Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: HANDSET CRADLE

Inventors:  Patrick M. Sewall (Boise, ID, US)
IPC8 Class: AG06F15173FI
USPC Class: 709241
Class name: Electrical computers and digital processing systems: multicomputer data transferring computer-to-computer data routing least weight routing
Publication date: 2011-01-27
Patent application number: 20110022727



t cradle includes a base component and a handset component configured to couple with the base component. The handset component provides an interface with a particular type of handset selected from a plurality of handset types. This interface enables an exchange of data between the base component and a handset interfacing with the handset component.

Claims:

1-43. (canceled)

44. A device capable of connecting an external network with one or more local network devices comprising:a first interface configured to exchange data with one or more handheld electronic device types that are capable of providing a wireless connection to the external network;a router connected to the first interface and configured to route each particular outbound network communication, received from the one or more local network devices, to the external network as targeted by that particular outbound network communication and to route each particular inbound network communication, received from the external network, to the one or more local network devices as targeted by that particular inbound network communication; anda second interface configured to exchange local network communications between the router and the one or more local network devices.

45. The device of claim 44, wherein the first interface is configured to supply power to one or more handheld electronic device types.

46. The device of claim 44, wherein at least one of the one or more local network devices interfaces wirelessly with the second interface.

47. The device of claim 44, wherein the first interface is configured to exchange data with at least one cellular enabled handheld electronic device type that is capable of providing a cellular connection to an external network.

48. The device of claim 44, wherein the first interface is configured to exchange data with at least one cellular enabled handheld electronic device type that is capable of providing a cellular connection to an internet service provider.

49. The device of claim 44, wherein the first interface is configured to exchange data with at least one cellular telephone that is capable of providing a cellular connection to an internet service provider.

50. The device of claim 44, further comprising a handset module.

51. The device of claim 50, wherein the handset module is configured to initiate a synchronization of data between a local network device and one or more handheld electronic device types.

52. A system for routing network communications comprising:a handheld electronic device capable of providing a wireless connection to an external network;a base component including a local network interface and a router, the base component being configured to exchange data with the handheld electronic device,the local network interface being configured to supply an interface for inbound and outbound network communications between the router and one or more local network devices,the router being configured to route each particular outbound network communication, received from the one or more local network devices, to an external network as targeted by that particular outbound network communication and to route each particular inbound network communication, received from an external network, to the one or more local network devices as targeted by that particular inbound network communication.

53. The system of claim 52, further comprising a limiter.

54. The system of claim 53, wherein the limiter comprises a bandwidth limiter.

55. The system of claim 53, wherein the limiter comprises a session limiter.

56. The system of claim 55, the session limiter including a concurrent sessions limiter.

57. The system of claim 52, wherein the handheld electronic device comprises a cellular telephone.

58. The system of claim 52, wherein the external network comprises an internet service provider.

59. A system for routing network communications comprising:a handset component including a handset interface and a handset driver,the handset interface configured to provide an interface with one or more handset types that are configured with a wireless data connection to an external network, andthe handset driver operable to communicate with the one or more handset types;a base component connected to the handset component, the base component including a local network interface, and a router,the local network interface being operable to supply an interface for inbound and outbound network communications between the router and one or more local network devices,the router being operable to route each particular outbound network communication received from a specified one of the one or more local network devices to the external network as targeted by that particular outbound network communication and to route each particular inbound network communication from an external network to a specified one of the one or more local network devices as targeted by that particular inbound network communication.

60. The system of claim 59, the handset interface further comprising a physical interface shaped to support a particular type of handset while mating with the physical connector of the particular type of handset.

61. The system of claim 59, wherein the handset driver is operable to translate electronic data between a first format for the base component and a second format for the one or more handset types.

62. The system of claim 59, wherein the handset component is a first handset component that is configured to connect to a first particular handset type, and wherein the base component is configured to be selectively coupled with the first handset component and with at least a second handset component that is configured to connect to at least a second particular handset type.

63. The system of claim 59, wherein the base component includes a connector operable to send, via the handset component, a signal instructing one or more handset types to establish a connection with an external network.

Description:

BACKGROUND

[0001]Current technology allows a handset such as cellular telephone to interact with a laptop or other computing device. This typically requires physically connecting the handset to the computing device as well as installing and configuring specialized software. Such interactions can allow a computing device to utilize a handset to access the Internet.

[0002]Different handset types can have different physical interface requirement for connecting to a computing device. Those handset types that do share the same physical interface requirements can often require different communication protocols for controlling the handset. The disparate physical interfaces and communication protocols make it difficult for a third party manufacturer to efficiently provide a product enabling the interaction between a computing device and the various types of available handsets.

DESCRIPTION OF THE DRAWINGS

[0003]FIG. 1 illustrates an exemplary environment in which embodiments of the present invention can be implemented.

[0004]FIGS. 2A and 2B schematically illustrate a handset cradle according to an embodiment of the present invention.

[0005]FIG. 3 is a block diagram showing physical and logical components of a handset cradle according to an embodiment of the present invention.

[0006]FIGS. 4-6 are exemplary flow diagram illustrating steps taken in performance of various embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0007]INTRODUCTION: Current technology allows a handset such as cellular telephone to interact with a laptop or other computing device. For example, a handset such as a cellular telephone can be used to connect a computing device to the Internet. Various embodiments described below utilize a handset cradle that provides an interface between one or more computing devices and handsets of various types.

[0008]As is described below, the handset cradle is modular incorporating a base component and a handset component. The base component provides the common functionality regardless of the type of handset. Different handset components are specialized to the physical interface and communication protocol requirements of different types of handsets. In short a handset component for a particular handset type provides an interface between a handset of that type and the base component. To provide a handset cradle for a given handset type, a handset component designed for that handset type is selected and coupled to a base component. To provide a handset cradle for another handset type, a handset component designed for that other handset type is selected and coupled to a base component.

[0009]ENVIRONMENT: FIG. 1 illustrates exemplary environment 10 in which various embodiments of the present invention may be implemented. Environment 10 includes local network 12 and 12', Internet service provider 14 and Internet 16. Local network 12 includes network devices 18 handset cradle 20, and handset 22. Similarly, local network 12' includes network devices 18' handset cradle 20', and handset 22'. Network devices 18 and 18' represent generally any devices capable of network communications. Examples include printers and computing devices such as laptop and desktop computer as well as PDAs (Personal Digital Assistants).

[0010]Handsets 22 and 22' represent generally any handheld electronic device. As shown handsets 22 and 22' are cellular telephones capable of providing a connection to an external network--in this case--Internet service provider 14 and Internet 16. Alternatively, for example, handsets 22 and 22' could be cellular enabled PDAs. Handset cradles 20 and 20', described in more detail below, are responsible for providing an interface between computing devices 18 and 18' and handsets 22 and 22' respectively. Handset cradles 20 and 20' allow, for example local networks 12 and 12' to access Internet 16 via handsets 22 and 22'.

[0011]CRADLE: FIGS. 2A and 2B illustrate the modular construction of an exemplary handset cradle 20. Handset cradle 20 includes base component 28 and handset component 30. As is shown, handset component 30 couples to base component 28 and is specifically configured to interface with handset 22. In this manner, handset component 30 allows base component 28 and handset 22 to interact. A different handset component (not shown) specifically configured to interface with a different type of handset (not shown) could instead be coupled to base component 28. This would allow base component 28 and that different type of handset to interact.

[0012]FIG. 3 is a block diagram illustrating physical and logical components of handset cradle 20. As described above, handset cradle 20 includes base component 28 and handset component 30. Handset component 30 includes handset interface 32, base component interface 34, and handset driver 36. Handset interface 32 represents an interface through which a signal can be sent to a particular type of handset selected from a variety of handset types. For example, handset interface 32 could be a physical interface shaped to support the particular handset while mating with that handset's physical connector--a male or female multi-pin connector for example. In this manner signals for controlling the operation of the particular type of handset can be sent through handset interface 32 and accepted by the handset via its own physical connector. In addition to controlling the functional aspects of the handset, a given signal may also include an electrical current for powering the handset or recharging the handset's battery.

[0013]Base component interface 34 represents generally any interface capable of being utilized to couple handset component 30 to base component 28. For example, base component interface 34 may be a male or female multi-pin connector configured to mate with a matching connector supplied by base component 28. Handset driver 36 represents generally any combination of hardware and/or program instructions capable of translating signals received through base component interface 34 into a format compatible with a specific type of handset selected from a variety of handset types--the particular type of handset being the same type of handset with which handset interface 32 is compatible. Handset driver 36 then can utilize handset interface 32 to send translated signals to a handset interfacing with handset component 30. Handset driver 36 is also responsible for translating signals received from a handset into a format compatible with based component 28.

[0014]In the example shown, base component 28 includes handset component interface 42, network interface 44, user interface 46, and power supply 48. Handset component interface 42 represents generally any interface capable of being utilized to couple base component 28 to handset component 30. For example, handset component interface 42 may be a male or female multi-pin connector configured to mate with a matching base component interface 34.

[0015]Network interface 44 represent generally any hardware and/or program instructions capable of supplying an interface between based component 28 and one or more network devices (not shown). For example, network interface 28 may include a transceiver operable to exchange network communications utilizing a wireless protocol such as ultrawideband (UWB), Bluetooth, or 802.11. Alternatively, network interface 44 may be a hub providing RJ45 (Registered Jack) connectors for connecting to one or more network devices.

[0016]User interface 46 represents generally any hardware and/or program instructions enabling a user to interact directly with base component 28. For example, user interface 46 may include one or more buttons that when pressed send a corresponding signal. Power supply 48 represents generally any hardware capable of supplying power to a handset interfacing with handset component 30.

[0017]Base component 28 is also shown to include connector 50, router 52, and limiter 54. Connector 50 represents hardware and/or program instructions for sending a signal to handset component 30 for a handset interfacing with handset component 30 to connect with an external network to which the handset can transmit outbound network communications. For example, where a handset is a cellular phone, connector 50 may send a signal to that when translated by handset component 30 causes a handset to dial a particular number through which an external network can be accessed.

[0018]Router 52 represents hardware and/or program instructions for routing outbound network communication received through network interface 44 via handset component 30 to be transmitted by a handset to an external network. Router 52 is also responsible for routing inbound network communications received from the external network and directed via network interface 44 to a specified network device. Outbound and inbound network communications, for example can be an IP (internet Protocol) packets directed to a target on an external network or to a particular network device on the local area network.

[0019]Limiter 54, discussed in more detail below, represents hardware and/or program instructions capable of limiting inbound and outbound network communications. Where a handset in the form of a cellular telephone is used to establish a connection to an external network, outbound and inbound network communications are transmitted wirelessly and consume bandwidth allotted to a particular cellular service provider. As will be described, limiter 54 functions to help reduce the risk of over-utilizing the limited bandwidth available to all cellular telephones.

[0020]In the example of FIG. 3, base component 56 is also shown to include handset module 56, web server 58, and configuration data 59. Handset module 56 represents hardware and/or programming capable of initiating and/or performing an action taken with regard to a handset interfacing with handset component 30. Imagine a handset capable of taking and storing digital images. Handset module 56 might then be configured to interact with that handset via handset component 30 and retrieve one or more digital images and then send those images through network interface 44 to a network device such as a color printer for production. This process may be initiated by a user pressing a button supplied by user interface 46.

[0021]Imagine a handset capable of storing personal data such as appointments and electronic mail messages. Handset module 56 might then be configured to interact with that handset via handset component 30 to access the personal data and then to synchronize or initiate the synchronization of that data with personal data stored on a network device. This process may by initiated be a handset module 56 upon detecting the handset being connected to handset component 30.

[0022]Web server 58 represents generally any hardware and or program instructions capable of serving an interface such as a web page that when requested and displayed by a network device allows a user to provide or otherwise select configuration settings related to the operation of handset cradle 20. Configuration data 59 represents generally any memory for storing configuration settings so that they can be accessed by connector 50, router 52, limiter 54, and handset module 56 parameter settings.

[0023]Configuration settings can include a telephone number to call to establishing a connection with an external network. Configuration settings can include data identifying the maximum number of concurrent outbound network device sessions allowed. Configuration settings can also include data assigning a particular button provided user interface 48 to a particular function of handset module 56. Using the example above a configuration setting may indicate that when a user presses a user interface button, handset module 56 will retrieve a digital image or other file from a handset and send that file to a network device such as a printer.

[0024]In the example of FIG. 3, limiter 54 includes session limiter 60 and bandwidth limiter 61. Session limiter 60 represents hardware and/or program instructions for limiting the routing of outbound network communications to those outbound network communications originating from one or more specified network devices. As an example, an outbound network communication sent from a particular network device may be received by base component 28 at a time when a handset interfacing to handset component 30 has not established a connection to an external network. In such a case, the outbound communication is held and connector 50 sends a signal resulting in the handset establishing a connection and the outbound network communication is routed. The outbound network communication will in some manner identify the network device from which it originated. The identification may, for example come in the form of an IP (Internet Protocol) address or MAC (Media Access Control) address. As long as a connection to the external network is maintained, Session limiter 60 will only allow outbound communications identifying that network device to be routed.

[0025]The period for which session limiter 60 routs of outbound communications from a particular network device is referred to as an outbound network device session. In the example above, session limiter 60 only allowed one outbound network device session at a time--that session being for the network device whose outbound network communication caused a connection to be established with an external network. In an alternative embodiment, session limiter 60 may allow two or more concurrent outbound network device sessions up to a maximum number. In this case session limiter 60 would prevent the routing of an outbound communication from a particular network device if routing the outbound communication would cause the number of concurrent outbound network device sessions to exceed the maximum number allowed.

[0026]For example, data identifying the maximum number allowed may be received from a cellular service provider. This data may be received once a cellular phone handset initializes communication with a cellular service provider even before a connection is made to the external network. The maximum number allowed may be based on a subscription plan corresponding to the cellular phone handset, Handset component 30 would pass that data on to base component 28--specifically session limiter 60. Until the connection to the external network is dropped, limiter 54 could then keep a running count of the number of concurrent outbound network device sessions and prevent that number from exceeding the maximum number allowed.

[0027]For example, on a first come first serve basis, session limiter 60 might allow outbound network device sessions to be established for a given number of network devices--that number being the maximum number of concurrent network device sessions allowed. The first outbound network device session would be established for the network device that caused the connection to be made to the external network. Another outbound network device session is established for each additional network device from which an outbound network communication is received. Session limiter 60 allows this to continue until the routing of the next outbound network communication would cause the number of concurrent sessions to exceed the maximum number allowed.

[0028]Bandwidth limiter 61 represents hardware and/or program instructions for selectively restricting outbound and inbound network communications based on one or more policies. Based on those policies, the restrictions may selectively limit or even cut off the available bandwidth for certain types or all types of inbound and outbound network communications.

[0029]Certain policies may be constant while other policies may be based on observed user behaviors. For example, a constant policy may specify zero bandwidth availability for outbound and inbound network communications transferring specific file types such as ring tones, wallpaper, and larger files such copies of movies and other video files.

[0030]As noted above where a handset in the form of a cellular telephone is used to establish a connection to an external network, outbound and inbound network communications are transmitted wirelessly and consume the limited bandwidth allotted to a particular cellular service provider. Users engaging in file sharing, computers infected with viruses, and denial of service attacks all pose risks that the allotted bandwidth will be over-utilized.

[0031]To deter file sharing, a constant policy may specify a time duration for which inbound and outbound communications can consume a specified bandwidth. Once that duration expires, the policy may specify a second duration for which bandwidth will be limited. If the second duration is allowed to expire, the available bandwidth may be limited further. This process can repeat until the available bandwidth is clamped down to zero for yet another specified duration. Once this duration expires bandwidth limits may be removed or stepped back up. A running count may be--kept of the number of time the available bandwidth is clamped down to zero. Once that running count reaches a specified number, all outbound and/or inbound communications may be blocked until a reset signal is given by a cellular service provider.

[0032]Policies based on observed user behavior may also deter file sharing while helping limit the effects of virus and denial of service attacks. For example, bandwidth limiter 61 may identify that on average, a user sends a specified number of electronic mail messages in a day or other specified duration. When that specified number is exceeded by a threshold amount, bandwidth limiter 61 may block outbound electronic mail messages for the remainder of the duration. This can help to limit the effect of viruses that hijack a network device and use that device to spread by sending copies of itself vial electronic mail messages.

[0033]Bandwidth limiter 61 may identify on average that a user receives a specified number of electronic mail messages a day or other specified duration. When that specified number is exceeded by a threshold amount, bandwidth limiter 61 may block inbound electronic mail messages for the remainder of the duration. This can help to limit the effect of a denial of service attack.

[0034]When transferring larger files such as movies, block sizes for inbound and outbound communications are relatively large. Bandwidth limiter 61 may identify average block sizes for outbound or inbound communications. When, for a specified duration, the block sizes exceed the average by a threshold level, inbound or outbound communication may be blocked or, as described above, clamped down.

[0035]OPERATION: The operation of embodiments of the present invention will now be described with reference to FIGS. 4-6. FIG. 4 is an exemplary flow diagram that helps illustrate the interaction between a base component and a handset component of a handset cradle. Initially a base component receives a signal indicative of an action to be performed with respect to a handset interfacing with the handset component (step 62). In the examples above, this signal can come in the form of an outbound network communication receive from a network device. The signal can come from a user interacting with a user interface. The signal can also result from the handset being connected with the handset component.

[0036]The base component then instructs the performance of the action (step 64). The handset component, in response to the instructions from the base component, causes the performance of the action (step 66). Using the examples again from above, step 64 can involve routing an outbound network communication via the handset component to be transmitted by the handset. Step 66 then involves the handset component forwarding the outbound network communication in the proper format to the handset for transmission. Step 64 can involve sending a signal to the handset component for use in causing the handset to perform a task such as returning a digital image to be produced or personal data to be synchronized. Step 66 then involves the handset component forwarding the signal in the proper format to be acted upon by the handset.

[0037]FIG. 5 is an exemplary flow diagram that helps illustrate the interaction between a base component and a handset component of a handset cradle to route an outbound network communication. Initially, the base component receives an outbound network communication (step 68). It is determined if a handset interfacing with the handset component has established a connection to an external network (step 70). If a connection has already been established the process skips ahead to step 76. Otherwise, the base component instructs that a connection be established (step 72). The handset component then causes the handset to establish a connection with an external network (step 74). The base component instructs that the outbound network communication be routed (step 76). The handset component causes the outbound network communication to be routed through the handset to the external network (step 78).

[0038]FIG. 6 is an exemplary flow diagram that helps illustrate the interaction between a base component and a handset component of a handset cradle to limit the routing of an outbound network communication. Initially, the base component receives an outbound network communication (step 80). The source of the outbound network communication is identified (step 82). Where for example, the source of the outbound network communication is a particular network device, identifying the device may include identifying an address such as an IP or MAC address for that device.

[0039]It is determined if a handset interfacing with the handset component has established a connection to an external network (step 84). If a connection has already been established the process skips ahead to step 88. Otherwise, the base component instructs that a connection be established and the handset component then causes the handset to establish a connection with an external network (step 86). It is then determined if there is an available network device session (step 88). Step 88 can, for example, involve determining if routing the outbound communication will cause the number of concurrent outbound network device session to exceed a maximum number allowed.

[0040]Where an outbound network device session has not already been established for the network device identified in step 82, routing the outbound communication will require a new session to be established. Where an outbound network device session has already been established for the network device identified in step 82, routing the outbound communication will not require a new session to be established. Establishing an outbound network device session may involve setting a flag or other indicator noting that an outbound communication received from a particular network device has been routed. That flag or indicator can be reset when once a connection to the external network is dropped.

[0041]Where in step 88 it is determined that there is an available outbound network device session, the outbound communication is routed (step 90). Where in step 88 it is determined that there is not an available outbound network device session, the outbound communication is blocked (step 92).

[0042]CONCLUSION: The schematic diagrams of FIG. 1 illustrates an exemplary environment in which embodiments of the present invention may be implemented. Implementation, however, is not limited to this environment. The diagrams of FIGS. 2 and 3 show the architecture, functionality, and operation of various embodiments of the present invention. A number of the blocks are defined as programs. Each of those blocks may represent in whole or in part a module, segment, or portion of code that comprises one or more executable instructions to implement the specified logical function(s). Each block may represent a circuit or a number of interconnected circuits to implement the specified logical function(s).

[0043]Also, the present invention can be embodied in any computer-readable media for use by or in connection with an instruction execution system such as a computer/processor based system or an ASIC (Application Specific Integrated Circuit) or other system that can fetch or obtain the logic from computer-readable media and execute the instructions contained therein. "Computer-readable media" can be any media that can contain, store, or maintain programs and data for use by or in connection with the instruction execution system. Computer readable media can comprise any one of many physical media such as, for example, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor media. More specific examples of suitable computer-readable media include, but are not limited to, a portable magnetic computer diskette such as floppy diskettes or hard drives, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory, or a portable compact disc.

[0044]Although the flow diagram of FIGS. 4-6 show a specific orders of execution, the orders of execution may differ from that which is depicted. For example, the order of execution of two or more blocks may be scrambled relative to the order shown. Also, two or more blocks shown in succession may be executed concurrently or with partial concurrence. All such variations are within the scope of the present invention.

[0045]The present invention has been shown and described with reference to the foregoing exemplary embodiments. It is to be understood, however, that other forms, details and embodiments may be made without departing from the spirit and scope of the invention that is defined in the following claims.



Patent applications by Patrick M. Sewall, Boise, ID US

Patent applications in class Least weight routing

Patent applications in all subclasses Least weight routing


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
HANDSET CRADLE diagram and imageHANDSET CRADLE diagram and image
HANDSET CRADLE diagram and imageHANDSET CRADLE diagram and image
HANDSET CRADLE diagram and imageHANDSET CRADLE diagram and image
Similar patent applications:
DateTitle
2010-05-06Method and server cluster for map reducing flow services and large documents
2010-05-13Method and an apparatus for streaming data containing trick play streaming modes
2010-05-20Method for assembling a multimeda asset and subsequent provisioning of said multimedia asset to a client device, a related system, a related multimedia asset assembly device and a related client device
New patent applications in this class:
DateTitle
2016-06-23System and method for efficient name-based content routing using link-state information in information-centric networks
2016-03-31Distributed load balancing systems
2016-03-31Inline load balancing
2016-01-28Dragonfly plus: communication over bipartite node groups connected by a mesh network
2015-11-05Overlay network
Top Inventors for class "Electrical computers and digital processing systems: multicomputer data transferring"
RankInventor's name
1International Business Machines Corporation
2Jeyhan Karaoguz
3International Business Machines Corporation
4Christopher Newton
5David R. Richardson
Website © 2025 Advameg, Inc.