE 6 Lipid and free fatty acid content of a mixture of liquefied corn mash and oleyl alcohol in the presence or absence of active or heat-inactivated lipase reaction time (h), lipids FFA lipids FFA lipid + FFA conditions sample (wt %) (wt %) (mg) (mg) (mg) % FFA 10 ppm active lipase, 6 h, liq. mash 0.08 0.71 41 345 386 89 no 85° C. heat treatment 25 h, liq. mash 0.22 0.06 105 27 132 20 25 h, OA 0.58 0.39 212 143 355 40 73 h, liq. mash 0.25 0.05 121 22 143 18 73 h, OA 0.91 0.24 333 88 420 21 10 ppm inactive lipase, 6 h, liq. mash 0.06 0.45 28 224 252 89 85° C. heat treatment 25 h, liq. mash 0.10 0.11 49 54 103 53 25 h, OA 0.02 0.96 8 366 374 99 73 h, liq. mash 0.24 0.15 117 72 189 62 73 h, OA 0.06 1.11 23 424 447 95 no lipase, 6 h, liq. mash 0.80 0.40 401 199 599 33 no 85° C. heat treatment 25 h, liq. mash 0.30 0.05 147 25 173 15 25 h, OA 0.55 0.36 212 139 351 40 73 h, liq. mash 0.23 0.05 117 26 143 23 73 h, OA 0.79 0.42 305 162 467 34 no lipase, 6 h, liq. mash 0.74 0.36 370 183 553 33 85° C. heat treatment 25 h, liq. mash 0.31 0.05 156 27 183 15 25 h, OA 0.60 0.35 233 136 369 37 73 h, liq. mash 0.20 0.05 99 23 121 23 73 h, OA 0.84 0.41 326 159 486 33
Example 23
Heat Inactivation of Lipase in Lipase-treated Liquefied Corn Mash for Simultaneous Saccharification and Fermentation with In-situ Product Removal Using Oleyl Alcohol
[0263] Three fermentations were run as described above in Examples 4, 5, and 6. No lipase was added to the liquefied corn mash in Examples 4 and 6 prior to fermentation, and the Lipase Treatment of the liquefied corn mash in the fermentation described in Example 5 (using 7.2 ppm of Lipolase® total soluble protein) was followed immediately by Heat Inactivation Treatment (to completely inactivate the lipase), and subsequently followed by Nutrient Addition Prior to Inoculation and fermentation. The % FFA in liquefied corn mash prepared without lipase treatment for fermentations run as described in Examples 4 and 6 was 31% and 34%, respectively, compared to 89% with lipase treatment (Example 5). Over the course of the fermentations listed in Table 10, the concentration of FFA in the OA phase did not decrease in any of the three fermentations, including that containing heat-inactivated lipase. The % FFA in the OA phase of the fermentation run according to Example 5 (with heat inactivation of lipase prior to fermentation) was 95% at 70 h (end of run (EOR)), compared to only 33% FFA for the remaining two fermentations (Examples 4 and 6) where liquefied corn mash was not treated with lipase. Results are shown in Table 7.
TABLE-US-00008 TABLE 7 Lipid and free fatty acid content of fermentations containing oleyl alcohol as ISPR solvent and heat-inactivated lipase (after lipase treatment of liquefied mash) time (h), lipids FFA lipids FFA lipid + fermentation lipase sample (wt %) (wt %) (g) (g) FFA (g) % FFA Example 4 none liquefied mash 0.65 0.30 7.2 3.3 10.4 31 Example 4 none 0.2 h, broth 0.56 0.28 6.6 3.3 9.9 33 Example 4 none 4.3 h, broth 0.28 0.09 3.3 1.0 4.4 24 Example 4 none 4.3 h, OA 0.45 0.27 4.0 2.4 6.4 37 Example 4 none 30 h, broth 0.17 0.05 2.0 0.6 2.7 24 Example 4 none 30 h, OA 0.63 0.29 5.7 2.6 8.3 32 Example 4 none 53 h, broth 0.13 0.04 1.5 0.5 2.0 23 Example 4 none 53 h, OA 0.67 0.32 6.0 2.9 8.9 32 Example 4 none 70 h, broth 0.13 0.04 1.5 0.4 1.9 23 Example 4 none 70 h, OA 0.64 0.31 5.8 2.8 8.5 33 Example 5 7.2 ppm liquefied mash 0.11 0.89 1.3 9.9 11.2 89 Example 5 7.2 ppm 0.2 h, broth 0.25 0.83 2.9 9.8 12.8 77 Example 5 7.2 ppm 4.3 h, broth 0.14 0.17 1.6 2.1 3.7 56 Example 5 7.2 ppm 4.3 h, OA 0.02 0.84 0.2 7.9 8.1 97 Example 5 7.2 ppm 30 h, broth 0.08 0.18 1.0 2.1 3.1 68 Example 5 7.2 ppm 30 h, OA 0.04 0.92 0.3 8.6 8.9 96 Example 5 7.2 ppm 53 h, broth 0.07 0.11 0.9 1.3 2.2 61 Example 5 7.2 ppm 53 h, OA 0.08 0.95 0.7 8.9 9.6 93 Example 5 7.2 ppm 70 h, broth 0.08 0.10 0.9 1.2 2.1 55 Example 5 7.2 ppm 70 h, OA 0.05 0.94 0.4 8.8 9.2 95 Example 6 none liquefied mash 0.66 0.34 7.3 3.8 11.1 34 Example 6 none 0.2 h, broth 0.63 0.34 7.6 4.0 11.6 34 Example 6 none 4.3 h, broth 0.33 0.10 3.9 1.2 5.1 23 Example 6 none 4.3 h, OA 0.45 0.27 4.0 2.4 6.4 38 Example 6 none 30 h, broth 0.17 0.06 2.1 0.8 2.8 26 Example 6 none 30 h, OA 0.69 0.33 6.2 3.0 9.1 32 Example 6 none 53 h, broth 0.14 0.05 1.6 0.5 2.2 25 Example 6 none 53 h, OA 0.72 0.35 6.4 3.1 9.5 33 Example 6 none 70 h, broth 0.15 0.05 1.8 0.6 2.4 25 Example 6 none 70 h, OA 0.70 0.34 6.2 3.0 9.2 33
Example 24
Lipase treatment of Ground Whole Corn Kernels prior to Liquefaction
[0264] Tap water (1377.6 g) was added into each of two jacketed 2-L resin kettles, then 711.9 g wet weight (625.8 g dry weight) of ground whole corn kernels (1.0 mm screen on hammer mill) was added to each kettle with stirring. Each mixture was heated to 55° C. with stirring at 300 rpm, and the pH adjusted to 5.8 with 2 N sulfuric acid. To each mixture was added 21.0 g of an aqueous solution containing 1.008 g of Spezyme®-FRED L (Genencor®, Palo Alto, Calif.). To one mixture was then added 10.5 mL of aqueous solution of Lipolase® 100L Solution (21 mg total soluble protein, 10 ppm lipase final concentration) and to the second mixture was added 1.05 mL of aqueous solution of Lipolase® 100L Solution (2.1 mg total soluble protein, 1.0 ppm lipase final concentration). Samples were withdrawn from each reaction mixture at 1 h, 2 h, 4 h and 6 h at 55° C., then the temperature of the mixture was increased to 85° C. with stirring at 600 rpm and pH 5.8, and a sample was taken when the mixture first reached 85° C. After 120 minutes at 85° C., a sample was taken and the mixtures were cooled to 50° C. and final samples of the resulting liquefied corn mash were transferred to 50-mL polypropylene centrifuge tubes; all samples were stored frozen at -80° C.
[0265] In two separate reactions, a 50 g sample of the 10 ppm lipase-treated liquefied corn mash or a 55 g sample of the 1.0 ppm lipase-treated liquefied corn mash prepared as described above was mixed with oleyl alcohol (OA) (38 g) at 30° C. for 20 h, then the liquefied mash and OA in each reaction mixture were separated by centrifugation and each phase analyzed for wt % lipid (derivatized as fatty acid methyl esters, FAME) and for wt % free fatty acid (FFA, derivatized as fatty acid methyl esters, FAME) according to the method described by Reference 1. The % FFA in the OA phase of the liquefied mash/OA mixture prepared using heat inactivation of 10 ppm lipase during liquefaction was 98% at 20 h, compared to only 62% FFA in the OA phase of the liquefied mash/OA mixture prepared using heat inactivation of 1.0 ppm lipase during liquefaction. Results are shown in Table 8.
TABLE-US-00009 TABLE 8 Lipid and free fatty acid content of a mixture of liquefied corn mash and oleyl alcohol, using lipase treatment of ground corn suspension prior to liquefaction (heat inactivation of lipase during liquefaction) reaction lipids FFA lipids FFA lipid + FFA conditions time (h), sample (wt %) (wt %) (mg) (mg) (mg) % FFA 10 ppm lipase 1 h, pre-liquefaction 0.226 0.627 112 311 424 74 at 55° C. prior to 2 h, pre-liquefaction 0.199 0.650 99 323 422 77 liquefaction at 4 h, pre-liquefaction 0.151 0.673 75 334 410 82 85° C., mix with 6 h, pre-liquefaction 0.101 0.700 50 348 398 87 OA for 20 h 0 h, 85° C., liq. mash 0.129 0.764 64 380 444 86 2 h, 85° C., liq. mash 0.129 0.751 64 373 437 85 20 h, 30° C., liq. mash 0.074 0.068 37 34 71 48 20 h, 30° C., OA 0.015 1.035 5.7 394 400 98 1.0 ppm lipase 1 h, pre-liquefaction 0.408 0.480 226 266 492 54 at 55° C. prior to 2 h, pre-liquefaction 0.401 0.424 222 235 457 51 liquefaction at 4 h, pre-liquefaction 0.299 0.433 165 240 405 58 85° C., mix with 6 h, pre-liquefaction 0.346 0.453 192 251 442 57 OA for 20 h 0 h, 85° C., liq. mash 0.421 0.407 233 225 458 49 2 h, 85° C., liq. mash 0.424 0.429 235 237 472 50 20 h, 30° C., liq. mash 0.219 0.054 121 30 151 20 20 h, 30° C., OA 0.344 0.573 140 233 373 62
Example 25
Lipase Screening for Treatment of Ground Whole Corn Kernels prior to Liquefaction
[0266] Seven reaction mixtures containing tap water (67.9 g) and ground whole corn kernels (35.1 g wet wt., ground with 1.0 mm screen using a hammer mill) at pH 5.8 were stirred at 55° C. in stoppered flasks. A 3-mL sample (t=0 h) was removed from each flask and the sample immediately frozen on dry ice, then ca. 0.5 mL of 10 mM sodium phosphate buffer (pH 7.0) containing 1 mg total soluble protein (10 ppm final concentration in reaction mixture) of one of the following lipases (Novozymes) were added to one of each flask: Lipolase® 100 L, Lipex® 100L, Lipoclean® 2000T, Lipozyme® CALB L, Novozyme® CALA L, and Palatase 20000L; no lipase was added to the seventh flask. The resulting mixtures were stirred at 55° C. in stoppered flasks, and 3-mL samples were withdrawn from each reaction mixture at 1 h, 2 h, 4 h and 6 h and immediately frozen in dry ice until analyzed for wt % lipid (derivatized as fatty acid methyl esters, FAME) and for wt % free fatty acid (FFA, derivatized as fatty acid methyl esters, FAME) according to the method described by Reference 1, and the percent free fatty acid content was calculated relative to the total combined concentrations of lipid and free fatty acid was determined for each sample. Results are shown in Table 9.
TABLE-US-00010 TABLE 9 Percent free fatty acid content (% FFA) of a mixture of ground whole corn kernels using lipase treatment at 55° C. prior to liquefaction % FFA time 0 h 1 h 2 h 4 h 6 h Lipolase ® 100L 33 56 74 76 79 Lipex ® 100L 34 66 81 83 83 Lipoclean ® 2000T 38 55 73 69 65 Lipozyme ® CALB L 39 38 37 43 41 Novozyme ® CALA L 37 40 44 44 45 Palatase ® 20000L 37 49 59 62 66 no enzyme 38 33 37 41 42
Example 26
Lipase treatment of Ground Whole Corn Kernels prior to Simultaneous Saccharification and Fermentation with In-situ Product Removal Using Oleyl Alcohol
[0267] Three fermentations were run as described above in Examples 7, 8, and 10. For fermentations run as described in Examples 7 and 10, lipase (10 ppm of Lipolase® total soluble protein) was added to the suspension of ground corn and heated at 55° C. for 6 h prior to Liquefaction to produce a liquefied corn mash containing heat-inactivated lipase. No lipase was added to the suspension of ground corn used to prepare liquefied corn mash for the fermentation described in Example 8, but the suspension was subjected to the same heating step at 55° C. prior to liquefaction. The % FFA in lipase-treated liquefied corn mash prepared for fermentations run as described in Examples 7 and 10 was 83% and 86%, respectively, compare to 41% without lipase treatment (Example 8). Over the course of the fermentations, the concentration of FFA did not decrease in any of the fermentations, including that containing heat-inactivated lipase. The % FFA in the OA phase of the fermentation run according to Examples 7 and 10 (with heat inactivation of lipase prior to fermentation) was 97% at 70 h (end of run (EOR)), compared to only 49% FFA for the fermentation run according to Example 8 where ground whole corn kernels had not been treated with lipase prior to liquefaction. Results are shown in Table 10.
TABLE-US-00011 TABLE 10 Lipid and free fatty acid content of fermentations containing oleyl alcohol as ISPR solvent and heat-inactivated lipase (lipase treatment of ground corn suspension prior to liquefaction) lipids FFA lipids FFA lipid + fermentation lipase time (h), sample (wt %) (wt %) (g) (g) FFA (g) % FFA Example 7 10 ppm pre-lipase/pre-liq. 0.65 0.22 7.1 2.4 9.4 25 Example 7 10 ppm post-lipase/pre-liq. 0.22 0.65 2.4 7.0 9.5 74 Example 7 10 ppm liquefied mash 0.17 0.79 1.8 8.5 10.3 83 Example 7 10 ppm 0.3 h, broth 0.16 0.79 1.8 8.9 10.7 83 Example 7 10 ppm 4.8 h, broth 0.14 0.31 1.6 3.5 5.1 69 Example 7 10 ppm 4.8 h, OA 0.04 0.68 0.3 5.4 5.6 95 Example 7 10 ppm 29 h, broth 0.10 0.12 1.2 1.3 2.5 53 Example 7 10 ppm 29 h, OA 0.03 1.05 0.2 8.2 8.4 98 Example 7 10 ppm 53 h, broth Example 7 10 ppm 53 h, OA 0.07 1.14 0.5 9.0 9.5 95 Example 7 10 ppm 70 h, broth 0.11 0.07 1.2 0.8 2.0 39 Example 7 10 ppm 70 h, OA 0.03 1.10 0.2 8.7 8.9 97 Example 8 none pre-lipase/pre-liq. 0.62 0.23 6.7 2.5 9.2 27 Example 8 none post-lipase/pre-liq. 0.57 0.26 6.2 2.8 9.0 31 Example 8 none liquefied mash 0.52 0.36 5.6 4.0 9.6 41 Example 8 none 0.3 h, broth 0.50 0.33 5.7 3.8 9.4 40 Example 8 none 4.8 h, broth 0.47 0.14 5.3 1.6 6.9 24 Example 8 none 4.8 h, OA 0.12 0.32 1.0 2.9 3.9 73 Example 8 none 29 h, broth 0.30 0.05 3.4 0.6 4.0 16 Example 8 none 29 h, OA 0.31 0.46 2.7 4.1 6.9 60 Example 8 none 53 h, broth Example 8 none 53 h, OA 0.47 0.50 4.2 4.4 8.6 51 Example 8 none 70 h, broth 0.22 0.04 2.5 0.5 3.0 17 Example 8 none 70 h, OA 0.40 0.39 3.6 3.5 7.0 49 Example 10 10 ppm pre-lipase/pre-liq. 0.67 0.23 7.4 2.5 9.9 25 Example 10 10 ppm post-lipase/pre-liq. 0.19 0.69 2.1 7.6 9.7 78 Example 10 10 ppm liquefied mash 0.14 0.85 1.6 9.4 11.0 86 Example 10 10 ppm 0.3 h, broth 0.13 0.82 1.5 9.4 10.9 86 Example 10 10 ppm 4.8 h, broth 0.11 0.29 1.3 3.3 4.6 72 Example 10 10 ppm 4.8 h, OA 0.04 0.60 0.3 5.2 5.6 94 Example 10 10 ppm 29 h, broth 0.09 0.14 1.0 1.6 2.6 61 Example 10 10 ppm 29 h, OA 0.01 0.96 0.1 8.4 8.5 99 Example 10 10 ppm 53 h, broth Example 10 10 ppm 53 h, OA 0.02 0.95 0.2 8.3 8.4 98 Example 10 10 ppm 70 h, broth 0.09 0.08 1.1 0.9 1.9 45 Example 10 10 ppm 70 h, OA 0.03 0.99 0.3 8.7 9.0 97
Example 27
Lipase treatment of Ground Whole Corn Kernels or Liquefied Corn Mash for Simultaneous Saccharification and Fermentation with In-situ Product Removal Using Corn Oil Fatty Acids (COFA)
[0268] Five fermentations were run as described above in Examples 9, 11, 12, 13, and 14. For the fermentations run as described in Examples 9, 13, and 14, lipase (10 ppm of Lipolase® total soluble protein) was added after Liquefaction and there was no heat-inactivation of lipase. Fermentations run as described in Examples 9 and 14 had 5 g/L of ethanol added prior to inoculation, whereas the fermentation run as described in Example 13 had no added ethanol. The fermentations run as described in Examples 11 and 12 employed the addition of 10 ppm Lipolase® total soluble protein to the suspension of ground corn prior to liquefaction, resulting in heat inactivation of lipase during liquefaction. The fermentation run as described in Example 11 had 5 g/L of ethanol added prior to inoculation, whereas the fermentation run as described in Example 12 had no added ethanol. The final total grams of isobutanol (i-BuOH) present in the COFA phase of the fermentations containing active lipase was significantly greater than the final total grams of i-BuOH present in the COFA phase of the fermentations containing inactive lipase. The final total grams of isobutanol (i-BuOH) present in the fermentation broths containing active lipase were only slightly less than the final total grams of i-BuOH present in the fermentation broths containing inactive lipase, such that the overall production of i-BuOH (as a combination of free i-BuOH and isobutyl esters of COFA (FABE)) was significantly greater in the presence of active lipase when compared to that obtained in the presence of heat-inactivated lipase. Results are shown in Tables 11 and 12.
TABLE-US-00012 TABLE 11 Dependence of the production of free isobutanol (i-BuOH) and isobutyl esters of COFA (FABE) in fermentations containing corn oil fatty acids (COFA) as ISPR solvent on presence (Examples 9, 13, and 14) or absence (Examples 11 and 12) of active lipase (COFA phase analysis) g i- g i-BuOH total g BuOH/ from i-BuOH/ fermentation kg g FABE/ FABE/ kg fermentation time (h) COFA kg COFA kg COFA COFA Example 9 4.5 2.4 0.0 0 2.4 Example 9 28.8 5.4 70.9 16.5 22.0 Example 9 52.4 8.9 199.0 46.4 55.3 Example 9 69.3 4.9 230.9 53.9 69.3 Example 11 6.6 2.3 0.0 0.0 2.3 Example 11 53.5 25.1 2.9 0.6 25.7 Example 11 71.1 24.4 6.3 1.4 25.8 Example 12 6.6 2.3 0.0 0.0 2.3 Example 12 53.5 12.8 1.6 0.4 13.2 Example 12 71.1 12.8 3.0 0.7 13.5 Example 13 6.6 2.3 0.0 0.0 2.3 Example 13 53.5 4.9 72.1 16.0 20.9 Example 13 71.1 4.6 91.4 20.3 24.9 Example 14 6.6 2.1 0.0 0.0 2.1 Example 14 53.5 9.8 197.2 43.8 53.6 Example 14 71.1 4.9 244.5 54.3 59.2
TABLE-US-00013 TABLE 12 Dependence of the production of free isobutanol (i-BuOH) and isobutyl esters of COFA (FABE) in fermentations containing corn oil fatty acids (COFA) as ISPR solvent on presence (Examples 9, 13, and 14) or absence (Examples 11 and 12) of active lipase (fermentation broth analysis) g i- g i-BuOH total g BuOH/ from i-BuOH/ fermentation kg g FABE/ FABE/ kg sample time (h) broth kg broth kg broth broth Example 9 4.5 0.0 0.0 0 0 Example 9 28.8 0.0 12.6 2.9 2.9 Example 9 52.4 0.0 30.3 7.1 7.1 Example 9 69.3 0.0 24.7 5.8 5.8 Example 11 6.6 0.0 0.0 0 0.0 Example 11 53.5 9.8 0.0 0 9.8 Example 11 71.1 9.5 0.0 0 9.5 Example 12 6.6 0.0 0.0 0 0 Example 12 53.5 3.8 0.0 0.0 3.8 Example 12 71.1 5.1 0.0 0.0 5.1 Example 13 6.6 0.0 0.0 0 0 Example 13 53.5 2.1 3.0 0.7 2.8 Example 13 71.1 2.1 7.4 1.6 3.7 Example 14 6.6 0.0 0.0 0 0.0 Example 14 53.5 2.9 22.4 5.0 7.9 Example 14 71.1 3.3 19.3 4.3 7.6
[0269] While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
[0270] All publications, patents and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains, and are herein incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
Sequence CWU
1
SEQUENCE LISTING
<160> NUMBER OF SEQ ID NOS: 145
<210> SEQ ID NO 1
<211> LENGTH: 11844
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid
<400> SEQUENCE: 1
tcccattacc gacatttggg cgctatacgt gcatatgttc atgtatgtat ctgtatttaa 60
aacacttttg tattattttt cctcatatat gtgtataggt ttatacggat gatttaatta 120
ttacttcacc accctttatt tcaggctgat atcttagcct tgttactagt tagaaaaaga 180
catttttgct gtcagtcact gtcaagagat tcttttgctg gcatttcttc tagaagcaaa 240
aagagcgatg cgtcttttcc gctgaaccgt tccagcaaaa aagactacca acgcaatatg 300
gattgtcaga atcatataaa agagaagcaa ataactcctt gtcttgtatc aattgcatta 360
taatatcttc ttgttagtgc aatatcatat agaagtcatc gaaatagata ttaagaaaaa 420
caaactgtac aatcaatcaa tcaatcatcg ctgaggatgt tgacaaaagc aacaaaagaa 480
caaaaatccc ttgtgaaaaa cagaggggcg gagcttgttg ttgattgctt agtggagcaa 540
ggtgtcacac atgtatttgg cattccaggt gcaaaaattg atgcggtatt tgacgcttta 600
caagataaag gacctgaaat tatcgttgcc cggcacgaac aaaacgcagc attcatggcc 660
caagcagtcg gccgtttaac tggaaaaccg ggagtcgtgt tagtcacatc aggaccgggt 720
gcctctaact tggcaacagg cctgctgaca gcgaacactg aaggagaccc tgtcgttgcg 780
cttgctggaa acgtgatccg tgcagatcgt ttaaaacgga cacatcaatc tttggataat 840
gcggcgctat tccagccgat tacaaaatac agtgtagaag ttcaagatgt aaaaaatata 900
ccggaagctg ttacaaatgc atttaggata gcgtcagcag ggcaggctgg ggccgctttt 960
gtgagctttc cgcaagatgt tgtgaatgaa gtcacaaata cgaaaaacgt gcgtgctgtt 1020
gcagcgccaa aactcggtcc tgcagcagat gatgcaatca gtgcggccat agcaaaaatc 1080
caaacagcaa aacttcctgt cgttttggtc ggcatgaaag gcggaagacc ggaagcaatt 1140
aaagcggttc gcaagctttt gaaaaaggtt cagcttccat ttgttgaaac atatcaagct 1200
gccggtaccc tttctagaga tttagaggat caatattttg gccgtatcgg tttgttccgc 1260
aaccagcctg gcgatttact gctagagcag gcagatgttg ttctgacgat cggctatgac 1320
ccgattgaat atgatccgaa attctggaat atcaatggag accggacaat tatccattta 1380
gacgagatta tcgctgacat tgatcatgct taccagcctg atcttgaatt gatcggtgac 1440
attccgtcca cgatcaatca tatcgaacac gatgctgtga aagtggaatt tgcagagcgt 1500
gagcagaaaa tcctttctga tttaaaacaa tatatgcatg aaggtgagca ggtgcctgca 1560
gattggaaat cagacagagc gcaccctctt gaaatcgtta aagagttgcg taatgcagtc 1620
gatgatcatg ttacagtaac ttgcgatatc ggttcgcacg ccatttggat gtcacgttat 1680
ttccgcagct acgagccgtt aacattaatg atcagtaacg gtatgcaaac actcggcgtt 1740
gcgcttcctt gggcaatcgg cgcttcattg gtgaaaccgg gagaaaaagt ggtttctgtc 1800
tctggtgacg gcggtttctt attctcagca atggaattag agacagcagt tcgactaaaa 1860
gcaccaattg tacacattgt atggaacgac agcacatatg acatggttgc attccagcaa 1920
ttgaaaaaat ataaccgtac atctgcggtc gatttcggaa atatcgatat cgtgaaatat 1980
gcggaaagct tcggagcaac tggcttgcgc gtagaatcac cagaccagct ggcagatgtt 2040
ctgcgtcaag gcatgaacgc tgaaggtcct gtcatcatcg atgtcccggt tgactacagt 2100
gataacatta atttagcaag tgacaagctt ccgaaagaat tcggggaact catgaaaacg 2160
aaagctctct agttaattaa tcatgtaatt agttatgtca cgcttacatt cacgccctcc 2220
ccccacatcc gctctaaccg aaaaggaagg agttagacaa cctgaagtct aggtccctat 2280
ttattttttt atagttatgt tagtattaag aacgttattt atatttcaaa tttttctttt 2340
ttttctgtac agacgcgtgt acgcatgtaa cattatactg aaaaccttgc ttgagaaggt 2400
tttgggacgc tcgaaggctt taatttgcgg gcggccgcac ctggtaaaac ctctagtgga 2460
gtagtagatg taatcaatga agcggaagcc aaaagaccag agtagaggcc tatagaagaa 2520
actgcgatac cttttgtgat ggctaaacaa acagacatct ttttatatgt ttttacttct 2580
gtatatcgtg aagtagtaag tgataagcga atttggctaa gaacgttgta agtgaacaag 2640
ggacctcttt tgcctttcaa aaaaggatta aatggagtta atcattgaga tttagttttc 2700
gttagattct gtatccctaa ataactccct tacccgacgg gaaggcacaa aagacttgaa 2760
taatagcaaa cggccagtag ccaagaccaa ataatactag agttaactga tggtcttaaa 2820
caggcattac gtggtgaact ccaagaccaa tatacaaaat atcgataagt tattcttgcc 2880
caccaattta aggagcctac atcaggacag tagtaccatt cctcagagaa gaggtataca 2940
taacaagaaa atcgcgtgaa caccttatat aacttagccc gttattgagc taaaaaacct 3000
tgcaaaattt cctatgaata agaatacttc agacgtgata aaaatttact ttctaactct 3060
tctcacgctg cccctatctg ttcttccgct ctaccgtgag aaataaagca tcgagtacgg 3120
cagttcgctg tcactgaact aaaacaataa ggctagttcg aatgatgaac ttgcttgctg 3180
tcaaacttct gagttgccgc tgatgtgaca ctgtgacaat aaattcaaac cggttatagc 3240
ggtctcctcc ggtaccggtt ctgccacctc caatagagct cagtaggagt cagaacctct 3300
gcggtggctg tcagtgactc atccgcgttt cgtaagttgt gcgcgtgcac atttcgcccg 3360
ttcccgctca tcttgcagca ggcggaaatt ttcatcacgc tgtaggacgc aaaaaaaaaa 3420
taattaatcg tacaagaatc ttggaaaaaa aattgaaaaa ttttgtataa aagggatgac 3480
ctaacttgac tcaatggctt ttacacccag tattttccct ttccttgttt gttacaatta 3540
tagaagcaag acaaaaacat atagacaacc tattcctagg agttatattt ttttacccta 3600
ccagcaatat aagtaaaaaa ctgtttaaac agtatggcag ttacaatgta ttatgaagat 3660
gatgtagaag tatcagcact tgctggaaag caaattgcag taatcggtta tggttcacaa 3720
ggacatgctc acgcacagaa tttgcgtgat tctggtcaca acgttatcat tggtgtgcgc 3780
cacggaaaat cttttgataa agcaaaagaa gatggctttg aaacatttga agtaggagaa 3840
gcagtagcta aagctgatgt tattatggtt ttggcaccag atgaacttca acaatccatt 3900
tatgaagagg acatcaaacc aaacttgaaa gcaggttcag cacttggttt tgctcacgga 3960
tttaatatcc attttggcta tattaaagta ccagaagacg ttgacgtctt tatggttgcg 4020
cctaaggctc caggtcacct tgtccgtcgg acttatactg aaggttttgg tacaccagct 4080
ttgtttgttt cacaccaaaa tgcaagtggt catgcgcgtg aaatcgcaat ggattgggcc 4140
aaaggaattg gttgtgctcg agtgggaatt attgaaacaa cttttaaaga agaaacagaa 4200
gaagatttgt ttggagaaca agctgttcta tgtggaggtt tgacagcact tgttgaagcc 4260
ggttttgaaa cactgacaga agctggatac gctggcgaat tggcttactt tgaagttttg 4320
cacgaaatga aattgattgt tgacctcatg tatgaaggtg gttttactaa aatgcgtcaa 4380
tccatctcaa atactgctga gtttggcgat tatgtgactg gtccacggat tattactgac 4440
gaagttaaaa agaatatgaa gcttgttttg gctgatattc aatctggaaa atttgctcaa 4500
gatttcgttg atgacttcaa agcggggcgt ccaaaattaa tagcctatcg cgaagctgca 4560
aaaaatcttg aaattgaaaa aattggggca gagctacgtc aagcaatgcc attcacacaa 4620
tctggtgatg acgatgcctt taaaatctat cagtaaggcc ctgcaggcct atcaagtgct 4680
ggaaactttt tctcttggaa tttttgcaac atcaagtcat agtcaattga attgacccaa 4740
tttcacattt aagatttttt ttttttcatc cgacatacat ctgtacacta ggaagccctg 4800
tttttctgaa gcagcttcaa atatatatat tttttacata tttattatga ttcaatgaac 4860
aatctaatta aatcgaaaac aagaaccgaa acgcgaataa ataatttatt tagatggtga 4920
caagtgtata agtcctcatc gggacagcta cgatttctct ttcggttttg gctgagctac 4980
tggttgctgt gacgcagcgg cattagcgcg gcgttatgag ctaccctcgt ggcctgaaag 5040
atggcgggaa taaagcggaa ctaaaaatta ctgactgagc catattgagg tcaatttgtc 5100
aactcgtcaa gtcacgtttg gtggacggcc cctttccaac gaatcgtata tactaacatg 5160
cgcgcgcttc ctatatacac atatacatat atatatatat atatatgtgt gcgtgtatgt 5220
gtacacctgt atttaatttc cttactcgcg ggtttttctt ttttctcaat tcttggcttc 5280
ctctttctcg agcggaccgg atcctccgcg gtgccggcag atctatttaa atggcgcgcc 5340
gacgtcaggt ggcacttttc ggggaaatgt gcgcggaacc cctatttgtt tatttttcta 5400
aatacattca aatatgtatc cgctcatgag acaataaccc tgataaatgc ttcaataata 5460
ttgaaaaagg aagagtatga gtattcaaca tttccgtgtc gcccttattc ccttttttgc 5520
ggcattttgc cttcctgttt ttgctcaccc agaaacgctg gtgaaagtaa aagatgctga 5580
agatcagttg ggtgcacgag tgggttacat cgaactggat ctcaacagcg gtaagatcct 5640
tgagagtttt cgccccgaag aacgttttcc aatgatgagc acttttaaag ttctgctatg 5700
tggcgcggta ttatcccgta ttgacgccgg gcaagagcaa ctcggtcgcc gcatacacta 5760
ttctcagaat gacttggttg agtactcacc agtcacagaa aagcatctta cggatggcat 5820
gacagtaaga gaattatgca gtgctgccat aaccatgagt gataacactg cggccaactt 5880
acttctgaca acgatcggag gaccgaagga gctaaccgct tttttgcaca acatggggga 5940
tcatgtaact cgccttgatc gttgggaacc ggagctgaat gaagccatac caaacgacga 6000
gcgtgacacc acgatgcctg tagcaatggc aacaacgttg cgcaaactat taactggcga 6060
actacttact ctagcttccc ggcaacaatt aatagactgg atggaggcgg ataaagttgc 6120
aggaccactt ctgcgctcgg cccttccggc tggctggttt attgctgata aatctggagc 6180
cggtgagcgt gggtctcgcg gtatcattgc agcactgggg ccagatggta agccctcccg 6240
tatcgtagtt atctacacga cggggagtca ggcaactatg gatgaacgaa atagacagat 6300
cgctgagata ggtgcctcac tgattaagca ttggtaactg tcagaccaag tttactcata 6360
tatactttag attgatttaa aacttcattt ttaatttaaa aggatctagg tgaagatcct 6420
ttttgataat ctcatgacca aaatccctta acgtgagttt tcgttccact gagcgtcaga 6480
ccccgtagaa aagatcaaag gatcttcttg agatcctttt tttctgcgcg taatctgctg 6540
cttgcaaaca aaaaaaccac cgctaccagc ggtggtttgt ttgccggatc aagagctacc 6600
aactcttttt ccgaaggtaa ctggcttcag cagagcgcag ataccaaata ctgttcttct 6660
agtgtagccg tagttaggcc accacttcaa gaactctgta gcaccgccta catacctcgc 6720
tctgctaatc ctgttaccag tggctgctgc cagtggcgat aagtcgtgtc ttaccgggtt 6780
ggactcaaga cgatagttac cggataaggc gcagcggtcg ggctgaacgg ggggttcgtg 6840
cacacagccc agcttggagc gaacgaccta caccgaactg agatacctac agcgtgagct 6900
atgagaaagc gccacgcttc ccgaagggag aaaggcggac aggtatccgg taagcggcag 6960
ggtcggaaca ggagagcgca cgagggagct tccaggggga aacgcctggt atctttatag 7020
tcctgtcggg tttcgccacc tctgacttga gcgtcgattt ttgtgatgct cgtcaggggg 7080
gcggagccta tggaaaaacg ccagcaacgc ggccttttta cggttcctgg ccttttgctg 7140
gccttttgct cacatgttct ttcctgcgtt atcccctgat tctgtggata accgtattac 7200
cgcctttgag tgagctgata ccgctcgccg cagccgaacg accgagcgca gcgagtcagt 7260
gagcgaggaa gcggaagagc gcccaatacg caaaccgcct ctccccgcgc gttggccgat 7320
tcattaatgc agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc 7380
aattaatgtg agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc 7440
tcgtatgttg tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca 7500
tgattacgcc aagctttttc tttccaattt tttttttttc gtcattataa aaatcattac 7560
gaccgagatt cccgggtaat aactgatata attaaattga agctctaatt tgtgagttta 7620
gtatacatgc atttacttat aatacagttt tttagttttg ctggccgcat cttctcaaat 7680
atgcttccca gcctgctttt ctgtaacgtt caccctctac cttagcatcc cttccctttg 7740
caaatagtcc tcttccaaca ataataatgt cagatcctgt agagaccaca tcatccacgg 7800
ttctatactg ttgacccaat gcgtctccct tgtcatctaa acccacaccg ggtgtcataa 7860
tcaaccaatc gtaaccttca tctcttccac ccatgtctct ttgagcaata aagccgataa 7920
caaaatcttt gtcgctcttc gcaatgtcaa cagtaccctt agtatattct ccagtagata 7980
gggagccctt gcatgacaat tctgctaaca tcaaaaggcc tctaggttcc tttgttactt 8040
cttctgccgc ctgcttcaaa ccgctaacaa tacctgggcc caccacaccg tgtgcattcg 8100
taatgtctgc ccattctgct attctgtata cacccgcaga gtactgcaat ttgactgtat 8160
taccaatgtc agcaaatttt ctgtcttcga agagtaaaaa attgtacttg gcggataatg 8220
cctttagcgg cttaactgtg ccctccatgg aaaaatcagt caagatatcc acatgtgttt 8280
ttagtaaaca aattttggga cctaatgctt caactaactc cagtaattcc ttggtggtac 8340
gaacatccaa tgaagcacac aagtttgttt gcttttcgtg catgatatta aatagcttgg 8400
cagcaacagg actaggatga gtagcagcac gttccttata tgtagctttc gacatgattt 8460
atcttcgttt cctgcaggtt tttgttctgt gcagttgggt taagaatact gggcaatttc 8520
atgtttcttc aacactacat atgcgtatat ataccaatct aagtctgtgc tccttccttc 8580
gttcttcctt ctgttcggag attaccgaat caaaaaaatt tcaaggaaac cgaaatcaaa 8640
aaaaagaata aaaaaaaaat gatgaattga aaagcttgca tgcctgcagg tcgactctag 8700
tatactccgt ctactgtacg atacacttcc gctcaggtcc ttgtccttta acgaggcctt 8760
accactcttt tgttactcta ttgatccagc tcagcaaagg cagtgtgatc taagattcta 8820
tcttcgcgat gtagtaaaac tagctagacc gagaaagaga ctagaaatgc aaaaggcact 8880
tctacaatgg ctgccatcat tattatccga tgtgacgctg catttttttt tttttttttt 8940
tttttttttt tttttttttt tttttttttt ttttgtacaa atatcataaa aaaagagaat 9000
ctttttaagc aaggattttc ttaacttctt cggcgacagc atcaccgact tcggtggtac 9060
tgttggaacc acctaaatca ccagttctga tacctgcatc caaaaccttt ttaactgcat 9120
cttcaatggc tttaccttct tcaggcaagt tcaatgacaa tttcaacatc attgcagcag 9180
acaagatagt ggcgataggg ttgaccttat tctttggcaa atctggagcg gaaccatggc 9240
atggttcgta caaaccaaat gcggtgttct tgtctggcaa agaggccaag gacgcagatg 9300
gcaacaaacc caaggagcct gggataacgg aggcttcatc ggagatgata tcaccaaaca 9360
tgttgctggt gattataata ccatttaggt gggttgggtt cttaactagg atcatggcgg 9420
cagaatcaat caattgatgt tgaactttca atgtagggaa ttcgttcttg atggtttcct 9480
ccacagtttt tctccataat cttgaagagg ccaaaacatt agctttatcc aaggaccaaa 9540
taggcaatgg tggctcatgt tgtagggcca tgaaagcggc cattcttgtg attctttgca 9600
cttctggaac ggtgtattgt tcactatccc aagcgacacc atcaccatcg tcttcctttc 9660
tcttaccaaa gtaaatacct cccactaatt ctctaacaac aacgaagtca gtacctttag 9720
caaattgtgg cttgattgga gataagtcta aaagagagtc ggatgcaaag ttacatggtc 9780
ttaagttggc gtacaattga agttctttac ggatttttag taaaccttgt tcaggtctaa 9840
cactaccggt accccattta ggaccaccca cagcacctaa caaaacggca tcagccttct 9900
tggaggcttc cagcgcctca tctggaagtg gaacacctgt agcatcgata gcagcaccac 9960
caattaaatg attttcgaaa tcgaacttga cattggaacg aacatcagaa atagctttaa 10020
gaaccttaat ggcttcggct gtgatttctt gaccaacgtg gtcacctggc aaaacgacga 10080
tcttcttagg ggcagacatt acaatggtat atccttgaaa tatatataaa aaaaaaaaaa 10140
aaaaaaaaaa aaaaaaatgc agcttctcaa tgatattcga atacgctttg aggagataca 10200
gcctaatatc cgacaaactg ttttacagat ttacgatcgt acttgttacc catcattgaa 10260
ttttgaacat ccgaacctgg gagttttccc tgaaacagat agtatatttg aacctgtata 10320
ataatatata gtctagcgct ttacggaaga caatgtatgt atttcggttc ctggagaaac 10380
tattgcatct attgcatagg taatcttgca cgtcgcatcc ccggttcatt ttctgcgttt 10440
ccatcttgca cttcaatagc atatctttgt taacgaagca tctgtgcttc attttgtaga 10500
acaaaaatgc aacgcgagag cgctaatttt tcaaacaaag aatctgagct gcatttttac 10560
agaacagaaa tgcaacgcga aagcgctatt ttaccaacga agaatctgtg cttcattttt 10620
gtaaaacaaa aatgcaacgc gagagcgcta atttttcaaa caaagaatct gagctgcatt 10680
tttacagaac agaaatgcaa cgcgagagcg ctattttacc aacaaagaat ctatacttct 10740
tttttgttct acaaaaatgc atcccgagag cgctattttt ctaacaaagc atcttagatt 10800
actttttttc tcctttgtgc gctctataat gcagtctctt gataactttt tgcactgtag 10860
gtccgttaag gttagaagaa ggctactttg gtgtctattt tctcttccat aaaaaaagcc 10920
tgactccact tcccgcgttt actgattact agcgaagctg cgggtgcatt ttttcaagat 10980
aaaggcatcc ccgattatat tctataccga tgtggattgc gcatactttg tgaacagaaa 11040
gtgatagcgt tgatgattct tcattggtca gaaaattatg aacggtttct tctattttgt 11100
ctctatatac tacgtatagg aaatgtttac attttcgtat tgttttcgat tcactctatg 11160
aatagttctt actacaattt ttttgtctaa agagtaatac tagagataaa cataaaaaat 11220
gtagaggtcg agtttagatg caagttcaag gagcgaaagg tggatgggta ggttatatag 11280
ggatatagca cagagatata tagcaaagag atacttttga gcaatgtttg tggaagcggt 11340
attcgcaata ttttagtagc tcgttacagt ccggtgcgtt tttggttttt tgaaagtgcg 11400
tcttcagagc gcttttggtt ttcaaaagcg ctctgaagtt cctatacttt ctagagaata 11460
ggaacttcgg aataggaact tcaaagcgtt tccgaaaacg agcgcttccg aaaatgcaac 11520
gcgagctgcg cacatacagc tcactgttca cgtcgcacct atatctgcgt gttgcctgta 11580
tatatatata catgagaaga acggcatagt gcgtgtttat gcttaaatgc gtacttatat 11640
gcgtctattt atgtaggatg aaaggtagtc tagtacctcc tgtgatatta tcccattcca 11700
tgcggggtat cgtatgcttc cttcagcact accctttagc tgttctatat gctgccactc 11760
ctcaattgga ttagtctcat ccttcaatgc tatcatttcc tttgatattg gatcatatgc 11820
atagtaccga gaaactagag gatc 11844
<210> SEQ ID NO 2
<211> LENGTH: 15539
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid
<400> SEQUENCE: 2
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataaatt cccgttttaa gagcttggtg agcgctagga gtcactgcca ggtatcgttt 240
gaacacggca ttagtcaggg aagtcataac acagtccttt cccgcaattt tctttttcta 300
ttactcttgg cctcctctag tacactctat atttttttat gcctcggtaa tgattttcat 360
tttttttttt ccacctagcg gatgactctt tttttttctt agcgattggc attatcacat 420
aatgaattat acattatata aagtaatgtg atttcttcga agaatatact aaaaaatgag 480
caggcaagat aaacgaaggc aaagatgaca gagcagaaag ccctagtaaa gcgtattaca 540
aatgaaacca agattcagat tgcgatctct ttaaagggtg gtcccctagc gatagagcac 600
tcgatcttcc cagaaaaaga ggcagaagca gtagcagaac aggccacaca atcgcaagtg 660
attaacgtcc acacaggtat agggtttctg gaccatatga tacatgctct ggccaagcat 720
tccggctggt cgctaatcgt tgagtgcatt ggtgacttac acatagacga ccatcacacc 780
actgaagact gcgggattgc tctcggtcaa gcttttaaag aggccctagg ggccgtgcgt 840
ggagtaaaaa ggtttggatc aggatttgcg cctttggatg aggcactttc cagagcggtg 900
gtagatcttt cgaacaggcc gtacgcagtt gtcgaacttg gtttgcaaag ggagaaagta 960
ggagatctct cttgcgagat gatcccgcat tttcttgaaa gctttgcaga ggctagcaga 1020
attaccctcc acgttgattg tctgcgaggc aagaatgatc atcaccgtag tgagagtgcg 1080
ttcaaggctc ttgcggttgc cataagagaa gccacctcgc ccaatggtac caacgatgtt 1140
ccctccacca aaggtgttct tatgtagtga caccgattat ttaaagctgc agcatacgat 1200
atatatacat gtgtatatat gtatacctat gaatgtcagt aagtatgtat acgaacagta 1260
tgatactgaa gatgacaagg taatgcatca ttctatacgt gtcattctga acgaggcgcg 1320
ctttcctttt ttctttttgc tttttctttt tttttctctt gaactcgacg gatctatgcg 1380
gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggaaat tgtaagcgtt 1440
aatattttgt taaaattcgc gttaaatttt tgttaaatca gctcattttt taaccaatag 1500
gccgaaatcg gcaaaatccc ttataaatca aaagaataga ccgagatagg gttgagtgtt 1560
gttccagttt ggaacaagag tccactatta aagaacgtgg actccaacgt caaagggcga 1620
aaaaccgtct atcagggcga tggcccacta cgtgaaccat caccctaatc aagttttttg 1680
gggtcgaggt gccgtaaagc actaaatcgg aaccctaaag ggagcccccg atttagagct 1740
tgacggggaa agccggcgaa cgtggcgaga aaggaaggga agaaagcgaa aggagcgggc 1800
gctagggcgc tggcaagtgt agcggtcacg ctgcgcgtaa ccaccacacc cgccgcgctt 1860
aatgcgccgc tacagggcgc gtccattcgc cattcaggct gcgcaactgt tgggaagggc 1920
gcggtgcggg cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga 1980
ttaagttggg taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag 2040
cgcgcgtaat acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac 2100
ggcgcgccac tggtagagag cgactttgta tgccccaatt gcgaaacccg cgatatcctt 2160
ctcgattctt tagtacccga ccaggacaag gaaaaggagg tcgaaacgtt tttgaagaaa 2220
caagaggaac tacacggaag ctctaaagat ggcaaccagc cagaaactaa gaaaatgaag 2280
ttgatggatc caactggcac cgctggcttg aacaacaata ccagccttcc aacttctgta 2340
aataacggcg gtacgccagt gccaccagta ccgttacctt tcggtatacc tcctttcccc 2400
atgtttccaa tgcccttcat gcctccaacg gctactatca caaatcctca tcaagctgac 2460
gcaagcccta agaaatgaat aacaatactg acagtactaa ataattgcct acttggcttc 2520
acatacgttg catacgtcga tatagataat aatgataatg acagcaggat tatcgtaata 2580
cgtaatagct gaaaatctca aaaatgtgtg ggtcattacg taaataatga taggaatggg 2640
attcttctat ttttcctttt tccattctag cagccgtcgg gaaaacgtgg catcctctct 2700
ttcgggctca attggagtca cgctgccgtg agcatcctct ctttccatat ctaacaactg 2760
agcacgtaac caatggaaaa gcatgagctt agcgttgctc caaaaaagta ttggatggtt 2820
aataccattt gtctgttctc ttctgacttt gactcctcaa aaaaaaaaat ctacaatcaa 2880
cagatcgctt caattacgcc ctcacaaaaa cttttttcct tcttcttcgc ccacgttaaa 2940
ttttatccct catgttgtct aacggatttc tgcacttgat ttattataaa aagacaaaga 3000
cataatactt ctctatcaat ttcagttatt gttcttcctt gcgttattct tctgttcttc 3060
tttttctttt gtcatatata accataacca agtaatacat attcaaacta gtatgactga 3120
caaaaaaact cttaaagact taagaaatcg tagttctgtt tacgattcaa tggttaaatc 3180
acctaatcgt gctatgttgc gtgcaactgg tatgcaagat gaagactttg aaaaacctat 3240
cgtcggtgtc atttcaactt gggctgaaaa cacaccttgt aatatccact tacatgactt 3300
tggtaaacta gccaaagtcg gtgttaagga agctggtgct tggccagttc agttcggaac 3360
aatcacggtt tctgatggaa tcgccatggg aacccaagga atgcgtttct ccttgacatc 3420
tcgtgatatt attgcagatt ctattgaagc agccatggga ggtcataatg cggatgcttt 3480
tgtagccatt ggcggttgtg ataaaaacat gcccggttct gttatcgcta tggctaacat 3540
ggatatccca gccatttttg cttacggcgg aacaattgca cctggtaatt tagacggcaa 3600
agatatcgat ttagtctctg tctttgaagg tgtcggccat tggaaccacg gcgatatgac 3660
caaagaagaa gttaaagctt tggaatgtaa tgcttgtccc ggtcctggag gctgcggtgg 3720
tatgtatact gctaacacaa tggcgacagc tattgaagtt ttgggactta gccttccggg 3780
ttcatcttct cacccggctg aatccgcaga aaagaaagca gatattgaag aagctggtcg 3840
cgctgttgtc aaaatgctcg aaatgggctt aaaaccttct gacattttaa cgcgtgaagc 3900
ttttgaagat gctattactg taactatggc tctgggaggt tcaaccaact caacccttca 3960
cctcttagct attgcccatg ctgctaatgt ggaattgaca cttgatgatt tcaatacttt 4020
ccaagaaaaa gttcctcatt tggctgattt gaaaccttct ggtcaatatg tattccaaga 4080
cctttacaag gtcggagggg taccagcagt tatgaaatat ctccttaaaa atggcttcct 4140
tcatggtgac cgtatcactt gtactggcaa aacagtcgct gaaaatttga aggcttttga 4200
tgatttaaca cctggtcaaa aggttattat gccgcttgaa aatcctaaac gtgaagatgg 4260
tccgctcatt attctccatg gtaacttggc tccagacggt gccgttgcca aagtttctgg 4320
tgtaaaagtg cgtcgtcatg tcggtcctgc taaggtcttt aattctgaag aagaagccat 4380
tgaagctgtc ttgaatgatg atattgttga tggtgatgtt gttgtcgtac gttttgtagg 4440
accaaagggc ggtcctggta tgcctgaaat gctttccctt tcatcaatga ttgttggtaa 4500
agggcaaggt gaaaaagttg cccttctgac agatggccgc ttctcaggtg gtacttatgg 4560
tcttgtcgtg ggtcatatcg ctcctgaagc acaagatggc ggtccaatcg cctacctgca 4620
aacaggagac atagtcacta ttgaccaaga cactaaggaa ttacactttg atatctccga 4680
tgaagagtta aaacatcgtc aagagaccat tgaattgcca ccgctctatt cacgcggtat 4740
ccttggtaaa tatgctcaca tcgtttcgtc tgcttctagg ggagccgtaa cagacttttg 4800
gaagcctgaa gaaactggca aaaaatgttg tcctggttgc tgtggttaag cggccgcgtt 4860
aattcaaatt aattgatata gttttttaat gagtattgaa tctgtttaga aataatggaa 4920
tattattttt atttatttat ttatattatt ggtcggctct tttcttctga aggtcaatga 4980
caaaatgata tgaaggaaat aatgatttct aaaattttac aacgtaagat atttttacaa 5040
aagcctagct catcttttgt catgcactat tttactcacg cttgaaatta acggccagtc 5100
cactgcggag tcatttcaaa gtcatcctaa tcgatctatc gtttttgata gctcattttg 5160
gagttcgcga ttgtcttctg ttattcacaa ctgttttaat ttttatttca ttctggaact 5220
cttcgagttc tttgtaaagt ctttcatagt agcttacttt atcctccaac atatttaact 5280
tcatgtcaat ttcggctctt aaattttcca catcatcaag ttcaacatca tcttttaact 5340
tgaatttatt ctctagctct tccaaccaag cctcattgct ccttgattta ctggtgaaaa 5400
gtgatacact ttgcgcgcaa tccaggtcaa aactttcctg caaagaattc accaatttct 5460
cgacatcata gtacaatttg ttttgttctc ccatcacaat ttaatatacc tgatggattc 5520
ttatgaagcg ctgggtaatg gacgtgtcac tctacttcgc ctttttccct actcctttta 5580
gtacggaaga caatgctaat aaataagagg gtaataataa tattattaat cggcaaaaaa 5640
gattaaacgc caagcgttta attatcagaa agcaaacgtc gtaccaatcc ttgaatgctt 5700
cccaattgta tattaagagt catcacagca acatattctt gttattaaat taattattat 5760
tgatttttga tattgtataa aaaaaccaaa tatgtataaa aaaagtgaat aaaaaatacc 5820
aagtatggag aaatatatta gaagtctata cgttaaacca cccgggcccc ccctcgaggt 5880
cgacggtatc gataagcttg atatcgaatt cctgcagccc gggggatcca ctagttctag 5940
agcggccgct ctagaactag taccacaggt gttgtcctct gaggacataa aatacacacc 6000
gagattcatc aactcattgc tggagttagc atatctacaa ttgggtgaaa tggggagcga 6060
tttgcaggca tttgctcggc atgccggtag aggtgtggtc aataagagcg acctcatgct 6120
atacctgaga aagcaacctg acctacagga aagagttact caagaataag aattttcgtt 6180
ttaaaaccta agagtcactt taaaatttgt atacacttat tttttttata acttatttaa 6240
taataaaaat cataaatcat aagaaattcg cttactctta attaatcaaa aagttaaaat 6300
tgtacgaata gattcaccac ttcttaacaa atcaaaccct tcattgattt tctcgaatgg 6360
caatacatgt gtaattaaag gatcaagagc aaacttcttc gccataaagt cggcaacaag 6420
ttttggaaca ctatccttgc tcttaaaacc gccaaatata gctcccttcc atgtacgacc 6480
gcttagcaac agcataggat tcatcgacaa attttgtgaa tcaggaggaa cacctacgat 6540
cacactgact ccatatgcct cttgacagca ggacaacgca gttaccatag tatcaagacg 6600
gcctataact tcaaaagaga aatcaactcc accgtttgac atttcagtaa ggacttcttg 6660
tattggtttc ttataatctt gagggttaac acattcagta gccccgacct ccttagcttt 6720
tgcaaatttg tccttattga tgtctacacc tataatcctc gctgcgcctg cagctttaca 6780
ccccataata acgcttagtc ctactcctcc taaaccgaat actgcacaag tcgaaccctg 6840
tgtaaccttt gcaactttaa ctgcggaacc gtaaccggtg gaaaatccgc accctatcaa 6900
gcaaactttt tccagtggtg aagctgcatc gattttagcg acagatatct cgtccaccac 6960
tgtgtattgg gaaaatgtag aagtaccaag gaaatggtgt ataggtttcc ctctgcatgt 7020
aaatctgctt gtaccatcct gcatagtacc tctaggcata gacaaatcat ttttaaggca 7080
gaaattaccc tcaggatgtt tgcagactct acacttacca cattgaggag tgaacagtgg 7140
gatcacttta tcaccaggac gaacagtggt aacaccttca cctatggatt caacgattcc 7200
ggcagcctcg tgtcccgcga ttactggcaa aggagtaact agagtgccac tcaccacatg 7260
gtcgtcggat ctacagattc cggtggcaac catcttgatt ctaacctcgt gtgcttttgg 7320
tggcgctact tctacttctt ctatgctaaa cggctttttc tcttcccaca aaactgccgc 7380
tttacactta ataactttac cggctgttga catcctcagc tagctattgt aatatgtgtg 7440
tttgtttgga ttattaagaa gaataattac aaaaaaaatt acaaaggaag gtaattacaa 7500
cagaattaag aaaggacaag aaggaggaag agaatcagtt cattatttct tctttgttat 7560
ataacaaacc caagtagcga tttggccata cattaaaagt tgagaaccac cctccctggc 7620
aacagccaca actcgttacc attgttcatc acgatcatga aactcgctgt cagctgaaat 7680
ttcacctcag tggatctctc tttttattct tcatcgttcc actaaccttt ttccatcagc 7740
tggcagggaa cggaaagtgg aatcccattt agcgagcttc ctcttttctt caagaaaaga 7800
cgaagcttgt gtgtgggtgc gcgcgctagt atctttccac attaagaaat ataccataaa 7860
ggttacttag acatcactat ggctatatat atatatatat atatatgtaa cttagcacca 7920
tcgcgcgtgc atcactgcat gtgttaaccg aaaagtttgg cgaacacttc accgacacgg 7980
tcatttagat ctgtcgtctg cattgcacgt cccttagcct taaatcctag gcgggagcat 8040
tctcgtgtaa ttgtgcagcc tgcgtagcaa ctcaacatag cgtagtctac ccagtttttc 8100
aagggtttat cgttagaaga ttctcccttt tcttcctgct cacaaatctt aaagtcatac 8160
attgcacgac taaatgcaag catgcggatc ccccgggctg caggaattcg atatcaagct 8220
tatcgatacc gtcgactggc cattaatctt tcccatatta gatttcgcca agccatgaaa 8280
gttcaagaaa ggtctttaga cgaattaccc ttcatttctc aaactggcgt caagggatcc 8340
tggtatggtt ttatcgtttt atttctggtt cttatagcat cgttttggac ttctctgttc 8400
ccattaggcg gttcaggagc cagcgcagaa tcattctttg aaggatactt atcctttcca 8460
attttgattg tctgttacgt tggacataaa ctgtatacta gaaattggac tttgatggtg 8520
aaactagaag atatggatct tgataccggc agaaaacaag tagatttgac tcttcgtagg 8580
gaagaaatga ggattgagcg agaaacatta gcaaaaagat ccttcgtaac aagattttta 8640
catttctggt gttgaaggga aagatatgag ctatacagcg gaatttccat atcactcaga 8700
ttttgttatc taattttttc cttcccacgt ccgcgggaat ctgtgtatat tactgcatct 8760
agatatatgt tatcttatct tggcgcgtac atttaatttt caacgtattc tataagaaat 8820
tgcgggagtt tttttcatgt agatgatact gactgcacgc aaatataggc atgatttata 8880
ggcatgattt gatggctgta ccgataggaa cgctaagagt aacttcagaa tcgttatcct 8940
ggcggaaaaa attcatttgt aaactttaaa aaaaaaagcc aatatcccca aaattattaa 9000
gagcgcctcc attattaact aaaatttcac tcagcatcca caatgtatca ggtatctact 9060
acagatatta catgtggcga aaaagacaag aacaatgcaa tagcgcatca agaaaaaaca 9120
caaagctttc aatcaatgaa tcgaaaatgt cattaaaata gtatataaat tgaaactaag 9180
tcataaagct ataaaaagaa aatttattta aatgcaagat ttaaagtaaa ttcacggccc 9240
tgcaggcctc agctcttgtt ttgttctgca aataacttac ccatcttttt caaaacttta 9300
ggtgcaccct cctttgctag aataagttct atccaataca tcctatttgg atctgcttga 9360
gcttctttca tcacggatac gaattcattt tctgttctca caattttgga cacaactctg 9420
tcttccgttg ccccgaaact ttctggcagt tttgagtaat tccacatagg aatgtcatta 9480
taactctggt tcggaccatg aatttccctc tcaaccgtgt aaccatcgtt attaatgata 9540
aagcagattg ggtttatctt ctctctaatg gctagtccta attcttggac agtcagttgc 9600
aatgatccat ctccgataaa caataaatgt ctagattctt tatctgcaat ttggctgcct 9660
agagctgcgg ggaaagtgta tcctatagat ccccacaagg gttgaccaat aaaatgtgat 9720
ttcgatttca gaaatataga tgaggcaccg aagaaagaag tgccttgttc agccacgatc 9780
gtctcattac tttgggtcaa attttcgaca gcttgccaca gtctatcttg tgacaacagc 9840
gcgttagaag gtacaaaatc ttcttgcttt ttatctatgt acttgccttt atattcaatt 9900
tcggacaagt caagaagaga tgatatcagg gattcgaagt cgaaattttg gattctttcg 9960
ttgaaaattt taccttcatc gatattcaag gaaatcattt tattttcatt aagatggtga 10020
gtaaatgcac ccgtactaga atcggtaagc tttacaccca acataagaat aaaatcagca 10080
gattccacaa attccttcaa gtttggctct gacagagtac cgttgtaaat ccccaaaaat 10140
gagggcaatg cttcatcaac agatgattta ccaaagttca aagtagtaat aggtaactta 10200
gtctttgaaa taaactgagt aacagtcttc tctaggccga acgatataat ttcatggcct 10260
gtgattacaa ttggtttctt ggcattcttc agactttcct gtattttgtt cagaatctct 10320
tgatcagatg tattcgacgt ggaattttcc ttcttaagag gcaaggatgg tttttcagcc 10380
ttagcggcag ctacatctac aggtaaattg atgtaaaccg gctttctttc ctttagtaag 10440
gcagacaaca ctctatcaat ttcaacagtt gcattctcgg ctgtcaataa agtcctggca 10500
gcagtaaccg gttcgtgcat cttcataaag tgcttgaaat caccatcagc caacgtatgg 10560
tgaacaaact taccttcgtt ctgcactttc gaggtaggag atcccacgat ctcaacaaca 10620
ggcaggttct cagcatagga gcccgctaag ccattaactg cggataattc gccaacacca 10680
aatgtagtca agaatgccgc agcctttttc gttcttgcgt acccgtcggc catataggag 10740
gcatttaact cattagcatt tcccacccat ttcatatctt tgtgtgaaat aatttgatct 10800
agaaattgca aattgtagtc acctggtact ccgaatattt cttctatacc taattcgtgt 10860
aatctgtcca acagatagtc acctactgta tacattttgt ttactagttt atgtgtgttt 10920
attcgaaact aagttcttgg tgttttaaaa ctaaaaaaaa gactaactat aaaagtagaa 10980
tttaagaagt ttaagaaata gatttacaga attacaatca atacctaccg tctttatata 11040
cttattagtc aagtagggga ataatttcag ggaactggtt tcaacctttt ttttcagctt 11100
tttccaaatc agagagagca gaaggtaata gaaggtgtaa gaaaatgaga tagatacatg 11160
cgtgggtcaa ttgccttgtg tcatcattta ctccaggcag gttgcatcac tccattgagg 11220
ttgtgcccgt tttttgcctg tttgtgcccc tgttctctgt agttgcgcta agagaatgga 11280
cctatgaact gatggttggt gaagaaaaca atattttggt gctgggattc tttttttttc 11340
tggatgccag cttaaaaagc gggctccatt atatttagtg gatgccagga ataaactgtt 11400
cacccagaca cctacgatgt tatatattct gtgtaacccg ccccctattt tgggcatgta 11460
cgggttacag cagaattaaa aggctaattt tttgactaaa taaagttagg aaaatcacta 11520
ctattaatta tttacgtatt ctttgaaatg gcagtattga taatgataaa ctcgaactga 11580
aaaagcgtgt tttttattca aaatgattct aactccctta cgtaatcaag gaatcttttt 11640
gccttggcct ccgcgtcatt aaacttcttg ttgttgacgc taacattcaa cgctagtata 11700
tattcgtttt tttcaggtaa gttcttttca acgggtctta ctgatgaggc agtcgcgtct 11760
gaacctgtta agaggtcaaa tatgtcttct tgaccgtacg tgtcttgcat gttattagct 11820
ttgggaattt gcatcaagtc ataggaaaat ttaaatcttg gctctcttgg gctcaaggtg 11880
acaaggtcct cgaaaatagg gcgcgcccca ccgcggtgga gctccagctt ttgttccctt 11940
tagtgagggt taattgcgcg cttggcgtaa tcatggtcat agctgtttcc tgtgtgaaat 12000
tgttatccgc tcacaattcc acacaacata cgagccggaa gcataaagtg taaagcctgg 12060
ggtgcctaat gagtgagcta actcacatta attgcgttgc gctcactgcc cgctttccag 12120
tcgggaaacc tgtcgtgcca gctgcattaa tgaatcggcc aacgcgcggg gagaggcggt 12180
ttgcgtattg ggcgctcttc cgcttcctcg ctcactgact cgctgcgctc ggtcgttcgg 12240
ctgcggcgag cggtatcagc tcactcaaag gcggtaatac ggttatccac agaatcaggg 12300
gataacgcag gaaagaacat gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag 12360
gccgcgttgc tggcgttttt ccataggctc cgcccccctg acgagcatca caaaaatcga 12420
cgctcaagtc agaggtggcg aaacccgaca ggactataaa gataccaggc gtttccccct 12480
ggaagctccc tcgtgcgctc tcctgttccg accctgccgc ttaccggata cctgtccgcc 12540
tttctccctt cgggaagcgt ggcgctttct catagctcac gctgtaggta tctcagttcg 12600
gtgtaggtcg ttcgctccaa gctgggctgt gtgcacgaac cccccgttca gcccgaccgc 12660
tgcgccttat ccggtaacta tcgtcttgag tccaacccgg taagacacga cttatcgcca 12720
ctggcagcag ccactggtaa caggattagc agagcgaggt atgtaggcgg tgctacagag 12780
ttcttgaagt ggtggcctaa ctacggctac actagaagaa cagtatttgg tatctgcgct 12840
ctgctgaagc cagttacctt cggaaaaaga gttggtagct cttgatccgg caaacaaacc 12900
accgctggta gcggtggttt ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga 12960
tctcaagaag atcctttgat cttttctacg gggtctgacg ctcagtggaa cgaaaactca 13020
cgttaaggga ttttggtcat gagattatca aaaaggatct tcacctagat ccttttaaat 13080
taaaaatgaa gttttaaatc aatctaaagt atatatgagt aaacttggtc tgacagttac 13140
caatgcttaa tcagtgaggc acctatctca gcgatctgtc tatttcgttc atccatagtt 13200
gcctgactcc ccgtcgtgta gataactacg atacgggagg gcttaccatc tggccccagt 13260
gctgcaatga taccgcgaga cccacgctca ccggctccag atttatcagc aataaaccag 13320
ccagccggaa gggccgagcg cagaagtggt cctgcaactt tatccgcctc catccagtct 13380
attaattgtt gccgggaagc tagagtaagt agttcgccag ttaatagttt gcgcaacgtt 13440
gttgccattg ctacaggcat cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc 13500
tccggttccc aacgatcaag gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt 13560
agctccttcg gtcctccgat cgttgtcaga agtaagttgg ccgcagtgtt atcactcatg 13620
gttatggcag cactgcataa ttctcttact gtcatgccat ccgtaagatg cttttctgtg 13680
actggtgagt actcaaccaa gtcattctga gaatagtgta tgcggcgacc gagttgctct 13740
tgcccggcgt caatacggga taataccgcg ccacatagca gaactttaaa agtgctcatc 13800
attggaaaac gttcttcggg gcgaaaactc tcaaggatct taccgctgtt gagatccagt 13860
tcgatgtaac ccactcgtgc acccaactga tcttcagcat cttttacttt caccagcgtt 13920
tctgggtgag caaaaacagg aaggcaaaat gccgcaaaaa agggaataag ggcgacacgg 13980
aaatgttgaa tactcatact cttccttttt caatattatt gaagcattta tcagggttat 14040
tgtctcatga gcggatacat atttgaatgt atttagaaaa ataaacaaat aggggttccg 14100
cgcacatttc cccgaaaagt gccacctgaa cgaagcatct gtgcttcatt ttgtagaaca 14160
aaaatgcaac gcgagagcgc taatttttca aacaaagaat ctgagctgca tttttacaga 14220
acagaaatgc aacgcgaaag cgctatttta ccaacgaaga atctgtgctt catttttgta 14280
aaacaaaaat gcaacgcgag agcgctaatt tttcaaacaa agaatctgag ctgcattttt 14340
acagaacaga aatgcaacgc gagagcgcta ttttaccaac aaagaatcta tacttctttt 14400
ttgttctaca aaaatgcatc ccgagagcgc tatttttcta acaaagcatc ttagattact 14460
ttttttctcc tttgtgcgct ctataatgca gtctcttgat aactttttgc actgtaggtc 14520
cgttaaggtt agaagaaggc tactttggtg tctattttct cttccataaa aaaagcctga 14580
ctccacttcc cgcgtttact gattactagc gaagctgcgg gtgcattttt tcaagataaa 14640
ggcatccccg attatattct ataccgatgt ggattgcgca tactttgtga acagaaagtg 14700
atagcgttga tgattcttca ttggtcagaa aattatgaac ggtttcttct attttgtctc 14760
tatatactac gtataggaaa tgtttacatt ttcgtattgt tttcgattca ctctatgaat 14820
agttcttact acaatttttt tgtctaaaga gtaatactag agataaacat aaaaaatgta 14880
gaggtcgagt ttagatgcaa gttcaaggag cgaaaggtgg atgggtaggt tatataggga 14940
tatagcacag agatatatag caaagagata cttttgagca atgtttgtgg aagcggtatt 15000
cgcaatattt tagtagctcg ttacagtccg gtgcgttttt ggttttttga aagtgcgtct 15060
tcagagcgct tttggttttc aaaagcgctc tgaagttcct atactttcta gagaatagga 15120
acttcggaat aggaacttca aagcgtttcc gaaaacgagc gcttccgaaa atgcaacgcg 15180
agctgcgcac atacagctca ctgttcacgt cgcacctata tctgcgtgtt gcctgtatat 15240
atatatacat gagaagaacg gcatagtgcg tgtttatgct taaatgcgta cttatatgcg 15300
tctatttatg taggatgaaa ggtagtctag tacctcctgt gatattatcc cattccatgc 15360
ggggtatcgt atgcttcctt cagcactacc ctttagctgt tctatatgct gccactcctc 15420
aattggatta gtctcatcct tcaatgctat catttccttt gatattggat catactaaga 15480
aaccattatt atcatgacat taacctataa aaataggcgt atcacgaggc cctttcgtc 15539
<210> SEQ ID NO 3
<211> LENGTH: 4586
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pLA54 plasmid
<400> SEQUENCE: 3
gggtaccgag ctcgaattca ctggccgtcg ttttacaacg tcgtgactgg gaaaaccctg 60
gcgttaccca acttaatcgc cttgcagcac atcccccttt cgccagctgg cgtaatagcg 120
aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc gaatggcgcc 180
tgatgcggta ttttctcctt acgcatctgt gcggtatttc acaccgcata tggtgcactc 240
tcagtacaat ctgctctgat gccgcatagt taagccagcc ccgacacccg ccaacacccg 300
ctgacgcgcc ctgacgggct tgtctgctcc cggcatccgc ttacagacaa gctgtgaccg 360
tctccgggag ctgcatgtgt cagaggtttt caccgtcatc accgaaacgc gcgagacgaa 420
agggcctcgt gatacgccta tttttatagg ttaatgtcat gataataatg gtttcttaga 480
cgtcaggtgg cacttttcgg ggaaatgtgc gcggaacccc tatttgttta tttttctaaa 540
tacattcaaa tatgtatccg ctcatgagac aataaccctg ataaatgctt caataatatt 600
gaaaaaggaa gagtatgagt attcaacatt tccgtgtcgc ccttattccc ttttttgcgg 660
cattttgcct tcctgttttt gctcacccag aaacgctggt gaaagtaaaa gatgctgaag 720
atcagttggg tgcacgagtg ggttacatcg aactggatct caacagcggt aagatccttg 780
agagttttcg ccccgaagaa cgttttccaa tgatgagcac ttttaaagtt ctgctatgtg 840
gcgcggtatt atcccgtatt gacgccgggc aagagcaact cggtcgccgc atacactatt 900
ctcagaatga cttggttgag tactcaccag tcacagaaaa gcatcttacg gatggcatga 960
cagtaagaga attatgcagt gctgccataa ccatgagtga taacactgcg gccaacttac 1020
ttctgacaac gatcggagga ccgaaggagc taaccgcttt tttgcacaac atgggggatc 1080
atgtaactcg ccttgatcgt tgggaaccgg agctgaatga agccatacca aacgacgagc 1140
gtgacaccac gatgcctgta gcaatggcaa caacgttgcg caaactatta actggcgaac 1200
tacttactct agcttcccgg caacaattaa tagactggat ggaggcggat aaagttgcag 1260
gaccacttct gcgctcggcc cttccggctg gctggtttat tgctgataaa tctggagccg 1320
gtgagcgtgg gtctcgcggt atcattgcag cactggggcc agatggtaag ccctcccgta 1380
tcgtagttat ctacacgacg gggagtcagg caactatgga tgaacgaaat agacagatcg 1440
ctgagatagg tgcctcactg attaagcatt ggtaactgtc agaccaagtt tactcatata 1500
tactttagat tgatttaaaa cttcattttt aatttaaaag gatctaggtg aagatccttt 1560
ttgataatct catgaccaaa atcccttaac gtgagttttc gttccactga gcgtcagacc 1620
ccgtagaaaa gatcaaagga tcttcttgag atcctttttt tctgcgcgta atctgctgct 1680
tgcaaacaaa aaaaccaccg ctaccagcgg tggtttgttt gccggatcaa gagctaccaa 1740
ctctttttcc gaaggtaact ggcttcagca gagcgcagat accaaatact gtccttctag 1800
tgtagccgta gttaggccac cacttcaaga actctgtagc accgcctaca tacctcgctc 1860
tgctaatcct gttaccagtg gctgctgcca gtggcgataa gtcgtgtctt accgggttgg 1920
actcaagacg atagttaccg gataaggcgc agcggtcggg ctgaacgggg ggttcgtgca 1980
cacagcccag cttggagcga acgacctaca ccgaactgag atacctacag cgtgagctat 2040
gagaaagcgc cacgcttccc gaagggagaa aggcggacag gtatccggta agcggcaggg 2100
tcggaacagg agagcgcacg agggagcttc cagggggaaa cgcctggtat ctttatagtc 2160
ctgtcgggtt tcgccacctc tgacttgagc gtcgattttt gtgatgctcg tcaggggggc 2220
ggagcctatg gaaaaacgcc agcaacgcgg cctttttacg gttcctggcc ttttgctggc 2280
cttttgctca catgttcttt cctgcgttat cccctgattc tgtggataac cgtattaccg 2340
cctttgagtg agctgatacc gctcgccgca gccgaacgac cgagcgcagc gagtcagtga 2400
gcgaggaagc ggaagagcgc ccaatacgca aaccgcctct ccccgcgcgt tggccgattc 2460
attaatgcag ctggcacgac aggtttcccg actggaaagc gggcagtgag cgcaacgcaa 2520
ttaatgtgag ttagctcact cattaggcac cccaggcttt acactttatg cttccggctc 2580
gtatgttgtg tggaattgtg agcggataac aatttcacac aggaaacagc tatgaccatg 2640
attacgccaa gcttgcatgc ctgcaggtcg actctagagg atccccgcat tgcggattac 2700
gtattctaat gttcagataa cttcgtatag catacattat acgaagttat ctagggattc 2760
ataaccattt tctcaatcga attacacaga acacaccgta caaacctctc tatcataact 2820
acttaatagt cacacacgta ctcgtctaaa tacacatcat cgtcctacaa gttcatcaaa 2880
gtgttggaca gacaactata ccagcatgga tctcttgtat cggttctttt ctcccgctct 2940
ctcgcaataa caatgaacac tgggtcaatc atagcctaca caggtgaaca gagtagcgtt 3000
tatacagggt ttatacggtg attcctacgg caaaaatttt tcatttctaa aaaaaaaaag 3060
aaaaattttt ctttccaacg ctagaaggaa aagaaaaatc taattaaatt gatttggtga 3120
ttttctgaga gttccctttt tcatatatcg aattttgaat ataaaaggag atcgaaaaaa 3180
tttttctatt caatctgttt tctggtttta tttgatagtt tttttgtgta ttattattat 3240
ggattagtac tggtttatat gggtttttct gtataacttc tttttatttt agtttgttta 3300
atcttatttt gagttacatt atagttccct aactgcaaga gaagtaacat taaaactcga 3360
gatgggtaag gaaaagactc acgtttcgag gccgcgatta aattccaaca tggatgctga 3420
tttatatggg tataaatggg ctcgcgataa tgtcgggcaa tcaggtgcga caatctatcg 3480
attgtatggg aagcccgatg cgccagagtt gtttctgaaa catggcaaag gtagcgttgc 3540
caatgatgtt acagatgaga tggtcagact aaactggctg acggaattta tgcctcttcc 3600
gaccatcaag cattttatcc gtactcctga tgatgcatgg ttactcacca ctgcgatccc 3660
cggcaaaaca gcattccagg tattagaaga atatcctgat tcaggtgaaa atattgttga 3720
tgcgctggca gtgttcctgc gccggttgca ttcgattcct gtttgtaatt gtccttttaa 3780
cagcgatcgc gtatttcgtc tcgctcaggc gcaatcacga atgaataacg gtttggttga 3840
tgcgagtgat tttgatgacg agcgtaatgg ctggcctgtt gaacaagtct ggaaagaaat 3900
gcataagctt ttgccattct caccggattc agtcgtcact catggtgatt tctcacttga 3960
taaccttatt tttgacgagg ggaaattaat aggttgtatt gatgttggac gagtcggaat 4020
cgcagaccga taccaggatc ttgccatcct atggaactgc ctcggtgagt tttctccttc 4080
attacagaaa cggctttttc aaaaatatgg tattgataat cctgatatga ataaattgca 4140
gtttcatttg atgctcgatg agtttttcta agtttaactt gatactacta gattttttct 4200
cttcatttat aaaatttttg gttataattg aagctttaga agtatgaaaa aatccttttt 4260
tttcattctt tgcaaccaaa ataagaagct tcttttattc attgaaatga tgaatataaa 4320
cctaacaaaa gaaaaagact cgaatatcaa acattaaaaa aaaataaaag aggttatctg 4380
ttttcccatt tagttggagt ttgcattttc taatagatag aactctcaat taatgtggat 4440
ttagtttctc tgttcgtttt tttttgtttt gttctcactg tatttacatt tctatttagt 4500
atttagttat tcatataatc tataacttcg tatagcatac attatacgaa gttatccagt 4560
gatgatacaa cgagttagcc aaggtg 4586
<210> SEQ ID NO 4
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 4
ttccggtttc tttgaaattt ttttgattcg gtaatctccg agcagaagga gcattgcgga 60
ttacgtattc taatgttcag 80
<210> SEQ ID NO 5
<211> LENGTH: 81
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 5
gggtaataac tgatataatt aaattgaagc tctaatttgt gagtttagta caccttggct 60
aactcgttgt atcatcactg g 81
<210> SEQ ID NO 6
<211> LENGTH: 38
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 6
gcctcgagtt ttaatgttac ttctcttgca gttaggga 38
<210> SEQ ID NO 7
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 7
gctaaattcg agtgaaacac aggaagacca g 31
<210> SEQ ID NO 8
<211> LENGTH: 90
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 8
gtattttggt agattcaatt ctctttccct ttccttttcc ttcgctcccc ttccttatca 60
gcattgcgga ttacgtattc taatgttcag 90
<210> SEQ ID NO 9
<211> LENGTH: 90
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 9
ttggttgggg gaaaaagagg caacaggaaa gatcagaggg ggaggggggg ggagagtgtc 60
accttggcta actcgttgta tcatcactgg 90
<210> SEQ ID NO 10
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 10
tcggtgcggg cctcttcgct a 21
<210> SEQ ID NO 11
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 11
aatgtgagtt agctcactca t 21
<210> SEQ ID NO 12
<211> LENGTH: 57
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 12
aattggatcc ggcgcgccgt ttaaacggcc ggccaatgtg gctgtggttt cagggtc 57
<210> SEQ ID NO 13
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 13
aatttctaga ttaattaagc ggccgcaagg ccatgaagct ttttctttc 49
<210> SEQ ID NO 14
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 14
ttctcgacgt gggccttttt cttg 24
<210> SEQ ID NO 15
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 15
tgcagcttta aataatcggt gtcactactt tgccttcgtt tatcttgcc 49
<210> SEQ ID NO 16
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 16
gagcaggcaa gataaacgaa ggcaaagtag tgacaccgat tatttaaag 49
<210> SEQ ID NO 17
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 17
tatggaccct gaaaccacag ccacattgta accaccacga cggttgttg 49
<210> SEQ ID NO 18
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 18
tttagcaaca accgtcgtgg tggttacaat gtggctgtgg tttcagggt 49
<210> SEQ ID NO 19
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 19
ccagaaaccc tatacctgtg tggacgtaag gccatgaagc tttttcttt 49
<210> SEQ ID NO 20
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 20
attggaaaga aaaagcttca tggccttacg tccacacagg tatagggtt 49
<210> SEQ ID NO 21
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 21
cataagaaca cctttggtgg ag 22
<210> SEQ ID NO 22
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 22
aggattatca ttcataagtt tc 22
<210> SEQ ID NO 23
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 23
ttcttggagc tgggacatgt ttg 23
<210> SEQ ID NO 24
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 24
tgatgatatt tcataaataa tg 22
<210> SEQ ID NO 25
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 25
atgcgtccat ctttacagtc ctg 23
<210> SEQ ID NO 26
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 26
tacgtacgga ccaatcgaag tg 22
<210> SEQ ID NO 27
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 27
aattcgtttg agtacactac taatggcttt gttggcaata tgtttttgc 49
<210> SEQ ID NO 28
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 28
atatagcaaa aacatattgc caacaaagcc attagtagtg tactcaaac 49
<210> SEQ ID NO 29
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 29
tatggaccct gaaaccacag ccacattctt gttatttata aaaagacac 49
<210> SEQ ID NO 30
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 30
ctcccgtgtc tttttataaa taacaagaat gtggctgtgg tttcagggt 49
<210> SEQ ID NO 31
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 31
taccgtaggc gtccttagga aagatagaag gccatgaagc tttttcttt 49
<210> SEQ ID NO 32
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 32
attggaaaga aaaagcttca tggccttcta tctttcctaa ggacgccta 49
<210> SEQ ID NO 33
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 33
ttattgtttg gcatttgtag c 21
<210> SEQ ID NO 34
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 34
ccaagcatct cataaaccta tg 22
<210> SEQ ID NO 35
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 35
tgtgcagatg cagatgtgag ac 22
<210> SEQ ID NO 36
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 36
agttattgat accgtac 17
<210> SEQ ID NO 37
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 37
cgagataccg taggcgtcc 19
<210> SEQ ID NO 38
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 38
ttatgtatgc tcttctgact tttc 24
<210> SEQ ID NO 39
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 39
aataattaga gattaaatcg ctcatttttt gccagtttct tcaggcttc 49
<210> SEQ ID NO 40
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 40
agcctgaaga aactggcaaa aaatgagcga tttaatctct aattattag 49
<210> SEQ ID NO 41
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 41
tatggaccct gaaaccacag ccacattttt caatcattgg agcaatcat 49
<210> SEQ ID NO 42
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 42
taaaatgatt gctccaatga ttgaaaaatg tggctgtggt ttcagggtc 49
<210> SEQ ID NO 43
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 43
accgtaggtg ttgtttggga aagtggaagg ccatgaagct ttttctttc 49
<210> SEQ ID NO 44
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 44
ttggaaagaa aaagcttcat ggccttccac tttcccaaac aacacctac 49
<210> SEQ ID NO 45
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 45
ttattgctta gcgttggtag cag 23
<210> SEQ ID NO 46
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 46
tttttggtgg ttccggcttc c 21
<210> SEQ ID NO 47
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 47
aaagttggca tagcggaaac tt 22
<210> SEQ ID NO 48
<211> LENGTH: 16
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 48
gtcattgaca ccatct 16
<210> SEQ ID NO 49
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 49
agagataccg taggtgttg 19
<210> SEQ ID NO 50
<211> LENGTH: 33
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 50
aattggcgcg ccatgaaagc tctggtttat cac 33
<210> SEQ ID NO 51
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 51
tgaatcatga gttttatgtt aattagctca ggcagcgcct gcgttcgag 49
<210> SEQ ID NO 52
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 52
atcctctcga acgcaggcgc tgcctgagct aattaacata aaactcatg 49
<210> SEQ ID NO 53
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 53
aattgtttaa acaagtaaat aaattaatca gcat 34
<210> SEQ ID NO 54
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 54
acacaataca ataacaagaa gaacaaaatg aaagctctgg tttatcacg 49
<210> SEQ ID NO 55
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 55
agcgtataca tctgttggga aagtagaagg ccatgaagct ttttctttc 49
<210> SEQ ID NO 56
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 56
ttggaaagaa aaagcttcat ggccttctac tttcccaaca gatgtatac 49
<210> SEQ ID NO 57
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 57
ttattgttta gcgttagtag cg 22
<210> SEQ ID NO 58
<211> LENGTH: 72
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 58
cataatcaat ctcaaagaga acaacacaat acaataacaa gaagaacaaa atgaaagctc 60
tggtttatca cg 72
<210> SEQ ID NO 59
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 59
taggcataat caccgaagaa g 21
<210> SEQ ID NO 60
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 60
aaaatggtaa gcagctgaaa g 21
<210> SEQ ID NO 61
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 61
agttgttaga actgttg 17
<210> SEQ ID NO 62
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 62
gacgatagcg tatacatct 19
<210> SEQ ID NO 63
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 63
cttagcctct agccatagcc at 22
<210> SEQ ID NO 64
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 64
ttagttttgc tggccgcatc ttc 23
<210> SEQ ID NO 65
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer
<400> SEQUENCE: 65
cccattaata tactattgag a 21
<210> SEQ ID NO 66
<211> LENGTH: 7523
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid
<400> SEQUENCE: 66
ccagcttttg ttccctttag tgagggttaa ttgcgcgctt ggcgtaatca tggtcatagc 60
tgtttcctgt gtgaaattgt tatccgctca caattccaca caacatagga gccggaagca 120
taaagtgtaa agcctggggt gcctaatgag tgaggtaact cacattaatt gcgttgcgct 180
cactgcccgc tttccagtcg ggaaacctgt cgtgccagct gcattaatga atcggccaac 240
gcgcggggag aggcggtttg cgtattgggc gctcttccgc ttcctcgctc actgactcgc 300
tgcgctcggt cgttcggctg cggcgagcgg tatcagctca ctcaaaggcg gtaatacggt 360
tatccacaga atcaggggat aacgcaggaa agaacatgtg agcaaaaggc cagcaaaagg 420
ccaggaaccg taaaaaggcc gcgttgctgg cgtttttcca taggctccgc ccccctgacg 480
agcatcacaa aaatcgacgc tcaagtcaga ggtggcgaaa cccgacagga ctataaagat 540
accaggcgtt tccccctgga agctccctcg tgcgctctcc tgttccgacc ctgccgctta 600
ccggatacct gtccgccttt ctcccttcgg gaagcgtggc gctttctcat agctcacgct 660
gtaggtatct cagttcggtg taggtcgttc gctccaagct gggctgtgtg cacgaacccc 720
ccgttcagcc cgaccgctgc gccttatccg gtaactatcg tcttgagtcc aacccggtaa 780
gacacgactt atcgccactg gcagcagcca ctggtaacag gattagcaga gcgaggtatg 840
taggcggtgc tacagagttc ttgaagtggt ggcctaacta cggctacact agaaggacag 900
tatttggtat ctgcgctctg ctgaagccag ttaccttcgg aaaaagagtt ggtagctctt 960
gatccggcaa acaaaccacc gctggtagcg gtggtttttt tgtttgcaag cagcagatta 1020
cgcgcagaaa aaaaggatct caagaagatc ctttgatctt ttctacgggg tctgacgctc 1080
agtggaacga aaactcacgt taagggattt tggtcatgag attatcaaaa aggatcttca 1140
cctagatcct tttaaattaa aaatgaagtt ttaaatcaat ctaaagtata tatgagtaaa 1200
cttggtctga cagttaccaa tgcttaatca gtgaggcacc tatctcagcg atctgtctat 1260
ttcgttcatc catagttgcc tgactccccg tcgtgtagat aactacgata cgggagggct 1320
taccatctgg ccccagtgct gcaatgatac cgcgagaccc acgctcaccg gctccagatt 1380
tatcagcaat aaaccagcca gccggaaggg ccgagcgcag aagtggtcct gcaactttat 1440
ccgcctccat ccagtctatt aattgttgcc gggaagctag agtaagtagt tcgccagtta 1500
atagtttgcg caacgttgtt gccattgcta caggcatcgt ggtgtcacgc tcgtcgtttg 1560
gtatggcttc attcagctcc ggttcccaac gatcaaggcg agttacatga tcccccatgt 1620
tgtgcaaaaa agcggttagc tccttcggtc ctccgatcgt tgtcagaagt aagttggccg 1680
cagtgttatc actcatggtt atggcagcac tgcataattc tcttactgtc atgccatccg 1740
taagatgctt ttctgtgact ggtgagtact caaccaagtc attctgagaa tagtgtatgc 1800
ggcgaccgag ttgctcttgc ccggcgtcaa tacgggataa taccgcgcca catagcagaa 1860
ctttaaaagt gctcatcatt ggaaaacgtt cttcggggcg aaaactctca aggatcttac 1920
cgctgttgag atccagttcg atgtaaccca ctcgtgcacc caactgatct tcagcatctt 1980
ttactttcac cagcgtttct gggtgagcaa aaacaggaag gcaaaatgcc gcaaaaaagg 2040
gaataagggc gacacggaaa tgttgaatac tcatactctt cctttttcaa tattattgaa 2100
gcatttatca gggttattgt ctcatgagcg gatacatatt tgaatgtatt tagaaaaata 2160
aacaaatagg ggttccgcgc acatttcccc gaaaagtgcc acctgaacga agcatctgtg 2220
cttcattttg tagaacaaaa atgcaacgcg agagcgctaa tttttcaaac aaagaatctg 2280
agctgcattt ttacagaaca gaaatgcaac gcgaaagcgc tattttacca acgaagaatc 2340
tgtgcttcat ttttgtaaaa caaaaatgca acgcgagagc gctaattttt caaacaaaga 2400
atctgagctg catttttaca gaacagaaat gcaacgcgag agcgctattt taccaacaaa 2460
gaatctatac ttcttttttg ttctacaaaa atgcatcccg agagcgctat ttttctaaca 2520
aagcatctta gattactttt tttctccttt gtgcgctcta taatgcagtc tcttgataac 2580
tttttgcact gtaggtccgt taaggttaga agaaggctac tttggtgtct attttctctt 2640
ccataaaaaa agcctgactc cacttcccgc gtttactgat tactagcgaa gctgcgggtg 2700
cattttttca agataaaggc atccccgatt atattctata ccgatgtgga ttgcgcatac 2760
tttgtgaaca gaaagtgata gcgttgatga ttcttcattg gtcagaaaat tatgaacggt 2820
ttcttctatt ttgtctctat atactacgta taggaaatgt ttacattttc gtattgtttt 2880
cgattcactc tatgaatagt tcttactaca atttttttgt ctaaagagta atactagaga 2940
taaacataaa aaatgtagag gtcgagttta gatgcaagtt caaggagcga aaggtggatg 3000
ggtaggttat atagggatat agcacagaga tatatagcaa agagatactt ttgagcaatg 3060
tttgtggaag cggtattcgc aatattttag tagctcgtta cagtccggtg cgtttttggt 3120
tttttgaaag tgcgtcttca gagcgctttt ggttttcaaa agcgctctga agttcctata 3180
ctttctagag aataggaact tcggaatagg aacttcaaag cgtttccgaa aacgagcgct 3240
tccgaaaatg caacgcgagc tgcgcacata cagctcactg ttcacgtcgc acctatatct 3300
gcgtgttgcc tgtatatata tatacatgag aagaacggca tagtgcgtgt ttatgcttaa 3360
atgcgtactt atatgcgtct atttatgtag gatgaaaggt agtctagtac ctcctgtgat 3420
attatcccat tccatgcggg gtatcgtatg cttccttcag cactaccctt tagctgttct 3480
atatgctgcc actcctcaat tggattagtc tcatccttca atgctatcat ttcctttgat 3540
attggatcat ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca 3600
cgaggccctt tcgtctcgcg cgtttcggtg atgacggtga aaacctctga cacatgcagc 3660
tcccggagac ggtcacagct tgtctgtaag cggatgccgg gagcagacaa gcccgtcagg 3720
gcgcgtcagc gggtgttggc gggtgtcggg gctggcttaa ctatgcggca tcagagcaga 3780
ttgtactgag agtgcaccat aaattcccgt tttaagagct tggtgagcgc taggagtcac 3840
tgccaggtat cgtttgaaca cggcattagt cagggaagtc ataacacagt cctttcccgc 3900
aattttcttt ttctattact cttggcctcc tctagtacac tctatatttt tttatgcctc 3960
ggtaatgatt ttcatttttt tttttcccct agcggatgac tctttttttt tcttagcgat 4020
tggcattatc acataatgaa ttatacatta tataaagtaa tgtgatttct tcgaagaata 4080
tactaaaaaa tgagcaggca agataaacga aggcaaagat gacagagcag aaagccctag 4140
taaagcgtat tacaaatgaa accaagattc agattgcgat ctctttaaag ggtggtcccc 4200
tagcgataga gcactcgatc ttcccagaaa aagaggcaga agcagtagca gaacaggcca 4260
cacaatcgca agtgattaac gtccacacag gtatagggtt tctggaccat atgatacatg 4320
ctctggccaa gcattccggc tggtcgctaa tcgttgagtg cattggtgac ttacacatag 4380
acgaccatca caccactgaa gactgcggga ttgctctcgg tcaagctttt aaagaggccc 4440
tactggcgcg tggagtaaaa aggtttggat caggatttgc gcctttggat gaggcacttt 4500
ccagagcggt ggtagatctt tcgaacaggc cgtacgcagt tgtcgaactt ggtttgcaaa 4560
gggagaaagt aggagatctc tcttgcgaga tgatcccgca ttttcttgaa agctttgcag 4620
aggctagcag aattaccctc cacgttgatt gtctgcgagg caagaatgat catcaccgta 4680
gtgagagtgc gttcaaggct cttgcggttg ccataagaga agccacctcg cccaatggta 4740
ccaacgatgt tccctccacc aaaggtgttc ttatgtagtg acaccgatta tttaaagctg 4800
cagcatacga tatatataca tgtgtatata tgtataccta tgaatgtcag taagtatgta 4860
tacgaacagt atgatactga agatgacaag gtaatgcatc attctatacg tgtcattctg 4920
aacgaggcgc gctttccttt tttctttttg ctttttcttt ttttttctct tgaactcgac 4980
ggatctatgc ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggaaa 5040
ttgtaaacgt taatattttg ttaaaattcg cgttaaattt ttgttaaatc agctcatttt 5100
ttaaccaata ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag accgagatag 5160
ggttgagtgt tgttccagtt tggaacaaga gtccactatt aaagaacgtg gactccaacg 5220
tcaaagggcg aaaaaccgtc tatcagggcg atggcccact acgtgaacca tcaccctaat 5280
caagtttttt ggggtcgagg tgccgtaaag cactaaatcg gaaccctaaa gggagccccc 5340
gatttagagc ttgacgggga aagccggcga acgtggcgag aaaggaaggg aagaaagcga 5400
aaggagcggg cgctagggcg ctggcaagtg tagcggtcac gctgcgcgta accaccacac 5460
ccgccgcgct taatgcgccg ctacagggcg cgtcgcgcca ttcgccattc aggctgcgca 5520
actgttggga agggcgatcg gtgcgggcct cttcgctatt acgccagctg gcgaaagggg 5580
gatgtgctgc aaggcgatta agttgggtaa cgccagggtt ttcccagtca cgacgttgta 5640
aaacgacggc cagtgagcgc gcgtaatacg actcactata gggcgaattg ggtaccgggc 5700
cccccctcga ggtattagaa gccgccgagc gggcgacagc cctccgacgg aagactctcc 5760
tccgtgcgtc ctcgtcttca ccggtcgcgt tcctgaaacg cagatgtgcc tcgcgccgca 5820
ctgctccgaa caataaagat tctacaatac tagcttttat ggttatgaag aggaaaaatt 5880
ggcagtaacc tggccccaca aaccttcaaa ttaacgaatc aaattaacaa ccataggatg 5940
ataatgcgat tagtttttta gccttatttc tggggtaatt aatcagcgaa gcgatgattt 6000
ttgatctatt aacagatata taaatggaaa agctgcataa ccactttaac taatactttc 6060
aacattttca gtttgtatta cttcttattc aaatgtcata aaagtatcaa caaaaaattg 6120
ttaatatacc tctatacttt aacgtcaagg agaaaaatgt ccaatttact gcccgtacac 6180
caaaatttgc ctgcattacc ggtcgatgca acgagtgatg aggttcgcaa gaacctgatg 6240
gacatgttca gggatcgcca ggcgttttct gagcatacct ggaaaatgct tctgtccgtt 6300
tgccggtcgt gggcggcatg gtgcaagttg aataaccgga aatggtttcc cgcagaacct 6360
gaagatgttc gcgattatct tctatatctt caggcgcgcg gtctggcagt aaaaactatc 6420
cagcaacatt tgggccagct aaacatgctt catcgtcggt ccgggctgcc acgaccaagt 6480
gacagcaatg ctgtttcact ggttatgcgg cggatccgaa aagaaaacgt tgatgccggt 6540
gaacgtgcaa aacaggctct agcgttcgaa cgcactgatt tcgaccaggt tcgttcactc 6600
atggaaaata gcgatcgctg ccaggatata cgtaatctgg catttctggg gattgcttat 6660
aacaccctgt tacgtatagc cgaaattgcc aggatcaggg ttaaagatat ctcacgtact 6720
gacggtggga gaatgttaat ccatattggc agaacgaaaa cgctggttag caccgcaggt 6780
gtagagaagg cacttagcct gggggtaact aaactggtcg agcgatggat ttccgtctct 6840
ggtgtagctg atgatccgaa taactacctg ttttgccggg tcagaaaaaa tggtgttgcc 6900
gcgccatctg ccaccagcca gctatcaact cgcgccctgg aagggatttt tgaagcaact 6960
catcgattga tttacggcgc taaggatgac tctggtcaga gatacctggc ctggtctgga 7020
cacagtgccc gtgtcggagc cgcgcgagat atggcccgcg ctggagtttc aataccggag 7080
atcatgcaag ctggtggctg gaccaatgta aatattgtca tgaactatat ccgtaacctg 7140
gatagtgaaa caggggcaat ggtgcgcctg ctggaagatg gcgattagga gtaagcgaat 7200
ttcttatgat ttatgatttt tattattaaa taagttataa aaaaaataag tgtatacaaa 7260
ttttaaagtg actcttaggt tttaaaacga aaattcttat tcttgagtaa ctctttcctg 7320
taggtcaggt tgctttctca ggtatagcat gaggtcgctc ttattgacca cacctctacc 7380
ggcatgccga gcaaatgcct gcaaatcgct ccccatttca cccaattgta gatatgctaa 7440
ctccagcaat gagttgatga atctcggtgt gtattttatg tcctcagagg acaacacctg 7500
tggtccgcca ccgcggtgga gct 7523
<210> SEQ ID NO 67
<211> LENGTH: 15456
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Template
<400> SEQUENCE: 67
aaagagtaat actagagata aacataaaaa atgtagaggt cgagtttaga tgcaagttca 60
aggagcgaaa ggtggatggg taggttatat agggatatag cacagagata tatagcaaag 120
agatactttt gagcaatgtt tgtggaagcg gtattcgcaa tattttagta gctcgttaca 180
gtccggtgcg tttttggttt tttgaaagtg cgtcttcaga gcgcttttgg ttttcaaaag 240
cgctctgaag ttcctatact ttctagagaa taggaacttc ggaataggaa cttcaaagcg 300
tttccgaaaa cgagcgcttc cgaaaatgca acgcgagctg cgcacataca gctcactgtt 360
cacgtcgcac ctatatctgc gtgttgcctg tatatatata tacatgagaa gaacggcata 420
gtgcgtgttt atgcttaaat gcgtacttat atgcgtctat ttatgtagga tgaaaggtag 480
tctagtacct cctgtgatat tatcccattc catgcggggt atcgtatgct tccttcagca 540
ctacccttta gctgttctat atgctgccac tcctcaattg gattagtctc atccttcaat 600
gctatcattt cctttgatat tggatcatac taagaaacca ttattatcat gacattaacc 660
tataaaaata ggcgtatcac gaggcccttt cgtctcgcgc gtttcggtga tgacggtgaa 720
aacctctgac acatgcagct cccggagacg gtcacagctt gtctgtaagc ggatgccggg 780
agcagacaag cccgtcaggg cgcgtcagcg ggtgttggcg ggtgtcgggg ctggcttaac 840
tatgcggcat cagagcagat tgtactgaga gtgcaccata aattcccgtt ttaagagctt 900
ggtgagcgct aggagtcact gccaggtatc gtttgaacac ggcattagtc agggaagtca 960
taacacagtc ctttcccgca attttctttt tctattactc ttggcctcct ctagtacact 1020
ctatattttt ttatgcctcg gtaatgattt tcattttttt ttttccacct agcggatgac 1080
tctttttttt tcttagcgat tggcattatc acataatgaa ttatacatta tataaagtaa 1140
tgtgatttct tcgaagaata tactaaaaaa tgagcaggca agataaacga aggcaaagat 1200
gacagagcag aaagccctag taaagcgtat tacaaatgaa accaagattc agattgcgat 1260
ctctttaaag ggtggtcccc tagcgataga gcactcgatc ttcccagaaa aagaggcaga 1320
agcagtagca gaacaggcca cacaatcgca agtgattaac gtccacacag gtatagggtt 1380
tctggaccat atgatacatg ctctggccaa gcattccggc tggtcgctaa tcgttgagtg 1440
cattggtgac ttacacatag acgaccatca caccactgaa gactgcggga ttgctctcgg 1500
tcaagctttt aaagaggccc taggggccgt gcgtggagta aaaaggtttg gatcaggatt 1560
tgcgcctttg gatgaggcac tttccagagc ggtggtagat ctttcgaaca ggccgtacgc 1620
agttgtcgaa cttggtttgc aaagggagaa agtaggagat ctctcttgcg agatgatccc 1680
gcattttctt gaaagctttg cagaggctag cagaattacc ctccacgttg attgtctgcg 1740
aggcaagaat gatcatcacc gtagtgagag tgcgttcaag gctcttgcgg ttgccataag 1800
agaagccacc tcgcccaatg gtaccaacga tgttccctcc accaaaggtg ttcttatgta 1860
gtgacaccga ttatttaaag ctgcagcata cgatatatat acatgtgtat atatgtatac 1920
ctatgaatgt cagtaagtat gtatacgaac agtatgatac tgaagatgac aaggtaatgc 1980
atcattctat acgtgtcatt ctgaacgagg cgcgctttcc ttttttcttt ttgctttttc 2040
tttttttttc tcttgaactc gacggatcta tgcggtgtga aataccgcac agatgcgtaa 2100
ggagaaaata ccgcatcagg aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa 2160
tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa tcccttataa 2220
atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca agagtccact 2280
attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc 2340
actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta aagcactaaa 2400
tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg cgaacgtggc 2460
gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt 2520
cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat 2580
tcgccattca ggctgcgcaa ctgttgggaa gggcgcggtg cgggcctctt cgctattacg 2640
ccagctggcg aaagggggat gtgctgcaag gcgattaagt tgggtaacgc cagggttttc 2700
ccagtcacga cgttgtaaaa cgacggccag tgagcgcgcg taatacgact cactataggg 2760
cgaattgggt accgggcccc ccctcgaggt cgacggcgcg ccactggtag agagcgactt 2820
tgtatgcccc aattgcgaaa cccgcgatat ccttctcgat tctttagtac ccgaccagga 2880
caaggaaaag gaggtcgaaa cgtttttgaa gaaacaagag gaactacacg gaagctctaa 2940
agatggcaac cagccagaaa ctaagaaaat gaagttgatg gatccaactg gcaccgctgg 3000
cttgaacaac aataccagcc ttccaacttc tgtaaataac ggcggtacgc cagtgccacc 3060
agtaccgtta cctttcggta tacctccttt ccccatgttt ccaatgccct tcatgcctcc 3120
aacggctact atcacaaatc ctcatcaagc tgacgcaagc cctaagaaat gaataacaat 3180
actgacagta ctaaataatt gcctacttgg cttcacatac gttgcatacg tcgatataga 3240
taataatgat aatgacagca ggattatcgt aatacgtaat agctgaaaat ctcaaaaatg 3300
tgtgggtcat tacgtaaata atgataggaa tgggattctt ctatttttcc tttttccatt 3360
ctagcagccg tcgggaaaac gtggcatcct ctctttcggg ctcaattgga gtcacgctgc 3420
cgtgagcatc ctctctttcc atatctaaca actgagcacg taaccaatgg aaaagcatga 3480
gcttagcgtt gctccaaaaa agtattggat ggttaatacc atttgtctgt tctcttctga 3540
ctttgactcc tcaaaaaaaa aaatctacaa tcaacagatc gcttcaatta cgccctcaca 3600
aaaacttttt tccttcttct tcgcccacgt taaattttat ccctcatgtt gtctaacgga 3660
tttctgcact tgatttatta taaaaagaca aagacataat acttctctat caatttcagt 3720
tattgttctt ccttgcgtta ttcttctgtt cttctttttc ttttgtcata tataaccata 3780
accaagtaat acatattcaa actagtatga ctgacaaaaa aactcttaaa gacttaagaa 3840
atcgtagttc tgtttacgat tcaatggtta aatcacctaa tcgtgctatg ttgcgtgcaa 3900
ctggtatgca agatgaagac tttgaaaaac ctatcgtcgg tgtcatttca acttgggctg 3960
aaaacacacc ttgtaatatc cacttacatg actttggtaa actagccaaa gtcggtgtta 4020
aggaagctgg tgcttggcca gttcagttcg gaacaatcac ggtttctgat ggaatcgcca 4080
tgggaaccca aggaatgcgt ttctccttga catctcgtga tattattgca gattctattg 4140
aagcagccat gggaggtcat aatgcggatg cttttgtagc cattggcggt tgtgataaaa 4200
acatgcccgg ttctgttatc gctatggcta acatggatat cccagccatt tttgcttacg 4260
gcggaacaat tgcacctggt aatttagacg gcaaagatat cgatttagtc tctgtctttg 4320
aaggtgtcgg ccattggaac cacggcgata tgaccaaaga agaagttaaa gctttggaat 4380
gtaatgcttg tcccggtcct ggaggctgcg gtggtatgta tactgctaac acaatggcga 4440
cagctattga agttttggga cttagccttc cgggttcatc ttctcacccg gctgaatccg 4500
cagaaaagaa agcagatatt gaagaagctg gtcgcgctgt tgtcaaaatg ctcgaaatgg 4560
gcttaaaacc ttctgacatt ttaacgcgtg aagcttttga agatgctatt actgtaacta 4620
tggctctggg aggttcaacc aactcaaccc ttcacctctt agctattgcc catgctgcta 4680
atgtggaatt gacacttgat gatttcaata ctttccaaga aaaagttcct catttggctg 4740
atttgaaacc ttctggtcaa tatgtattcc aagaccttta caaggtcgga ggggtaccag 4800
cagttatgaa atatctcctt aaaaatggct tccttcatgg tgaccgtatc acttgtactg 4860
gcaaaacagt cgctgaaaat ttgaaggctt ttgatgattt aacacctggt caaaaggtta 4920
ttatgccgct tgaaaatcct aaacgtgaag atggtccgct cattattctc catggtaact 4980
tggctccaga cggtgccgtt gccaaagttt ctggtgtaaa agtgcgtcgt catgtcggtc 5040
ctgctaaggt ctttaattct gaagaagaag ccattgaagc tgtcttgaat gatgatattg 5100
ttgatggtga tgttgttgtc gtacgttttg taggaccaaa gggcggtcct ggtatgcctg 5160
aaatgctttc cctttcatca atgattgttg gtaaagggca aggtgaaaaa gttgcccttc 5220
tgacagatgg ccgcttctca ggtggtactt atggtcttgt cgtgggtcat atcgctcctg 5280
aagcacaaga tggcggtcca atcgcctacc tgcaaacagg agacatagtc actattgacc 5340
aagacactaa ggaattacac tttgatatct ccgatgaaga gttaaaacat cgtcaagaga 5400
ccattgaatt gccaccgctc tattcacgcg gtatccttgg taaatatgct cacatcgttt 5460
cgtctgcttc taggggagcc gtaacagact tttggaagcc tgaagaaact ggcaaaaaat 5520
gttgtcctgg ttgctgtggt taagcggccg cgttaattca aattaattga tatagttttt 5580
taatgagtat tgaatctgtt tagaaataat ggaatattat ttttatttat ttatttatat 5640
tattggtcgg ctcttttctt ctgaaggtca atgacaaaat gatatgaagg aaataatgat 5700
ttctaaaatt ttacaacgta agatattttt acaaaagcct agctcatctt ttgtcatgca 5760
ctattttact cacgcttgaa attaacggcc agtccactgc ggagtcattt caaagtcatc 5820
ctaatcgatc tatcgttttt gatagctcat tttggagttc gcgattgtct tctgttattc 5880
acaactgttt taatttttat ttcattctgg aactcttcga gttctttgta aagtctttca 5940
tagtagctta ctttatcctc caacatattt aacttcatgt caatttcggc tcttaaattt 6000
tccacatcat caagttcaac atcatctttt aacttgaatt tattctctag ctcttccaac 6060
caagcctcat tgctccttga tttactggtg aaaagtgata cactttgcgc gcaatccagg 6120
tcaaaacttt cctgcaaaga attcaccaat ttctcgacat catagtacaa tttgttttgt 6180
tctcccatca caatttaata tacctgatgg attcttatga agcgctgggt aatggacgtg 6240
tcactctact tcgccttttt ccctactcct tttagtacgg aagacaatgc taataaataa 6300
gagggtaata ataatattat taatcggcaa aaaagattaa acgccaagcg tttaattatc 6360
agaaagcaaa cgtcgtacca atccttgaat gcttcccaat tgtatattaa gagtcatcac 6420
agcaacatat tcttgttatt aaattaatta ttattgattt ttgatattgt ataaaaaaac 6480
caaatatgta taaaaaaagt gaataaaaaa taccaagtat ggagaaatat attagaagtc 6540
tatacgttaa accacccggg ccccccctcg aggtcgacgg tatcgataag cttgatatcg 6600
aattcctgca gcccggggga tccactagtt ctagagcggc cgctctagaa ctagtaccac 6660
aggtgttgtc ctctgaggac ataaaataca caccgagatt catcaactca ttgctggagt 6720
tagcatatct acaattgggt gaaatgggga gcgatttgca ggcatttgct cggcatgccg 6780
gtagaggtgt ggtcaataag agcgacctca tgctatacct gagaaagcaa cctgacctac 6840
aggaaagagt tactcaagaa taagaatttt cgttttaaaa cctaagagtc actttaaaat 6900
ttgtatacac ttattttttt tataacttat ttaataataa aaatcataaa tcataagaaa 6960
ttcgcttact cttaattaat caggcagcgc ctgcgttcga gaggatgatc ttcatcgcct 7020
tctccttggc gccattgagg aatacctgat aggcgtgctc gatctcggcc agctcgaagc 7080
gatgggtaat catcttcttc aacggaagct tgtcggtcga ggcgaccttc atcagcatgg 7140
gcgtcgtgtt cgtgttcacc agtcccgtgg tgatcgtcag gttcttgatc cagagcttct 7200
gaatctcgaa gtcaaccttg acgccatgca cgccgacgtt ggcgatgtgc gcgccgggct 7260
tgacgatctc ctggcagatg tcccaagtcg ccggtatgcc caccgcctcg atcgcaacat 7320
cgactccctc tgccgcaatc ctatgcacgg cttcgacaac gttctccgtg ccggagttga 7380
tggtgtgcgt tgccccgagc tccttggcga gctggaggcg attctcgtcc atgtcgatca 7440
cgatgatggt cgagggggag tagaactggg cggtcaacag tacggacatg ccgacggggc 7500
ccgcgccgac aatagccacc gcatcgcccg gctggacatt cccatactgg acgccgattt 7560
cgtggccggt gggcaggatg tcgctcagca ggacggcgat ttcgtcgtca attgtctggg 7620
ggatcttgta gaggctgttg tcggcatgcg ggatgcggac gtattcggcc tgcacgccat 7680
cgatcatgta acccaggatc cacccgccgt cgcggcaatg ggagtaaagc tgcttcttgc 7740
agtagtcgca cgagccgcaa gaagtgacgc aggaaatcag gaccttgtcg cctttcttga 7800
actgcgtgac actctcgccc acttcctcga tgacgcctac cccttcatgg cccaggatgc 7860
gcccgtcggc gacctctgga ttcttgcctt tgtagatgcc gagatccgtg ccgcagatcg 7920
tggtcttcaa aacccgtact actacatccg tgggcttttg aagggtgggc ttgggcttgt 7980
cttcaagcga gatcttgtgg tcaccgtgat aaaccagagc tttcatcctc agctattgta 8040
atatgtgtgt ttgtttggat tattaagaag aataattaca aaaaaaatta caaaggaagg 8100
taattacaac agaattaaga aaggacaaga aggaggaaga gaatcagttc attatttctt 8160
ctttgttata taacaaaccc aagtagcgat ttggccatac attaaaagtt gagaaccacc 8220
ctccctggca acagccacaa ctcgttacca ttgttcatca cgatcatgaa actcgctgtc 8280
agctgaaatt tcacctcagt ggatctctct ttttattctt catcgttcca ctaacctttt 8340
tccatcagct ggcagggaac ggaaagtgga atcccattta gcgagcttcc tcttttcttc 8400
aagaaaagac gaagcttgtg tgtgggtgcg cgcgctagta tctttccaca ttaagaaata 8460
taccataaag gttacttaga catcactatg gctatatata tatatatata tatatatgta 8520
acttagcacc atcgcgcgtg catcactgca tgtgttaacc gaaaagtttg gcgaacactt 8580
caccgacacg gtcatttaga tctgtcgtct gcattgcacg tcccttagcc ttaaatccta 8640
ggcgggagca ttctcgtgta attgtgcagc ctgcgtagca actcaacata gcgtagtcta 8700
cccagttttt caagggttta tcgttagaag attctccctt ttcttcctgc tcacaaatct 8760
taaagtcata cattgcacga ctaaatgcaa gcatgcggat cccccgggct gcaggaattc 8820
gatatcaagc ttatcgatac cgtcgactgg ccattaatct ttcccatatt agatttcgcc 8880
aagccatgaa agttcaagaa aggtctttag acgaattacc cttcatttct caaactggcg 8940
tcaagggatc ctggtatggt tttatcgttt tatttctggt tcttatagca tcgttttgga 9000
cttctctgtt cccattaggc ggttcaggag ccagcgcaga atcattcttt gaaggatact 9060
tatcctttcc aattttgatt gtctgttacg ttggacataa actgtatact agaaattgga 9120
ctttgatggt gaaactagaa gatatggatc ttgataccgg cagaaaacaa gtagatttga 9180
ctcttcgtag ggaagaaatg aggattgagc gagaaacatt agcaaaaaga tccttcgtaa 9240
caagattttt acatttctgg tgttgaaggg aaagatatga gctatacagc ggaatttcca 9300
tatcactcag attttgttat ctaatttttt ccttcccacg tccgcgggaa tctgtgtata 9360
ttactgcatc tagatatatg ttatcttatc ttggcgcgta catttaattt tcaacgtatt 9420
ctataagaaa ttgcgggagt ttttttcatg tagatgatac tgactgcacg caaatatagg 9480
catgatttat aggcatgatt tgatggctgt accgatagga acgctaagag taacttcaga 9540
atcgttatcc tggcggaaaa aattcatttg taaactttaa aaaaaaaagc caatatcccc 9600
aaaattatta agagcgcctc cattattaac taaaatttca ctcagcatcc acaatgtatc 9660
aggtatctac tacagatatt acatgtggcg aaaaagacaa gaacaatgca atagcgcatc 9720
aagaaaaaac acaaagcttt caatcaatga atcgaaaatg tcattaaaat agtatataaa 9780
ttgaaactaa gtcataaagc tataaaaaga aaatttattt aaatgcaaga tttaaagtaa 9840
attcacggcc ctgcaggcct cagctcttgt tttgttctgc aaataactta cccatctttt 9900
tcaaaacttt aggtgcaccc tcctttgcta gaataagttc tatccaatac atcctatttg 9960
gatctgcttg agcttctttc atcacggata cgaattcatt ttctgttctc acaattttgg 10020
acacaactct gtcttccgtt gccccgaaac tttctggcag ttttgagtaa ttccacatag 10080
gaatgtcatt ataactctgg ttcggaccat gaatttccct ctcaaccgtg taaccatcgt 10140
tattaatgat aaagcagatt gggtttatct tctctctaat ggctagtcct aattcttgga 10200
cagtcagttg caatgatcca tctccgataa acaataaatg tctagattct ttatctgcaa 10260
tttggctgcc tagagctgcg gggaaagtgt atcctataga tccccacaag ggttgaccaa 10320
taaaatgtga tttcgatttc agaaatatag atgaggcacc gaagaaagaa gtgccttgtt 10380
cagccacgat cgtctcatta ctttgggtca aattttcgac agcttgccac agtctatctt 10440
gtgacaacag cgcgttagaa ggtacaaaat cttcttgctt tttatctatg tacttgcctt 10500
tatattcaat ttcggacaag tcaagaagag atgatatcag ggattcgaag tcgaaatttt 10560
ggattctttc gttgaaaatt ttaccttcat cgatattcaa ggaaatcatt ttattttcat 10620
taagatggtg agtaaatgca cccgtactag aatcggtaag ctttacaccc aacataagaa 10680
taaaatcagc agattccaca aattccttca agtttggctc tgacagagta ccgttgtaaa 10740
tccccaaaaa tgagggcaat gcttcatcaa cagatgattt accaaagttc aaagtagtaa 10800
taggtaactt agtctttgaa ataaactgag taacagtctt ctctaggccg aacgatataa 10860
tttcatggcc tgtgattaca attggtttct tggcattctt cagactttcc tgtattttgt 10920
tcagaatctc ttgatcagat gtattcgacg tggaattttc cttcttaaga ggcaaggatg 10980
gtttttcagc cttagcggca gctacatcta caggtaaatt gatgtaaacc ggctttcttt 11040
cctttagtaa ggcagacaac actctatcaa tttcaacagt tgcattctcg gctgtcaata 11100
aagtcctggc agcagtaacc ggttcgtgca tcttcataaa gtgcttgaaa tcaccatcag 11160
ccaacgtatg gtgaacaaac ttaccttcgt tctgcacttt cgaggtagga gatcccacga 11220
tctcaacaac aggcaggttc tcagcatagg agcccgctaa gccattaact gcggataatt 11280
cgccaacacc aaatgtagtc aagaatgccg cagccttttt cgttcttgcg tacccgtcgg 11340
ccatatagga ggcatttaac tcattagcat ttcccaccca tttcatatct ttgtgtgaaa 11400
taatttgatc tagaaattgc aaattgtagt cacctggtac tccgaatatt tcttctatac 11460
ctaattcgtg taatctgtcc aacagatagt cacctactgt atacattttg tttactagtt 11520
tatgtgtgtt tattcgaaac taagttcttg gtgttttaaa actaaaaaaa agactaacta 11580
taaaagtaga atttaagaag tttaagaaat agatttacag aattacaatc aatacctacc 11640
gtctttatat acttattagt caagtagggg aataatttca gggaactggt ttcaaccttt 11700
tttttcagct ttttccaaat cagagagagc agaaggtaat agaaggtgta agaaaatgag 11760
atagatacat gcgtgggtca attgccttgt gtcatcattt actccaggca ggttgcatca 11820
ctccattgag gttgtgcccg ttttttgcct gtttgtgccc ctgttctctg tagttgcgct 11880
aagagaatgg acctatgaac tgatggttgg tgaagaaaac aatattttgg tgctgggatt 11940
cttttttttt ctggatgcca gcttaaaaag cgggctccat tatatttagt ggatgccagg 12000
aataaactgt tcacccagac acctacgatg ttatatattc tgtgtaaccc gccccctatt 12060
ttgggcatgt acgggttaca gcagaattaa aaggctaatt ttttgactaa ataaagttag 12120
gaaaatcact actattaatt atttacgtat tctttgaaat ggcagtattg ataatgataa 12180
actcgaactg aaaaagcgtg ttttttattc aaaatgattc taactccctt acgtaatcaa 12240
ggaatctttt tgccttggcc tccgcgtcat taaacttctt gttgttgacg ctaacattca 12300
acgctagtat atattcgttt ttttcaggta agttcttttc aacgggtctt actgatgagg 12360
cagtcgcgtc tgaacctgtt aagaggtcaa atatgtcttc ttgaccgtac gtgtcttgca 12420
tgttattagc tttgggaatt tgcatcaagt cataggaaaa tttaaatctt ggctctcttg 12480
ggctcaaggt gacaaggtcc tcgaaaatag ggcgcgcccc accgcggtgg agctccagct 12540
tttgttccct ttagtgaggg ttaattgcgc gcttggcgta atcatggtca tagctgtttc 12600
ctgtgtgaaa ttgttatccg ctcacaattc cacacaacat acgagccgga agcataaagt 12660
gtaaagcctg gggtgcctaa tgagtgagct aactcacatt aattgcgttg cgctcactgc 12720
ccgctttcca gtcgggaaac ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg 12780
ggagaggcgg tttgcgtatt gggcgctctt ccgcttcctc gctcactgac tcgctgcgct 12840
cggtcgttcg gctgcggcga gcggtatcag ctcactcaaa ggcggtaata cggttatcca 12900
cagaatcagg ggataacgca ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga 12960
accgtaaaaa ggccgcgttg ctggcgtttt tccataggct ccgcccccct gacgagcatc 13020
acaaaaatcg acgctcaagt cagaggtggc gaaacccgac aggactataa agataccagg 13080
cgtttccccc tggaagctcc ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat 13140
acctgtccgc ctttctccct tcgggaagcg tggcgctttc tcatagctca cgctgtaggt 13200
atctcagttc ggtgtaggtc gttcgctcca agctgggctg tgtgcacgaa ccccccgttc 13260
agcccgaccg ctgcgcctta tccggtaact atcgtcttga gtccaacccg gtaagacacg 13320
acttatcgcc actggcagca gccactggta acaggattag cagagcgagg tatgtaggcg 13380
gtgctacaga gttcttgaag tggtggccta actacggcta cactagaaga acagtatttg 13440
gtatctgcgc tctgctgaag ccagttacct tcggaaaaag agttggtagc tcttgatccg 13500
gcaaacaaac caccgctggt agcggtggtt tttttgtttg caagcagcag attacgcgca 13560
gaaaaaaagg atctcaagaa gatcctttga tcttttctac ggggtctgac gctcagtgga 13620
acgaaaactc acgttaaggg attttggtca tgagattatc aaaaaggatc ttcacctaga 13680
tccttttaaa ttaaaaatga agttttaaat caatctaaag tatatatgag taaacttggt 13740
ctgacagtta ccaatgctta atcagtgagg cacctatctc agcgatctgt ctatttcgtt 13800
catccatagt tgcctgactc cccgtcgtgt agataactac gatacgggag ggcttaccat 13860
ctggccccag tgctgcaatg ataccgcgag acccacgctc accggctcca gatttatcag 13920
caataaacca gccagccgga agggccgagc gcagaagtgg tcctgcaact ttatccgcct 13980
ccatccagtc tattaattgt tgccgggaag ctagagtaag tagttcgcca gttaatagtt 14040
tgcgcaacgt tgttgccatt gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg 14100
cttcattcag ctccggttcc caacgatcaa ggcgagttac atgatccccc atgttgtgca 14160
aaaaagcggt tagctccttc ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt 14220
tatcactcat ggttatggca gcactgcata attctcttac tgtcatgcca tccgtaagat 14280
gcttttctgt gactggtgag tactcaacca agtcattctg agaatagtgt atgcggcgac 14340
cgagttgctc ttgcccggcg tcaatacggg ataataccgc gccacatagc agaactttaa 14400
aagtgctcat cattggaaaa cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt 14460
tgagatccag ttcgatgtaa cccactcgtg cacccaactg atcttcagca tcttttactt 14520
tcaccagcgt ttctgggtga gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa 14580
gggcgacacg gaaatgttga atactcatac tcttcctttt tcaatattat tgaagcattt 14640
atcagggtta ttgtctcatg agcggataca tatttgaatg tatttagaaa aataaacaaa 14700
taggggttcc gcgcacattt ccccgaaaag tgccacctga acgaagcatc tgtgcttcat 14760
tttgtagaac aaaaatgcaa cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc 14820
atttttacag aacagaaatg caacgcgaaa gcgctatttt accaacgaag aatctgtgct 14880
tcatttttgt aaaacaaaaa tgcaacgcga gagcgctaat ttttcaaaca aagaatctga 14940
gctgcatttt tacagaacag aaatgcaacg cgagagcgct attttaccaa caaagaatct 15000
atacttcttt tttgttctac aaaaatgcat cccgagagcg ctatttttct aacaaagcat 15060
cttagattac tttttttctc ctttgtgcgc tctataatgc agtctcttga taactttttg 15120
cactgtaggt ccgttaaggt tagaagaagg ctactttggt gtctattttc tcttccataa 15180
aaaaagcctg actccacttc ccgcgtttac tgattactag cgaagctgcg ggtgcatttt 15240
ttcaagataa aggcatcccc gattatattc tataccgatg tggattgcgc atactttgtg 15300
aacagaaagt gatagcgttg atgattcttc attggtcaga aaattatgaa cggtttcttc 15360
tattttgtct ctatatacta cgtataggaa atgtttacat tttcgtattg ttttcgattc 15420
actctatgaa tagttcttac tacaattttt ttgtct 15456
<210> SEQ ID NO 68
<211> LENGTH: 1559
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Template
<400> SEQUENCE: 68
gcattgcgga ttacgtattc taatgttcag taccgttcgt ataatgtatg ctatacgaag 60
ttatgcagat tgtactgaga gtgcaccata ccaccttttc aattcatcat ttttttttta 120
ttcttttttt tgatttcggt ttccttgaaa tttttttgat tcggtaatct ccgaacagaa 180
ggaagaacga aggaaggagc acagacttag attggtatat atacgcatat gtagtgttga 240
agaaacatga aattgcccag tattcttaac ccaactgcac agaacaaaaa cctgcaggaa 300
acgaagataa atcatgtcga aagctacata taaggaacgt gctgctactc atcctagtcc 360
tgttgctgcc aagctattta atatcatgca cgaaaagcaa acaaacttgt gtgcttcatt 420
ggatgttcgt accaccaagg aattactgga gttagttgaa gcattaggtc ccaaaatttg 480
tttactaaaa acacatgtgg atatcttgac tgatttttcc atggagggca cagttaagcc 540
gctaaaggca ttatccgcca agtacaattt tttactcttc gaagacagaa aatttgctga 600
cattggtaat acagtcaaat tgcagtactc tgcgggtgta tacagaatag cagaatgggc 660
agacattacg aatgcacacg gtgtggtggg cccaggtatt gttagcggtt tgaagcaggc 720
ggcagaagaa gtaacaaagg aacctagagg ccttttgatg ttagcagaat tgtcatgcaa 780
gggctcccta tctactggag aatatactaa gggtactgtt gacattgcga agagcgacaa 840
agattttgtt atcggcttta ttgctcaaag agacatgggt ggaagagatg aaggttacga 900
ttggttgatt atgacacccg gtgtgggttt agatgacaag ggagacgcat tgggtcaaca 960
gtatagaacc gtggatgatg tggtctctac aggatctgac attattattg ttggaagagg 1020
actatttgca aagggaaggg atgctaaggt agagggtgaa cgttacagaa aagcaggctg 1080
ggaagcatat ttgagaagat gcggccagca aaactaaaaa actgtattat aagtaaatgc 1140
atgtatacta aactcacaaa ttagagcttc aatttaatta tatcagttat taccctatgc 1200
ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg catcaggaaa ttgtaaacgt 1260
taatattttg ttaaaattcg cgttaaattt ttgttaaatc agctcatttt ttaaccaata 1320
ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag accgagatag ggttgagtgt 1380
tgttccagtt tggaacaaga gtccactatt aaagaacgtg gactccaacg tcaaagggcg 1440
aaaaaccgtc tatcagggcg atggcccact acgtgaacca tcaccctaat caagataact 1500
tcgtataatg tatgctatac gaacggtacc agtgatgata caacgagtta gccaaggtg 1559
<210> SEQ ID NO 69
<211> LENGTH: 1047
<212> TYPE: DNA
<213> ORGANISM: Alcaligenes xylosoxydans
<400> SEQUENCE: 69
atgaaagctc tggtttatca cggtgaccac aagatctcgc ttgaagacaa gcccaagccc 60
acccttcaaa agcccacgga tgtagtagta cgggttttga agaccacgat ctgcggcacg 120
gatctcggca tctacaaagg caagaatcca gaggtcgccg acgggcgcat cctgggccat 180
gaaggggtag gcgtcatcga ggaagtgggc gagagtgtca cgcagttcaa gaaaggcgac 240
aaggtcctga tttcctgcgt cacttcttgc ggctcgtgcg actactgcaa gaagcagctt 300
tactcccatt gccgcgacgg cgggtggatc ctgggttaca tgatcgatgg cgtgcaggcc 360
gaatacgtcc gcatcccgca tgccgacaac agcctctaca agatccccca gacaattgac 420
gacgaaatcg ccgtcctgct gagcgacatc ctgcccaccg gccacgaaat cggcgtccag 480
tatgggaatg tccagccggg cgatgcggtg gctattgtcg gcgcgggccc cgtcggcatg 540
tccgtactgt tgaccgccca gttctactcc ccctcgacca tcatcgtgat cgacatggac 600
gagaatcgcc tccagctcgc caaggagctc ggggcaacgc acaccatcaa ctccggcacg 660
gagaacgttg tcgaagccgt gcataggatt gcggcagagg gagtcgatgt tgcgatcgag 720
gcggtgggca taccggcgac ttgggacatc tgccaggaga tcgtcaagcc cggcgcgcac 780
atcgccaacg tcggcgtgca tggcgtcaag gttgacttcg agattcagaa gctctggatc 840
aagaacctga cgatcaccac gggactggtg aacacgaaca cgacgcccat gctgatgaag 900
gtcgcctcga ccgacaagct tccgttgaag aagatgatta cccatcgctt cgagctggcc 960
gagatcgagc acgcctatca ggtattcctc aatggcgcca aggagaaggc gatgaagatc 1020
atcctctcga acgcaggcgc tgcctga 1047
<210> SEQ ID NO 70
<211> LENGTH: 348
<212> TYPE: PRT
<213> ORGANISM: Alcaligenes xylosoxydans
<400> SEQUENCE: 70
Met Lys Ala Leu Val Tyr His Gly Asp His Lys Ile Ser Leu Glu Asp
1 5 10 15
Lys Pro Lys Pro Thr Leu Gln Lys Pro Thr Asp Val Val Val Arg Val
20 25 30
Leu Lys Thr Thr Ile Cys Gly Thr Asp Leu Gly Ile Tyr Lys Gly Lys
35 40 45
Asn Pro Glu Val Ala Asp Gly Arg Ile Leu Gly His Glu Gly Val Gly
50 55 60
Val Ile Glu Glu Val Gly Glu Ser Val Thr Gln Phe Lys Lys Gly Asp
65 70 75 80
Lys Val Leu Ile Ser Cys Val Thr Ser Cys Gly Ser Cys Asp Tyr Cys
85 90 95
Lys Lys Gln Leu Tyr Ser His Cys Arg Asp Gly Gly Trp Ile Leu Gly
100 105 110
Tyr Met Ile Asp Gly Val Gln Ala Glu Tyr Val Arg Ile Pro His Ala
115 120 125
Asp Asn Ser Leu Tyr Lys Ile Pro Gln Thr Ile Asp Asp Glu Ile Ala
130 135 140
Val Leu Leu Ser Asp Ile Leu Pro Thr Gly His Glu Ile Gly Val Gln
145 150 155 160
Tyr Gly Asn Val Gln Pro Gly Asp Ala Val Ala Ile Val Gly Ala Gly
165 170 175
Pro Val Gly Met Ser Val Leu Leu Thr Ala Gln Phe Tyr Ser Pro Ser
180 185 190
Thr Ile Ile Val Ile Asp Met Asp Glu Asn Arg Leu Gln Leu Ala Lys
195 200 205
Glu Leu Gly Ala Thr His Thr Ile Asn Ser Gly Thr Glu Asn Val Val
210 215 220
Glu Ala Val His Arg Ile Ala Ala Glu Gly Val Asp Val Ala Ile Glu
225 230 235 240
Ala Val Gly Ile Pro Ala Thr Trp Asp Ile Cys Gln Glu Ile Val Lys
245 250 255
Pro Gly Ala His Ile Ala Asn Val Gly Val His Gly Val Lys Val Asp
260 265 270
Phe Glu Ile Gln Lys Leu Trp Ile Lys Asn Leu Thr Ile Thr Thr Gly
275 280 285
Leu Val Asn Thr Asn Thr Thr Pro Met Leu Met Lys Val Ala Ser Thr
290 295 300
Asp Lys Leu Pro Leu Lys Lys Met Ile Thr His Arg Phe Glu Leu Ala
305 310 315 320
Glu Ile Glu His Ala Tyr Gln Val Phe Leu Asn Gly Ala Lys Glu Lys
325 330 335
Ala Met Lys Ile Ile Leu Ser Asn Ala Gly Ala Ala
340 345
<210> SEQ ID NO 71
<211> LENGTH: 1644
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: codon optimized L. lactis kivD coding
region
for S. cerevisiae expression
<400> SEQUENCE: 71
atgtatacag taggtgacta tctgttggac agattacacg aattaggtat agaagaaata 60
ttcggagtac caggtgacta caatttgcaa tttctagatc aaattatttc acacaaagat 120
atgaaatggg tgggaaatgc taatgagtta aatgcctcct atatggccga cgggtacgca 180
agaacgaaaa aggctgcggc attcttgact acatttggtg ttggcgaatt atccgcagtt 240
aatggcttag cgggctccta tgctgagaac ctgcctgttg ttgagatcgt gggatctcct 300
acctcgaaag tgcagaacga aggtaagttt gttcaccata cgttggctga tggtgatttc 360
aagcacttta tgaagatgca cgaaccggtt actgctgcca ggactttatt gacagccgag 420
aatgcaactg ttgaaattga tagagtgttg tctgccttac taaaggaaag aaagccggtt 480
tacatcaatt tacctgtaga tgtagctgcc gctaaggctg aaaaaccatc cttgcctctt 540
aagaaggaaa attccacgtc gaatacatct gatcaagaga ttctgaacaa aatacaggaa 600
agtctgaaga atgccaagaa accaattgta atcacaggcc atgaaattat atcgttcggc 660
ctagagaaga ctgttactca gtttatttca aagactaagt tacctattac tactttgaac 720
tttggtaaat catctgttga tgaagcattg ccctcatttt tggggattta caacggtact 780
ctgtcagagc caaacttgaa ggaatttgtg gaatctgctg attttattct tatgttgggt 840
gtaaagctta ccgattctag tacgggtgca tttactcacc atcttaatga aaataaaatg 900
atttccttga atatcgatga aggtaaaatt ttcaacgaaa gaatccaaaa tttcgacttc 960
gaatccctga tatcatctct tcttgacttg tccgaaattg aatataaagg caagtacata 1020
gataaaaagc aagaagattt tgtaccttct aacgcgctgt tgtcacaaga tagactgtgg 1080
caagctgtcg aaaatttgac ccaaagtaat gagacgatcg tggctgaaca aggcacttct 1140
ttcttcggtg cctcatctat atttctgaaa tcgaaatcac attttattgg tcaacccttg 1200
tggggatcta taggatacac tttccccgca gctctaggca gccaaattgc agataaagaa 1260
tctagacatt tattgtttat cggagatgga tcattgcaac tgactgtcca agaattagga 1320
ctagccatta gagagaagat aaacccaatc tgctttatca ttaataacga tggttacacg 1380
gttgagaggg aaattcatgg tccgaaccag agttataatg acattcctat gtggaattac 1440
tcaaaactgc cagaaagttt cggggcaacg gaagacagag ttgtgtccaa aattgtgaga 1500
acagaaaatg aattcgtatc cgtgatgaaa gaagctcaag cagatccaaa taggatgtat 1560
tggatagaac ttattctagc aaaggagggt gcacctaaag ttttgaaaaa gatgggtaag 1620
ttatttgcag aacaaaacaa gagc 1644
<210> SEQ ID NO 72
<211> LENGTH: 753
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 72
gcatgcttgc atttagtcgt gcaatgtatg actttaagat ttgtgagcag gaagaaaagg 60
gagaatcttc taacgataaa cccttgaaaa actgggtaga ctacgctatg ttgagttgct 120
acgcaggctg cacaattaca cgagaatgct cccgcctagg atttaaggct aagggacgtg 180
caatgcagac gacagatcta aatgaccgtg tcggtgaagt gttcgccaaa cttttcggtt 240
aacacatgca gtgatgcacg cgcgatggtg ctaagttaca tatatatata tatagccata 300
gtgatgtcta agtaaccttt atggtatatt tcttaatgtg gaaagatact agcgcgcgca 360
cccacacaca agcttcgtct tttcttgaag aaaagaggaa gctcgctaaa tgggattcca 420
ctttccgttc cctgccagct gatggaaaaa ggttagtgga acgatgaaga ataaaaagag 480
agatccactg aggtgaaatt tcagctgaca gcgagtttca tgatcgtgat gaacaatggt 540
aacgagttgt ggctgttgcc agggagggtg gttctcaact tttaatgtat ggccaaatcg 600
ctacttgggt ttgttatata acaaagaaga aataatgaac tgattctctt cctccttctt 660
gtcctttctt aattctgttg taattacctt cctttgtaat tttttttgta attattcttc 720
ttaataatcc aaacaaacac acatattaca ata 753
<210> SEQ ID NO 73
<211> LENGTH: 316
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 73
gagtaagcga atttcttatg atttatgatt tttattatta aataagttat aaaaaaaata 60
agtgtataca aattttaaag tgactcttag gttttaaaac gaaaattctt attcttgagt 120
aactctttcc tgtaggtcag gttgctttct caggtatagc atgaggtcgc tcttattgac 180
cacacctcta ccggcatgcc gagcaaatgc ctgcaaatcg ctccccattt cacccaattg 240
tagatatgct aactccagca atgagttgat gaatctcggt gtgtatttta tgtcctcaga 300
ggacaacacc tgtggt 316
<210> SEQ ID NO 74
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 74
ggaattcaca catgaaagct ctggtttatc 30
<210> SEQ ID NO 75
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 75
gcgtccaggg cgtcaaagat caggcagc 28
<210> SEQ ID NO 76
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 76
aaacaaacac acatattaca atagctgagg atgaaagctc tggtttatca cggtg 55
<210> SEQ ID NO 77
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 77
atcataagaa attcgcttac tcttaattaa tcaggcagcg cctgcgttcg agagg 55
<210> SEQ ID NO 78
<211> LENGTH: 8994
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: constructed plasmid
<400> SEQUENCE: 78
ctagttctag agcggccgcc accgcggtgg agctccagct tttgttccct ttagtgaggg 60
ttaattgcgc gcttggcgta atcatggtca tagctgtttc ctgtgtgaaa ttgttatccg 120
ctcacaattc cacacaacat aggagccgga agcataaagt gtaaagcctg gggtgcctaa 180
tgagtgaggt aactcacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac 240
ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt 300
gggcgctctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga 360
gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca 420
ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg 480
ctggcgtttt tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt 540
cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc 600
ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct 660
tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc 720
gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta 780
tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca 840
gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag 900
tggtggccta actacggcta cactagaagg acagtatttg gtatctgcgc tctgctgaag 960
ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt 1020
agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa 1080
gatcctttga tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg 1140
attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga 1200
agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta 1260
atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt tgcctgactc 1320
cccgtcgtgt agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg 1380
ataccgcgag acccacgctc accggctcca gatttatcag caataaacca gccagccgga 1440
agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc tattaattgt 1500
tgccgggaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt 1560
gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag ctccggttcc 1620
caacgatcaa ggcgagttac atgatccccc atgttgtgca aaaaagcggt tagctccttc 1680
ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt tatcactcat ggttatggca 1740
gcactgcata attctcttac tgtcatgcca tccgtaagat gcttttctgt gactggtgag 1800
tactcaacca agtcattctg agaatagtgt atgcggcgac cgagttgctc ttgcccggcg 1860
tcaatacggg ataataccgc gccacatagc agaactttaa aagtgctcat cattggaaaa 1920
cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa 1980
cccactcgtg cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga 2040
gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga 2100
atactcatac tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg 2160
agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc gcgcacattt 2220
ccccgaaaag tgccacctga acgaagcatc tgtgcttcat tttgtagaac aaaaatgcaa 2280
cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc atttttacag aacagaaatg 2340
caacgcgaaa gcgctatttt accaacgaag aatctgtgct tcatttttgt aaaacaaaaa 2400
tgcaacgcga gagcgctaat ttttcaaaca aagaatctga gctgcatttt tacagaacag 2460
aaatgcaacg cgagagcgct attttaccaa caaagaatct atacttcttt tttgttctac 2520
aaaaatgcat cccgagagcg ctatttttct aacaaagcat cttagattac tttttttctc 2580
ctttgtgcgc tctataatgc agtctcttga taactttttg cactgtaggt ccgttaaggt 2640
tagaagaagg ctactttggt gtctattttc tcttccataa aaaaagcctg actccacttc 2700
ccgcgtttac tgattactag cgaagctgcg ggtgcatttt ttcaagataa aggcatcccc 2760
gattatattc tataccgatg tggattgcgc atactttgtg aacagaaagt gatagcgttg 2820
atgattcttc attggtcaga aaattatgaa cggtttcttc tattttgtct ctatatacta 2880
cgtataggaa atgtttacat tttcgtattg ttttcgattc actctatgaa tagttcttac 2940
tacaattttt ttgtctaaag agtaatacta gagataaaca taaaaaatgt agaggtcgag 3000
tttagatgca agttcaagga gcgaaaggtg gatgggtagg ttatataggg atatagcaca 3060
gagatatata gcaaagagat acttttgagc aatgtttgtg gaagcggtat tcgcaatatt 3120
ttagtagctc gttacagtcc ggtgcgtttt tggttttttg aaagtgcgtc ttcagagcgc 3180
ttttggtttt caaaagcgct ctgaagttcc tatactttct agagaatagg aacttcggaa 3240
taggaacttc aaagcgtttc cgaaaacgag cgcttccgaa aatgcaacgc gagctgcgca 3300
catacagctc actgttcacg tcgcacctat atctgcgtgt tgcctgtata tatatataca 3360
tgagaagaac ggcatagtgc gtgtttatgc ttaaatgcgt acttatatgc gtctatttat 3420
gtaggatgaa aggtagtcta gtacctcctg tgatattatc ccattccatg cggggtatcg 3480
tatgcttcct tcagcactac cctttagctg ttctatatgc tgccactcct caattggatt 3540
agtctcatcc ttcaatgcta tcatttcctt tgatattgga tcatactaag aaaccattat 3600
tatcatgaca ttaacctata aaaataggcg tatcacgagg ccctttcgtc tcgcgcgttt 3660
cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca cagcttgtct 3720
gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg ttggcgggtg 3780
tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc accatatcga 3840
ctacgtcgta aggccgtttc tgacagagta aaattcttga gggaactttc accattatgg 3900
gaaatgcttc aagaaggtat tgacttaaac tccatcaaat ggtcaggtca ttgagtgttt 3960
tttatttgtt gtattttttt ttttttagag aaaatcctcc aatatcaaat taggaatcgt 4020
agtttcatga ttttctgtta cacctaactt tttgtgtggt gccctcctcc ttgtcaatat 4080
taatgttaaa gtgcaattct ttttccttat cacgttgagc cattagtatc aatttgctta 4140
cctgtattcc tttactatcc tcctttttct ccttcttgat aaatgtatgt agattgcgta 4200
tatagtttcg tctaccctat gaacatattc cattttgtaa tttcgtgtcg tttctattat 4260
gaatttcatt tataaagttt atgtacaaat atcataaaaa aagagaatct ttttaagcaa 4320
ggattttctt aacttcttcg gcgacagcat caccgacttc ggtggtactg ttggaaccac 4380
ctaaatcacc agttctgata cctgcatcca aaaccttttt aactgcatct tcaatggcct 4440
taccttcttc aggcaagttc aatgacaatt tcaacatcat tgcagcagac aagatagtgg 4500
cgatagggtc aaccttattc tttggcaaat ctggagcaga accgtggcat ggttcgtaca 4560
aaccaaatgc ggtgttcttg tctggcaaag aggccaagga cgcagatggc aacaaaccca 4620
aggaacctgg gataacggag gcttcatcgg agatgatatc accaaacatg ttgctggtga 4680
ttataatacc atttaggtgg gttgggttct taactaggat catggcggca gaatcaatca 4740
attgatgttg aaccttcaat gtagggaatt cgttcttgat ggtttcctcc acagtttttc 4800
tccataatct tgaagaggcc aaaagattag ctttatccaa ggaccaaata ggcaatggtg 4860
gctcatgttg tagggccatg aaagcggcca ttcttgtgat tctttgcact tctggaacgg 4920
tgtattgttc actatcccaa gcgacaccat caccatcgtc ttcctttctc ttaccaaagt 4980
aaatacctcc cactaattct ctgacaacaa cgaagtcagt acctttagca aattgtggct 5040
tgattggaga taagtctaaa agagagtcgg atgcaaagtt acatggtctt aagttggcgt 5100
acaattgaag ttctttacgg atttttagta aaccttgttc aggtctaaca ctaccggtac 5160
cccatttagg accagccaca gcacctaaca aaacggcatc aaccttcttg gaggcttcca 5220
gcgcctcatc tggaagtggg acacctgtag catcgatagc agcaccacca attaaatgat 5280
tttcgaaatc gaacttgaca ttggaacgaa catcagaaat agctttaaga accttaatgg 5340
cttcggctgt gatttcttga ccaacgtggt cacctggcaa aacgacgatc ttcttagggg 5400
cagacatagg ggcagacatt agaatggtat atccttgaaa tatatatata tattgctgaa 5460
atgtaaaagg taagaaaagt tagaaagtaa gacgattgct aaccacctat tggaaaaaac 5520
aataggtcct taaataatat tgtcaacttc aagtattgtg atgcaagcat ttagtcatga 5580
acgcttctct attctatatg aaaagccggt tccggcctct cacctttcct ttttctccca 5640
atttttcagt tgaaaaaggt atatgcgtca ggcgacctct gaaattaaca aaaaatttcc 5700
agtcatcgaa tttgattctg tgcgatagcg cccctgtgtg ttctcgttat gttgaggaaa 5760
aaaataatgg ttgctaagag attcgaactc ttgcatctta cgatacctga gtattcccac 5820
agttaactgc ggtcaagata tttcttgaat caggcgcctt agaccgctcg gccaaacaac 5880
caattacttg ttgagaaata gagtataatt atcctataaa tataacgttt ttgaacacac 5940
atgaacaagg aagtacagga caattgattt tgaagagaat gtggattttg atgtaattgt 6000
tgggattcca tttttaataa ggcaataata ttaggtatgt ggatatacta gaagttctcc 6060
tcgaccgtcg atatgcggtg tgaaataccg cacagatgcg taaggagaaa ataccgcatc 6120
aggaaattgt aaacgttaat attttgttaa aattcgcgtt aaatttttgt taaatcagct 6180
cattttttaa ccaataggcc gaaatcggca aaatccctta taaatcaaaa gaatagaccg 6240
agatagggtt gagtgttgtt ccagtttgga acaagagtcc actattaaag aacgtggact 6300
ccaacgtcaa agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac 6360
cctaatcaag ttttttgggg tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga 6420
gcccccgatt tagagcttga cggggaaagc cggcgaacgt ggcgagaaag gaagggaaga 6480
aagcgaaagg agcgggcgct agggcgctgg caagtgtagc ggtcacgctg cgcgtaacca 6540
ccacacccgc cgcgcttaat gcgccgctac agggcgcgtc gcgccattcg ccattcaggc 6600
tgcgcaactg ttgggaaggg cgatcggtgc gggcctcttc gctattacgc cagctggcga 6660
aagggggatg tgctgcaagg cgattaagtt gggtaacgcc agggttttcc cagtcacgac 6720
gttgtaaaac gacggccagt gagcgcgcgt aatacgactc actatagggc gaattgggta 6780
ccgggccccc cctcgaggtc gacggtatcg ataagcttga tatcgaattc ctgcagcccg 6840
ggggatccgc atgcttgcat ttagtcgtgc aatgtatgac tttaagattt gtgagcagga 6900
agaaaaggga gaatcttcta acgataaacc cttgaaaaac tgggtagact acgctatgtt 6960
gagttgctac gcaggctgca caattacacg agaatgctcc cgcctaggat ttaaggctaa 7020
gggacgtgca atgcagacga cagatctaaa tgaccgtgtc ggtgaagtgt tcgccaaact 7080
tttcggttaa cacatgcagt gatgcacgcg cgatggtgct aagttacata tatatatata 7140
tatatatata tagccatagt gatgtctaag taacctttat ggtatatttc ttaatgtgga 7200
aagatactag cgcgcgcacc cacacacaag cttcgtcttt tcttgaagaa aagaggaagc 7260
tcgctaaatg ggattccact ttccgttccc tgccagctga tggaaaaagg ttagtggaac 7320
gatgaagaat aaaaagagag atccactgag gtgaaatttc agctgacagc gagtttcatg 7380
atcgtgatga acaatggtaa cgagttgtgg ctgttgccag ggagggtggt tctcaacttt 7440
taatgtatgg ccaaatcgct acttgggttt gttatataac aaagaagaaa taatgaactg 7500
attctcttcc tccttcttgt cctttcttaa ttctgttgta attaccttcc tttgtaattt 7560
tttttgtaat tattcttctt aataatccaa acaaacacac atattacaat agctagctga 7620
ggatgaaggc attagtttat catggggatc acaaaatttc gttagaagac aaaccaaaac 7680
ccactctgca gaaaccaaca gacgttgtgg ttagggtgtt gaaaacaaca atttgcggta 7740
ctgacttggg aatatacaaa ggtaagaatc ctgaagtggc agatggcaga atcctgggtc 7800
atgagggcgt tggcgtcatt gaagaagtgg gcgaatccgt gacacaattc aaaaaggggg 7860
ataaagtttt aatctcctgc gttactagct gtggatcgtg tgattattgc aagaagcaac 7920
tgtattcaca ctgtagagac ggtggctgga ttttaggtta catgatcgac ggtgtccaag 7980
ccgaatacgt cagaatacca catgctgaca attcattgta taagatcccg caaactatcg 8040
atgatgaaat tgcagtacta ctgtccgata ttttacctac tggacatgaa attggtgttc 8100
aatatggtaa cgttcaacca ggcgatgctg tagcaattgt aggagcaggt cctgttggaa 8160
tgtcagtttt gttaactgct caattttact cgcctagtac cattattgtt atcgacatgg 8220
acgaaaaccg tttacaatta gcgaaggagc ttggggccac acacactatt aactccggta 8280
ctgaaaatgt tgtcgaagct gtgcatcgta tagcagccga aggagtggat gtagcaatag 8340
aagctgttgg tatacccgca acctgggaca tctgtcagga aattgtaaaa cccggcgctc 8400
atattgccaa cgtgggagtt catggtgtta aggtggactt tgaaattcaa aagttgtgga 8460
ttaagaatct aaccatcacc actggtttgg ttaacactaa tactacccca atgttgatga 8520
aggtagcctc tactgataaa ttgcctttaa agaaaatgat tactcacagg tttgagttag 8580
ctgaaatcga acacgcatat caggttttct tgaatggcgc taaagaaaaa gctatgaaga 8640
ttattctatc taatgcaggt gccgcctaat taattaagag taagcgaatt tcttatgatt 8700
tatgattttt attattaaat aagttataaa aaaaataagt gtatacaaat tttaaagtga 8760
ctcttaggtt ttaaaacgaa aattcttatt cttgagtaac tctttcctgt aggtcaggtt 8820
gctttctcag gtatagcatg aggtcgctct tattgaccac acctctaccg gcatgccgag 8880
caaatgcctg caaatcgctc cccatttcac ccaattgtag atatgctaac tccagcaatg 8940
agttgatgaa tctcggtgtg tattttatgt cctcagagga caacacctgt ggta 8994
<210> SEQ ID NO 79
<211> LENGTH: 2145
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: constructed chimeric gene
<400> SEQUENCE: 79
gcatgcttgc atttagtcgt gcaatgtatg actttaagat ttgtgagcag gaagaaaagg 60
gagaatcttc taacgataaa cccttgaaaa actgggtaga ctacgctatg ttgagttgct 120
acgcaggctg cacaattaca cgagaatgct cccgcctagg atttaaggct aagggacgtg 180
caatgcagac gacagatcta aatgaccgtg tcggtgaagt gttcgccaaa cttttcggtt 240
aacacatgca gtgatgcacg cgcgatggtg ctaagttaca tatatatata tatatatata 300
tatagccata gtgatgtcta agtaaccttt atggtatatt tcttaatgtg gaaagatact 360
agcgcgcgca cccacacaca agcttcgtct tttcttgaag aaaagaggaa gctcgctaaa 420
tgggattcca ctttccgttc cctgccagct gatggaaaaa ggttagtgga acgatgaaga 480
ataaaaagag agatccactg aggtgaaatt tcagctgaca gcgagtttca tgatcgtgat 540
gaacaatggt aacgagttgt ggctgttgcc agggagggtg gttctcaact tttaatgtat 600
ggccaaatcg ctacttgggt ttgttatata acaaagaaga aataatgaac tgattctctt 660
cctccttctt gtcctttctt aattctgttg taattacctt cctttgtaat tttttttgta 720
attattcttc ttaataatcc aaacaaacac acatattaca atagctagct gaggatgaag 780
gcattagttt atcatgggga tcacaaaatt tcgttagaag acaaaccaaa acccactctg 840
cagaaaccaa cagacgttgt ggttagggtg ttgaaaacaa caatttgcgg tactgacttg 900
ggaatataca aaggtaagaa tcctgaagtg gcagatggca gaatcctggg tcatgagggc 960
gttggcgtca ttgaagaagt gggcgaatcc gtgacacaat tcaaaaaggg ggataaagtt 1020
ttaatctcct gcgttactag ctgtggatcg tgtgattatt gcaagaagca actgtattca 1080
cactgtagag acggtggctg gattttaggt tacatgatcg acggtgtcca agccgaatac 1140
gtcagaatac cacatgctga caattcattg tataagatcc cgcaaactat cgatgatgaa 1200
attgcagtac tactgtccga tattttacct actggacatg aaattggtgt tcaatatggt 1260
aacgttcaac caggcgatgc tgtagcaatt gtaggagcag gtcctgttgg aatgtcagtt 1320
ttgttaactg ctcaatttta ctcgcctagt accattattg ttatcgacat ggacgaaaac 1380
cgtttacaat tagcgaagga gcttggggcc acacacacta ttaactccgg tactgaaaat 1440
gttgtcgaag ctgtgcatcg tatagcagcc gaaggagtgg atgtagcaat agaagctgtt 1500
ggtatacccg caacctggga catctgtcag gaaattgtaa aacccggcgc tcatattgcc 1560
aacgtgggag ttcatggtgt taaggtggac tttgaaattc aaaagttgtg gattaagaat 1620
ctaaccatca ccactggttt ggttaacact aatactaccc caatgttgat gaaggtagcc 1680
tctactgata aattgccttt aaagaaaatg attactcaca ggtttgagtt agctgaaatc 1740
gaacacgcat atcaggtttt cttgaatggc gctaaagaaa aagctatgaa gattattcta 1800
tctaatgcag gtgccgccta attaattaag agtaagcgaa tttcttatga tttatgattt 1860
ttattattaa ataagttata aaaaaaataa gtgtatacaa attttaaagt gactcttagg 1920
ttttaaaacg aaaattctta ttcttgagta actctttcct gtaggtcagg ttgctttctc 1980
aggtatagca tgaggtcgct cttattgacc acacctctac cggcatgccg agcaaatgcc 2040
tgcaaatcgc tccccatttc acccaattgt agatatgcta actccagcaa tgagttgatg 2100
aatctcggtg tgtattttat gtcctcagag gacaacacct gtggt 2145
<210> SEQ ID NO 80
<211> LENGTH: 4280
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: vector
<400> SEQUENCE: 80
ggggatcctc tagagtcgac ctgcaggcat gcaagcttgg cgtaatcatg gtcatagctg 60
tttcctgtgt gaaattgtta tccgctcaca attccacaca acatacgagc cggaagcata 120
aagtgtaaag cctggggtgc ctaatgagtg agctaactca cattaattgc gttgcgctca 180
ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc 240
gcggggagag gcggtttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg 300
cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta 360
tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc 420
aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag 480
catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac 540
caggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc 600
ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt 660
aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc 720
gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga 780
cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta 840
ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag aaggacagta 900
tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga 960
tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg 1020
cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag 1080
tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc 1140
tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact 1200
tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt 1260
cgttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta 1320
ccatctggcc ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta 1380
tcagcaataa accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc 1440
gcctccatcc agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat 1500
agtttgcgca acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt 1560
atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg 1620
tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca 1680
gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta 1740
agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg 1800
cgaccgagtt gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact 1860
ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg 1920
ctgttgagat ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt 1980
actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga 2040
ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc 2100
atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa 2160
caaatagggg ttccgcgcac atttccccga aaagtgccac ctgacgtcta agaaaccatt 2220
attatcatga cattaaccta taaaaatagg cgtatcacga ggccctttcg tctcgcgcgt 2280
ttcggtgatg acggtgaaaa cctctgacac atgcagctcc cggagacggt cacagcttgt 2340
ctgtaagcgg atgccgggag cagacaagcc cgtcagggcg cgtcagcggg tgttggcggg 2400
tgtcggggct ggcttaacta tgcggcatca gagcagattg tactgagagt gcaccatatg 2460
cggtgtgaaa taccgcacag atgcgtaagg agaaaatacc gcatcaggcg ccattcgcca 2520
ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg cctcttcgct attacgccag 2580
ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg taacgccagg gttttcccag 2640
tcacgacgtt gtaaaacgac ggccagtgaa ttcgagctcg gtacccccgg ctctgagaca 2700
gtagtaggtt agtcatcgct ctaccgacgc gcaggaaaag aaagaagcat tgcggattac 2760
gtattctaat gttcagcccg cggaacgcca gcaaatcacc acccatgcgc atgatactga 2820
gtcttgtaca cgctgggctt ccagtgtact gagagtgcac cataccacag cttttcaatt 2880
caattcatca tttttttttt attctttttt ttgatttcgg tttctttgaa atttttttga 2940
ttcggtaatc tccgaacaga aggaagaacg aaggaaggag cacagactta gattggtata 3000
tatacgcata tgtagtgttg aagaaacatg aaattgccca gtattcttaa cccaactgca 3060
cagaacaaaa acctgcagga aacgaagata aatcatgtcg aaagctacat ataaggaacg 3120
tgctgctact catcctagtc ctgttgctgc caagctattt aatatcatgc acgaaaagca 3180
aacaaacttg tgtgcttcat tggatgttcg taccaccaag gaattactgg agttagttga 3240
agcattaggt cccaaaattt gtttactaaa aacacatgtg gatatcttga ctgatttttc 3300
catggagggc acagttaagc cgctaaaggc attatccgcc aagtacaatt ttttactctt 3360
cgaagacaga aaatttgctg acattggtaa tacagtcaaa ttgcagtact ctgcgggtgt 3420
atacagaata gcagaatggg cagacattac gaatgcacac ggtgtggtgg gcccaggtat 3480
tgttagcggt ttgaagcagg cggcagaaga agtaacaaag gaacctagag gccttttgat 3540
gttagcagaa ttgtcatgca agggctccct atctactgga gaatatacta agggtactgt 3600
tgacattgcg aagagcgaca aagattttgt tatcggcttt attgctcaaa gagacatggg 3660
tggaagagat gaaggttacg attggttgat tatgacaccc ggtgtgggtt tagatgacaa 3720
gggagacgca ttgggtcaac agtatagaac cgtggatgat gtggtctcta caggatctga 3780
cattattatt gttggaagag gactatttgc aaagggaagg gatgctaagg tagagggtga 3840
acgttacaga aaagcaggct gggaagcata tttgagaaga tgcggccagc aaaactaaaa 3900
aactgtatta taagtaaatg catgtatact aaactcacaa attagagctt caatttaatt 3960
atatcagtta ttaccctatg cggtgtgaaa taccgcacag atgcgtaagg agaaaatacc 4020
gcatcaggaa attgtaaacg ttaatatttt gttaaaattc gcgttaaatt tttgttaaat 4080
cagctcattt tttaaccaat aggccgaaat cggcaaaatc ttcagcccgc ggaacgccag 4140
caaatcacca cccatgcgca tgatactgag tcttgtacac gctgggcttc cagtgatgat 4200
acaacgagtt agccaaggtg agcacggatg tctaaattag aattacgttt taatatcttt 4260
ttttccatat ctagggctag 4280
<210> SEQ ID NO 81
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 81
gcatgcttgc atttagtcgt gcaatgtatg 30
<210> SEQ ID NO 82
<211> LENGTH: 54
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 82
gaacattaga atacgtaatc cgcaatgcac tagtaccaca ggtgttgtcc tctg 54
<210> SEQ ID NO 83
<211> LENGTH: 54
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 83
cagaggacaa cacctgtggt actagtgcat tgcggattac gtattctaat gttc 54
<210> SEQ ID NO 84
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 84
caccttggct aactcgttgt atcatcac 28
<210> SEQ ID NO 85
<211> LENGTH: 100
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 85
ttttaagccg aatgagtgac agaaaaagcc cacaacttat caagtgatat tgaacaaagg 60
gcgaaacttc gcatgcttgc atttagtcgt gcaatgtatg 100
<210> SEQ ID NO 86
<211> LENGTH: 98
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 86
cccaattggt aaatattcaa caagagacgc gcagtacgta acatgcgaat tgcgtaattc 60
acggcgataa caccttggct aactcgttgt atcatcac 98
<210> SEQ ID NO 87
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 87
caaaagccca tgtcccacac caaaggatg 29
<210> SEQ ID NO 88
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 88
caccatcgcg cgtgcatcac tgcatg 26
<210> SEQ ID NO 89
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 89
tcggtttttg caatatgacc tgtgggcc 28
<210> SEQ ID NO 90
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 90
gagaagatgc ggccagcaaa ac 22
<210> SEQ ID NO 91
<211> LENGTH: 2745
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: constructed coding region-terminator
segment
<400> SEQUENCE: 91
atgactgaca aaaaaactct taaagactta agaaatcgta gttctgttta cgattcaatg 60
gttaaatcac ctaatcgtgc tatgttgcgt gcaactggta tgcaagatga agactttgaa 120
aaacctatcg tcggtgtcat ttcaacttgg gctgaaaaca caccttgtaa tatccactta 180
catgactttg gtaaactagc caaagtcggt gttaaggaag ctggtgcttg gccagttcag 240
ttcggaacaa tcacggtttc tgatggaatc gccatgggaa cccaaggaat gcgtttctcc 300
ttgacatctc gtgatattat tgcagattct attgaagcag ccatgggagg tcataatgcg 360
gatgcttttg tagccattgg cggttgtgat aaaaacatgc ccggttctgt tatcgctatg 420
gctaacatgg atatcccagc catttttgct tacggcggaa caattgcacc tggtaattta 480
gacggcaaag atatcgattt agtctctgtc tttgaaggtg tcggccattg gaaccacggc 540
gatatgacca aagaagaagt taaagctttg gaatgtaatg cttgtcccgg tcctggaggc 600
tgcggtggta tgtatactgc taacacaatg gcgacagcta ttgaagtttt gggacttagc 660
cttccgggtt catcttctca cccggctgaa tccgcagaaa agaaagcaga tattgaagaa 720
gctggtcgcg ctgttgtcaa aatgctcgaa atgggcttaa aaccttctga cattttaacg 780
cgtgaagctt ttgaagatgc tattactgta actatggctc tgggaggttc aaccaactca 840
acccttcacc tcttagctat tgcccatgct gctaatgtgg aattgacact tgatgatttc 900
aatactttcc aagaaaaagt tcctcatttg gctgatttga aaccttctgg tcaatatgta 960
ttccaagacc tttacaaggt cggaggggta ccagcagtta tgaaatatct ccttaaaaat 1020
ggcttccttc atggtgaccg tatcacttgt actggcaaaa cagtcgctga aaatttgaag 1080
gcttttgatg atttaacacc tggtcaaaag gttattatgc cgcttgaaaa tcctaaacgt 1140
gaagatggtc cgctcattat tctccatggt aacttggctc cagacggtgc cgttgccaaa 1200
gtttctggtg taaaagtgcg tcgtcatgtc ggtcctgcta aggtctttaa ttctgaagaa 1260
gaagccattg aagctgtctt gaatgatgat attgttgatg gtgatgttgt tgtcgtacgt 1320
tttgtaggac caaagggcgg tcctggtatg cctgaaatgc tttccctttc atcaatgatt 1380
gttggtaaag ggcaaggtga aaaagttgcc cttctgacag atggccgctt ctcaggtggt 1440
acttatggtc ttgtcgtggg tcatatcgct cctgaagcac aagatggcgg tccaatcgcc 1500
tacctgcaaa caggagacat agtcactatt gaccaagaca ctaaggaatt acactttgat 1560
atctccgatg aagagttaaa acatcgtcaa gagaccattg aattgccacc gctctattca 1620
cgcggtatcc ttggtaaata tgctcacatc gtttcgtctg cttctagggg agccgtaaca 1680
gacttttgga agcctgaaga aactggcaaa aaatgttgtc ctggttgctg tggttaagcg 1740
gccgcgttaa ttcaaattaa ttgatatagt tttttaatga gtattgaatc tgtttagaaa 1800
taatggaata ttatttttat ttatttattt atattattgg tcggctcttt tcttctgaag 1860
gtcaatgaca aaatgatatg aaggaaataa tgatttctaa aattttacaa cgtaagatat 1920
ttttacaaaa gcctagctca tcttttgtca tgcactattt tactcacgct tgaaattaac 1980
ggccagtcca ctgcggagtc atttcaaagt catcctaatc gatctatcgt ttttgatagc 2040
tcattttgga gttcgcgatt gtcttctgtt attcacaact gttttaattt ttatttcatt 2100
ctggaactct tcgagttctt tgtaaagtct ttcatagtag cttactttat cctccaacat 2160
atttaacttc atgtcaattt cggctcttaa attttccaca tcatcaagtt caacatcatc 2220
ttttaacttg aatttattct ctagctcttc caaccaagcc tcattgctcc ttgatttact 2280
ggtgaaaagt gatacacttt gcgcgcaatc caggtcaaaa ctttcctgca aagaattcac 2340
caatttctcg acatcatagt acaatttgtt ttgttctccc atcacaattt aatatacctg 2400
atggattctt atgaagcgct gggtaatgga cgtgtcactc tacttcgcct ttttccctac 2460
tccttttagt acggaagaca atgctaataa ataagagggt aataataata ttattaatcg 2520
gcaaaaaaga ttaaacgcca agcgtttaat tatcagaaag caaacgtcgt accaatcctt 2580
gaatgcttcc caattgtata ttaagagtca tcacagcaac atattcttgt tattaaatta 2640
attattattg atttttgata ttgtataaaa aaaccaaata tgtataaaaa aagtgaataa 2700
aaaataccaa gtatggagaa atatattaga agtctatacg ttaaa 2745
<210> SEQ ID NO 92
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 92
gacttttgga agcctgaaga aactggc 27
<210> SEQ ID NO 93
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 93
cttggcagca acaggactag 20
<210> SEQ ID NO 94
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 94
ccaggccaat tcaacagact gtcggc 26
<210> SEQ ID NO 95
<211> LENGTH: 2347
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: constructed URA3 marker with flanking
homologous repeat sequences for HIS gene replacement and marker
excision
<400> SEQUENCE: 95
gcattgcgga ttacgtattc taatgttcag gtgctggaag aagagctgct taaccgccgc 60
gcccagggtg aagatccacg ctactttacc ctgcgtcgtc tggatttcgg cggctgtcgt 120
ctttcgctgg caacgccggt tgatgaagcc tgggacggtc cgctctcctt aaacggtaaa 180
cgtatcgcca cctcttatcc tcacctgctc aagcgttatc tcgaccagaa aggcatctct 240
tttaaatcct gcttactgaa cggttctgtt gaagtcgccc cgcgtgccgg actggcggat 300
gcgatttgcg atctggtttc caccggtgcc acgctggaag ctaacggcct gcgcgaagtc 360
gaagttatct atcgctcgaa agcctgcctg attcaacgcg atggcgaaat ggaagaatcc 420
aaacagcaac tgatcgacaa actgctgacc cgtattcagg gtgtgatcca ggcgcgcgaa 480
tcaaaataca tcatgatgca cgcaccgacc gaacgtctgg atgaagtcat ggtacctact 540
gagagtgcac cataccacag cttttcaatt caattcatca tttttttttt attctttttt 600
ttgatttcgg tttctttgaa atttttttga ttcggtaatc tccgaacaga aggaagaacg 660
aaggaaggag cacagactta gattggtata tatacgcata tgtagtgttg aagaaacatg 720
aaattgccca gtattcttaa cccaactgca cagaacaaaa acctgcagga aacgaagata 780
aatcatgtcg aaagctacat ataaggaacg tgctgctact catcctagtc ctgttgctgc 840
caagctattt aatatcatgc acgaaaagca aacaaacttg tgtgcttcat tggatgttcg 900
taccaccaag gaattactgg agttagttga agcattaggt cccaaaattt gtttactaaa 960
aacacatgtg gatatcttga ctgatttttc catggagggc acagttaagc cgctaaaggc 1020
attatccgcc aagtacaatt ttttactctt cgaagacaga aaatttgctg acattggtaa 1080
tacagtcaaa ttgcagtact ctgcgggtgt atacagaata gcagaatggg cagacattac 1140
gaatgcacac ggtgtggtgg gcccaggtat tgttagcggt ttgaagcagg cggcagaaga 1200
agtaacaaag gaacctagag gccttttgat gttagcagaa ttgtcatgca agggctccct 1260
atctactgga gaatatacta agggtactgt tgacattgcg aagagcgaca aagattttgt 1320
tatcggcttt attgctcaaa gagacatggg tggaagagat gaaggttacg attggttgat 1380
tatgacaccc ggtgtgggtt tagatgacaa gggagacgca ttgggtcaac agtatagaac 1440
cgtggatgat gtggtctcta caggatctga cattattatt gttggaagag gactatttgc 1500
aaagggaagg gatgctaagg tagagggtga acgttacaga aaagcaggct gggaagcata 1560
tttgagaaga tgcggccagc aaaactaaaa aactgtatta taagtaaatg catgtatact 1620
aaactcacaa attagagctt caatttaatt atatcagtta ttaccctatg cggtgtgaaa 1680
taccgcacag atgcgtaagg agaaaatacc gcatcaggaa attgtaaacg ttaatatttt 1740
gttaaaattc gcgttaaatt tttgttaaat cagctcattt tttaaccaat aggccgaaat 1800
cggcaaaatc tctagagtgc tggaagaaga gctgcttaac cgccgcgccc agggtgaaga 1860
tccacgctac tttaccctgc gtcgtctgga tttcggcggc tgtcgtcttt cgctggcaac 1920
gccggttgat gaagcctggg acggtccgct ctccttaaac ggtaaacgta tcgccacctc 1980
ttatcctcac ctgctcaagc gttatctcga ccagaaaggc atctctttta aatcctgctt 2040
actgaacggt tctgttgaag tcgccccgcg tgccggactg gcggatgcga tttgcgatct 2100
ggtttccacc ggtgccacgc tggaagctaa cggcctgcgc gaagtcgaag ttatctatcg 2160
ctcgaaagcc tgcctgattc aacgcgatgg cgaaatggaa gaatccaaac agcaactgat 2220
cgacaaactg ctgacccgta ttcagggtgt gatccaggcg cgcgaatcaa aatacatcat 2280
gatgcacgca ccgaccgaac gtctggatga agtcatccag tgatgataca acgagttagc 2340
caaggtg 2347
<210> SEQ ID NO 96
<211> LENGTH: 80
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 96
cttcgaagaa tatactaaaa aatgagcagg caagataaac gaaggcaaag gcattgcgga 60
ttacgtattc taatgttcag 80
<210> SEQ ID NO 97
<211> LENGTH: 81
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 97
tatacacatg tatatatatc gtatgctgca gctttaaata atcggtgtca caccttggct 60
aactcgttgt atcatcactg g 81
<210> SEQ ID NO 98
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 98
gacttgaata atgcagcggc gcttgc 26
<210> SEQ ID NO 99
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 99
ccaccctctt caattagcta agatcatagc 30
<210> SEQ ID NO 100
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 100
aaaaattgat tctcatcgta aatgc 25
<210> SEQ ID NO 101
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 101
ctgcagcgag gagccgtaat 20
<210> SEQ ID NO 102
<211> LENGTH: 90
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 102
atggttcatt taggtccaaa aaaaccacaa gccagaaagg gttccatggc cgatgtgcca 60
gcattgcgga ttacgtattc taatgttcag 90
<210> SEQ ID NO 103
<211> LENGTH: 91
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 103
ttaagcaccg atgataccaa cggacttacc ttcagcaatt cttttttggg ccaaagcagc 60
caccttggct aactcgttgt atcatcactg g 91
<210> SEQ ID NO 104
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 104
ctaggatgag tagcagcacg ttcc 24
<210> SEQ ID NO 105
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 105
ccaattccgt gatgtctctt tgttgc 26
<210> SEQ ID NO 106
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 106
gtgaacgagt tcacaaccgc 20
<210> SEQ ID NO 107
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 107
gttcgttcca gaattatcac gc 22
<210> SEQ ID NO 108
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 108
ggatccgcat gcttgcattt agtcgtgc 28
<210> SEQ ID NO 109
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 109
gggatgcgga cgtattcggc 20
<210> SEQ ID NO 110
<211> LENGTH: 4506
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 110
atgtcgaata ccccttataa ttcatctgtg ccttccattg catccatgac ccagtcttcg 60
gtctcaagaa gtcctaacat gcatacagca actacgcccg gtgccaacac cagctctaac 120
tctccaccct tgcacatgtc ttcagattcg tccaagatca agaggaagcg taacagaatt 180
ccgctcagtt gcaccatttg tcggaaaagg aaagtcaaat gtgacaaact cagaccacac 240
tgccagcagt gcactaaaac tggggtagcc catctctgcc actacatgga acagacctgg 300
gcagaagagg cagagaaaga attgctgaag gacaacgaat taaagaagct tagggagcgc 360
gtaaaatctt tagaaaagac tctttctaag gtgcactctt ctccttcgtc taactccttg 420
aaaagttaca acactcccga gagcagcaac ctgtttatgg gtagcgatga acacaccacc 480
cttgttaatg caaatacagg ctctgcttcc tctgcctcgc atatgcatca gcaacaacag 540
caacagcagc aacaggaaca acaacaagac ttttccagaa gtgcgaacgc caacgcgaat 600
tcctcgtccc tttctatctc aaataaatat gacaacgatg agctggactt aactaaggac 660
tttgatcttt tgcatatcaa aagtaacgga accatccact taggtgccac ccactggttg 720
tctatcatga aaggtgaccc gtacctaaaa cttttgtggg gtcatatctt cgctatgagg 780
gaaaagttaa atgaatggta ctaccaaaaa aattcgtact ctaagctgaa gtcaagcaaa 840
tgtcccatca atcacgcgca agcgccgcct tctgccgctg ccgccgctac cagaaaatgt 900
cctgttgatc actccgcgtt ttcgtctggc atggtggccc caaaggagga gactcctctt 960
cctaggaaat gtccagttga ccacaccatg ttctcttcgg gaatgattcc tcccagagag 1020
gacacttcgt cccagaagag gtgtcccgtt gaccacacca tgtattccgc aggaatgatg 1080
ccgcccaagg acgagacacc ttccccattt tccactaaag ctatgataga ccataacaag 1140
catacaatga atccgcctca gtcaaaatgt cctgtggacc atagaaacta tatgaaggat 1200
tatccctctg acatggcaaa ttcttcttcg aacccggcaa gtcgttgccc cattgaccat 1260
tcaagcatga aaaatacagc ggccttacca gcttcaacgc acaataccat cccacaccac 1320
caaccacagt ccggatctca tgctcgttcg catcccgcac aaagcaggaa acatgattcc 1380
tacatgacag aatctgaagt cctcgcaaca ctttgtgaga tgttgccacc aaagcgcgtc 1440
atcgcattat tcatcgagaa attcttcaaa catttatacc ctgccattcc aatcttagat 1500
gaacagaatt tcaaaaatca cgtgaatcaa atgctttcgt tgtcttcgat gaatcccaca 1560
gttaacaact ttggtatgag catgccatct tcatctacac tagagaacca acccataaca 1620
caaatcaatc ttccaaaact ttccgattct tgtaacttag gtattctgat aataatcttg 1680
agattgacat ggctatccat accttctaat tcctgcgaag tcgacctggg agaagaaagt 1740
ggctcatttt tagtgcccaa cgaatctagc aatatgtctg catctgcatt gacctcgatg 1800
gctaaagaag aatcacttct gctaaagcat gagacaccgg tcgaggcact ggagctatgt 1860
caaaaatact tgattaaatt cgatgaactt tctagtattt ccaataacaa cgttaattta 1920
accacggtgc agtttgccat tttttacaac ttctatatga aaagtgcctc taatgatttg 1980
actaccttga caaataccaa caacactggc atggccaatc ctggtcacga ttccgagtct 2040
caccagatcc tattgtccaa tattactcaa atggccttta gttgtgggtt acacagagac 2100
cctgataatt ttcctcaatt aaacgctacc attccagcaa ccagccagga cgtgtctaac 2160
aacgggagca aaaaggcaaa ccctagcacc aatccaactt tgaataacaa catgtctgct 2220
gccactacca acagcagtag cagatctggc agtgctgatt caagaagtgg ttctaaccct 2280
gtgaacaaga aggaaaatca ggttagtatc gaaagattta aacacacttg gaggaaaatt 2340
tggtattaca ttgttagcat ggatgttaac caatctcttt ccctggggag ccctcgacta 2400
ctaagaaatc tgagggattt cagcgataca aagctaccaa gtgcgtcaag gattgattat 2460
gttcgcgata tcaaagagtt aatcattgtg aagaatttta ctcttttttt ccaaattgat 2520
ttgtgtatta ttgctgtatt aaatcacatt ttgaatgttt ctttagcaag aagcgtgaga 2580
aaatttgaac tggattcatt gattaattta ttgaaaaatc tgacctatgg tactgagaat 2640
gtcaatgatg tagtgagctc cttgatcaac aaagggttat taccaacttc ggaaggtggt 2700
tctgtagatt caaataatga tgaaatttac ggtctaccga aactacccga tattctaaac 2760
catggtcaac ataaccaaaa cttgtatgct gatggaagaa atacttctag tagtgatata 2820
gataagaaat tggaccttcc tcacgaatct acaacgagag ctctattctt ttccaagcat 2880
atgacaatta gaatgttgct gtacttattg aactacattt tgtttactca ttatgaacca 2940
atgggcagtg aagatcctgg tactaatatc ctagctaagg agtacgctca agaggcatta 3000
aattttgcca tggatggcta cagaaactgc atgattttct tcaacaatat cagaaacacc 3060
aattcactat tcgattacat gaatgttatc ttgtcttacc cttgtttgga cattggacat 3120
cgttctttac aatttatcgt ttgtttgatc ctgagagcta aatgtggccc attgactggt 3180
atgcgtgaat catcgatcat tactaatggt acatcaagtg gatttaatag ttcggtagaa 3240
gatgaggacg tcaaagttaa acaagaatct tctgatgaat tgaaaaaaga cgatttcatg 3300
aaagatgtaa atttggattc aggcgattca ttagcagaga ttctaatgtc aagaatgctg 3360
ctatttcaaa aactaacaaa acaactatca aagaagtaca actacgctat tcgtatgaac 3420
aaatccactg gattctttgt ctctttacta gatacacctt caaagaaatc agactcgaaa 3480
tcgggtggta gttcattcat gttgggtaat tggaaacatc caaaggtttc aaacatgagc 3540
ggatttcttg ctggtgacaa agaccaatta cagaaatgcc ccgtgtacca agatgcgctg 3600
gggtttgtta gtccaaccgg tgctaatgaa ggttctgctc cgatgcaagg catgtcctta 3660
cagggctcta ctgctaggat gggagggacc cagttgccac caattagatc atacaaacct 3720
atcacgtaca caagtagtaa tctacgtcgt atgaatgaaa cgggtgaggc agaagctaag 3780
agaagaagat ttaatgatgg ctatattgat aataatagta acaacgatat acctagagga 3840
atcagcccaa aaccttcaaa tgggctatca tcggtgcagc cactattatc gtcattttcc 3900
atgaaccagc taaacggggg taccattcca acggttccat cgttaaccaa cattacttca 3960
caaatgggag ctttaccatc tttagatagg atcaccacta atcaaataaa tttgccagac 4020
ccatctagag atgaagcatt tgacaactcc atcaagcaaa tgacgcctat gacaagtgca 4080
ttcatgaatg ctaatactac aattccaagt tcaactttaa acgggaatat gaacatgaat 4140
ggagctggaa ctgcgaatac agatacaagt gccaacggca gtgctttatc gacactgaca 4200
agcccacaag gctcagactt agcatccaat tctgctacac agtataaacc tgacttagaa 4260
gactttttga tgcaaaattc taactttaat gggctaatga taaatccttc cagtctggta 4320
gaagttgttg gtggatacaa cgatcctaat aaccttggaa gaaatgacgc ggttgatttt 4380
ctacccgttg ataatgttga aattgatggt gttggaataa aaatcaacta tcatctacta 4440
actagtattt acgttactag tatattatca tatacggtgt tagaagatga cgcaaatgat 4500
gagaaa 4506
<210> SEQ ID NO 111
<211> LENGTH: 99
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 111
tcctttctca attattattt tctactcata acctcacgca aaataacaca gtcaaatcaa 60
tcaaagtatg actgacaaaa aaactcttaa agacttaag 99
<210> SEQ ID NO 112
<211> LENGTH: 77
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 112
gaacattaga atacgtaatc cgcaatgctt ctttcttttc cgtttaacgt atagacttct 60
aatatatttc tccatac 77
<210> SEQ ID NO 113
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 113
aaacggaaaa gaaagaagca ttgcggatta cgtattctaa tgttc 45
<210> SEQ ID NO 114
<211> LENGTH: 88
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 114
tatttttcgt tacataaaaa tgcttataaa actttaacta ataattagag attaaatcgc 60
caccttggct aactcgttgt atcatcac 88
<210> SEQ ID NO 115
<211> LENGTH: 1713
<212> TYPE: DNA
<213> ORGANISM: Streptococcus mutans
<400> SEQUENCE: 115
atgactgaca aaaaaactct taaagactta agaaatcgta gttctgttta cgattcaatg 60
gttaaatcac ctaatcgtgc tatgttgcgt gcaactggta tgcaagatga agactttgaa 120
aaacctatcg tcggtgtcat ttcaacttgg gctgaaaaca caccttgtaa tatccactta 180
catgactttg gtaaactagc caaagtcggt gttaaggaag ctggtgcttg gccagttcag 240
ttcggaacaa tcacggtttc tgatggaatc gccatgggaa cccaaggaat gcgtttctcc 300
ttgacatctc gtgatattat tgcagattct attgaagcag ccatgggagg tcataatgcg 360
gatgcttttg tagccattgg cggttgtgat aaaaacatgc ccggttctgt tatcgctatg 420
gctaacatgg atatcccagc catttttgct tacggcggaa caattgcacc tggtaattta 480
gacggcaaag atatcgattt agtctctgtc tttgaaggtg tcggccattg gaaccacggc 540
gatatgacca aagaagaagt taaagctttg gaatgtaatg cttgtcccgg tcctggaggc 600
tgcggtggta tgtatactgc taacacaatg gcgacagcta ttgaagtttt gggacttagc 660
cttccgggtt catcttctca cccggctgaa tccgcagaaa agaaagcaga tattgaagaa 720
gctggtcgcg ctgttgtcaa aatgctcgaa atgggcttaa aaccttctga cattttaacg 780
cgtgaagctt ttgaagatgc tattactgta actatggctc tgggaggttc aaccaactca 840
acccttcacc tcttagctat tgcccatgct gctaatgtgg aattgacact tgatgatttc 900
aatactttcc aagaaaaagt tcctcatttg gctgatttga aaccttctgg tcaatatgta 960
ttccaagacc tttacaaggt cggaggggta ccagcagtta tgaaatatct ccttaaaaat 1020
ggcttccttc atggtgaccg tatcacttgt actggcaaaa cagtcgctga aaatttgaag 1080
gcttttgatg atttaacacc tggtcaaaag gttattatgc cgcttgaaaa tcctaaacgt 1140
gaagatggtc cgctcattat tctccatggt aacttggctc cagacggtgc cgttgccaaa 1200
gtttctggtg taaaagtgcg tcgtcatgtc ggtcctgcta aggtctttaa ttctgaagaa 1260
gaagccattg aagctgtctt gaatgatgat attgttgatg gtgatgttgt tgtcgtacgt 1320
tttgtaggac caaagggcgg tcctggtatg cctgaaatgc tttccctttc atcaatgatt 1380
gttggtaaag ggcaaggtga aaaagttgcc cttctgacag atggccgctt ctcaggtggt 1440
acttatggtc ttgtcgtggg tcatatcgct cctgaagcac aagatggcgg tccaatcgcc 1500
tacctgcaaa caggagacat agtcactatt gaccaagaca ctaaggaatt acactttgat 1560
atctccgatg aagagttaaa acatcgtcaa gagaccattg aattgccacc gctctattca 1620
cgcggtatcc ttggtaaata tgctcacatc gtttcgtctg cttctagggg agccgtaaca 1680
gacttttgga agcctgaaga aactggcaaa aaa 1713
<210> SEQ ID NO 116
<211> LENGTH: 571
<212> TYPE: PRT
<213> ORGANISM: Streptococcus mutans
<400> SEQUENCE: 116
Met Thr Asp Lys Lys Thr Leu Lys Asp Leu Arg Asn Arg Ser Ser Val
1 5 10 15
Tyr Asp Ser Met Val Lys Ser Pro Asn Arg Ala Met Leu Arg Ala Thr
20 25 30
Gly Met Gln Asp Glu Asp Phe Glu Lys Pro Ile Val Gly Val Ile Ser
35 40 45
Thr Trp Ala Glu Asn Thr Pro Cys Asn Ile His Leu His Asp Phe Gly
50 55 60
Lys Leu Ala Lys Val Gly Val Lys Glu Ala Gly Ala Trp Pro Val Gln
65 70 75 80
Phe Gly Thr Ile Thr Val Ser Asp Gly Ile Ala Met Gly Thr Gln Gly
85 90 95
Met Arg Phe Ser Leu Thr Ser Arg Asp Ile Ile Ala Asp Ser Ile Glu
100 105 110
Ala Ala Met Gly Gly His Asn Ala Asp Ala Phe Val Ala Ile Gly Gly
115 120 125
Cys Asp Lys Asn Met Pro Gly Ser Val Ile Ala Met Ala Asn Met Asp
130 135 140
Ile Pro Ala Ile Phe Ala Tyr Gly Gly Thr Ile Ala Pro Gly Asn Leu
145 150 155 160
Asp Gly Lys Asp Ile Asp Leu Val Ser Val Phe Glu Gly Val Gly His
165 170 175
Trp Asn His Gly Asp Met Thr Lys Glu Glu Val Lys Ala Leu Glu Cys
180 185 190
Asn Ala Cys Pro Gly Pro Gly Gly Cys Gly Gly Met Tyr Thr Ala Asn
195 200 205
Thr Met Ala Thr Ala Ile Glu Val Leu Gly Leu Ser Leu Pro Gly Ser
210 215 220
Ser Ser His Pro Ala Glu Ser Ala Glu Lys Lys Ala Asp Ile Glu Glu
225 230 235 240
Ala Gly Arg Ala Val Val Lys Met Leu Glu Met Gly Leu Lys Pro Ser
245 250 255
Asp Ile Leu Thr Arg Glu Ala Phe Glu Asp Ala Ile Thr Val Thr Met
260 265 270
Ala Leu Gly Gly Ser Thr Asn Ser Thr Leu His Leu Leu Ala Ile Ala
275 280 285
His Ala Ala Asn Val Glu Leu Thr Leu Asp Asp Phe Asn Thr Phe Gln
290 295 300
Glu Lys Val Pro His Leu Ala Asp Leu Lys Pro Ser Gly Gln Tyr Val
305 310 315 320
Phe Gln Asp Leu Tyr Lys Val Gly Gly Val Pro Ala Val Met Lys Tyr
325 330 335
Leu Leu Lys Asn Gly Phe Leu His Gly Asp Arg Ile Thr Cys Thr Gly
340 345 350
Lys Thr Val Ala Glu Asn Leu Lys Ala Phe Asp Asp Leu Thr Pro Gly
355 360 365
Gln Lys Val Ile Met Pro Leu Glu Asn Pro Lys Arg Glu Asp Gly Pro
370 375 380
Leu Ile Ile Leu His Gly Asn Leu Ala Pro Asp Gly Ala Val Ala Lys
385 390 395 400
Val Ser Gly Val Lys Val Arg Arg His Val Gly Pro Ala Lys Val Phe
405 410 415
Asn Ser Glu Glu Glu Ala Ile Glu Ala Val Leu Asn Asp Asp Ile Val
420 425 430
Asp Gly Asp Val Val Val Val Arg Phe Val Gly Pro Lys Gly Gly Pro
435 440 445
Gly Met Pro Glu Met Leu Ser Leu Ser Ser Met Ile Val Gly Lys Gly
450 455 460
Gln Gly Glu Lys Val Ala Leu Leu Thr Asp Gly Arg Phe Ser Gly Gly
465 470 475 480
Thr Tyr Gly Leu Val Val Gly His Ile Ala Pro Glu Ala Gln Asp Gly
485 490 495
Gly Pro Ile Ala Tyr Leu Gln Thr Gly Asp Ile Val Thr Ile Asp Gln
500 505 510
Asp Thr Lys Glu Leu His Phe Asp Ile Ser Asp Glu Glu Leu Lys His
515 520 525
Arg Gln Glu Thr Ile Glu Leu Pro Pro Leu Tyr Ser Arg Gly Ile Leu
530 535 540
Gly Lys Tyr Ala His Ile Val Ser Ser Ala Ser Arg Gly Ala Val Thr
545 550 555 560
Asp Phe Trp Lys Pro Glu Glu Thr Gly Lys Lys
565 570
<210> SEQ ID NO 117
<211> LENGTH: 548
<212> TYPE: PRT
<213> ORGANISM: Lactococcus lactis
<400> SEQUENCE: 117
Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly
1 5 10 15
Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu
20 25 30
Asp Gln Ile Ile Ser His Lys Asp Met Lys Trp Val Gly Asn Ala Asn
35 40 45
Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys
50 55 60
Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val
65 70 75 80
Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile
85 90 95
Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His
100 105 110
His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu
115 120 125
Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val
130 135 140
Glu Ile Asp Arg Val Leu Ser Ala Leu Leu Lys Glu Arg Lys Pro Val
145 150 155 160
Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro
165 170 175
Ser Leu Pro Leu Lys Lys Glu Asn Ser Thr Ser Asn Thr Ser Asp Gln
180 185 190
Glu Ile Leu Asn Lys Ile Gln Glu Ser Leu Lys Asn Ala Lys Lys Pro
195 200 205
Ile Val Ile Thr Gly His Glu Ile Ile Ser Phe Gly Leu Glu Lys Thr
210 215 220
Val Thr Gln Phe Ile Ser Lys Thr Lys Leu Pro Ile Thr Thr Leu Asn
225 230 235 240
Phe Gly Lys Ser Ser Val Asp Glu Ala Leu Pro Ser Phe Leu Gly Ile
245 250 255
Tyr Asn Gly Thr Leu Ser Glu Pro Asn Leu Lys Glu Phe Val Glu Ser
260 265 270
Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr
275 280 285
Gly Ala Phe Thr His His Leu Asn Glu Asn Lys Met Ile Ser Leu Asn
290 295 300
Ile Asp Glu Gly Lys Ile Phe Asn Glu Arg Ile Gln Asn Phe Asp Phe
305 310 315 320
Glu Ser Leu Ile Ser Ser Leu Leu Asp Leu Ser Glu Ile Glu Tyr Lys
325 330 335
Gly Lys Tyr Ile Asp Lys Lys Gln Glu Asp Phe Val Pro Ser Asn Ala
340 345 350
Leu Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Asn Leu Thr Gln
355 360 365
Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala
370 375 380
Ser Ser Ile Phe Leu Lys Ser Lys Ser His Phe Ile Gly Gln Pro Leu
385 390 395 400
Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile
405 410 415
Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu
420 425 430
Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn
435 440 445
Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu
450 455 460
Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr
465 470 475 480
Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Asp Arg Val Val Ser
485 490 495
Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala
500 505 510
Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Ile Leu Ala Lys
515 520 525
Glu Gly Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu
530 535 540
Gln Asn Lys Ser
545
<210> SEQ ID NO 118
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: horse ADH coding region codon optimized for
S. cerevisiae expression
<400> SEQUENCE: 118
atgtcaacag ccggtaaagt tattaagtgt aaagcggcag ttttgtggga agagaaaaag 60
ccgtttagca tagaagaagt agaagtagcg ccaccaaaag cacacgaggt tagaatcaag 120
atggttgcca ccggaatctg tagatccgac gaccatgtgg tgagtggcac tctagttact 180
cctttgccag taatcgcggg acacgaggct gccggaatcg ttgaatccat aggtgaaggt 240
gttaccactg ttcgtcctgg tgataaagtg atcccactgt tcactcctca atgtggtaag 300
tgtagagtct gcaaacatcc tgagggtaat ttctgcctta aaaatgattt gtctatgcct 360
agaggtacta tgcaggatgg tacaagcaga tttacatgca gagggaaacc tatacaccat 420
ttccttggta cttctacatt ttcccaatac acagtggtgg acgagatatc tgtcgctaaa 480
atcgatgcag cttcaccact ggaaaaagtt tgcttgatag ggtgcggatt ttccaccggt 540
tacggttccg cagttaaagt tgcaaaggtt acacagggtt cgacttgtgc agtattcggt 600
ttaggaggag taggactaag cgttattatg gggtgtaaag ctgcaggcgc agcgaggatt 660
ataggtgtag acatcaataa ggacaaattt gcaaaagcta aggaggtcgg ggctactgaa 720
tgtgttaacc ctcaagatta taagaaacca atacaagaag tccttactga aatgtcaaac 780
ggtggagttg atttctcttt tgaagttata ggccgtcttg atactatggt aactgcgttg 840
tcctgctgtc aagaggcata tggagtcagt gtgatcgtag gtgttcctcc tgattcacaa 900
aatttgtcga tgaatcctat gctgttgcta agcggtcgta catggaaggg agctatattt 960
ggcggtttta agagcaagga tagtgttcca aaacttgttg ccgactttat ggcgaagaag 1020
tttgctcttg atcctttaat tacacatgta ttgccattcg agaaaatcaa tgaagggttt 1080
gatttgttaa gaagtggtga atctattcgt acaattttaa ctttt 1125
<210> SEQ ID NO 119
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Equus caballus
<400> SEQUENCE: 119
Met Ser Thr Ala Gly Lys Val Ile Lys Cys Lys Ala Ala Val Leu Trp
1 5 10 15
Glu Glu Lys Lys Pro Phe Ser Ile Glu Glu Val Glu Val Ala Pro Pro
20 25 30
Lys Ala His Glu Val Arg Ile Lys Met Val Ala Thr Gly Ile Cys Arg
35 40 45
Ser Asp Asp His Val Val Ser Gly Thr Leu Val Thr Pro Leu Pro Val
50 55 60
Ile Ala Gly His Glu Ala Ala Gly Ile Val Glu Ser Ile Gly Glu Gly
65 70 75 80
Val Thr Thr Val Arg Pro Gly Asp Lys Val Ile Pro Leu Phe Thr Pro
85 90 95
Gln Cys Gly Lys Cys Arg Val Cys Lys His Pro Glu Gly Asn Phe Cys
100 105 110
Leu Lys Asn Asp Leu Ser Met Pro Arg Gly Thr Met Gln Asp Gly Thr
115 120 125
Ser Arg Phe Thr Cys Arg Gly Lys Pro Ile His His Phe Leu Gly Thr
130 135 140
Ser Thr Phe Ser Gln Tyr Thr Val Val Asp Glu Ile Ser Val Ala Lys
145 150 155 160
Ile Asp Ala Ala Ser Pro Leu Glu Lys Val Cys Leu Ile Gly Cys Gly
165 170 175
Phe Ser Thr Gly Tyr Gly Ser Ala Val Lys Val Ala Lys Val Thr Gln
180 185 190
Gly Ser Thr Cys Ala Val Phe Gly Leu Gly Gly Val Gly Leu Ser Val
195 200 205
Ile Met Gly Cys Lys Ala Ala Gly Ala Ala Arg Ile Ile Gly Val Asp
210 215 220
Ile Asn Lys Asp Lys Phe Ala Lys Ala Lys Glu Val Gly Ala Thr Glu
225 230 235 240
Cys Val Asn Pro Gln Asp Tyr Lys Lys Pro Ile Gln Glu Val Leu Thr
245 250 255
Glu Met Ser Asn Gly Gly Val Asp Phe Ser Phe Glu Val Ile Gly Arg
260 265 270
Leu Asp Thr Met Val Thr Ala Leu Ser Cys Cys Gln Glu Ala Tyr Gly
275 280 285
Val Ser Val Ile Val Gly Val Pro Pro Asp Ser Gln Asn Leu Ser Met
290 295 300
Asn Pro Met Leu Leu Leu Ser Gly Arg Thr Trp Lys Gly Ala Ile Phe
305 310 315 320
Gly Gly Phe Lys Ser Lys Asp Ser Val Pro Lys Leu Val Ala Asp Phe
325 330 335
Met Ala Lys Lys Phe Ala Leu Asp Pro Leu Ile Thr His Val Leu Pro
340 345 350
Phe Glu Lys Ile Asn Glu Gly Phe Asp Leu Leu Arg Ser Gly Glu Ser
355 360 365
Ile Arg Thr Ile Leu Thr Phe
370 375
<210> SEQ ID NO 120
<211> LENGTH: 643
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 120
gaaatgaata acaatactga cagtactaaa taattgccta cttggcttca catacgttgc 60
atacgtcgat atagataata atgataatga cagcaggatt atcgtaatac gtaatagttg 120
aaaatctcaa aaatgtgtgg gtcattacgt aaataatgat aggaatggga ttcttctatt 180
tttccttttt ccattctagc agccgtcggg aaaacgtggc atcctctctt tcgggctcaa 240
ttggagtcac gctgccgtga gcatcctctc tttccatatc taacaactga gcacgtaacc 300
aatggaaaag catgagctta gcgttgctcc aaaaaagtat tggatggtta ataccatttg 360
tctgttctct tctgactttg actcctcaaa aaaaaaaaat ctacaatcaa cagatcgctt 420
caattacgcc ctcacaaaaa cttttttcct tcttcttcgc ccacgttaaa ttttatccct 480
catgttgtct aacggatttc tgcacttgat ttattataaa aagacaaaga cataatactt 540
ctctatcaat ttcagttatt gttcttcctt gcgttattct tctgttcttc tttttctttt 600
gtcatatata accataacca agtaatacat attcaaatct aga 643
<210> SEQ ID NO 121
<211> LENGTH: 9089
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: constructed plasmid
<400> SEQUENCE: 121
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataccac agcttttcaa ttcaattcat catttttttt ttattctttt ttttgatttc 240
ggtttctttg aaattttttt gattcggtaa tctccgaaca gaaggaagaa cgaaggaagg 300
agcacagact tagattggta tatatacgca tatgtagtgt tgaagaaaca tgaaattgcc 360
cagtattctt aacccaactg cacagaacaa aaacctgcag gaaacgaaga taaatcatgt 420
cgaaagctac atataaggaa cgtgctgcta ctcatcctag tcctgttgct gccaagctat 480
ttaatatcat gcacgaaaag caaacaaact tgtgtgcttc attggatgtt cgtaccacca 540
aggaattact ggagttagtt gaagcattag gtcccaaaat ttgtttacta aaaacacatg 600
tggatatctt gactgatttt tccatggagg gcacagttaa gccgctaaag gcattatccg 660
ccaagtacaa ttttttactc ttcgaagaca gaaaatttgc tgacattggt aatacagtca 720
aattgcagta ctctgcgggt gtatacagaa tagcagaatg ggcagacatt acgaatgcac 780
acggtgtggt gggcccaggt attgttagcg gtttgaagca ggcggcagaa gaagtaacaa 840
aggaacctag aggccttttg atgttagcag aattgtcatg caagggctcc ctatctactg 900
gagaatatac taagggtact gttgacattg cgaagagcga caaagatttt gttatcggct 960
ttattgctca aagagacatg ggtggaagag atgaaggtta cgattggttg attatgacac 1020
ccggtgtggg tttagatgac aagggagacg cattgggtca acagtataga accgtggatg 1080
atgtggtctc tacaggatct gacattatta ttgttggaag aggactattt gcaaagggaa 1140
gggatgctaa ggtagagggt gaacgttaca gaaaagcagg ctgggaagca tatttgagaa 1200
gatgcggcca gcaaaactaa aaaactgtat tataagtaaa tgcatgtata ctaaactcac 1260
aaattagagc ttcaatttaa ttatatcagt tattacccta tgcggtgtga aataccgcac 1320
agatgcgtaa ggagaaaata ccgcatcagg aaattgtaaa cgttaatatt ttgttaaaat 1380
tcgcgttaaa tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa 1440
tcccttataa atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca 1500
agagtccact attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg 1560
gcgatggccc actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta 1620
aagcactaaa tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg 1680
cgaacgtggc gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa 1740
gtgtagcggt cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg 1800
gcgcgtcgcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga tcggtgcggg 1860
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga ttaagttggg 1920
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgag cgcgcgtaat 1980
acgactcact atagggcgaa ttgggtaccg ggccccccct cgaggtcgac tggccattaa 2040
tctttcccat attagatttc gccaagccat gaaagttcaa gaaaggtctt tagacgaatt 2100
acccttcatt tctcaaactg gcgtcaaggg atcctggtat ggttttatcg ttttatttct 2160
ggttcttata gcatcgtttt ggacttctct gttcccatta ggcggttcag gagccagcgc 2220
agaatcattc tttgaaggat acttatcctt tccaattttg attgtctgtt acgttggaca 2280
taaactgtat actagaaatt ggactttgat ggtgaaacta gaagatatgg atcttgatac 2340
cggcagaaaa caagtagatt tgactcttcg tagggaagaa atgaggattg agcgagaaac 2400
attagcaaaa agatccttcg taacaagatt tttacatttc tggtgttgaa gggaaagata 2460
tgagctatac agcggaattt ccatatcact cagattttgt tatctaattt tttccttccc 2520
acgtccgcgg gaatctgtgt atattactgc atctagatat atgttatctt atcttggcgc 2580
gtacatttaa ttttcaacgt attctataag aaattgcggg agtttttttc atgtagatga 2640
tactgactgc acgcaaatat aggcatgatt tataggcatg atttgatggc tgtaccgata 2700
ggaacgctaa gagtaacttc agaatcgtta tcctggcgga aaaaattcat ttgtaaactt 2760
taaaaaaaaa agccaatatc cccaaaatta ttaagagcgc ctccattatt aactaaaatt 2820
tcactcagca tccacaatgt atcaggtatc tactacagat attacatgtg gcgaaaaaga 2880
caagaacaat gcaatagcgc atcaagaaaa aacacaaagc tttcaatcaa tgaatcgaaa 2940
atgtcattaa aatagtatat aaattgaaac taagtcataa agctataaaa agaaaattta 3000
tttaaatgca agatttaaag taaattcacg gccctgcagg ccctaacctg ctaggacaca 3060
acgtctttgc ctggtaaagt ttctagctga cgtgattcct tcacctgtgg atccggcaat 3120
tgtaaaggtt gtgaaaccct cagcttcata accgacacct gcaaatgact ttgcattctt 3180
aacaaagata gttgtatcaa tttcacgttc gaatctatta aggttatcga tgttcttaga 3240
ataaatgtag gcggaatgtt ttctattctg ctcagctatc ttggcgtatt taatggcttc 3300
atcaatgtcc ttcactctaa ctataggcaa aattggcatc atcaactccg tcataacgaa 3360
cggatggttt gcgttgactt cacaaataat acactttaca ttacttggtg actctacatc 3420
tatttcatcc aaaaacagtt tagcgtcctt accaacccac ttcttattaa tgaaatattc 3480
ttgagtttca ttgttctttt gaagaacaag gtctatcagc ttggatactt ggtcttcatt 3540
gataatgacg gcgttgtttt tcaacatgtt agagatcaga tcatctgcaa cgttttcaaa 3600
cacgaacact tctttttccg cgatacaagg aagattgttg tcaaacgaac aaccttcaat 3660
aatgcttctg ccggccttct cgatatctgc tgtatcgtct acaataaccg gaggattacc 3720
cgcgccagct ccgatggcct ttttaccaga attaagaagg gtttttacca tacccgggcc 3780
acccgtaccg cacaacaatt ttatggatgg atgtttgata atagcgtcta aactttccat 3840
agttgggttc tttatagtag tgacaaggtt ttcaggtcca ccacagctaa ttatggcttt 3900
gtttatcatt tctactgcga aagcgacaca ctttttggcg catgggtgac cattaaatac 3960
aactgcattc cccgcagcta tcatacctat agaattgcag ataacggttt ctgttggatt 4020
cgtgcttgga gttatagcgc cgataactcc gtatggactc atttcaacca ctgttagtcc 4080
attatcgccg gaccatgctg ttgttgtcag atcttcagtg cctggggtat acttggccac 4140
taattcatgt ttcaagattt tatcctcata ccttcccatg tgggtttcct ccaggatcat 4200
tgtggctaag acctctttat tctgtaatgc ggcttttctt atttcggtga ttattttctc 4260
tctttgttcc tttgtgtagt gtagggaaag aatcttttgt gcatgtactg cagaagaaat 4320
ggcattctca acattttcaa atactccaaa acatgaagag ttatctttgt aattctttaa 4380
gttgatgttt tcaccattag tcttcacttt caagtctttg gtggttggga ttaaggtatc 4440
tttatccatg gtgtttgttt atgtgtgttt attcgaaact aagttcttgg tgttttaaaa 4500
ctaaaaaaaa gactaactat aaaagtagaa tttaagaagt ttaagaaata gatttacaga 4560
attacaatca atacctaccg tctttatata cttattagtc aagtagggga ataatttcag 4620
ggaactggtt tcaacctttt ttttcagctt tttccaaatc agagagagca gaaggtaata 4680
gaaggtgtaa gaaaatgaga tagatacatg cgtgggtcaa ttgccttgtg tcatcattta 4740
ctccaggcag gttgcatcac tccattgagg ttgtgcccgt tttttgcctg tttgtgcccc 4800
tgttctctgt agttgcgcta agagaatgga cctatgaact gatggttggt gaagaaaaca 4860
atattttggt gctgggattc tttttttttc tggatgccag cttaaaaagc gggctccatt 4920
atatttagtg gatgccagga ataaactgtt cacccagaca cctacgatgt tatatattct 4980
gtgtaacccg ccccctattt tgggcatgta cgggttacag cagaattaaa aggctaattt 5040
tttgactaaa taaagttagg aaaatcacta ctattaatta tttacgtatt ctttgaaatg 5100
gcagtattga taatgataaa ctcgaactga aaaagcgtgt tttttattca aaatgattct 5160
aactccctta cgtaatcaag gaatcttttt gccttggcct ccgcgtcatt aaacttcttg 5220
ttgttgacgc taacattcaa cgctagtata tattcgtttt tttcaggtaa gttcttttca 5280
acgggtctta ctgatgaggc agtcgcgtct gaacctgtta agaggtcaaa tatgtcttct 5340
tgaccgtacg tgtcttgcat gttattagct ttgggaattt gcatcaagtc ataggaaaat 5400
ttaaatcttg gctctcttgg gctcaaggtg acaaggtcct cgaaaatagg gcgcgcccca 5460
ccgcggtgga gctccagctt ttgttccctt tagtgagggt taattgcgcg cttggcgtaa 5520
tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata 5580
ggagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgaggta actcacatta 5640
attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa 5700
tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc cgcttcctcg 5760
ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc tcactcaaag 5820
gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat gtgagcaaaa 5880
ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt ccataggctc 5940
cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg aaacccgaca 6000
ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc tcctgttccg 6060
accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt ggcgctttct 6120
catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa gctgggctgt 6180
gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta tcgtcttgag 6240
tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa caggattagc 6300
agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa ctacggctac 6360
actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt cggaaaaaga 6420
gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt ttttgtttgc 6480
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat cttttctacg 6540
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat gagattatca 6600
aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc aatctaaagt 6660
atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc acctatctca 6720
gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta gataactacg 6780
atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga cccacgctca 6840
ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg cagaagtggt 6900
cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc tagagtaagt 6960
agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat cgtggtgtca 7020
cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag gcgagttaca 7080
tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat cgttgtcaga 7140
agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa ttctcttact 7200
gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa gtcattctga 7260
gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga taataccgcg 7320
ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg gcgaaaactc 7380
tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc acccaactga 7440
tcttcagcat cttttacttt caccagcgtt tctgggtgag caaaaacagg aaggcaaaat 7500
gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact cttccttttt 7560
caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat atttgaatgt 7620
atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt gccacctgaa 7680
cgaagcatct gtgcttcatt ttgtagaaca aaaatgcaac gcgagagcgc taatttttca 7740
aacaaagaat ctgagctgca tttttacaga acagaaatgc aacgcgaaag cgctatttta 7800
ccaacgaaga atctgtgctt catttttgta aaacaaaaat gcaacgcgag agcgctaatt 7860
tttcaaacaa agaatctgag ctgcattttt acagaacaga aatgcaacgc gagagcgcta 7920
ttttaccaac aaagaatcta tacttctttt ttgttctaca aaaatgcatc ccgagagcgc 7980
tatttttcta acaaagcatc ttagattact ttttttctcc tttgtgcgct ctataatgca 8040
gtctcttgat aactttttgc actgtaggtc cgttaaggtt agaagaaggc tactttggtg 8100
tctattttct cttccataaa aaaagcctga ctccacttcc cgcgtttact gattactagc 8160
gaagctgcgg gtgcattttt tcaagataaa ggcatccccg attatattct ataccgatgt 8220
ggattgcgca tactttgtga acagaaagtg atagcgttga tgattcttca ttggtcagaa 8280
aattatgaac ggtttcttct attttgtctc tatatactac gtataggaaa tgtttacatt 8340
ttcgtattgt tttcgattca ctctatgaat agttcttact acaatttttt tgtctaaaga 8400
gtaatactag agataaacat aaaaaatgta gaggtcgagt ttagatgcaa gttcaaggag 8460
cgaaaggtgg atgggtaggt tatataggga tatagcacag agatatatag caaagagata 8520
cttttgagca atgtttgtgg aagcggtatt cgcaatattt tagtagctcg ttacagtccg 8580
gtgcgttttt ggttttttga aagtgcgtct tcagagcgct tttggttttc aaaagcgctc 8640
tgaagttcct atactttcta gagaatagga acttcggaat aggaacttca aagcgtttcc 8700
gaaaacgagc gcttccgaaa atgcaacgcg agctgcgcac atacagctca ctgttcacgt 8760
cgcacctata tctgcgtgtt gcctgtatat atatatacat gagaagaacg gcatagtgcg 8820
tgtttatgct taaatgcgta cttatatgcg tctatttatg taggatgaaa ggtagtctag 8880
tacctcctgt gatattatcc cattccatgc ggggtatcgt atgcttcctt cagcactacc 8940
ctttagctgt tctatatgct gccactcctc aattggatta gtctcatcct tcaatgctat 9000
catttccttt gatattggat catactaaga aaccattatt atcatgacat taacctataa 9060
aaataggcgt atcacgaggc cctttcgtc 9089
<210> SEQ ID NO 122
<211> LENGTH: 1023
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 122
caccgcggtg gggcgcgccc tattttcgag gaccttgtca ccttgagccc aagagagcca 60
agatttaaat tttcctatga cttgatgcaa attcccaaag ctaataacat gcaagacacg 120
tacggtcaag aagacatatt tgacctctta acaggttcag acgcgactgc ctcatcagta 180
agacccgttg aaaagaactt acctgaaaaa aacgaatata tactagcgtt gaatgttagc 240
gtcaacaaca agaagtttaa tgacgcggag gccaaggcaa aaagattcct tgattacgta 300
agggagttag aatcattttg aataaaaaac acgctttttc agttcgagtt tatcattatc 360
aatactgcca tttcaaagaa tacgtaaata attaatagta gtgattttcc taactttatt 420
tagtcaaaaa attagccttt taattctgct gtaacccgta catgcccaaa atagggggcg 480
ggttacacag aatatataac atcgtaggtg tctgggtgaa cagtttattc ctggcatcca 540
ctaaatataa tggagcccgc tttttaagct ggcatccaga aaaaaaaaga atcccagcac 600
caaaatattg ttttcttcac caaccatcag ttcataggtc cattctctta gcgcaactac 660
agagaacagg ggcacaaaca ggcaaaaaac gggcacaacc tcaatggagt gatgcaacct 720
gcctggagta aatgatgaca caaggcaatt gacccacgca tgtatctatc tcattttctt 780
acaccttcta ttaccttctg ctctctctga tttggaaaaa gctgaaaaaa aaggttgaaa 840
ccagttccct gaaattattc ccctacttga ctaataagta tataaagacg gtaggtattg 900
attgtaattc tgtaaatcta tttcttaaac ttcttaaatt ctacttttat agttagtctt 960
ttttttagtt ttaaaacacc aagaacttag tttcgaataa acacacataa actagtaaac 1020
aaa 1023
<210> SEQ ID NO 123
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 123
caaaagctga gctccaccgc g 21
<210> SEQ ID NO 124
<211> LENGTH: 44
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 124
gtttactagt ttatgtgtgt ttattcgaaa ctaagttctt ggtg 44
<210> SEQ ID NO 125
<400> SEQUENCE: 125
000
<210> SEQ ID NO 126
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 126
cacacatatt acaatagcta gctgaggatg aaagctctg 39
<210> SEQ ID NO 127
<211> LENGTH: 39
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: primer
<400> SEQUENCE: 127
cagagctttc atcctcagct agctattgta atatgtgtg 39
<210> SEQ ID NO 128
<211> LENGTH: 9491
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: constructed plasmid
<400> SEQUENCE: 128
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accataaatt cccgttttaa gagcttggtg agcgctagga gtcactgcca ggtatcgttt 240
gaacacggca ttagtcaggg aagtcataac acagtccttt cccgcaattt tctttttcta 300
ttactcttgg cctcctctag tacactctat atttttttat gcctcggtaa tgattttcat 360
tttttttttt cccctagcgg atgactcttt ttttttctta gcgattggca ttatcacata 420
atgaattata cattatataa agtaatgtga tttcttcgaa gaatatacta aaaaatgagc 480
aggcaagata aacgaaggca aagatgacag agcagaaagc cctagtaaag cgtattacaa 540
atgaaaccaa gattcagatt gcgatctctt taaagggtgg tcccctagcg atagagcact 600
cgatcttccc agaaaaagag gcagaagcag tagcagaaca ggccacacaa tcgcaagtga 660
ttaacgtcca cacaggtata gggtttctgg accatatgat acatgctctg gccaagcatt 720
ccggctggtc gctaatcgtt gagtgcattg gtgacttaca catagacgac catcacacca 780
ctgaagactg cgggattgct ctcggtcaag cttttaaaga ggccctactg gcgcgtggag 840
taaaaaggtt tggatcagga tttgcgcctt tggatgaggc actttccaga gcggtggtag 900
atctttcgaa caggccgtac gcagttgtcg aacttggttt gcaaagggag aaagtaggag 960
atctctcttg cgagatgatc ccgcattttc ttgaaagctt tgcagaggct agcagaatta 1020
ccctccacgt tgattgtctg cgaggcaaga atgatcatca ccgtagtgag agtgcgttca 1080
aggctcttgc ggttgccata agagaagcca cctcgcccaa tggtaccaac gatgttccct 1140
ccaccaaagg tgttcttatg tagtgacacc gattatttaa agctgcagca tacgatatat 1200
atacatgtgt atatatgtat acctatgaat gtcagtaagt atgtatacga acagtatgat 1260
actgaagatg acaaggtaat gcatcattct atacgtgtca ttctgaacga ggcgcgcttt 1320
ccttttttct ttttgctttt tctttttttt tctcttgaac tcgacggatc tatgcggtgt 1380
gaaataccgc acagatgcgt aaggagaaaa taccgcatca ggaaattgta aacgttaata 1440
ttttgttaaa attcgcgtta aatttttgtt aaatcagctc attttttaac caataggccg 1500
aaatcggcaa aatcccttat aaatcaaaag aatagaccga gatagggttg agtgttgttc 1560
cagtttggaa caagagtcca ctattaaaga acgtggactc caacgtcaaa gggcgaaaaa 1620
ccgtctatca gggcgatggc ccactacgtg aaccatcacc ctaatcaagt tttttggggt 1680
cgaggtgccg taaagcacta aatcggaacc ctaaagggag cccccgattt agagcttgac 1740
ggggaaagcc ggcgaacgtg gcgagaaagg aagggaagaa agcgaaagga gcgggcgcta 1800
gggcgctggc aagtgtagcg gtcacgctgc gcgtaaccac cacacccgcc gcgcttaatg 1860
cgccgctaca gggcgcgtcg cgccattcgc cattcaggct gcgcaactgt tgggaagggc 1920
gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 1980
gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 2040
agcgcgcgta atacgactca ctatagggcg aattgggtac cgggcccccc ctcgaggtcg 2100
acggcgcgcc actggtagag agcgactttg tatgccccaa ttgcgaaacc cgcgatatcc 2160
ttctcgattc tttagtaccc gaccaggaca aggaaaagga ggtcgaaacg tttttgaaga 2220
aacaagagga actacacgga agctctaaag atggcaacca gccagaaact aagaaaatga 2280
agttgatgga tccaactggc accgctggct tgaacaacaa taccagcctt ccaacttctg 2340
taaataacgg cggtacgcca gtgccaccag taccgttacc tttcggtata cctcctttcc 2400
ccatgtttcc aatgcccttc atgcctccaa cggctactat cacaaatcct catcaagctg 2460
acgcaagccc taagaaatga ataacaatac tgacagtact aaataattgc ctacttggct 2520
tcacatacgt tgcatacgtc gatatagata ataatgataa tgacagcagg attatcgtaa 2580
tacgtaatag ttgaaaatct caaaaatgtg tgggtcatta cgtaaataat gataggaatg 2640
ggattcttct atttttcctt tttccattct agcagccgtc gggaaaacgt ggcatcctct 2700
ctttcgggct caattggagt cacgctgccg tgagcatcct ctctttccat atctaacaac 2760
tgagcacgta accaatggaa aagcatgagc ttagcgttgc tccaaaaaag tattggatgg 2820
ttaataccat ttgtctgttc tcttctgact ttgactcctc aaaaaaaaaa aatctacaat 2880
caacagatcg cttcaattac gccctcacaa aaactttttt ccttcttctt cgcccacgtt 2940
aaattttatc cctcatgttg tctaacggat ttctgcactt gatttattat aaaaagacaa 3000
agacataata cttctctatc aatttcagtt attgttcttc cttgcgttat tcttctgttc 3060
ttctttttct tttgtcatat ataaccataa ccaagtaata catattcaaa ctagtatgac 3120
tgacaaaaaa actcttaaag acttaagaaa tcgtagttct gtttacgatt caatggttaa 3180
atcacctaat cgtgctatgt tgcgtgcaac tggtatgcaa gatgaagact ttgaaaaacc 3240
tatcgtcggt gtcatttcaa cttgggctga aaacacacct tgtaatatcc acttacatga 3300
ctttggtaaa ctagccaaag tcggtgttaa ggaagctggt gcttggccag ttcagttcgg 3360
aacaatcacg gtttctgatg gaatcgccat gggaacccaa ggaatgcgtt tctccttgac 3420
atctcgtgat attattgcag attctattga agcagccatg ggaggtcata atgcggatgc 3480
ttttgtagcc attggcggtt gtgataaaaa catgcccggt tctgttatcg ctatggctaa 3540
catggatatc ccagccattt ttgcttacgg cggaacaatt gcacctggta atttagacgg 3600
caaagatatc gatttagtct ctgtctttga aggtgtcggc cattggaacc acggcgatat 3660
gaccaaagaa gaagttaaag ctttggaatg taatgcttgt cccggtcctg gaggctgcgg 3720
tggtatgtat actgctaaca caatggcgac agctattgaa gttttgggac ttagccttcc 3780
gggttcatct tctcacccgg ctgaatccgc agaaaagaaa gcagatattg aagaagctgg 3840
tcgcgctgtt gtcaaaatgc tcgaaatggg cttaaaacct tctgacattt taacgcgtga 3900
agcttttgaa gatgctatta ctgtaactat ggctctggga ggttcaacca actcaaccct 3960
tcacctctta gctattgccc atgctgctaa tgtggaattg acacttgatg atttcaatac 4020
tttccaagaa aaagttcctc atttggctga tttgaaacct tctggtcaat atgtattcca 4080
agacctttac aaggtcggag gggtaccagc agttatgaaa tatctcctta aaaatggctt 4140
ccttcatggt gaccgtatca cttgtactgg caaaacagtc gctgaaaatt tgaaggcttt 4200
tgatgattta acacctggtc aaaaggttat tatgccgctt gaaaatccta aacgtgaaga 4260
tggtccgctc attattctcc atggtaactt ggctccagac ggtgccgttg ccaaagtttc 4320
tggtgtaaaa gtgcgtcgtc atgtcggtcc tgctaaggtc tttaattctg aagaagaagc 4380
cattgaagct gtcttgaatg atgatattgt tgatggtgat gttgttgtcg tacgttttgt 4440
aggaccaaag ggcggtcctg gtatgcctga aatgctttcc ctttcatcaa tgattgttgg 4500
taaagggcaa ggtgaaaaag ttgcccttct gacagatggc cgcttctcag gtggtactta 4560
tggtcttgtc gtgggtcata tcgctcctga agcacaagat ggcggtccaa tcgcctacct 4620
gcaaacagga gacatagtca ctattgacca agacactaag gaattacact ttgatatctc 4680
cgatgaagag ttaaaacatc gtcaagagac cattgaattg ccaccgctct attcacgcgg 4740
tatccttggt aaatatgctc acatcgtttc gtctgcttct aggggagccg taacagactt 4800
ttggaagcct gaagaaactg gcaaaaaatg ttgtcctggt tgctgtggtt aagcggccgc 4860
gttaattcaa attaattgat atagtttttt aatgagtatt gaatctgttt agaaataatg 4920
gaatattatt tttatttatt tatttatatt attggtcggc tcttttcttc tgaaggtcaa 4980
tgacaaaatg atatgaagga aataatgatt tctaaaattt tacaacgtaa gatattttta 5040
caaaagccta gctcatcttt tgtcatgcac tattttactc acgcttgaaa ttaacggcca 5100
gtccactgcg gagtcatttc aaagtcatcc taatcgatct atcgtttttg atagctcatt 5160
ttggagttcg cgattgtctt ctgttattca caactgtttt aatttttatt tcattctgga 5220
actcttcgag ttctttgtaa agtctttcat agtagcttac tttatcctcc aacatattta 5280
acttcatgtc aatttcggct cttaaatttt ccacatcatc aagttcaaca tcatctttta 5340
acttgaattt attctctagc tcttccaacc aagcctcatt gctccttgat ttactggtga 5400
aaagtgatac actttgcgcg caatccaggt caaaactttc ctgcaaagaa ttcaccaatt 5460
tctcgacatc atagtacaat ttgttttgtt ctcccatcac aatttaatat acctgatgga 5520
ttcttatgaa gcgctgggta atggacgtgt cactctactt cgcctttttc cctactcctt 5580
ttagtacgga agacaatgct aataaataag agggtaataa taatattatt aatcggcaaa 5640
aaagattaaa cgccaagcgt ttaattatca gaaagcaaac gtcgtaccaa tccttgaatg 5700
cttcccaatt gtatattaag agtcatcaca gcaacatatt cttgttatta aattaattat 5760
tattgatttt tgatattgta taaaaaaacc aaatatgtat aaaaaaagtg aataaaaaat 5820
accaagtatg gagaaatata ttagaagtct atacgttaaa ccaccgcggt ggagctccag 5880
cttttgttcc ctttagtgag ggttaattgc gcgcttggcg taatcatggt catagctgtt 5940
tcctgtgtga aattgttatc cgctcacaat tccacacaac ataggagccg gaagcataaa 6000
gtgtaaagcc tggggtgcct aatgagtgag gtaactcaca ttaattgcgt tgcgctcact 6060
gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc 6120
ggggagaggc ggtttgcgta ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg 6180
ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc 6240
cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag 6300
gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc ctgacgagca 6360
tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat aaagatacca 6420
ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg 6480
atacctgtcc gcctttctcc cttcgggaag cgtggcgctt tctcatagct cacgctgtag 6540
gtatctcagt tcggtgtagg tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt 6600
tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc cggtaagaca 6660
cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga ggtatgtagg 6720
cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa ggacagtatt 6780
tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta gctcttgatc 6840
cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcagc agattacgcg 6900
cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg acgctcagtg 6960
gaacgaaaac tcacgttaag ggattttggt catgagatta tcaaaaagga tcttcaccta 7020
gatcctttta aattaaaaat gaagttttaa atcaatctaa agtatatatg agtaaacttg 7080
gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct gtctatttcg 7140
ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg agggcttacc 7200
atctggcccc agtgctgcaa tgataccgcg agacccacgc tcaccggctc cagatttatc 7260
agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc 7320
ctccatccag tctattaatt gttgccggga agctagagta agtagttcgc cagttaatag 7380
tttgcgcaac gttgttgcca ttgctacagg catcgtggtg tcacgctcgt cgtttggtat 7440
ggcttcattc agctccggtt cccaacgatc aaggcgagtt acatgatccc ccatgttgtg 7500
caaaaaagcg gttagctcct tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt 7560
gttatcactc atggttatgg cagcactgca taattctctt actgtcatgc catccgtaag 7620
atgcttttct gtgactggtg agtactcaac caagtcattc tgagaatagt gtatgcggcg 7680
accgagttgc tcttgcccgg cgtcaatacg ggataatacc gcgccacata gcagaacttt 7740
aaaagtgctc atcattggaa aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct 7800
gttgagatcc agttcgatgt aacccactcg tgcacccaac tgatcttcag catcttttac 7860
tttcaccagc gtttctgggt gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat 7920
aagggcgaca cggaaatgtt gaatactcat actcttcctt tttcaatatt attgaagcat 7980
ttatcagggt tattgtctca tgagcggata catatttgaa tgtatttaga aaaataaaca 8040
aataggggtt ccgcgcacat ttccccgaaa agtgccacct gaacgaagca tctgtgcttc 8100
attttgtaga acaaaaatgc aacgcgagag cgctaatttt tcaaacaaag aatctgagct 8160
gcatttttac agaacagaaa tgcaacgcga aagcgctatt ttaccaacga agaatctgtg 8220
cttcattttt gtaaaacaaa aatgcaacgc gagagcgcta atttttcaaa caaagaatct 8280
gagctgcatt tttacagaac agaaatgcaa cgcgagagcg ctattttacc aacaaagaat 8340
ctatacttct tttttgttct acaaaaatgc atcccgagag cgctattttt ctaacaaagc 8400
atcttagatt actttttttc tcctttgtgc gctctataat gcagtctctt gataactttt 8460
tgcactgtag gtccgttaag gttagaagaa ggctactttg gtgtctattt tctcttccat 8520
aaaaaaagcc tgactccact tcccgcgttt actgattact agcgaagctg cgggtgcatt 8580
ttttcaagat aaaggcatcc ccgattatat tctataccga tgtggattgc gcatactttg 8640
tgaacagaaa gtgatagcgt tgatgattct tcattggtca gaaaattatg aacggtttct 8700
tctattttgt ctctatatac tacgtatagg aaatgtttac attttcgtat tgttttcgat 8760
tcactctatg aatagttctt actacaattt ttttgtctaa agagtaatac tagagataaa 8820
cataaaaaat gtagaggtcg agtttagatg caagttcaag gagcgaaagg tggatgggta 8880
ggttatatag ggatatagca cagagatata tagcaaagag atacttttga gcaatgtttg 8940
tggaagcggt attcgcaata ttttagtagc tcgttacagt ccggtgcgtt tttggttttt 9000
tgaaagtgcg tcttcagagc gcttttggtt ttcaaaagcg ctctgaagtt cctatacttt 9060
ctagagaata ggaacttcgg aataggaact tcaaagcgtt tccgaaaacg agcgcttccg 9120
aaaatgcaac gcgagctgcg cacatacagc tcactgttca cgtcgcacct atatctgcgt 9180
gttgcctgta tatatatata catgagaaga acggcatagt gcgtgtttat gcttaaatgc 9240
gtacttatat gcgtctattt atgtaggatg aaaggtagtc tagtacctcc tgtgatatta 9300
tcccattcca tgcggggtat cgtatgcttc cttcagcact accctttagc tgttctatat 9360
gctgccactc ctcaattgga ttagtctcat ccttcaatgc tatcatttcc tttgatattg 9420
gatcatctaa gaaaccatta ttatcatgac attaacctat aaaaataggc gtatcacgag 9480
gccctttcgt c 9491
<210> SEQ ID NO 129
<211> LENGTH: 1000
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 129
gttaattcaa attaattgat atagtttttt aatgagtatt gaatctgttt agaaataatg 60
gaatattatt tttatttatt tatttatatt attggtcggc tcttttcttc tgaaggtcaa 120
tgacaaaatg atatgaagga aataatgatt tctaaaattt tacaacgtaa gatattttta 180
caaaagccta gctcatcttt tgtcatgcac tattttactc acgcttgaaa ttaacggcca 240
gtccactgcg gagtcatttc aaagtcatcc taatcgatct atcgtttttg atagctcatt 300
ttggagttcg cgattgtctt ctgttattca caactgtttt aatttttatt tcattctgga 360
actcttcgag ttctttgtaa agtctttcat agtagcttac tttatcctcc aacatattta 420
acttcatgtc aatttcggct cttaaatttt ccacatcatc aagttcaaca tcatctttta 480
acttgaattt attctctagc tcttccaacc aagcctcatt gctccttgat ttactggtga 540
aaagtgatac actttgcgcg caatccaggt caaaactttc ctgcaaagaa ttcaccaatt 600
tctcgacatc atagtacaat ttgttttgtt ctcccatcac aatttaatat acctgatgga 660
ttcttatgaa gcgctgggta atggacgtgt cactctactt cgcctttttc cctactcctt 720
ttagtacgga agacaatgct aataaataag agggtaataa taatattatt aatcggcaaa 780
aaagattaaa cgccaagcgt ttaattatca gaaagcaaac gtcgtaccaa tccttgaatg 840
cttcccaatt gtatattaag agtcatcaca gcaacatatt cttgttatta aattaattat 900
tattgatttt tgatattgta taaaaaaacc aaatatgtat aaaaaaagtg aataaaaaat 960
accaagtatg gagaaatata ttagaagtct atacgttaaa 1000
<210> SEQ ID NO 130
<211> LENGTH: 16387
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Plasmid
<400> SEQUENCE: 130
gatcctctag tttctcggta ctatgcatat gatccaatat caaaggaaat gatagcattg 60
aaggatgaga ctaatccaat tgaggagtgg cagcatatag aacagctaaa gggtagtgct 120
gaaggaagca tacgataccc cgcatggaat gggataatat cacaggaggt actagactac 180
ctttcatcct acataaatag acgcatataa gtacgcattt aagcataaac acgcactatg 240
ccgttcttct catgtatata tatatacagg caacacgcag atataggtgc gacgtgaaca 300
gtgagctgta tgtgcgcagc tcgcgttgca ttttcggaag cgctcgtttt cggaaacgct 360
ttgaagttcc tattccgaag ttcctattct ctagaaagta taggaacttc agagcgcttt 420
tgaaaaccaa aagcgctctg aagacgcact ttcaaaaaac caaaaacgca ccggactgta 480
acgagctact aaaatattgc gaataccgct tccacaaaca ttgctcaaaa gtatctcttt 540
gctatatatc tctgtgctat atccctatat aacctaccca tccacctttc gctccttgaa 600
cttgcatcta aactcgacct ctacattttt tatgtttatc tctagtatta ctctttagac 660
aaaaaaattg tagtaagaac tattcataga gtgaatcgaa aacaatacga aaatgtaaac 720
atttcctata cgtagtatat agagacaaaa tagaagaaac cgttcataat tttctgacca 780
atgaagaatc atcaacgcta tcactttctg ttcacaaagt atgcgcaatc cacatcggta 840
tagaatataa tcggggatgc ctttatcttg aaaaaatgca cccgcagctt cgctagtaat 900
cagtaaacgc gggaagtgga gtcaggcttt ttttatggaa gagaaaatag acaccaaagt 960
agccttcttc taaccttaac ggacctacag tgcaaaaagt tatcaagaga ctgcattata 1020
gagcgcacaa aggagaaaaa aagtaatcta agatgctttg ttagaaaaat agcgctctcg 1080
ggatgcattt ttgtagaaca aaaaagaagt atagattctt tgttggtaaa atagcgctct 1140
cgcgttgcat ttctgttctg taaaaatgca gctcagattc tttgtttgaa aaattagcgc 1200
tctcgcgttg catttttgtt ttacaaaaat gaagcacaga ttcttcgttg gtaaaatagc 1260
gctttcgcgt tgcatttctg ttctgtaaaa atgcagctca gattctttgt ttgaaaaatt 1320
agcgctctcg cgttgcattt ttgttctaca aaatgaagca cagatgcttc gttaacaaag 1380
atatgctatt gaagtgcaag atggaaacgc agaaaatgaa ccggggatgc gacgtgcaag 1440
attacctatg caatagatgc aatagtttct ccaggaaccg aaatacatac attgtcttcc 1500
gtaaagcgct agactatata ttattataca ggttcaaata tactatctgt ttcagggaaa 1560
actcccaggt tcggatgttc aaaattcaat gatgggtaac aagtacgatc gtaaatctgt 1620
aaaacagttt gtcggatatt aggctgtatc tcctcaaagc gtattcgaat atcattgaga 1680
agctgcattt tttttttttt tttttttttt tttttttata tatatttcaa ggatatacca 1740
ttgtaatgtc tgcccctaag aagatcgtcg ttttgccagg tgaccacgtt ggtcaagaaa 1800
tcacagccga agccattaag gttcttaaag ctatttctga tgttcgttcc aatgtcaagt 1860
tcgatttcga aaatcattta attggtggtg ctgctatcga tgctacaggt gttccacttc 1920
cagatgaggc gctggaagcc tccaagaagg ctgatgccgt tttgttaggt gctgtgggtg 1980
gtcctaaatg gggtaccggt agtgttagac ctgaacaagg tttactaaaa atccgtaaag 2040
aacttcaatt gtacgccaac ttaagaccat gtaactttgc atccgactct cttttagact 2100
tatctccaat caagccacaa tttgctaaag gtactgactt cgttgttgtt agagaattag 2160
tgggaggtat ttactttggt aagagaaagg aagacgatgg tgatggtgtc gcttgggata 2220
gtgaacaata caccgttcca gaagtgcaaa gaatcacaag aatggccgct ttcatggccc 2280
tacaacatga gccaccattg cctatttggt ccttggataa agctaatgtt ttggcctctt 2340
caagattatg gagaaaaact gtggaggaaa ccatcaagaa cgaattccct acattgaaag 2400
ttcaacatca attgattgat tctgccgcca tgatcctagt taagaaccca acccacctaa 2460
atggtattat aatcaccagc aacatgtttg gtgatatcat ctccgatgaa gcctccgtta 2520
tcccaggctc cttgggtttg ttgccatctg cgtccttggc ctctttgcca gacaagaaca 2580
ccgcatttgg tttgtacgaa ccatgccatg gttccgctcc agatttgcca aagaataagg 2640
tcaaccctat cgccactatc ttgtctgctg caatgatgtt gaaattgtca ttgaacttgc 2700
ctgaagaagg taaagccatt gaagatgcag ttaaaaaggt tttggatgca ggtatcagaa 2760
ctggtgattt aggtggttcc aacagtacca ccgaagtcgg tgatgctgtc gccgaagaag 2820
ttaagaaaat ccttgcttaa aaagattctc tttttttatg atatttgtac aaaaaaaaaa 2880
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aatgcagcgt cacatcggat 2940
aataatgatg gcagccattg tagaagtgcc ttttgcattt ctagtctctt tctcggtcta 3000
gctagtttta ctacatcgcg aagatagaat cttagatcac actgcctttg ctgagctgga 3060
tcaatagagt aacaaaagag tggtaaggcc tcgttaaagg acaaggacct gagcggaagt 3120
gtatcgtaca gtagacggag tatactagag tcgacctgca ggcatgcaag cttttcaatt 3180
catcattttt tttttattct tttttttgat ttcggtttcc ttgaaatttt tttgattcgg 3240
taatctccga acagaaggaa gaacgaagga aggagcacag acttagattg gtatatatac 3300
gcatatgtag tgttgaagaa acatgaaatt gcccagtatt cttaacccaa ctgcacagaa 3360
caaaaacctg caggaaacga agataaatca tgtcgaaagc tacatataag gaacgtgctg 3420
ctactcatcc tagtcctgtt gctgccaagc tatttaatat catgcacgaa aagcaaacaa 3480
acttgtgtgc ttcattggat gttcgtacca ccaaggaatt actggagtta gttgaagcat 3540
taggtcccaa aatttgttta ctaaaaacac atgtggatat cttgactgat ttttccatgg 3600
agggcacagt taagccgcta aaggcattat ccgccaagta caatttttta ctcttcgaag 3660
acagaaaatt tgctgacatt ggtaatacag tcaaattgca gtactctgcg ggtgtataca 3720
gaatagcaga atgggcagac attacgaatg cacacggtgt ggtgggccca ggtattgtta 3780
gcggtttgaa gcaggcggca gaagaagtaa caaaggaacc tagaggcctt ttgatgttag 3840
cagaattgtc atgcaagggc tccctatcta ctggagaata tactaagggt actgttgaca 3900
ttgcgaagag cgacaaagat tttgttatcg gctttattgc tcaaagagac atgggtggaa 3960
gagatgaagg ttacgattgg ttgattatga cacccggtgt gggtttagat gacaagggag 4020
acgcattggg tcaacagtat agaaccgtgg atgatgtggt ctctacagga tctgacatta 4080
ttattgttgg aagaggacta tttgcaaagg gaagggatgc taaggtagag ggtgaacgtt 4140
acagaaaagc aggctgggaa gcatatttga gaagatgcgg ccagcaaaac taaaaaactg 4200
tattataagt aaatgcatgt atactaaact cacaaattag agcttcaatt taattatatc 4260
agttattacc cgggaatctc ggtcgtaatg atttttataa tgacgaaaaa aaaaaaattg 4320
gaaagaaaaa gcttggcgta atcatggtca tagctgtttc ctgtgtgaaa ttgttatccg 4380
ctcacaattc cacacaacat acgagccgga agcataaagt gtaaagcctg gggtgcctaa 4440
tgagtgagct aactcacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac 4500
ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt 4560
gggcgctctt ccgcttcctc gctcactgac tcgctgcgct cggtcgttcg gctgcggcga 4620
gcggtatcag ctcactcaaa ggcggtaata cggttatcca cagaatcagg ggataacgca 4680
ggaaagaaca tgtgagcaaa aggccagcaa aaggccagga accgtaaaaa ggccgcgttg 4740
ctggcgtttt tccataggct ccgcccccct gacgagcatc acaaaaatcg acgctcaagt 4800
cagaggtggc gaaacccgac aggactataa agataccagg cgtttccccc tggaagctcc 4860
ctcgtgcgct ctcctgttcc gaccctgccg cttaccggat acctgtccgc ctttctccct 4920
tcgggaagcg tggcgctttc tcatagctca cgctgtaggt atctcagttc ggtgtaggtc 4980
gttcgctcca agctgggctg tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta 5040
tccggtaact atcgtcttga gtccaacccg gtaagacacg acttatcgcc actggcagca 5100
gccactggta acaggattag cagagcgagg tatgtaggcg gtgctacaga gttcttgaag 5160
tggtggccta actacggcta cactagaaga acagtatttg gtatctgcgc tctgctgaag 5220
ccagttacct tcggaaaaag agttggtagc tcttgatccg gcaaacaaac caccgctggt 5280
agcggtggtt tttttgtttg caagcagcag attacgcgca gaaaaaaagg atctcaagaa 5340
gatcctttga tcttttctac ggggtctgac gctcagtgga acgaaaactc acgttaaggg 5400
attttggtca tgagattatc aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga 5460
agttttaaat caatctaaag tatatatgag taaacttggt ctgacagtta ccaatgctta 5520
atcagtgagg cacctatctc agcgatctgt ctatttcgtt catccatagt tgcctgactc 5580
cccgtcgtgt agataactac gatacgggag ggcttaccat ctggccccag tgctgcaatg 5640
ataccgcgag acccacgctc accggctcca gatttatcag caataaacca gccagccgga 5700
agggccgagc gcagaagtgg tcctgcaact ttatccgcct ccatccagtc tattaattgt 5760
tgccgggaag ctagagtaag tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt 5820
gctacaggca tcgtggtgtc acgctcgtcg tttggtatgg cttcattcag ctccggttcc 5880
caacgatcaa ggcgagttac atgatccccc atgttgtgca aaaaagcggt tagctccttc 5940
ggtcctccga tcgttgtcag aagtaagttg gccgcagtgt tatcactcat ggttatggca 6000
gcactgcata attctcttac tgtcatgcca tccgtaagat gcttttctgt gactggtgag 6060
tactcaacca agtcattctg agaatagtgt atgcggcgac cgagttgctc ttgcccggcg 6120
tcaatacggg ataataccgc gccacatagc agaactttaa aagtgctcat cattggaaaa 6180
cgttcttcgg ggcgaaaact ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa 6240
cccactcgtg cacccaactg atcttcagca tcttttactt tcaccagcgt ttctgggtga 6300
gcaaaaacag gaaggcaaaa tgccgcaaaa aagggaataa gggcgacacg gaaatgttga 6360
atactcatac tcttcctttt tcaatattat tgaagcattt atcagggtta ttgtctcatg 6420
agcggataca tatttgaatg tatttagaaa aataaacaaa taggggttcc gcgcacattt 6480
ccccgaaaag tgccacctga cgtctaagaa accattatta tcatgacatt aacctataaa 6540
aataggcgta tcacgaggcc ctttcgtctc gcgcgtttcg gtgatgacgg tgaaaacctc 6600
tgacacatgc agctcccgga gacggtcaca gcttgtctgt aagcggatgc cgggagcaga 6660
caagcccgtc agggcgcgtc agcgggtgtt ggcgggtgtc ggggctggct taactatgcg 6720
gcatcagagc agattgtact gagagtgcac cataaaattg taaacgttaa tattttgtta 6780
aaattcgcgt taaatttttg ttaaatcagc tcatttttta accaatagac cgaaatcggc 6840
aaaatccctt ataaatcaaa agaatagccc gagatagagt tgagtgttgt tccagtttgg 6900
aacaagagtc cactattaaa gaacgtggac tccaacgtca aagggcgaaa aaccgtctat 6960
cagggcgatg gcccactacg tgaaccatca cccaaatcaa gttttttggg gtcgaggtgc 7020
cgtaaagcac taaatcggaa ccctaaaggg agcccccgat ttagagcttg acggggaaag 7080
ccggcgaacg tggcgagaaa ggaagggaag aaagcgaaag gagcgggcgc taaggcgctg 7140
gcaagtgtag cggtcacgct gcgcgtaacc accacacccg ccgcgcttaa tgcgccgcta 7200
cagggcgcgt actatggttg ctttgacgta tgcggtgtga aataccgcac agatgcgtaa 7260
ggagaaaata ccgcatcagg cgccattcgc cattcaggct gcgcaactgt tgggaagggc 7320
gatcggtgcg ggcctcttcg ctattacgcc agctggcgaa agggggatgt gctgcaaggc 7380
gattaagttg ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg acggccagtg 7440
aattcgagct ccaccgcgga tagatctgaa atgaataaca atactgacag tactaaataa 7500
ttgcctactt ggcttcacat acgttgcata cgtcgatata gataataatg ataatgacag 7560
caggattatc gtaatacgta atagttgaaa atctcaaaaa tgtgtgggtc attacgtaaa 7620
taatgatagg aatgggattc ttctattttt cctttttcca ttctagcagc cgtcgggaaa 7680
acgtggcatc ctctctttcg ggctcaattg gagtcacgct gccgtgagca tcctctcttt 7740
ccatatctaa caactgagca cgtaaccaat ggaaaagcat gagcttagcg ttgctccaaa 7800
aaagtattgg atggttaata ccatttgtct gttctcttct gactttgact cctcaaaaaa 7860
aaaaaatcta caatcaacag atcgcttcaa ttacgccctc acaaaaactt ttttccttct 7920
tcttcgccca cgttaaattt tatccctcat gttgtctaac ggatttctgc acttgattta 7980
ttataaaaag acaaagacat aatacttctc tatcaatttc agttattgtt cttccttgcg 8040
ttattcttct gttcttcttt ttcttttgtc atatataacc ataaccaagt aatacatatt 8100
caaatctaga gctgaggatg ttgaagcaaa tcaacttcgg tggtactgtt gaaaccgtct 8160
acgaaagagc tgactggcca agagaaaagt tgttggacta cttcaagaac gacacttttg 8220
ctttgatcgg ttacggttcc caaggttacg gtcaaggttt gaacttgaga gacaacggtt 8280
tgaacgttat cattggtgtc cgtaaagatg gtgcttcttg gaaggctgcc atcgaagacg 8340
gttgggttcc aggcaagaac ttgttcactg ttgaagatgc tatcaagaga ggtagttacg 8400
ttatgaactt gttgtccgat gccgctcaat cagaaacctg gcctgctatc aagccattgt 8460
tgaccaaggg taagactttg tacttctccc acggtttctc cccagtcttc aaggacttga 8520
ctcacgttga accaccaaag gacttagatg ttatcttggt tgctccaaag ggttccggta 8580
gaactgtcag atctttgttc aaggaaggtc gtggtattaa ctcttcttac gccgtctgga 8640
acgatgtcac cggtaaggct cacgaaaagg cccaagcttt ggccgttgcc attggttccg 8700
gttacgttta ccaaaccact ttcgaaagag aagtcaactc tgacttgtac ggtgaaagag 8760
gttgtttaat gggtggtatc cacggtatgt tcttggctca atacgacgtc ttgagagaaa 8820
acggtcactc cccatctgaa gctttcaacg aaaccgtcga agaagctacc caatctctat 8880
acccattgat cggtaagtac ggtatggatt acatgtacga tgcttgttcc accaccgcca 8940
gaagaggtgc tttggactgg tacccaatct tcaagaatgc tttgaagcct gttttccaag 9000
acttgtacga atctaccaag aacggtaccg aaaccaagag atctttggaa ttcaactctc 9060
aacctgacta cagagaaaag ctagaaaagg aattagacac catcagaaac atggaaatct 9120
ggaaggttgg taaggaagtc agaaagttga gaccagaaaa ccaataatta attaatcatg 9180
taattagtta tgtcacgctt acattcacgc cctcccccca catccgctct aaccgaaaag 9240
gaaggagtta gacaacctga agtctaggtc cctatttatt tttttatagt tatgttagta 9300
ttaagaacgt tatttatatt tcaaattttt cttttttttc tgtacagacg cgtgtacgca 9360
tgtaacatta tactgaaaac cttgcttgag aaggttttgg gacgctcgaa ggctttaatt 9420
tgcgggcggc cgctctagag agttgttagc aaccttttgt ttcttttgag ctggttcaga 9480
cattatgtac acgtatatgt gacgagttcg agaagtattt tactatcgta ctaaatttta 9540
cctgaaaaat tatatactcg agaaagagga agccaagaat tgagaaaaaa gaaaaacccg 9600
cgagtaagga aattaaatac aggtgtacac atacacgcac acatatatat atatatatat 9660
atgtatatgt gtatatagga agcgcgcgca tgttagtata tacgattcgt tggaaagggg 9720
ccgtccacca aacgtgactt gacgagttga caaattgacc tcaatatggc tcagtcagta 9780
atttttagtt ccgctttatt cccgccatct ttcaggccac gagggtagct cataacgccg 9840
cgctaatgcc gctgcgtcac agcaaccagt agctcagcca aaaccgaaag agaaatcgta 9900
gctgtcccga tgaggactta tacacttgtc accatctaaa taaattattt attcgcgttt 9960
cggttcttgt tttcgattta attagattgt tcattgaatc ataataaata tgtaaaaaat 10020
atatatattt gaagctgctt cagaaaaaca gggcttccta gtgtacagat gtatgtcgga 10080
tgaaaaaaaa aaaatcttaa atgtgaaatt gggtcaattc aattgactat gacttgatgt 10140
tgcaaaaatt ccaagagaaa aagtttccag cacttgatat tattttcctc tttaattttt 10200
cgccttgtct acgatcttat tagcaccgat ccagggcatc atagacctta actgttcacc 10260
aataatttcg ataccatgtg ctgcattgtt tcttctttta gcagtcatac tcgggtaacc 10320
cgtagcgcct tcacttatga acatcttagc gtattcaccg tcctggatac gtttcaaggc 10380
atttctcatg gcttgtcttg attctgcgtt aatgacttca ggtccggtga catactcacc 10440
atattctgca ttatttgaaa tggaatagtt catattagct ataccacctt catacattaa 10500
gtctactatc aacttcaatt catgtagaca ttcgaagtat gccatttcgg gagcgtaccc 10560
tgcttcgaca agcgtctcaa agcctgcttt aaccaattca acagttcctc cgcacagaac 10620
cgcttgttct ccaaataaat ctgtctcagt ctcgtcttta aaagtggttt ctattatacc 10680
cgttctcccg ccaccaactc ctgctgcgta gcttaaagct acattcttag cgtttccgct 10740
tgcgtcttgg tatatagcga tcaaatctgg aataccacca cccttaacaa attcgctcct 10800
aacagtatgc cccggagcct taggtgcaat cataataacg tccaaatctg ccctggggac 10860
tacttgattg taatgaatgg caaatccatg actgaaggcc aaggtagcgc ccttcttaat 10920
gtttggttct atttcatttt tgtacaattg cgattgaaat tcatctggcg ttaaaatcat 10980
gactaaatca gcgccggcaa cagccgctgc aacatctgtg actttcaagc catgtgcttc 11040
agcctttgca acggtagcac taccttttct cagacctact gtcacgtcga ccccagaatc 11100
tttcaagtta caggcttgtg cgtgtccttg ggaaccatat cctataatag caaccttctt 11160
tccctggatg atgctcagat cgcagtcttt atcgtaaaac accttcatgt tttatttttt 11220
acttatattg ctggtagggt aaaaaaatat aactcctagg aataggttgt ctatatgttt 11280
ttgtcttgct tctataattg taacaaacaa ggaaagggaa aatactgggt gtaaaagcca 11340
ttgagtcaag ttaggtcatc ccttttatac aaaatttttc aatttttttt ccaagattct 11400
tgtacgatta attatttttt ttttgcgtcc tacagcgtga tgaaaatttc cgcctgctgc 11460
aagatgagcg ggaacgggcg aaatgtgcac gcgcacaact tacgaaacgc ggatgagtca 11520
ctgacagcca ccgcagaggt tctgactcct actgagctct attggaggtg gcagaaccgg 11580
taccggagga gaccgctata accggtttga atttattgtc acagtgtcac atcagcggca 11640
actcagaagt ttgacagcaa gcaagttcat cattcgaact agccttattg ttttagttca 11700
gtgacagcga actgccgtac tcgatgcttt atttctcacg gtagagcgga agaacagata 11760
ggggcagcgt gagaagagtt agaaagtaaa tttttatcac gtctgaagta ttcttattca 11820
taggaaattt tgcaaggttt tttagctcaa taacgggcta agttatataa ggtgttcacg 11880
cgattttctt gttatgtata cctcttctct gaggaatggt actactgtcc tgatgtaggc 11940
tccttaaatt ggtgggcaag aataacttat cgatattttg tatattggtc ttggagttca 12000
ccacgtaatg cctgtttaag accatcagtt aactctagta ttatttggtc ttggctactg 12060
gccgtttgct attattcaag tcttttgtgc cttcccgtcg ggtaagggag ttatttaggg 12120
atacagaatc taacgaaaac taaatctcaa tgattaactc catttaatcc ttttttgaaa 12180
ggcaaaagag gtcccttgtt cacttacaac gttcttagcc aaattcgctt atcacttact 12240
acttcacgat atacagaagt aaaaacatat aaaaagatgt ctgtttgttt agccatcaca 12300
aaaggtatcg cagtttcttc tataggcctc tactctggtc ttttggcttc cgcttcattg 12360
attacatcta ctactccact agaggtttta acaggatctc taaaaacatc gatatcgtct 12420
ctgcgttcca atcctacggt gaatatattt ccaagcaatt cactgaagaa gaaagagaag 12480
atgttgtgga acatgcatgc ccaggtcctg gttcttgtgg tggtatgtat actgccaaca 12540
caatggcttc tgccgctgaa gtgctaggtt tgaccattcc aaactcctct tccttcccag 12600
ccgtttccaa ggagaagtta gctgagtgtg acaacattgg tgaatacatc aagaagacaa 12660
tggaattggg tattttacct cgtgatatcc tcacaaaaga ggcttttgaa aacgccatta 12720
cttatgtcgt tgcaaccggt gggtccacta atgctgtttt gcatttggtg gctgttgctc 12780
actctgcggg tgtcaagttg tcaccagatg atttccaaag aatcagtgat actacaccat 12840
tgatcggtga cttcaaacct tctggtaaat acgtcatggc cgatttgatt aacgttggtg 12900
gtacccaatc tgtgattaag tatctatatg aaaacaacat gttgcacggt aacacaatga 12960
ctgttaccgg tgacactttg gcagaacgtg caaagaaagc accaagccta cctgaaggac 13020
aagagattat taagccactc tcccacccaa tcaaggccaa cggtcacttg caaattctgt 13080
acggttcatt ggcaccaggt ggagctgtgg gtaaaattac cggtaaggaa ggtacttact 13140
tcaagggtag agcacgtgtg ttcgaagagg aaggtgcctt tattgaagcc ttggaaagag 13200
gtgaaatcaa gaagggtgaa aaaaccgttg ttgttatcag atatgaaggt ccaagaggtg 13260
caccaggtat gcctgaaatg ctaaagcctt cctctgctct gatgggttac ggtttgggta 13320
aagatgttgc attgttgact gatggtagat tctctggtgg ttctcacggg ttcttaatcg 13380
gccacattgt tcccgaagcc gctgaaggtg gtcctatcgg gttggtcaga gacggcgatg 13440
agattatcat tgatgctgat aataacaaga ttgacctatt agtctctgat aaggaaatgg 13500
ctcaacgtaa acaaagttgg gttgcacctc cacctcgtta cacaagaggt actctatcca 13560
agtatgctaa gttggtttcc aacgcttcca acggttgtgt tttagatgct tgattaatta 13620
agagtaagcg aatttcttat gatttatgat ttttattatt aaataagtta taaaaaaaat 13680
aagtgtatac aaattttaaa gtgactctta ggttttaaaa cgaaaattct tattcttgag 13740
taactctttc ctgtaggtca ggttgctttc tcaggtatag catgaggtcg ctcttattga 13800
ccacacctct accggcatgc cgagcaaatg cctgcaaatc gctccccatt tcacccaatt 13860
gtagatatgc taactccagc aatgagttga tgaatctcgg tgtgtatttt atgtcctcag 13920
aggacaacac ctgtggtact agttctagag cggccgcccg caaattaaag ccttcgagcg 13980
tcccaaaacc ttctcaagca aggttttcag tataatgtta catgcgtaca cgcgtctgta 14040
cagaaaaaaa agaaaaattt gaaatataaa taacgttctt aatactaaca taactataaa 14100
aaaataaata gggacctaga cttcaggttg tctaactcct tccttttcgg ttagagcgga 14160
tgtgggggga gggcgtgaat gtaagcgtga cataactaat tacatgatta attaactaga 14220
gagctttcgt tttcatgagt tccccgaatt ctttcggaag cttgtcactt gctaaattaa 14280
tgttatcact gtagtcaacc gggacatcga tgatgacagg accttcagcg ttcatgcctt 14340
gacgcagaac atctgccagc tggtctggtg attctacgcg caagccagtt gctccgaagc 14400
tttccgcata tttcacgata tcgatatttc cgaaatcgac cgcagatgta cggttatatt 14460
ttttcaattg ctggaatgca accatgtcat atgtgctgtc gttccataca atgtgtacaa 14520
ttggtgcttt tagtcgaact gctgtctcta attccattgc tgagaataag aaaccgccgt 14580
caccagagac agaaaccact ttttctcccg gtttcaccaa tgaagcgccg attgcccaag 14640
gaagcgcaac gccgagtgtt tgcataccgt tactgatcat taatgttaac ggctcgtagc 14700
tgcggaaata acgtgacatc caaatggcgt gcgaaccgat atcgcaagtt actgtaacat 14760
gatcatcgac tgcattacgc aactctttaa cgatttcaag agggtgcgct ctgtctgatt 14820
tccaatctgc aggcacctgc tcaccttcat gcatatattg ttttaaatca gaaaggattt 14880
tctgctcacg ctctgcaaat tccactttca cagcatcgtg ttcgatatga ttgatcgtgg 14940
acggaatgtc accgatcaat tcaagatcag gctggtaagc atgatcaatg tcagcgataa 15000
tctcgtctaa atggataatt gtccggtctc cattgatatt ccagaatttc ggatcatatt 15060
caatcgggtc atagccgatc gtcagaacaa catctgcctg ctctagcagt aaatcgccag 15120
gctggttgcg gaacaaaccg atacggccaa aatattgatc ctctaaatct ctagaaaggg 15180
taccggcagc ttgatatgtt tcaacaaatg gaagctgaac ctttttcaaa agcttgcgaa 15240
ccgctttaat tgcttccggt cttccgcctt tcatgccgac caaaacgaca ggaagttttg 15300
ctgtttggat ttttgctatg gccgcactga ttgcatcatc tgctgcagga ccgagttttg 15360
gcgctgcaac agcacgcacg tttttcgtat ttgtgacttc attcacaaca tcttgcggaa 15420
agctcacaaa agcggcccca gcctgccctg ctgacgctat cctaaatgca tttgtaacag 15480
cttccggtat attttttaca tcttgaactt ctacactgta ttttgtaatc ggctggaata 15540
gcgccgcatt atccaaagat tgatgtgtcc gttttaaacg atctgcacgg atcacgtttc 15600
cagcaagcgc aacgacaggg tctccttcag tgttcgctgt cagcaggcct gttgccaagt 15660
tagaggcacc cggtcctgat gtgactaaca cgactcccgg ttttccagtt aaacggccga 15720
ctgcttgggc catgaatgct gcgttttgtt cgtgccgggc aacgataatt tcaggtcctt 15780
tatcttgtaa agcgtcaaat accgcatcaa tttttgcacc tggaatgcca aatacatgtg 15840
tgacaccttg ctccactaag caatcaacaa caagctccgc ccctctgttt ttcacaaggg 15900
atttttgttc ttttgttgct tttgtcaaca tcctcagcga tgattgattg attgattgta 15960
cagtttgttt ttcttaatat ctatttcgat gacttctata tgatattgca ctaacaagaa 16020
gatattataa tgcaattgat acaagacaag gagttatttg cttctctttt atatgattct 16080
gacaatccat attgcgttgg tagtcttttt tgctggaacg gttcagcgga aaagacgcat 16140
cgctcttttt gcttctagaa gaaatgccag caaaagaatc tcttgacagt gactgacagc 16200
aaaaatgtct ttttctaact agtaacaagg ctaagatatc agcctgaaat aaagggtggt 16260
gaagtaataa ttaaatcatc cgtataaacc tatacacata tatgaggaaa aataatacaa 16320
aagtgtttta aatacagata catacatgaa catatgcacg tatagcgccc aaatgtcggt 16380
aatggga 16387
<210> SEQ ID NO 131
<211> LENGTH: 1188
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 131
atgttgagaa ctcaagccgc cagattgatc tgcaactccc gtgtcatcac tgctaagaga 60
acctttgctt tggccacccg tgctgctgct tacagcagac cagctgcccg tttcgttaag 120
ccaatgatca ctacccgtgg tttgaagcaa atcaacttcg gtggtactgt tgaaaccgtc 180
tacgaaagag ctgactggcc aagagaaaag ttgttggact acttcaagaa cgacactttt 240
gctttgatcg gttacggttc ccaaggttac ggtcaaggtt tgaacttgag agacaacggt 300
ttgaacgtta tcattggtgt ccgtaaagat ggtgcttctt ggaaggctgc catcgaagac 360
ggttgggttc caggcaagaa cttgttcact gttgaagatg ctatcaagag aggtagttac 420
gttatgaact tgttgtccga tgccgctcaa tcagaaacct ggcctgctat caagccattg 480
ttgaccaagg gtaagacttt gtacttctcc cacggtttct ccccagtctt caaggacttg 540
actcacgttg aaccaccaaa ggacttagat gttatcttgg ttgctccaaa gggttccggt 600
agaactgtca gatctttgtt caaggaaggt cgtggtatta actcttctta cgccgtctgg 660
aacgatgtca ccggtaaggc tcacgaaaag gcccaagctt tggccgttgc cattggttcc 720
ggttacgttt accaaaccac tttcgaaaga gaagtcaact ctgacttgta cggtgaaaga 780
ggttgtttaa tgggtggtat ccacggtatg ttcttggctc aatacgacgt cttgagagaa 840
aacggtcact ccccatctga agctttcaac gaaaccgtcg aagaagctac ccaatctcta 900
tacccattga tcggtaagta cggtatggat tacatgtacg atgcttgttc caccaccgcc 960
agaagaggtg ctttggactg gtacccaatc ttcaagaatg ctttgaagcc tgttttccaa 1020
gacttgtacg aatctaccaa gaacggtacc gaaaccaaga gatctttgga attcaactct 1080
caacctgact acagagaaaa gctagaaaag gaattagaca ccatcagaaa catggaaatc 1140
tggaaggttg gtaaggaagt cagaaagttg agaccagaaa accaataa 1188
<210> SEQ ID NO 132
<211> LENGTH: 1014
<212> TYPE: DNA
<213> ORGANISM: Pseudomonas fluorescens
<400> SEQUENCE: 132
atgaaagttt tctacgataa agactgcgac ctgtcgatca tccaaggtaa gaaagttgcc 60
atcatcggct acggttccca gggccacgct caagcatgca acctgaagga ttccggcgta 120
gacgtgactg ttggcctgcg taaaggctcg gctaccgttg ccaaggctga agcccacggc 180
ttgaaagtga ccgacgttgc tgcagccgtt gccggtgccg acttggtcat gatcctgacc 240
ccggacgagt tccagtccca gctgtacaag aacgaaatcg agccgaacat caagaagggc 300
gccactctgg ccttctccca cggcttcgcg atccactaca accaggttgt gcctcgtgcc 360
gacctcgacg tgatcatgat cgcgccgaag gctccaggcc acaccgtacg ttccgagttc 420
gtcaagggcg gtggtattcc tgacctgatc gcgatctacc aggacgcttc cggcaacgcc 480
aagaacgttg ccctgtccta cgccgcaggc gtgggcggcg gccgtaccgg catcatcgaa 540
accaccttca aggacgagac tgaaaccgac ctgttcggtg agcaggctgt tctgtgtggc 600
ggtaccgtcg agctggtcaa agccggtttc gaaaccctgg ttgaagctgg ctacgctcca 660
gaaatggcct acttcgagtg cctgcacgaa ctgaagctga tcgttgacct catgtacgaa 720
ggcggtatcg ccaacatgaa ctactcgatc tccaacaacg ctgaatacgg cgagtacgtg 780
actggtccag aagtcatcaa cgccgaatcc cgtcaggcca tgcgcaatgc tctgaagcgc 840
atccaggacg gcgaatacgc gaagatgttc atcagcgaag gcgctaccgg ctacccatcg 900
atgaccgcca agcgtcgtaa caacgctgct cacggtatcg aaatcatcgg cgagcaactg 960
cgctcgatga tgccttggat cggtgccaac aaaatcgtcg acaaagccaa gaac 1014
<210> SEQ ID NO 133
<211> LENGTH: 250
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 133
ccgcaaatta aagccttcga gcgtcccaaa accttctcaa gcaaggtttt cagtataatg 60
ttacatgcgt acacgcgtct gtacagaaaa aaaagaaaaa tttgaaatat aaataacgtt 120
cttaatacta acataactat aaaaaaataa atagggacct agacttcagg ttgtctaact 180
ccttcctttt cggttagagc ggatgtgggg ggagggcgtg aatgtaagcg tgacataact 240
aattacatga 250
<210> SEQ ID NO 134
<211> LENGTH: 1181
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 134
taaaacctct agtggagtag tagatgtaat caatgaagcg gaagccaaaa gaccagagta 60
gaggcctata gaagaaactg cgataccttt tgtgatggct aaacaaacag acatcttttt 120
atatgttttt acttctgtat atcgtgaagt agtaagtgat aagcgaattt ggctaagaac 180
gttgtaagtg aacaagggac ctcttttgcc tttcaaaaaa ggattaaatg gagttaatca 240
ttgagattta gttttcgtta gattctgtat ccctaaataa ctcccttacc cgacgggaag 300
gcacaaaaga cttgaataat agcaaacggc cagtagccaa gaccaaataa tactagagtt 360
aactgatggt cttaaacagg cattacgtgg tgaactccaa gaccaatata caaaatatcg 420
ataagttatt cttgcccacc aatttaagga gcctacatca ggacagtagt accattcctc 480
agagaagagg tatacataac aagaaaatcg cgtgaacacc ttatataact tagcccgtta 540
ttgagctaaa aaaccttgca aaatttccta tgaataagaa tacttcagac gtgataaaaa 600
tttactttct aactcttctc acgctgcccc tatctgttct tccgctctac cgtgagaaat 660
aaagcatcga gtacggcagt tcgctgtcac tgaactaaaa caataaggct agttcgaatg 720
atgaacttgc ttgctgtcaa acttctgagt tgccgctgat gtgacactgt gacaataaat 780
tcaaaccggt tatagcggtc tcctccggta ccggttctgc cacctccaat agagctcagt 840
aggagtcaga acctctgcgg tggctgtcag tgactcatcc gcgtttcgta agttgtgcgc 900
gtgcacattt cgcccgttcc cgctcatctt gcagcaggcg gaaattttca tcacgctgta 960
ggacgcaaaa aaaaaataat taatcgtaca agaatcttgg aaaaaaaatt gaaaaatttt 1020
gtataaaagg gatgacctaa cttgactcaa tggcttttac acccagtatt ttccctttcc 1080
ttgtttgtta caattataga agcaagacaa aaacatatag acaacctatt cctaggagtt 1140
atattttttt accctaccag caatataagt aaaaaactag t 1181
<210> SEQ ID NO 135
<211> LENGTH: 759
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 135
ggccctgcag gcctatcaag tgctggaaac tttttctctt ggaatttttg caacatcaag 60
tcatagtcaa ttgaattgac ccaatttcac atttaagatt tttttttttt catccgacat 120
acatctgtac actaggaagc cctgtttttc tgaagcagct tcaaatatat atatttttta 180
catatttatt atgattcaat gaacaatcta attaaatcga aaacaagaac cgaaacgcga 240
ataaataatt tatttagatg gtgacaagtg tataagtcct catcgggaca gctacgattt 300
ctctttcggt tttggctgag ctactggttg ctgtgacgca gcggcattag cgcggcgtta 360
tgagctaccc tcgtggcctg aaagatggcg ggaataaagc ggaactaaaa attactgact 420
gagccatatt gaggtcaatt tgtcaactcg tcaagtcacg tttggtggac ggcccctttc 480
caacgaatcg tatatactaa catgcgcgcg cttcctatat acacatatac atatatatat 540
atatatatat gtgtgcgtgt atgtgtacac ctgtatttaa tttccttact cgcgggtttt 600
tcttttttct caattcttgg cttcctcttt ctcgagtata taatttttca ggtaaaattt 660
agtacgatag taaaatactt ctcgaactcg tcacatatac gtgtacataa tgtctgaacc 720
agctcaaaag aaacaaaagg ttgctaacaa ctctctaga 759
<210> SEQ ID NO 136
<211> LENGTH: 643
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 136
gaaatgaata acaatactga cagtactaaa taattgccta cttggcttca catacgttgc 60
atacgtcgat atagataata atgataatga cagcaggatt atcgtaatac gtaatagttg 120
aaaatctcaa aaatgtgtgg gtcattacgt aaataatgat aggaatggga ttcttctatt 180
tttccttttt ccattctagc agccgtcggg aaaacgtggc atcctctctt tcgggctcaa 240
ttggagtcac gctgccgtga gcatcctctc tttccatatc taacaactga gcacgtaacc 300
aatggaaaag catgagctta gcgttgctcc aaaaaagtat tggatggtta ataccatttg 360
tctgttctct tctgactttg actcctcaaa aaaaaaaaat ctacaatcaa cagatcgctt 420
caattacgcc ctcacaaaaa cttttttcct tcttcttcgc ccacgttaaa ttttatccct 480
catgttgtct aacggatttc tgcacttgat ttattataaa aagacaaaga cataatactt 540
ctctatcaat ttcagttatt gttcttcctt gcgttattct tctgttcttc tttttctttt 600
gtcatatata accataacca agtaatacat attcaaatct aga 643
<210> SEQ ID NO 137
<211> LENGTH: 1716
<212> TYPE: DNA
<213> ORGANISM: Bacillus subtilis
<400> SEQUENCE: 137
atgttgacaa aagcaacaaa agaacaaaaa tcccttgtga aaaacagagg ggcggagctt 60
gttgttgatt gcttagtgga gcaaggtgtc acacatgtat ttggcattcc aggtgcaaaa 120
attgatgcgg tatttgacgc tttacaagat aaaggacctg aaattatcgt tgcccggcac 180
gaacaaaacg cagcattcat ggcccaagca gtcggccgtt taactggaaa accgggagtc 240
gtgttagtca catcaggacc gggtgcctct aacttggcaa caggcctgct gacagcgaac 300
actgaaggag accctgtcgt tgcgcttgct ggaaacgtga tccgtgcaga tcgtttaaaa 360
cggacacatc aatctttgga taatgcggcg ctattccagc cgattacaaa atacagtgta 420
gaagttcaag atgtaaaaaa tataccggaa gctgttacaa atgcatttag gatagcgtca 480
gcagggcagg ctggggccgc ttttgtgagc tttccgcaag atgttgtgaa tgaagtcaca 540
aatacgaaaa acgtgcgtgc tgttgcagcg ccaaaactcg gtcctgcagc agatgatgca 600
atcagtgcgg ccatagcaaa aatccaaaca gcaaaacttc ctgtcgtttt ggtcggcatg 660
aaaggcggaa gaccggaagc aattaaagcg gttcgcaagc ttttgaaaaa ggttcagctt 720
ccatttgttg aaacatatca agctgccggt accctttcta gagatttaga ggatcaatat 780
tttggccgta tcggtttgtt ccgcaaccag cctggcgatt tactgctaga gcaggcagat 840
gttgttctga cgatcggcta tgacccgatt gaatatgatc cgaaattctg gaatatcaat 900
ggagaccgga caattatcca tttagacgag attatcgctg acattgatca tgcttaccag 960
cctgatcttg aattgatcgg tgacattccg tccacgatca atcatatcga acacgatgct 1020
gtgaaagtgg aatttgcaga gcgtgagcag aaaatccttt ctgatttaaa acaatatatg 1080
catgaaggtg agcaggtgcc tgcagattgg aaatcagaca gagcgcaccc tcttgaaatc 1140
gttaaagagt tgcgtaatgc agtcgatgat catgttacag taacttgcga tatcggttcg 1200
cacgccattt ggatgtcacg ttatttccgc agctacgagc cgttaacatt aatgatcagt 1260
aacggtatgc aaacactcgg cgttgcgctt ccttgggcaa tcggcgcttc attggtgaaa 1320
ccgggagaaa aagtggtttc tgtctctggt gacggcggtt tcttattctc agcaatggaa 1380
ttagagacag cagttcgact aaaagcacca attgtacaca ttgtatggaa cgacagcaca 1440
tatgacatgg ttgcattcca gcaattgaaa aaatataacc gtacatctgc ggtcgatttc 1500
ggaaatatcg atatcgtgaa atatgcggaa agcttcggag caactggctt gcgcgtagaa 1560
tcaccagacc agctggcaga tgttctgcgt caaggcatga acgctgaagg tcctgtcatc 1620
atcgatgtcc cggttgacta cagtgataac attaatttag caagtgacaa gcttccgaaa 1680
gaattcgggg aactcatgaa aacgaaagct ctctag 1716
<210> SEQ ID NO 138
<211> LENGTH: 571
<212> TYPE: PRT
<213> ORGANISM: Bacillus subtilis
<400> SEQUENCE: 138
Met Leu Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Asn Arg
1 5 10 15
Gly Ala Glu Leu Val Val Asp Cys Leu Val Glu Gln Gly Val Thr His
20 25 30
Val Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu
35 40 45
Gln Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala
50 55 60
Ala Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val
65 70 75 80
Val Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu
85 90 95
Leu Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn
100 105 110
Val Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn
115 120 125
Ala Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp
130 135 140
Val Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser
145 150 155 160
Ala Gly Gln Ala Gly Ala Ala Phe Val Ser Phe Pro Gln Asp Val Val
165 170 175
Asn Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys
180 185 190
Leu Gly Pro Ala Ala Asp Asp Ala Ile Ser Ala Ala Ile Ala Lys Ile
195 200 205
Gln Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg
210 215 220
Pro Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu
225 230 235 240
Pro Phe Val Glu Thr Tyr Gln Ala Ala Gly Thr Leu Ser Arg Asp Leu
245 250 255
Glu Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly
260 265 270
Asp Leu Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp
275 280 285
Pro Ile Glu Tyr Asp Pro Lys Phe Trp Asn Ile Asn Gly Asp Arg Thr
290 295 300
Ile Ile His Leu Asp Glu Ile Ile Ala Asp Ile Asp His Ala Tyr Gln
305 310 315 320
Pro Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile
325 330 335
Glu His Asp Ala Val Lys Val Glu Phe Ala Glu Arg Glu Gln Lys Ile
340 345 350
Leu Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala
355 360 365
Asp Trp Lys Ser Asp Arg Ala His Pro Leu Glu Ile Val Lys Glu Leu
370 375 380
Arg Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser
385 390 395 400
His Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr
405 410 415
Leu Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp
420 425 430
Ala Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Val
435 440 445
Ser Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala
450 455 460
Val Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr
465 470 475 480
Tyr Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser
485 490 495
Ala Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe
500 505 510
Gly Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val
515 520 525
Leu Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro
530 535 540
Val Asp Tyr Ser Asp Asn Ile Asn Leu Ala Ser Asp Lys Leu Pro Lys
545 550 555 560
Glu Phe Gly Glu Leu Met Lys Thr Lys Ala Leu
565 570
<210> SEQ ID NO 139
<211> LENGTH: 448
<212> TYPE: DNA
<213> ORGANISM: Saccharomyces cerevisiae
<400> SEQUENCE: 139
cccattaccg acatttgggc gctatacgtg catatgttca tgtatgtatc tgtatttaaa 60
acacttttgt attatttttc ctcatatatg tgtataggtt tatacggatg atttaattat 120
tacttcacca ccctttattt caggctgata tcttagcctt gttactagtt agaaaaagac 180
atttttgctg tcagtcactg tcaagagatt cttttgctgg catttcttct agaagcaaaa 240
agagcgatgc gtcttttccg ctgaaccgtt ccagcaaaaa agactaccaa cgcaatatgg 300
attgtcagaa tcatataaaa gagaagcaaa taactccttg tcttgtatca attgcattat 360
aatatcttct tgttagtgca atatcatata gaagtcatcg aaatagatat taagaaaaac 420
aaactgtaca atcaatcaat caatcatc 448
<210> SEQ ID NO 140
<211> LENGTH: 16387
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: plasmid construct
<400> SEQUENCE: 140
tcccattacc gacatttggg cgctatacgt gcatatgttc atgtatgtat ctgtatttaa 60
aacacttttg tattattttt cctcatatat gtgtataggt ttatacggat gatttaatta 120
ttacttcacc accctttatt tcaggctgat atcttagcct tgttactagt tagaaaaaga 180
catttttgct gtcagtcact gtcaagagat tcttttgctg gcatttcttc tagaagcaaa 240
aagagcgatg cgtcttttcc gctgaaccgt tccagcaaaa aagactacca acgcaatatg 300
gattgtcaga atcatataaa agagaagcaa ataactcctt gtcttgtatc aattgcatta 360
taatatcttc ttgttagtgc aatatcatat agaagtcatc gaaatagata ttaagaaaaa 420
caaactgtac aatcaatcaa tcaatcatcg ctgaggatgt tgacaaaagc aacaaaagaa 480
caaaaatccc ttgtgaaaaa cagaggggcg gagcttgttg ttgattgctt agtggagcaa 540
ggtgtcacac atgtatttgg cattccaggt gcaaaaattg atgcggtatt tgacgcttta 600
caagataaag gacctgaaat tatcgttgcc cggcacgaac aaaacgcagc attcatggcc 660
caagcagtcg gccgtttaac tggaaaaccg ggagtcgtgt tagtcacatc aggaccgggt 720
gcctctaact tggcaacagg cctgctgaca gcgaacactg aaggagaccc tgtcgttgcg 780
cttgctggaa acgtgatccg tgcagatcgt ttaaaacgga cacatcaatc tttggataat 840
gcggcgctat tccagccgat tacaaaatac agtgtagaag ttcaagatgt aaaaaatata 900
ccggaagctg ttacaaatgc atttaggata gcgtcagcag ggcaggctgg ggccgctttt 960
gtgagctttc cgcaagatgt tgtgaatgaa gtcacaaata cgaaaaacgt gcgtgctgtt 1020
gcagcgccaa aactcggtcc tgcagcagat gatgcaatca gtgcggccat agcaaaaatc 1080
caaacagcaa aacttcctgt cgttttggtc ggcatgaaag gcggaagacc ggaagcaatt 1140
aaagcggttc gcaagctttt gaaaaaggtt cagcttccat ttgttgaaac atatcaagct 1200
gccggtaccc tttctagaga tttagaggat caatattttg gccgtatcgg tttgttccgc 1260
aaccagcctg gcgatttact gctagagcag gcagatgttg ttctgacgat cggctatgac 1320
ccgattgaat atgatccgaa attctggaat atcaatggag accggacaat tatccattta 1380
gacgagatta tcgctgacat tgatcatgct taccagcctg atcttgaatt gatcggtgac 1440
attccgtcca cgatcaatca tatcgaacac gatgctgtga aagtggaatt tgcagagcgt 1500
gagcagaaaa tcctttctga tttaaaacaa tatatgcatg aaggtgagca ggtgcctgca 1560
gattggaaat cagacagagc gcaccctctt gaaatcgtta aagagttgcg taatgcagtc 1620
gatgatcatg ttacagtaac ttgcgatatc ggttcgcacg ccatttggat gtcacgttat 1680
ttccgcagct acgagccgtt aacattaatg atcagtaacg gtatgcaaac actcggcgtt 1740
gcgcttcctt gggcaatcgg cgcttcattg gtgaaaccgg gagaaaaagt ggtttctgtc 1800
tctggtgacg gcggtttctt attctcagca atggaattag agacagcagt tcgactaaaa 1860
gcaccaattg tacacattgt atggaacgac agcacatatg acatggttgc attccagcaa 1920
ttgaaaaaat ataaccgtac atctgcggtc gatttcggaa atatcgatat cgtgaaatat 1980
gcggaaagct tcggagcaac tggcttgcgc gtagaatcac cagaccagct ggcagatgtt 2040
ctgcgtcaag gcatgaacgc tgaaggtcct gtcatcatcg atgtcccggt tgactacagt 2100
gataacatta atttagcaag tgacaagctt ccgaaagaat tcggggaact catgaaaacg 2160
aaagctctct agttaattaa tcatgtaatt agttatgtca cgcttacatt cacgccctcc 2220
ccccacatcc gctctaaccg aaaaggaagg agttagacaa cctgaagtct aggtccctat 2280
ttattttttt atagttatgt tagtattaag aacgttattt atatttcaaa tttttctttt 2340
ttttctgtac agacgcgtgt acgcatgtaa cattatactg aaaaccttgc ttgagaaggt 2400
tttgggacgc tcgaaggctt taatttgcgg gcggccgctc tagaactagt accacaggtg 2460
ttgtcctctg aggacataaa atacacaccg agattcatca actcattgct ggagttagca 2520
tatctacaat tgggtgaaat ggggagcgat ttgcaggcat ttgctcggca tgccggtaga 2580
ggtgtggtca ataagagcga cctcatgcta tacctgagaa agcaacctga cctacaggaa 2640
agagttactc aagaataaga attttcgttt taaaacctaa gagtcacttt aaaatttgta 2700
tacacttatt ttttttataa cttatttaat aataaaaatc ataaatcata agaaattcgc 2760
ttactcttaa ttaatcaagc atctaaaaca caaccgttgg aagcgttgga aaccaactta 2820
gcatacttgg atagagtacc tcttgtgtaa cgaggtggag gtgcaaccca actttgttta 2880
cgttgagcca tttccttatc agagactaat aggtcaatct tgttattatc agcatcaatg 2940
ataatctcat cgccgtctct gaccaacccg ataggaccac cttcagcggc ttcgggaaca 3000
atgtggccga ttaagaaccc gtgagaacca ccagagaatc taccatcagt caacaatgca 3060
acatctttac ccaaaccgta acccatcaga gcagaggaag gctttagcat ttcaggcata 3120
cctggtgcac ctcttggacc ttcatatctg ataacaacaa cggttttttc acccttcttg 3180
atttcacctc tttccaaggc ttcaataaag gcaccttcct cttcgaacac acgtgctcta 3240
cccttgaagt aagtaccttc cttaccggta attttaccca cagctccacc tggtgccaat 3300
gaaccgtaca gaatttgcaa gtgaccgttg gccttgattg ggtgggagag tggcttaata 3360
atctcttgtc cttcaggtag gcttggtgct ttctttgcac gttctgccaa agtgtcaccg 3420
gtaacagtca ttgtgttacc gtgcaacatg ttgttttcat atagatactt aatcacagat 3480
tgggtaccac caacgttaat caaatcggcc atgacgtatt taccagaagg tttgaagtca 3540
ccgatcaatg gtgtagtatc actgattctt tggaaatcat ctggtgacaa cttgacaccc 3600
gcagagtgag caacagccac caaatgcaaa acagcattag tggacccacc ggttgcaacg 3660
acataagtaa tggcgttttc aaaagcctct tttgtgagga tatcacgagg taaaataccc 3720
aattccattg tcttcttgat gtattcacca atgttgtcac actcagctaa cttctccttg 3780
gaaacggctg ggaaggaaga ggagtttgga atggtcaaac ctagcacttc agcggcagaa 3840
gccattgtgt tggcagtata cataccacca caagaaccag gacctgggca tgcatgttcc 3900
acaacatctt ctctttcttc ttcagtgaat tgcttggaaa tatattcacc gtaggattgg 3960
aacgcagaga cgatatcgat gtttttagag atcctgttaa aacctctagt ggagtagtag 4020
atgtaatcaa tgaagcggaa gccaaaagac cagagtagag gcctatagaa gaaactgcga 4080
taccttttgt gatggctaaa caaacagaca tctttttata tgtttttact tctgtatatc 4140
gtgaagtagt aagtgataag cgaatttggc taagaacgtt gtaagtgaac aagggacctc 4200
ttttgccttt caaaaaagga ttaaatggag ttaatcattg agatttagtt ttcgttagat 4260
tctgtatccc taaataactc ccttacccga cgggaaggca caaaagactt gaataatagc 4320
aaacggccag tagccaagac caaataatac tagagttaac tgatggtctt aaacaggcat 4380
tacgtggtga actccaagac caatatacaa aatatcgata agttattctt gcccaccaat 4440
ttaaggagcc tacatcagga cagtagtacc attcctcaga gaagaggtat acataacaag 4500
aaaatcgcgt gaacacctta tataacttag cccgttattg agctaaaaaa ccttgcaaaa 4560
tttcctatga ataagaatac ttcagacgtg ataaaaattt actttctaac tcttctcacg 4620
ctgcccctat ctgttcttcc gctctaccgt gagaaataaa gcatcgagta cggcagttcg 4680
ctgtcactga actaaaacaa taaggctagt tcgaatgatg aacttgcttg ctgtcaaact 4740
tctgagttgc cgctgatgtg acactgtgac aataaattca aaccggttat agcggtctcc 4800
tccggtaccg gttctgccac ctccaataga gctcagtagg agtcagaacc tctgcggtgg 4860
ctgtcagtga ctcatccgcg tttcgtaagt tgtgcgcgtg cacatttcgc ccgttcccgc 4920
tcatcttgca gcaggcggaa attttcatca cgctgtagga cgcaaaaaaa aaataattaa 4980
tcgtacaaga atcttggaaa aaaaattgaa aaattttgta taaaagggat gacctaactt 5040
gactcaatgg cttttacacc cagtattttc cctttccttg tttgttacaa ttatagaagc 5100
aagacaaaaa catatagaca acctattcct aggagttata tttttttacc ctaccagcaa 5160
tataagtaaa aaactagtat gaaggtgttt tacgataaag actgcgatct gagcatcatc 5220
cagggaaaga aggttgctat tataggatat ggttcccaag gacacgcaca agccttgaac 5280
ttgaaagatt ctggggtcga cgtgacagta ggtctgtata aaggtgctgc tgatgcagca 5340
aaggctgaag cacatggctt taaagtcaca gatgttgcag cggctgttgc tggcgctgat 5400
ttagtcatga ttttaattcc agatgaattt caatcgcaat tgtacaaaaa tgaaatagaa 5460
ccaaacatta agaagggcgc taccttggcc ttcagtcatg gatttgccat tcattacaat 5520
caagtagtcc ccagggcaga tttggacgtt attatgattg cacctaaggc tccggggcat 5580
actgttagga gcgaatttgt taagggtggt ggtattccag atttgatcgc tatataccaa 5640
gacgttagcg gaaacgctaa gaatgtagct ttaagctacg cagcaggagt tggtggcggg 5700
agaacgggta taatagaaac cacttttaaa gacgagactg agacagattt atttggagaa 5760
caagcggttc tgtgcggagg aactgttgaa ttggttaaag caggctttga gacgcttgtc 5820
gaagcagggt acgctcccga aatggcatac ttcgaatgtc tacatgaatt gaagttgata 5880
gtagacttaa tgtatgaagg tggtatagct aatatgaact attccatttc aaataatgca 5940
gaatatggtg agtatgtcac cggacctgaa gtcattaacg cagaatcaag acaagccatg 6000
agaaatgcct tgaaacgtat ccaggacggt gaatacgcta agatgttcat aagtgaaggc 6060
gctacgggtt acccgagtat gactgctaaa agaagaaaca atgcagcaca tggtatcgaa 6120
attattggtg aacagttaag gtctatgatg ccctggatcg gtgctaataa gatcgtagac 6180
aaggcgaaaa attaaggccc tgcaggccta tcaagtgctg gaaacttttt ctcttggaat 6240
ttttgcaaca tcaagtcata gtcaattgaa ttgacccaat ttcacattta agattttttt 6300
tttttcatcc gacatacatc tgtacactag gaagccctgt ttttctgaag cagcttcaaa 6360
tatatatatt ttttacatat ttattatgat tcaatgaaca atctaattaa atcgaaaaca 6420
agaaccgaaa cgcgaataaa taatttattt agatggtgac aagtgtataa gtcctcatcg 6480
ggacagctac gatttctctt tcggttttgg ctgagctact ggttgctgtg acgcagcggc 6540
attagcgcgg cgttatgagc taccctcgtg gcctgaaaga tggcgggaat aaagcggaac 6600
taaaaattac tgactgagcc atattgaggt caatttgtca actcgtcaag tcacgtttgg 6660
tggacggccc ctttccaacg aatcgtatat actaacatgc gcgcgcttcc tatatacaca 6720
tatacatata tatatatata tatatgtgtg cgtgtatgtg tacacctgta tttaatttcc 6780
ttactcgcgg gtttttcttt tttctcaatt cttggcttcc tctttctcga gtatataatt 6840
tttcaggtaa aatttagtac gatagtaaaa tacttctcga actcgtcaca tatacgtgta 6900
cataatgtct gaaccagctc aaaagaaaca aaaggttgct aacaactctc tagagcggcc 6960
gcccgcaaat taaagccttc gagcgtccca aaaccttctc aagcaaggtt ttcagtataa 7020
tgttacatgc gtacacgcgt ctgtacagaa aaaaaagaaa aatttgaaat ataaataacg 7080
ttcttaatac taacataact ataaaaaaat aaatagggac ctagacttca ggttgtctaa 7140
ctccttcctt ttcggttaga gcggatgtgg ggggagggcg tgaatgtaag cgtgacataa 7200
ctaattacat gattaattaa ttattggttt tctggtctca actttctgac ttccttacca 7260
accttccaga tttccatgtt tctgatggtg tctaattcct tttctagctt ttctctgtag 7320
tcaggttgag agttgaattc caaagatctc ttggtttcgg taccgttctt ggtagattcg 7380
tacaagtctt ggaaaacagg cttcaaagca ttcttgaaga ttgggtacca gtccaaagca 7440
cctcttctgg cggtggtgga acaagcatcg tacatgtaat ccataccgta cttaccgatc 7500
aatgggtata gagattgggt agcttcttcg acggtttcgt tgaaagcttc agatggggag 7560
tgaccgtttt ctctcaagac gtcgtattga gccaagaaca taccgtggat accacccatt 7620
aaacaacctc tttcaccgta caagtcagag ttgacttctc tttcgaaagt ggtttggtaa 7680
acgtaaccgg aaccaatggc aacggccaaa gcttgggcct tttcgtgagc cttaccggtg 7740
acatcgttcc agacggcgta agaagagtta ataccacgac cttccttgaa caaagatctg 7800
acagttctac cggaaccctt tggagcaacc aagataacat ctaagtcctt tggtggttca 7860
acgtgagtca agtccttgaa gactggggag aaaccgtggg agaagtacaa agtcttaccc 7920
ttggtcaaca atggcttgat agcaggccag gtttctgatt gagcggcatc ggacaacaag 7980
ttcataacgt aactacctct cttgatagca tcttcaacag tgaacaagtt cttgcctgga 8040
acccaaccgt cttcgatggc agccttccaa gaagcaccat ctttacggac accaatgata 8100
acgttcaaac cgttgtctct caagttcaaa ccttgaccgt aaccttggga accgtaaccg 8160
atcaaagcaa aagtgtcgtt cttgaagtag tccaacaact tttctcttgg ccagtcagct 8220
ctttcgtaga cggtttcaac agtaccaccg aagttgattt gcttcaacat cctcagctct 8280
agatttgaat atgtattact tggttatggt tatatatgac aaaagaaaaa gaagaacaga 8340
agaataacgc aaggaagaac aataactgaa attgatagag aagtattatg tctttgtctt 8400
tttataataa atcaagtgca gaaatccgtt agacaacatg agggataaaa tttaacgtgg 8460
gcgaagaaga aggaaaaaag tttttgtgag ggcgtaattg aagcgatctg ttgattgtag 8520
attttttttt tttgaggagt caaagtcaga agagaacaga caaatggtat taaccatcca 8580
atactttttt ggagcaacgc taagctcatg cttttccatt ggttacgtgc tcagttgtta 8640
gatatggaaa gagaggatgc tcacggcagc gtgactccaa ttgagcccga aagagaggat 8700
gccacgtttt cccgacggct gctagaatgg aaaaaggaaa aatagaagaa tcccattcct 8760
atcattattt acgtaatgac ccacacattt ttgagatttt caactattac gtattacgat 8820
aatcctgctg tcattatcat tattatctat atcgacgtat gcaacgtatg tgaagccaag 8880
taggcaatta tttagtactg tcagtattgt tattcatttc agatctatcc gcggtggagc 8940
tcgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg cgttacccaa 9000
cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga agaggcccgc 9060
accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcct gatgcggtat 9120
tttctcctta cgcatctgtg cggtatttca caccgcatac gtcaaagcaa ccatagtacg 9180
cgccctgtag cggcgcatta agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta 9240
cacttgccag cgccttagcg cccgctcctt tcgctttctt cccttccttt ctcgccacgt 9300
tcgccggctt tccccgtcaa gctctaaatc gggggctccc tttagggttc cgatttagtg 9360
ctttacggca cctcgacccc aaaaaacttg atttgggtga tggttcacgt agtgggccat 9420
cgccctgata gacggttttt cgccctttga cgttggagtc cacgttcttt aatagtggac 9480
tcttgttcca aactggaaca acactcaact ctatctcggg ctattctttt gatttataag 9540
ggattttgcc gatttcggtc tattggttaa aaaatgagct gatttaacaa aaatttaacg 9600
cgaattttaa caaaatatta acgtttacaa ttttatggtg cactctcagt acaatctgct 9660
ctgatgccgc atagttaagc cagccccgac acccgccaac acccgctgac gcgccctgac 9720
gggcttgtct gctcccggca tccgcttaca gacaagctgt gaccgtctcc gggagctgca 9780
tgtgtcagag gttttcaccg tcatcaccga aacgcgcgag acgaaagggc ctcgtgatac 9840
gcctattttt ataggttaat gtcatgataa taatggtttc ttagacgtca ggtggcactt 9900
ttcggggaaa tgtgcgcgga acccctattt gtttattttt ctaaatacat tcaaatatgt 9960
atccgctcat gagacaataa ccctgataaa tgcttcaata atattgaaaa aggaagagta 10020
tgagtattca acatttccgt gtcgccctta ttcccttttt tgcggcattt tgccttcctg 10080
tttttgctca cccagaaacg ctggtgaaag taaaagatgc tgaagatcag ttgggtgcac 10140
gagtgggtta catcgaactg gatctcaaca gcggtaagat ccttgagagt tttcgccccg 10200
aagaacgttt tccaatgatg agcactttta aagttctgct atgtggcgcg gtattatccc 10260
gtattgacgc cgggcaagag caactcggtc gccgcataca ctattctcag aatgacttgg 10320
ttgagtactc accagtcaca gaaaagcatc ttacggatgg catgacagta agagaattat 10380
gcagtgctgc cataaccatg agtgataaca ctgcggccaa cttacttctg acaacgatcg 10440
gaggaccgaa ggagctaacc gcttttttgc acaacatggg ggatcatgta actcgccttg 10500
atcgttggga accggagctg aatgaagcca taccaaacga cgagcgtgac accacgatgc 10560
ctgtagcaat ggcaacaacg ttgcgcaaac tattaactgg cgaactactt actctagctt 10620
cccggcaaca attaatagac tggatggagg cggataaagt tgcaggacca cttctgcgct 10680
cggcccttcc ggctggctgg tttattgctg ataaatctgg agccggtgag cgtgggtctc 10740
gcggtatcat tgcagcactg gggccagatg gtaagccctc ccgtatcgta gttatctaca 10800
cgacggggag tcaggcaact atggatgaac gaaatagaca gatcgctgag ataggtgcct 10860
cactgattaa gcattggtaa ctgtcagacc aagtttactc atatatactt tagattgatt 10920
taaaacttca tttttaattt aaaaggatct aggtgaagat cctttttgat aatctcatga 10980
ccaaaatccc ttaacgtgag ttttcgttcc actgagcgtc agaccccgta gaaaagatca 11040
aaggatcttc ttgagatcct ttttttctgc gcgtaatctg ctgcttgcaa acaaaaaaac 11100
caccgctacc agcggtggtt tgtttgccgg atcaagagct accaactctt tttccgaagg 11160
taactggctt cagcagagcg cagataccaa atactgttct tctagtgtag ccgtagttag 11220
gccaccactt caagaactct gtagcaccgc ctacatacct cgctctgcta atcctgttac 11280
cagtggctgc tgccagtggc gataagtcgt gtcttaccgg gttggactca agacgatagt 11340
taccggataa ggcgcagcgg tcgggctgaa cggggggttc gtgcacacag cccagcttgg 11400
agcgaacgac ctacaccgaa ctgagatacc tacagcgtga gctatgagaa agcgccacgc 11460
ttcccgaagg gagaaaggcg gacaggtatc cggtaagcgg cagggtcgga acaggagagc 11520
gcacgaggga gcttccaggg ggaaacgcct ggtatcttta tagtcctgtc gggtttcgcc 11580
acctctgact tgagcgtcga tttttgtgat gctcgtcagg ggggcggagc ctatggaaaa 11640
acgccagcaa cgcggccttt ttacggttcc tggccttttg ctggcctttt gctcacatgt 11700
tctttcctgc gttatcccct gattctgtgg ataaccgtat taccgccttt gagtgagctg 11760
ataccgctcg ccgcagccga acgaccgagc gcagcgagtc agtgagcgag gaagcggaag 11820
agcgcccaat acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc 11880
acgacaggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc 11940
tcactcatta ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa 12000
ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagcttt 12060
ttctttccaa tttttttttt ttcgtcatta taaaaatcat tacgaccgag attcccgggt 12120
aataactgat ataattaaat tgaagctcta atttgtgagt ttagtataca tgcatttact 12180
tataatacag ttttttagtt ttgctggccg catcttctca aatatgcttc ccagcctgct 12240
tttctgtaac gttcaccctc taccttagca tcccttccct ttgcaaatag tcctcttcca 12300
acaataataa tgtcagatcc tgtagagacc acatcatcca cggttctata ctgttgaccc 12360
aatgcgtctc ccttgtcatc taaacccaca ccgggtgtca taatcaacca atcgtaacct 12420
tcatctcttc cacccatgtc tctttgagca ataaagccga taacaaaatc tttgtcgctc 12480
ttcgcaatgt caacagtacc cttagtatat tctccagtag atagggagcc cttgcatgac 12540
aattctgcta acatcaaaag gcctctaggt tcctttgtta cttcttctgc cgcctgcttc 12600
aaaccgctaa caatacctgg gcccaccaca ccgtgtgcat tcgtaatgtc tgcccattct 12660
gctattctgt atacacccgc agagtactgc aatttgactg tattaccaat gtcagcaaat 12720
tttctgtctt cgaagagtaa aaaattgtac ttggcggata atgcctttag cggcttaact 12780
gtgccctcca tggaaaaatc agtcaagata tccacatgtg tttttagtaa acaaattttg 12840
ggacctaatg cttcaactaa ctccagtaat tccttggtgg tacgaacatc caatgaagca 12900
cacaagtttg tttgcttttc gtgcatgata ttaaatagct tggcagcaac aggactagga 12960
tgagtagcag cacgttcctt atatgtagct ttcgacatga tttatcttcg tttcctgcag 13020
gtttttgttc tgtgcagttg ggttaagaat actgggcaat ttcatgtttc ttcaacacta 13080
catatgcgta tatataccaa tctaagtctg tgctccttcc ttcgttcttc cttctgttcg 13140
gagattaccg aatcaaaaaa atttcaagga aaccgaaatc aaaaaaaaga ataaaaaaaa 13200
aatgatgaat tgaaaagctt gcatgcctgc aggtcgactc tagtatactc cgtctactgt 13260
acgatacact tccgctcagg tccttgtcct ttaacgaggc cttaccactc ttttgttact 13320
ctattgatcc agctcagcaa aggcagtgtg atctaagatt ctatcttcgc gatgtagtaa 13380
aactagctag accgagaaag agactagaaa tgcaaaaggc acttctacaa tggctgccat 13440
cattattatc cgatgtgacg ctgcattttt tttttttttt tttttttttt tttttttttt 13500
tttttttttt tttttttgta caaatatcat aaaaaaagag aatcttttta agcaaggatt 13560
ttcttaactt cttcggcgac agcatcaccg acttcggtgg tactgttgga accacctaaa 13620
tcaccagttc tgatacctgc atccaaaacc tttttaactg catcttcaat ggctttacct 13680
tcttcaggca agttcaatga caatttcaac atcattgcag cagacaagat agtggcgata 13740
gggttgacct tattctttgg caaatctgga gcggaaccat ggcatggttc gtacaaacca 13800
aatgcggtgt tcttgtctgg caaagaggcc aaggacgcag atggcaacaa acccaaggag 13860
cctgggataa cggaggcttc atcggagatg atatcaccaa acatgttgct ggtgattata 13920
ataccattta ggtgggttgg gttcttaact aggatcatgg cggcagaatc aatcaattga 13980
tgttgaactt tcaatgtagg gaattcgttc ttgatggttt cctccacagt ttttctccat 14040
aatcttgaag aggccaaaac attagcttta tccaaggacc aaataggcaa tggtggctca 14100
tgttgtaggg ccatgaaagc ggccattctt gtgattcttt gcacttctgg aacggtgtat 14160
tgttcactat cccaagcgac accatcacca tcgtcttcct ttctcttacc aaagtaaata 14220
cctcccacta attctctaac aacaacgaag tcagtacctt tagcaaattg tggcttgatt 14280
ggagataagt ctaaaagaga gtcggatgca aagttacatg gtcttaagtt ggcgtacaat 14340
tgaagttctt tacggatttt tagtaaacct tgttcaggtc taacactacc ggtaccccat 14400
ttaggaccac ccacagcacc taacaaaacg gcatcagcct tcttggaggc ttccagcgcc 14460
tcatctggaa gtggaacacc tgtagcatcg atagcagcac caccaattaa atgattttcg 14520
aaatcgaact tgacattgga acgaacatca gaaatagctt taagaacctt aatggcttcg 14580
gctgtgattt cttgaccaac gtggtcacct ggcaaaacga cgatcttctt aggggcagac 14640
attacaatgg tatatccttg aaatatatat aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 14700
tgcagcttct caatgatatt cgaatacgct ttgaggagat acagcctaat atccgacaaa 14760
ctgttttaca gatttacgat cgtacttgtt acccatcatt gaattttgaa catccgaacc 14820
tgggagtttt ccctgaaaca gatagtatat ttgaacctgt ataataatat atagtctagc 14880
gctttacgga agacaatgta tgtatttcgg ttcctggaga aactattgca tctattgcat 14940
aggtaatctt gcacgtcgca tccccggttc attttctgcg tttccatctt gcacttcaat 15000
agcatatctt tgttaacgaa gcatctgtgc ttcattttgt agaacaaaaa tgcaacgcga 15060
gagcgctaat ttttcaaaca aagaatctga gctgcatttt tacagaacag aaatgcaacg 15120
cgaaagcgct attttaccaa cgaagaatct gtgcttcatt tttgtaaaac aaaaatgcaa 15180
cgcgagagcg ctaatttttc aaacaaagaa tctgagctgc atttttacag aacagaaatg 15240
caacgcgaga gcgctatttt accaacaaag aatctatact tcttttttgt tctacaaaaa 15300
tgcatcccga gagcgctatt tttctaacaa agcatcttag attacttttt ttctcctttg 15360
tgcgctctat aatgcagtct cttgataact ttttgcactg taggtccgtt aaggttagaa 15420
gaaggctact ttggtgtcta ttttctcttc cataaaaaaa gcctgactcc acttcccgcg 15480
tttactgatt actagcgaag ctgcgggtgc attttttcaa gataaaggca tccccgatta 15540
tattctatac cgatgtggat tgcgcatact ttgtgaacag aaagtgatag cgttgatgat 15600
tcttcattgg tcagaaaatt atgaacggtt tcttctattt tgtctctata tactacgtat 15660
aggaaatgtt tacattttcg tattgttttc gattcactct atgaatagtt cttactacaa 15720
tttttttgtc taaagagtaa tactagagat aaacataaaa aatgtagagg tcgagtttag 15780
atgcaagttc aaggagcgaa aggtggatgg gtaggttata tagggatata gcacagagat 15840
atatagcaaa gagatacttt tgagcaatgt ttgtggaagc ggtattcgca atattttagt 15900
agctcgttac agtccggtgc gtttttggtt ttttgaaagt gcgtcttcag agcgcttttg 15960
gttttcaaaa gcgctctgaa gttcctatac tttctagaga ataggaactt cggaatagga 16020
acttcaaagc gtttccgaaa acgagcgctt ccgaaaatgc aacgcgagct gcgcacatac 16080
agctcactgt tcacgtcgca cctatatctg cgtgttgcct gtatatatat atacatgaga 16140
agaacggcat agtgcgtgtt tatgcttaaa tgcgtactta tatgcgtcta tttatgtagg 16200
atgaaaggta gtctagtacc tcctgtgata ttatcccatt ccatgcgggg tatcgtatgc 16260
ttccttcagc actacccttt agctgttcta tatgctgcca ctcctcaatt ggattagtct 16320
catccttcaa tgctatcatt tcctttgata ttggatcata tgcatagtac cgagaaacta 16380
gaggatc 16387
<210> SEQ ID NO 141
<211> LENGTH: 2237
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PDC1 Fragment A-ilvDSm
<400> SEQUENCE: 141
ttatgtatgc tcttctgact tttcgtgtga tgaggctcgt ggaaaaaatg aataatttat 60
gaatttgaga acaattttgt gttgttacgg tattttacta tggaataatc aatcaattga 120
ggattttatg caaatatcgt ttgaatattt ttccgaccct ttgagtactt ttcttcataa 180
ttgcataata ttgtccgctg cccctttttc tgttagacgg tgtcttgatc tacttgctat 240
cgttcaacac caccttattt tctaactatt ttttttttag ctcatttgaa tcagcttatg 300
gtgatggcac atttttgcat aaacctagct gtcctcgttg aacataggaa aaaaaaatat 360
ataaacaagg ctctttcact ctccttgcaa tcagatttgg gtttgttccc tttattttca 420
tatttcttgt catattcctt tctcaattat tattttctac tcataacctc acgcaaaata 480
acacagtcaa atcaatcaaa atgactgaca aaaaaactct taaagactta agaaatcgta 540
gttctgttta cgattcaatg gttaaatcac ctaatcgtgc tatgttgcgt gcaactggta 600
tgcaagatga agactttgaa aaacctatcg tcggtgtcat ttcaacttgg gctgaaaaca 660
caccttgtaa tatccactta catgactttg gtaaactagc caaagtcggt gttaaggaag 720
ctggtgcttg gccagttcag ttcggaacaa tcacggtttc tgatggaatc gccatgggaa 780
cccaaggaat gcgtttctcc ttgacatctc gtgatattat tgcagattct attgaagcag 840
ccatgggagg tcataatgcg gatgcttttg tagccattgg cggttgtgat aaaaacatgc 900
ccggttctgt tatcgctatg gctaacatgg atatcccagc catttttgct tacggcggaa 960
caattgcacc tggtaattta gacggcaaag atatcgattt agtctctgtc tttgaaggtg 1020
tcggccattg gaaccacggc gatatgacca aagaagaagt taaagctttg gaatgtaatg 1080
cttgtcccgg tcctggaggc tgcggtggta tgtatactgc taacacaatg gcgacagcta 1140
ttgaagtttt gggacttagc cttccgggtt catcttctca cccggctgaa tccgcagaaa 1200
agaaagcaga tattgaagaa gctggtcgcg ctgttgtcaa aatgctcgaa atgggcttaa 1260
aaccttctga cattttaacg cgtgaagctt ttgaagatgc tattactgta actatggctc 1320
tgggaggttc aaccaactca acccttcacc tcttagctat tgcccatgct gctaatgtgg 1380
aattgacact tgatgatttc aatactttcc aagaaaaagt tcctcatttg gctgatttga 1440
aaccttctgg tcaatatgta ttccaagacc tttacaaggt cggaggggta ccagcagtta 1500
tgaaatatct ccttaaaaat ggcttccttc atggtgaccg tatcacttgt actggcaaaa 1560
cagtcgctga aaatttgaag gcttttgatg atttaacacc tggtcaaaag gttattatgc 1620
cgcttgaaaa tcctaaacgt gaagatggtc cgctcattat tctccatggt aacttggctc 1680
cagacggtgc cgttgccaaa gtttctggtg taaaagtgcg tcgtcatgtc ggtcctgcta 1740
aggtctttaa ttctgaagaa gaagccattg aagctgtctt gaatgatgat attgttgatg 1800
gtgatgttgt tgtcgtacgt tttgtaggac caaagggcgg tcctggtatg cctgaaatgc 1860
tttccctttc atcaatgatt gttggtaaag ggcaaggtga aaaagttgcc cttctgacag 1920
atggccgctt ctcaggtggt acttatggtc ttgtcgtggg tcatatcgct cctgaagcac 1980
aagatggcgg tccaatcgcc tacctgcaaa caggagacat agtcactatt gaccaagaca 2040
ctaaggaatt acactttgat atctccgatg aagagttaaa acatcgtcaa gagaccattg 2100
aattgccacc gctctattca cgcggtatcc ttggtaaata tgctcacatc gtttcgtctg 2160
cttctagggg agccgtaaca gacttttgga agcctgaaga aactggcaaa aaatgagcga 2220
tttaatctct aattatt 2237
<210> SEQ ID NO 142
<211> LENGTH: 4420
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PDC1 A-ilvDSm-BUC cassette
<400> SEQUENCE: 142
ttatgtatgc tcttctgact tttcgtgtga tgaggctcgt ggaaaaaatg aataatttat 60
gaatttgaga acaattttgt gttgttacgg tattttacta tggaataatc aatcaattga 120
ggattttatg caaatatcgt ttgaatattt ttccgaccct ttgagtactt ttcttcataa 180
ttgcataata ttgtccgctg cccctttttc tgttagacgg tgtcttgatc tacttgctat 240
cgttcaacac caccttattt tctaactatt ttttttttag ctcatttgaa tcagcttatg 300
gtgatggcac atttttgcat aaacctagct gtcctcgttg aacataggaa aaaaaaatat 360
ataaacaagg ctctttcact ctccttgcaa tcagatttgg gtttgttccc tttattttca 420
tatttcttgt catattcctt tctcaattat tattttctac tcataacctc acgcaaaata 480
acacagtcaa atcaatcaaa atgactgaca aaaaaactct taaagactta agaaatcgta 540
gttctgttta cgattcaatg gttaaatcac ctaatcgtgc tatgttgcgt gcaactggta 600
tgcaagatga agactttgaa aaacctatcg tcggtgtcat ttcaacttgg gctgaaaaca 660
caccttgtaa tatccactta catgactttg gtaaactagc caaagtcggt gttaaggaag 720
ctggtgcttg gccagttcag ttcggaacaa tcacggtttc tgatggaatc gccatgggaa 780
cccaaggaat gcgtttctcc ttgacatctc gtgatattat tgcagattct attgaagcag 840
ccatgggagg tcataatgcg gatgcttttg tagccattgg cggttgtgat aaaaacatgc 900
ccggttctgt tatcgctatg gctaacatgg atatcccagc catttttgct tacggcggaa 960
caattgcacc tggtaattta gacggcaaag atatcgattt agtctctgtc tttgaaggtg 1020
tcggccattg gaaccacggc gatatgacca aagaagaagt taaagctttg gaatgtaatg 1080
cttgtcccgg tcctggaggc tgcggtggta tgtatactgc taacacaatg gcgacagcta 1140
ttgaagtttt gggacttagc cttccgggtt catcttctca cccggctgaa tccgcagaaa 1200
agaaagcaga tattgaagaa gctggtcgcg ctgttgtcaa aatgctcgaa atgggcttaa 1260
aaccttctga cattttaacg cgtgaagctt ttgaagatgc tattactgta actatggctc 1320
tgggaggttc aaccaactca acccttcacc tcttagctat tgcccatgct gctaatgtgg 1380
aattgacact tgatgatttc aatactttcc aagaaaaagt tcctcatttg gctgatttga 1440
aaccttctgg tcaatatgta ttccaagacc tttacaaggt cggaggggta ccagcagtta 1500
tgaaatatct ccttaaaaat ggcttccttc atggtgaccg tatcacttgt actggcaaaa 1560
cagtcgctga aaatttgaag gcttttgatg atttaacacc tggtcaaaag gttattatgc 1620
cgcttgaaaa tcctaaacgt gaagatggtc cgctcattat tctccatggt aacttggctc 1680
cagacggtgc cgttgccaaa gtttctggtg taaaagtgcg tcgtcatgtc ggtcctgcta 1740
aggtctttaa ttctgaagaa gaagccattg aagctgtctt gaatgatgat attgttgatg 1800
gtgatgttgt tgtcgtacgt tttgtaggac caaagggcgg tcctggtatg cctgaaatgc 1860
tttccctttc atcaatgatt gttggtaaag ggcaaggtga aaaagttgcc cttctgacag 1920
atggccgctt ctcaggtggt acttatggtc ttgtcgtggg tcatatcgct cctgaagcac 1980
aagatggcgg tccaatcgcc tacctgcaaa caggagacat agtcactatt gaccaagaca 2040
ctaaggaatt acactttgat atctccgatg aagagttaaa acatcgtcaa gagaccattg 2100
aattgccacc gctctattca cgcggtatcc ttggtaaata tgctcacatc gtttcgtctg 2160
cttctagggg agccgtaaca gacttttgga agcctgaaga aactggcaaa aaatgagcga 2220
tttaatctct aattattagt taaagtttta taagcatttt tatgtaacga aaaataaatt 2280
ggttcatatt attactgcac tgtcacttac catggaaaga ccagacaaga agttgccgac 2340
agtctgttga attggcctgg ttaggcttaa gtctgggtcc gcttctttac aaatttggag 2400
aatttctctt aaacgatatg tatattcttt tcgttggaaa agatgtcttc caaaaaaaaa 2460
accgatgaat tagtggaacc aaggaaaaaa aaagaggtat ccttgattaa ggaacactgt 2520
ttaaacagtg tggtttccaa aaccctgaaa ctgcattagt gtaatagaag actagacacc 2580
tcgatacaaa taatggttac tcaattcaaa actgccagcg aattcgactc tgcaattgct 2640
caagacaagc tagttgtcgt agatttctac gccacttggt gcggtccatg taaaatgatt 2700
gctccaatga ttgaaaaatg tggctgtggt ttcagggtcc ataaagcttt tcaattcatc 2760
tttttttttt ttgttctttt ttttgattcc ggtttctttg aaattttttt gattcggtaa 2820
tctccgagca gaaggaagaa cgaaggaagg agcacagact tagattggta tatatacgca 2880
tatgtggtgt tgaagaaaca tgaaattgcc cagtattctt aacccaactg cacagaacaa 2940
aaacctgcag gaaacgaaga taaatcatgt cgaaagctac atataaggaa cgtgctgcta 3000
ctcatcctag tcctgttgct gccaagctat ttaatatcat gcacgaaaag caaacaaact 3060
tgtgtgcttc attggatgtt cgtaccacca aggaattact ggagttagtt gaagcattag 3120
gtcccaaaat ttgtttacta aaaacacatg tggatatctt gactgatttt tccatggagg 3180
gcacagttaa gccgctaaag gcattatccg ccaagtacaa ttttttactc ttcgaagaca 3240
gaaaatttgc tgacattggt aatacagtca aattgcagta ctctgcgggt gtatacagaa 3300
tagcagaatg ggcagacatt acgaatgcac acggtgtggt gggcccaggt attgttagcg 3360
gtttgaagca ggcggcggaa gaagtaacaa aggaacctag aggccttttg atgttagcag 3420
aattgtcatg caagggctcc ctagctactg gagaatatac taagggtact gttgacattg 3480
cgaagagcga caaagatttt gttatcggct ttattgctca aagagacatg ggtggaagag 3540
atgaaggtta cgattggttg attatgacac ccggtgtggg tttagatgac aagggagacg 3600
cattgggtca acagtataga accgtggatg atgtggtctc tacaggatct gacattatta 3660
ttgttggaag aggactattt gcaaagggaa gggatgctaa ggtagagggt gaacgttaca 3720
gaaaagcagg ctgggaagca tatttgagaa gatgcggcca gcaaaactaa aaaactgtat 3780
tataagtaaa tgcatgtata ctaaactcac aaattagagc ttcaatttaa ttatatcagt 3840
tattacccgg gaatctcggt cgtaatgatt tctataatga cgaaaaaaaa aaaattggaa 3900
agaaaaagct tcatggcctt ccactttccc aaacaacacc tacggtatct ctcaagtctt 3960
atggggttcc attggtttca ccactggtgc taccttgggt gctgctttcg ctgctgaaga 4020
aattgatcca aagaagagag ttatcttatt cattggtgac ggttctttgc aattgactgt 4080
tcaagaaatc tccaccatga tcagatgggg cttgaagcca tacttgttcg tcttgaacaa 4140
cgatggttac accattgaaa agttgattca cggtccaaag gctcaataca acgaaattca 4200
aggttgggac cacctatcct tgttgccaac tttcggtgct aaggactatg aaacccacag 4260
agtcgctacc accggtgaat gggacaagtt gacccaagac aagtctttca acgacaactc 4320
taagatcaga atgattgaaa tcatgttgcc agtcttcgat gctccacaaa acttggttga 4380
acaagctaag ttgactgctg ctaccaacgc taagcaataa 4420
<210> SEQ ID NO 143
<211> LENGTH: 3521
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PDC5 A-sadB-BUC cassette
<400> SEQUENCE: 143
aaggaaataa agcaaataac aataacacca ttattttaat tttttttcta ttactgtcgc 60
taacacctgt atggttgcaa ccaggtgaga atccttctga tgcatacttt atgcgtttat 120
gcgttttgcg ccccttggaa aaaaattgat tctcatcgta aatgcatact acatgcgttt 180
atgggaaaag cctccatatc caaaggtcgc gtttctttta gaaaaactaa tacgtaaacc 240
tgcattaagg taagattata tcagaaaatg tgttgcaaga aatgcattat gcaatttttt 300
gattatgaca atctctcgaa agaaatttca tatgatgaga cttgaataat gcagcggcgc 360
ttgctaaaag aacttgtata taagagctgc cattctcgat caatatactg tagtaagtcc 420
tttcctctct ttcttattac acttatttca cataatcaat ctcaaagaga acaacacaat 480
acaataacaa gaagaacaaa atgaaagctc tggtttatca cggtgaccac aagatctcgc 540
ttgaagacaa gcccaagccc acccttcaaa agcccacgga tgtagtagta cgggttttga 600
agaccacgat ctgcggcacg gatctcggca tctacaaagg caagaatcca gaggtcgccg 660
acgggcgcat cctgggccat gaaggggtag gcgtcatcga ggaagtgggc gagagtgtca 720
cgcagttcaa gaaaggcgac aaggtcctga tttcctgcgt cacttcttgc ggctcgtgcg 780
actactgcaa gaagcagctt tactcccatt gccgcgacgg cgggtggatc ctgggttaca 840
tgatcgatgg cgtgcaggcc gaatacgtcc gcatcccgca tgccgacaac agcctctaca 900
agatccccca gacaattgac gacgaaatcg ccgtcctgct gagcgacatc ctgcccaccg 960
gccacgaaat cggcgtccag tatgggaatg tccagccggg cgatgcggtg gctattgtcg 1020
gcgcgggccc cgtcggcatg tccgtactgt tgaccgccca gttctactcc ccctcgacca 1080
tcatcgtgat cgacatggac gagaatcgcc tccagctcgc caaggagctc ggggcaacgc 1140
acaccatcaa ctccggcacg gagaacgttg tcgaagccgt gcataggatt gcggcagagg 1200
gagtcgatgt tgcgatcgag gcggtgggca taccggcgac ttgggacatc tgccaggaga 1260
tcgtcaagcc cggcgcgcac atcgccaacg tcggcgtgca tggcgtcaag gttgacttcg 1320
agattcagaa gctctggatc aagaacctga cgatcaccac gggactggtg aacacgaaca 1380
cgacgcccat gctgatgaag gtcgcctcga ccgacaagct tccgttgaag aagatgatta 1440
cccatcgctt cgagctggcc gagatcgagc acgcctatca ggtattcctc aatggcgcca 1500
aggagaaggc gatgaagatc atcctctcga acgcaggcgc tgcctgagct aattaacata 1560
aaactcatga ttcaacgttt gtgtattttt ttacttttga aggttataga tgtttaggta 1620
aataattggc atagatatag ttttagtata ataaatttct gatttggttt aaaatatcaa 1680
ctattttttt tcacatatgt tcttgtaatt acttttctgt cctgtcttcc aggttaaaga 1740
ttagcttcta atattttagg tggtttatta tttaatttta tgctgattaa tttatttact 1800
tgtttaaacg gccggccaat gtggctgtgg tttcagggtc cataaagctt ttcaattcat 1860
cttttttttt tttgttcttt tttttgattc cggtttcttt gaaatttttt tgattcggta 1920
atctccgagc agaaggaaga acgaaggaag gagcacagac ttagattggt atatatacgc 1980
atatgtggtg ttgaagaaac atgaaattgc ccagtattct taacccaact gcacagaaca 2040
aaaacctgca ggaaacgaag ataaatcatg tcgaaagcta catataagga acgtgctgct 2100
actcatccta gtcctgttgc tgccaagcta tttaatatca tgcacgaaaa gcaaacaaac 2160
ttgtgtgctt cattggatgt tcgtaccacc aaggaattac tggagttagt tgaagcatta 2220
ggtcccaaaa tttgtttact aaaaacacat gtggatatct tgactgattt ttccatggag 2280
ggcacagtta agccgctaaa ggcattatcc gccaagtaca attttttact cttcgaagac 2340
agaaaatttg ctgacattgg taatacagtc aaattgcagt actctgcggg tgtatacaga 2400
atagcagaat gggcagacat tacgaatgca cacggtgtgg tgggcccagg tattgttagc 2460
ggtttgaagc aggcggcgga agaagtaaca aaggaaccta gaggcctttt gatgttagca 2520
gaattgtcat gcaagggctc cctagctact ggagaatata ctaagggtac tgttgacatt 2580
gcgaagagcg acaaagattt tgttatcggc tttattgctc aaagagacat gggtggaaga 2640
gatgaaggtt acgattggtt gattatgaca cccggtgtgg gtttagatga caagggagac 2700
gcattgggtc aacagtatag aaccgtggat gatgtggtct ctacaggatc tgacattatt 2760
attgttggaa gaggactatt tgcaaaggga agggatgcta aggtagaggg tgaacgttac 2820
agaaaagcag gctgggaagc atatttgaga agatgcggcc agcaaaacta aaaaactgta 2880
ttataagtaa atgcatgtat actaaactca caaattagag cttcaattta attatatcag 2940
ttattacccg ggaatctcgg tcgtaatgat ttctataatg acgaaaaaaa aaaaattgga 3000
aagaaaaagc ttcatggcct tctactttcc caacagatgt atacgctatc gtccaagtct 3060
tgtggggttc cattggtttc acagtcggcg ctctattggg tgctactatg gccgctgaag 3120
aacttgatcc aaagaagaga gttattttat tcattggtga cggttctcta caattgactg 3180
ttcaagaaat ctctaccatg attagatggg gtttgaagcc atacattttt gtcttgaata 3240
acaacggtta caccattgaa aaattgattc acggtcctca tgccgaatat aatgaaattc 3300
aaggttggga ccacttggcc ttattgccaa cttttggtgc tagaaactac gaaacccaca 3360
gagttgctac cactggtgaa tgggaaaagt tgactcaaga caaggacttc caagacaact 3420
ctaagattag aatgattgaa gttatgttgc cagtctttga tgctccacaa aacttggtta 3480
aacaagctca attgactgcc gctactaacg ctaaacaata a 3521
<210> SEQ ID NO 144
<211> LENGTH: 2686
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: pUC19
<400> SEQUENCE: 144
tcgcgcgttt cggtgatgac ggtgaaaacc tctgacacat gcagctcccg gagacggtca 60
cagcttgtct gtaagcggat gccgggagca gacaagcccg tcagggcgcg tcagcgggtg 120
ttggcgggtg tcggggctgg cttaactatg cggcatcaga gcagattgta ctgagagtgc 180
accatatgcg gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc atcaggcgcc 240
attcgccatt caggctgcgc aactgttggg aagggcgatc ggtgcgggcc tcttcgctat 300
tacgccagct ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta acgccagggt 360
tttcccagtc acgacgttgt aaaacgacgg ccagtgaatt cgagctcggt acccggggat 420
cctctagagt cgacctgcag gcatgcaagc ttggcgtaat catggtcata gctgtttcct 480
gtgtgaaatt gttatccgct cacaattcca cacaacatac gagccggaag cataaagtgt 540
aaagcctggg gtgcctaatg agtgagctaa ctcacattaa ttgcgttgcg ctcactgccc 600
gctttccagt cgggaaacct gtcgtgccag ctgcattaat gaatcggcca acgcgcgggg 660
agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc tcactgactc gctgcgctcg 720
gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca 780
gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac 840
cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc gcccccctga cgagcatcac 900
aaaaatcgac gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg 960
tttccccctg gaagctccct cgtgcgctct cctgttccga ccctgccgct taccggatac 1020
ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc atagctcacg ctgtaggtat 1080
ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag 1140
cccgaccgct gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac 1200
ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt 1260
gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaaggac agtatttggt 1320
atctgcgctc tgctgaagcc agttaccttc ggaaaaagag ttggtagctc ttgatccggc 1380
aaacaaacca ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga 1440
aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac 1500
gaaaactcac gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc 1560
cttttaaatt aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggtct 1620
gacagttacc aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca 1680
tccatagttg cctgactccc cgtcgtgtag ataactacga tacgggaggg cttaccatct 1740
ggccccagtg ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca 1800
ataaaccagc cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc 1860
atccagtcta ttaattgttg ccgggaagct agagtaagta gttcgccagt taatagtttg 1920
cgcaacgttg ttgccattgc tacaggcatc gtggtgtcac gctcgtcgtt tggtatggct 1980
tcattcagct ccggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa 2040
aaagcggtta gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta 2100
tcactcatgg ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc 2160
ttttctgtga ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg 2220
agttgctctt gcccggcgtc aatacgggat aataccgcgc cacatagcag aactttaaaa 2280
gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg 2340
agatccagtt cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc 2400
accagcgttt ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg 2460
gcgacacgga aatgttgaat actcatactc ttcctttttc aatattattg aagcatttat 2520
cagggttatt gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata 2580
ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg tctaagaaac cattattatc 2640
atgacattaa cctataaaaa taggcgtatc acgaggccct ttcgtc 2686
<210> SEQ ID NO 145
<211> LENGTH: 1685
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: gpd2::loxP-URA3-loxP cassette
<400> SEQUENCE: 145
gtattttggt agattcaatt ctctttccct ttccttttcc ttcgctcccc ttccttatca 60
gcattgcgga ttacgtattc taatgttcag ataacttcgt atagcataca ttatacgaag 120
ttatgcagat tgtactgaga gtgcaccata ccacagcttt tcaattcaat tcatcatttt 180
ttttttattc ttttttttga tttcggtttc tttgaaattt ttttgattcg gtaatctccg 240
aacagaagga agaacgaagg aaggagcaca gacttagatt ggtatatata cgcatatgta 300
gtgttgaaga aacatgaaat tgcccagtat tcttaaccca actgcacaga acaaaaacct 360
gcaggaaacg aagataaatc atgtcgaaag ctacatataa ggaacgtgct gctactcatc 420
ctagtcctgt tgctgccaag ctatttaata tcatgcacga aaagcaaaca aacttgtgtg 480
cttcattgga tgttcgtacc accaaggaat tactggagtt agttgaagca ttaggtccca 540
aaatttgttt actaaaaaca catgtggata tcttgactga tttttccatg gagggcacag 600
ttaagccgct aaaggcatta tccgccaagt acaatttttt actcttcgaa gacagaaaat 660
ttgctgacat tggtaataca gtcaaattgc agtactctgc gggtgtatac agaatagcag 720
aatgggcaga cattacgaat gcacacggtg tggtgggccc aggtattgtt agcggtttga 780
agcaggcggc agaagaagta acaaaggaac ctagaggcct tttgatgtta gcagaattgt 840
catgcaaggg ctccctatct actggagaat atactaaggg tactgttgac attgcgaaga 900
gcgacaaaga ttttgttatc ggctttattg ctcaaagaga catgggtgga agagatgaag 960
gttacgattg gttgattatg acacccggtg tgggtttaga tgacaaggga gacgcattgg 1020
gtcaacagta tagaaccgtg gatgatgtgg tctctacagg atctgacatt attattgttg 1080
gaagaggact atttgcaaag ggaagggatg ctaaggtaga gggtgaacgt tacagaaaag 1140
caggctggga agcatatttg agaagatgcg gccagcaaaa ctaaaaaact gtattataag 1200
taaatgcatg tatactaaac tcacaaatta gagcttcaat ttaattatat cagttattac 1260
cctatgcggt gtgaaatacc gcacagatgc gtaaggagaa aataccgcat caggaaattg 1320
taaacgttaa tattttgtta aaattcgcgt taaatttttg ttaaatcagc tcatttttta 1380
accaataggc cgaaatcggc aaaatccctt ataaatcaaa agaatagacc gagatagggt 1440
tgagtgttgt tccagtttgg aacaagagtc cactattaaa gaacgtggac tccaacgtca 1500
aagggcgaaa aaccgtctat cagggcgatg gcccactacg tgaaccatca ccctaatcaa 1560
gataacttcg tatagcatac attatacgaa gttatccagt gatgatacaa cgagttagcc 1620
aaggtgacac tctccccccc cctccccctc tgatctttcc tgttgcctct ttttccccca 1680
accaa 1685
User Contributions:
Comment about this patent or add new information about this topic: