Patent application title: COMPOSITIONS AND METHODS FOR THE IMPROVEMENT OF PLANTS
Inventors:
Sathish Puthigae (Aukland, NZ)
Jonathan Robert Philips (Brussels, BE)
Claudia Jeannette Smith-Espinoza (Brussels, BE)
Catherine Jane Bryant (Aukland, NZ)
Kleran Michael Elborough (Franklin, NZ)
Colin Robert South (Lexington, MA, US)
Fredy Altpeter (Gainesville, FL, US)
IPC8 Class: AA01H500FI
USPC Class:
800289
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part the polynucleotide confers resistance to heat or cold (e.g., chilling, etc.)
Publication date: 2010-01-07
Patent application number: 20100005546
Claims:
1. An isolated polynucleotide comprising:a) a sequence encoding a
polypeptide with at least 70% identity to any one of the amino acid
sequences of SEQ ID NO:3, 9 and 12, wherein the polypeptide modulates in
a plant, tolerance to at least one environmental stress selected from
drought, cold, freezing, heat and salinity;b) the complement of the
sequence of a).
2. The isolated polynucleotide of claim 1, wherein the polypeptide comprises the amino acid sequence of any one of SEQ ID NO:248, 250 and 251.
3. The isolated polynucleotide of claim 1, wherein the polypeptide has the amino acid sequence of SEQ ID NO:3.
4. The isolated polynucleotide of claim 1, wherein the polypeptide has the amino acid sequence of SEQ ID NO:9.
5. The isolated polynucleotide of claim 1, wherein the polypeptide has the amino acid sequence of SEQ ID NO:12.
6. The isolated polynucleotide of claim 1, wherein the polypeptide-encoding sequence in a) has at least 70% identity to the sequence of any one of SEQ ID NO:1, 2, 7, 8, 10 and 11.
7. The isolated polynucleotide of claim 1, wherein the polypeptide-encoding sequence in a) has at least 70% identity to the coding sequence of any one of SEQ ID NO:1, 2, 7, 8, 10 and 11.
8. The isolated polynucleotide of claim 1, wherein the polypeptide-encoding sequence in a) has the sequence of any one of SEQ ID NO:1, 2, 7, 8, 10 and 11.
9. The isolated polynucleotide of claim 1, wherein the polypeptide-encoding sequence in a) has the coding sequence of any one of SEQ ID NO:1, 2, 7, 8, 10 and 11.
10. An isolated polynucleotide comprising:a) a sequence with at least 70% identity to any one of the nucleotide sequences of SEQ ID NO:1, 2, 7, 8, 10 and 11, wherein the sequence encodes a polypeptide that modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity; orb) the complement of the sequence of a);
11. A genetic construct comprising a polynucleotide of claim 1.
12. A host cell comprising a genetic construct of claim 11.
13. A host cell genetically modified to comprise a polynucleotide of claim 1.
14. A plant cell or plant comprising the genetic construct of claim 11.
15. A plant cell or plant genetically modified to comprise a polynucleotide of claim 1.
16. A plant part, propagule, progeny or seed of the plant of claim 15.
17. An isolated polypeptide comprising at least 5 contiguous amino acids of a protein with at least 70% identity to an amino acid sequence selected from any one of SEQ ID NO:3, 6, 9 and 12, wherein the isolated polypeptide modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
18. The isolated polypeptide of claim 17 comprising a sequence selected from any one of SEQ ID NO:3, 6, 9 and 12.
19. An antibody raised against a polypeptide of claim 17.
20. A method of producing a plant cell or plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising the step of transforming a plant cell or plant with:a) at least one polynucleotide of claim 1;b) at least one polynucleotide comprising a fragment, of at least 15 nucleotides in length, of the polynucleotide of a), orc) at least one polynucleotide comprising a complement, of at least 15 nucleotides in length, of the polynucleotide of a)d) at least one polynucleotide, of at least 15 nucleotides in length, capable of hybridising under stringent conditions to the polynucleotide of a), b) or c).
21. A plant produced by the method of claim 20.
22. A plant part, propagule, progeny or seed of the plant of claim 21.
23. A method for selecting a plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polynucleotide of claim 1, or altered expression of a polypeptide encoded by a polynucleotide of claim 1.
24. A population or group of plants selected by the method of claim 23.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001]This application is a divisional of U.S. application Ser. No. 11/875,656, filed Oct. 19, 2007, which claims priority under 35 U.S.C. ยง119(e) to U.S. Provisional Application No. 60/853,194, filed Oct. 20, 2006, which is herein incorporated by reference in its entirety.
REFERENCE TO SEQUENCE LISTING, TABLE, OR COMPUTER PROGRAM LISTING
[0002]The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled DAIRY94--005DV1_Seq_List.txt, created Jun. 25, 2009, which is 440 Kb in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION
[0003]1. Field of the Invention
[0004]The present invention relates to compositions and methods for producing plants with improved stress tolerance.
[0005]2. Description of the Related Art
[0006]Environmental abiotic stresses, including drought stress, cold stress, freezing stress, heat stress and salinity stress are major factors limiting plant growth and productivity. Crop losses and reduction in yield of major crops including maize, wheat and rice caused by such stresses represent significant economic issues and also lead to food shortages in several underdeveloped countries.
[0007]The development of stress tolerant plants has the potential to reduce or solve at least some of these problems. The use of traditional plant breeding strategies to produce new lines of plants that exhibit tolerance to these types of stresses has been slow. Lack of sufficient germplasm resources and incompatibility between distantly related plant species, present significant problems in conventional breeding. Further, the cellular processes leading to tolerance to such stresses are complex and involve multiple mechanisms of cellular adaptation and numerous metabolic pathways. This limits the success of both traditional breeding and that of genetic engineering approaches to development of stress tolerant plants. It would be beneficial to identify genes and proteins involved in controlling the complex processes leading to stress tolerance.
[0008]Regulators of gene expression, such as transcription factors, involved in controlling stress tolerance may be particularly useful in genetic engineering of plants, as a single gene may control a whole cascade of genes leading to the tolerance phenotype. Furthermore, there is sometimes commonality in many aspects of the different types of stress tolerant responses referred above. For example, genes that increase tolerance to cold or salt may also improve drought stress tolerance. This has been demonstrated in the case of the transcription factor AtCBF/DREB 1 (Kasuga et al., 1999 Nature Biotech 17: 287-91) and the vacuolar pyrophosphatase, AVP1 (Gaxiola et al., 2001 PNAS 98:11444-19).
[0009]Whilst some potentially useful genes have been identified, the identification and cloning of plant genes that confer tolerance to stress remains fragmented and incomplete. Although it is assumed that stress induced proteins may have a role in stress tolerance, evidence is still lacking and the function of many such stress responsive genes is unknown.
[0010]The hot and dry weather conditions in New Zealand and other countries in the summer period can have significant effect upon the yield of ryegrass. This is invariably during the dairy milking season and therefore has real effects on cost of dairy production through either reduced milk yield or the use of supplementary feeds and/or irrigation systems.
[0011]It would be beneficial to identify genes, which have the capacity to confer stress tolerance in stress susceptible plant species. The development of stress tolerant crops will provide many advantages such as increasing yield and producing plants that may be cultivated in previously unsuitable environmental conditions. Thus, there exists a need for compositions and methods for producing plants with improved stress tolerance relative to their wild-type counterparts.
[0012]It is an object of the invention to provide improved compositions and methods for developing plant varieties with improved tolerance of at least one of the following stresses; drought, cold, freezing, heat and salinity, or at least to provide the public with a useful choice.
SUMMARY OF THE INVENTION
[0013]In a first aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:1 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0014]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:2 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0015]Preferably the environmental stress is drought stress.
[0016]Preferably the variants of SEQ ID NO:1 and 2 encode polypeptides comprising the amino acid sequence:
TABLE-US-00001 (SEQ ID NO: 248) RKRKX1X2X3RGX4RX5RPWGKWAAEIRDPRX6GX7RX.- sub.8WLGTX9X10 X11X12EX13AAX14AYX15X16X17X18RRIRX- 19X20KAX21VNFP wherein X1 = N, S or T, X2 = Q or R, X3 = Y or F, X4 = I or V, X5 = Q or R, X6 = K, E or Q, X7 = V, S, I or A, X8 = V, E or I, X9 = F or Y, X10 = N, S, D, K or G, X11 = T or S, X12 = A or P, X13 = E or K, X14 = R, M or K, X15 = D, Xor G, X16 = A, V, S, I or T, X17 = E or A, X18 = A or T, X19 = or X, X20 = K, S ,T or N and X21 = K or B.
[0017]Exemplary polynucleotide variants of SEQ ID NO:1 and SEQ ID NO:2 are disclosed herein and identified as SEQ ID NOs:13-25 of the sequence listing.
[0018]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:1.
[0019]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:1.
[0020]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:2.
[0021]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:2.
[0022]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:1. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0023]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:2. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0024]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:4 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0025]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:5 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0026]Preferably the environmental stress is drought stress.
[0027]Preferably the variants of SEQ ID NO:4 and SEQ ID NO:5 encode polypeptides comprising the amino acid sequence:
TABLE-US-00002 (SEQ ID NO: 249) WRX1IX2RX3X4VX5X6XX7TPTQVASHAQKX.s- ub.8X9X10R wherein X1 = G or N, X2 = A or S, X3 = H, K, N, S or T, X4 = F or Y, X5 = A, F, I, K, M, N, P, T or V, X6 = S or T, X7 = K or R, X8 = F or Y, X9 = F or Y and X10 = 2 I, L, M or S.
[0028]Exemplary polynucleotide variants of SEQ ID NO:4 and SEQ ID NO:5 are disclosed herein and identified as SEQ ID NOs:39-66 of the sequence listing.
[0029]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:4.
[0030]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:4.
[0031]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:5.
[0032]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:5.
[0033]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:4. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0034]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:5. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0035]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:7 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0036]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:8 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0037]Preferably the environmental stress is drought stress.
[0038]Preferably the variants of SEQ ID NO:7 and SEQ ID NO:8 encode polypeptides comprising the amino acid sequence:
TABLE-US-00003 (SEQ ID NO: 250) IPX1X2X3X4SWRKYGQKPIKGSX5X6PRGYYKCSX7X.- sub.8X9X10X11X12 X13X14X15HVERX16X17X18X19X20X21MLX22VTYEX23X24HX25 H wherein X1 = A, G, P, Q or S, X2 = D or G, X3 = D or E, X4 = F or Y, X5 = K or P, X6 = F, H or Y, X7 = S or T, X8 = I, L, M or V, X9 = R or T, X10 = G or S, X1 = C or Y, X12 = L or P, X13 = A or L, X14 = F, K or R, X15 = K or N, X16 = A, C, D or S, X17 = I, L, M, P or V, X18 = A, D, B or S, X19 = D or E, X20 = A, P, S or T, X21 = A, S or T, X22 = I, M or V, X23 = D or G, X24 = D or E, and X15 = C, H, N or R.
[0039]Exemplary polynucleotide variants of SEQ ID NO:7 and SEQ ID NO:8 are disclosed herein and identified as SEQ ID NOs:95-126 of the sequence listing.
[0040]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:7.
[0041]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:7.
[0042]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:8.
[0043]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:8.
[0044]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:7. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0045]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:8. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0046]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:10 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0047]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:11 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0048]Preferably the environmental stress is drought stress.
[0049]Preferably the variants of SEQ ID NO:10 and SEQ ID NO:11 encode polypeptides comprising the amino acid sequence:
TABLE-US-00004 (SEQ ID NO: 251) X1X2X3X4AIX5X6X7X8X9GVX1- 0X11X12X13X14X15X16ZEFX17I X18X19X20LTX21X22X23X24X25PG2- 6X27YA where in X1 = D or E, X2 = I, L or V, X3 = F, I, L, M or V, X4 = C, F, I or L, X5 = F, I or L, X6 = I or L, X7 = H or P, X8 = P or Q, X9 = L or V, X10 = F or C, X11 = F or L, X12 = K or R, X13 = F, K, R, V or Y, X14 = A, G or K, X15 = C, I or L, X16 = A, C, G, K or Q, X17 = C, F, L, M or W, X18 = A, C, D or S, X19 = L or V, X20 = I, L, P or V, X21 = C, F, I, L or V, X22 = F or L, X23 = A or G, X24 = F, W or Y, X25 = F, I, L or V, X26 = I, L or V, X27 = I, L or V and wherein Z is a sequence of 1-27 amino acids.
[0050]Exemplary polynucleotide variants of SEQ ID NO:10 and SEQ ID NO:11 are disclosed herein and identified as SEQ ID NOs:159-200 of the sequence listing.
[0051]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:10.
[0052]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:10.
[0053]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:11.
[0054]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:11.
[0055]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:10. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0056]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO:11. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0057]The polynucleotides of the invention may be derived from any plant species.
[0058]In one embodiment the polynucleotide is derived from a gymnosperm species.
[0059]In a further embodiment the polynucleotide is derived from an angiosperm species.
[0060]In a preferred embodiment the polynucleotide of the invention is derived from a forage plant species. Preferably the species is selected from those of the following genera: Lolium, Festuca, Dactylis, Bromus, Trifolium, Medicago, Phleum, Phalaris, Holcus, Lotus, Plantago and Cichorium.
[0061]In a more preferred embodiment the polynucleotide of the invention is derived from the genera Lolium or Trifolium. Particularly preferred are the species Lolium perenne and Trifolium repens. Most preferably the polynucleotide is derived from Lolium perenne.
[0062]The isolated polynucleotides of the invention are useful in methods for modulating in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0063]The isolated polynucleotides of the invention are also useful in methods for selecting plants tolerant to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0064]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:3 or a variant thereof, wherein the variant modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0065]Preferably the environmental stress is drought stress.
[0066]Preferably the variants of SEQ ID NO:3 comprise the amino acid sequence:
TABLE-US-00005 (SEQ ID NO: 248) RKRKX1X2X3RGX4RX5RPWGKWAAEIRDPRX6GX7RX.- sub.8WLGTX9X10 X11X12EX13AAX14AYX15X16X17X18RRIRX- 19X20KAX21VNFP wherein X1 = N, S or T, X2 = Q or R, X3 = Y or F, X4 = I or V, X5 = Q or R, X6 = K, E or Q, X7 = V, S, I or A, X8 = V, E or I, X9 = F or Y, X10 = N, S, D, K or G, X11 = T or S, X12 = A or P, X13 = E or K, X14 = R, M or K, X15 = D, X or G, X16 = A, V, S, I or T, X17 = E or A, X18 = A or T, X19 = G or X, X20 = K, S ,T or N and X21 = K or B.
[0067]Exemplary polypeptide variants of SEQ ID NO:3 are disclosed herein and identified as SEQ ID NOs:26-38 of the sequence listing.
[0068]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:3.
[0069]In a further aspect the invention provides an isolated polypeptide consisting of the sequence of SEQ ID NO:3.
[0070]In a further aspect the invention provides polypeptides comprising fragments of SEQ ID NO:3. Polypeptides comprising fragments of variants, also form part of the invention.
[0071]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:6 or a variant thereof, wherein the variant modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0072]Preferably the environmental stress is drought stress.
[0073]Preferably the variants of SEQ ID NO:6 comprise the amino acid sequence:
TABLE-US-00006 (SEQ ID NO: 249) WRX1IX2RX3X4VX5X6XX7TPTQVASHAQKX.s- ub.8X9X10R wherein X1 = G or N, X2 = A or S, X3 = H, K, N, S or T, X4 = F or Y, X5 = A, F, I, K, M, N, P, T or V, X6 = S or T, X7 = K or R, X8 = F or Y, X9 = F or Y and X10 = 2 I, L, M or S.
[0074]Exemplary polypeptide variants of SEQ ID NO:6 are disclosed herein and identified as SEQ ID NOs:67-94 of the sequence listing.
[0075]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:6.
[0076]In a further aspect the invention provides an isolated polypeptide consisting of the sequence of SEQ ID NO:6.
[0077]In a further aspect the invention provides polypeptides comprising fragments of SEQ ID NO:6. Polypeptides comprising fragments of variants, also form part of the invention.
[0078]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:9 or a variant thereof, wherein the variant modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0079]Preferably the environmental stress is drought stress.
[0080]Preferably the variants of SEQ ID NO:9 comprise the amino acid sequence:
TABLE-US-00007 (SEQ ID NO: 250) IPX1X2X3X4SWRKYGQKPIKGSX5X6PRGYYKCSX7X.- sub.8X9X10X11X12 X13X14X15HVERX16X17X18X19X20X21MLX22VTYEX23X24HX25 H wherein X1 = A, G, P, Q or S, X2 = D or G, X3 = D or E, X4 = F or Y, X5 = K or P, X6 = F, H or Y, X7 = S or T, X8 = I, L, M or V, X9 = R or T, X10 = G or S, X1 = C or Y, X12 = L or P, X13 = A or L, X14 = F, K or R, X15 = K or N, X16 = A, C, D or S, X17 = I, L, M, P or V, X18 = A, D, B or S, X19 = D or E, X20 = A, P, S or T, X21 = A, S or T, X22 = I, M or V, X23 = D or G, X24 = D or E, and X15 = C, H, N or R.
[0081]Exemplary polypeptide variants of SEQ ID NO:9 are disclosed herein and identified as SEQ ID NOs:127-158 of the sequence listing.
[0082]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:9.
[0083]In a further aspect the invention provides an isolated polypeptide consisting of the sequence of SEQ ID NO:9.
[0084]In a further aspect the invention provides polypeptides comprising fragments of SEQ ID NO:9. Polypeptides comprising fragments of variants, also form part of the invention.
[0085]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:12 or a variant thereof, wherein the variant modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0086]Preferably the environmental stress is drought stress.
[0087]Preferably the variants of SEQ ID NO:12 comprise the amino acid sequence:
TABLE-US-00008 (SEQ ID NO: 251) X1X2X3X4AIX5X6X7X8X9GVX1- 0X11X12X13X14X15X16ZEFX17I X18X19X20LTX21X22X23X24X25PG2- 6X27YA where in X1 = D or E, X2 = I, L or V, X3 = F, I, L, M or V, X4 = C, F, I or L, X5 = F, I or L, X6 = I or L, X7 = H or P, X8 = P or Q, X9 = L or V, X10 = F or C, X11 = F or L, X12 = K or R, X13 = F, K, R, V or Y, X14 = A, G or K, X15 = C, I or L, X16 = A, C, G, K or Q, X17 = C, F, L, M or W, X18 = A, C, D or S, X19 = L or V, X20 = I, L, P or V, X21 = C, F, I, L or V, X22 = F or L, X23 = A or G, X24 = F, W or Y, X25 = F, I, L or V, X26 = I, L or V, X27 = I, L or V and wherein Z is a sequence of 1-27 amino acids.
[0088]Exemplary polypeptide variants of SEQ ID NO:12 are disclosed herein and identified as SEQ ID NOs:201-242 of the sequence listing.
[0089]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO:12.
[0090]In a further aspect the invention provides an isolated polypeptide consisting of the sequence of SEQ ID NO:12.
[0091]In a further aspect the invention provides polypeptides comprising fragments of SEQ ID NO:12. Polypeptides comprising fragments of variants, also form part of the invention.
[0092]In one embodiment the polypeptide is derived from a gymnosperm species.
[0093]In a further embodiment the polypeptide is derived from an angiosperm species.
[0094]In a preferred embodiment the polypeptide of the invention is derived from a forage plant species. Preferably the species is selected from those of the following genera: Lolium, Festuca, Dactylis, Bromus, Trifolium, Medicago, Phleum, Phalaris, Holcus, Lotus, Plantago and Cichorium.
[0095]In a more preferred embodiment the polypeptide of the invention is derived from the genera Lolium or Trifolium. Particularly preferred are the species Lolium perenne and Trifolium repens. Most preferably the polypeptide of the invention is derived from Lolium perenne.
[0096]In a further aspect the invention provides a polynucleotide encoding a polypeptide of the invention.
[0097]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of the invention.
[0098]In a further aspect the invention provides a genetic construct which comprises a polynucleotide encoding a polypeptide of the invention.
[0099]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of any one of SEQ ID NO:1, SEQ ID NO:2 or a variant or fragment thereof.
[0100]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:1.
[0101]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:2.
[0102]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of any one of SEQ ID NO:4, SEQ ID NO:5 or a variant or fragment thereof.
[0103]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:4.
[0104]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:5.
[0105]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of any one of SEQ ID NO:7, SEQ ID NO:8 or a variant or fragment thereof.
[0106]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:7.
[0107]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:8.
[0108]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of any one of SEQ ID NO:10, SEQ ID NO:11 or a variant or fragment thereof.
[0109]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:10.
[0110]In a further aspect the invention provides a genetic construct which comprises the polynucleotide of SEQ ID NO:11.
[0111]Preferably the constructs of the invention are expression constructs as herein defined. Preferably expression constructs of the invention include an environmental stress responsive promoter operably linked polynucleotide sequence. Preferably the environmental stress responsive promoter is responsive to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0112]Preferably the expression construct includes a promoter comprising the sequence of SEQ ID NO:243 or a fragment, region, cis-element or variant of the sequence capable of regulating transcription of an operably linked polynucleotide sequence.
[0113]In a further aspect the invention provides a vector which comprises a genetic construct of the invention.
[0114]In a further aspect the invention provides a host cell which comprises a genetic construct of the invention.
[0115]In a further aspect the invention provides methods for the recombinant production of polypeptide of the invention comprising the steps of: [0116]a) culturing a host cell comprising a genetic construct of the invention, such as an expression construct as defined herein, capable of expressing a polypeptide of the invention, and [0117]b) separating the expressed polypeptide.
[0118]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO: I or a variant or fragment thereof.
[0119]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO:2 or a variant or fragment thereof.
[0120]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO:4 or a variant or fragment thereof.
[0121]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO:5 or a variant or fragment thereof.
[0122]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO:7 or a variant or fragment thereof.
[0123]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO:8 or a variant or fragment thereof.
[0124]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO:10 or a variant or fragment thereof.
[0125]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO:11 or a variant or fragment thereof.
[0126]In a further aspect the invention provides a plant cell with altered expression of a polynucleotide or polypeptide of the invention.
[0127]In a further aspect the invention provides a plant cell genetically modified to alter expression of a polynucleotide or polypeptide of the invention.
[0128]In a further aspect the invention provides a plant which comprises a plant cell of the invention.
[0129]In a further aspect the invention provides methods for altering in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising transformation of a plant cell, or plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0130]In a further aspect the invention provides methods for altering tolerance to drought stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0131]In a further aspect the invention provides methods for altering tolerance to cold stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0132]In a further aspect the invention provides methods for altering tolerance to freezing stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0133]In a further aspect the invention provides methods for altering tolerance to heat stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0134]In a further aspect the invention provides methods for altering tolerance to salinity stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0135]In a further aspect the invention provides methods for altering tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation in a plant of tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0136]In a further aspect the invention provides methods for altering tolerance to drought stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation tolerance to drought stress in a plant.
[0137]In a further aspect the invention provides methods for altering tolerance to cold stress in a plant the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to cold stress in a plant.
[0138]In a further aspect the invention provides methods for altering tolerance to freezing stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to freezing stress in a plant.
[0139]In a further aspect the invention provides methods for altering tolerance to heat stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to heat stress in a plant.
[0140]In a further aspect the invention provides methods for altering tolerance to salinity stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to salinity stress in a plant.
[0141]It will be understood by those skilled in the art that transformation of a plant may involve transforming a plant cell(s) and regenerating a transformed plant from the transformed plant cell(s).
[0142]In a further aspect the invention provides a method for selecting a plant with increased tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0143]In a further aspect the invention provides a method for selecting a plant with increased tolerance to drought stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0144]In a further aspect the invention provides a method for selecting a plant with increased tolerance to cold stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0145]In a further aspect the invention provides a method for selecting a plant with increased tolerance to freezing stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0146]In a further aspect the invention provides a method for selecting a plant with increased tolerance to heat stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0147]In a further aspect the invention provides a method for selecting a plant with increased tolerance to salinity stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0148]In a further aspect the invention provides a method for selecting a plant with increased tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0149]In a further aspect the invention provides a method for selecting a plant with increased tolerance to drought stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0150]In a further aspect the invention provides a method for selecting a plant with increased tolerance to cold stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0151]In a further aspect the invention provides a method for selecting a plant with increased tolerance to freezing stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0152]In a further aspect the invention provides a method for selecting a plant with increased tolerance to heat stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0153]In a further aspect the invention provides a method for selecting a plant with increased tolerance to salinity stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0154]In a further aspect the invention provides a plant cell or plant produced by a method of the invention.
[0155]In a further aspect the invention provides a plant cell selected by a method of the invention.
[0156]In a further aspect the invention provides a population or group of plants selected by a method of the invention.
[0157]The plant cells and plants of the invention may be from any species.
[0158]In one embodiment the plant cells and plants of the invention are from gymnosperm species.
[0159]In a further embodiment the plant cells and plants of the invention are from angiosperm species.
[0160]In a preferred embodiment the plant cells and plants of the invention are derived from forage plant species. Preferably the forage species is selected from those of the following genera: Lolium, Festuca, Dactylis, Bromus, Trifolium, Medicago, Phleum, Phalaris, Holcus, Lotus, Plantago and Cichorium.
[0161]In a more preferred embodiment of the invention the plant cells and plants are from the genera Lolium or Trifolium. Particularly preferred are the species Lolium perenne and Trifolium repens. Most preferably the plant cells and plants of the invention are derived from Lolium perenne.
BRIEF DESCRIPTION OF THE DRAWINGS
[0162]The present invention will be better understood with reference to the accompanying drawings in which:
[0163]FIG. 1 shows a map of a vector, for plant transformation, comprising ORF24 (SEQ ID NO:2).
[0164]FIG. 2 shows the sequence (SEQ ID NO:244) of a vector, for plant transformation, comprising ORF24 and corresponding to the map in FIG. 1. Sequence in bold corresponds to the CaMV35S promoter. Sequence in italics corresponds to ORF24. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0165]FIG. 3 shows a map of another vector, for plant transformation, comprising ORF24 (SEQ ID NO:2).
[0166]FIG. 4 shows the sequence (SEQ ID NO:252) of another vector, for plant transformation, comprising ORF24 and corresponding to the map in FIG. 3. Sequence in bold corresponds to the Lolium perenne promoter (SEQ ID NO:243). Sequence in italics corresponds to ORF24. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0167]FIG. 5 shows an alignment of polypeptides of the invention, including ORF24 (SEQ ID NO:3 labeled as "translated") and sequences which are variants SEQ ID NO:3 from several species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0168]FIG. 6 shows a map of a vector, for plant transformation, comprising ORF68 (SEQ ID NO:5).
[0169]FIG. 7 shows the sequence (SEQ ID NO:245) of a vector, for plant transformation, comprising ORF68 and corresponding to the map in FIG. 6. Sequence in bold corresponds to the CaMV35S promoter. Sequence in italics corresponds to ORF68. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0170]FIG. 8 shows a map of another vector, for plant transformation, comprising ORF68 (SEQ ID NO:5).
[0171]FIG. 9 shows the sequence (SEQ ID NO:253) of a vector, for plant transformation, comprising ORF68 and corresponding to the map in FIG. 8. Sequence in bold corresponds to the Lolium perenne promoter (SEQ ID NO:243). Sequence in italics corresponds to ORF68. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0172]FIG. 10 shows an alignment of polypeptides of the invention, including ORF68 (SEQ ID NO:6) and sequences which are variants SEQ ID NO:6 from several species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0173]FIG. 11 shows a map of a vector, for plant transformation, comprising ORF69 (SEQ ID NO:8).
[0174]FIG. 12 shows the sequence (SEQ ID NO:246) of a vector, for plant transformation, comprising ORF69 and corresponding to the map in FIG. 11. Sequence in bold corresponds to the CaMV35S promoter. Sequence in italics corresponds to 0RF69. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0175]FIG. 13 shows a map of another vector, for plant transformation, comprising ORF69 (SEQ ID NO:8).
[0176]FIG. 14 shows the sequence (SEQ ID NO:254) of another vector, for plant transformation, comprising ORF69 and corresponding to the map in FIG. 13. Sequence in bold corresponds to the Lolium perenne promoter (SEQ ID NO:243). Sequence in italics corresponds to ORF69. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0177]FIG. 15 shows an alignment of polypeptides of the invention, including ORF69 (SEQ ID NO:9) and sequences which are variants SEQ ID NO:9 from several species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0178]FIG. 16 shows a map of a vector, for plant transformation, comprising ORF9 (SEQ ID NO:11 ).
[0179]FIG. 17 shows the sequence of a vector (SEQ ID NO:247), for plant transformation, comprising ORF9 and corresponding to the map in FIG. 16. Sequence in bold corresponds to the CaMV35S promoter. Sequence in italics corresponds to ORF9. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0180]FIG. 18 shows a map of another vector, for plant transformation, comprising ORF9 (SEQ ID NO:11).
[0181]FIG. 19 shows the sequence of another vector (SEQ ID NO:255), for plant transformation, comprising ORF9 and corresponding to the map in FIG. 18. Sequence in bold corresponds to the Lolium perenne promoter (SEQ ID NO:243). Sequence in italics corresponds to ORF9. Sequence underlined corresponds to 3'terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence
[0182]FIG. 20 shows an alignment of polypeptides of the invention, including ORF9 (SEQ ID NO:12) and sequences which are variants SEQ ID NO:12 from several species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0183]FIG. 21 shows four hydroponic tanks, representing eight randomized blocks with 15 plants in each block (10 transgenic lines and 5 wild type clones), totaling 120 plants (80 transgenic lines and 40 wild type clones).
[0184]FIG. 22 shows the Electron Transfer Rate (ETR) (a) and yield (b) of photosystem II after 24 hours recovery from 24 hours stress as measured with PAM2000.
[0185]FIG. 23 shows the Electron Transfer Rate (ETR) (a) and yield (b) of photosystem II after 24 hours recovery from 42 hours stress as measured with PAM2000.
[0186]FIG. 24 shows fresh (a) and dry weight (b) of leaves from transgenic and wildtype ryegrass plants and the difference between fresh and dry weights (c) in grams after nine days of recovery from three cycles of drought-stress.
[0187]FIG. 25 shows dry weight of roots after nine days of recovery from three cycles of drought-stress.
[0188]FIG. 26 shows the visual appearance of plants after the third drought-stress lasting for 42 hours; a) Wild type (left) transgenic line D24-145 (right); b) Wild type (left) transgenic line D9-144 (right); c) Wild type (left) transgenic line D9-150 (right).
[0189]FIG. 27 shows (a) Transgenic ryegrass growing in bins filled with soil during progressive drought stress; (b) Transgenic ryegrass over-expressing ORF 24 in comparison to wildtype at 2.3% soil VWC.
[0190]FIG. 28 shows the aboveground biomass (dry weight) produced before (a; d; g) and after drought-stress (b; e; h) and the ability to grow during drought-stress is shown (c, f and i).
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
[0191]The term "comprising" as used in this specification and claims means "consisting at least in part of"; that is to say when interpreting statements in this specification and claims which include "comprising", the features prefaced by this term in each statement all need to be present but other features can also be present. Related terms such as "comprise" and "comprised" are to be interpreted in similar manner.
[0192]The term "plant" is intended to include a whole plant, any part of a plant, propagules and progeny of a plant.
[0193]The term `propagule` means any part of a plant that may be used in reproduction or propagation, either sexual or asexual, including seeds and cuttings.
[0194]The term "tolerance or tolerant to drought stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal hydration conditions than do suitable control plants in the same conditions.
[0195]The term "tolerance or tolerant to drought stress" is also intended to describe a plant or plants which perform more favourably in any aspect of their growth and development after having been subjected to sub-optimal hydration conditions. That is, plants that show improved recovery after a period of sub-optimal hydration.
[0196]The term "tolerance or tolerant to cold stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal-reduced reduced temperature conditions than do suitable control plants in the same conditions.
[0197]The term "tolerance or tolerant to freezing stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under temperature conditions of less than or equal to 0ยฐ C., than do suitable control panels in the same conditions.
[0198]The term "tolerance or tolerant to heat stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal elevated temperature conditions than do suitable control plants in the same conditions.
[0199]The term "tolerance or tolerant to salinity" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal elevated salinity conditions than do suitable control plants in the same conditions.
[0200]With reference to the selection methods of the invention, a plant with increased tolerance to environmental stress refers to a plant, selected from a population of plants, which performs more favourably in any aspect of growth and development under stress conditions than does an average member of the population under the same conditions.
[0201]The term "polynucleotide(s)," as used herein, means a single or double-stranded deoxyribonucleotide or ribonucleotide polymer of any length, and include as non-limiting examples, coding and non-coding sequences of a gene, sense and antisense sequences, exons, introns, genomic DNA, cDNA, pre-mRNA, mRNA, rRNA, siRNA, miRNA, tRNA, ribozymes, recombinant polynucleotides, isolated and purified naturally occurring DNA or RNA sequences, synthetic RNA and DNA sequences,-nucleic acid probes, primers, fragments, genetic constructs, vectors and modified polynucleotides.
[0202]A "fragment" of a polynucleotide sequence provided herein is a subsequence of contiguous nucleotides that is capable of specific hybridization to a target of interest, e.g., a sequence that is at least 15 nucleotides in length. The fragments of the invention comprise 15 nucleotides, preferably at least 20 nucleotides, more preferably at least 30 nucleotides, more preferably at least 50 nucleotides, more preferably at least 50 nucleotides and most preferably at least 60 nucleotides of contiguous nucleotides of a polynucleotide of the invention. A fragment of a polynucleotide sequence can be used in antisense, gene silencing, triple helix or ribozyme technology, or as a primer, a probe, included in a microarray, or used in polynucleotide-based selection methods of the invention.
[0203]The term "primer" refers to a short polynucleotide, usually having a free 3'OH group, that is hybridized to a template and used for priming polymerization of a polynucleotide complementary to the target.
[0204]The term "probe" refers to a short polynucleotide that is used to detect a polynucleotide sequence, that is complementary to the probe, in a hybridization-based assay. The probe may consist of a "fragment" of a polynucleotide as defined herein.
[0205]The term "polypeptide", as used herein, encompasses amino acid chains of any length, including full-length proteins, in which amino acid residues are linked by covalent peptide bonds. Polypeptides of the present invention may be purified natural products, or may be produced partially or wholly using recombinant or synthetic techniques. The term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof.
[0206]A "fragment" of a polypeptide is a subsequence of the polypeptide that performs a function that is required for the biological activity of the polypeptide. Polypeptide fragments are at least 5 amino acids, preferably at least 10 amino acids, more preferably at least 20 amino acids, more preferably at least 30 amino acids in length, more preferably 40 amino acids in length, more preferably 50 amino acids in length.
[0207]The term "isolated" as applied to the polynucleotide or polypeptide sequences disclosed herein is used to refer to sequences that are removed from their natural cellular environment. An isolated molecule may be obtained by any method or combination of methods including biochemical, recombinant, and synthetic techniques.
[0208]The term "recombinant" refers to a polynucleotide sequence that is removed from sequences that surround it in its natural context and/or is recombined with sequences that are not present in its natural context.
[0209]A "recombinant" polypeptide sequence is produced by translation from a "recombinant" polynucleotide sequence.
[0210]As used herein, the term "variant" refers to polynucleotide or polypeptide sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variants may be from the same or from other species and may encompass homologues, paralogues and orthologues. In certain embodiments, variants of the inventive polypeptides and polynucleotides possess biological activities that are the same or similar to those of the inventive polypeptides or polynucleotides. The term "variant" with reference to polynucleotides and polypeptides encompasses all forms of polynucleotides and polypeptides as defined herein.
[0211]Variant polynucleotide sequences preferably exhibit at least 50%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, more preferably at least 95%, more preferably at least 98%, and most preferably at least 99% identity to any one of SEQ ID NO:1, 2, 4, 5, 7, 8, 10 and 11. Identity is found over a comparison window of at least 20 nucleotide positions, preferably at least 50 nucleotide positions, more preferably at least 100 nucleotide positions, and most preferably over the entire length of a polynucleotide of the invention.
[0212]Polynucleotide sequence identity can be determined in the following manner. The subject polynucleotide sequence is compared to a candidate polynucleotide sequence using BLASTN (from the BLAST suite of programs, version 2.2.5 [November 2002]) in bl2seq (Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences--a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250), which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The default parameters of bl2seq are utilized except that filtering of low complexity parts should be turned off.
[0213]The identity of polynucleotide sequences may be examined using the following UNIX command line parameters:
[0214]bl2seq -i nucleotideseq1 -j nucleotideseq2 -F F -p blastn
[0215]The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. The bl2seq program reports sequence identity as both the number and percentage of identical nucleotides in a line "Identities=".
[0216]Polynucleotide sequence identity may also be calculated over the entire length of the overlap between a candidate and subject polynucleotide sequences using global sequence alignment programs (e.g. Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453). A full implementation of the Needleman-Wunsch global alignment algorithm is found in the needle program in the EMBOSS package (Rice, P. Longden, I. and Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics June 2000, vol 16, No 6. pp.276-277) which can be obtained from http://www.hgmp.mrc.ac.uk/Software/EMBOSS/. The European Bioinformatics Institute server also provides the facility to perform EMBOSS-needle global alignments between two sequences on line at http:/www.ebi.ac.uk/emboss/align/.
[0217]Alternatively the GAP program may be used which computes an optimal global alignment of two sequences without penalizing terminal gaps. GAP is described in the following paper: Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the Biosciences 10, 227-235.
[0218]Use of BLASTN as described above is preferred for use in the determination of sequence identity for polynucleotide variants according to the present invention.
[0219]Polynucleotide variants of the present invention also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences and which could not reasonably be expected to have occurred by random chance. Such sequence similarity with respect to polynucleotides may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [November 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/).
[0220]The similarity of polynucleotide sequences may be examined using the following UNIX command line parameters:
[0221]bl2seq -i nucleotideseq1 -j nucleotideseq2 -F F -p tblastx
[0222]The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an "E value" which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. The size of this database is set by default in the bl2seq program. For small E values, much less than one, the E value is approximately the probability of such a random match.
[0223]Variant polynucleotide sequences preferably exhibit an E value of less than 1ร10-5, more preferably less than 1ร10-6, more preferably less than 1ร10-9, more preferably less than 1ร10-12, more preferably less than 1ร10-15, more preferably less than 1ร10-18 and most preferably less than 1ร10-21 when compared with any one of the specifically identified sequences.
[0224]Alternatively, variant polynucleotides of the present invention hybridize to the polynucleotide sequences recited in any one of SEQ ID NO:1, 2, 4, 5, 7, 8, 10 and 11, or complements thereof under stringent conditions.
[0225]The term "hybridize under stringent conditions", and grammatical equivalents thereof, refers to the ability of a polynucleotide molecule to hybridize to a target polynucleotide molecule (such as a target polynucleotide molecule immobilized on a DNA or RNA blot, such as a Southern blot or Northern blot) under defined conditions of temperature and salt concentration. The ability to hybridize under stringent hybridization conditions can be determined by initially hybridizing under less stringent conditions then increasing the stringency to the desired stringency.
[0226]With respect to polynucleotide molecules greater than about 100 bases in length, typical stringent hybridization conditions are no more than 25 to 30ยฐ C. (for example, 10ยฐ C.) below the melting temperature (Tm) of the native duplex (see generally, Sambrook et al., Eds, 1987, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press; Ausubel et al., 1987, Current Protocols in Molecular Biology, Greene Publishing,). Tm for polynucleotide molecules greater than about 100 bases can be calculated by the formula Tm=81.5+0.41% (G+C-log(Na+). (Sambrook et al., Eds, 1987, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press; Bolton and McCarthy, 1962, PNAS 84:1390). Typical stringent conditions for polynucleotide of greater than 100 bases in length would be hybridization conditions such as prewashing in a solution of 6รSSC, 0.2% SDS; hybridizing at 65ยฐ C., 6รSSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1รSSC, 0.1% SDS at 65ยฐ C. and two washes of 30 minutes each in 0.2รSSC, 0.1% SDS at 65ยฐ C.
[0227]With respect to polynucleotide molecules having a length less than 100 bases, exemplary stringent hybridization conditions are 5 to 10ยฐ C. below Tm. On average, the Tm of a polynucleotide molecule of length less than 100 bp is reduced by approximately (500/oligonucleotide length)ยฐ C.
[0228]With respect to the DNA mimics known as peptide nucleic acids (PNAs) (Nielsen et al., Science. 6 Dec. 1991;254(5037):1497-500) Tm values are higher than those for DNA-DNA or DNA-RNA hybrids, and can be calculated using the formula described in Giesen et al., Nucleic Acids Res. 1 Nov. 1998;26(21):5004-6. Exemplary stringent hybridization conditions for a DNA-PNA hybrid having a length less than 100 bases are 5 to 10ยฐ C. below the Tm.
[0229]Variant polynucleotides of the present invention also encompasses polynucleotides that differ from the sequences of the invention but that, as a consequence of the degeneracy of the genetic code, encode a polypeptide having similar activity to a polypeptide encoded by a polynucleotide of the present invention. A sequence alteration that does not change the amino acid sequence of the polypeptide is a "silent variation". Except for ATG (methionine) and TGG (tryptophan), other codons for the same amino acid may be changed by art recognized techniques, e.g., to optimize codon expression in a particular host organism.
[0230]Polynucleotide sequence alterations resulting in conservative substitutions of one or several amino acids in the encoded polypeptide sequence without significantly altering its biological activity are also included in the invention. A skilled artisan will be aware of methods for making phenotypically silent amino acid substitutions (see, e.g., Bowie et al., 1990, Science 247, 1306).
[0231]Variant polynucleotides due to silent variations and conservative substitutions in the encoded polypeptide sequence may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [November 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/) via the tblastx algorithm as previously described.
[0232]The term "variant" with reference to polypeptides encompasses naturally occurring, recombinantly and synthetically produced polypeptides. Variant polypeptide sequences preferably exhibit at least 50%, more preferably at least 70%, more preferably at least 80%, more preferably at least 90%, more preferably at least 95%, more preferably at least 98%, and most preferably at least 99% identity to a sequences any one of SEQ ID NO:3, 6, 9 and 12. Identity is found over a comparison window of at least 20 amino acid positions, preferably at least 50 amino acid positions, more preferably at least 100 amino acid positions, and most preferably over the entire length of a polypeptide of the invention.
[0233]Polypeptide sequence identity can be determined in the following manner. The subject polypeptide sequence is compared to a candidate polypeptide sequence using BLASTP (from the BLAST suite of programs, version 2.2.5 [November 2002]) in bl2seq, which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The default parameters of bl2seq are utilized except that filtering of low complexity regions should be turned off.
[0234]Polypeptide sequence identity may also be calculated over the entire length of the overlap between a candidate and subject polynucleotide sequences using global sequence alignment programs. EMBOSS-needle (available at http:/www.ebi.ac.uk/emboss/align/) and GAP (Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the Biosciences 10, 227-235.) as discussed above are also suitable global sequence alignment programs for calculating polypeptide sequence identity.
[0235]Use of BLASTP as described above is preferred for use in the determination of polypeptide variants according to the present invention.
[0236]Polypeptide variants of the present invention also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences and which could not reasonably be expected to have occurred by random chance. Such sequence similarity with respect to polypeptides may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [November 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The similarity of polypeptide sequences may be examined using the following UNIX command line parameters:
[0237]bl2seq -i peptideseq1 -j peptideseq2 -F F -p blastp
[0238]Variant polypeptide sequences preferably exhibit an E value of less than 1ร10-5, more preferably less than 1ร10-6, more preferably less than 1ร10-9, more preferably less than 1ร10-12, more preferably less than 1ร10-15, more preferably less than 1ร10-18 and most preferably less than 1ร10-21 when compared with any one of the specifically identified sequences.
[0239]The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an "E value" which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. For small E values, much less than one, this is approximately the probability of such a random match.
[0240]Conservative substitutions of one or several amino acids of a described polypeptide sequence without significantly altering its biological activity are also included in the invention. A skilled artisan will be aware of methods for making phenotypically silent amino acid substitutions (see, e.g., Bowie et al., 1990, Science 247, 1306).
[0241]The term "genetic construct" refers to a polynucleotide molecule, usually double-stranded DNA, which may have inserted into it another polynucleotide molecule (the insert polynucleotide molecule) such as, but not limited to, a cDNA molecule. A genetic construct may contain the necessary elements that permit transcribing the insert polynucleotide molecule, and, optionally, translating the transcript into a polypeptide. The insert polynucleotide molecule may be derived from the host cell, or may be derived from a different cell or organism and/or may be a recombinant polynucleotide. Once inside the host cell the genetic construct may become integrated in the host chromosomal DNA. The genetic construct may be linked to a vector.
[0242]The term "vector" refers to a polynucleotide molecule, usually double stranded DNA, which is used to transport the genetic construct into a host cell. The vector may be capable of replication in at least one additional host system, such as E. coli.
[0243]The term "expression construct" refers to a genetic construct that includes the necessary elements that permit transcribing the insert polynucleotide molecule, and, optionally, translating the transcript into a polypeptide. An expression construct typically comprises in a 5' to 3' direction: [0244]a) a promoter functional in the host cell into which the construct will be transformed, [0245]b) the polynucleotide to be expressed, and [0246]c) a terminator functional in the host cell into which the construct will be transformed.
[0247]The term "coding region" or "open reading frame" (ORF) refers to the sense strand of a genomic DNA sequence or a cDNA sequence that is capable of producing a transcription product and/or a polypeptide under the control of appropriate regulatory sequences. The coding sequence is identified by the presence of a 5' translation start codon and a 3' translation stop codon. When inserted into a genetic construct, a "coding sequence" is capable of being expressed when it is operably linked to promoter and terminator sequences.
[0248]"Operably-linked" means that the sequenced to be expressed is placed under the control of regulatory elements that include promoters, tissue-specific regulatory elements, temporal regulatory elements, enhancers, repressors and terminators.
[0249]The term "noncoding region" refers to untranslated sequences that are upstream of the translational start site and downstream of the translational stop site. These sequences are also referred to respectively as the 5' UTR and the 3' UTR. These regions include elements required for transcription initiation and termination and for regulation of translation efficiency.
[0250]Terminators are sequences, which terminate transcription, and are found in the 3' untranslated ends of genes downstream of the translated sequence. Terminators are important determinants of mRNA stability and in some cases have been found to have spatial regulatory functions.
[0251]The term "promoter" refers to nontranscribed cis-regulatory elements upstream of the coding region that regulate gene transcription. Promoters comprise cis-initiator elements which specify the transcription initiation site and conserved boxes such as the TATA box, and motifs that are bound by transcription factors.
[0252]A "transgene" is a polynucleotide that is taken from one organism and introduced into a different organism by transformation. The transgene may be derived from the same species or from a different species as the species of the organism into which the transgene is introduced.
[0253]A "transgenic plant" refers to a plant which contains new genetic material as a result of genetic manipulation or transformation. The new genetic material may be derived from a plant of the same species as the resulting transgenic plant or from a different species.
[0254]An "inverted repeat" is a sequence that is repeated, where the second half of the repeat is in the complementary strand, e.g.,
TABLE-US-00009 (5')GATCTA . . . TAGATC(3') (3')CTAGAT . . . ATCTAG(5')
[0255]Read-through transcription will produce a transcript that undergoes complementary base-pairing to form a hairpin structure provided that there is a 3-5 bp spacer between the repeated regions.
[0256]The terms "to alter expression of" and "altered expression" of a polynucleotide or polypeptide of the invention, are intended to encompass the situation where genomic DNA corresponding to a polynucleotide of the invention is modified thus leading to altered expression of a polynucleotide or polypeptide of the invention. Modification of the genomic DNA may be through genetic transformation or other methods known in the art for inducing mutations. The "altered expression" can be related to an increase or decrease in the amount of messenger RNA and/or polypeptide produced and may also result in altered activity of a polypeptide due to alterations in the sequence of a polynucleotide and polypeptide produced.
[0257]The applicants have identified polynucleotides from ryegrass (SEQ ID NO:1 and SEQ ID NO:2) which encode a polypeptide (SEQ ID NO:3) which modulates in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants have also identified polynucleotide variants of SEQ ID NO:1 and SEQ ID NO:2 (SEQ ID NOs:13-25) encoding polypeptide variants of SEQ ID NOs:3 (SEQ ID NOs:26-38) which modulate in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0258]The applicants have identified polynucleotides from ryegrass (SEQ ID NO:4 and SEQ ID NO:5) which encode a polypeptide (SEQ ID NO:6) which modulates in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants have also identified polynucleotide variants of SEQ ID NO:4 and SEQ ID NO:5 (SEQ ID NOs:39-66) encoding polypeptide variants of SEQ ID NO:6 (SEQ ID NOs:67-94) which modulate in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0259]The applicants have identified polynucleotides from ryegrass (SEQ ID NO:7 and SEQ ID NO:8) which encode a polypeptide (SEQ ID NO:9) which modulates in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants have also identified polynucleotide variants of SEQ ID NO:7 and SEQ ID NO:8 (SEQ ID NOs:95-126) encoding polypeptide variants of SEQ ID NOs:9 (SEQ ID NOs:127-158) which modulate in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0260]The applicants have identified polynucleotides from ryegrass (SEQ ID NO:10 and SEQ ID NO:11) which encode a polypeptide (SEQ ID NO:12) which modulates in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants have also identified polynucleotide variants of SEQ ID NO:10 and SEQ ID NO:11 (SEQ ID NOs:159-200) encoding polypeptide variants of SEQ ID NOs:12 (SEQ ID NOs:201-242) which modulate in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity
[0261]The invention provides plants altered relative to suitable control plants in tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The invention provides both plants with both increased tolerance to the above and plants with decreased tolerance to above characteristic stresses. The invention also provides methods for the production or selection of such plants.
[0262]The polynucleotide molecules of the invention can be isolated by using a variety of techniques known to those of ordinary skill in the art. By way of example, such polynucleotides can be isolated through use of the polymerase chain reaction (PCR) described in Mullis et al., Eds. 1994 The Polymerase Chain Reaction, Birkhauser, incorporated herein by reference. The polynucleotides of the invention can be amplified using primers, as defined herein, derived from the polynucleotide sequences of the invention.
[0263]Further methods for isolating polynucleotides of the invention include use of all, or portions of, the any on of the polynucleotides having the sequence set forth in SEQ ID NOs:1, 2, 4, 5, 7, 8, 10, 11 13-25, 39-66, 95-126 and 159-242 as hybridization probes. The technique of hybridizing labeled polynucleotide probes to polynucleotides immobilized on solid supports such as nitrocellulose filters or nylon membranes, can be used to screen the genomic or cDNA libraries. Exemplary hybridization and wash conditions are: hybridization for 20 hours at 65ยฐ C. in 5.0รSSC, 0.5% sodium dodecyl sulfate, 1รDenhardt's solution; washing (three washes of twenty minutes each at 55ยฐ C.) in 1.0รSSC, 1% (w/v) sodium dodecyl sulfate, and optionally one wash (for twenty minutes) in 0.5รSSC, 1% (w/v) sodium dodecyl sulfate, at 60ยฐ C.. An optional further wash (for twenty minutes) can be conducted under conditions of 0.1รSSC, 1% (w/v) sodium dodecyl sulfate, at 60ยฐ C..
[0264]The polynucleotide fragments of the invention may be produced by techniques well-known in the art such as restriction endonuclease digestion and oligonucleotide synthesis.
[0265]A partial polynucleotide sequence may be used, in methods well-known in the art to identify the corresponding full length polynucleotide sequence. Such methods would include PCR-based methods, 5'RACE (Frohman Mass., 1993, Methods Enzymol. 218: 340-56) and hybridization--based method, computer/database--based methods. Further, by way of example, inverse PCR permits acquisition of unknown sequences, flanking the polynucleotide sequences disclosed herein, starting with primers based on a known region (Triglia et al., 1998, Nucleic Acids Res 16, 8186, incorporated herein by reference). The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Divergent primers are designed from the known region. In order to physically assemble full-length clones, standard molecular biology approaches can be utilized (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987).
[0266]It may be beneficial, when producing a transgenic plant from a particular species, to transform such a plant with a sequence or sequences derived from that species. The benefit may be to alleviate public concerns regarding cross-spectes transformation in generating transgenic organisms. Additionally when down-regulation of a gene is the desired result, it may be necessary to utilise a sequence identical (or at least highly similar) to that in the plant, for which reduced expression is desired. For these reasons among others, it is desirable to be able to identify and isolate orthologues of a particular gene in several different plant species. Variants (including orthologues) may be identified by the methods described.
[0267]Variant polynucleotides may be identified using PCR-based methods (Mullis et al., Eds. 1994 The Polymerase Chain Reaction, Birkhauser). Typically, the polynucleotide sequence of a primer, useful to amplify variants of polynucleotide molecules of the invention by PCR, may be based on a sequence encoding a conserved region of the corresponding amino acid sequence.
[0268]Further methods for identifying variant polynucleotides of the invention include use of all, or portions of, the polynucleotides having the sequence set forth in SEQ ID NOs:1, 2, 4, 5, 7, 8, 10 and 11 as hybridization probes to screen a plant genomic or cDNA libraries as described above. Typically probes based on a sequence encoding a conserved region of the corresponding amino acid sequence may be used. Hybridisation conditions may also be less stringent than those used when screening for sequences identical to the probe.
[0269]The variant sequences of the invention, including both polynucleotide and polypeptide variants, may also be identified by computer-based methods well-known to those skilled in the art, using public domain sequence alignment algorithms and sequence similarity search tools to search sequence databases (public domain databases include Genbank, EMBL, Swiss-Prot, PIR and others). See, e.g., Nucleic Acids Res. 29: 1-10 and 11-16, 2001 for examples of online resources. Similarity searches retrieve and align target sequences for comparison with a sequence to be analyzed (i.e., a query sequence). Sequence comparison algorithms use scoring matrices to assign an overall score to each of the alignments.
[0270]An exemplary family of programs useful for identifying variants in sequence databases is the BLAST suite of programs (version 2.2.5 [November 2002]) including BLASTN, BLASTP, BLASTX, tBLASTN and tBLASTX, which are publicly available from (ftp://ftp.ncbi.nih.gov/blast/) or from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, Md. 20894 USA. The NCBI server also provides the facility to use the programs to screen a number of publicly available sequence databases. BLASTN compares a nucleotide query sequence against a nucleotide sequence database. BLASTP compares an amino acid query sequence against a protein sequence database. BLASTX compares a nucleotide query sequence translated in all reading frames against a protein sequence database. tBLASTN compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames. tBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database. The BLAST programs may be used with default parameters or the parameters may be altered as required to refine the screen.
[0271]The use of the BLAST family of algorithms, including BLASTN, BLASTP, and BLASTX, is described in the publication of Altschul et al., Nucleic Acids Res. 25: 3389-3402, 1997.
[0272]The "hits" to one or more database sequences by a queried sequence produced by BLASTN, BLASTP, BLASTX, tBLASTN, tBLASTX, or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.
[0273]The BLASTN, BLASTP, BLASTX, tBLASTN and tBLASTX algorithms also produce "Expect" values for alignments. The Expect value (E) indicates the number of hits one can "expect" to see by chance when searching a database of the same size containing random contiguous sequences. The Expect value is used as a significance threshold for determining whether the hit to a database indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the database screened, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in that database is 1% or less using the BLASTN, BLASTP, BLASTX, tBLASTN or tBLASTX algorithm.
[0274]Multiple sequence alignments of a group of related sequences can be carried out with CLUSTALW (Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680, http://www-igbmc.u-strasbg.fr/BioInfo/ClustalW/Top.html) or T-COFFEE (Cedric Notredame, Desmond G. Higgins, Jaap Heringa, T-Coffee: A novel method for fast and accurate multiple sequence alignment, J. Mol. Biol. (2000) 302: 205-217)) or PILEUP, which uses progressive, pairwise alignments. (Feng and Doolittle, 1987, J. Mol. Evol. 25, 351).
[0275]Pattern recognition software applications are available for finding motifs or signature sequences. For example, MEME (Multiple Em for Motif Elicitation) finds motifs and signature sequences in a set of sequences, and MAST (Motif Alignment and Search Tool) uses these motifs to identify similar or the same motifs in query sequences. The MAST results are provided as a series of alignments with appropriate statistical data and a visual overview of the motifs found. MEME and MAST were developed at the University of California, San Diego.
[0276]PROSITE (Bairoch and Bucher, 1994, Nucleic Acids Res. 22, 3583; Hofmann et al., 1999, Nucleic Acids Res. 27, 215) is a method of identifying the functions of uncharacterized proteins translated from genomic or cDNA sequences. The PROSITE database (www.expasy.org/prosite) contains biologically significant patterns and profiles and is designed so that it can be used with appropriate computational tools to assign a new sequence to a known family of proteins or to determine which known domain(s) are present in the sequence (Falquet et al., 2002, Nucleic Acids Res. 30, 235). Prosearch is a tool that can search SWISS-PROT and EMBL databases with a given sequence pattern or signature.
[0277]Proteins can be classified according to their sequence relatedness to other proteins in the same genome (paralogues) or a different genome (orthologues). Orthologous genes are genes that evolved by speciation from a common ancestral gene and normally retain the same function as they evolve. Paralogous genes are genes that are duplicated within a genome and genes may acquire new specificities or modified functions which may be related to the original one. Phylogenetic analysis methods are reviewed in Tatusov et al., 1997, Science 278, 631-637,).
[0278]In addition to the computer/database methods described above, polypeptide variants of the invention may be identified by physical methods, for example by screening expression libraries using antibodies raised against polypeptides of the invention (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987) or by identifying polypeptides from natural sources with the aid of such antibodies.
[0279]The function of a variant polynucleotide of the invention in modulating tolerance to environmental stress plant may be assessed by altering expression of the polynucleotide in a plant by methods known in the art and/or described herein, and, analyzing performance of the transformed plant in comparison to a control plant, under conditions of environmental stress. Further plant transformation protocols for several species are known to those skilled in the art. A list of such protocols is provided herein.
[0280]The polypeptides of the invention, including variant polypeptides, may be prepared using peptide synthesis methods well known in the art such as direct peptide synthesis using solid phase techniques (e.g. Stewart et al., 1969, in Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco Calif., or automated synthesis, for example using an Applied Biosystems 431A Peptide Synthesizer (Foster City, Calif.). Mutated forms of the polypeptides may also be produced during such syntheses.
[0281]The polypeptides and variant polypeptides of the invention may also be purified from natural sources using a variety of techniques that are well known in the art (e.g. Deutscher, 1990, Ed, Methods in Enzymology, Vol. 182, Guide to Protein Purification,).
[0282]Alternatively the polypeptides and variant polypeptides of the invention may be expressed recombinantly in suitable host cells and separated from the cells as discussed below.
[0283]The genetic constructs of the present invention comprise one or more polynucleotide sequences of the invention and/or polynucleotides encoding polypeptides of the invention, and may be useful for transforming, for example, bacterial, fungal, insect, mammalian or plant organisms. The genetic constructs of the invention are intended to include expression constructs as herein defined.
[0284]Methods for producing and using genetic constructs and vectors are well known in the art and are described generally in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing, 1987).
[0285]The invention provides a host cell which comprises a genetic construct or vector of the invention. Host cells may be derived from, for example, bacterial, fungal, insect, mammalian or plant organisms.
[0286]Host cells comprising genetic constructs, such as expression constructs, of the invention are useful in methods well known in the art (e.g. Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing, 1987) for recombinant production of polypeptides of the invention. Such methods may involve the culture of host cells in an appropriate medium in conditions suitable for or conducive to expression of a polypeptide of the invention. The expressed recombinant polypeptide, which may optionally be secreted into the culture, may then be separated from the medium, host cells or culture medium by methods well known in the art (e.g. Deutscher, Ed, 1990, Methods in Enzymology, Vol 182, Guide to Protein Purification).
[0287]Host cells of the invention may also be useful in methods for production of an enzymatic product generated by an expressed polypeptide of the invention. Such methods may involve culturing the host cells of the invention in a medium suitable for expression of a recombinant polypeptide of the invention, optionally in the presence of additional enzymatic substrate for the expressed polypeptide of the invention. The enzymatic product produced may then be separated from the host cells or medium by a variety of art standard methods.
[0288]The invention further provides plant cells which comprise a genetic construct of the invention, and plant cells modified to alter expression of a polynucleotide or polypeptide of the invention. Plants comprising such cells also form an aspect of the invention.
[0289]Tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity in a plant, may also be altered through methods of the invention. Such methods may involve the transformation of plant cells and plants, with a construct of the invention designed to alter expression of a polynucleotide or polypeptide which modulates for example, tolerance to drought stress, in such plant cells and plants. Such methods also include the transformation of plant cells and plants with a combination of the construct of the invention and one or more other constructs designed to alter expression of one or more polynucleotides or polypeptides which modulate for example, tolerance to drought stress in such plant cells and plants.
[0290]Methods for transforming plant cells, plants and portions thereof with polynucleotides are described in Draper et al., 1988, Plant Genetic Transformation and Gene Expression. A Laboratory Manual. Blackwell Sci. Pub. Oxford, p. 365; Potrykus and Spangenberg, 1995, Gene Transfer to Plants. Springer-Verlag, Berlin.; and Gelvin et al., 1993, Plant Molecular Biol. Manual. Kluwer Acad. Pub. Dordrecht. A review of transgenic plants, including transformation techniques, is provided in Galun and Breiman, 1997, Transgenic Plants. Imperial College Press, London.
[0291]A number of plant transformation strategies are available (e.g. Birch, 1997, Ann Rev Plant Phys Plant Mol Biol, 48, 297). For example, strategies may be designed to increase expression of a polynucleotide/polypeptide in a plant cell, organ and/or at a particular developmental stage where/when it is normally expressed or to ectopically express a polynucleotide/polypeptide in a cell, tissue, organ and/or at a particular developmental stage which/when it is not normally expressed. The expressed polynucleotide/polypeptide may be derived from the plant species to be transformed or may be derived from a different plant species.
[0292]Transformation strategies may be designed to reduce expression of a polynucleotide/polypeptide in a plant cell, tissue, organ or at a particular developmental stage which/when it is normally expressed. Such strategies are known as gene silencing strategies.
[0293]Genetic constructs for expression of genes in transgenic plants typically include promoters for driving the expression of one or more cloned polynucleotide, terminators and selectable marker sequences to detest presence of the genetic construct in the transformed plant.
[0294]The promoters suitable for use in the constructs of this invention are functional in a cell, tissue or organ of a monocot or dicot plant and include cell-, tissue- and organ-specific promoters, cell cycle specific promoters, temporal promoters, inducible promoters, constitutive promoters that are active in most plant tissues, and recombinant promoters. Choice of promoter will depend upon the temporal and spatial expression of the cloned polynucleotide, so desired. The promoters may be those normally associated with a transgene of interest, or promoters which are derived from genes of other plants, viruses, and plant pathogenic bacteria and fungi. Those skilled in the art will, without undue experimentation, be able to select promoters that are suitable for use in modifying and modulating plant traits using genetic constructs comprising the polynucleotide sequences of the invention. Examples of constitutive plant promoters include the CaMV 35S promoter, the nopaline synthase promoter and the octopine synthase promoter, and the Ubi 1 promoter from maize. Plant promoters which are active in specific tissues, respond to internal developmental signals or external abiotic or biotic stresses are described in the scientific literature. Exemplary promoters are described, e.g., in WO 02/00894, which is herein incorporated by reference.
[0295]Exemplary terminators that are commonly used in plant transformation genetic construct include, e.g., the cauliflower mosaic virus (CaMV) 35S terminator, the Agrobacterium tumefaciens nopaline synthase or octopine synthase terminators, the Zea mays zein gene terminator, the Oryza sativa ADP-glucose pyrophosphorylase terminator and the Solanum tuberosum PI-II terminator.
[0296]Selectable markers commonly used in plant transformation include the neomycin phophotransferase II gene (NPT II) which confers kanamycin resistance, the aadA gene, which confers spectinomycin and streptomycin resistance, the phosphinothricin acetyl transferase (bar gene) for Ignite (AgrEvo) and Basta (Hoechst) resistance, and the hygromycin phosphotransferase gene (hpt) for hygromycin resistance.
[0297]Use of genetic constructs comprising reporter genes (coding sequences which express an activity that is foreign to the host, usually an enzymatic activity and/or a visible signal (e.g., luciferase, GUS, GFP) which may be used for promoter expression analysis in plants and plant tissues are also contemplated. The reporter gene literature is reviewed in Herrera-Estrella et al., 1993, Nature 303, 209, and Schrott, 1995, In: Gene Transfer to Plants (Potrykus, T., Spangenberg. Eds) Springer Verlag. Berline, pp. 325-336.
[0298]Gene silencing strategies may be focused on the gene itself or regulatory elements which effect expression of the encoded polypeptide. "Regulatory elements" is used here in the widest possible sense and includes other genes which interact with the gene of interest.
[0299]Genetic constructs designed to decrease or silence the expression of a polynucleotide/polypeptide of the invention may include an antisense copy of a polynucleotide of the invention. In such constructs the polynucleotide is placed in an antisense orientation with respect to the promoter and terminator.
[0300]An "antisense" polynucleotide is obtained by inverting a polynucleotide or a segment of the polynucleotide so that the transcript produced will be complementary to the mRNA transcript of the gene, e.g.,
TABLE-US-00010 5'GATCTA 3' (coding strand) 3'CTAGAT 5' (antisense strand) 3'CUAGAU 5' mRNA 5'GAUCUA 3' antisense RNA
[0301]Genetic constructs designed for gene silencing may also include an inverted repeat as herein defined. The preferred approach to achieve this is via RNA-interference strategies using genetic constructs encoding self-complementary "hairpin" RNA (Wesley et al., 2001, Plant Journal, 27: 581-590).
[0302]The transcript formed may undergo complementary base pairing to form a hairpin structure. Usually a spacer of at least 3-5 bp between the repeated regions is required to allow hairpin formation.
[0303]Another silencing approach involves the use of a small antisense RNA targeted to the transcript equivalent to an miRNA (Llave et al., 2002, Science 297, 2053). Use of such small antisense RNA corresponding to polynucleotide of the invention is expressly contemplated.
[0304]The term genetic construct as used herein also includes small antisense RNAs and other such polynucleotides effecting gene silencing.
[0305]Transformation with an expression construct, as herein defined, may also result in gene silencing through a process known as sense suppression (e.g. Napoli et al., 1990, Plant Cell 2, 279; de Carvalho Niebel et al., 1995, Plant Cell, 7, 347). In some cases sense suppression may involve over-expression of the whole or a partial coding sequence but may also involve expression of non-coding region of the gene, such as an intron or a 5' or 3' untranslated region (UTR). Chimeric partial sense constructs can be used to coordinately silence multiple genes (Abbott et al., 2002, Plant Physiol. 128(3): 844-53; Jones et al., 1998, Planta 204: 499-505). The use of such sense suppression strategies to silence the expression of a polynucleotide of the invention is also contemplated.
[0306]The polynucleotide inserts in genetic constructs designed for gene silencing may correspond to coding sequence and/or non-coding sequence, such as promoter and/or intron and/or 5' or 3' UTR sequence, or the corresponding gene.
[0307]Other gene silencing strategies include dominant negative approaches and the use of ribozyme constructs (McIntyre, 1996, Transgenic Res, 5, 257)
[0308]Pre-transcriptional silencing may be brought about through mutation of the gene itself or its regulatory elements. Such mutations may include point mutations, frameshifts, insertions, deletions and substitutions.
[0309]The following are representative publications disclosing genetic transformation protocols that can be used to genetically transform the following plant species: Rice (Alam et al., 1999, Plant Cell Rep. 18, 572); maize (U.S. Pat. Ser. Nos. 5,177,010 and 5,981,840); wheat (Ortiz et al., 1996, Plant Cell Rep. 15, 1996, 877); tomato (U.S. Pat. No. 5,159,135); potato (Kumar et al., 1996 Plant J. 9,: 821); cassava (Li et al., 1996 Nat. Biotechnology 14, 736); lettuce (Michelmore et al., 1987, Plant Cell Rep. 6, 439); tobacco (Horsch et al., 1985, Science 227, 1229); cotton (U.S. Pat. Nos. 5,846,797 and 5,004,863); grasses (U.S. Pat. Nos. 5,187,073 and 6,020,539); peppermint (Niu et al., 1998, Plant Cell Rep. 17, 165); citrus plants (Pena et al., 1995, Plant Sci. 104, 183); caraway (Krens et al., 1997, Plant Cell Rep, 17, 39); banana (U.S. Pat. No. 5,792,935); soybean (U.S. Pat. Nos. 5,416,011; 5,569,834; 5,824,877; 5,563,04455 and 5,968,830); pineapple (U.S. Pat. No. 5,952,543); poplar (U.S. Pat. No. 4,795,855); monocots in general (U.S. Pat. Nos. 5,591,616 and 6,037,522); brassica (U.S. Pat. Nos. 5,188,958; 5,463,174 and 5,750,871); and cereals (U.S. Pat. No. 6,074,877).
[0310]Several further methods known in the art may be employed to alter expression of a nucleotide and/or polypeptide of the invention. Such methods include but are not limited to Tilling (Till et al., 2003, Methods Mol Biol, 2%, 205), so called "Deletagene" technology (Li et al., 2001, Plant Journal 27(3), 235) and the use of artificial transcription factors such as synthetic zinc finger transcription factors. (e.g. Jouvenot et al., 2003, Gene Therapy 10, 513). Additionally antibodies or fragments thereof, targeted to a particular polypeptide may also be expressed in plants to modulate the activity of that polypeptide (Jobling et al., 2003, Nat. Biotechnol., 21(1), 35). Transposon tagging approaches may also be applied. Additionally peptides interacting with a polypeptide of the invention may be identified through technologies such as phage-display (Dyax Corporation). Such interacting peptides may be expressed in or applied to a plant to affect activity of a polypeptide of the invention. Use of each of the above approaches in alteration of expression of a nucleotide and/or polypeptide of the invention is specifically contemplated.
[0311]Methods are also provided for selecting plants altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. Such methods involve testing of plants for altered for the expression of a polynucleotide or polypeptide of the invention. Such methods may be applied at a young age or early developmental stage to accelerate breeding programs directed toward at least one of the characteristics described which may not be easily assessed until a later age or developmental stage.
[0312]The expression of a polynucleotide, such as a messenger RNA, is often used as an indicator of expression of a corresponding polypeptide. Exemplary methods for measuring the expression of a polynucleotide include but are not limited to Northern analysis, RT-PCR and dot-blot analysis (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987). Polynucleotides or portions of the polynucleotides of the invention are thus useful as probes or primers, as herein defined, in methods for the identification of plants with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. For example an altered level in a plant, of a polypeptide involved in modulating tolerance to drought stress may be used as an indicator of eventual tolerance to drought stress in such a plant. The polynucleotides of the invention may be used as probes in hybridization experiments, or as primers in PCR based experiments, designed to identify such plants.
[0313]Alternatively antibodies may be raised against polypeptides of the invention. Methods for raising and using antibodies are standard in the art (see for example: Antibodies, A Laboratory Manual, Harlow A Lane, Eds, Cold Spring Harbour Laboratory, 1998). Such antibodies may be used in methods to detect altered expression of polypeptides which modulate flower size in plants. Such methods may include ELISA (Kemeny, 1991, A Practical Guide to ELISA, N.Y. Pergamon Press) and Western analysis (Towbin & Gordon, 1994, J Immunol Methods, 72, 313).
[0314]These approaches for analysis of polynucleotide or polypeptide expression and the selection of plants with altered expression are useful in conventional breeding programs designed to produce varieties with altered in tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0315]The plants of the invention may be grown and either selfed or crossed with a different plant strain and the resulting hybrids, with the desired phenotypic characteristics, may be identified. Two or more generations may be grown to ensure that the subject phenotypic characteristics are stably maintained and inherited. Plants resulting from such standard breeding approaches also form an aspect of the present invention.
Examples
[0316]The invention will now be illustrated with reference to the following non-limiting examples.
Example 1
Identification of Polynucleotides which Modulate Tolerance to Environmental Stresses
[0317]Introduction:
[0318]Perennial ryegrass (Lolium perenne L.) is a cool temperate pasture plant from the family Gramineae and the tribe Festucaceae. To generate a profile of relative gene expression patterns in ryegrass, RNA was extracted from samples obtained from ambient temperature growth, cold grown, hydrated, dehydrated and rehydrated or dehydration pre- and post-grazed plants during autumn, summer, spring and winter, and used for constructing a SAGE (serial analysis of gene expression) (Velculescu et al. 1995, Science 270: 484-487) library.
[0319]Materials and Methods:
[0320]Perennial ryegrass (Lolium perenne L.) cv. Bronsyn was used throughout this study. Field grown samples were collected from active paddocks at Dexcel, Hamilton, New Zealand during the peak of each season. Grass samples were collected from pre-grazed (15 days post grazing) and post-grazed (1 day post grazing) ryegrass swards. Tufts of grass samples were harvested from 3-6 randomly chosen sites and stored in dry-ice after snap-freezing with liquid nitrogen. During spring, immature spike and floral initials were also harvested. For stress-treatment, the following conditions were used on lab-grown ryegrass: Mature lab-grown perennial ryegrass that was grown in growth chamber for 15 months at 85% RH, 20ยฐ C./18ยฐ C. and 16 h/8 h day/night regime; Hydrated control grown for 55 days at 85% RH, 20ยฐ C./18ยฐ C. and 16 h/8 h day/night regime; 6 days at 70% RH, 22ยฐ C./16ยฐ C. and 16 h/8 h day/night regime, seedlings were kept watered throughout their life; Dehydrated sample watered only for 55 days at 85% RH, 20ยฐ C./18ยฐ C. and 16 h/8 h day/night regime; 3 days at 70% RH, 28ยฐ C./20ยฐ C. and 16 h/8 h day/night regime; 3 days at 50% RH, 28ยฐ C./20ยฐ C. and 16 h/8 h day/night regime; Rehydrated samples were from dehydrated plants that was watered for 24 hours and grown at 70% RH, 22ยฐ C./16ยฐ C. and 16 h/8 h day/night regime; Cold-stressed plants were grown for 55 days at 85% RH, 20ยฐ C./18ยฐ C. and 16 h/8 h day/night regime; 7 days at 70% RH, 22ยฐ C./16ยฐ C. and 16 h/8 h day/night regime; 7 days at 70% RH, 6ยฐ C./2ยฐ C. and 16 h/8 h day/night regime, seedlings were kept watered throughout their life.
[0321]Construction of SAGE Libraries
[0322]RNA was extracted using TRIZOLยฎ reagent (Invitrogen, Calif., USA) and by the protocol described by the manufacturer from tissue that was ground in liquid nitrogen. For each SAGE library 100 ฮผg of total RNA was used and the libraries were created using I-SAGEยฎ or I-SAGEยฎ Long kit (Invitrogen, Calif., USA) according to manufacturer's protocol. From each library 960-1,920 clones were sequenced (Australian Genome Research Facility, Brisbane, Australia) and the tags extracted using the SAGE2000 software.
[0323]SAGE Bioinformatics:
[0324]The relational database was designed to hold tags, libraries and expression counts of the SAGE experiments. Each tag sequence (including enzyme sequence) was searched against the whole Ryegrass non-overlapping Gene thresher and the EST sets. The search was carried out in both direction and used exact match only. Results were loaded to the relational database using General Feature Format (GFF) approach (http://www3.ebi.ac.uk/Services/WebFeat)
[0325]All Ryegrass Gene thresher and the EST sequences were annotated using homology searches against some or all the following public and propriety databases: [0326]AGI TIGR Gene Indices, Arabidopsis, release 11, Jan. 2004 [0327]OGI TIGR Gene Indices, Rice, release 14-1, Jan. 2004 [0328]GENESEQN Derwent patent DNA sequences 2002- Dec. 7 [0329]GENESEQP Derwent patent amino acid sequences 7 Dec.2004 [0330]Os_unigene Oryza sativa Unigene unique sequences 2004-03-18 [0331]est_others Other EST sequences (mammal, fungi, prokaryote) 1 Mar. 2003 [0332]est-plant Viridiplantae subset of Non-redundant Database of GenBank+EMBL+DDBJ EST Divisions 2004-03-15 [0333]nr All non-redundant GenBank CDS translations+PDB+SwissProt+PIR 11 Mar. 2003 [0334]nr_plant Plant subset of HS subset of BT subset of All non-redundant GenBank CDS translations+PDB+SwissProt+PIR 8 Aug. 2003 [0335]nt All Non-redundant GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or HTGS sequences) 1 Mar. 2003 [0336]nt_monocots Monocot subset of All Non-redundant GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or HTGS sequences) 11 Mar. 2003 [0337]swissprot The last major release of the SWISS-PROT protein sequence database (no updates) 28 Mar. 2003
[0338]A cutoff of E value less than E-05 was used and maximum of 10 targets per database were stored in the relational database.
[0339]Tags Annotation:
[0340]Tags with hits to the Ryegrass sets were annotated by creating a summary of all the annotations of the involved sequences. The summary was generated using an algorithm to calculate the frequency of the occurrence of each word in the annotations and rank them in descending order based on the number off occurrences. The summary was limited to 10 words and a void word list was used to filter out insignificant information. The resulting summary line was used as an indication of what the tags were likely to be. Actual numbers are displayed; giving additional information that could be used to evaluate the significance of each of the words in the summary. This method of automatic annotation using keyword counts is similar to the Automatic comment that is used by the ProDom database (http://protein.toulouse.inra.fr/prodom/current/html/home.php) to annotate the automatically generated protein domain families.
[0341]Detailed annotation based on the top hits of the involved sequences was displayed when viewing tags data.
[0342]Four polynucleotide sequences of particular interest were identified in the above analysis. These are ORF24 (corresponds to SEQ ID NO:1 and 2) and ORF68 (corresponding to SEQ ID NO:4 and 5), ORF69 (corresponding to SEQ ID NO:7 and 8) and ORF9 (corresponding to SEQ ID NO:10 and 11).
[0343]ORF24 appears to encode a heat shock transcription factor. The transcript accumulates in dehydrated and winter tissues. The full transcript profile is shown in table 1.
TABLE-US-00011 TABLE 1 SAGE_TAG CCCATTTCTG tpm* Winter Pre-grazed 1 36 Winter Post-grazed 2 75 Winter roots 1 61 Spring Pre-grazed 0 0 Spring Post-grazed 0 0 Inflorescence 1 41 Summer Post-grazed 0 0 Autumn Pre-grazed 0 0 Autumn Post-grazed 0 0 Mature 1 80 Cold-stressed 0 0 Hydrated 1 64 Dehydrated 3 176 Rehydrated 1 33 Total 11 40 SAGE_TAG CCCATTTCTGCCGATTT tpm Winter Pre-grazed 1 36 Winter Post-grazed 2 75 Winter roots 1 61 Spring Pre-grazed 0 0 Spring Post-grazed 0 0 Inflorescence 1 41 Summer Post-grazed 0 0 Total 5 30 *tpm = Tag counts per million tags
[0344]ORF68 appears to encode an ethylene responsive element binding protein (EREBP) transcription factor and the transcript accumulates in winter tissues. The full transcript profile is shown in table 2 below.
TABLE-US-00012 TABLE 2 SAGE_TAG TCGCTGAAGA tpm* Winter Pre-grazed 1 36 Winter Post-grazed 1 37 Winter roots 2 121 Spring Pre-grazed 0 0 Spring Post-grazed 0 0 Inflorescence 0 0 Summer Post-grazed 0 0 Autumn Pre-grazed 0 0 Autumn Post-grazed 0 0 Mature 0 0 Cold-stressed 0 0 Hydrated 0 0 Dehydrated 0 0 Rehydrated 0 0 Total 4 14 SAGE_TAG TCGCTGAAGATCTTGGC tpm Winter Pre-grazed 1 36 Winter Post-grazed 1 37 Winter roots 2 121 Spring Pre-grazed 0 0 Spring Post-grazed 0 0 Inflorescence 0 0 Summer Post-grazed 0 0 Total 4 28 *tpm = Tag counts per million tags
[0345]ORF69 appears to be a MYB-like transcription factor and the transcript accumulates in cold-stressed, dehydrated and rehydrating tissues. The full transcript profile is shown in table 3 below.
TABLE-US-00013 TABLE 3 SAGE_TAG TATGTAAAGG tpm* Winter Pre-grazed 0 0 Winter Post-grazed 0 0 Roots (winter) 0 0 Spring Pre-grazed 0 0 Spring Post-grazed 0 0 Inflorescence 1 41 Summer Post-grazed 0 0 Autumn Pre-grazed 0 0 Autumn Post-grazed 0 0 Mature 1 80 Cold-stressed 1 54 Hydrated 0 0 Dehydrated 1 59 Rehydrated 1 33 Total 5 19 SAGE_TAG TATGTAAAGGTTGCGAA tpm Winter Pre-grazed 0 0 Winter Post-grazed 0 0 Roots (winter) 0 0 Spring Pre-grazed 0 0 Spring Post-grazed 0 0 Inflorescence 1 41 Summer Post-grazed 0 0 Total 1 6 *tpm = Tag counts per million tags
[0346]ORF9 appears to be an extra-cellular stress-tolerance peptide and the transcript accumulates in cold-stressed and rehydrating tissues. The full transcript profile is shown in table 4 below.
TABLE-US-00014 TABLE 4 SAGE_TAG TTTTTGTGAA tpm* Winter Pre-grazed 0 0 Winter Post-grazed 1 37 Winter roots 0 0 Spring Pre-grazed 0 0 Spring Post-grazed 1 61 Inflorescence 0 0 Summer Post-grazed 1 51 Autumn Pre-grazed 1 35 Autumn Post-grazed 3 108 Mature 0 0 Cold-stressed 3 163 Hydrated 0 0 Dehydrated 0 0 Rehydrated 3 99 Total 13 40 *tpm = Tag counts per million tags
Example 2
Identification Variants of ORFs 24, 68, 69 and 9
[0347]The polypeptide sequence encoded by the ORFs 24, 68, 69 and 9 were used as seed sequences to perform BLASTP search against NR_PLANT database (release date 30-07-04). Besides BLASTP, a TBLASTN search was also performed against EST_PLANT database (release date 15-07-04) and NT_PLANT database (release date 15-07-04). To identify the variants cut-off e value was generally set at greater than 1e-05, which was determined based upon the associated score value.
[0348]Selected variant sequences were aligned using the EMBOSS tool EMMA (Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994, CABIOS, 10, 19-29.), which is an interface to the popular multiple alignment program ClustalW. Aligned sequences were visualised using another EMBOSS tool called prettyplot, which displays aligned sequences with colouring and boxing.
Example 3
Preparation of Vectors Comprising Polynucleotides of the Invention for Plant Transformation
[0349]Vectors Comprising ORF24
[0350]Two vectors for over-expressing ORF24 were produced by standard molecular biology techniques. A map of the first vector (pCORF24) is shown in FIG. 1. The sequence of the first vector is shown in FIG. 2 and SEQ ID NO:244. A map of the second vector (pDORF24) is shown in FIG. 3. The sequence of the second vector is shown in FIG. 4 and SEQ ID NO:252.
[0351]Vector Comprising ORF68
[0352]Two vectors for over-expressing ORF68 were produced by standard molecular biology techniques. A map of the first vector (pCORF68) is shown in FIG. 6. The sequence of the first vector is shown in FIG. 7 and SEQ ID NO:245. A map of the second vector (pDORF68) is shown in FIG. 8. The sequence of the second vector is shown in FIG. 9 and SEQ ID NO:253.
[0353]Vector Comprising ORF69
[0354]Two vectors for over-expressing ORF69 were produced by standard molecular biology techniques. A map of the first vector (pCORF69) is shown in FIG. 11. The sequence of the first vector is shown in FIG. 12 and SEQ ID NO:246. A map of the second vector (pDORF69) is shown in FIG. 13. The sequence of this vector is shown in FIG. 14 and SEQ ID NO:254.
[0355]Vector Comprising ORF9
[0356]Two vectors for over-expressing ORF9 were produced by standard molecular biology techniques. A map of the first vector (pCORF9) is shown in FIG. 16. The sequence of the first vector is shown in FIG. 17 and SEQ ID NO:247. A map of the second vector (pDORF9) is shown in FIG. 18. The sequence and features of this vector is shown in FIG. 19 (SEQ ID NO:255).
Example 4
Transformation of Plants within the Polynucleotides of the Invention
[0357]Donor Plant Production to Obtain Tissue Culture Explants
[0358]Seeds to establish contamination free in-vitro cultures were surface sterilized for 3 minutes with 70% (v/v) ethanol; followed by 60 minutes with sodium hypochlorite solution (2.4% active Chlorine) supplemented with a surfactant (0.1% (w/v) of Tween-20 and five rinses with autoclaved distilled water. Plantlets of perennial ryegrass (Lolium perenne L.) cultivar `Limes` (DSV Lippstadt/Germany) were clonally propagated in a 90 mm petridish, containing Murashige and Skoog basal medium supplemented with 0.1 mg/l Benzylaminopurine; pH 5.8 and was solidified with 3.0g/l phytagel (Sigma), at 16ยฐ C. during night and 20ยฐ C. during the day with 14/12 h light/dark cycle. Light intensity of at least 360 ฮผEm-2s-1 at plant height was maintained with sodium vapor lights (SON-T AGRO 400, Phillips). Axillary buds approximately 4-10 mm in size were excised and placed on callus induction medium. 12 explants were cultured per 90 mm petri-dish at 20 ฮผEm-2s-1 and 25ยฐ C. for 28 to 56 days and calli sub-cultured to fresh medium every 14 days.
[0359]Biolistic Gene Transfer, Selection and Regeneration of Transgenic Plants
[0360]Calli were bombarded with DNA-coated particles six to ten weeks after culture of explants. Four to six hours prior to biolistic gene transfer calli were sub-cultured on medium with additional 64 g.l-1 mannitol and retransferred to mannitol free callus subculture medium after the particle bombardment. Regeneration medium differed from the callus induction medium in the phytohormone composition (no 2,4-D and BAP) and the carbohydrate source and concentration (20 g-l-1 sucrose). Calli were cultured in low light at 20 ฮผE.m-2.s-1 and 24ยฐ C. and regenerated initially at 50 ฮผE.m-2.s-1 with a 16 h day, 8 h night cycle at 24ยฐ C.. Two weeks after transfer to regeneration media light intensity was increased to 130 ฮผE.m-2.s-1 with fluorescent lamps (Philips TL-D 58 W/840R).
[0361]The plasmid pJFnpt contains the selectable nptII gene, encoding the enzyme neomycin phosphotransferase II under control of the maize ubiquitin promoter and first intron (Christensen and Quail 1996, Transgenic Res., 5, 213-218). The nptII expression cassette from pJFnpt was inserted into the pPZP 111 vector [Hajdukiewicz et al., 1994, Plant Mol Biol 25 (6) 989-94]. The plasmids pPZP 111, pDORF24, pDORF68, pDORF69, and pDORF9 were isolated as supercoiled DNA using a commercially available DNA Maxiprep Kit (QIAGEN). Vector backbone was removed from both the selectable marker gene expression cassette as well as from the target gene expression cassette by restriction digest, gel electrophoresis and gel purification prior gene transfer. This produced minimal expression cassettes comprising promoter-ORF-terminator for each of the four ORF sequences, and promoter-nptII-terminator from the selectable marker pPZP 111 plasmid. Genetic transformation of perennial ryegrass was essentially carried out as described previously (Altpeter, F., Xu, J. and Ahmed S. 2000, Molecular Breeding, 6, 519-528). In brief, minimal transgene expression cassettes without vector backbone were precipitated on gold particles and delivered to target tissue in a 2:1 molar ratio (target gene expression cassette: selectable marker gene expression cassette) using a DuPont PDS-1000/He (BioRad, USA) device and 1100 psi rupture disks [Sanford et al., 1991 Journal of Methods in Cell and Molecular Biology 3, 3-16]. Particle density was adjusted by the final volume of ethanol in the gold-DNA suspension to 50 ฮผg per bombardment. Five ฮผl of the DNA coated particles were spread on the surface of the macrocarrier. Thirty to 35 callus pieces were put in the center of a petridish per bombardment six to ten weeks after callus initiation.
[0362]Selection was initiated five to seven days after biolistic gene transfer into calli. Two to three biweekly callus subcultures on CIM medium with 50 mg.l-1 paromomycin were followed by two to three biweekly subcultures on 50 mg 1-1 paromomycin containing SRM medium. Four to eight weeks after transfer of selected calli to light, rooted transgenic plants were screened by performing an ELISA for nptII expression using leaf protein extracts. nptII positive plants were further screened by performing a genomic PCR involving ORF24 or ORF68 specific primers as appropriate. Positive primary transformants were transferred to soil under controlled environment conditions and kept at 15ยฐ C./12ยฐ C. day/night with a 12 hour photoperiod and 400 ฮผE.m-2.s-1. Illumination was provided by sodium vapor lamps (Philips SON-T AGRO 400) and vegetatively propagated to produce clones of uniform size and growth. RT-PCR was carried out using standard methodology on regenerated plants to determine the transgene expression levels and lines for drought screening were selected based on the transgene expression level.
[0363]Transgenic lines transformed with the ryegrass promoter DHN-driven ORF9 cassette excised from pDORF9, used in further experiments included D9-144 and D9-150.
[0364]Transgenic lines transformed with the ryegrass promoter DHN-driven ORF24 cassette excised from pDORF24, used in further experiments included D24-106, D24-107, D24-145 and D24-266.
[0365]Transgenic lines transformed with the ryegrass promoter DHN-driven ORF68 cassette excised from pDORF68, used in further experiments included D68-135, D68-137, D68-230 and D68-239.
[0366]Transgenic lines transformed with the ryegrass promoter DHN-driven ORF69 cassette excised from pDORF69, used in further experiments included D69-270; D69-143 and D69-201.
Example 5
Alteration in Tolerance to Environmental Stress in Plants Transformed with Polynucleotides of the Invention
[0367]Drought screening in growth chamber based hydroponics system.
[0368]Clones of selected lines and a non-transgenic control line were established in a hydroponics system that was set up in a growth chamber. The experimental setup involved four hydroponic tanks, representing eight randomized blocks with 15 plants in each block (10 transgenic lines and 5 wild type clones), totaling 120 plants (80 transgenic lines and 40 wild type clones) (FIG. 21). The transgenic lines were D24-145; D24-266, D9-144; D9-150, D68-135; D68-137; D68-230, D69-270; D69-143 and D69-201. After establishment, the plants were exposed to three rounds of drought-stress (plants lifted up from the hydroponic system) comprising of 19 h drought followed by 11 days of recovery in the first cycle and then by 24 hours of drought and 24 h recovery in the second cycle. The third drought stress was performed after 18 days of recovery from the second drought stress and the plants were drought stressed for 42 hours. Biometric parameters such as Quantum yield of Photosystem II (yield) and Electron Transfer Rate (ETR) were measured using a Pulse Modulated Fluorometer (PAM2000) before the drought stress, at the end of the drought cycle, after 24 hours of recovery and at the end of the recovery period. Each data point in the figure represents the average of 12 measurements (three measurements per plant and four plants per line).
[0369]After 19-hours first round of drought-stress, ETR and yield was measured before returning the plants to the hydroponics system for recovery. Line D69-270, line D9-144 and line D68-135 had a significant higher yield and ETR than wildtype. All other transgenic lines were not significantly different than wildtype. Following 24-hours recovery from the 19-hour drought-stress, ETR and yield were measured again. Line D68-135 which performed well during stress did not recover well and performed significantly worse than the wildtype. Line D24-145 recovered significantly better than the wildtype. All other lines, including D69-270 and D9-144 did not show differences from wildtype. After 11 days of recovery, Line D68-135 and line D24-266 did not recover well after the first drought stress and performed significantly worse than the wildtype, while line D68-230 and line D9-150 showed significantly better yields and ETR's than the wildtype, and recovered even to pre-stress values. All other lines did not show significant differences to the wildtype (data not shown).
[0370]After the 24-hour second cycle of drought-stress, photosystemII measurements identified lines D24-266 and D69-143 to be performing significantly worse while four lines (D24-145, D68-137, D9-150 and D69-270) were found to perform significantly better than the wildtype. Line D24-266 which already performed badly under stress could not recover well even after 24 hours recovery from 24-hour stress, while line D69-201 performed significantly worse than the wildtype. Lines D68-137, D68-230, D9-144, D9-150 and D69-270 recovered significantly better than the wildtype (FIGS. 22a and 22b).
[0371]Yield and ETR were measured after a 24 hours recovery period following the 42-hour third cycle of drought-stress carried out 18 days after the 24-hour drought-stress. Lines D9-144, D9-150, D24-145, D68-230 and D69-270 out performed the wildtype and showed significantly higher yield and ETR than the wildtype while three transgenic lines, D69-143; D68-135 and D24-266, performed poorly (FIGS. 23a and 23b). Following nine days of recovery from the 42-hour drought stress, fresh and dry weights (after 48 h at 80 degrees C.) were evaluated separately for roots and shoots. The five above-mentioned transgenic lines (D9-144, D9-150, D24-145, D68-230 and D69-270) had a significantly higher fresh weight (FIG. 24a) and dry weight (FIG. 24b) than the wildtype. The difference between fresh and dry weight (FIG. 24c) indicates that transgenic lines D9-144, D9-150, D24-145, D68-230 and D69-270 had significantly more hydrated leaves at the time of harvest then the wildtypes. The root dry weight (FIG. 25), for seven (including the five above-mentioned lines) of the ten transgenic lines were significantly higher than the wildtype.
[0372]FIG. 26 indicates how viable the wild type plants and transgenic lines D24-145, D9-144 and D9-150 are after three cycles of drought stress as they appeared just after the end of the third drought stress, which lasted for 42 hours.
[0373]Drought Screening in SUN-Lit Chambers
[0374]Transgenic lines over-expressing ORF 9, ORF24, ORF68 or ORF69 were selected for a detailed physiological analysis in SUN-LIT chambers following their performance in hydroponic culture. Transgenic ryegrass and a wildtype ryegrass (WT) were vegetatively propagated in the greenhouse before transplanting to the SPAR chamber, i.e., D9-144; D9-150; D9-187; D24-106; D24-107; D24-145; D68-137; D68-230; D68-239; D68-296; D69-198; D69-258; D69-306, non-transgenic WT. These lines were randomized in a block design of 4 to 8 replications and grown in three bins (FIG. 27a).
[0375]Soil Moisture Monitoring
[0376]The soil moisture (VWC, volumetric water content) was recorded with a TDR300 at an interval of two to three days. Measurements were taken in each row between each of the plants at 20 cm depth (there were 28 positions for monitoring soil water status in each chamber). Following the establishment period subsurface irrigation was cut off. Soil moisture content declined and reached volumetric water content (VWC) below 2.3%. A period of no-irrigation was followed by a re-growth period.
[0377]Above-Ground Biomass
[0378]Leaf clipping dry weight was determined before (>4.3% VWC) and after drought stress (<2.3% VWC). All leaves were cut at 2.5 cm clipping height. The fresh weights (FW) of leaves were measured immediately, then leaves were dried at 80ยฐ C. for 48 h and the dry weight (DW) was measured. The difference between fresh weight and dry weight was used as an indicator of early recovery from drought stress. The ability to grow under drought-stress is calculated as percentage of inverse mass loss, which is calculated as the difference of dry weight and dry weight over fresh weight, i.e. (1-[{Fresh weight-Dry weight}/Fresh weight]) %. None of the transgenic lines produced significantly more biomass then the wildtype during the first weeks after establishment (data not shown). However with the onset of drought-stress, line D24-145 (FIGS. 27b and FIG. 28c) and lines D68-137 and D68-239 produced significantly more biomass than wildtype. The aboveground biomass produced before drought-stress is shown in FIGS. 28a; 28d; 28g, after drought-stress is shown in FIGS. 28b; 28e; 28h and the ability to grow during drought-stress is shown in FIGS. 28c, 28f and 28i.
[0379]The above examples illustrate practice of the invention. It will be appreciated by those skilled in the art that numerous variations and modifications may be made without departing from the spirit and scope of the invention.
Summary of Sequences
TABLE-US-00015 [0380]SEQ ID NO: TYPE SPECIES REFERENCE 1 Polynucleotide Lolium perenne ORF24 cDNA 2 Polynucleotide Lolium perenne ORF24 genomic 3 Polypeptide Lolium perenne ORF24 4 Polynucleotide Lolium perenne ORF68 cDNA 5 Polynucleotide Lolium perenne ORF68 genomic 6 Polypeptide Lolium perenne ORF68 7 Polynucleotide Lolium perenne ORF69 cDNA 8 Polynucleotide Lolium perenne ORF69 genomic 9 Polypeptide Lolium perenne ORF69 10 Polynucleotide Lolium perenne ORF9 cDNA 11 Polynucleotide Lolium perenne ORF9 genomic 12 Polypeptide Lolium perenne ORF9 13 Polynucleotide Triticum aestivum AF542184 14 Polynucleotide Oryza sativa AF190770 15 Polynucleotide Prunus armeniaca AF071893 16 Polynucleotide Fagus sylvatica AJ606475 17 Polynucleotide Lycopersicon esculentum AY044235 18 Polynucleotide Gossypium barbade AY572463 19 Polynucleotide Nicotiana tabacum AY286010 20 Polynucleotide Capsicum annuum AY246274 21 Polynucleotide Cicer arietinum AJ515026 22 Polynucleotide Glycine max AF537220 23 Polynucleotide Arabidopsis thaliana NM 104269 24 Polynucleotide Zea mays AY103951 25 Polynucleotide Triticum monococcum BQ802250 26 Polypeptide Triticum aestivum AF542184 27 Polypeptide Oryza sativa AF190770 28 Polypeptide Prunus armeniaca AF071893 29 Polypeptide Fagus sylvatica AJ606475 30 Polypeptide Lycopersicon esculentum AY044235 31 Polypeptide Gossypium barbade AY572463 32 Polypeptide Nicotiana tabacum AY286010 33 Polypeptide Capsicum annuum AY246274 34 Polypeptide Cicer arietinum AJ515026 35 Polypeptide Glycine max AF537220 36 Polypeptide Arabidopsis thaliana NM 104269 37 Polypeptide Zea mays AY103951 38 Polypeptide Triticum monococcum BQ802250 39 Polynucleotide Triticum aestivum dbj BJ259031.1 40 Polynucleotide Oryza sativa AP002746 41 Polynucleotide Gossypium raimondii gb CO077451.1 42 Polynucleotide Sorghum bicolor gb CD225976.1 43 Polynucleotide Triticum turgidum emb AJ615010.1 44 Polynucleotide Glycine soja gb BM520331.1 45 Polynucleotide Hordeum vulgare gb AJ303355 46 Polynucleotide Medicago truncatula emb AJ502953.1 47 Polynucleotide Saccharum officinarum gb CA132547.1 48 Polynucleotide Lycopersicon esculentum gb BG127541.1 49 Polynucleotide Solanum tuberosum gb BQ120809.2 50 Polynucleotide Bruguiera gymnorrhiza dbj BP950240.1 51 Polynucleotide Vitis vinifera gb CF207250.1 52 Polynucleotide Arabidopsis thaliana gb AAS09982.1 53 Polynucleotide Citrus sinensis gb CF838179.1 54 Polynucleotide Nicotiana benthamiana gb CK281819.1 55 Polynucleotide Glycine max gb AW570097.1 56 Polynucleotide Vitis aestivalis gb CB289054.1 57 Polynucleotide Brassica napus gb CD822965.1 58 Polynucleotide Pinus taeda gb CF667220.1 59 Polynucleotide Allium cepa gb CF436607.1 60 Polynucleotide Mesembryanthemum gb BE130418.1 crystallinum 61 Polynucleotide Malus xiaojinensis gb AY196776 62 Polynucleotide Zea mays AY207047 63 Polynucleotide Hevea brasiliensis AY712938 64 Polynucleotide Antirrhinum majus AY077454 65 Polynucleotide Cucumis sativus AJ870304 66 Polynucleotide Solanum demissum AC091627 67 Polypeptide Triticum aestivum dbj BJ259031.1 68 Polypeptide Oryza sativa dbj BAD72233.1 69 Polypeptide Gossypium raimondii gb CO077451.1 70 Polypeptide Sorghum bicolor gb CD225976.1 71 Polypeptide Triticum turgidum emb AJ615010.1 72 Polypeptide Glycine soja gb BM520331.1 73 Polypeptide Hordeum vulgare emb CAC24845.1 74 Polypeptide Medicago truncatula emb AJ502953.1 75 Polypeptide Saccharum officinarum gb CA132547.1 76 Polypeptide Lycopersicon esculentum gb BG127541.1 77 Polypeptide Solanum tuberosum gb BQ120809.2 78 Polypeptide Bruguiera gymnorrhiza dbj BP950240.1 79 Polypeptide Vitis vinifera gb CF207250.1 80 Polypeptide Arabidopsis thaliana gb AAS09982.1 81 Polypeptide Citrus sinensis gb CF838179.1 82 Polypeptide Nicotiana benthamiana gb CK281819.1 83 Polypeptide Glycine max gb AW570097.1 84 Polypeptide Vitis aestivalis gb CB289054.1 85 Polypeptide Brassica napus gb CD822965.1 86 Polypeptide Pinus taeda gb CF667220.1 87 Polypeptide Allium cepa gb CF436607.1 88 Polypeptide Mesembryanthemum gb BE130418.1 crystallinum 89 Polypeptide Malus xiaojinensis gb AAO45179.1 90 Polypeptide Zea mays gb AAO47339.1 91 Polypeptide Hevea brasiliensis gb AAU06309.1 92 Polypeptide Antirrhinum majus gb AAL78742.1 93 Polypeptide Cucumis sativus emb CAI30890.1 94 Polypeptide Solanum demissum gb AAK91894.1 95 Polynucleotide Oryza sativa dbj AK070648.1 96 Polynucleotide Aegilops speltoides gb BF291316.1 97 Polynucleotide Triticum aestivum gb CV782162.1 98 Polynucleotide Saccharum officinarum gb CA141214.1 99 Polynucleotide Dactylis glomerata gb AY011121.1 100 Polynucleotide Amborella trichopoda gb CD484064.1 101 Polynucleotide Arabidopsis thaliana emb BX831747.1 CNS0A16X 102 Polynucleotide Glycine max gb CO979572.1 103 Polynucleotide Gossypium raimondii gb CO092212.1 104 Polynucleotide Populus tremula x Populus gb BU835049.1 tremuloides 105 Polynucleotide Malux x domestica gb CO903744.1 106 Polynucleotide Solanum tuberosum gb BG351755.1 107 Polynucleotide Medicago truncatula gb CA921208.1 108 Polynucleotide Ipomoea nil dbj BJ576569.1 109 Polynucleotide Hordeum vulgare gb CB879962.1 110 Polynucleotide Crocus sativus gb BM956319.1 111 Polynucleotide Zea mays gb BM336249.1 112 Polynucleotide Sorghum bicolor gb BE361091.1 113 Polynucleotide Physcomitrella patens gb AY077758.1 114 Polynucleotide Vitis sp gb CF205668.1 115 Polynucleotide Picea engelmannii x Picea gb CO210220.1 sitchensis 116 Polynucleotide Nicotiana tabacum dbj AB020023.1 117 Polynucleotide Liriodendron tulipifera gb CV000669.1 118 Polynucleotide Nicotiana benthamiana gb CK295284.1 119 Polynucleotide Petroselinum crispum gb U56834.1 PCU56834 120 Polynucleotide Asparagus officinalis gb CV291964.1 121 Polynucleotide Poncirus trifoliata gb CV707436.1 122 Polynucleotide Lotus corniculatus var. dbj BP083458.1 japonicus 123 Polynucleotide Avena sativa gb AAD32676.1 124 Polynucleotide Capsella rubella gb AAS66778.1 125 Polynucleotide Oryza sativa subsp. indica tpg DAA05115.1 126 Polynucleotide Lycopersicon esculentum gb BT014501.1 127 Polypeptide Genus species dbj AK070648.1 128 Polypeptide Aegilops speltoides gb BF291316.1 129 Polypeptide Triticum aestivum gb CV782162.1 130 Polypeptide Saccharum officinarum gb CA141214.1 131 Polypeptide Dactylis glomerata gb AY011121.1 132 Polypeptide Amborella trichopoda gb CD484064.1 133 Polypeptide Arabidopsis thaliana emb BX831747.1 CNS0A16X 134 Polypeptide Glycine max gb CO979572.1 135 Polypeptide Gossypium raimondii gb CO092212.1 136 Polypeptide Populus tremula x Populus gb BU835049.1 tremuloides 137 Polypeptide Malux x domestica gb CO903744.1 138 Polypeptide Solanum tuberosum gb BG351755.1 139 Polypeptide medicago truncatula gb CA921208.1 140 Polypeptide Ipomoea nil dbj BJ576569.1 141 Polypeptide Hordeum vulgare gb CB879962.1 142 Polypeptide Crocus sativus gb BM956319.1 143 Polypeptide Zea mays gb BM336249.1 144 Polypeptide Sorghum bicolor gb BE361091.1 145 Polypeptide Physcomitrella patens gb AY077758.1 146 Polypeptide Vitis sp gb CF205668.1 147 Polypeptide Picea engelmannii x Picea gb CO210220.1 sitchensis 14815 Polypeptide Nicotiana tabacum dbj AB020023.1 149 Polypeptide Liriodendron tulipifera gb CV000669.1 150 Polypeptide Nicotiana benthamiana gb CK295284.1 151 Polypeptide Petroselinum crispum gb U56834.1 PCU56834 152 Polypeptide Asparagus officinalis gb CV291964.1 153 Polypeptide Poncirus trifoliate gb CV707436.1 154 Polypeptide Lotus corniculatus var. dbj BP083458.1 japonicus 155 Polypeptide Avena sativa gb AAD32676.1 156 Polypeptide Capsella rubella gb AAS66778.1 157 polypeptide Oryza sativa subsp. indica tpg DAA05115.1 158 Polypeptide Lycopersicon esculentum gb BT014501.1 159 Polynucleotide Triticum aestivum gb AAN06944.1 160 Polynucleotide Oryza sativa gb AAS72368.1 161 Polynucleotide Hordeum vulgare sp Q9ARD5 LT02 HORVU 162 Polynucleotide Zea mays gb AY107179.1 163 Polynucleotide Oryza sativa dbj AK070872.1 164 Polynucleotide Oryza sativa gb AC093089.1 165 Polynucleotide Oryza sativa dbj AB030211.1 166 Polynucleotide Oryza sativa dbj AK062410.1 167 Polynucleotide Zea mays gb AY103848.1 168 Polynucleotide Zea mays gb AY108684.1 169 Polynucleotide Oryza sativa gb AY554051.1 170 Polynuclotide Hordeum vulgare emb AJ310995.1 HVU310995 171 Polynucleotide Lophopyrum elongatum gb U00966.1 U00966 172 Polynucleotide Oryza sativa gb AY607689.1 173 Polynucleotide Oryza sativa ref NM 184595.1 174 Polynucleotide Zea mays gb AY105302.1 175 Polynucleotide Hordeum vulgare emb AJ310994.1 HVU310994 176 Polynucleotide Sorghum bicolor gb CD229091.1 CD229091 177 Polynucleotide Triticum aestivum gb CD913648.1 CD913648 178 Polynucleotide Hordeum vulgare gb BI780134.2 BI780134 179 Polynucleotide Zea mays gb CF042363.1 CF042363 180 Polynucleotide Oryza sativa gb CF319949.1 CF319949 181 Polynucleotide Oryza sativa ref NM 183567.1 182 Polynucleotide Hordeum vulgare emb Z25537.1 HVBLT101 183 Polynucleotide Arabidopsis thaliana ref NP 974629.1 184 Polynucleotide Arabidopsis thaliana ref NP 194795.1 185 Polynucleotide Arabidopsis thaliana ref NP 194794.1 186 Polynucleotide Brassica rapa gb AAT11798.1 187 Polynucleotide Arabidopsis thaliana ref NP 179982.1 188 Polynucleotide Arabidopsis thaliana gb AY060504.1 189 Polynucleotide Arabidopsis thaliana emb BX842170.1 CNS09YE9 190 Polynucleotide Arabidopsis thaliana emb BX825999.1 CNS0A6CK 191 Polynucleotide Poncirus trifoliate gb AY316308.1 192 Polynucleotide Arabidopsis thaliana gb AC005770.3 193 Polynucleotide Arabidopsis thaliana gb AY084701.1 194 Polynucleotide Arabidopsis thaliana ref NM 104551.1 195 Polynucleotide Solanum tuberosum dbj AB061265.1 196 Polynucleotide Mesembryanthemum gb CA836518.1 crystallinum CA836518 197 Polynucleotide Citrus sinensis gb CN183349.1 CN183349 198 Polynucleotide Populus balsamifera gb BU870658.1 BU870658 199 Polynucleotide Physcomitrella patens gb AAR87655.1 200 Polynucleotide Physcomitrella patens gb AY496072.1 201 Polypeptide Triticum aestivum gb AAN06944.1 202 Polypeptide Oryza sativa gb AAS72368.1 203 Polypeptide Hordeum vulgare sp Q9ARD5 LT02 HORVU 204 Polypeptide Zea mays gb AY107179.1 205 Polypeptide Oryza sativa dbj AK070872.1 206 Polypeptide Oryza sativa gb AC093089.1 207 Polypeptide Oryza sativa dbj AB030211.1 208 Polypeptide Oryza sativa dbj AK062410.1 209 Polypeptide Zea mays gb AY103848.1 210 Polypeptide Zea mays gb AY108684.1 211 Polypeptide Oryza sativa gb AY554051.1 212 Polypeptide Hordeum vulgare emb AJ310995.1 HVU310995 213 Polypeptide Lophopyrum elongatum gb U00966.1 U00966 214 Polypeptide Oryza sativa gb AY607689.1
215 Polypeptide Oryza sativa ref NM 184595.1 216 Polypeptide Zea mays gb AY105302.1 217 Polypeptide Hordeum vulgare emb AJ310994.1 HVU310994 218 Polypeptide Sorghum bicolor gb CD229091.1 CD229091 219 Polypeptide Triticum aestivum gb CD913648.1 CD913648 220 Polypeptide Hordeum vulgare gb BI780134.2 BI780134 221 Polypeptide Zea mays gb CF042363.1 CF042363 222 Polypeptide Oryza sativa gb CF319949.1 CF319949 223 Polypeptide Oryza sativa ref NM 183567.1 224 Polypeptide Hordeum vulgare emb Z25537.1 HVBLT101 225 Polypeptide Arabidopsis thaliana ref NP 974629.1 226 Polypeptide Arabidopsis thaliana ref NP 194795.1 227 Polypeptide Arabidopsis thaliana ref NP 194794.1 228 Polypeptide Brassica rapa gb AAT11798.1 229 Polypeptide Arabidopsis thaliana ref NP 179982.1 230 Polypeptide Arabidopsis thaliana gb AY060504.1 231 Polypeptide Arabidopsis thaliana emb BX842170.1 CNS09YE9 232 Polypeptide Arabidopsis thaliana emb BX825999.1 CNS0A6CK 233 Polypeptide Poncirus trifoliata gb AY316308.1 234 Polypeptide Arabidopsis thaliana gb AC005770.3 235 Polypeptide Arabidopsis thaliana gb AY084701.1 236 Polypeptide Arabidopsis thaliana ref NM 104551.1 237 Polypeptide Solanum tuberosum dbj AB061265.1 238 Polypeptide Mesembryanthemum gb CA836518.1 crystallinum CA836518 239 Polypeptide Citrus sinensis gb CN183349.1 CN183349 240 Polypeptide Populus balsamifera gb BU870658.1 BU870658 241 Polypeptide Physcomitrella patens gb AAR87655.1 242 Polypeptide Physcomitrella patens gb AY496072.1 243 Polynucleotide Lolium perenne promoter 244 Polynucleotide vector ORF24 245 Polynucleotide vector ORF68 246 Polynucleotide vector ORF69 247 Polynucleotide vector ORF9 248 Polypeptide consensus ORF24 249 Polypeptide consensus ORF68 250 Polypeptide consensus ORF69 251 Polypeptide consensus ORF9 252 Polynucleotide vector ORF24 253 Polynucleotide vector ORF68 254 Polynucleotide vector ORF69 255 Polynucleotide vector ORF9
Sequence CWU
1
25511264DNALolium perenne 1ctcttcacct tgtcccacct gctcccgccg catctcacca
gacaccagcc atgtgcggcg 60gcgcgatcct ctccgacatc atcccgccgc cgcgccgggt
cacggacggc cccctctggc 120ggaaccagaa gaagaagggg ccgacgggag atgctccggt
ggcgaggcgc cgccgcgcgc 180ccgaggagga ggagagctac gaggacttcg aggccgactt
cgagggcttc gaggaggggc 240tcggggaggc cgagatttgg tccgaggacg aggccaagcc
cttctccgcc gccaggaaac 300gcgtcgccgc agctgctgct gttgatggct gtgcatcaga
gtccgctaaa aggaagagaa 360agacccagtt caggggcatc cgccgccgcc cttggggtaa
atgggctgct gaaatcagag 420accctcgcaa gggtgtccgt gtctggcttg gcacttacaa
ctctgccgag gaagctgcca 480gagcctatga tgctgaagca agaaggatcc gtggcaagaa
ggcaaaggtc aatttcccag 540atgaggctcc tgtggcttct caaaagcact gtgctaagcc
tacctttgtg acgttgcctg 600agttcaacac cgaagagaag ccgatagtca acgccgtggc
caacacaaac gcgtattcct 660atcctcttgt tgactacacc gtctgtgagc catttgtgca
gcctcagaac atgtcatttg 720tgccagcgat taatgcagtt gaggttcctt tcatgaatct
ttcctctgac cagggtagca 780actcctttgg ttgctcagac tttagctggg agaatggtac
caagactcct gacatcacat 840ctgtgcttgc atccattccc acctcgaccg aggttgatga
atctgcattc cttcagaaca 900atgccagtga tgcatcacta cctcctgtga tggatactgc
caatgttgat ctcgccgact 960tggaaccata catgaagttc ctcatggatg gtgcttcaga
tgagtcactt gacaacattc 1020taagctgtga cgggtctgag gacatggtca gcaacctgga
cctttggact ttcgatgaca 1080tgcccatttc tgccgatttc tactgaggct ctgaggtcaa
ttggtgcctg tacatataga 1140caatgggaat aagtattctg gacatcaaga agtgcttgtg
tcaggcgcct ctgttgagca 1200gtagttatgt ttgtatactt ttatatctag cttaaatctc
agtttgatcg caagtctgaa 1260gtga
126421824DNALolium perenne 2ctcttcacct tgtcccacct
gctcccgccg catctcacca gacaccagcc atgtgcggca 60gcgcgatcct ctccgacatc
atcccgccgc cgcgccgggt cacggacggc cccctctggc 120ggaaccagaa gaagaagggg
ccgacgggag atgctccggt ggcgaggcgc cgccgcgcgc 180ccgaggagga ggagagctac
gaggacttcg aggccgactt cgagggcttc gaggaggggc 240tcggggaggc cgagatctgg
tccgaggacg aggccaagcc cttctccgcc gccaggaaac 300gcgtcgccgc aggtatagcc
gccctttttg ggtcaccggc tttggatctg tggaaccgcg 360tgctaattct gtttacgatt
tgggagatag atttgagttt ctcaggtgat ctgctgctcg 420gattagatag ttgcatcttc
gatttgtttg ctatgaagtt aaatctgtgc aattgttcat 480ctcaagtccg ttaattcagc
gggtccatgt tgtcgattag tctggtctct agtgctgtgt 540ctttttttta aaaaaacaca
atctctggtg ctgtgtcgat ccttagtttt taggataact 600ctcctaaatc atgaatatgg
tatcaactct tattggtgca tacatagatc gagcttcctc 660gcaagcatat gagttgggct
gttcctcagg attagacttt taatgtcaag tttcgactta 720ccctgacttt ctgtatgtaa
actaaaatct ttatctcact gcttcatcct gattgaataa 780atgcatgtac agctgctgct
gttgatggct gggcatcaga gtccgccaaa aggaagagaa 840agacccagtt caggggcatc
cgccgccgcc cttggggtaa atgggctgct gaaatcagag 900accctcgcaa gggtgtccgt
gtctggcttg gcacttacaa ctctgccgag gaagctgcca 960gagcctatga tgctgaagca
agaaggatcc gtggcaagaa ggcaaaggtc aatttcccag 1020atgaggctcc tgtggcttct
caaaagcact gtgctaagcc tacctttgtg acgttgcctg 1080agttcaacac cgaagagaag
ccgatagtca acgccgtggc caacacaaac gcgtattcct 1140atcctcttgt tgactacacc
gtctgtgagc catttgtgca gcctcagaac atgtcatttg 1200tgccagcggt taatgcagtt
gaggttcctt tcatgaatct ttcctctgac cagggtagca 1260actcctttgg ttgctcagac
tttagctggg agaatggtac caagactcct gacatcacat 1320ctgtgcttgc atccattccc
acctcgaccg aggttgatga atctgcattc cttcagaaca 1380atgccagtga tgcatcacta
cctcctgtga tggatactgc caatgttgat ctcgccgatt 1440tggaaccata catgaagttc
ctcgtggatg gtgcttcaga tgagtcactt gacaactttc 1500taagctgtga cgggtctgag
gacatggtca gcaacctgga cctttggact ttcgatgaca 1560tgcccatttc tgccgatttc
tactgaggct ctgaggtcaa ttggtgcctg tacgtataga 1620taatgggtaa gcatctgcaa
ctgcggaaat aactcactgt tatacttcag tttccatttc 1680cataactacc ccacttcact
tttcaggaat aagtattctg gacatcaaga agtgcttgtg 1740tcaggcgcct ctgttgagca
gtagttatgt ttgtatactt ttatatctag cttaaatctc 1800agtttgatcg caagtctgaa
gtga 18243351PRTLolium perenne
3Met Cys Gly Gly Ala Ile Leu Ser Asp Ile Ile Pro Pro Pro Arg Arg1
5 10 15Val Thr Asp Gly Pro Leu
Trp Arg Asn Gln Lys Lys Lys Gly Pro Thr 20 25
30Gly Asp Ala Pro Val Ala Arg Arg Arg Arg Ala Pro Glu
Glu Glu Glu 35 40 45Ser Tyr Glu
Asp Phe Glu Ala Asp Phe Glu Gly Phe Glu Glu Gly Leu 50
55 60Gly Glu Ala Glu Ile Trp Ser Glu Asp Glu Ala Lys
Pro Phe Ser Ala65 70 75
80Ala Arg Lys Arg Val Ala Ala Ala Ala Ala Val Asp Gly Cys Ala Ser
85 90 95Glu Ser Ala Lys Arg Lys
Arg Lys Thr Gln Phe Arg Gly Ile Arg Arg 100
105 110 Arg Pro Trp Gly Lys Trp Ala Ala Glu Ile Arg Asp
Pro Arg Lys Gly 115 120 125Val Arg
Val Trp Leu Gly Thr Tyr Asn Ser Ala Glu Glu Ala Ala Arg 130
135 140Ala Tyr Asp Ala Glu Ala Arg Arg Ile Arg Gly
Lys Lys Ala Lys Val145 150 155
160Asn Phe Pro Asp Glu Ala Pro Val Ala Ser Gln Lys His Cys Ala Lys
165 170 175Pro Thr Phe Val
Thr Leu Pro Glu Phe Asn Thr Glu Glu Lys Pro Ile 180
185 190 Val Asn Ala Val Ala Asn Thr Asn Ala Tyr Ser
Tyr Pro Leu Val Asp 195 200 205Tyr
Thr Val Cys Glu Pro Phe Val Gln Pro Gln Asn Met Ser Phe Val 210
215 220Pro Ala Ile Asn Ala Val Glu Val Pro Phe
Met Asn Leu Ser Ser Asp225 230 235
240Gln Gly Ser Asn Ser Phe Gly Cys Ser Asp Phe Ser Trp Glu Asn
Gly 245 250 255Thr Lys Thr
Pro Asp Ile Thr Ser Val Leu Ala Ser Ile Pro Thr Ser 260
265 270 Thr Glu Val Asp Glu Ser Ala Phe Leu Gln
Asn Asn Ala Ser Asp Ala 275 280
285Ser Leu Pro Pro Val Met Asp Thr Ala Asn Val Asp Leu Ala Asp Leu 290
295 300Glu Pro Tyr Met Lys Phe Leu Met
Asp Gly Ala Ser Asp Glu Ser Leu305 310
315 320Asp Asn Ile Leu Ser Cys Asp Gly Ser Glu Asp Met
Val Ser Asn Leu 325 330
335Asp Leu Trp Thr Phe Asp Asp Met Pro Ile Ser Ala Asp Phe Tyr
340 345 350 4673DNALolium perenne
4atggccataa ctccaggacc tgcagtggca acaacggcgg cggtggtgcc ggtggtgggc
60tgaggctgtt cggtgtgcag ctgcaagttg gtgctgcacc tctgaagaag agcttcagca
120tggagtgcct ctcgtcgtcg gcctactacg cggccgcagc ggtggccgcg tccaactcgt
180cgtcgtccgt gtcatcgtca tcgtcgctgg tctcggtgga ggagaacgcc gagaagatgg
240gccacggcta cctctccgat ggtctcatgg gcagggctca ggagaggaag aagggggttc
300catggacgga ggatgagcac cggaggttcc tggccggctt agagaagctc gggaaaggcg
360actggcgagg catctcccgg cacttcgtcg cgacacgcac cccgacgcag gtggccagcc
420acgcccagaa gtacttcctc cggcaggccg gcctcgcgca gaagaagcgg aggtccagcc
480tcttcgacgt ggccgagaag aatggcgaca aggcggcgaa ggagagtcgt ccgagactga
540aacacgagac tagcagctcc gtggacggga tggcaattcg gtcattccct gctctgtctc
600taggacccag caggccgagg cccgacgccg ccgtgcttcc accatgcctg accttgatgc
660cgagctattc gtc
67351256DNALolium perenne 5ttgttgcttt cctgtgccat cgactggcat ggctcggaaa
tgctccagct gcgggcataa 60tggccataac tccaggacct gcagtggcaa caacggcggc
ggtggtgccg gtggtgggct 120gaggctgttc ggtgtgcagc tgcaagttgg tgctgcacct
ctgaagaaga gcttcagcat 180ggagtgcctc tcgtcgtcgg cctactacgc ggccgcagcg
gtggccgcgt ccaactcgtc 240gtcgtccgtg tcatcgtcat cgtcgctggt ctcggtggag
gagaacgccg agaagatggg 300ccacggctac ctctccgatg gtctcatggg cagggctcag
gagaggaaga agggtgagtt 360cgtgtactgg tttcttgagc agttcgttgg tccggtatac
ctcgctgaca cgcttgattt 420gctatgctat ggattttgga tattaatcat attatagtat
gtgatagcga tctaaccatc 480atgcatgatg tctaaggcca gattaagaaa actattctga
aatttttttt ccccctagct 540agagactaaa gatctgaaga ttcttgttga tgcatgagtg
gttgtatgac ttgtttgtat 600ccaattgtgc catcagttgc tatctgctat gccaaacttg
caactagata acaggaaata 660cttagtcttt caggtcttaa ctttcagtaa tcatgtctaa
tagcttgcac gaatcagttt 720gttctctctt cttcacctga agatgtccag ttacgttggg
tgaactaatc gtgtgacgca 780tggcatcagg ggttccatgg acggaggatg agcaccggag
gttcctggcc ggcttagaga 840agctcgggaa aggcgactgg cgaggcatct cccggcactt
cgtcgcgaca cgcaccccga 900cgcaggtggc cagccacgcc cagaagtact tcctccggca
ggccggcctc gcgcagaaga 960agcggaggtc cagcctcttc gacgtggtac gtgcacgcct
caaaacgcaa gctggagttg 1020tggacgtagt aacaaaccag ctgacatgca cgaaccttcc
tctcttttct tcaggccgag 1080aagaatggcg acaaggcggc gaaggagagt cgtccgagac
tgaaacacga gactagcagc 1140tccgtggacg ggatggcaat tcggtcattc cctgctctgt
ctctaggacc cagcaggccg 1200aggcccgacg ccgccgtgct tccaccatgc ctgaccttga
tgccgagcta ttcgtc 12566234PRTLolium perenne 6Met Ala Arg Lys Cys
Ser Ser Cys Gly His Asn Gly His Asn Ser Arg1 5
10 15Thr Cys Ser Gly Asn Asn Gly Gly Gly Gly Ala
Gly Gly Gly Leu Arg 20 25
30Leu Phe Gly Val Gln Leu Gln Val Gly Ala Ala Pro Leu Lys Lys Ser
35 40 45Phe Ser Met Glu Cys Leu Ser Ser
Ser Ala Tyr Tyr Ala Ala Ala Ala 50 55
60Val Ala Ala Ser Asn Ser Ser Ser Ser Val Ser Ser Ser Ser Ser Leu65
70 75 80Val Ser Val Glu Glu
Asn Ala Glu Lys Met Gly His Gly Tyr Leu Ser 85
90 95Asp Gly Leu Met Gly Arg Ala Gln Glu Arg Lys
Lys Gly Val Pro Trp 100 105
110Thr Glu Asp Glu His Arg Arg Phe Leu Ala Gly Leu Glu Lys Leu Gly
115 120 125Lys Gly Asp Trp Arg Gly Ile
Ser Arg His Phe Val Ala Thr Arg Thr 130 135
140Pro Thr Gln Val Ala Ser His Ala Gln Lys Tyr Phe Leu Arg Gln
Ala145 150 155 160Gly Leu
Ala Gln Lys Lys Arg Arg Ser Ser Leu Phe Asp Val Ala Glu
165 170 175Lys Asn Gly Asp Lys Ala Ala
Lys Glu Ser Arg Pro Arg Leu Lys His 180 185
190Glu Thr Ser Ser Ser Val Asp Gly Met Ala Ile Arg Ser Phe
Pro Ala 195 200 205Leu Ser Leu Gly
Pro Ser Arg Pro Arg Pro Asp Ala Ala Val Leu Pro 210
215 220Pro Cys Leu Thr Leu Met Pro Ser Tyr Ser225
23071274DNALolium perenne 7gatctgctgt gctgtggtga gagctgccaa
gaagctgagc agtgctactc tggaggagtt 60cgccaaagga tttgtttctg tttcggtttt
ggtaatcact aaataatgga ggaagtggag 120gaggcgaaca ggatagccgt tgagagctgc
cacagagtgc tgggcctgct ctcccagtcg 180cagggcccgg cgcagctcag gtgcatagct
ctgggcacgg acgacgcctg cgccaagttc 240cgcaaggtgg tctccctcct cggcaacgaa
gcaggaggag ggggagcagt aagccatccc 300agagccaagg ttgcgagcag gaaacagaca
ccggccttct tgagccagaa gggcttcctg 360gacaacaaca ccccggtggt ggtgctcaac
agcagcgccc acccttccac cagctccgcg 420caggcgtatc ctaggaacag cattctggat
tcgcagaacg cgcacccgat cggagggcct 480cccaagctgg tccagccatt gtctgcccac
ttccagttcg gcaacgtatc gcggtatcag 540ttccagcatc agcaccagca gcagaagatg
caggctgaga tgttcaagag aagcaacagt 600atcagtggga tcaacctgaa gttcgacagc
cccagcgcgg ccacggggac gatgtcgtcc 660gcgagatcct tcatgtcatc tctgagcatg
gatggtagtg tggctagcct ggatgccaag 720tcttcgtcgt tccatttgat cggcgggcct
gctatgagtg accccgtgaa tgcgcagcag 780gcgccgagga ggcggtgcac ggggcgtggg
gaggatggga atggcaagtg cgctgtaaat 840ggcaggtgcc attgctcaaa gaggagcagg
aagttgcggg tgaagaggac gataaaagtt 900cctgccatta gtaataaaat tgcttatata
cctccagatg aatactcatg gaggaagtat 960gggcagaagc ctattaaggg ttcccctcat
cccagggggt actacaaatg tagcagtgtc 1020aggggctgcc cagccaggaa gcatgttgaa
cgttgtgtgg atgatgcgtc aatgctcatt 1080gtgacatacg aaggtgaaca caaccacacg
cgaatgccgg ctcagtctgc acaggcttag 1140gaagtcactt tgatcatcac accctctcca
gggaatacca actcgcctgc ccttgtcgat 1200ggccgactgc actgttcttc taaattagaa
ttacaaagtg acaaaaactg ggttccattt 1260tgagcagttg atga
127482128DNALolium perenne 8gatctgctgt
gctgtggtga gagctgccaa gaagctgagc agtgctactc tggaggagct 60caccaaagga
ttgtttctgt ttcggttttg gcaatcacta aataatggag gaagtggagg 120aggccaacag
gatagccgtt gagagctgcc acagagtgct gggcctgctt tcccagtcgc 180aggacccggc
gcagctcagg agcatagctc tgggcacgga cgacgcctgc gccaagttcc 240gcaaggtggt
ctccctcctc ggcaacgaag gaggaggggg agcagtaagc catcccagag 300ccaaggttgc
gagcaggaaa cagaccccgg ccttcttgag ccagaagggc ttcctggaca 360acaacacccc
ggtggtggtg ctgaacagca gcgcccaccc ttccactagc tccgcgcagg 420cgtatcctag
gaacaccatt ctggattcgc acaccgcgca cccgatcgga gggcctccca 480agctggtcca
gccattgtcc gcgcacttcc agttcggcaa cgtatcgcgg tatcagttcc 540agcatcagca
ccagcagcag aagatgcagg ctgagatgtt caagagaagc aacagtatca 600gtgggattaa
cctgaagttc gacagcccca gcgcggccac ggggacgatg tcgtccgcga 660gatccttcat
gtcatctttg agcatggatg gtagcgtggc tagcctggat gccaagtctt 720cctcgttcca
tttgatcggt gggcctgcta tgagtgaccc ggtgaatgcg cagcaggcgc 780cgaggaggcg
gtgcacgggg cgtggggagg atgggaatgg caagtgcgct gcaaatggca 840ggtgccattg
ctcaaagagg aggtaaatac tcttatctta gtgtgtatga ttcttgcttg 900ctcttctatt
caaggtagaa taccatgaga attgttctgt tccctatttc agcaggaagt 960tgcgggtgaa
gaagacgatt aaagttcctg ccattagtaa taaaattgct gatatacctc 1020cagatgaata
ctcatggagg aagtatgggc agaagccaat taagggttcc cctcatccca 1080ggtatgaact
gagcactatc tgttagtgtc attttcttgc acacatattc ttgattatac 1140ggtgatggag
tagtggcaat gatgctataa tcaccatgac tcatcaattt tctaattatt 1200tatcatatgt
ataactgcac atatccccca tgaactactc aagtgcctca tgataaatga 1260tggctctgtg
ataatcagaa cacactttat ccatggtttg cagggtgttt tacatgctcc 1320tgataatcag
aacactcttt atacagtata gtaatcaaaa ctctccttat gcagggtgtt 1380ttgtatgttc
ctgaatagtt actttgtgaa taatgtcttt cattcttctt gtgcacactt 1440tcttaaaata
gatcaatccc gagtcttaaa gtggccagtg gccacttcgt aattcagtct 1500accatgattc
agtctttaag tggacatctt taatgctatc gtgattcagt ctactacgta 1560ctatacttta
cctattcata tcactttccc accttgtcta tcttaaattt cctgatgata 1620aaatacacaa
atatagctat acggtaatag caaacgcatg ggtatctttt cgagaaaaaa 1680acaaacacat
gggtatggct gtctgaattg agaaaaaact tttcctcttt ctagcaagca 1740ctagatatag
aaacacgatt catggcgcat ctatttttat ctccaatcca caatgctaat 1800tctgatgtgt
ctcttaagac caatccactg attccttaaa cataatgcag ggggtactac 1860aaatgtagca
gtgtcagggg ctgcccagcc aggaagcatg ttgaacgttg tgtggatgat 1920gcgtcaatgc
tcattgtgac atacgagggt gaacacaacc acacgcgaat gccggctcag 1980tctgcacagg
cttagggaat cactttgatc atcacaccct ctccagggaa tactaactcg 2040cctgcccttg
tcgatggccg actgcactgt tcttctaaat tagaattaca aagtgacaaa 2100aactgggttc
catttgagca gttgatga
21289344PRTLolium perenne 9Met Glu Glu Val Glu Glu Ala Asn Arg Ile Ala
Val Glu Ser Cys His1 5 10
15Arg Val Leu Gly Leu Leu Ser Gln Ser Gln Asp Pro Ala Gln Leu Arg
20 25 30Cys Ile Ala Leu Gly Thr Asp
Asp Ala Cys Ala Lys Phe Arg Lys Val 35 40
45Val Ser Leu Leu Gly Asn Glu Ala Gly Gly Gly Gly Ala Val Ser
His 50 55 60Pro Arg Ala Lys Val Ala
Ser Arg Lys Gln Thr Pro Ala Phe Leu Ser65 70
75 80Gln Lys Gly Phe Leu Asp Asn Asn Thr Pro Val
Val Val Leu Asn Ser 85 90
95Ser Ala His Pro Ser Thr Ser Ser Ala Gln Ala Tyr Pro Arg Asn Ser
100 105 110Ile Leu Asp Ser Gln Asn
Ala His Pro Ile Gly Gly Pro Pro Lys Leu 115 120
125Val Gln Pro Leu Ser Ala His Phe Gln Phe Gly Asn Val Ser
Arg Tyr 130 135 140Gln Phe Gln His Gln
His Gln Gln Gln Lys Met Gln Ala Glu Met Phe145 150
155 160Lys Arg Ser Asn Ser Ile Ser Gly Ile Asn
Leu Lys Phe Asp Ser Pro 165 170
175Ser Ala Ala Thr Gly Thr Met Ser Ser Ala Arg Ser Phe Met Ser Ser
180 185 190Leu Ser Met Asp Gly
Ser Val Ala Ser Leu Asp Ala Lys Ser Ser Ser 195
200 205Phe His Leu Ile Gly Gly Pro Ala Met Ser Asp Pro
Val Asn Ala Gln 210 215 220Gln Ala Pro
Arg Arg Arg Cys Thr Gly Arg Gly Glu Asp Gly Asn Gly225
230 235 240Lys Cys Ala Val Asn Gly Arg
Cys His Cys Ser Lys Arg Ser Arg Lys 245
250 255Leu Arg Val Lys Arg Thr Ile Lys Val Pro Ala Ile
Ser Asn Lys Ile 260 265 270Ala
Tyr Ile Pro Pro Asp Glu Tyr Ser Trp Arg Lys Tyr Gly Gln Lys 275
280 285Pro Ile Lys Gly Ser Pro His Pro Arg
Gly Tyr Tyr Lys Cys Ser Ser 290 295
300Val Arg Gly Cys Pro Ala Arg Lys His Val Glu Arg Cys Val Asp Asp305
310 315 320Ala Ser Met Leu
Ile Val Thr Tyr Glu Gly Glu His Asn His Thr Arg 325
330 335Met Pro Ala Gln Ser Ala Gln Ala
34010165DNALolium perenne 10atgggttcgg agacctttct ggagatcctg ctggccatcc
tgctgccgcc gctcggcgtt 60ttcctccgct tcggcatcgg cgtggagttc tggatctgcc
tgctactcac cctgctgggc 120tacatccccg gcatcatcta cgccgtcttc gtccttgttg
catag 16511253DNALolium perenne 11aatgggttcg
gagacctttc tggagatcct gctggccatc ctgctgccgc cgctcggcgt 60tttcctccgc
ttcggcatcg gcgtaagcta ccaaaccatt cagcgatttc agggtgtgta 120tgtaatgata
gatatattga tttgatggtc ggttcatgca tgtctgcagg tggagttctg 180gatctgcctg
ctactcaccc tgctgggcta catccccggc atcatctacg ccgtcttcgt 240ccttgttgca
tag
2531254PRTLolium perenne 12Met Gly Ser Glu Thr Phe Leu Glu Ile Leu Leu
Ala Ile Leu Leu Pro1 5 10
15Pro Leu Gly Val Phe Leu Arg Phe Gly Ile Gly Val Glu Phe Trp Ile
20 25 30Cys Leu Leu Leu Thr Leu Leu
Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35 40
45Val Phe Val Leu Val Ala 50131475DNATriticum
aestivummisc_feature(437)..(437)n is a, c, g, or t 13atcatcacac
acacacacac accaacacca caccaaccga cccgtctcgt ctcgcaagcg 60tttcactctt
tccctttcct ttcgcctcgc tctacccgcg gtcccacgtg ctccagcagc 120catgtgcggc
ggcgccatcc tctccgacat catcccgccg ccgcgccggg ccaccggcgg 180caacgtctgg
cgggcggaca agaagaggcg ggccaggccc gacgccgccg cggggaggcc 240ccgccgtgcg
cccgaggagg agttccagga ggaggagggc gacgcggagt tcgaggccga 300cttcgagggg
ttcgtggagg cggaggagga gtccgacggc gaggccaagc ccttccccgt 360ccgcaggagc
ggcttctccg gagatggatt gaaggcaact gctgctggtg atgatgactg 420tgcctcaggg
tctgctnaaa ggaagagaaa gaaccagttc aggggcatcc gccgccgccc 480ttggggtaaa
tgggctgctg aaataagaga tcctcgcaag ggtgtccgtg tctggcttgg 540tacttacaac
tccgctgagg aagctgccag agcctatgat gttgaagccc gcagaattcg 600tggcaagaag
gcagaggtca atttcccaga agaagctcct atggctcctc agcaacgctg 660cgctactgct
gtgaaggtgc ccgagttcaa caccgaacag aagccggtac tcaacaccat 720gggcaacgca
gatgtgtatt cctgctctgc tgttgactac accttaaatc agcaatttgt 780gcagcctcag
aacatgtcgt ttgtgcctac agtgaatgca gttgaggccc ctttcatgaa 840tttttcctct
gaccagggta gcaactcctt tagttgctca gacttcagct gggagaatga 900tatcaagacc
cctgacataa cttctgtgct tgcatccatt cccacctcaa cagaggtcaa 960tgaatctgca
tttctccaga acaatggcat caattcaacg gtacctcctg tgatgggtga 1020tgctaatgtt
gatcttgccg acttggagcc atacatgaag ttcctgatgg acgatggttc 1080agatgagtca
attgacagca ttctaagctg tgatgtaccc caggatgtgg tcggcaacat 1140gggcctttgg
acctttgatg acatgccctt gtctgctggt ttctactgag ggaatcgagg 1200tcgctgggtg
cctgtatata tagacaaagg aataagtatt caggacatca acaagtgctt 1260gtgtctggtg
cctctagaat tgagcagtag cgatgtcagt ctatggttat gtctagctta 1320aatggtcagg
tgactggggt cttttgcaat agacctctgt cttgtgcccc cagactatat 1380tatatctata
tatgagacca gtatgtgatg gggaactgct tattttgtat tcatgtttct 1440accttattgt
aattgctaaa aaaaaaaaaa aaaaa
1475141597DNAOryza sativa 14gaaagaaaag catcacaaat ctcacgcact gtctctcgtt
cgcgcaaagc acgctgcttt 60tctccgcttt gcgagcacca tagcctagcc caccatgtgc
ggcggcgcca tcctctccga 120cctcatcccg ccgccgcggc gggtcaccgc cggcgacctc
tggctggaga agaccaagaa 180gcagcagcag cagaagaaga agaacaaggg cgcgaggagg
ctgccactgc gccaagagga 240ggaggatgat ttcgaggccg acttcgagga gttcgaggtg
gattccggcg agtgggaggt 300ggagtccgac gccgacgagg ccaagccgct cgccgcgccc
cggagcggct tcgctaaagg 360tggattgaaa aacactactg ttgctggtgc tgatgggcct
gcagcaaggt ctgctaaaag 420gaagagaaag aaccaattca ggggtatccg ccagcggcca
tggggcaaat gggctgcgga 480aatcagagat cctcgcaaag gtgtccgcgt ctggcttggc
accttcaact ctcctgagga 540agctgccaga gcttatgatg ctgaagcacg aaggattcga
ggcaagaagg ccaaggtcaa 600tttcccagat ggggctccag tggcttctca gaggagtcat
gctgagccct cctccatgaa 660catgcctgct ttcagcatcg aagagaagcc ggccgtcatg
tcagcaggca acaaaaccat 720gtacaacaca aatgcttatg cctaccctgc tgttgagtac
accttacagg agccatttgt 780gcagattcag aatgtctcat ttgttcctgc aatgaacgcg
attgaggata ctttcgtgaa 840cctgtcctct gatcaaggga gcaactcctt tggttgctcg
gactttagcc aggagaatga 900tatcaagacc cctgacataa cttccatgct tgcaccgacc
atgacaggtg ttgatgactc 960cgcattcctc cagaacaatg ccagtgatgc aatggtacct
cctgtgatgg ggaatgctag 1020cattgatctt gctgacctgg agccgtacat gaaatttctg
atcgatggtg gttcggatga 1080gtcgattgac acccttctga gctctgatgg atctcaggat
gtggccagta gcatggacct 1140ttggagcttc gatgacatgc ccgtgtcggc cgagttctac
tgaggggttt ggggtgtagc 1200aactggtgcc tgtatatata aggacaaatg gaataaacat
tctggacatc caagaagcgg 1260catgtgtctg tcgggcgctt ctagttgcgc tatatagcta
tgttagtatg ttagtatgtg 1320ctgtgtctag cttagatgct gaagtctcaa gtactatttg
gcagtgaaac tatctatctg 1380taactgctat atgaggctgg aacaagttac ttagcttcta
ccttatctgt acttgctata 1440gtggctgtga accttgtgga tctgaactct gaagccaatg
tttactatat aatgtggttg 1500gttttataaa ctctagttga tttggacccc tgtcaatggt
catgctatgg ctggggatta 1560aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa
1597151005DNAPrunus armeniaca 15gagaaatctg
caaagagaaa gaggaagaac cagtacaggg gaattcgcca gcgcccatgg 60ggtaagtggg
ctgcagagat ccgagatcca aggaaagggg tccgggtttg gcttggaact 120ttcaacactg
cagaagaagc tgcaagggct tatgattccg aggcacgtag aattcgtggc 180aagaaagcca
aggttaattt ccctgatgaa accccacgat cttctgcaaa gcgttctgtc 240aaggcaaatc
ctcagaaaat gcaacccaag acaaacatga atgccattca gcctaatctg 300aaccagaata
tcaattttgt gaatgaccca aatcaggact actacaatgc tatgggtttt 360ctggatgaaa
agccaccgac taataacttt gggtttatgt ccaccttccc tgccaatgat 420gttgcgctga
aatcctctac tccatccgat gctgtccccc tgtatttcgg ctctgatcag 480ggaagcaatt
cttttgattg ttctgacttt ggctggggag aacaaggttc aaagactcca 540gaaatatcat
ctgttctttc atctgttatg gaagaaagtg atgactcact gtttctggag 600gatgctagcc
caacgaagaa actgaggtct aacccagagg atctggtgcc tgttcaagat 660aatgcaggaa
agacactgac tgatgagctc tcagcttttg agatgaagta ctttcagacg 720ccatatcttg
atgggagctg ggatgcttca gtggatgcct tcctcagcgg agatgcaact 780caggatggtg
gcaactcagt ggacctttgg tgcttcgatg acctggttgg gggaggtttc 840tgagcgaact
tttccccatc cattctattt tatgtaaata aagctacatg ttagtgagtt 900tgattctgca
tcagcttcta cattgtttaa ttttatgttt catgttcact ctcattttat 960tcagaaagag
atcctggttg cttttttaaa aaaaaaaaaa aaaaa
1005161605DNAFagus sylvatica 16caaacacact gaagaattaa gtcatttggg
aatcaggttt cttggaaaaa cccctgccaa 60agccccttca aggctctcag ctttgagtcc
ccagatgtgt ggaggagcta taatctccga 120ctttatagcg ccaaccgggt cgcggcggtt
gacggcggat tatctctggg gcgatcggaa 180aaaacccatt tcaggaaagc gattctcgaa
gcctgtagtc gatttggacg acgaattcga 240gctcgatttt cagggcttta aggacgagga
ggagtctgat atcgacgagg aagaggtcct 300tgtgcaagat gtcaagccct tcactttttc
tgctcctcct agctctggat ctaagcctgt 360aaaatccgtg gaattcaatg ggcaagctga
gaaatctgca aagagaaaga ggaagaatca 420gtatcggggg atccggcagc gcccatgggg
taagtgggct gctgagattc gagacccaag 480gaaaggggtc cgtgtctggc ttggaacttt
taacactgca gaaaaagctg caagagctta 540tgatgcagag gcacggagaa ttcgtggcaa
gaaggctaag gtgaattttc ccgatgagac 600tccccgtgct tctccaaagc gttcagttaa
ggcaaatctg cagaagccac ttgccaaggc 660aaacctgaac tctgtccagc ccaacctgaa
ccaaaatttc aattttatga acaactctga 720tcaggactat accatgggtt tgatggaaga
gaaacctttc acaaaccagt atgggtatat 780ggattccatc cctgccaatg cagatgttgg
actaaaaccc tttgcttcca ataatactac 840cccgtacttt aactcagatc aggggagtaa
ctcgtttgat tgttctgact atggatgggg 900agaacagggc tctaagactc cagaaatctc
atctgttctt tcagctactt tagaagggga 960tgaatctcag tttgtggagg atgctatgcc
cacgaagaaa ttgaagtcag actctgggaa 1020tgcagtgttc attgaaaata acactgcaaa
gacactgtca gaggagctct cagcttttga 1080gtcccagatg aactttcaga tgccatttct
tgagggaagc tgggaatcca acatggaggc 1140actgttcagt ggggacacaa ctcaggatgg
taactcgatg gatctttgga gcttcgatga 1200cctccccgtt atggctgggg gagttctgtg
accgcaaaac tattttccgc atgcttgctg 1260ttctagttta tgtataaata aggctaaata
catgttagaa tggtttgtca ttctgtggag 1320atggacatgc ctgtggtttc aaacaagctg
aacactgaat gcttaagact ctatgaaggg 1380atgtactgaa gtagtgttgt tctactgttg
tatgagggag tacataggtc cctatttagg 1440atccctttga gagactacct tgaagacatt
gaattttggg attttgaatt tgatgttttt 1500gtattgatga ttatgtgtga tgaaacctct
gtcataaaaa tactaaacta aaaacctgat 1560gtatgtcaac tgtgtttagt gtttgtttca
aaaaaaaaaa aaaaa 1605171391DNALycopersicon esculentum
17ttcaaattga gctttttctc cattaaaatt ctctctgcaa atttatagtt tttctttttt
60cactttttga gaagaaatca aaagctatgt gtggtggtgc aattatctcc gatttggtac
120ctcctagccg gatttctcgc cggttaaccg ctgattttct atggggtaca tccgatctga
180acaagaagaa gaagaaccct agtaattacc actcaaagcc cttgaggtct aagtttattg
240accttgaaga tgaatttgaa gctgactttc agcacttcaa ggataattct gatgatgatg
300atgatgtgaa ggcatttggc cccaaatccg tgagatctgg tgattcaaac tgcgaagctg
360acagatcctc caagagaaag aggaagaatc agtaccgggg gatcagacag cgtccttggg
420gtaagtgggc agctgaaata cgtgatccaa ggaaaggtat tcgagtctgg cttggtactt
480tcaattcagc cgaagaggca gccagagctt atgatgctga ggcgcgaagg atcagaggca
540agaaagctaa ggtgaacttt cctgatgaag ctccagtgtc tgtttcaaga cgtgctatta
600agcaaaatcc ccaaaaggca cttcgtgagg aaaccctgaa cacagttcag cccaacatga
660cttatattag taacttggat ggtggatctg atgattcgtt cagttttttc gaagagaaac
720cagcaaccaa gcagtacggc ttcgagaatg tgtcttttac tgctgtagat atgggactgg
780gctcagtttc cccttcagct ggtacaaatg tttacttcag ctctgatgaa gcaagtaaca
840cttttgactg ctctgatttc ggttgggctg aaccgtgtgc aaggactcca gagatctcat
900ctgttctgtc ggaagttctg gaaaccaatg agactcattt tgatgatgat tccagaccag
960agaaaaaact gaagtcctgt tccagcactt cattgacagt tgacggtaac actgtgaaca
1020cgctatctga agagctatcg gcttttgaat cccagatgaa gttcttgcag atcccatatc
1080tcgagggaaa ttgggatgca tcggttgatg ccttcctcaa tacaagtgca attcaggatg
1140gtggaaacgc catggacctt tggtccttcg atgatgtacc ttctttaatg ggaggtgcct
1200actaagctgc atacacatct tcccctgcta agttttgtaa ataacgcttc atttgagtga
1260agtttgcgcc tgcgtttacg tttatcacca aactaaaaga ctatatatgt gttgtattaa
1320tttattcaaa atttactcgt ttgatatatg taagtatgta tccttgtttt cataaaaaaa
1380aaaaaaaaaa a
1391181403DNAGossypium barbade 18ttgagaatcg atgcccggat taataatttc
tgggatgtag tcactaaaaa ggcctttctc 60atgattttct tgcagttaaa ggtcttaaat
tatatttcct tgtgacagtt atgttgtgat 120ttgtagtttt tcatggatga gtaatgttta
tttatggttc atgtatccgt acgatattaa 180atttttcttt ttgtgctcta tcattgaagg
ttcgaactct gaaaagtcca tgcagttcga 240tggtcaagct gagaaatgtg cgaaaagaaa
gaggaagaac cagtatcgtg gaatccggca 300gcgcccatgg ggtaaatggg ctgctgagat
ccgtgaccca aggaaagggg ttagggtctg 360gttaggaact ttcaatactg ctgaagaagc
tgcgagagct tatgatgctg aggcacggag 420aattcgtggt aagaaagcta aggtgaactt
ccctaacgag actccgcgta cctctccaaa 480gcatgcagtc aagacaaatt ctcagaaacc
actttccaag tcgaatttga gccctgttca 540gctaaatctc gaccagaatt acaattactt
gagccagcct gagcaggaat acttcgatac 600catgggtttc gtagaagaga agccactggt
caatcagttt gcatatgtgg accctgttcc 660tacgtctata gatgctggat ctaatcaatc
agataatgcc cccttgtact tcaattcgga 720ccagggaagt aactccatca attgttccga
ctatggctgg ggagaacagg gtgccagaac 780tcctgaaata tcatccattc ttgaagcttc
tgtagtgggt gaagagtttc ttgaggatgc 840taaccctagc aagaagctga aaccaagttc
tgacaatgtt atgcctgccg aagacaactc 900cgcgaagacc ttgtcggacg agctgttggc
tttggacaac cagatgaaat acttccaaat 960gccgccattt attgaaggaa actgggacgc
cactattgat gctttcctca atggagatgc 1020aacacaggat ggtggaaacc cgatggatct
ttggaacttt gatgatttcc ctaccatggc 1080ggagggtgtt ttctgagcga actttccata
ataactagtg tttgtaaata aagcaacatg 1140aatttggtca aaatctgttg tgaagttgaa
gtaaaaacca agctatatgc atgcttaagc 1200cttgcctgca ctgctttcag aggtttttag
tatgtacccc ttttttatgt gtttttttgt 1260agactttgga ctaaatttta aatttgagtg
actgtataag taattgtgtc tgaatttgtt 1320tatgtttgaa tactgaaaaa catatgaatg
ttttaaactc tgctatttgt ttctcccaaa 1380aaaaaaaaaa aaaaaaaaaa aaa
1403191413DNANicotiana tabacum
19gaattcggca cgagaaaaaa gaaagaagtt tactccgtca aaaacgaaac tgatttctgc
60ataaaacttt tctgctgaga gaaaacaaaa agcatgtgtg gtggtgctat aatctccgat
120tacattgccc cgagccgaac ttctcgccgg ctcaccgccg agttgctatg gggccggtcc
180gatctgagta ataagcaaaa aaatcctaac aattatcact ccaagccgtt gagatcccaa
240gtagttgacc tagacgatga cttcgaggct gattttcagg actttaaaga tttctccgat
300gacgaggatg ttcaagtcga tgtcaagcca tttgccttct ctgcttcgaa aaactctaat
360gttgaaggct ccaaatctgt gaaaactgat gattcagaca aggatgctga tagatcctct
420aagagaaaga ggaagaatca gtataggggg atcagacagc gaccttgggg taagtgggca
480gctgaaatac gtgacccaag aaaaggggtt cgggtgtggc tgggaacttt caatactgca
540gaagaagctg ccagagctta tgatgttgag gctaggagga tcagaggcaa taaagctaag
600gtaaactttc ccgatgaagc tccagtgcct gcctcgagac gtactgttaa ggtgaatcct
660caaaaggtcc ttcctaagga gatcctggac tcggttcagc ccgactcgac tatcataaac
720aacatggagg attgctgtta tgattctttg ggatttcttg aagagaaacc catgacgaag
780cagtttggat gtgaggatgg gagcagtgct tctggagata cgggatttgg ctcatttgcc
840ccttcagctg gtaccgatat ctacttcaac tctgatgttg gaagtaactc ttttgactgc
900tctgattttg gttggggaga gccatgtgcc aggactccag agatatcatc cgttctgtca
960gctgttattg aaagcaatga atctcaactt gttgaagatg ataccagtcc aatgaaaaaa
1020ctgaaatcaa gccccattaa tccagtagct gatgatggaa ataccgcaaa caagctatct
1080gaagagcttt cagcttttga aacccagatg aagttccttc agatccccta tctggaggga
1140aattgggatg catcagttga tactttcctc aactcaagtg caactcagga tggtgataat
1200gctatggact tatggtcctt tgatgatgtt ccttctttat tgggaggtgt cttttaagtc
1260agcatgcctt gtctagtttt tgtaaataag gcttcatgtg agtgaacttt gctattgttt
1320tgcctcaaag aaaggctctt tattatgtac agaagctttt tgaaatggta aatagtttaa
1380tctctgttta aaaaaaaaaa aaaaaaaaaa aaa
1413201329DNACapsicum annuum 20agttataata cactacttaa attattagag
aaaagaaaaa gctatgtgtg gtggtgcaat 60tatctccgat ttggtacctc ctagccggat
ttcccgccgg ctaaccgccg agttgctatg 120gggtaactct gatctgagca aaaagaagaa
aaatccaggg aattattact caaagccttt 180gaacaggtct aagtttattg accttgatga
ggaatttgaa gctgactttc aggacttcaa 240ggactatgcc gatgacgatg ttgatgatgt
taagcccttc ggttccaaat ctgtgaaatc 300tggcgattca agctgcgata ctgaaaaatc
ttccaagaga aagaggaaga atcagtaccg 360ggggatcaga cagcgtcctt ggggtaagtg
ggcagctgaa attcgtgatc cgaggaaagg 420gattcgagtt tggcttggaa ctttcaattc
tgcggaagaa gcagctagag cttatgatgt 480tgaggcacga aggatcagag gcaagaaggc
taaggtgaac tttcctgatg gatctccagc 540ttctgcttca agacgtgctg ttaagccaaa
tcctcaggag gcacttcgcg aggaaatctt 600gaacacagtt cagccgaaca caacttatat
caacaacttg gacggcggat ctgatgattc 660gtttggcttt ttcgaagaga aaccagcagc
aaagcagtat ggctatgaga atgtttcttt 720tactgctgga gatatgggac tgggttcaat
ttccccttca actggtacaa caaatgttta 780cttcagttct gatgaaggaa gcaacacctt
tgactgctct gatttcggtt ggggtgaacc 840atgtccgagg actccagaga tctcatctgt
tctgtcagaa gttctagaat gtaatggtac 900tcaatctgat gaagatgcta gaccagagaa
aaaactgaag tcgtgttcca acgcttcctt 960gccagatgag gataacactg tgcacacgct
atctgaagag ctatcggctt ttgaatccca 1020gatgaagttc ttgcagatcc catatcttga
gggaaattgg gatgcatcag ttgatgcctt 1080tgtcaacaca ggcgcaattc aggatggcgg
aaatgcgatg gatctctggc cttcgatgat 1140gttccttctt taatgggagg tgtctataag
ccaacacgca ccttccctta ttaagttttg 1200taaataaagc ttcatttgag tgaagtttgc
agttatgttg tctccaaaca aaaaagacta 1260tatatgtgtt gtattaaatt tatttcataa
atttacttgt ttgatgtaaa aaaaaaaaaa 1320aaaaaaaaa
1329211405DNACicer arietinum
21ctggttttag agagtttaag gatgattctg atttcgatga agacgaggaa gatgatgatg
60atgatgaagg cttgttggtc ggtggtaaag gatttacctt ttcttcaaac aacaccaagt
120ctttcaaaac tttctctcgt ggatcaactg ctgcaaaatc cgtgtcaccg aaatcaaatg
180agcaagctga aaaggcatgt aagagaaaga ggaagaatca atataggggt atccgccaac
240gtccatgggg aaaatgggca gctgagatcc gcgacccaag gaagggagtt cgtgtctggc
300ttggaacttt caacactgct gaagaagctg caagagctta cgatgctgaa gctagaagga
360tccgcggcaa gaaagccaag gtgaattttc ccgaggaagc tccagttact tcctcaaaac
420gattcaagcc aaatctcgag aataagctgg tgaataaaaa tctgaactct ttcaatccta
480acgggaacaa aatgttcaac tttggcgaaa atgtggagaa ctactattct cctatggatc
540aggtggaaca gaaaccactg gtgaacaata acaaccagta tgccaacatg ggaccgttct
600cgggaaacgg tgttcagcac tcacagattt ctccatctgc tgatgttacc gcttacttca
660gttcagaaca ttcgagcaat tcgtttgatt attctgatct tggttggggc gaacaaggcc
720cgaaaactcc cgagatttca tccatgcttt ctgctgctgc tcctctcgaa agcgaatctc
780agtatgtgca gaacaatatg cagtctaaca acaatcagaa tatgctacct gtggaagata
840attctgcaaa gacactctct gaggagcttg cagatatcga atcccagctg aagttcttcg
900aaacccctta tgatgacaac tggggtgacg catcattggc atctttcctc ggtggagatg
960caactcaaga cggtggaaac ccgatgaacc tttggagttt tgatgacttg ccttccattt
1020ccggcggtgt tttctgaaca gccttcgcgt caccgattat gtaaataaag ctacaagatt
1080gttggttttt tttttattat tgttgatgga atgaggacag gaacaagtta ccagctttaa
1140gtaaagcatg gagtttattc tcttgtggca aaataaatta tataggtttt ttttaggtat
1200cctttgtctt atcaaaaacc cttttgagga ttttaagttt gatgttcata aggattatgt
1260tatggatgat ttaattgtaa actttcttgg ttttctttgt ggcaatttta tcatgactca
1320taattttttt ctccctttgt ttggtgggat cattttatat gtaacatgaa tgattttgct
1380ttaaaaaaaa aaaaaaaaaa aaaaa
1405221539DNAGlycine max 22attgagccaa agctttgtat tttctgcgat aattttccat
tgggtggaag aaagtctcaa 60cctttattcg aaagagcaag gatctgagtt gagttgagtg
atcatgtgtg gtggtgcgat 120tatctccgac ttcataccgg caggtcccgc cagcggggcg
cggcgcgtga ccgccgacat 180cctgtggccg agtttgagga agcgcttctc gaagccgctg
ctggacgatg atttcgaggc 240tgggttcaga gaattcaagg atgattcgga aatcgaggat
gttgatgacg aggacgatga 300agacgaggag gagttgaaga agaagccctt tgggttctct
cgctccagca acaaggctgc 360ttctaagcct ctctctcgtg gagcaacaac tgtgaaatct
gtggaatcaa aggggcaagc 420tgagaagtgt gccaagagaa agaggaagaa ccagtatcgc
ggaatccgcc agcgtccatg 480gggaaagtgg gctgctgaga ttcgcgaccc aagaaagggg
gttcgtgttt ggcttggaac 540tttcagcact gctgaagaag ctgcaagagc ttacgatgct
gaagcaagga ggatccgtgg 600caagaaagcc aaggtgaatt tccctgatga gccttcaggc
gctgcttcct caaaacgtct 660caaggcgaat ccagaggctc agccaatgaa gaaaaatctg
aactctgtga agccgaaaat 720aaaccagatg ttcaattttg gtgacaatct tgagggctac
tacagcccta tagatcaggt 780ggaacagaaa ccactggtta accagtatgt taaccgtgcc
ccgtttgctg gaaatggagt 840tcaagtctca cctgttactc catctgctga tgttactgct
tacttcagct ctgagcattc 900gagcaactcg tttgattatt ctgaccttgg atggggtgaa
caagtcccca agacccccga 960gatctcatcc ttgctttctg ctgctccttt ggagggtgct
gctgatcagg ttcagaagac 1020caacaactcg caggatgtgg tggctgcaca agatgattct
gcaaaaaccc tttccgaaga 1080gcttgcagac attgaatccc agctcaagtt ctttgagacc
ccttcttttc ttgatgaagc 1140ctgggctgat gctacattgg cgtctttgct cggcggagac
gcaactcatg acgccgccgg 1200aaaccctatg aacctttgga gcttcgacga cctgccttcc
atggcaggag tcttctgaac 1260accctttatc tcccctttta tgtaaataaa gctacaagaa
ttgtgatcgt gatgttggtg 1320atggagtcca cagccaagaa acctgcttaa agcttatgtg
gagtttattt tatcttgtag 1380ctaatgcagt agtataggac tatatatagg tttttattat
agggtatcct tttgtgaact 1440caaagacctc gttttcaggg gattttctgt ttgatgtcct
taaggattat caattatgtt 1500atatatggtc ttggataaaa ataaaaaaaa aaaaaaaaa
1539231595DNAArabidopsis thaliana 23aaaacaacaa
agcaaagcgt tgaagagaga agaagaagca aagatataac ccccaaaagt 60atcaattagt
ttccattttc gccgctaaga ttctgttttc gaacatttac accctcaaga 120atcgccgcca
tgtgtggagg agctataata tccgatttca ttccaccgcc gaggtctcgc 180cgtgttacta
gcgagtttat ttggccggat ctgaagaaga atttgaaagg atcgaagaaa 240agctcgaaga
atcgttcgaa tttcttcgat tttgacgctg agttcgaagc tgatttccaa 300ggtttcaaag
atgattcgtc tatcgattgc gatgatgatt tcgacgtcgg tgatgttttc 360gccgatgtga
aaccattcgt tttcacttcg actccaaaac ccgccgtctc cgccgctgcg 420gaaggttcag
tttttggtaa gaaagttact ggcttggatg gggacgctga gaaatctgca 480aataggaaga
ggaagaatca gtaccgaggg attaggcaac gtccttgggg aaaatgggct 540gctgagatac
gtgatccaag ggaaggtgct agaatctggc ttggaacgtt caagacagct 600gaggaagctg
ctagagctta cgatgctgca gcgcggagaa tccgtggatc taaagctaag 660gtgaatttcc
ctgaagaaaa catgaaggct aattctcaga aacgctctgt gaaggctaat 720cttcagaaac
cagtggctaa acctaaccct aacccaagtc cagctttggt tcagaactcg 780aacatctcct
ttgaaaatat gtgtttcatg gaggagaaac accaagtgag caacaacaac 840aacaaccagt
ttgggatgac aaactccgtt gatgctggat gtaatgggta tcagtatttc 900agctctgacc
agggtagtaa ttctttcgat tgttcggagt ttggttggag cgatcaagct 960ccgataactc
ccgacatctc ttctgcggtt atcaacaaca acaactcagc tctgttcttt 1020gaggaagcca
atccagctaa gaagctcaag tctatggatt tcgagacacc ttacaacaac 1080actgaatggg
acgcttcact ggatttcctc aacgaagatg ctgtaacgac tcaggacaat 1140ggtgcaaacc
ctatggacct atggagtatt gatgaaattc attccatgat tggaggagtc 1200ttctgaagag
atccagtttc atgtaaataa ggctgcatgt ttgtgagttt cccgcatcgt 1260tcgtttatca
acctccaaaa ctttctaatg tctgttactt gcatcttctt ctgctgtctc 1320tgtctgtctc
tctcaggagt tcctgtttgc attgcgagaa gccatgagcc tctatcttga 1380gggtagttgt
gatgaagtta agtagaggct tatttttagg ggttgtggta gtttttgttt 1440tagtgaatct
tttgaattcg tttgtgtttt gtttttgtta ctttatgccc caaaactcct 1500ttaacatttg
tcataatgtg tttgaacctc tcatctgttt aatcaaataa atcttctttg 1560tatgctacta
agagtatgtg agaactgttg aacat 1595242052DNAZea
mays 24gcacgaggcc gcaattccgc atcacgcaga ggcagagcga ccaacccaga accccacccc
60accgcccgca accgcaagct cagattccct ccccacccca ccccacccca ccgtcccgct
120cactccagcc cagcccgcgt ccccacagcc cagcgacagc gggcaccggc ggcatccagc
180catgtgcggc ggcgccatcc tgtcggacat catcccgccg ccgccaccgc ggcgggtcac
240ggctggccac ctctggcccg agagcaagaa gccgaggagg gctgcatccg gcaggagggg
300agcccccgtg gagcagcatg agcaggagga ggatttcgag gccgacttcg aggagttcga
360ggtggagtcc ggcgagtcgg agctcgagtc cgaggacgag cccaagccct tcgccgcccc
420caggagcgcg ctcgccagag gtggactaaa cactggtgca gctggtgtcg atggccctgc
480tgcaaattca gttaaaagga agaggaagaa ccagttcagg ggtatccgcc ggcgcccgtg
540gggcaaatgg gctgctgaga tcagagatcc tcgcaagggc gtgcgcgtct ggctcggtac
600tttcaactcc cccgaagaag ctgccagagc ttacgacgcc gaggcacgca ggatccgcgg
660caagaaggct aaagtcaact tcccggatga ggttcctacg gcggtttctc agaagcgccg
720tgctgctggg cctgcctctc tgaaagcgcc taagatggac gttgaggagg agaagccgat
780catcaagctc gcagtgaaca atatgaccaa ctcaaacgca tatcactacc ctgccgtcgt
840cggccacaac atcatacccg agccattcat gcagactcag aacatgccat tcgctcctct
900ggtgaattat gctgccctag tgaacctgtc ttcagaccaa ggcagcaact cgttcggttg
960ctcggacttc agcctcgaga acgactccag gacccctgac ataacttcgg tgcctgcgcc
1020cgttgccacc ttggccgccg ttggcgagtc tgtgttcgtc cagaacaccg ccggccatgc
1080tgtggcgtct cctgcgacgg ggaacactgg tgttgatctc gccgagttgg agccgtatat
1140gaatttcctg atggacggtg gttcagacga ctcgatcagc actctcttga gctgtgatgg
1200atcccaggac gtggtcagca acatggacct ttggagcttc gaggacatgc ccatgtctgc
1260tggtttctac tgaggctgag gcccagcgac tggtgcttgt gtacataggg ggggacaaag
1320ggtaagagcc tgcagtaaca gagattggct ctttctggta cttgcaattt ctatcccttc
1380aactctttct tccgcccccg tgtttcagga ataatgttct ggagatgaag aaacgcttgc
1440gtgggcgtgc ctgcaggcac gcgtgtagta gctgcggtat tagtatatat gcttagatgt
1500tcagtcactt cctttaagta caatttggcg ctggacatgt accttatttt actatgtatc
1560cgtgacaaca gctatgtgtc tgcgtccgcg gggtctgggt actacgacca cacggcactt
1620atgtatcacg cgatcccgct gtcccagcag ctggagtact tcagggagta ccagacgaag
1680ctggcggcgg tggccggcgc cgggcaggcg cgctccatcc tcagcggcgc gctgtacatc
1740gtcagtgccg gcgccagcga cttcgtgcag aactactaca taaacccgct gctgttcaag
1800acgcagacgg ccgaccagtt ctccgaccgc ctcgtggcca tcttcggccg caccgtgcag
1860gagctctacg gcatgggggc gcgccgcgtc ggcgtcacgt cgctgccgcc gctgggctgc
1920ctgccggcgt ccatcacgct gttcgggcac ggcgccgccg ggtgcgtgtc caggctcaac
1980agcgacgcgc agagcttcaa ccggaagatg aacggcaccg tggacgcgct ggcgcggcgg
2040tacccggacc tc
205225746DNATriticum monococcum 25tgaagctcgc agaattcgtg gcaagaaggc
aaaggtcaat ttcccagaag aagctcctat 60ggctcctcag caacgctgcg ctacctctgt
gaaggtgcct gagttcaaca ccgaacagaa 120gccagtactc aacaccatgg gcaacgcaga
tgtgtattcc tgccctgctg ttgactacac 180cataaatcag caatttgtgc agcctcagaa
catgtcgttt gtgcctacag tgaatgcagt 240tgaggcccct ttcatgaatt tttcttctga
ccaggggagc aactccttta gttgctcaga 300cttcagctgg gagaatgata tcaagacccc
tgacataaca tctgtgcttg catccattcc 360cacctcaaca gaggtcaatg aatctgcatt
tctccagaac aacggcatta attcaacggt 420acctcctgtg atgggtgatg ctaatgttga
tcttgccgac ttggagccat acatgaagtt 480cctgatggac gatggttcag atgagtcaat
tgacagcatt ctaagctgtg atgtacccca 540ggacgtggtc agcaacatgg gcctttggac
cttcgatgac atgcccttgt ctgctggttt 600ctactgaggg aatggaggtc gctgggtgcc
tgtatatata gacaaaggaa taagtattct 660ggacatcaac aagtgcttgt gtctggtgcc
tctagaatcg agcagtagcg atgtcagtct 720atggttatgt ctagcttaaa tggtca
74626355PRTTriticum
aestivummisc_feature(106)..(106)Xaa can be any naturally occurring amino
acid 26Met Cys Gly Gly Ala Ile Leu Ser Asp Ile Ile Pro Pro Pro Arg Arg1
5 10 15Ala Thr Gly Gly Asn
Val Trp Arg Ala Asp Lys Lys Arg Arg Ala Arg 20
25 30Pro Asp Ala Ala Ala Gly Arg Pro Arg Arg Ala Pro
Glu Glu Glu Phe 35 40 45Gln Glu
Glu Glu Gly Asp Ala Glu Phe Glu Ala Asp Phe Glu Gly Phe 50
55 60Val Glu Ala Glu Glu Glu Ser Asp Gly Glu Ala
Lys Pro Phe Pro Val65 70 75
80Arg Arg Ser Gly Phe Ser Gly Asp Gly Leu Lys Ala Thr Ala Ala Gly
85 90 95Asp Asp Asp Cys Ala
Ser Gly Ser Ala Xaa Arg Lys Arg Lys Asn Gln 100
105 110Phe Arg Gly Ile Arg Arg Arg Pro Trp Gly Lys Trp
Ala Ala Glu Ile 115 120 125Arg Asp
Pro Arg Lys Gly Val Arg Val Trp Leu Gly Thr Tyr Asn Ser 130
135 140Ala Glu Glu Ala Ala Arg Ala Tyr Asp Val Glu
Ala Arg Arg Ile Arg145 150 155
160Gly Lys Lys Ala Glu Val Asn Phe Pro Glu Glu Ala Pro Met Ala Pro
165 170 175Gln Gln Arg Cys
Ala Thr Ala Val Lys Val Pro Glu Phe Asn Thr Glu 180
185 190Gln Lys Pro Val Leu Asn Thr Met Gly Asn Ala
Asp Val Tyr Ser Cys 195 200 205Ser
Ala Val Asp Tyr Thr Leu Asn Gln Gln Phe Val Gln Pro Gln Asn 210
215 220Met Ser Phe Val Pro Thr Val Asn Ala Val
Glu Ala Pro Phe Met Asn225 230 235
240Phe Ser Ser Asp Gln Gly Ser Asn Ser Phe Ser Cys Ser Asp Phe
Ser 245 250 255Trp Glu Asn
Asp Ile Lys Thr Pro Asp Ile Thr Ser Val Leu Ala Ser 260
265 270Ile Pro Thr Ser Thr Glu Val Asn Glu Ser
Ala Phe Leu Gln Asn Asn 275 280
285Gly Ile Asn Ser Thr Val Pro Pro Val Met Gly Asp Ala Asn Val Asp 290
295 300Leu Ala Asp Leu Glu Pro Tyr Met
Lys Phe Leu Met Asp Asp Gly Ser305 310
315 320Asp Glu Ser Ile Asp Ser Ile Leu Ser Cys Asp Val
Pro Gln Asp Val 325 330
335Val Gly Asn Met Gly Leu Trp Thr Phe Asp Asp Met Pro Leu Ser Ala
340 345 350Gly Phe Tyr
35527362PRTOryza sativa 27Met Cys Gly Gly Ala Ile Leu Ser Asp Leu Ile Pro
Pro Pro Arg Arg1 5 10
15Val Thr Ala Gly Asp Leu Trp Leu Glu Lys Thr Lys Lys Gln Gln Gln
20 25 30Gln Lys Lys Lys Asn Lys Gly
Ala Arg Arg Leu Pro Leu Arg Gln Glu 35 40
45Glu Glu Asp Asp Phe Glu Ala Asp Phe Glu Glu Phe Glu Val Asp
Ser 50 55 60Gly Glu Trp Glu Val Glu
Ser Asp Ala Asp Glu Ala Lys Pro Leu Ala65 70
75 80Ala Pro Arg Ser Gly Phe Ala Lys Gly Gly Leu
Lys Asn Thr Thr Val 85 90
95Ala Gly Ala Asp Gly Pro Ala Ala Arg Ser Ala Lys Arg Lys Arg Lys
100 105 110Asn Gln Phe Arg Gly Ile
Arg Gln Arg Pro Trp Gly Lys Trp Ala Ala 115 120
125Glu Ile Arg Asp Pro Arg Lys Gly Val Arg Val Trp Leu Gly
Thr Phe 130 135 140Asn Ser Pro Glu Glu
Ala Ala Arg Ala Tyr Asp Ala Glu Ala Arg Arg145 150
155 160Ile Arg Gly Lys Lys Ala Lys Val Asn Phe
Pro Asp Gly Ala Pro Val 165 170
175Ala Ser Gln Arg Ser His Ala Glu Pro Ser Ser Met Asn Met Pro Ala
180 185 190Phe Ser Ile Glu Glu
Lys Pro Ala Val Met Ser Ala Gly Asn Lys Thr 195
200 205Met Tyr Asn Thr Asn Ala Tyr Ala Tyr Pro Ala Val
Glu Tyr Thr Leu 210 215 220Gln Glu Pro
Phe Val Gln Ile Gln Asn Val Ser Phe Val Pro Ala Met225
230 235 240Asn Ala Ile Glu Asp Thr Phe
Val Asn Leu Ser Ser Asp Gln Gly Ser 245
250 255Asn Ser Phe Gly Cys Ser Asp Phe Ser Gln Glu Asn
Asp Ile Lys Thr 260 265 270Pro
Asp Ile Thr Ser Met Leu Ala Pro Thr Met Thr Gly Val Asp Asp 275
280 285Ser Ala Phe Leu Gln Asn Asn Ala Ser
Asp Ala Met Val Pro Pro Val 290 295
300Met Gly Asn Ala Ser Ile Asp Leu Ala Asp Leu Glu Pro Tyr Met Lys305
310 315 320Phe Leu Ile Asp
Gly Gly Ser Asp Glu Ser Ile Asp Thr Leu Leu Ser 325
330 335Ser Asp Gly Ser Gln Asp Val Ala Ser Ser
Met Asp Leu Trp Ser Phe 340 345
350Asp Asp Met Pro Val Ser Ala Glu Phe Tyr 355
36028280PRTPrunus armeniaca 28Glu Lys Ser Ala Lys Arg Lys Arg Lys Asn Gln
Tyr Arg Gly Ile Arg1 5 10
15Gln Arg Pro Trp Gly Lys Trp Ala Ala Glu Ile Arg Asp Pro Arg Lys
20 25 30Gly Val Arg Val Trp Leu Gly
Thr Phe Asn Thr Ala Glu Glu Ala Ala 35 40
45Arg Ala Tyr Asp Ser Glu Ala Arg Arg Ile Arg Gly Lys Lys Ala
Lys 50 55 60Val Asn Phe Pro Asp Glu
Thr Pro Arg Ser Ser Ala Lys Arg Ser Val65 70
75 80Lys Ala Asn Pro Gln Lys Met Gln Pro Lys Thr
Asn Met Asn Ala Ile 85 90
95Gln Pro Asn Leu Asn Gln Asn Ile Asn Phe Val Asn Asp Pro Asn Gln
100 105 110Asp Tyr Tyr Asn Ala Met
Gly Phe Leu Asp Glu Lys Pro Pro Thr Asn 115 120
125Asn Phe Gly Phe Met Ser Thr Phe Pro Ala Asn Asp Val Ala
Leu Lys 130 135 140Ser Ser Thr Pro Ser
Asp Ala Val Pro Leu Tyr Phe Gly Ser Asp Gln145 150
155 160Gly Ser Asn Ser Phe Asp Cys Ser Asp Phe
Gly Trp Gly Glu Gln Gly 165 170
175Ser Lys Thr Pro Glu Ile Ser Ser Val Leu Ser Ser Val Met Glu Glu
180 185 190Ser Asp Asp Ser Leu
Phe Leu Glu Asp Ala Ser Pro Thr Lys Lys Leu 195
200 205Arg Ser Asn Pro Glu Asp Leu Val Pro Val Gln Asp
Asn Ala Gly Lys 210 215 220Thr Leu Thr
Asp Glu Leu Ser Ala Phe Glu Met Lys Tyr Phe Gln Thr225
230 235 240Pro Tyr Leu Asp Gly Ser Trp
Asp Ala Ser Val Asp Ala Phe Leu Ser 245
250 255Gly Asp Ala Thr Gln Asp Gly Gly Asn Ser Val Asp
Leu Trp Cys Phe 260 265 270Asp
Asp Leu Val Gly Gly Gly Phe 275 28029378PRTFagus
sylvatica 29Met Cys Gly Gly Ala Ile Ile Ser Asp Phe Ile Ala Pro Thr Gly
Ser1 5 10 15Arg Arg Leu
Thr Ala Asp Tyr Leu Trp Gly Asp Arg Lys Lys Pro Ile 20
25 30Ser Gly Lys Arg Phe Ser Lys Pro Val Val
Asp Leu Asp Asp Glu Phe 35 40
45Glu Leu Asp Phe Gln Gly Phe Lys Asp Glu Glu Glu Ser Asp Ile Asp 50
55 60Glu Glu Glu Val Leu Val Gln Asp Val
Lys Pro Phe Thr Phe Ser Ala65 70 75
80Pro Pro Ser Ser Gly Ser Lys Pro Val Lys Ser Val Glu Phe
Asn Gly 85 90 95Gln Ala
Glu Lys Ser Ala Lys Arg Lys Arg Lys Asn Gln Tyr Arg Gly 100
105 110Ile Arg Gln Arg Pro Trp Gly Lys Trp
Ala Ala Glu Ile Arg Asp Pro 115 120
125Arg Lys Gly Val Arg Val Trp Leu Gly Thr Phe Asn Thr Ala Glu Lys
130 135 140Ala Ala Arg Ala Tyr Asp Ala
Glu Ala Arg Arg Ile Arg Gly Lys Lys145 150
155 160Ala Lys Val Asn Phe Pro Asp Glu Thr Pro Arg Ala
Ser Pro Lys Arg 165 170
175Ser Val Lys Ala Asn Leu Gln Lys Pro Leu Ala Lys Ala Asn Leu Asn
180 185 190Ser Val Gln Pro Asn Leu
Asn Gln Asn Phe Asn Phe Met Asn Asn Ser 195 200
205Asp Gln Asp Tyr Thr Met Gly Leu Met Glu Glu Lys Pro Phe
Thr Asn 210 215 220Gln Tyr Gly Tyr Met
Asp Ser Ile Pro Ala Asn Ala Asp Val Gly Leu225 230
235 240Lys Pro Phe Ala Ser Asn Asn Thr Thr Pro
Tyr Phe Asn Ser Asp Gln 245 250
255Gly Ser Asn Ser Phe Asp Cys Ser Asp Tyr Gly Trp Gly Glu Gln Gly
260 265 270Ser Lys Thr Pro Glu
Ile Ser Ser Val Leu Ser Ala Thr Leu Glu Gly 275
280 285Asp Glu Ser Gln Phe Val Glu Asp Ala Met Pro Thr
Lys Lys Leu Lys 290 295 300Ser Asp Ser
Gly Asn Ala Val Phe Ile Glu Asn Asn Thr Ala Lys Thr305
310 315 320Leu Ser Glu Glu Leu Ser Ala
Phe Glu Ser Gln Met Asn Phe Gln Met 325
330 335Pro Phe Leu Glu Gly Ser Trp Glu Ser Asn Met Glu
Ala Leu Phe Ser 340 345 350Gly
Asp Thr Thr Gln Asp Gly Asn Ser Met Asp Leu Trp Ser Phe Asp 355
360 365Asp Leu Pro Val Met Ala Gly Gly Val
Leu 370 37530372PRTLycopersicon esculentum 30Met Cys
Gly Gly Ala Ile Ile Ser Asp Leu Val Pro Pro Ser Arg Ile1 5
10 15Ser Arg Arg Leu Thr Ala Asp Phe
Leu Trp Gly Thr Ser Asp Leu Asn 20 25
30Lys Lys Lys Lys Asn Pro Ser Asn Tyr His Ser Lys Pro Leu Arg
Ser 35 40 45Lys Phe Ile Asp Leu
Glu Asp Glu Phe Glu Ala Asp Phe Gln His Phe 50 55
60Lys Asp Asn Ser Asp Asp Asp Asp Asp Val Lys Ala Phe Gly
Pro Lys65 70 75 80Ser
Val Arg Ser Gly Asp Ser Asn Cys Glu Ala Asp Arg Ser Ser Lys
85 90 95Arg Lys Arg Lys Asn Gln Tyr
Arg Gly Ile Arg Gln Arg Pro Trp Gly 100 105
110Lys Trp Ala Ala Glu Ile Arg Asp Pro Arg Lys Gly Ile Arg
Val Trp 115 120 125Leu Gly Thr Phe
Asn Ser Ala Glu Glu Ala Ala Arg Ala Tyr Asp Ala 130
135 140Glu Ala Arg Arg Ile Arg Gly Lys Lys Ala Lys Val
Asn Phe Pro Asp145 150 155
160Glu Ala Pro Val Ser Val Ser Arg Arg Ala Ile Lys Gln Asn Pro Gln
165 170 175Lys Ala Leu Arg Glu
Glu Thr Leu Asn Thr Val Gln Pro Asn Met Thr 180
185 190Tyr Ile Ser Asn Leu Asp Gly Gly Ser Asp Asp Ser
Phe Ser Phe Phe 195 200 205Glu Glu
Lys Pro Ala Thr Lys Gln Tyr Gly Phe Glu Asn Val Ser Phe 210
215 220Thr Ala Val Asp Met Gly Leu Gly Ser Val Ser
Pro Ser Ala Gly Thr225 230 235
240Asn Val Tyr Phe Ser Ser Asp Glu Ala Ser Asn Thr Phe Asp Cys Ser
245 250 255Asp Phe Gly Trp
Ala Glu Pro Cys Ala Arg Thr Pro Glu Ile Ser Ser 260
265 270Val Leu Ser Glu Val Leu Glu Thr Asn Glu Thr
His Phe Asp Asp Asp 275 280 285Ser
Arg Pro Glu Lys Lys Leu Lys Ser Cys Ser Ser Thr Ser Leu Thr 290
295 300Val Asp Gly Asn Thr Val Asn Thr Leu Ser
Glu Glu Leu Ser Ala Phe305 310 315
320Glu Ser Gln Met Lys Phe Leu Gln Ile Pro Tyr Leu Glu Gly Asn
Trp 325 330 335Asp Ala Ser
Val Asp Ala Phe Leu Asn Thr Ser Ala Ile Gln Asp Gly 340
345 350Gly Asn Ala Met Asp Leu Trp Ser Phe Asp
Asp Val Pro Ser Leu Met 355 360
365Gly Gly Ala Tyr 37031319PRTGossypium barbade 31Met Ser Asn Val Tyr
Leu Trp Phe Met Tyr Pro Tyr Asp Ile Lys Phe1 5
10 15Phe Phe Leu Cys Ser Ile Ile Glu Gly Ser Asn
Ser Glu Lys Ser Met 20 25
30Gln Phe Asp Gly Gln Ala Glu Lys Cys Ala Lys Arg Lys Arg Lys Asn
35 40 45Gln Tyr Arg Gly Ile Arg Gln Arg
Pro Trp Gly Lys Trp Ala Ala Glu 50 55
60Ile Arg Asp Pro Arg Lys Gly Val Arg Val Trp Leu Gly Thr Phe Asn65
70 75 80Thr Ala Glu Glu Ala
Ala Arg Ala Tyr Asp Ala Glu Ala Arg Arg Ile 85
90 95Arg Gly Lys Lys Ala Lys Val Asn Phe Pro Asn
Glu Thr Pro Arg Thr 100 105
110Ser Pro Lys His Ala Val Lys Thr Asn Ser Gln Lys Pro Leu Ser Lys
115 120 125Ser Asn Leu Ser Pro Val Gln
Leu Asn Leu Asp Gln Asn Tyr Asn Tyr 130 135
140Leu Ser Gln Pro Glu Gln Glu Tyr Phe Asp Thr Met Gly Phe Val
Glu145 150 155 160Glu Lys
Pro Leu Val Asn Gln Phe Ala Tyr Val Asp Pro Val Pro Thr
165 170 175Ser Ile Asp Ala Gly Ser Asn
Gln Ser Asp Asn Ala Pro Leu Tyr Phe 180 185
190Asn Ser Asp Gln Gly Ser Asn Ser Ile Asn Cys Ser Asp Tyr
Gly Trp 195 200 205Gly Glu Gln Gly
Ala Arg Thr Pro Glu Ile Ser Ser Ile Leu Glu Ala 210
215 220Ser Val Val Gly Glu Glu Phe Leu Glu Asp Ala Asn
Pro Ser Lys Lys225 230 235
240Leu Lys Pro Ser Ser Asp Asn Val Met Pro Ala Glu Asp Asn Ser Ala
245 250 255Lys Thr Leu Ser Asp
Glu Leu Leu Ala Leu Asp Asn Gln Met Lys Tyr 260
265 270Phe Gln Met Pro Pro Phe Ile Glu Gly Asn Trp Asp
Ala Thr Ile Asp 275 280 285Ala Phe
Leu Asn Gly Asp Ala Thr Gln Asp Gly Gly Asn Pro Met Asp 290
295 300Leu Trp Asn Phe Asp Asp Phe Pro Thr Met Ala
Glu Gly Val Phe305 310
31532387PRTNicotiana tabacum 32Met Cys Gly Gly Ala Ile Ile Ser Asp Tyr
Ile Ala Pro Ser Arg Thr1 5 10
15Ser Arg Arg Leu Thr Ala Glu Leu Leu Trp Gly Arg Ser Asp Leu Ser
20 25 30Asn Lys Gln Lys Asn Pro
Asn Asn Tyr His Ser Lys Pro Leu Arg Ser 35 40
45Gln Val Val Asp Leu Asp Asp Asp Phe Glu Ala Asp Phe Gln
Asp Phe 50 55 60Lys Asp Phe Ser Asp
Asp Glu Asp Val Gln Val Asp Val Lys Pro Phe65 70
75 80Ala Phe Ser Ala Ser Lys Asn Ser Asn Val
Glu Gly Ser Lys Ser Val 85 90
95Lys Thr Asp Asp Ser Asp Lys Asp Ala Asp Arg Ser Ser Lys Arg Lys
100 105 110Arg Lys Asn Gln Tyr
Arg Gly Ile Arg Gln Arg Pro Trp Gly Lys Trp 115
120 125Ala Ala Glu Ile Arg Asp Pro Arg Lys Gly Val Arg
Val Trp Leu Gly 130 135 140Thr Phe Asn
Thr Ala Glu Glu Ala Ala Arg Ala Tyr Asp Val Glu Ala145
150 155 160Arg Arg Ile Arg Gly Asn Lys
Ala Lys Val Asn Phe Pro Asp Glu Ala 165
170 175Pro Val Pro Ala Ser Arg Arg Thr Val Lys Val Asn
Pro Gln Lys Val 180 185 190Leu
Pro Lys Glu Ile Leu Asp Ser Val Gln Pro Asp Ser Thr Ile Ile 195
200 205Asn Asn Met Glu Asp Cys Cys Tyr Asp
Ser Leu Gly Phe Leu Glu Glu 210 215
220Lys Pro Met Thr Lys Gln Phe Gly Cys Glu Asp Gly Ser Ser Ala Ser225
230 235 240Gly Asp Thr Gly
Phe Gly Ser Phe Ala Pro Ser Ala Gly Thr Asp Ile 245
250 255Tyr Phe Asn Ser Asp Val Gly Ser Asn Ser
Phe Asp Cys Ser Asp Phe 260 265
270Gly Trp Gly Glu Pro Cys Ala Arg Thr Pro Glu Ile Ser Ser Val Leu
275 280 285Ser Ala Val Ile Glu Ser Asn
Glu Ser Gln Leu Val Glu Asp Asp Thr 290 295
300Ser Pro Met Lys Lys Leu Lys Ser Ser Pro Ile Asn Pro Val Ala
Asp305 310 315 320Asp Gly
Asn Thr Ala Asn Lys Leu Ser Glu Glu Leu Ser Ala Phe Glu
325 330 335Thr Gln Met Lys Phe Leu Gln
Ile Pro Tyr Leu Glu Gly Asn Trp Asp 340 345
350Ala Ser Val Asp Thr Phe Leu Asn Ser Ser Ala Thr Gln Asp
Gly Asp 355 360 365Asn Ala Met Asp
Leu Trp Ser Phe Asp Asp Val Pro Ser Leu Leu Gly 370
375 380Gly Val Phe38533369PRTCapsicum annuum 33Met Cys
Gly Gly Ala Ile Ile Ser Asp Leu Val Pro Pro Ser Arg Ile1 5
10 15Ser Arg Arg Leu Thr Ala Glu Leu
Leu Trp Gly Asn Ser Asp Leu Ser 20 25
30Lys Lys Lys Lys Asn Pro Gly Asn Tyr Tyr Ser Lys Pro Leu Asn
Arg 35 40 45Ser Lys Phe Ile Asp
Leu Asp Glu Glu Phe Glu Ala Asp Phe Gln Asp 50 55
60Phe Lys Asp Tyr Ala Asp Asp Asp Val Asp Asp Val Lys Pro
Phe Gly65 70 75 80Ser
Lys Ser Val Lys Ser Gly Asp Ser Ser Cys Asp Thr Glu Lys Ser
85 90 95Ser Lys Arg Lys Arg Lys Asn
Gln Tyr Arg Gly Ile Arg Gln Arg Pro 100 105
110Trp Gly Lys Trp Ala Ala Glu Ile Arg Asp Pro Arg Lys Gly
Ile Arg 115 120 125Val Trp Leu Gly
Thr Phe Asn Ser Ala Glu Glu Ala Ala Arg Ala Tyr 130
135 140Asp Val Glu Ala Arg Arg Ile Arg Gly Lys Lys Ala
Lys Val Asn Phe145 150 155
160Pro Asp Gly Ser Pro Ala Ser Ala Ser Arg Arg Ala Val Lys Pro Asn
165 170 175Pro Gln Glu Ala Leu
Arg Glu Glu Ile Leu Asn Thr Val Gln Pro Asn 180
185 190Thr Thr Tyr Ile Asn Asn Leu Asp Gly Gly Ser Asp
Asp Ser Phe Gly 195 200 205Phe Phe
Glu Glu Lys Pro Ala Ala Lys Gln Tyr Gly Tyr Glu Asn Val 210
215 220Ser Phe Thr Ala Gly Asp Met Gly Leu Gly Ser
Ile Ser Pro Ser Thr225 230 235
240Gly Thr Thr Asn Val Tyr Phe Ser Ser Asp Glu Gly Ser Asn Thr Phe
245 250 255Asp Cys Ser Asp
Phe Gly Trp Gly Glu Pro Cys Pro Arg Thr Pro Glu 260
265 270Ile Ser Ser Val Leu Ser Glu Val Leu Glu Cys
Asn Gly Thr Gln Ser 275 280 285Asp
Glu Asp Ala Arg Pro Glu Lys Lys Leu Lys Ser Cys Ser Asn Ala 290
295 300Ser Leu Pro Asp Glu Asp Asn Thr Val His
Thr Leu Ser Glu Glu Leu305 310 315
320Ser Ala Phe Glu Ser Gln Met Lys Phe Leu Gln Ile Pro Tyr Leu
Glu 325 330 335Gly Asn Trp
Asp Ala Ser Val Asp Ala Phe Val Asn Thr Gly Ala Ile 340
345 350Gln Asp Gly Gly Asn Ala Met Asp Leu Trp
Pro Ser Met Met Phe Leu 355 360
365Leu 34344PRTCicer arietinum 34Gly Phe Arg Glu Phe Lys Asp Asp Ser Asp
Phe Asp Glu Asp Glu Glu1 5 10
15Asp Asp Asp Asp Asp Glu Gly Leu Leu Val Gly Gly Lys Gly Phe Thr
20 25 30Phe Ser Ser Asn Asn Thr
Lys Ser Phe Lys Thr Phe Ser Arg Gly Ser 35 40
45Thr Ala Ala Lys Ser Val Ser Pro Lys Ser Asn Glu Gln Ala
Glu Lys 50 55 60Ala Cys Lys Arg Lys
Arg Lys Asn Gln Tyr Arg Gly Ile Arg Gln Arg65 70
75 80Pro Trp Gly Lys Trp Ala Ala Glu Ile Arg
Asp Pro Arg Lys Gly Val 85 90
95Arg Val Trp Leu Gly Thr Phe Asn Thr Ala Glu Glu Ala Ala Arg Ala
100 105 110Tyr Asp Ala Glu Ala
Arg Arg Ile Arg Gly Lys Lys Ala Lys Val Asn 115
120 125Phe Pro Glu Glu Ala Pro Val Thr Ser Ser Lys Arg
Phe Lys Pro Asn 130 135 140Leu Glu Asn
Lys Leu Val Asn Lys Asn Leu Asn Ser Phe Asn Pro Asn145
150 155 160Gly Asn Lys Met Phe Asn Phe
Gly Glu Asn Val Glu Asn Tyr Tyr Ser 165
170 175Pro Met Asp Gln Val Glu Gln Lys Pro Leu Val Asn
Asn Asn Asn Gln 180 185 190Tyr
Ala Asn Met Gly Pro Phe Ser Gly Asn Gly Val Gln His Ser Gln 195
200 205Ile Ser Pro Ser Ala Asp Val Thr Ala
Tyr Phe Ser Ser Glu His Ser 210 215
220Ser Asn Ser Phe Asp Tyr Ser Asp Leu Gly Trp Gly Glu Gln Gly Pro225
230 235 240Lys Thr Pro Glu
Ile Ser Ser Met Leu Ser Ala Ala Ala Pro Leu Glu 245
250 255Ser Glu Ser Gln Tyr Val Gln Asn Asn Met
Gln Ser Asn Asn Asn Gln 260 265
270Asn Met Leu Pro Val Glu Asp Asn Ser Ala Lys Thr Leu Ser Glu Glu
275 280 285Leu Ala Asp Ile Glu Ser Gln
Leu Lys Phe Phe Glu Thr Pro Tyr Asp 290 295
300Asp Asn Trp Gly Asp Ala Ser Leu Ala Ser Phe Leu Gly Gly Asp
Ala305 310 315 320Thr Gln
Asp Gly Gly Asn Pro Met Asn Leu Trp Ser Phe Asp Asp Leu
325 330 335Pro Ser Ile Ser Gly Gly Val
Phe 34035384PRTGlycine max 35Met Cys Gly Gly Ala Ile Ile Ser
Asp Phe Ile Pro Ala Gly Pro Ala1 5 10
15Ser Gly Ala Arg Arg Val Thr Ala Asp Ile Leu Trp Pro Ser
Leu Arg 20 25 30Lys Arg Phe
Ser Lys Pro Leu Leu Asp Asp Asp Phe Glu Ala Gly Phe 35
40 45Arg Glu Phe Lys Asp Asp Ser Glu Ile Glu Asp
Val Asp Asp Glu Asp 50 55 60Asp Glu
Asp Glu Glu Glu Leu Lys Lys Lys Pro Phe Gly Phe Ser Arg65
70 75 80Ser Ser Asn Lys Ala Ala Ser
Lys Pro Leu Ser Arg Gly Ala Thr Thr 85 90
95Val Lys Ser Val Glu Ser Lys Gly Gln Ala Glu Lys Cys
Ala Lys Arg 100 105 110Lys Arg
Lys Asn Gln Tyr Arg Gly Ile Arg Gln Arg Pro Trp Gly Lys 115
120 125Trp Ala Ala Glu Ile Arg Asp Pro Arg Lys
Gly Val Arg Val Trp Leu 130 135 140Gly
Thr Phe Ser Thr Ala Glu Glu Ala Ala Arg Ala Tyr Asp Ala Glu145
150 155 160Ala Arg Arg Ile Arg Gly
Lys Lys Ala Lys Val Asn Phe Pro Asp Glu 165
170 175Pro Ser Gly Ala Ala Ser Ser Lys Arg Leu Lys Ala
Asn Pro Glu Ala 180 185 190Gln
Pro Met Lys Lys Asn Leu Asn Ser Val Lys Pro Lys Ile Asn Gln 195
200 205Met Phe Asn Phe Gly Asp Asn Leu Glu
Gly Tyr Tyr Ser Pro Ile Asp 210 215
220Gln Val Glu Gln Lys Pro Leu Val Asn Gln Tyr Val Asn Arg Ala Pro225
230 235 240Phe Ala Gly Asn
Gly Val Gln Val Ser Pro Val Thr Pro Ser Ala Asp 245
250 255Val Thr Ala Tyr Phe Ser Ser Glu His Ser
Ser Asn Ser Phe Asp Tyr 260 265
270Ser Asp Leu Gly Trp Gly Glu Gln Val Pro Lys Thr Pro Glu Ile Ser
275 280 285Ser Leu Leu Ser Ala Ala Pro
Leu Glu Gly Ala Ala Asp Gln Val Gln 290 295
300Lys Thr Asn Asn Ser Gln Asp Val Val Ala Ala Gln Asp Asp Ser
Ala305 310 315 320Lys Thr
Leu Ser Glu Glu Leu Ala Asp Ile Glu Ser Gln Leu Lys Phe
325 330 335Phe Glu Thr Pro Ser Phe Leu
Asp Glu Ala Trp Ala Asp Ala Thr Leu 340 345
350Ala Ser Leu Leu Gly Gly Asp Ala Thr His Asp Ala Ala Gly
Asn Pro 355 360 365Met Asn Leu Trp
Ser Phe Asp Asp Leu Pro Ser Met Ala Gly Val Phe 370
375 38036358PRTArabidopsis thaliana 36Met Cys Gly Gly Ala
Ile Ile Ser Asp Phe Ile Pro Pro Pro Arg Ser1 5
10 15Arg Arg Val Thr Ser Glu Phe Ile Trp Pro Asp
Leu Lys Lys Asn Leu 20 25
30Lys Gly Ser Lys Lys Ser Ser Lys Asn Arg Ser Asn Phe Phe Asp Phe
35 40 45Asp Ala Glu Phe Glu Ala Asp Phe
Gln Gly Phe Lys Asp Asp Ser Ser 50 55
60Ile Asp Cys Asp Asp Asp Phe Asp Val Gly Asp Val Phe Ala Asp Val65
70 75 80Lys Pro Phe Val Phe
Thr Ser Thr Pro Lys Pro Ala Val Ser Ala Ala 85
90 95Ala Glu Gly Ser Val Phe Gly Lys Lys Val Thr
Gly Leu Asp Gly Asp 100 105
110Ala Glu Lys Ser Ala Asn Arg Lys Arg Lys Asn Gln Tyr Arg Gly Ile
115 120 125Arg Gln Arg Pro Trp Gly Lys
Trp Ala Ala Glu Ile Arg Asp Pro Arg 130 135
140Glu Gly Ala Arg Ile Trp Leu Gly Thr Phe Lys Thr Ala Glu Glu
Ala145 150 155 160Ala Arg
Ala Tyr Asp Ala Ala Ala Arg Arg Ile Arg Gly Ser Lys Ala
165 170 175Lys Val Asn Phe Pro Glu Glu
Asn Met Lys Ala Asn Ser Gln Lys Arg 180 185
190Ser Val Lys Ala Asn Leu Gln Lys Pro Val Ala Lys Pro Asn
Pro Asn 195 200 205Pro Ser Pro Ala
Leu Val Gln Asn Ser Asn Ile Ser Phe Glu Asn Met 210
215 220Cys Phe Met Glu Glu Lys His Gln Val Ser Asn Asn
Asn Asn Asn Gln225 230 235
240Phe Gly Met Thr Asn Ser Val Asp Ala Gly Cys Asn Gly Tyr Gln Tyr
245 250 255Phe Ser Ser Asp Gln
Gly Ser Asn Ser Phe Asp Cys Ser Glu Phe Gly 260
265 270Trp Ser Asp Gln Ala Pro Ile Thr Pro Asp Ile Ser
Ser Ala Val Ile 275 280 285Asn Asn
Asn Asn Ser Ala Leu Phe Phe Glu Glu Ala Asn Pro Ala Lys 290
295 300Lys Leu Lys Ser Met Asp Phe Glu Thr Pro Tyr
Asn Asn Thr Glu Trp305 310 315
320Asp Ala Ser Leu Asp Phe Leu Asn Glu Asp Ala Val Thr Thr Gln Asp
325 330 335Asn Gly Ala Asn
Pro Met Asp Leu Trp Ser Ile Asp Glu Ile His Ser 340
345 350Met Ile Gly Gly Val Phe 35537363PRTZea
mays 37Met Cys Gly Gly Ala Ile Leu Ser Asp Ile Ile Pro Pro Pro Pro Pro1
5 10 15Arg Arg Val Thr Ala
Gly His Leu Trp Pro Glu Ser Lys Lys Pro Arg 20
25 30Arg Ala Ala Ser Gly Arg Arg Gly Ala Pro Val Glu
Gln His Glu Gln 35 40 45Glu Glu
Asp Phe Glu Ala Asp Phe Glu Glu Phe Glu Val Glu Ser Gly 50
55 60Glu Ser Glu Leu Glu Ser Glu Asp Glu Pro Lys
Pro Phe Ala Ala Pro65 70 75
80Arg Ser Ala Leu Ala Arg Gly Gly Leu Asn Thr Gly Ala Ala Gly Val
85 90 95Asp Gly Pro Ala Ala
Asn Ser Val Lys Arg Lys Arg Lys Asn Gln Phe 100
105 110Arg Gly Ile Arg Arg Arg Pro Trp Gly Lys Trp Ala
Ala Glu Ile Arg 115 120 125Asp Pro
Arg Lys Gly Val Arg Val Trp Leu Gly Thr Phe Asn Ser Pro 130
135 140Glu Glu Ala Ala Arg Ala Tyr Asp Ala Glu Ala
Arg Arg Ile Arg Gly145 150 155
160Lys Lys Ala Lys Val Asn Phe Pro Asp Glu Val Pro Thr Ala Val Ser
165 170 175Gln Lys Arg Arg
Ala Ala Gly Pro Ala Ser Leu Lys Ala Pro Lys Met 180
185 190Asp Val Glu Glu Glu Lys Pro Ile Ile Lys Leu
Ala Val Asn Asn Met 195 200 205Thr
Asn Ser Asn Ala Tyr His Tyr Pro Ala Val Val Gly His Asn Ile 210
215 220Ile Pro Glu Pro Phe Met Gln Thr Gln Asn
Met Pro Phe Ala Pro Leu225 230 235
240Val Asn Tyr Ala Ala Leu Val Asn Leu Ser Ser Asp Gln Gly Ser
Asn 245 250 255Ser Phe Gly
Cys Ser Asp Phe Ser Leu Glu Asn Asp Ser Arg Thr Pro 260
265 270Asp Ile Thr Ser Val Pro Ala Pro Val Ala
Thr Leu Ala Ala Val Gly 275 280
285Glu Ser Val Phe Val Gln Asn Thr Ala Gly His Ala Val Ala Ser Pro 290
295 300Ala Thr Gly Asn Thr Gly Val Asp
Leu Ala Glu Leu Glu Pro Tyr Met305 310
315 320Asn Phe Leu Met Asp Gly Gly Ser Asp Asp Ser Ile
Ser Thr Leu Leu 325 330
335Ser Cys Asp Gly Ser Gln Asp Val Val Ser Asn Met Asp Leu Trp Ser
340 345 350Phe Glu Asp Met Pro Met
Ser Ala Gly Phe Tyr 355 36038201PRTTriticum
monococcum 38Glu Ala Arg Arg Ile Arg Gly Lys Lys Ala Lys Val Asn Phe Pro
Glu1 5 10 15Glu Ala Pro
Met Ala Pro Gln Gln Arg Cys Ala Thr Ser Val Lys Val 20
25 30Pro Glu Phe Asn Thr Glu Gln Lys Pro Val
Leu Asn Thr Met Gly Asn 35 40
45Ala Asp Val Tyr Ser Cys Pro Ala Val Asp Tyr Thr Ile Asn Gln Gln 50
55 60Phe Val Gln Pro Gln Asn Met Ser Phe
Val Pro Thr Val Asn Ala Val65 70 75
80Glu Ala Pro Phe Met Asn Phe Ser Ser Asp Gln Gly Ser Asn
Ser Phe 85 90 95Ser Cys
Ser Asp Phe Ser Trp Glu Asn Asp Ile Lys Thr Pro Asp Ile 100
105 110Thr Ser Val Leu Ala Ser Ile Pro Thr
Ser Thr Glu Val Asn Glu Ser 115 120
125Ala Phe Leu Gln Asn Asn Gly Ile Asn Ser Thr Val Pro Pro Val Met
130 135 140Gly Asp Ala Asn Val Asp Leu
Ala Asp Leu Glu Pro Tyr Met Lys Phe145 150
155 160Leu Met Asp Asp Gly Ser Asp Glu Ser Ile Asp Ser
Ile Leu Ser Cys 165 170
175Asp Val Pro Gln Asp Val Val Ser Asn Met Gly Leu Trp Thr Phe Asp
180 185 190Asp Met Pro Leu Ser Ala
Gly Phe Tyr 195 20039643DNATriticum aestivum
39ccttccgtcc gccttgttgg tttactgtgc cgtcgatcgg catggcgagg aaatgctcga
60gctgcggcca caatggccac aactcgagga cctgcggcgg gcaccgaggc gttgagagcg
120gcggcggcgg tgggctgagg ctgtttgggg tgcagctgca ggtgggcgcc gcgcctctca
180agaagagctt cagcatggag tgcctgtcgt cgaccgcgtc ggcctactac gcggcggccg
240cggccgtggg tgtcgccgcg tccaactcgt cgtcgtccgt gtcgtcgtcg tcgtcgctcg
300tctcggtgga ggagagcccg gagaagatgg gccacgggta cctctccgac gggctcatgg
360gcagggctca agagaggaag aaaggggttc catggaccga ggacgagcac cggaggttcc
420tggccggcct ggagaagctc gggaaaggcg actggcgagg catctcccgg cacttcgtca
480ccacacgcac gccgacgcag gtcgccagcc acgcccagaa gtacttcctc cggcaggccg
540gcctcgcgca gaagaagcgg cggtccagcc tcttcgacgt cgtggagaaa aatggcgaca
600ggggagccac cgagcgtcgt cacaggctga aacccgatgc cac
64340933DNAOryza sativa 40atggccagga aatgctccag ctgcgggaac aatggccaca
actccaggac ttgcaccggc 60caaaggagcc tgcaggagag tggcggcggt tatggcggcg
gtggcgccgg tggcgtgagg 120ttgttcgggg tgcagttgca cgtcggcggt gcgcctctga
agaagtgctt cagcatggag 180tgcctatcgt cgccgtcgcc gtcgccgtcg ccggcgtact
acgccgcggt cgccgccgcc 240gcctccaact cgtcgccgac cgtgtcgtcg tcgtcgtcgc
tggtgtcggt ggaggaggcc 300ggcgagaaga tggccaacgg gtacctctcc gatggcctca
tggcgagagc tcaggagagg 360aagaagggtg ttccatggac tgaagaggag cacaggaaat
tcctggtagg gctcgagaag 420ctcgggaaag gcgactggcg cggcatttcc cggcacttcg
tcacgacaag aacaccgacg 480caggtggcca gccatgccca gaagtatttc ctcaggcaga
gcagcctcac gcagaagaag 540agaagatcca gcctctttga cgtgattgag gatgcagaaa
aggctccgag tgtgaatgaa 600cgtctgaaac tgagacacga gacagcctct gtgcctgctg
aaatgggatt ccctgcactg 660tcactgggta tcagcagcat ggcacagcca gaagccatgc
tgctgcctcc tccatcctta 720accctgacgc caagctgttc atcaccagca gtgagcagca
gcagcagcga acaaccaaga 780acaatccatc cttctctgat ggtggcaaag cctcaggtgc
aactgcaact ccagccacct 840gatctggagc tcaagatctc gactgtccgt cagaacgatc
agcccagttc gtcgccgagg 900acgccttttt tggggacaat cagggtcact tga
93341836DNAGossypium raimondii 41cgctcattga
gtttgttatc agagggttgt tggtctgagg attgggtgaa agctttgtca 60ggaaggaaat
gggcaggaag tgctcacatt gtggaaacat aggtcataat tcaaggacct 120gcaccacttt
cagatcttct gctgcaggaa tgggatcagg tcttaggctt ttcggttttc 180aactacaact
ggatgtatct tcaccttctg tagtttccaa tcttatgatg aagaagagtt 240tcagcatgga
ttgcttgtct tcctctccct ctccctctcc ctctccctct ccctcttctt 300tgtcatcttc
tagagtttcc atcgatgaaa attctgataa aacttccatg ggttatctat 360ctgatggtct
catgggccga tctcctgaca gaaaaaaagg agttccatgg acagaagagg 420aacacagaat
ctttctaata gggctggaga agctagggaa aggagactgg agaggcatct 480ctagaaactt
tgtgacaaca aggactccaa cccaagttgc aagccatgct caaaagtatt 540ttcttcgaca
ggcaactctc aacaagaaga accgacgttc cagcctgttt gacatggtta 600gaagcaatag
catgggtgga ccacctagtc ttactaaaat ccctcaactc gatttgcatc 660atcgtcatcc
catgcctgtt gattgcagtg attcgcagac aaatgtggcg cctgatttgg 720agcttacact
tgccgcctca aggccggctt tagaagaaaa caagtcatcc ccaacaacaa 780caactctcct
tattagaccc cattatgtta cttgaccact tttcagttca tgctga
83642616DNASorghum bicolor 42catggccagg aagtgctccc actgtggcaa ctacggccac
aactccagga cctgcggctt 60aggacacagc agagaagtca tgctctgcga agccggcgac
aatggcggcg gccacggcgg 120cagcggccta aggctcttcg gagtgcaggt ccgtataggt
ggcggtggtg caggctcgtc 180ggcgtccatg aagaagagct acagcatgga ctgcctgcag
ctcgcggcgg ctcaagctgg 240ctgctccctc gtctcgccgt cgtcgtcgtc ctcgtcgtcg
ctgctgctgt cgattgaaga 300gggcctggag aggggggcgg ccgccaatgg gtacctgtct
gatggacctc atggcagagt 360tgtgcaggag aggaagaaag gagttccatg gagcgaggag
gagcacaggc agttccttgc 420cggcctggag aagctgggca agggcgactg gcgaggcatc
tcgaggaact acgtgacgac 480gaggacgccc acgcaggtcg ccagccatgc gcagaaattc
ttcctcaggc agagcagcat 540ggggaagaag aagcgccgct ccagcctctt tgacatggtg
ccgatttgcg agaacagcgc 600gagcatttcc gatccg
61643748DNATriticum
turgidummisc_feature(713)..(713)n is a, c, g, or t 43gaattcggca
cgaggctggt ctccacccat ctctcccacc acccgcacca aaagacaacg 60cagtgcggat
cgatttagtc gatttatagc cacaccatgg cgaggaagtg ctcccactgt 120ggcaactacg
gccacaactc aagaacttgc agcagcgcag ctggaaacca gggagaagtt 180atgctctgcg
aaggaggcgg cgggagcagc ggcggcagtg ggctgaggct cttcggggtg 240caggtccatg
tcgctgcggg ccgcagcacc ggcgccggcg cctccatgag gaagagctac 300agcatggact
gcctgcagct cgcggtggcc cctagctcca tcgtctcgcc ttcgtcgtcg 360tcttcctcgt
cggtgcttct gtccatcgat gagggcttgg agagggcttc caatgggtac 420ctatctgacg
gtcctcatgg cagattagtc caggagagga agaaaggagt tccatggagc 480gaggaggagc
accggctatt cctcgtgggc ctcgagaagc tcggaaaggg cgactggcga 540ggcatctccc
ggagctacgt cacgactcga accccgacgc aggttgccag ccacgcgcag 600aagttcttcc
tgaggcagag cagcatgggg aagaagaagc gccgctccag cctctttgac 660atggtaccga
tctgcgagaa cggcattcgc gtttctgagc cgctgaccaa cancagcgga 720gatgcctcca
cctctctgcc gcggtata
74844574DNAGlycine soja 44ggctgagaaa agaatctttg ttgttgaagt aagaataatt
aataatgggg aggaagtgct 60cacattgtgg aaccataggc cataactcaa ggacctgcac
atctttgaga ggggctacta 120ctagtttcgt tggacttcgc ctcttcggcg tgcaattaga
cagtactaat tgtgttagca 180tcaagaaaag ctttagcatg gactccttac cctcatcatc
atcttcctca ttctcttcat 240caagactaac cattgatgaa aattctgacc gaacctcttt
tgggtatctc tcagatggtc 300tcttagctcg agcccaagag aggaagaaag gagtgccatg
gacagaagag gaacacagaa 360tattccttgt tggacttgag aagctgggaa agggtgactg
gaggggaatc tctagaaact 420ttgtgactac aagaacccca acacaagtgg caagccatgc
tcaaaagtac tttcttcgat 480tggcaactat agataagaaa aagcgacgtt caagtctctt
tgacttggtt ggtagcaaca 540aagcaggttc taattcagtt tcggctcatc aaaa
57445786DNAHordeum vulgare 45atgctctgcg aaggaggcgg
cggcggcagc accagcggca gtgggctgag gctcttcggg 60gtgcaggtcc atgtagctgc
gggtcgcagc gcccgcgccg gcgcctccat gaggaagagc 120tacagcatgg actgcctgca
gctcgcggca gcccctagct ccatcgtctc gccttcgtcg 180tcgtcttcgt cgtcggtgct
tctgtccatt gatgagggct tggagagggc ttccaatgga 240tacctgtctg acggtcctca
tggcagatta gtccaggaga ggaagaaagg agttccatgg 300agcgaggagg agcaccggct
attccttgtg ggcctcgaga agctcggcaa gggcgactgg 360cgaggtatct cccggagcta
cgtcacgact cgaaccccga cacaggttgc cagccacgcg 420cagaagttct tcctcaggca
gagcagcatg gggaagaaga agcgccgatc cagcctcttt 480gacatggtgc cgatttgcga
gaacggcatt cgcgtttctg agccgctgac caacaacagc 540gagaatgcct ccacctctct
gccgcggtat aattccccca acatggcttc cattgatctc 600aactccaccc aggaggataa
cttggcgggc ttcccacttt ggtcggcgtc gggtgcatca 660ccgagagcgc catttccggc
tgttctgatg gagcagcctc cacatggcca cggacacggt 720caccactgct ccccgctgga
cgtggagctc agcatgtctc tctcgccgcc gtccatcgga 780acatga
78646653DNAMedicago
truncatula 46gggttggatc tctaatttca atttctccct ctaagagaca ataaacacaa
gttttaaggt 60taaggtttgt gtcggttcaa aaaatgggca gaaagtgctc acattgtgga
aacataggtc 120ataattcaag gacttgtaat tcattaagag gaagtggtag ttttgttgga
gttagacttt 180ttggtgttca acttgattta tcttcttctt gtgtttccat gaaaaagagt
tttagcatgg 240attcttttcc tacttcatct tcttctccta cttcttcctt ttcttcttca
agattaacca 300ttgatgatag agcctctatt ggttatcttt cagatggtct catagttcgt
acacaagaaa 360ggaaaaaagg agttccatgg acagaagaag agcatagaaa attccttgtt
ggacttgaga 420agcttggaaa aggagattgg aggggtatct ctagaaacta tgtgactaca
agaacaccaa 480cacaagttgc aagccatgct caaaagtatt ttattcgact tgcaaccttg
aataagaaga 540agagacgttc aagtctcttt gacatggttg gtagtggcaa gacaaacaaa
acagttgatc 600caaataacag ttctaaaagc aagtcaggag attcagtttg tagacatgat
cat 65347628DNASaccharum officinarum 47acggccacaa ctccaggacc
tgcggctttg gacacagaga aatcatgctc tgcgaagccg 60gcgacaatgg cggcggcagc
ggcctaaggc tcttcggagt gcaggtccgt atcggcggcg 120gtggtggtgc aggctcatcg
gcgtccatga agaagagcta cagcatggac tgcctgcagc 180tcgcggctcc agctggctgt
tccctcgtct cgccgtcgtc gtcgtcctcg tcgtcgctgc 240tgctgtcgat tgaagagggc
ctggagaggg ggacggccaa tgggtacctg tctgacggac 300ctcatgggag agttgtgcag
gagaggaaga aaggagttcc atggagtgag gaggagcaca 360ggcagttcct cgccggcctg
gagaagctgg gcaagggcga ctggcgaggc atctccagga 420actatgtgac gacgaggacc
ccgacgcagg tcgccagcca tgcgcagaaa ttcttcctca 480ggcagagcag catggggaag
aagaagcgcc ggtccagcct ctttgacatg gtgccgattt 540gcgagaacag tgcgagcatt
tccgatccgt tgaacagtga aggggcctcg acctttttgt 600cgctggacgt ggcacgccat
ggcgcccg 62848750DNALycopersicon
esculentum 48ttgtgaaact aattcttttt tgtgtatgtg aaaatgggga ggaagtgttc
acattgtggc 60tatattggtc ataattcaag aacttgtagc actttgaaaa gtgctattag
tggtagtaat 120tttaatggtg gattaaggct ttttggagtg caacttgata tttctaattc
ttgtttttct 180agtcataata ataataataa taataatttg aagaaaagtt ttagtttgga
ttgtttgtct 240ttaacaaata gccacttatt attattatca tcttcttctt ctccatctct
taatgaaaat 300agtagtacta attctattga taataatggt tatctctctg atggtactct
tgtaggttgt 360gttggtgaaa ggaaaaaagg agttccatgg acagaagagg aacatagaag
attcttaaat 420ggacttgaaa agttaggtaa aggagattgg agaggaattt caagaaattt
tgtgacaaca 480aggactccaa cacaagttgc aagtcatgca caaaaatatt ttctaagaca
atcaagtctc 540aacaaaaaaa aaaagacgtt caagtctctt cgatatggca aggagcaaca
acaaatatgt 600agatttttgt caaaattacc aagaagattg tcaagaaatt acaagatcat
ctccattaga 660cctaaattca tttggagaaa agtgtgaaga ttctatttgg agttatggat
cacaaaattc 720tcatcaaaat aaattccaaa taatccattt
75049667DNASolanum tuberosum 49gctaaccaag gtcttgtgga
tatgggaagg aagtgttcac attgtggtaa tataggtcac 60aattcaagaa cttgtagcac
tttcaagtta ggtgctagtg ctagctttgt tggtggatta 120aggctctttg gagtccaact
aattgacatc tcttcttcat cttctgcatc atcttcttct 180tcttcttctt atgatatcca
cttgaagaaa agtttaagct tagattgcat gtcttcacct 240caagtatcat catcatcatc
acttgttact cttaatgaaa agagtactac ttgcacaaat 300ggagattatc tatctgattg
tctcttaggt caacctcaag agagaaggaa aggagttgga 360tggacagagg aggaacatag
gagattcttg atgggactag aaaagctagg gaaaggagat 420tggagaggaa tttcgaggaa
gttcgtcaca acaagaactc caacacaagt agctagtcat 480gctcaaaaat atttcctcag
acagtactca actcatctca ataaaaagaa gcgccgttct 540agactctttg acatggaaag
gaggaagaac aaaatggaag aaagcaagga agagtatgga 600aattcaacaa gtccaattag
tatgatggat gaagagatag cattaacaac caaagatact 660ctaattt
66750474DNABruguiera
gymnorrhiza 50ggtttgggga gaaaatgggc aggaggtgct cgcattgtgg gaacataggc
cacaattcaa 60gaacttgcac ctctacctct ttcagaggcg tagtggttgc tggtgggcta
aggctttttg 120gagtgcgact tgacattcct tcttcacctt gtgtccccat tcaaaagagc
attagcatgg 180actctttgtc cttgtcttcc tccacatccc catctttctc ttctttgcgt
tcatctcgaa 240tttccattga cgacaattcc gataaattgt ccattgggta tctttctgat
agtctcttcg 300gacctgtcca ggagagaaag aagggagtcc cctggacaga agaggagcac
cgaacgttct 360taattgggct tgaaaagcta ggaaagggag actggagagg catctccaga
aactttgtga 420ctacaagaac tcccactcaa gttgctagtc atgctcagaa atatttcctt
cgcc 47451757DNAVitis vinifera 51cattttttag atttacatgt
gatcgtcttc actcgttttc ccttcacacc gagtaagctt 60attcttctct cgagtcacgc
ggcggcgact cgatatgact cgtcgctgct cacactgtag 120caccaacgga cacaactccc
gcacctgccc ctcccgcggt ggaggcgcag tcgccggcgg 180tatcggcgga gtgaagttgt
tcggagttcg gctcacagat ggctccatca tcaagaagag 240cgcaagtatg ggtagcctct
cctccgctca ctaccactcc tcctcctccg ccgcggcttc 300gccgaaccct agctcgccgt
cctccgaccc cctccgcgac gcgattcacg agcccgacgg 360ctacttatcg gacgatcctg
gccaggccac ttgctcctcc aatcgccgtg gtgaacggaa 420gaaaggtgta ccttggacag
aagaggagca ccggctattc ttatttggtc tccagaggtt 480gggtaaagga gactggcgtg
ggatatcacg taactatgtc atttcaagaa ctcctaccca 540ggtagcaagt catgcccaga
agtatttcat tcggcagagt aatgctaccc gaagaaagag 600gcgttccagc ctttttgata
tggttccaga catggtcaca gatacacctc ctgtgccaga 660agaacagttc ttggtcccga
cttctcagac tggagaaact gacaatgcaa gctcagtacc 720ctctctaaat ctctcactta
acatggaatt cgaaccc 757521164DNAArabidopsis
thaliana 52atgactcgtc ggtgttcgca ttgtagcaac aatgggcaca attcacgcac
gtgtccaacg 60cgtggtggtg gcacgtgcgg tggaagtggc ggaggaggag gaggtggtgg
tggaggaggg 120tctggttcct cctccgccat gaagttattt ggtgtgaggt taacggatgg
ctcgattatt 180aaaaagagtg cgagtatggg taatctctcg gcattggctg ttgcggcggc
ggcggcaacg 240caccaccgtt tatctccgtc gtctcctctg gcgacgtcaa atcttaatga
ttcgccgtta 300tcggatcatg cccgatactc taatttgcat cataatgaag ggtatttatc
tgatgatcct 360gctcatggtt ctgggtctag tcaccgtcgt ggtgagagga agagaggtgt
tccttggact 420gaagaggaac atagactatt cttagtcggt cttcagaaac tcgggaaagg
agattggcgc 480ggtatttcga gaaactatgt aacgtcaaga actcctacac aagtggctag
tcatgctcaa 540aagtatttta ttcgacatac tagttcaagc cgcaggaaaa gacggtctag
cctcttcgac 600atggttacag atgagatggt aaccgattca tcgccaacac aggaagagca
gaccttaaac 660ggttcctctc caagcaagga acctgaaaag aaaagctacc ttccttcact
tgagctctca 720ctcaataata ccacagaagc tgaagaggtc gtagccacgg cgccacgaca
ggaaaaatct 780caagaagcta tagaaccatc aaatggtgtt tcaccaatgc tagtcccggg
tggcttcttt 840cctccttgtt ttccagtgac ttacacgatt tggctccctg cgtcacttca
cggaacagaa 900catgccttaa acgctgagac ttcttctcag cagcatcagg tcctaaaacc
aaaacctgga 960tttgctaaag aacgtgtgaa catggacgag ttggtcggta tgtctcagct
tagcatagga 1020atggcgacaa gacacgaaac cgaaacttcc ccttccccgc tatctttgag
actagagccc 1080tcaaggccat cagcgtttca ctcgaatggc tcggttaatg gtgcagattt
gagtaaaggc 1140aacagcgcga ttcaggctat ctaa
116453846DNACitrus sinensis 53cacacgcaca ccctctctcc cccctcaaaa
tttccaagat aattataatt taaatagtca 60atttaattaa tttattagag atatccgaat
tttatcgagt cgcggcagcg gtaaccggcg 120atgacgcggc gctgctcgca ttgcagcaac
aacgggcaca actcgcgaac gtgtcccgcg 180cggggcggcg gctcgtcgcc gggcgtgggc
ggcctgaagt tgtttggcgt ccggcttacg 240gatggctcga taatcaagaa gagcgcgagc
atggggaact tatcggcgct gcactaccat 300agctcctcgt cggcagccgc ttcgccgaat
cctgactccc cgttatcgga tcacgtgcgt 360gacccgaatc acttgaccga cggttacttg
tcggatgacc cggcgcacgg gtctggttca 420tcgaatcggc gttgcgagag aaagaaaggt
gtcccatgga cagaagagga gcatcgcctg 480tttctaattg gccttcagaa attagggaag
ggagactggc gtggtatagc acgaaattat 540gtcatgtcca ggactccaac ccaggtggca
agtcatgcac agaagtattt tatccggcag 600agtaatgcta ctcgaagaaa gaggcgctcc
agtctttttg acatggttgc ggatgatatg 660gccacagata ccccaccggt gccagaagag
caagtaatgc ttccatctcc tcttgccaga 720gaatctgaca atacaagctc acaaccttct
ctaaatcttt ctctgagtac cgaatttgaa 780cccatggaag ccgtatgtaa agaaacagag
aaggattctg aagaacctgt gattgatttg 840aatgag
84654880DNANicotiana benthamiana
54caaaaaaaga aaaaaaaaag aatcttatcc aaaactccaa tcgccgagtc aatttaccat
60gactcggcgg tgttcccatt gcaacaacaa tggccacaat tcccggactt gtcccaccac
120caggggtggc acccccaccg gcggtgtagg tagttcctcc ggcggcggcg gcggagcaag
180tggaggtgta cggctatttg gtgtacggct tacagatggg tcgatcatga agaaaagtgc
240aagcatggga aatttatctt ctctccactc ttatcattct tcttcttcgc ctaatccgcc
300aggttcccct tcttctgatg gtcctcattt gcctgatggt tacctctctg atgatcccaa
360tacgcatgcc tctatttctg ctaatcgccg acttgaaagg aaaaaaggtg ttccatggac
420agaggaagag caccggcttt tcctgcttgg tttacagaaa ttaggcaaag gagattggcg
480gggtatatct cgaaacttcg tgacatcaag gactcccacc caggtagcta gccatgctca
540gaagtatttt attcggcaga gtaatgctac tcggagaaag agaagatcca gtctttttga
600cattgttgca gattcgggga ctgatgcttc ccatccacta ccagaagaac aatttatgct
660cccacctaga gcaatagaaa gtgataagga acacttagcg ccttctgcaa caaaagcaat
720agaaactgat tttgcagatt cactcccttc cttagatctt tctctcaagt cagattttga
780atccatggaa acaactccaa gtgaacctgt tgaagaagcg aaaccaaata ccacaaccaa
840cgagatccct tcagtatttc cagcattcct cccagcttac
88055435DNAGlycine max 55gcacgaggag gctactacta gtttcgttgg acttcgcctc
ttcggcgtgc aattagacag 60tactaattgt gttagcatca agaaaagctt tagcatggac
tccttaccct catcatcatc 120ttcctcattc tcttcatcaa gactaaccat tgatgaaaat
tctgaccgaa cctcttttgg 180gtatctctca gatggtctct tagctcgagc ccaagagagg
aagaaaggag tgccatggac 240agaagaggaa cacagaatat tccttgttgg acttgagaag
ctgggaaagg gtgactggag 300gggaatctct agaaactttg tgactacaag aaccccaaca
caagtggcaa gccatgctca 360aaagtacttt cttcgattgg caactataga taagaaaaag
cgacgttcaa gtctctttga 420cttggttggt agcaa
43556800DNAVitis aestivalismisc_feature(14)..(15)n
is a, c, g, or t 56tcggagtctc cgannttgct ccggcgacat gtctcgctgc tgttctcagt
gtggtcataa 60tggtcataat tctcgcacgt gtgcggagtc cggtggcggt ggcggtggtg
gtgatggtgg 120ttccgaaggg atcatgctgt ttggagtgag agtcactgtg gattcgatgc
gtaagagcgt 180cagtttgaac aatctgtcgc agtatgagca gcctcacgag tcttccaacg
ccgatgccac 240ccccgccgct ggatacgttt ccgccgacga tgtggctcac cactcctcag
ggaatcgtga 300gcgcaagcga ggtgtcccat ggaccgaaga agaacacaag cttttcctgg
ttggattgca 360gaaagttgga aaaggagact ggcgaggaat ctccaggaat ttcgtgaaaa
ctcgaactcc 420aacacaggtc gcaagtcatg ctcagaagta ctttctccgc agaaacaatc
tcaatcgacg 480acgccgcaga tctagcctct tcgacatcac caccgaatcg gtcacggcag
ttccaatgga 540agaagagcaa gtacttcatc atcaagagaa cacatctcaa tcccagcagt
ctcctaagac 600tttttccgag accggcagtg gcgatggatt tccggttgtg ccagcttttc
caatgccgat 660aaatccggtg gttgtaccag ttccgattca gaatccaatg gaaaacctaa
ctctaggaca 720aaatgatgtt aatacaaggc tggtccgtcc gattcccgtt nntcnnnttc
ctcccgagtc 780aacggatctc aacttgaatc
80057708DNABrassica napus 57gataataaaa atcaaaaaca aaattacaca
tctctctcta tcgaacttgt tgtatatacg 60caaaaaacta tatacggagg agcttttatt
acagattaaa gtgttttggc tttttgtgtt 120gtgtggatga ctcgtcggtg ttcgcattgt
agctacaatg ggcataactc ccgcacgtgc 180ccgactcgtg ggggtggtgg tggcggcacg
tgcggtggaa acggaggaga atctgcttct 240tcctcctcct ctgctgccgt gaagctgttc
ggcgtgaggt taacggatgg gtcgattatc 300aagaagagtg cgagtatggg taacctctct
gcattggccg tgcaccaccg tttgtctcct 360ttggcgacgg gtaatcataa cgactcgccg
ttgtcggatc atgggaggta ctctagtcaa 420gagaacggag ggtatttgtc ggatgatcca
ggtcatggtt ctgggtctat ccaccaccgt 480cgtgtggaga ggaagagagg cgttccttgg
acggaggagg agcacaggct attcttagtg 540ggtcttcaga agctaggaaa aggagattgg
cgtggtattt caagaaatta tgtaacttca 600agaactccaa cacaagtggc tagtcatgct
caaaagtatt tcatccgcca tacttgttcc 660acccggagga aaagacgttc tagcctcttc
gacatggtta ccgatgaa 70858703DNAPinus taeda 58cggttcgatc
gattgattga atgaaagaac tacactcctc ctcccccttt tattgacttt 60tatatagcgt
ctgtatctgg ataattagat taggtatcga tctctgattt ggatctgcct 120tcggttttgg
attttggatt ctctggttcc tggcatctct gtaatttggt acgaattggg 180ctctgtctgg
tttttttttt tttttgtctg tctcttggct ttcgattaat tatatccaaa 240gccggtaaac
atgacaagga agtgttcgca ctgtgggcac aatggccata attccagaac 300atgccccaac
cgtggtgtga aattgtttgg agttcggcta actgatgggc cgatacgcaa 360gagtgtgagt
atgggaaatt tgttgcatta ttccaacaac gcctcttcct ctaataacag 420cccggcctca
gcttcagcta tggagccttg cgaatcagtt gctaatgctg ctgcttctgc 480agatggttat
gtatccgatg gtctcgttca taacaattct cgaggagaga ggaagaaagg 540ggttccatgg
actgaagagg aacaccgcat gtttcttatt ggccttcaaa agcttggaaa 600gggtgattgg
agaggtatat caagaaactt tgtgccgaca agaactccta ctcaggttgc 660tagtcatgca
caaaagtatt ttattaggca gagtaatcta acc
70359711DNAAllium cepa 59catatccatc tcgaatctcc gccacgtgta cggcccgatt
cataccttct tcctcctcaa 60atctcaaaac cctaacatct taatactact ttcatgtact
ccaataattg aaatctggtg 120agttatgacg agaaaatgtt cccattgcag ccacaacggg
cacaactcgc gcacatgccc 180caataaaggt gtgaagctgt tcggtgtgag attgacggat
ggatcttctt caatcaggaa 240gagcgttagc atgggtaatc tctcacacta cgcggcagca
gctggcggtg gagcgtctcc 300ggctgacgga ggagatcatg gtactgacgt ggcggatggg
tatgcgtctg aggatttcgt 360tgcaggttct agttctggat cgagggaacg aaagagaggt
gtgccatgga ctgaagaaga 420acacagaatg ttcttacttg gcttgcaaaa acttggaaaa
ggtgattggc gaggaatagc 480ccgcaccttt gtaaaaacaa gaacacctac tcaagttgct
agccatgcac aaaagttttt 540cattcgacaa actaatatgg gtagaagaaa gagaagatct
agcctcttcg atattgtacc 600tgatgaagct gccgattcac agttcttacc tatgaacgat
caagaccccg aactgattgg 660aaacggttca gtgccagtac ctcaaactgt cgatgaagaa
tgcgaaatca t 71160810DNAMesembryanthemum crystallinum
60accccattct ctttctctct ctagcacccc cattttctct ctcttcccaa cccgatcacc
60gaacccgggt cgacccgcca tgactcggcg gtgctcccat tgcagccaca atgggcacaa
120ctctcggacc tgcccgaacc ggggggtcaa gctctttggg gtccgattaa ccgacggatc
180aatccgaaag agtgctagta tgggcaatct cagtcactat caccaaaacg gcgccgttgg
240gagcaccaca cctgggtctc ccgccggcga tcataccccc gaccatggtg gctccgccgc
300tggcgatggc tacggctctg aggatttcgt acctgggtcc tcttctagcc gtgagcgtaa
360aaaaggtgtt ccatggactg aggaggaaca ccgaatgttt ctgcttggac tgcaaaagct
420tgggaaaggc gattggcggg gaatatctcg taattatgta atatcgagga cacccactca
480agtggccagc catgctcaaa aatattttat caggcaaagc aacgtgtcca gaaggaaaag
540gcggtccagc ttgtttgata ttatagctga tgagtcgggc gatacaccaa tggtgtcaca
600tgatttcctt tctgcgcact cagcagagaa tgatacagag aatagcaatc cattgccccc
660tgctccagcg ctcgatgaag aatgcgaatc tatggcatct agcaactcca atgaggtggg
720acctactcta cctaaaccgg aaacctcaca aagctgctat ccaagtgata ctccccagac
780tattattccg ttgatatcca actatgttct
81061909DNAMalus xiaojinensis 61atgtcgtccg gcacgtgctc caccgtcgag
cccgcgggcg cgggagagat catgctgttc 60ggcgtgcgct tggtggtcga ttccatgagg
aagagcgtca gtttgaacaa tctctcgcag 120tacgagcacc ctcaggaggc cgcctccaac
aacggcaata acggcaccgc cgccggaaag 180gatgacgcgg cacccggtta cgcctccgag
aacgacgtcg ttcacaattc tggcgggaat 240cgcgagcgcg aacgcaagcg aggggttcca
tggacggagg aagagcacaa gcttttcttg 300cttggattgc agaaagcagg gaaaggagat
tggagaggga tctcaagaaa cttcgtgaag 360actcgcaccc cgactcaggt tgccagccat
gcacagaaat actatctgcg ccggagcaac 420ctcaatcgcc ggcgccgcag gtctagcctc
ttcgacatca ccactgatac ggtcgctcca 480actccaatgg atgaagagca agtacagcat
caagataaca tatctcagtc ccagttgcat 540ccgttgccac ccccgccacc atccgagcct
cgcgatgctg gtggattttc gatggtgcca 600aattttgcaa ggactgtagg tccagctgtc
ttgccagttc acattgagaa cccaatggaa 660aatctagctc ttcgacaagc aaatcccgag
aatagtactt cggccaagct cgtccatcca 720gttgcccttc attcggcccc tcatgcgacc
gcaatatctg acctaaactt gaactcaaca 780acggacgcat cgaccctaac tctcaacctc
tccttgtcaa tggactcgag ggaaccgtcg 840tcaaggcatt cggctttcga gacaatgcaa
ggattcagca acggggatag catgatcagt 900gtcgcttga
90962945DNAZea mays 62atgacgcggc
ggtgctcgca ctgcagccac aacgggcaca actcgcggac gtgccccaac 60cgcggggtca
agatcttcgg ggtgcacctc accgatggct cggccatccg caagagcgcg 120agcatgggga
acctctccct cctctccgcg ggatccacca gcggcggcgc gtcccccgcc 180gacgggcccg
acctcgccga cggcggcggg ggctacgcct ccgacgactt cgtccagggg 240tcgtcctccg
ccagccgcga tcgaaagaag gtgttccttg gactggagaa gaacaccgga 300gtttttgctg
ggattacaaa agctcgggaa aggggatggc gaggaatttc tcgtaatttt 360gtggtctcaa
gaacacctac tcaagtagca agtcatgctc aaaagtattt tatacgccaa 420tcaaatatga
gcagaaggaa gagaaggtct agccttttcg acatggttcc tgatgagtcc 480atggaccttc
cgccccttcc tggaagtcaa gaaccagaga cctcaatgtt aaatcaaccg 540ccactgcctc
ctgctgtgga ggaggaggtg gaatcgatgg agtcagatac ttctgctgtc 600gcagagagtt
ctggagcttc tgctctcatg cccgagagtt tacagcctac ctatccgatg 660attgttccag
cttatttctc gccgttcttg caattctcag ttcctttctg gccaaatcag 720gaagatggag
gcgatcttcc ccaagaaaca cacgagattg tcaagcctgt tgcagttcat 780tcccagaatc
caattaatgt tgatgaactc gtgggcatgt caaagctaag catatgggag 840catggtcagg
agacagtgta tacttctctg tcgctaaatc tgctaggggg tcaaaatagg 900cagtcggctt
tccatgcaaa ccctcaaaca agagctcaag cctga
94563933DNAHevea brasiliensis 63atggatcggg gaattgaaat cctctctcca
gcctcttatc ttcagaattc caattggttg 60tttccagaaa ccagggctac caaatggacc
cctgaagaaa acaagcagtt tgagaatgcg 120ctggccttat atgataagga tgaacctgat
cgatggcaga gagttgcagc cgtgatccca 180ggcaagactg ttggtgatgt aatcaaacag
tatagggaat tggaggaaga tgtcagtgat 240atagaggcag ggctgatccc aattcctgga
tacagcagca gtgatgcttt tactttggag 300tggttcaata ataatcaagg ttacgatggc
ttcagacact attatactcc tggaggcaag 360agaaccaccg ctgccaggtc ttctgagcag
gaaaggaaga aaggtgtgcc gtggactgag 420gaggagcata ggcagttcct catgggtctg
caaaagtatg gtaaagggga ctggagaaat 480atttctcgca actttgtgac cactagaaca
ccaactcagg tggctagcca tgctcagaag 540tattttatca ggcagagcac aggagggaag
gataagagaa ggtccagcat ccatgatatc 600actaccgtca atcttccaga caccaagtct
ccttcacctg atgagaagaa atcatcccca 660gatcattcta ccacaagtct acaatcacag
ccacaacaaa aaatggttgg catggccaaa 720ggattaatag actggaaacc acaaaatgaa
ggcggaggag cagctggtgt tttcagccaa 780gcaaatggca atttgttgat ggccccttta
tgtggaatat catcatatgg acaaaaacta 840caggagcaaa atctgcttag aggaactctt
ccagggtatc aatttgcacc ttacaatttg 900atttttcaga tgcaaccgat gcaacgccag
taa 93364876DNAAntirrhinum majus
64atggagattt taaccccaag ttcatatttt tccaattcaa atttgtttgt ggaggagagc
60tggagcccaa aatggactgc tgcagataac aaagcctttg agaatgctct tgccgtgttc
120gatgaatata ctcctcatcg atgggaaagg gtggctgaaa tagtccctgg aaagacagtg
180tgggatgtaa ttaggcatta caaggaactg gaagatgatg tgactagtat agaagcaggg
240cttgtcccag ttcctggtta caacacgtct ttgccattta cactagagtg gggcagtggc
300catggctttg atggatttat gcaatcttat gtagtcggag ggaggaaatc ctcgtgctct
360aggccgtctg atcaagaacg gaagaagggt gttccttgga cagaagaaga acacaagttg
420tttctgatgg ggcttaaaaa gtatggaaaa ggagactgga gaaatatatc gcgcaatttt
480gtgattacta gaacaccgac tcaagttgct agccatgctc agaagtactt catcaggcaa
540ctttctgggg gaaaagataa gaggagggca agtattcatg acataacaac agtgaacctt
600aacgacggcc aaacctttcc acgagagaac aaaattaaac aatcttcgcc tttggcacat
660caatcgaatt ctgctgctgc cacttccaaa cttcatattc aatggaatca gacaagaaat
720gagacgatca cgggttttgg cagtgggaat atgtttgtgt ctgatcctta caattacatg
780aatagtaatg aagttggact gcagggtcga tcgccgttcg gatctcgaaa tatggtgttt
840cggatgcatc catgttttag ctatcctagt gcatga
87665888DNACucumis sativus 65atggaaactc tgtatccatc ttcacatctc tcgagctctg
cttggtttgt gcttgataat 60ccaagcacaa agtggactaa agaagagaac aagatgtttg
agagtgctct tgctatatat 120gataaagaaa cacctgatag atggttcaaa gtagctgctt
tgatccctgg aaaaactgtg 180agtgatgtga ttaagcaata taaggagctt gaagaagatg
tttgtgaaat agaagccggg 240agattccctg tcccaggtta tgatcttgcc tcttcttttt
catttgagtt cgttgatgat 300cgaaatttcg atgtgtatag aaggaaatct tctgttggta
ggggctctga gcatgaaagg 360aagaaagggg tcccatggac agaggaagaa cacaagcaat
ttctaagggg acttttgaag 420tatggaaaag gggattggag aaatatctca agaaactttg
tgaactccaa aactcctaca 480caagtggcaa gccatgctca aaagtacttc atgaggcagc
tttcaggagg gaaagacaag 540agaaggccaa gcatccatga tatcacgact gttaatctta
cagagcccac agcatcagag 600aatgagaagt tgtcttcaat ggatcaattt tccaagcttc
cttcactgca gaagtcaccc 660tgctatcaaa agcttttgtt tgattggaac cgatccagta
acggggggtt gcttggttta 720ggatctaact atggcgatcg tctcatgtcg tttccatctg
ggattgctgc aaatggaata 780aagaatgagc aagatcaaga actgaacagt gcatattatg
gaacttattc caaacctcac 840aaatccatat tccaatttga accctcaaga tatcaaattt
acggatga 888662097DNASolanum demissum 66atgagcctca
accgaacatg caatagctcc ttctggacca aggaggaaga caaagcattt 60gagaatgctt
tggctgtatt ttctggagat aatgataaat ttctgaagat cgctgctgct 120gttcctggga
aatctcttca agaaattata gatcattata atgtattagt tgaagatatt 180aatgacatag
agtctggcaa agttccgcta cctaaatatg agagaatgca aagttcttct 240agctgcagac
gtagatcatt gggagcaggg gtagaacgac gaaaagggct tccttggact 300gcagaggaac
acaggtcatt tctccaggga ttggcaaaac acggaaaggg tgattggcgg 360ggtatatcaa
ggaactttgt gttttctaga acaccaacac aggtggcaag ccatgcccag 420aagtactaca
gtcgattaaa tgacaataac gcaaagagga gaaaaagcat tcatgatgtc 480actagtgtgg
gtgctgctaa tattactgaa ccttcacaag gacaaaaatc tgacgagttg 540acaggacctt
gtggaggaca atctcagtgg ccaattgccg actatgtgac tgaagctttc 600gacacaggga
tgctatcttt accagggtca gttacaaact gcacgactga tgctattgaa 660ggaccatcag
ctgttaaccc cgagaaattc ccacttgttg ctgctcttgg tagtgagttg 720aatagttcat
ttcccggtgt ggatgagttc ctgcaaagtg tagaagacct aatcattgta 780ccggcagaag
gcacctctgg agtatgccat ggggttgaca ctaggacatc tccatcactt 840agcgtgcaac
catcagttac tggtggcacc ggaatgtaca ctcatccagt ttcatttcct 900gacgtgcatg
agttcctgca agaggtagaa gacctaatca ctgtaccggc agagggcacc 960tctggagcat
gccatgggat tgacactagg acatctccat cacttagctt gcaatcatca 1020gttgctggtg
gcaccagaat gtacactcat tcggtcactg taccggcaga gggcacctct 1080ggagtgaggt
gtggaattga cactagaaca tctccatcac ttagcttgca accatcagtt 1140gctggtggca
ccagaatgta ccctcatcca gtcaatgtac tggcagaggg cacctctgga 1200gcgagccatg
gggttgacac taggacatct ccttcactta gcttgcaacc atcagttgct 1260ggtggctcta
gaatataccc tcatccagtc aatgtaccgg cagagggcat ctctggagtg 1320agccatgggg
ttgacactag gacatctcca tcacttagct tgcaaccatc agttggtggt 1380ggcacgggaa
tgtacacaca tccagtcact gtacgggtag agggcacctc tggagcgagg 1440cgtggggttg
acactaggac atctccatca cttagcttgc aaccatcagt tgttggtggc 1500atcggaatgt
acactcatcc aatcattgta ccggcagagg gcacctctgg aacgaggcgt 1560ggggttgaca
ctaggacatc tccatcacta agctttcaac catcagttgg tggtggcacc 1620ggaatgtaca
ctcatccagt cactgtactg gcagagggca cctctggagt aaggtgtggg 1680gttggcacta
ggacatctcc atcacttggc ttgcaaccat cagttgctgg tggtaccaga 1740atgtacactc
atgcagtcaa taatgttggg tatgatctgg aagagctaat gactaagcag 1800ttggttggag
ctagtcaaga aggtcctagc attaacactg caagtttgcc atcaccaatt 1860gctgatcata
ttggactcca tggttgtaca acttctagca gtgtcgctaa gaatggtttt 1920gtgagtacca
tggaagctcc tgggggaggt ttttctgttg attccatgca gacaccatca 1980attcctggcc
atattggagg tggaacttat ccctgttggg aacctagcag caaggacgac 2040agtatctttg
atctggaata cctatacaca gatcacatgt ttggttttcg caaataa
209767200PRTTriticum aestivum 67Met Ala Arg Lys Cys Ser Ser Cys Gly His
Asn Gly His Asn Ser Arg1 5 10
15Thr Cys Gly Gly His Arg Gly Val Glu Ser Gly Gly Gly Gly Gly Leu
20 25 30Arg Leu Phe Gly Val Gln
Leu Gln Val Gly Ala Ala Pro Leu Lys Lys 35 40
45Ser Phe Ser Met Glu Cys Leu Ser Ser Thr Ala Ser Ala Tyr
Tyr Ala 50 55 60Ala Ala Ala Ala Val
Gly Val Ala Ala Ser Asn Ser Ser Ser Ser Val65 70
75 80Ser Ser Ser Ser Ser Leu Val Ser Val Glu
Glu Ser Pro Glu Lys Met 85 90
95Gly His Gly Tyr Leu Ser Asp Gly Leu Met Gly Arg Ala Gln Glu Arg
100 105 110Lys Lys Gly Val Pro
Trp Thr Glu Asp Glu His Arg Arg Phe Leu Ala 115
120 125Gly Leu Glu Lys Leu Gly Lys Gly Asp Trp Arg Gly
Ile Ser Arg His 130 135 140Phe Val Thr
Thr Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys145
150 155 160Tyr Phe Leu Arg Gln Ala Gly
Leu Ala Gln Lys Lys Arg Arg Ser Ser 165
170 175Leu Phe Asp Val Val Glu Lys Asn Gly Asp Arg Gly
Ala Thr Glu Arg 180 185 190Arg
His Arg Leu Lys Pro Asp Ala 195 20068310PRTOryza
sativa 68Met Ala Arg Lys Cys Ser Ser Cys Gly Asn Asn Gly His Asn Ser Arg1
5 10 15Thr Cys Thr Gly
Gln Arg Ser Leu Gln Glu Ser Gly Gly Gly Tyr Gly 20
25 30Gly Gly Gly Ala Gly Gly Val Arg Leu Phe Gly
Val Gln Leu His Val 35 40 45Gly
Gly Ala Pro Leu Lys Lys Cys Phe Ser Met Glu Cys Leu Ser Ser 50
55 60Pro Ser Pro Ser Pro Ser Pro Ala Tyr Tyr
Ala Ala Val Ala Ala Ala65 70 75
80Ala Ser Asn Ser Ser Pro Thr Val Ser Ser Ser Ser Ser Leu Val
Ser 85 90 95Val Glu Glu
Ala Gly Glu Lys Met Ala Asn Gly Tyr Leu Ser Asp Gly 100
105 110Leu Met Ala Arg Ala Gln Glu Arg Lys Lys
Gly Val Pro Trp Thr Glu 115 120
125Glu Glu His Arg Lys Phe Leu Val Gly Leu Glu Lys Leu Gly Lys Gly 130
135 140Asp Trp Arg Gly Ile Ser Arg His
Phe Val Thr Thr Arg Thr Pro Thr145 150
155 160Gln Val Ala Ser His Ala Gln Lys Tyr Phe Leu Arg
Gln Ser Ser Leu 165 170
175Thr Gln Lys Lys Arg Arg Ser Ser Leu Phe Asp Val Ile Glu Asp Ala
180 185 190Glu Lys Ala Pro Ser Val
Asn Glu Arg Leu Lys Leu Arg His Glu Thr 195 200
205Ala Ser Val Pro Ala Glu Met Gly Phe Pro Ala Leu Ser Leu
Gly Ile 210 215 220Ser Ser Met Ala Gln
Pro Glu Ala Met Leu Leu Pro Pro Pro Ser Leu225 230
235 240Thr Leu Thr Pro Ser Cys Ser Ser Pro Ala
Val Ser Ser Ser Ser Ser 245 250
255Glu Gln Pro Arg Thr Ile His Pro Ser Leu Met Val Ala Lys Pro Gln
260 265 270Val Gln Leu Gln Leu
Gln Pro Pro Asp Leu Glu Leu Lys Ile Ser Thr 275
280 285Val Arg Gln Asn Asp Gln Pro Ser Ser Ser Pro Arg
Thr Pro Phe Leu 290 295 300Gly Thr Ile
Arg Val Thr305 31069248PRTGossypium raimondii 69Met Gly
Arg Lys Cys Ser His Cys Gly Asn Ile Gly His Asn Ser Arg1 5
10 15Thr Cys Thr Thr Phe Arg Ser Ser
Ala Ala Gly Met Gly Ser Gly Leu 20 25
30Arg Leu Phe Gly Phe Gln Leu Gln Leu Asp Val Ser Ser Pro Ser
Val 35 40 45Val Ser Asn Leu Met
Met Lys Lys Ser Phe Ser Met Asp Cys Leu Ser 50 55
60Ser Ser Pro Ser Pro Ser Pro Ser Pro Ser Pro Ser Ser Leu
Ser Ser65 70 75 80Ser
Arg Val Ser Ile Asp Glu Asn Ser Asp Lys Thr Ser Met Gly Tyr
85 90 95Leu Ser Asp Gly Leu Met Gly
Arg Ser Pro Asp Arg Lys Lys Gly Val 100 105
110Pro Trp Thr Glu Glu Glu His Arg Ile Phe Leu Ile Gly Leu
Glu Lys 115 120 125Leu Gly Lys Gly
Asp Trp Arg Gly Ile Ser Arg Asn Phe Val Thr Thr 130
135 140Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys
Tyr Phe Leu Arg145 150 155
160Gln Ala Thr Leu Asn Lys Lys Asn Arg Arg Ser Ser Leu Phe Asp Met
165 170 175Val Arg Ser Asn Ser
Met Gly Gly Pro Pro Ser Leu Thr Lys Ile Pro 180
185 190Gln Leu Asp Leu His His Arg His Pro Met Pro Val
Asp Cys Ser Asp 195 200 205Ser Gln
Thr Asn Val Ala Pro Asp Leu Glu Leu Thr Leu Ala Ala Ser 210
215 220Arg Pro Ala Leu Glu Glu Asn Lys Ser Ser Pro
Thr Thr Thr Thr Leu225 230 235
240Leu Ile Arg Pro His Tyr Val Thr 24570205PRTSorghum
bicolor 70Met Ala Arg Lys Cys Ser His Cys Gly Asn Tyr Gly His Asn Ser
Arg1 5 10 15Thr Cys Gly
Leu Gly His Ser Arg Glu Val Met Leu Cys Glu Ala Gly 20
25 30Asp Asn Gly Gly Gly His Gly Gly Ser Gly
Leu Arg Leu Phe Gly Val 35 40
45Gln Val Arg Ile Gly Gly Gly Gly Ala Gly Ser Ser Ala Ser Met Lys 50
55 60Lys Ser Tyr Ser Met Asp Cys Leu Gln
Leu Ala Ala Ala Gln Ala Gly65 70 75
80Cys Ser Leu Val Ser Pro Ser Ser Ser Ser Ser Ser Ser Leu
Leu Leu 85 90 95Ser Ile
Glu Glu Gly Leu Glu Arg Gly Ala Ala Ala Asn Gly Tyr Leu 100
105 110Ser Asp Gly Pro His Gly Arg Val Val
Gln Glu Arg Lys Lys Gly Val 115 120
125Pro Trp Ser Glu Glu Glu His Arg Gln Phe Leu Ala Gly Leu Glu Lys
130 135 140Leu Gly Lys Gly Asp Trp Arg
Gly Ile Ser Arg Asn Tyr Val Thr Thr145 150
155 160Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys
Phe Phe Leu Arg 165 170
175Gln Ser Ser Met Gly Lys Lys Lys Arg Arg Ser Ser Leu Phe Asp Met
180 185 190Val Pro Ile Cys Glu Asn
Ser Ala Ser Ile Ser Asp Pro 195 200
20571218PRTTriticum turgidummisc_feature(206)..(206)Xaa can be any
naturally occurring amino acid 71Met Ala Arg Lys Cys Ser His Cys Gly Asn
Tyr Gly His Asn Ser Arg1 5 10
15Thr Cys Ser Ser Ala Ala Gly Asn Gln Gly Glu Val Met Leu Cys Glu
20 25 30Gly Gly Gly Gly Ser Ser
Gly Gly Ser Gly Leu Arg Leu Phe Gly Val 35 40
45Gln Val His Val Ala Ala Gly Arg Ser Thr Gly Ala Gly Ala
Ser Met 50 55 60Arg Lys Ser Tyr Ser
Met Asp Cys Leu Gln Leu Ala Val Ala Pro Ser65 70
75 80Ser Ile Val Ser Pro Ser Ser Ser Ser Ser
Ser Ser Val Leu Leu Ser 85 90
95Ile Asp Glu Gly Leu Glu Arg Ala Ser Asn Gly Tyr Leu Ser Asp Gly
100 105 110Pro His Gly Arg Leu
Val Gln Glu Arg Lys Lys Gly Val Pro Trp Ser 115
120 125Glu Glu Glu His Arg Leu Phe Leu Val Gly Leu Glu
Lys Leu Gly Lys 130 135 140Gly Asp Trp
Arg Gly Ile Ser Arg Ser Tyr Val Thr Thr Arg Thr Pro145
150 155 160Thr Gln Val Ala Ser His Ala
Gln Lys Phe Phe Leu Arg Gln Ser Ser 165
170 175Met Gly Lys Lys Lys Arg Arg Ser Ser Leu Phe Asp
Met Val Pro Ile 180 185 190Cys
Glu Asn Gly Ile Arg Val Ser Glu Pro Leu Thr Asn Xaa Ser Gly 195
200 205Asp Ala Ser Thr Ser Leu Pro Arg Tyr
Xaa 210 21572176PRTGlycine soja 72Met Gly Arg Lys Cys
Ser His Cys Gly Thr Ile Gly His Asn Ser Arg1 5
10 15Thr Cys Thr Ser Leu Arg Gly Ala Thr Thr Ser
Phe Val Gly Leu Arg 20 25
30Leu Phe Gly Val Gln Leu Asp Ser Thr Asn Cys Val Ser Ile Lys Lys
35 40 45Ser Phe Ser Met Asp Ser Leu Pro
Ser Ser Ser Ser Ser Ser Phe Ser 50 55
60Ser Ser Arg Leu Thr Ile Asp Glu Asn Ser Asp Arg Thr Ser Phe Gly65
70 75 80Tyr Leu Ser Asp Gly
Leu Leu Ala Arg Ala Gln Glu Arg Lys Lys Gly 85
90 95Val Pro Trp Thr Glu Glu Glu His Arg Ile Phe
Leu Val Gly Leu Glu 100 105
110Lys Leu Gly Lys Gly Asp Trp Arg Gly Ile Ser Arg Asn Phe Val Thr
115 120 125Thr Arg Thr Pro Thr Gln Val
Ala Ser His Ala Gln Lys Tyr Phe Leu 130 135
140Arg Leu Ala Thr Ile Asp Lys Lys Lys Arg Arg Ser Ser Leu Phe
Asp145 150 155 160Leu Val
Gly Ser Asn Lys Ala Gly Ser Asn Ser Val Ser Ala His Gln
165 170 17573261PRTHordeum vulgare 73 Met
Leu Cys Glu Gly Gly Gly Gly Gly Ser Thr Ser Gly Ser Gly Leu1
5 10 15Arg Leu Phe Gly Val Gln Val
His Val Ala Ala Gly Arg Ser Ala Arg 20 25
30Ala Gly Ala Ser Met Arg Lys Ser Tyr Ser Met Asp Cys Leu
Gln Leu 35 40 45Ala Ala Ala Pro
Ser Ser Ile Val Ser Pro Ser Ser Ser Ser Ser Ser 50 55
60Ser Val Leu Leu Ser Ile Asp Glu Gly Leu Glu Arg Ala
Ser Asn Gly65 70 75
80Tyr Leu Ser Asp Gly Pro His Gly Arg Leu Val Gln Glu Arg Lys Lys
85 90 95Gly Val Pro Trp Ser Glu
Glu Glu His Arg Leu Phe Leu Val Gly Leu 100
105 110Glu Lys Leu Gly Lys Gly Asp Trp Arg Gly Ile Ser
Arg Ser Tyr Val 115 120 125Thr Thr
Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys Phe Phe 130
135 140Leu Arg Gln Ser Ser Met Gly Lys Lys Lys Arg
Arg Ser Ser Leu Phe145 150 155
160Asp Met Val Pro Ile Cys Glu Asn Gly Ile Arg Val Ser Glu Pro Leu
165 170 175Thr Asn Asn Ser
Glu Asn Ala Ser Thr Ser Leu Pro Arg Tyr Asn Ser 180
185 190Pro Asn Met Ala Ser Ile Asp Leu Asn Ser Thr
Gln Glu Asp Asn Leu 195 200 205Ala
Gly Phe Pro Leu Trp Ser Ala Ser Gly Ala Ser Pro Arg Ala Pro 210
215 220Phe Pro Ala Val Leu Met Glu Gln Pro Pro
His Gly His Gly His Gly225 230 235
240His His Cys Ser Pro Leu Asp Val Glu Leu Ser Met Ser Leu Ser
Pro 245 250 255Pro Ser Ile
Gly Thr 26074190PRTMedicago truncatula 74Met Gly Arg Lys Cys
Ser His Cys Gly Asn Ile Gly His Asn Ser Arg1 5
10 15Thr Cys Asn Ser Leu Arg Gly Ser Gly Ser Phe
Val Gly Val Arg Leu 20 25
30Phe Gly Val Gln Leu Asp Leu Ser Ser Ser Cys Val Ser Met Lys Lys
35 40 45Ser Phe Ser Met Asp Ser Phe Pro
Thr Ser Ser Ser Ser Pro Thr Ser 50 55
60Ser Phe Ser Ser Ser Arg Leu Thr Ile Asp Asp Arg Ala Ser Ile Gly65
70 75 80Tyr Leu Ser Asp Gly
Leu Ile Val Arg Thr Gln Glu Arg Lys Lys Gly 85
90 95Val Pro Trp Thr Glu Glu Glu His Arg Lys Phe
Leu Val Gly Leu Glu 100 105
110Lys Leu Gly Lys Gly Asp Trp Arg Gly Ile Ser Arg Asn Tyr Val Thr
115 120 125Thr Arg Thr Pro Thr Gln Val
Ala Ser His Ala Gln Lys Tyr Phe Ile 130 135
140Arg Leu Ala Thr Leu Asn Lys Lys Lys Arg Arg Ser Ser Leu Phe
Asp145 150 155 160Met Val
Gly Ser Gly Lys Thr Asn Lys Thr Val Asp Pro Asn Asn Ser
165 170 175Ser Lys Ser Lys Ser Gly Asp
Ser Val Cys Arg His Asp His 180 185
19075208PRTSaccharum officinarum 75Gly His Asn Ser Arg Thr Cys Gly
Phe Gly His Arg Glu Ile Met Leu1 5 10
15Cys Glu Ala Gly Asp Asn Gly Gly Gly Ser Gly Leu Arg Leu
Phe Gly 20 25 30Val Gln Val
Arg Ile Gly Gly Gly Gly Gly Ala Gly Ser Ser Ala Ser 35
40 45Met Lys Lys Ser Tyr Ser Met Asp Cys Leu Gln
Leu Ala Ala Pro Ala 50 55 60Gly Cys
Ser Leu Val Ser Pro Ser Ser Ser Ser Ser Ser Ser Leu Leu65
70 75 80Leu Ser Ile Glu Glu Gly Leu
Glu Arg Gly Thr Ala Asn Gly Tyr Leu 85 90
95Ser Asp Gly Pro His Gly Arg Val Val Gln Glu Arg Lys
Lys Gly Val 100 105 110Pro Trp
Ser Glu Glu Glu His Arg Gln Phe Leu Ala Gly Leu Glu Lys 115
120 125Leu Gly Lys Gly Asp Trp Arg Gly Ile Ser
Arg Asn Tyr Val Thr Thr 130 135 140Arg
Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys Phe Phe Leu Arg145
150 155 160Gln Ser Ser Met Gly Lys
Lys Lys Arg Arg Ser Ser Leu Phe Asp Met 165
170 175Val Pro Ile Cys Glu Asn Ser Ala Ser Ile Ser Asp
Pro Leu Asn Ser 180 185 190Glu
Gly Ala Ser Thr Phe Leu Ser Leu Asp Val Ala Arg His Gly Ala 195
200 20576217PRTLycopersicon esculentum 76Met
Gly Arg Lys Cys Ser His Cys Gly Tyr Ile Gly His Asn Ser Arg1
5 10 15Thr Cys Ser Thr Leu Lys Ser
Ala Ile Ser Gly Ser Asn Phe Asn Gly 20 25
30Gly Leu Arg Leu Phe Gly Val Gln Leu Asp Ile Ser Asn Ser
Cys Phe 35 40 45 Ser Ser His Asn
Asn Asn Asn Asn Asn Asn Leu Lys Lys Ser Phe Ser 50 55
60Leu Asp Cys Leu Ser Leu Thr Asn Ser His Leu Leu Leu
Leu Ser Ser65 70 75
80Ser Ser Ser Pro Ser Leu Asn Glu Asn Ser Ser Thr Asn Ser Ile Asp
85 90 95Asn Asn Gly Tyr Leu Ser
Asp Gly Thr Leu Val Gly Cys Val Gly Glu 100
105 110Arg Lys Lys Gly Val Pro Trp Thr Glu Glu Glu His
Arg Arg Phe Leu 115 120 125Asn Gly
Leu Glu Lys Leu Gly Lys Gly Asp Trp Arg Gly Ile Ser Arg 130
135 140Asn Phe Val Thr Thr Arg Thr Pro Thr Gln Val
Ala Ser His Ala Gln145 150 155
160Lys Tyr Phe Leu Arg Gln Ser Ser Leu Asn Lys Lys Lys Lys Thr Phe
165 170 175Lys Ser Leu Arg
Tyr Gly Lys Glu Gln Gln Gln Ile Cys Arg Phe Leu 180
185 190Ser Lys Leu Pro Arg Arg Leu Ser Arg Asn Tyr
Lys Ile Ile Ser Ile 195 200 205Arg
Pro Lys Phe Ile Trp Arg Lys Val 210 21577216PRTSolanum
tuberosummisc_feature(216)..(216)Xaa can be any naturally occurring amino
acid 77Met Gly Arg Lys Cys Ser His Cys Gly Asn Ile Gly His Asn Ser Arg1
5 10 15Thr Cys Ser Thr Phe
Lys Leu Gly Ala Ser Ala Ser Phe Val Gly Gly 20
25 30Leu Arg Leu Phe Gly Val Gln Leu Ile Asp Ile Ser
Ser Ser Ser Ser 35 40 45Ala Ser
Ser Ser Ser Ser Ser Ser Tyr Asp Ile His Leu Lys Lys Ser 50
55 60Leu Ser Leu Asp Cys Met Ser Ser Pro Gln Val
Ser Ser Ser Ser Ser65 70 75
80Leu Val Thr Leu Asn Glu Lys Ser Thr Thr Cys Thr Asn Gly Asp Tyr
85 90 95Leu Ser Asp Cys Leu
Leu Gly Gln Pro Gln Glu Arg Arg Lys Gly Val 100
105 110Gly Trp Thr Glu Glu Glu His Arg Arg Phe Leu Met
Gly Leu Glu Lys 115 120 125Leu Gly
Lys Gly Asp Trp Arg Gly Ile Ser Arg Lys Phe Val Thr Thr 130
135 140Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln
Lys Tyr Phe Leu Arg145 150 155
160Gln Tyr Ser Thr His Leu Asn Lys Lys Lys Arg Arg Ser Arg Leu Phe
165 170 175Asp Met Glu Arg
Arg Lys Asn Lys Met Glu Glu Ser Lys Glu Glu Tyr 180
185 190Gly Asn Ser Thr Ser Pro Ile Ser Met Met Asp
Glu Glu Ile Ala Leu 195 200 205Thr
Thr Lys Asp Thr Leu Ile Xaa 210 21578153PRTBruguiera
gymnorrhiza 78Met Gly Arg Arg Cys Ser His Cys Gly Asn Ile Gly His Asn Ser
Arg1 5 10 15Thr Cys Thr
Ser Thr Ser Phe Arg Gly Val Val Val Ala Gly Gly Leu 20
25 30Arg Leu Phe Gly Val Arg Leu Asp Ile Pro
Ser Ser Pro Cys Val Pro 35 40
45Ile Gln Lys Ser Ile Ser Met Asp Ser Leu Ser Leu Ser Ser Ser Thr 50
55 60Ser Pro Ser Phe Ser Ser Leu Arg Ser
Ser Arg Ile Ser Ile Asp Asp65 70 75
80Asn Ser Asp Lys Leu Ser Ile Gly Tyr Leu Ser Asp Ser Leu
Phe Gly 85 90 95Pro Val
Gln Glu Arg Lys Lys Gly Val Pro Trp Thr Glu Glu Glu His 100
105 110Arg Thr Phe Leu Ile Gly Leu Glu Lys
Leu Gly Lys Gly Asp Trp Arg 115 120
125Gly Ile Ser Arg Asn Phe Val Thr Thr Arg Thr Pro Thr Gln Val Ala
130 135 140Ser His Ala Gln Lys Tyr Phe
Leu Arg145 15079221PRTVitis vinifera 79Met Thr Arg Arg
Cys Ser His Cys Ser Thr Asn Gly His Asn Ser Arg1 5
10 15Thr Cys Pro Ser Arg Gly Gly Gly Ala Val
Ala Gly Gly Ile Gly Gly 20 25
30Val Lys Leu Phe Gly Val Arg Leu Thr Asp Gly Ser Ile Ile Lys Lys
35 40 45Ser Ala Ser Met Gly Ser Leu Ser
Ser Ala His Tyr His Ser Ser Ser 50 55
60Ser Ala Ala Ala Ser Pro Asn Pro Ser Ser Pro Ser Ser Asp Pro Leu65
70 75 80Arg Asp Ala Ile His
Glu Pro Asp Gly Tyr Leu Ser Asp Asp Pro Gly 85
90 95Gln Ala Thr Cys Ser Ser Asn Arg Arg Gly Glu
Arg Lys Lys Gly Val 100 105
110Pro Trp Thr Glu Glu Glu His Arg Leu Phe Leu Phe Gly Leu Gln Arg
115 120 125Leu Gly Lys Gly Asp Trp Arg
Gly Ile Ser Arg Asn Tyr Val Ile Ser 130 135
140Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys Tyr Phe Ile
Arg145 150 155 160Gln Ser
Asn Ala Thr Arg Arg Lys Arg Arg Ser Ser Leu Phe Asp Met
165 170 175Val Pro Asp Met Val Thr Asp
Thr Pro Pro Val Pro Glu Glu Gln Phe 180 185
190Leu Val Pro Thr Ser Gln Thr Gly Glu Thr Asp Asn Ala Ser
Ser Val 195 200 205Pro Ser Leu Asn
Leu Ser Leu Asn Met Glu Phe Glu Pro 210 215
22080387PRTArabidopsis thaliana 80Met Thr Arg Arg Cys Ser His Cys
Ser Asn Asn Gly His Asn Ser Arg1 5 10
15Thr Cys Pro Thr Arg Gly Gly Gly Thr Cys Gly Gly Ser Gly
Gly Gly 20 25 30Gly Gly Gly
Gly Gly Gly Gly Gly Ser Gly Ser Ser Ser Ala Met Lys 35
40 45Leu Phe Gly Val Arg Leu Thr Asp Gly Ser Ile
Ile Lys Lys Ser Ala 50 55 60Ser Met
Gly Asn Leu Ser Ala Leu Ala Val Ala Ala Ala Ala Ala Thr65
70 75 80His His Arg Leu Ser Pro Ser
Ser Pro Leu Ala Thr Ser Asn Leu Asn 85 90
95Asp Ser Pro Leu Ser Asp His Ala Arg Tyr Ser Asn Leu
His His Asn 100 105 110Glu Gly
Tyr Leu Ser Asp Asp Pro Ala His Gly Ser Gly Ser Ser His 115
120 125Arg Arg Gly Glu Arg Lys Arg Gly Val Pro
Trp Thr Glu Glu Glu His 130 135 140Arg
Leu Phe Leu Val Gly Leu Gln Lys Leu Gly Lys Gly Asp Trp Arg145
150 155 160Gly Ile Ser Arg Asn Tyr
Val Thr Ser Arg Thr Pro Thr Gln Val Ala 165
170 175Ser His Ala Gln Lys Tyr Phe Ile Arg His Thr Ser
Ser Ser Arg Arg 180 185 190Lys
Arg Arg Ser Ser Leu Phe Asp Met Val Thr Asp Glu Met Val Thr 195
200 205Asp Ser Ser Pro Thr Gln Glu Glu Gln
Thr Leu Asn Gly Ser Ser Pro 210 215
220Ser Lys Glu Pro Glu Lys Lys Ser Tyr Leu Pro Ser Leu Glu Leu Ser225
230 235 240Leu Asn Asn Thr
Thr Glu Ala Glu Glu Val Val Ala Thr Ala Pro Arg 245
250 255Gln Glu Lys Ser Gln Glu Ala Ile Glu Pro
Ser Asn Gly Val Ser Pro 260 265
270Met Leu Val Pro Gly Gly Phe Phe Pro Pro Cys Phe Pro Val Thr Tyr
275 280 285Thr Ile Trp Leu Pro Ala Ser
Leu His Gly Thr Glu His Ala Leu Asn 290 295
300Ala Glu Thr Ser Ser Gln Gln His Gln Val Leu Lys Pro Lys Pro
Gly305 310 315 320Phe Ala
Lys Glu Arg Val Asn Met Asp Glu Leu Val Gly Met Ser Gln
325 330 335Leu Ser Ile Gly Met Ala Thr
Arg His Glu Thr Glu Thr Ser Pro Ser 340 345
350Pro Leu Ser Leu Arg Leu Glu Pro Ser Arg Pro Ser Ala Phe
His Ser 355 360 365Asn Gly Ser Val
Asn Gly Ala Asp Leu Ser Lys Gly Asn Ser Ala Ile 370
375 380Gln Ala Ile38581242PRTCitrus sinensis 81Met Thr
Arg Arg Cys Ser His Cys Ser Asn Asn Gly His Asn Ser Arg1 5
10 15Thr Cys Pro Ala Arg Gly Gly Gly
Ser Ser Pro Gly Val Gly Gly Leu 20 25
30Lys Leu Phe Gly Val Arg Leu Thr Asp Gly Ser Ile Ile Lys Lys
Ser 35 40 45Ala Ser Met Gly Asn
Leu Ser Ala Leu His Tyr His Ser Ser Ser Ser 50 55
60Ala Ala Ala Ser Pro Asn Pro Asp Ser Pro Leu Ser Asp His
Val Arg65 70 75 80Asp
Pro Asn His Leu Thr Asp Gly Tyr Leu Ser Asp Asp Pro Ala His
85 90 95Gly Ser Gly Ser Ser Asn Arg
Arg Cys Glu Arg Lys Lys Gly Val Pro 100 105
110Trp Thr Glu Glu Glu His Arg Leu Phe Leu Ile Gly Leu Gln
Lys Leu 115 120 125Gly Lys Gly Asp
Trp Arg Gly Ile Ala Arg Asn Tyr Val Met Ser Arg 130
135 140Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys Tyr
Phe Ile Arg Gln145 150 155
160Ser Asn Ala Thr Arg Arg Lys Arg Arg Ser Ser Leu Phe Asp Met Val
165 170 175Ala Asp Asp Met Ala
Thr Asp Thr Pro Pro Val Pro Glu Glu Gln Val 180
185 190Met Leu Pro Ser Pro Leu Ala Arg Glu Ser Asp Asn
Thr Ser Ser Gln 195 200 205Pro Ser
Leu Asn Leu Ser Leu Ser Thr Glu Phe Glu Pro Met Glu Ala 210
215 220Val Cys Lys Glu Thr Glu Lys Asp Ser Glu Glu
Pro Val Ile Asp Leu225 230 235
240Asn Glu82274PRTNicotiana benthamiana 82Met Thr Arg Arg Cys Ser
His Cys Asn Asn Asn Gly His Asn Ser Arg1 5
10 15Thr Cys Pro Thr Thr Arg Gly Gly Thr Pro Thr Gly
Gly Val Gly Ser 20 25 30Ser
Ser Gly Gly Gly Gly Gly Ala Ser Gly Gly Val Arg Leu Phe Gly 35
40 45Val Arg Leu Thr Asp Gly Ser Ile Met
Lys Lys Ser Ala Ser Met Gly 50 55
60Asn Leu Ser Ser Leu His Ser Tyr His Ser Ser Ser Ser Pro Asn Pro65
70 75 80Pro Gly Ser Pro Ser
Ser Asp Gly Pro His Leu Pro Asp Gly Tyr Leu 85
90 95Ser Asp Asp Pro Asn Thr His Ala Ser Ile Ser
Ala Asn Arg Arg Leu 100 105
110Glu Arg Lys Lys Gly Val Pro Trp Thr Glu Glu Glu His Arg Leu Phe
115 120 125Leu Leu Gly Leu Gln Lys Leu
Gly Lys Gly Asp Trp Arg Gly Ile Ser 130 135
140Arg Asn Phe Val Thr Ser Arg Thr Pro Thr Gln Val Ala Ser His
Ala145 150 155 160Gln Lys
Tyr Phe Ile Arg Gln Ser Asn Ala Thr Arg Arg Lys Arg Arg
165 170 175Ser Ser Leu Phe Asp Ile Val
Ala Asp Ser Gly Thr Asp Ala Ser His 180 185
190Pro Leu Pro Glu Glu Gln Phe Met Leu Pro Pro Arg Ala Ile
Glu Ser 195 200 205Asp Lys Glu His
Leu Ala Pro Ser Ala Thr Lys Ala Ile Glu Thr Asp 210
215 220Phe Ala Asp Ser Leu Pro Ser Leu Asp Leu Ser Leu
Lys Ser Asp Phe225 230 235
240Glu Ser Met Glu Thr Thr Pro Ser Glu Pro Val Glu Glu Ala Lys Pro
245 250 255Asn Thr Thr Thr Asn
Glu Ile Pro Ser Val Phe Pro Ala Phe Leu Pro 260
265 270Ala Tyr 83144PRTGlycine max 83His Glu Glu Ala Thr
Thr Ser Phe Val Gly Leu Arg Leu Phe Gly Val1 5
10 15Gln Leu Asp Ser Thr Asn Cys Val Ser Ile Lys
Lys Ser Phe Ser Met 20 25
30Asp Ser Leu Pro Ser Ser Ser Ser Ser Ser Phe Ser Ser Ser Arg Leu
35 40 45Thr Ile Asp Glu Asn Ser Asp Arg
Thr Ser Phe Gly Tyr Leu Ser Asp 50 55
60Gly Leu Leu Ala Arg Ala Gln Glu Arg Lys Lys Gly Val Pro Trp Thr65
70 75 80Glu Glu Glu His Arg
Ile Phe Leu Val Gly Leu Glu Lys Leu Gly Lys 85
90 95Gly Asp Trp Arg Gly Ile Ser Arg Asn Phe Val
Thr Thr Arg Thr Pro 100 105
110Thr Gln Val Ala Ser His Ala Gln Lys Tyr Phe Leu Arg Leu Ala Thr
115 120 125Ile Asp Lys Lys Lys Arg Arg
Ser Ser Leu Phe Asp Leu Val Gly Ser 130 135
14084258PRTVitis aestivalismisc_feature(245)..(247)Xaa can be any
naturally occurring amino acid 84Met Ser Arg Cys Cys Ser Gln Cys Gly His
Asn Gly His Asn Ser Arg1 5 10
15Thr Cys Ala Glu Ser Gly Gly Gly Gly Gly Gly Gly Asp Gly Gly Ser
20 25 30Glu Gly Ile Met Leu Phe
Gly Val Arg Val Thr Val Asp Ser Met Arg 35 40
45Lys Ser Val Ser Leu Asn Asn Leu Ser Gln Tyr Glu Gln Pro
His Glu 50 55 60Ser Ser Asn Ala Asp
Ala Thr Pro Ala Ala Gly Tyr Val Ser Ala Asp65 70
75 80Asp Val Ala His His Ser Ser Gly Asn Arg
Glu Arg Lys Arg Gly Val 85 90
95Pro Trp Thr Glu Glu Glu His Lys Leu Phe Leu Val Gly Leu Gln Lys
100 105 110Val Gly Lys Gly Asp
Trp Arg Gly Ile Ser Arg Asn Phe Val Lys Thr 115
120 125Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys
Tyr Phe Leu Arg 130 135 140Arg Asn Asn
Leu Asn Arg Arg Arg Arg Arg Ser Ser Leu Phe Asp Ile145
150 155 160Thr Thr Glu Ser Val Thr Ala
Val Pro Met Glu Glu Glu Gln Val Leu 165
170 175His His Gln Glu Asn Thr Ser Gln Ser Gln Gln Ser
Pro Lys Thr Phe 180 185 190Ser
Glu Thr Gly Ser Gly Asp Gly Phe Pro Val Val Pro Ala Phe Pro 195
200 205Met Pro Ile Asn Pro Val Val Val Pro
Val Pro Ile Gln Asn Pro Met 210 215
220Glu Asn Leu Thr Leu Gly Gln Asn Asp Val Asn Thr Arg Leu Val Arg225
230 235 240Pro Ile Pro Val
Xaa Xaa Xaa Pro Pro Glu Ser Thr Asp Leu Asn Leu 245
250 255Asn Xaa 85194PRTBrassica napus 85Met Thr
Arg Arg Cys Ser His Cys Ser Tyr Asn Gly His Asn Ser Arg1 5
10 15Thr Cys Pro Thr Arg Gly Gly Gly
Gly Gly Gly Thr Cys Gly Gly Asn 20 25
30Gly Gly Glu Ser Ala Ser Ser Ser Ser Ser Ala Ala Val Lys Leu
Phe 35 40 45Gly Val Arg Leu Thr
Asp Gly Ser Ile Ile Lys Lys Ser Ala Ser Met 50 55
60Gly Asn Leu Ser Ala Leu Ala Val His His Arg Leu Ser Pro
Leu Ala65 70 75 80Thr
Gly Asn His Asn Asp Ser Pro Leu Ser Asp His Gly Arg Tyr Ser
85 90 95Ser Gln Glu Asn Gly Gly Tyr
Leu Ser Asp Asp Pro Gly His Gly Ser 100 105
110Gly Ser Ile His His Arg Arg Val Glu Arg Lys Arg Gly Val
Pro Trp 115 120 125Thr Glu Glu Glu
His Arg Leu Phe Leu Val Gly Leu Gln Lys Leu Gly 130
135 140Lys Gly Asp Trp Arg Gly Ile Ser Arg Asn Tyr Val
Thr Ser Arg Thr145 150 155
160Pro Thr Gln Val Ala Ser His Ala Gln Lys Tyr Phe Ile Arg His Thr
165 170 175Cys Ser Thr Arg Arg
Lys Arg Arg Ser Ser Leu Phe Asp Met Val Thr 180
185 190Asp Glu 86151PRTPinus taeda 86Met Thr Arg Lys Cys
Ser His Cys Gly His Asn Gly His Asn Ser Arg1 5
10 15Thr Cys Pro Asn Arg Gly Val Lys Leu Phe Gly
Val Arg Leu Thr Asp 20 25
30Gly Pro Ile Arg Lys Ser Val Ser Met Gly Asn Leu Leu His Tyr Ser
35 40 45 Asn Asn Ala Ser Ser Ser Asn
Asn Ser Pro Ala Ser Ala Ser Ala Met 50 55
60Glu Pro Cys Glu Ser Val Ala Asn Ala Ala Ala Ser Ala Asp Gly Tyr65
70 75 80Val Ser Asp Gly
Leu Val His Asn Asn Ser Arg Gly Glu Arg Lys Lys 85
90 95Gly Val Pro Trp Thr Glu Glu Glu His Arg
Met Phe Leu Ile Gly Leu 100 105
110Gln Lys Leu Gly Lys Gly Asp Trp Arg Gly Ile Ser Arg Asn Phe Val
115 120 125Pro Thr Arg Thr Pro Thr Gln
Val Ala Ser His Ala Gln Lys Tyr Phe 130 135
140Ile Arg Gln Ser Asn Leu Thr145 15087172PRTAllium
cepa 87Met Thr Arg Lys Cys Ser His Cys Ser His Asn Gly His Asn Ser Arg1
5 10 15Thr Cys Pro Asn Lys
Gly Val Lys Leu Phe Gly Val Arg Leu Thr Asp 20
25 30Gly Ser Ser Ser Ile Arg Lys Ser Val Ser Met Gly
Asn Leu Ser His 35 40 45Tyr Ala
Ala Ala Ala Gly Gly Gly Ala Ser Pro Ala Asp Gly Gly Asp 50
55 60His Gly Thr Asp Val Ala Asp Gly Tyr Ala Ser
Glu Asp Phe Val Ala65 70 75
80Gly Ser Ser Ser Gly Ser Arg Glu Arg Lys Arg Gly Val Pro Trp Thr
85 90 95Glu Glu Glu His Arg
Met Phe Leu Leu Gly Leu Gln Lys Leu Gly Lys 100
105 110Gly Asp Trp Arg Gly Ile Ala Arg Thr Phe Val Lys
Thr Arg Thr Pro 115 120 125Thr Gln
Val Ala Ser His Ala Gln Lys Phe Phe Ile Arg Gln Thr Asn 130
135 140Met Gly Arg Arg Lys Arg Arg Ser Ser Leu Phe
Asp Ile Val Pro Asp145 150 155
160Glu Ala Ala Asp Ser Gln Phe Leu Pro Met Asn Asp
165 17088243PRTMesembryanthemum crystallinum 88Met Thr
Arg Arg Cys Ser His Cys Ser His Asn Gly His Asn Ser Arg1 5
10 15Thr Cys Pro Asn Arg Gly Val Lys
Leu Phe Gly Val Arg Leu Thr Asp 20 25
30Gly Ser Ile Arg Lys Ser Ala Ser Met Gly Asn Leu Ser His Tyr
His 35 40 45Gln Asn Gly Ala Val
Gly Ser Thr Thr Pro Gly Ser Pro Ala Gly Asp 50 55
60His Thr Pro Asp His Gly Gly Ser Ala Ala Gly Asp Gly Tyr
Gly Ser65 70 75 80Glu
Asp Phe Val Pro Gly Ser Ser Ser Ser Arg Glu Arg Lys Lys Gly
85 90 95Val Pro Trp Thr Glu Glu Glu
His Arg Met Phe Leu Leu Gly Leu Gln 100 105
110Lys Leu Gly Lys Gly Asp Trp Arg Gly Ile Ser Arg Asn Tyr
Val Ile 115 120 125Ser Arg Thr Pro
Thr Gln Val Ala Ser His Ala Gln Lys Tyr Phe Ile 130
135 140Arg Gln Ser Asn Val Ser Arg Arg Lys Arg Arg Ser
Ser Leu Phe Asp145 150 155
160Ile Ile Ala Asp Glu Ser Gly Asp Thr Pro Met Val Ser His Asp Phe
165 170 175Leu Ser Ala His Ser
Ala Glu Asn Asp Thr Glu Asn Ser Asn Pro Leu 180
185 190Pro Pro Ala Pro Ala Leu Asp Glu Glu Cys Glu Ser
Met Ala Ser Ser 195 200 205Asn Ser
Asn Glu Val Gly Pro Thr Leu Pro Lys Pro Glu Thr Ser Gln 210
215 220Ser Cys Tyr Pro Ser Asp Thr Pro Gln Thr Ile
Ile Pro Leu Ile Ser225 230 235
240Asn Tyr Val89302PRTMalus xiaojinensis 89Met Ser Ser Gly Thr Cys
Ser Thr Val Glu Pro Ala Gly Ala Gly Glu1 5
10 15Ile Met Leu Phe Gly Val Arg Leu Val Val Asp Ser
Met Arg Lys Ser 20 25 30Val
Ser Leu Asn Asn Leu Ser Gln Tyr Glu His Pro Gln Glu Ala Ala 35
40 45Ser Asn Asn Gly Asn Asn Gly Thr Ala
Ala Gly Lys Asp Asp Ala Ala 50 55
60Pro Gly Tyr Ala Ser Glu Asn Asp Val Val His Asn Ser Gly Gly Asn65
70 75 80Arg Glu Arg Glu Arg
Lys Arg Gly Val Pro Trp Thr Glu Glu Glu His 85
90 95Lys Leu Phe Leu Leu Gly Leu Gln Lys Ala Gly
Lys Gly Asp Trp Arg 100 105
110Gly Ile Ser Arg Asn Phe Val Lys Thr Arg Thr Pro Thr Gln Val Ala
115 120 125Ser His Ala Gln Lys Tyr Tyr
Leu Arg Arg Ser Asn Leu Asn Arg Arg 130 135
140Arg Arg Arg Ser Ser Leu Phe Asp Ile Thr Thr Asp Thr Val Ala
Pro145 150 155 160Thr Pro
Met Asp Glu Glu Gln Val Gln His Gln Asp Asn Ile Ser Gln
165 170 175Ser Gln Leu His Pro Leu Pro
Pro Pro Pro Pro Ser Glu Pro Arg Asp 180 185
190Ala Gly Gly Phe Ser Met Val Pro Asn Phe Ala Arg Thr Val
Gly Pro 195 200 205Ala Val Leu Pro
Val His Ile Glu Asn Pro Met Glu Asn Leu Ala Leu 210
215 220Arg Gln Ala Asn Pro Glu Asn Ser Thr Ser Ala Lys
Leu Val His Pro225 230 235
240Val Ala Leu His Ser Ala Pro His Ala Thr Ala Ile Ser Asp Leu Asn
245 250 255Leu Asn Ser Thr Thr
Asp Ala Ser Thr Leu Thr Leu Asn Leu Ser Leu 260
265 270Ser Met Asp Ser Arg Glu Pro Ser Ser Arg His Ser
Ala Phe Glu Thr 275 280 285Met Gln
Gly Phe Ser Asn Gly Asp Ser Met Ile Ser Val Ala 290
295 30090314PRTZea mays 90Met Thr Arg Arg Cys Ser His Cys
Ser His Asn Gly His Asn Ser Arg1 5 10
15Thr Cys Pro Asn Arg Gly Val Lys Ile Phe Gly Val His Leu
Thr Asp 20 25 30Gly Ser Ala
Ile Arg Lys Ser Ala Ser Met Gly Asn Leu Ser Leu Leu 35
40 45Ser Ala Gly Ser Thr Ser Gly Gly Ala Ser Pro
Ala Asp Gly Pro Asp 50 55 60Leu Ala
Asp Gly Gly Gly Gly Tyr Ala Ser Asp Asp Phe Val Gln Gly65
70 75 80Ser Ser Ser Ala Ser Arg Asp
Arg Lys Lys Val Phe Leu Gly Leu Glu 85 90
95Lys Asn Thr Gly Val Phe Ala Gly Ile Thr Lys Ala Arg
Glu Arg Gly 100 105 110Trp Arg
Gly Ile Ser Arg Asn Phe Val Val Ser Arg Thr Pro Thr Gln 115
120 125Val Ala Ser His Ala Gln Lys Tyr Phe Ile
Arg Gln Ser Asn Met Ser 130 135 140Arg
Arg Lys Arg Arg Ser Ser Leu Phe Asp Met Val Pro Asp Glu Ser145
150 155 160Met Asp Leu Pro Pro Leu
Pro Gly Ser Gln Glu Pro Glu Thr Ser Met 165
170 175Leu Asn Gln Pro Pro Leu Pro Pro Ala Val Glu Glu
Glu Val Glu Ser 180 185 190Met
Glu Ser Asp Thr Ser Ala Val Ala Glu Ser Ser Gly Ala Ser Ala 195
200 205Leu Met Pro Glu Ser Leu Gln Pro Thr
Tyr Pro Met Ile Val Pro Ala 210 215
220Tyr Phe Ser Pro Phe Leu Gln Phe Ser Val Pro Phe Trp Pro Asn Gln225
230 235 240Glu Asp Gly Gly
Asp Leu Pro Gln Glu Thr His Glu Ile Val Lys Pro 245
250 255Val Ala Val His Ser Gln Asn Pro Ile Asn
Val Asp Glu Leu Val Gly 260 265
270Met Ser Lys Leu Ser Ile Trp Glu His Gly Gln Glu Thr Val Tyr Thr
275 280 285Ser Leu Ser Leu Asn Leu Leu
Gly Gly Gln Asn Arg Gln Ser Ala Phe 290 295
300His Ala Asn Pro Gln Thr Arg Ala Gln Ala305
31091310PRTHevea brasiliensis 91Met Asp Arg Gly Ile Glu Ile Leu Ser Pro
Ala Ser Tyr Leu Gln Asn1 5 10
15Ser Asn Trp Leu Phe Pro Glu Thr Arg Ala Thr Lys Trp Thr Pro Glu
20 25 30Glu Asn Lys Gln Phe Glu
Asn Ala Leu Ala Leu Tyr Asp Lys Asp Glu 35 40
45Pro Asp Arg Trp Gln Arg Val Ala Ala Val Ile Pro Gly Lys
Thr Val 50 55 60Gly Asp Val Ile Lys
Gln Tyr Arg Glu Leu Glu Glu Asp Val Ser Asp65 70
75 80Ile Glu Ala Gly Leu Ile Pro Ile Pro Gly
Tyr Ser Ser Ser Asp Ala 85 90
95Phe Thr Leu Glu Trp Phe Asn Asn Asn Gln Gly Tyr Asp Gly Phe Arg
100 105 110His Tyr Tyr Thr Pro
Gly Gly Lys Arg Thr Thr Ala Ala Arg Ser Ser 115
120 125Glu Gln Glu Arg Lys Lys Gly Val Pro Trp Thr Glu
Glu Glu His Arg 130 135 140Gln Phe Leu
Met Gly Leu Gln Lys Tyr Gly Lys Gly Asp Trp Arg Asn145
150 155 160Ile Ser Arg Asn Phe Val Thr
Thr Arg Thr Pro Thr Gln Val Ala Ser 165
170 175His Ala Gln Lys Tyr Phe Ile Arg Gln Ser Thr Gly
Gly Lys Asp Lys 180 185 190Arg
Arg Ser Ser Ile His Asp Ile Thr Thr Val Asn Leu Pro Asp Thr 195
200 205Lys Ser Pro Ser Pro Asp Glu Lys Lys
Ser Ser Pro Asp His Ser Thr 210 215
220Thr Ser Leu Gln Ser Gln Pro Gln Gln Lys Met Val Gly Met Ala Lys225
230 235 240Gly Leu Ile Asp
Trp Lys Pro Gln Asn Glu Gly Gly Gly Ala Ala Gly 245
250 255Val Phe Ser Gln Ala Asn Gly Asn Leu Leu
Met Ala Pro Leu Cys Gly 260 265
270Ile Ser Ser Tyr Gly Gln Lys Leu Gln Glu Gln Asn Leu Leu Arg Gly
275 280 285Thr Leu Pro Gly Tyr Gln Phe
Ala Pro Tyr Asn Leu Ile Phe Gln Met 290 295
300Gln Pro Met Gln Arg Gln305 31092291PRTAntirrhinum
majus 92Met Glu Ile Leu Thr Pro Ser Ser Tyr Phe Ser Asn Ser Asn Leu Phe1
5 10 15Val Glu Glu Ser
Trp Ser Pro Lys Trp Thr Ala Ala Asp Asn Lys Ala 20
25 30Phe Glu Asn Ala Leu Ala Val Phe Asp Glu Tyr
Thr Pro His Arg Trp 35 40 45Glu
Arg Val Ala Glu Ile Val Pro Gly Lys Thr Val Trp Asp Val Ile 50
55 60Arg His Tyr Lys Glu Leu Glu Asp Asp Val
Thr Ser Ile Glu Ala Gly65 70 75
80Leu Val Pro Val Pro Gly Tyr Asn Thr Ser Leu Pro Phe Thr Leu
Glu 85 90 95Trp Gly Ser
Gly His Gly Phe Asp Gly Phe Met Gln Ser Tyr Val Val 100
105 110Gly Gly Arg Lys Ser Ser Cys Ser Arg Pro
Ser Asp Gln Glu Arg Lys 115 120
125Lys Gly Val Pro Trp Thr Glu Glu Glu His Lys Leu Phe Leu Met Gly 130
135 140Leu Lys Lys Tyr Gly Lys Gly Asp
Trp Arg Asn Ile Ser Arg Asn Phe145 150
155 160Val Ile Thr Arg Thr Pro Thr Gln Val Ala Ser His
Ala Gln Lys Tyr 165 170
175Phe Ile Arg Gln Leu Ser Gly Gly Lys Asp Lys Arg Arg Ala Ser Ile
180 185 190His Asp Ile Thr Thr Val
Asn Leu Asn Asp Gly Gln Thr Phe Pro Arg 195 200
205Glu Asn Lys Ile Lys Gln Ser Ser Pro Leu Ala His Gln Ser
Asn Ser 210 215 220Ala Ala Ala Thr Ser
Lys Leu His Ile Gln Trp Asn Gln Thr Arg Asn225 230
235 240Glu Thr Ile Thr Gly Phe Gly Ser Gly Asn
Met Phe Val Ser Asp Pro 245 250
255Tyr Asn Tyr Met Asn Ser Asn Glu Val Gly Leu Gln Gly Arg Ser Pro
260 265 270Phe Gly Ser Arg Asn
Met Val Phe Arg Met His Pro Cys Phe Ser Tyr 275
280 285Pro Ser Ala 29093295PRTCucumis sativus 93Met
Glu Thr Leu Tyr Pro Ser Ser His Leu Ser Ser Ser Ala Trp Phe1
5 10 15Val Leu Asp Asn Pro Ser Thr
Lys Trp Thr Lys Glu Glu Asn Lys Met 20 25
30Phe Glu Ser Ala Leu Ala Ile Tyr Asp Lys Glu Thr Pro Asp
Arg Trp 35 40 45Phe Lys Val Ala
Ala Leu Ile Pro Gly Lys Thr Val Ser Asp Val Ile 50 55
60Lys Gln Tyr Lys Glu Leu Glu Glu Asp Val Cys Glu Ile
Glu Ala Gly65 70 75
80Arg Phe Pro Val Pro Gly Tyr Asp Leu Ala Ser Ser Phe Ser Phe Glu
85 90 95Phe Val Asp Asp Arg Asn
Phe Asp Val Tyr Arg Arg Lys Ser Ser Val 100
105 110Gly Arg Gly Ser Glu His Glu Arg Lys Lys Gly Val
Pro Trp Thr Glu 115 120 125Glu Glu
His Lys Gln Phe Leu Arg Gly Leu Leu Lys Tyr Gly Lys Gly 130
135 140Asp Trp Arg Asn Ile Ser Arg Asn Phe Val Asn
Ser Lys Thr Pro Thr145 150 155
160Gln Val Ala Ser His Ala Gln Lys Tyr Phe Met Arg Gln Leu Ser Gly
165 170 175Gly Lys Asp Lys
Arg Arg Pro Ser Ile His Asp Ile Thr Thr Val Asn 180
185 190Leu Thr Glu Pro Thr Ala Ser Glu Asn Glu Lys
Leu Ser Ser Met Asp 195 200 205Gln
Phe Ser Lys Leu Pro Ser Leu Gln Lys Ser Pro Cys Tyr Gln Lys 210
215 220Leu Leu Phe Asp Trp Asn Arg Ser Ser Asn
Gly Gly Leu Leu Gly Leu225 230 235
240Gly Ser Asn Tyr Gly Asp Arg Leu Met Ser Phe Pro Ser Gly Ile
Ala 245 250 255Ala Asn Gly
Ile Lys Asn Glu Gln Asp Gln Glu Leu Asn Ser Ala Tyr 260
265 270Tyr Gly Thr Tyr Ser Lys Pro His Lys Ser
Ile Phe Gln Phe Glu Pro 275 280
285Ser Arg Tyr Gln Ile Tyr Gly 290 29594698PRTSolanum
demissum 94Met Ser Leu Asn Arg Thr Cys Asn Ser Ser Phe Trp Thr Lys Glu
Glu1 5 10 15Asp Lys Ala
Phe Glu Asn Ala Leu Ala Val Phe Ser Gly Asp Asn Asp 20
25 30Lys Phe Leu Lys Ile Ala Ala Ala Val Pro
Gly Lys Ser Leu Gln Glu 35 40
45Ile Ile Asp His Tyr Asn Val Leu Val Glu Asp Ile Asn Asp Ile Glu 50
55 60Ser Gly Lys Val Pro Leu Pro Lys Tyr
Glu Arg Met Gln Ser Ser Ser65 70 75
80Ser Cys Arg Arg Arg Ser Leu Gly Ala Gly Val Glu Arg Arg
Lys Gly 85 90 95Leu Pro
Trp Thr Ala Glu Glu His Arg Ser Phe Leu Gln Gly Leu Ala 100
105 110Lys His Gly Lys Gly Asp Trp Arg Gly
Ile Ser Arg Asn Phe Val Phe 115 120
125Ser Arg Thr Pro Thr Gln Val Ala Ser His Ala Gln Lys Tyr Tyr Ser
130 135 140Arg Leu Asn Asp Asn Asn Ala
Lys Arg Arg Lys Ser Ile His Asp Val145 150
155 160Thr Ser Val Gly Ala Ala Asn Ile Thr Glu Pro Ser
Gln Gly Gln Lys 165 170
175Ser Asp Glu Leu Thr Gly Pro Cys Gly Gly Gln Ser Gln Trp Pro Ile
180 185 190Ala Asp Tyr Val Thr Glu
Ala Phe Asp Thr Gly Met Leu Ser Leu Pro 195 200
205Gly Ser Val Thr Asn Cys Thr Thr Asp Ala Ile Glu Gly Pro
Ser Ala 210 215 220Val Asn Pro Glu Lys
Phe Pro Leu Val Ala Ala Leu Gly Ser Glu Leu225 230
235 240Asn Ser Ser Phe Pro Gly Val Asp Glu Phe
Leu Gln Ser Val Glu Asp 245 250
255Leu Ile Ile Val Pro Ala Glu Gly Thr Ser Gly Val Cys His Gly Val
260 265 270Asp Thr Arg Thr Ser
Pro Ser Leu Ser Val Gln Pro Ser Val Thr Gly 275
280 285Gly Thr Gly Met Tyr Thr His Pro Val Ser Phe Pro
Asp Val His Glu 290 295 300Phe Leu Gln
Glu Val Glu Asp Leu Ile Thr Val Pro Ala Glu Gly Thr305
310 315 320Ser Gly Ala Cys His Gly Ile
Asp Thr Arg Thr Ser Pro Ser Leu Ser 325
330 335Leu Gln Ser Ser Val Ala Gly Gly Thr Arg Met Tyr
Thr His Ser Val 340 345 350Thr
Val Pro Ala Glu Gly Thr Ser Gly Val Arg Cys Gly Ile Asp Thr 355
360 365Arg Thr Ser Pro Ser Leu Ser Leu Gln
Pro Ser Val Ala Gly Gly Thr 370 375
380Arg Met Tyr Pro His Pro Val Asn Val Leu Ala Glu Gly Thr Ser Gly385
390 395 400Ala Ser His Gly
Val Asp Thr Arg Thr Ser Pro Ser Leu Ser Leu Gln 405
410 415Pro Ser Val Ala Gly Gly Ser Arg Ile Tyr
Pro His Pro Val Asn Val 420 425
430Pro Ala Glu Gly Ile Ser Gly Val Ser His Gly Val Asp Thr Arg Thr
435 440 445Ser Pro Ser Leu Ser Leu Gln
Pro Ser Val Gly Gly Gly Thr Gly Met 450 455
460Tyr Thr His Pro Val Thr Val Arg Val Glu Gly Thr Ser Gly Ala
Arg465 470 475 480Arg Gly
Val Asp Thr Arg Thr Ser Pro Ser Leu Ser Leu Gln Pro Ser
485 490 495Val Val Gly Gly Ile Gly Met
Tyr Thr His Pro Ile Ile Val Pro Ala 500 505
510Glu Gly Thr Ser Gly Thr Arg Arg Gly Val Asp Thr Arg Thr
Ser Pro 515 520 525Ser Leu Ser Phe
Gln Pro Ser Val Gly Gly Gly Thr Gly Met Tyr Thr 530
535 540His Pro Val Thr Val Leu Ala Glu Gly Thr Ser Gly
Val Arg Cys Gly545 550 555
560Val Gly Thr Arg Thr Ser Pro Ser Leu Gly Leu Gln Pro Ser Val Ala
565 570 575Gly Gly Thr Arg Met
Tyr Thr His Ala Val Asn Asn Val Gly Tyr Asp 580
585 590Leu Glu Glu Leu Met Thr Lys Gln Leu Val Gly Ala
Ser Gln Glu Gly 595 600 605Pro Ser
Ile Asn Thr Ala Ser Leu Pro Ser Pro Ile Ala Asp His Ile 610
615 620Gly Leu His Gly Cys Thr Thr Ser Ser Ser Val
Ala Lys Asn Gly Phe625 630 635
640Val Ser Thr Met Glu Ala Pro Gly Gly Gly Phe Ser Val Asp Ser Met
645 650 655Gln Thr Pro Ser
Ile Pro Gly His Ile Gly Gly Gly Thr Tyr Pro Cys 660
665 670Trp Glu Pro Ser Ser Lys Asp Asp Ser Ile Phe
Asp Leu Glu Tyr Leu 675 680 685Tyr
Thr Asp His Met Phe Gly Phe Arg Lys 690
695952047DNAOryza sativa 95gagctacggt ttttttttct ctttctttct cagcttcttc
tccaactcct ctctcttctt 60cttcctctag tcctctcctg cctgcttcgt ctactcctct
cccaactccg atcccctcct 120ctccgcgctc ccggtggccg gacccgtccg gcgacgacga
tgagccgctc gccggcacgg 180cgccctgctc agatctgaag agctgcgaga atccgaggct
tctcttgctg gtttagctcc 240ggcggcggcg gcggcggcgg cgatggagga ggaggtggag
gcggcgaaca gggcggcggt 300ggagagttgc cacagggtgc tggccttgct gtcgcagcag
caggaccctg cgttgctcag 360gagcatagct tcagagacag gagaggcctg tgccaagttc
aggaaggtgg tctccctcct 420cggcaatggc ggcggcggcg gcggcggcgg cggcggtggt
ggacatgcta gaggcaggat 480ggccgggaga agcaggcctt cggcggtgct gagagagaag
ggattcttgg agagcagcag 540cggcggcggc cagctgggga tggtgatgtc cggtgctgcc
actccgtcta ctagctccgc 600cgcgcatttg cgcaaccgga ttggcggagg cagcggcgtg
ccaccggatt cgttgcgggg 660gctcgatttg gtcagctcga gcagcaaggg tggtgctcat
cagttcgatc ctccgaagct 720ggtgcagccg ttgtcggttc agttccagtt cggcgctacc
gcgcataggt acccgttcca 780gcagcatcag catcagcaga agttgcaggc tgagatgttc
aagaggagca acagcgggat 840cagccttaag tttgatagcc ctagtgccac cgggacgatg
tcgtcggcgt tcatgtcgtc 900gcttagcatg gacggcagcg tggctagctt ggaagggaag
ccgccgttcc atttgatcag 960cggcccggtc gcgagcgacc cggtgaacgc tcaccatgtg
cccaaacggc ggtgcacggg 1020gagaggggag gatggaagtg gcaagtgtgc cacaaccgga
aggtgccatt gctcaaagag 1080gaggaagttg cgaattaaga ggtcaattaa agtgcccgcc
attagcaaca aaatagcaga 1140catacctcca gatgaatact catggcgaaa gtatggtcag
aagccgatta agggttcgcc 1200tcatccaagg ggttactaca aatgtagcag cgtccggggc
tgcccagcga ggaagcacgt 1260cgagcggtgc gtagacgacc cggcgatgct catcgtgacg
tatgaaggtg agcataacca 1320tactcggctg ccaacacagt cagcccagac ctaggaaacc
tgtagtattt cacgcgagcc 1380attcagaaaa tgcagaggct ccaagctttt gctcggggac
ggtcggaccg gtcatgtgaa 1440agtaggtcag caaactgtga aagtaggagt aacaaacagg
gaagccatct gatgagagct 1500atagtgattc gcttgggtcc ttaactgagc tacaagccat
gtcgcatttc tgctatggtc 1560tcaatgttct actgtccaaa gtggggacat acacaacttg
ttctctcttt tatgagctat 1620ggcactatca gattaagaga gaatggagga agaacatgtg
attggatagt gaccggcaag 1680atttgctcaa agaagggagg gattaggttt gaagatttca
aaggaagatt gacaaaagga 1740agtgaacaac tgaaacatcg tgtaagcctg gaaaaggata
agcaggattt ggcttttagc 1800gtgcacaagt ttacttgcaa tgacttgcct ctgtatgttg
cttttgcttt attgaaagat 1860caaaattttc ttttggcaga agaatcattc agcattaaag
ctgtttctac ttgctaacat 1920actgacacac ttggaccatc agggtttttt tttccaggtg
ttagctgttg ggtatgattt 1980ctcagtcgta cttctgcttt tgtgtaaagc attccatgtt
atgttaatga ctttgacatc 2040aactgcc
204796643DNAAegilops speltoides 96gggaacccac
catcccagag ccaagctcgt gagcagaagg cagacccccg ggttcttgag 60ccagaagagc
ttcctggaca gcaacacccc ggtggtggtg ctgaacagcg cgcacccttc 120gaccagctcc
gcgcaggtgt atcccagaaa cagcattctg gagtcacagc ccgcgcaccc 180aatcggaggg
ccgcccaagc tggtgcagcc gttgtccgcg catttccagt tcggcgattc 240gtcgcggtac
aatcagttcc agcagcatca gcaccagcag cagaagatgc gggccgagat 300gttcaagaga
agcaacagcg ggatcaacct gaagtttgac agccccagtg gcaccgggac 360gatgtcgtcg
gcgaggtcct tcatgtcgtc tctgagcatg gatggcagcg tggccagcct 420cgatgccaag
tcttcctcgt tccatttgat cggcgggcct gccatgagcg acccggtgaa 480tgcgcagcag
gctccaagga ggcgatgctc agggcgtggg gaggatggaa atggcaagtg 540tgctgcaact
ggcaggtgcc attgctcaaa gagaagcagg aagttgcggg tgaagaggac 600gattaaagtt
cccgcaatta gtaataaaat tgctgatata cct
64397869DNATriticum aestivum 97gaccttaggc ctatttaggt gacactatag
aacaagtttg tacaaaaaag caggctggta 60ccggtccgga attcccggga tatcgtcgac
ccacgcgtcc gcgagatgtt caagagaagc 120aacagtggga tcaacttgaa gtttgacagc
cccagtggca cggggacgat gtcgtccgcg 180aggtccttca tgtcgtcttt gagcatggat
ggcagcgtgg ccagcctgga tgccaagtct 240tcctccttcc atttgatcgg tgggcctgcc
atgagcgacc cggtgaatgc gcagcaggcg 300ccaaggaggc gatgctcagg gcgtggggag
gatggaaatg gcaagtgtgc tgcaactggc 360aggtgccatt gttctaagag aagcaggaag
ttgcggttga agaggacgat taaagttccc 420gcaattagta ataaaattgc tgatatacct
ccagatgaat actcctggag gaagtatggg 480cagaagccaa ttaagggctc ccctcatccc
agggggtact acaaatgcag cagtgtgagg 540ggctgccctg cgcggaagca tgttgaacgt
tgcgtggatg atccgtcgat gctcattgtg 600acatacgagg gcgaacataa ccatacgcga
atgccaactc agtctgcgca agcttaggga 660atcccccaat tatcactctt ttcaggaaag
gcaactcgcc ggcacttgtt ggacagactg 720cgttgttctc ctaaatagga ttgcgaaggg
acaattatgg aattcatttg agcacatgaa 780tggtcgattg gcccccctga cctacatgtt
ttgtgaacga ggggccaagg gggaaggatt 840gcaaaaatgg tgtttctccc ccttaaggg
86998947DNASaccharum
officinarummisc_feature(759)..(760)n is a, c, g, or t 98ctccctactc
agcaatggag gagtgggggt aggagaagcc ggaccatcag acgcaagcgg 60aagcgcaagc
catccgagag ctaagcttgt tagcagaaga cagaatccag ggttcttaac 120tcagaaaggc
ttcctggata ctaacacctc ggtcgtggtg ttgaacagcg cccatccttc 180tcctacctcc
gcgcaggtgt atcctagaac tgctgtagct ctggatgcgc agggcgtgca 240tcccctcgga
ggacctccta agctggtcca gccgttgtct gcacatttcc agtttggcaa 300tgtgccgtca
ccgtatcagt tcccaaatca gcagcagcag cagcagaagt tgcaggctga 360gatgttcaag
agaagcaaca gcgggattaa cttgaagttt gagagcacca gtggcactgg 420gacaatgtca
tcggcgaggt ccttcttgtc gtctctgagc atggatggta gcgtggctag 480cctggatggc
aagtcatcgt cgttccactt gatcggtggg cctgcaatga gcaaatccgt 540gaacgctcaa
gcaggcccca agaggcgatg cacgggtcgt ggggaggatg ggactggcaa 600gtgcactgtg
acaggggggt gccattgttc aaagagaagt aggaaagttc gggtgaagag 660gtcgaataag
gttcctgcca ttagtaataa gattgctgat ataccttccg gatgaaaact 720tctggaggaa
gtatgggcag aaacccaatt aagggtttnn gtaaggcgag ggggaacccc 780cccccgccat
attttggggg ggttgcccac cttggaaagc ttgtctaaac ggggggtgga 840ttgaataatt
gatgcttatt tggggccatt gagggggagg gcaaacccca cccaaaatgc 900caaagtgagt
ttgcccccag ttttaaaaaa acccaccctc tttttag
947991753DNADactylis glomerata 99ctgctcctcc tgctcgtcgc tccttctctt
cctctgtacc agccgagagt gcctctcgtc 60ctctcccctg cccgaggagc agaggtggcg
acgccggcaa cggccgcgag atagggggga 120gggagtcggc gatggagggc gtggaggagt
ccaacaggga ggcggtgcag agctgccaca 180gggtgctcag cctgctctcc aacccgcacg
gccagctcgt cccccacaag gagctcgtgg 240aggccaccgg agaggccgtc tccaagttcg
gctccgtggc caccaagatc gccaccaatg 300gcaatggccg acagggccat gccagggtta
ggaagaagat caatcaaccc atgcctatgt 360tcgacagcag cctcttcttg gagaccactg
cgtcggctgc tgatgctgcg gcagctaaaa 420catcccagcc ggggccggac actattctcc
ggctgtttcc gaggtaccag caggtggagg 480gctcctcttc aaaggatccc gtcaggatcc
ctgcccagtt cccccgaagg ctgcttctag 540agaacccttc ggtcggttcg aacgggccgg
ctcgcggacc tccggtccag ctcgtccagc 600cggtgtctgt ggcgcccccg gcggggacgc
cagcgccggc attgccagcg gcacatcttc 660atttcatcca gcagcagcag agctaccaga
ggttccagct catgcaccag atgaagctgc 720agagtgagat gatgaagagg ggtggccttg
gtgagcaggg tggcagcaat ggtggtgtca 780atctcaagtt tgctagctct aactgtacgg
gatcatcctc ccgttcattc ctgtcatctc 840tgagcatgga agggagcatg gcgagtttgg
atgtcagtcg ctctagccgg cccttccagc 900tcgttagtgg ttcgcagacg tcaagcactc
cagagttagg ccttatgcag aggaagaggt 960gcgctggtaa ggaggatggg agtggacgat
gtgccaccgg gggcaggtgt cactgtgcca 1020agaaaagaaa gctaaggata aggaggtcta
ttaaagtccc tgcaatcagt aataaggtcg 1080ccgacatccc tgctgatgaa ttctcctggc
gcaagtatgg gcagaagcca ataaagggat 1140cccctcatcc gaggggttac tacaagtgta
gcagcgtgag gggctgccca gcgaggaagc 1200atgtcgagag gtgcgtcgac gaccccgcga
tgttgatcgt tacctacgag ggcgatcaca 1260accacaaccg agctgcagcc cagccagcct
gacctttcag gcttccagtc ccagaatgct 1320ttcaataacc tctgtttcta gaaaaaagaa
gagatgaaaa aaagaagaag agcctagttt 1380gtacatattc ttctgaccct aactgctggg
gggaggaggg agaatcagct ctttcaggag 1440aatccatggc gaaagagttt tatcgcgtag
atcggtcgat gtagtgtttc tctcatcaaa 1500ctaataattt tgtagctttg ttttgtaccc
tttctttctg tttatgtcgg tccttaggac 1560tgtcctgtgt cgtgcagtgt aacattgagc
tgcagttata tgtcgggggt tggtgttact 1620gtaactctgg aagtggggat agggagctgg
tagcaggcag tgcttgttgc aacacctagg 1680aacaaaatgt accctcatct tcggtcaatt
ggattggtgc aatcttgtcg atggtaaaaa 1740aaaaaaaaaa aaa
1753100780DNAAmborella
trichopodamisc_feature(749)..(749)n is a, c, g, or t 100agtggatccc
cgcggctgat aatcggcacg aggggaaagc cccttcgaaa ccttccacgt 60gccagcaatc
tctactggag acacccaaat cgaacaaccc atctctgatt ccaaaaccca 120acttcaaatt
cagggaccga acacccattt acagattatt cagcaacagc agattcagca 180catgatgcag
tttcagcaac aaatgaagtt gcaggcccaa gctgatctca tgtacaggag 240aagcaacagt
gggagcatga atttgaagtt tgataattcg agctgtacgc cgacgatttc 300atcgaggtca
ttcatttcat cactgagcat ggatggaagt gtagctagta tggatgggaa 360gccgttccat
ttgattcctg cttcttccca ggatagaagt ggtcatagcc agaagaggag 420gtgctctggt
aaaggtgaag atgggagtgg gaaatgtggc accagtggga gatgtcattg 480ttcaaagaga
aggaaaatta gggtgaagag atccattaag gttcctgcaa ttagtaacaa 540gcttgctgat
atccctcctg atgagtattc atggaggaag tatggacaaa aaccaattaa 600aggttctcct
catccaaggg gatattacaa atgtagcagc atgaggggtt gccctgctag 660gaaacatgtc
gagaggtgct tagaagaccc ttcaatgcta atagtcactt atgaagggga 720gcacaaccat
tcgcgtatat tatcccaanc caatcaatct tagtgtatca acttggctag
7801011319DNAArabidopsis thaliana 101ctccactctc ccttctctca ccaatctcga
agctttgctt tatactgaga gaagaatatt 60tgtttcttct tcttacagtg agagaacaat
tttctgcttt taacccttgt tcttgagcta 120ttattttgat ttttatggtt tccatgtttg
agctagctca tgatgattat tcttttcttt 180tgaaatagtt ttttttagcg tttgagtttt
gaggtttttc gttttttaag agtatccttt 240gtgaagaaga aaatggaaga agttgaagct
gcaaacaaag cagcagtaga aagttgtcat 300ggagtattga atctcttatc acaacaaacc
aatgattcca aatcaataat ggttgaaaca 360agagaagctg tttgcaagtt caagagagtc
tcctctcttt tgtctagagg gttaggtcaa 420aggaagataa agaaactcaa caacaacaac
tacaagttta gctcttcttt gttgccacaa 480cacatgtttt tggagagtcc tgtttgcagt
aataatgcta taagtggttg tattccaatt 540ctagcaccaa agcctcttca gattgtacca
gctggtcctc ctccattgat gttgtttaac 600cagaatatgt gtcttgataa gtcgtttctc
gagctgaagc caccctcttc acgagctgtt 660gatccaaaac cttatcagtt tattcatacc
catcagcaag gagtgtactc aaggagcaaa 720agtggtttga atctaaagtt tgatgggtct
attggtgcta gttgttattc accaagtata 780tcaaatgggt caagatcgtt tgtttcatct
cttagtatgg atggtagtgt gacggattac 840gatagaaact cttttcattt gattggatta
cctcaaggtt ccgatcatat atcgcaacat 900tctaggagga ctagttgctc tggtagttta
aaatgtggaa gtaaaagcaa atgccattgt 960tccaagaaaa ggaaattaag ggtgaaacga
tcgattaaag taccggcaat cagtaacaag 1020attgcggaca tacctcccga tgaatattca
tggaggaaat acggacaaaa gccgattaag 1080ggttctcctc atcctagggg atactataaa
tgtagcagtg tgcgcggttg tccagcgagg 1140aagcatgttg agcgatgtgt agaagaaact
tcgatgctta ttgtgactta tgaaggcgag 1200cataaccatt caagaatact ctcttctcaa
tcagctcata cttgattgat tgtagtaacg 1260gtcttcaatt gtatattcta ctttgcaaac
tcgaattttt gtgcataaca atttggctt 1319102793DNAGlycine max 102aacggctggt
tagccaaact atccaaaaga caaaatctgc gccaacaata tccatcatcc 60ctgcttgttt
gcatcactta aaatatgtac agcagcatct caagccaatc acagagaggt 120tttgacaaat
tgaatgatgg gcttgatctg gttaagctct ccacatagtt catgcatttg 180cagattgtgt
tggtaacttg gggtggttat gttcgccttc ataggtaaca attagcatgg 240taggctcttc
caagcacctc tcaacatgct tccttgcagg acaccctctc atgctgctgc 300acttataata
tcccctaggg tgaggagagc ccttgattgg cttctgccca tacttcctcc 360acgaataatc
atcaggaggg atatctgcaa gtttgttgct gatagcgggc accttaattg 420ccctcttcac
tctatgtttc ctcttcttag agcaatggca tctagcactg ctcccacatt 480tcaagcttcc
ctcatcacct ctggcagaac actttctctt gtgctgctgg gaattctgat 540cagaagagtg
tggagctccg attaaatgga aggcacttcc atccaagtta gccacacttc 600catctatgct
caaggaagag ataaaagacc tagtggatga cattgttggt gtgcagctag 660tactgtcaaa
attcaggttt atgccactgt tgttccttcg gaacatcatt tctgcttgat 720gcttcatttg
ttgttgttgt tgttgctgct gctgcagcaa cagcctttgc tgttgctgtt 780gttgctgctg
ctg
793103794DNAGossypium raimondii 103ctctctctat ttgggaaccc catgtttgga
actgcgctcg aatggtaaaa acctctcttc 60cactcgccca acagccacct cctcctgccc
actatcattt cctccaccaa cgagggctac 120agctccaaca gcatcaagct gaaatgttgt
ctaggaagag taattgtggg attaacttca 180actttgatag ctctagctgc acacctacca
tgtcatcaac taggtctttc atttcttctc 240tgagtataga tggtagtgta gctaacatgg
atagtgggaa tgccttccat ttaatcggcg 300cacctcgatc ctcggatcag ggttcccaac
acaaaaagaa gtgttctggt aagggagaag 360atgggagtgt caaatgtgga agtagtggga
aatgccactg ctcaaaaaag aggaaacaga 420gagtaaagag atcaatcaag gttcctgcta
tcagtaccaa gcttgctgat attcctcctg 480atgattattc atggaggaaa tatgggcaga
agccaatcaa gggttctcct caccccaggg 540gatattataa atgtagcagt atgagaggtt
gccctgcgag gaaacatgtg gagaggtgct 600tggaagagcc gtcgatgctt attgttacgt
atgaaggtga gcacaaccac ccaaagttac 660cgtcacaagc aacgacataa tctcagtgga
aacattgcta aagaattctt caagtctttc 720aatgttcaat ctggtcatgt acatattttg
catggttcaa gcatgggata aataggagca 780gtttctttct tctt
794104602DNAPopulus tremula x Populus
tremuloides 104gagttctagc tgcacaccta caatgtcatc caccagatct tttatatctt
ccttgagtat 60agatggtagt gtggctaatt tggaaggaag tgcattccat ttaatggggc
cggctcgctc 120ctcggatcag agctcacagc aacacaagag gaaatgttcc gggagaggag
aagatggaag 180tgtgaaatgt ggaagcagtg gtagatgtca ttgctcaaag aagaggaaac
atagggtgaa 240gaggtcgatc aaggtacctg ctattagcaa caagcttgct gatatccccc
ctgatgatta 300ttcctggaga aagtatggac agaagcccat caagggctct cctcatccca
ggggatatta 360caagtgtagc agtatgagag gttgtcctgc aaggaagcat gtggagaggt
gcttggaaga 420tccgtccatg cttattgtta cctatgaagg tgaacataac cacccgagga
ttccagcaca 480atctgcaaac acataaaagc ctcatgcaat actttcaagg ttctcactgt
ttaatgaaaa 540cttgtcgtga ttggctcctg tacatactta gcatggttca atcctgggat
atagtcggag 600ca
602105568DNAMalus x domesticamisc_feature(440)..(440)n is a,
c, g, or t 105tcgtaggagc aatagtggca taaatctgaa ttttgatagc tctagctgca
cacctacaat 60gtcatctaca agatccttca tttcttcctt gagcatagat ggaagtgtgg
ctaacttcga 120tggtaattcc tttcatttga tcggggctcc tctctcttcg gatcagaatt
cacaacataa 180gaggaagtgt tctgctaggg gagacgatgg gagtgtaaaa tgcggtggta
gcagtggtag 240atgtcactgc tcaaagaaga ggaagcatag ggttaaaagg tcaattaagg
tgcctgctat 300cagtaacaag cttgcagata tccctcctga tgattattca tggcggaaat
atggccagaa 360gccaatcaag ggttcccctc accctagggg atactataaa tgcagtagca
tgagaggttg 420tccagcaagg aagcatgtcn agaggtgctt ggaagaacca tccatgctta
tggttaccta 480cgaaggtgag cataaccacc caaggatacc atcgcaatcc acaacaacat
gaaattcatg 540gagagcctcg gtgagctcaa gcccaaca
568106780DNASolanum tuberosum 106ctgtgaaaac cgaatgcaaa
atcgatgatc atgcgaaagc tcttaggtta cttcctatcg 60actctcctga aaaccgagtc
ctagagatgg gtgctaatgt gaaatgtaat ctaactttag 120gaagcccttc tctggaatta
agttcaaata gtagaaatcc ccttaatttt ggccaacaaa 180cgcctttccc gagctataac
tatcttcaac agcaacaaca gcaacaacag cagcagcaac 240aacaacggcg gtttctactt
cagcagcagc agcaattgaa acaccccgcg gagatgatgt 300acaggcggag caatagtggt
gttagtctta attttgatag ctcgacatgt actccgacca 360tgtcttcgac taggtcattt
atatcctcat tgagtgtgga cggtagtgtt gctaatggta 420atagctttca tttaattggg
gcttcacact ctgcggatca gagctcgttc caacacaaga 480gaaaatgctc cggaagggga
gacgagggaa gcgggaaatg tggaagcagt ggaagatgtc 540actgttcaaa gaagaggaaa
cacagagtaa agagatcaat caaaatacct gcggtaagta 600acaagctagc tgatattcct
tccgatgagt attcttggag aaagtatgga caaaagccga 660tcaaaggttc tccacatcct
aggggatact ataaatgtag cagcatgaga ggttgccctg 720cccggaaaca tgtcgagaga
tgcttggaag atgcttcaat gcttatcgtg acatacgaag 780107782DNAMedicago
truncatula 107tttccaagac aatttccatt aatttagaga accctgaaat gtttaatgac
atacttaaga 60aaaataaaat tgttcttacg aattgaaact atccaatttt acatactcct
gcacttaacc 120agtgatcttc atcactccct ctaaataaac gactccccaa ccaagctacc
caaaaggcaa 180aatctgcagt cctgctcgca tcacttgaaa tatgtacaga aacatctcaa
gccaatcaca 240tagaggtctt cacaaattga atgtgactct ccatgtagtt catgcatttg
caggttgtgt 300tggtaccttg gcgtgattat gctcgccttc ataggtaacc attagcatag
taggctcatc 360caagcacctc tcaacatgct tcctagcagg gcagcctctc atgctgctgc
atttataata 420gcccctaggg tgaggagagc ccttgatagg cttctgcccg tacttcctcc
acgagtaatc 480atcaggaggg atatccgcaa gcttgttgct gatagcaggc accttaattg
atctcttcac 540tctatgcttc cttttctttg agcaatgaca tttagaactg ctactacatt
tcaagcttcc 600ctcatcacct ctagcagaac atttcctctt gtgctgtgaa ttctgatctg
aagagatcgg 660agctcctatc aaatggaagg gacttccatc cacgtttgct acgcttccgt
ctatgctcaa 720ggaggaaaat gaagacctag tagacgacat ttgtggtgtg ctgctagtag
ccttgtcaaa 780tt
782108747DNAIpomoea nilmisc_feature(744)..(744)n is a, c, g,
or t 108agttctataa aaccaaagtc atattttcat catcatgaga acaaacattc ttacaaccaa
60aaacccaaat ttttaacact gagctctcta accctaaacc atagaattca cattttacct
120ttcaaacatc tcgaagaaag gcgtaggcct atccctttga accatatatc ttcggctccc
180tccctcccta cctcaaagcc taaactagca aaatatgtac aagacaattg aagccgttaa
240gaaacaaaga ccataaacct cttgtcatat cttgcccgag actccccccc actagcgcat
300ttatgtgttt gccgactgcg atggcaccct aggatggtta tggtctccct cataagtgac
360aattaacatt gacgggtctt ccaagcatct ctccacgtgc ttcctcgcag ggcagcctct
420catgctacta catttatagt atccccttgg gtgaggagaa cccttgattg gcttctgccc
480gtactttctc caagaatatt cgtcttgagg gatatcagct agcttgttac tgatagcggg
540aactttaatt gaccttttca cccgatgttt cctcttcttg gagcagtggc atctactgct
600gcttccacat ttcgtgcttc catcctctcc ccgtccagaa caccttttct tgtgctgata
660cgagctcaga tcagcggaac gagaggcacc gattaaatgg aaggcattcc cgtccatatt
720tgcaacgctc ccatcaatac tcanaga
747109546DNAHordeum vulgare 109ccagaaacgg aggctatcga aagcggtctg
cgacgacgat gaaagccgaa aggtcaggct 60ggttgggctg ctgcagctcg gttgtggttg
tgatcgcctt cataggtaac gatcaacatc 120gcggggtcgt cgacgcacct ctcgacatgc
ttcctcgctg ggcagcccct cacgctgcta 180cacttgtagt aacccctagg atgaggggat
ccctttattg gcttctggcc atacttccgc 240cacgagaatt catcagccgg gatgtcggcc
accttattgc tgattgcagg gactttgata 300gacctcctta tccttagctt ccttttcttt
gcacagtgac acctgctccc agttgcacag 360cgtccactcc catcctcctt gccggcacac
ctcctcctct gctgcatgag gcccaattcc 420ggggtgctcg acgtctgcga gccactaact
agttggaagg gacggctgga gcggctgcca 480tccatgctcg ccatgctccc ctccaagctc
agagatgtca ggaatgaacg ggaggatgcc 540tcgtgc
546110482DNACrocus sativus
110gatcggtcga ctgcagaagc ttcaggccga gatgttcaag aggagcaaca gcggcataaa
60tctcaagttt gacaactcca gctgtactcc cgccatgtca tcgaccaggt ccttcttgtc
120ttcccttagc acggaaggga gtgtggccag tctgcagggg aagccgttcc agctcattgg
180gggctcgctg tcgtcagaac cggtgaatct ccaccccacg ccgaagcgta gatgcctttg
240caccgggagg ggagaggatg ggaaatgtgc ggctagtgga agatgccatt gctccaagag
300gaggaagctt cgggttaaga ggtccattaa ggtgcctgct atcagtaaca agcttgctga
360tatccctccg gatgagttct cgtggaggaa gtacggtcag aaaccgatca agggttcgcc
420acatccaagg ggatactaca aatgcagcag tatcacgtca tacctgcttt tcaatcacta
480gt
482111563DNAZea mays 111gcgacagcca gctgccccca caaatggatt agaaagtctt
gtgtacaccc acactccatt 60ctcgctacag atcttgtggg cgcaagcagg accagacatc
tcgacgacct ggtgaccaac 120agaggccatg ttggtggtgc cacttcgtcc tcaaggaggg
ggaggcgggg gtgcagtgat 180gaactgatga tgagttctct acgactacac ggctacacct
gtgctgctgc tgctgctgac 240tgagctggca ttccggtgtg gttgtgctcg ccctcgtatg
tcacgatgag catcgccgaa 300tcatccacac accgttccac gtgcttccta gctggacagc
ccctcacact gctgcatttg 360tagtagcccc taggatgagg ggaacccttg atcggcttct
gcccatactt cctccacgag 420tactcatccg gaggtatatc agcgatcttg ttactaacgg
caggaacctt aatcgacctc 480ttcacccgca acttcttact tctctttgaa caatggcacc
tgcccgccaa agcgcacttg 540ccattgttta aaaaaaaaaa aaa
563112636DNASorghum bicolor 112gcacgaggct
agttagtggc tctcagacat ctagcacacc ggagatgggc ctggtgcata 60ggaaaaggtg
cgctggtagg gaggatgggg gtggtcggtg cactaccggg agccggtgcc 120attgttcaaa
gaaaaggaag cttaggataa ggaggtccat caaggtccct gcaataagca 180acaaggttgc
agacatccca gctgatgagt tctcgtggag gaagtatggg cagaagccaa 240ttaagggatc
cccacatcct aggggttatt acaagtgtag cagcgtgaga gggtgccccg 300cgaggaagca
tgtcgagagg tgcgtggacg acccctcgat gctgattgtt acctatgaag 360gtgaccacaa
ccacaaccga gttctagccc aaccagcctg atctttcagg ctatcaattc 420aagatcgctt
ctatagtcac cctccttccc ctagaggaag ggaggacaac aacaacaaga 480agaagagcct
agtgtctgta catattttct gcttctaaca gttgggggga gagagagtca 540gttagctagc
tctttcagaa gaatcaaatc aatggtgaca gaaggaaact tatcgcgtcg 600atggagaaag
ggagagtgcc tcatcaaatc aaatac
6361131929DNAPhyscomitrella patens 113caggatcgtt tccaaggctg agacacagct
tgaggtttta taagcggcat atcttcatga 60gcggcgcagc agcaacagcg gaagcacatg
aaatgagatc tctgggataa ccatgcggcc 120gcaactagag taacgacgcg gcgcggtgag
cagatgtgcc tcttacgaac tgctacagaa 180gcttcatgaa tcacacagca attggccttt
aaatcgtatg gcttaacttt tgatagcaac 240ccttctacaa gagtggagtg cttaatgaaa
gtacgccaat aaacgtagtt cctgcgacgt 300cttcccagcg aacatggggg cgttggagat
attagattac aacaacactt taggaaagag 360agacagggac tatgaagtga aggaagcggc
atgcatggga atacaaaacg ctaggcagct 420gctccagtcc ctgacgcagg tgcgatctcc
agtggtggac gaagaatgcg atgtcatggc 480tggcgctgcc atatccaagt ttcagaaggt
ggtgtcacta ctgagtcgca ctggtcatgc 540acggtttcgt aggagaacgc gcaacgctgc
tgttgccggt tacgcaggcg tcttcttaga 600gagctccaac ttcttcagag aaaattccca
ggagacgtcg agggacagaa tcgtctcgtc 660gggccatgct agcccatctc agttcacgcc
gacgtcctcg tccaagcctc ctcagtcacc 720tgaattgcag gcgatcaaat ataaggtgtt
tcctcaaagc tctcgttccg ctgatgcgac 780gcctgcctcc agtgaccctg cttcaggagt
ccatcatcca aagccacttc agatccttca 840cagctccatg atgcagcaaa gcattccaga
acatatactg cgtccagtgg ctagtgctgc 900gtatcggcca actgcccttc ccccgaatcc
gttcaacaaa caggaggtgg gcagcaagga 960gggggtgagc ggccacagtc cggacagttc
gttgagctca ggacctccgc aatcaactac 1020aacggcgtcg ttcccaacca tgagtgtgca
ggatgcgagg ataacgagcc tgcagaatat 1080gaaaacagcc gagcaacctt cggcgttgcc
ccctcgcccg cagccaccaa ctcccaagaa 1140aaagtgctcc gggcaatccg atgagaacgg
tgcaacttgc gcaatccttg gccgctgcca 1200ttgttcaaaa cgcaggaaat tgcggttgaa
gaggacaatc acggttcgag caatcagcag 1260caagttggct gatatacctt cggatgagta
ttcatggcgt aagtatggcc agaagcctat 1320caaaggatca ccacatccga gaggatacta
caagtgcagc agcatacgag gctgtccagc 1380gagaaaacac gtagagcggt caatggaaga
ctcatctatg ttgattgtga catacgaagg 1440cgatcataac catccgcaat cgtcatctgc
taatggcgga ttaacagtgc agtcgcaata 1500gacaacacgc acgtacattg ccttcgcatt
atcgcctagt aatgaggaaa gcacaaactc 1560ctctcaatgg cttacgcgtg aggatgtctg
caagcatttc aagtttttgc ccagtttgtg 1620ctccatgttt ttttgttagg acattaccta
tggcacaatg cccccgtccg acgaagcccg 1680tgacttatgt tctgtagcaa tgttctcatg
cgtgattggc tagagaagtg tgctcgacga 1740gtcaggaaca ttaacctcct aggtgtgccc
ccaaagttgg aagcgttctg cttatcaggg 1800atcaagaggt acgcacagac gaagatatct
acaggtgatg ccttttaatt cttcggtgct 1860caatggctcc acctctggag cggagagaga
gaagaatgaa tatgaatgca agtatccttc 1920gcgatgcgc
1929114656DNAVitis sp 114gacttcgtct
ttcttgtcgt cgattaccgg agacggcagc gtgtcgaacg gaaaattagg 60gacttctctg
tttgcacctc ctccggctcc ggcggtttcc gccggtaaac cgccactttc 120gtcgtctcaa
cggaggaaat gtcatgagca tggatcctcc gacaacatct ccggaaaact 180ctctgtttcc
ggccgctgcc attgctcgaa aagaaggaaa aatcgtgtga agaggacgat 240cagagttcct
gcgataagct cgaagatcgc cgatattccc gccgacgagt actcttggag 300aaagtacggt
cagaagccga tcaagggctc accataccca cgaggctact acaaatgtag 360cagcgtgaga
ggctgcccag cgagaaaaca cgtggagcgc gcaccagacg atccggcgat 420gctcatcgtc
acgtacgagg gagagcaccg ccactctcaa actccggcac cggccggtgg 480cctcatgttc
ccatcaacct gacgctcctc ccctgccccc aatcaggatc ggctgtcagg 540gagcaagttg
tcacagccag gtggccatag attccccggg gcacaaaagt caaagaagcg 600tcaaacttac
tgttccggag aatagggaaa aaaaaaaaaa aaaaaaaaaa aaaaaa
656115720DNAPicea engelmannii x Picea sitchensis 115gagaaaatgt tccggtaaag
gtgatgacag cagtaaatgt ggaagtactg gaaggtgcca 60ctgctcaaaa cggaggaagc
taagagtcaa gcgtactatt agagtgcctg ctattagtag 120caaattagca gacattccac
cagatgaatt ttcctggagg aaatatggtc aaaaaccaat 180caagggctct ccacatccca
ggggttatta caagtgcagc agtatgagag gctgccctgc 240caggaaacac gtggagcgct
ccttggaaga tgcttccatg ttgattgtga catatgaagg 300cgaacataac cattcacgtt
tgctatcatc aaattcaagt ctgatagttc acccatagat 360tcccatgcag tattttgcta
ttttggctgc ataggttact cctgcaacaa taacgtgaag 420gtgacaaatc tctaatgtgg
attttaaacc cattgtgggc agtataaagc gccatccttg 480aggaaaaatt aacactgcaa
tccttcgaag gaacttgtcc atgggttacg aagtgatttt 540cacaattttg atccacacat
ttagtgttca tatttgattt attaggacaa aggtgtagtc 600aaggcgtaca ggatagcaaa
tgatttgtca gatacagtat aatgtatgga tgagctctgt 660accttaaatg caaggccttc
gctgccacaa gactttctgt ccaaaaaaaa aaaaaaaaaa 7201161038DNANicotiana
tabacum 116atctccaaaa aatggcagtt gattttattg ggttttcgaa aatgaatgag
caattagctc 60ttcaagaagc tgcttcagcc ggtttaaaat ctatggaaca tttgatccgg
ttggtttctc 120atcaacaaca gcagcagccg gttcagctcg attgccgtga gataactgac
ttcactcttt 180cgaaatttaa gaaggttgtt tctattttgg accggaccgg tcatgctcgg
ttccgccgtg 240gtccggttca ggttcatcct gataatttta cttctctgtc tctttctccg
tcaaatcagc 300agctgttaaa cttagctccg gcgaaagaga cacctccacc accgtcagtg
tcgctgccgt 360taacggcgtt gacgcttgac tttacgaagc caaacgttga ccgtccgacg
ggaaattcta 420atgctattgt tgctgtgaag tcaaaggaga ctttctgtat atctacgccg
atggcgactt 480cggcgaactc gtcatcgttc atgtcgtcga ttaccggcga aggaagtgta
tcaaacggaa 540aacaaggttc gtcagtattt ttgcctccgg caccgtctgt ttccgctggt
aaacctccaa 600tctctggtaa aagatgccgc gagcacgagc cctccgaaga tatctccggc
aaatccaacg 660gctccggcaa gtgtcactgc aaaaagagga aatctcgtgt aaagaaagtt
gtaagaatcc 720cagcgataag ttcgagaatc gccgatatac caggagacga gtattcgtgg
agaaagtacg 780ggcagaagcc gatcaagggt tcaccatacc cacggggata ttataagtgt
agcagcgtaa 840gaggatgtcc agcgaggaaa cacgtggaaa gggcaatgga tgatcctgct
atgctgattg 900tgacttatga aggggaacat cgacatacga taggcgcaat gcaggagaac
aatactcaaa 960tgatggtgtt tgggtcaacg gaagagagga gggagtgaaa tgaaagctag
atttagagtt 1020ttaggggtat ttttgtag
1038117588DNALiriodendron tulipifera 117cataggaatt tcatggaaaa
cccaattcaa ggaattgatt ctagtggtgg caatactctc 60cagcttgcga aaaatatgtt
tttagaaaac ccaactcagg aattggattc ttctgctgct 120gccgccgctg tggctgctgc
tgctaaaaat cacctccaat ccacccactt gcaattcctc 180caacagcagc agcagcggtt
tcagtttcag cagcagcaga tgaaattcca agctgatatg 240ttcaggagga gcaacaatgg
gataaacctc aagtatgata attctagctg cacgccgacc 300atgtcatcca cgagatcttt
tgtgtcttcg ctgagcatgg atggtagtgt ggctagcttg 360gacggtaagg cctttcattt
gattggcggg ccacagacgt cgtccgatcg gaacccaaat 420cagcctccga agaggaggtg
ctctggtaga ggggaagatg ggagtgggaa atgtgggacc 480agtgggagat gccactgttc
aaagaggagg aaattgcgga tgaaacgatc gatcaaggtg 540cctgccatta gtaacaagct
tgcagatatt cctcctgatg agtattca 588118969DNANicotiana
benthamiana 118aatggcagtt gaattttgtt gggttttcaa aaatgaatga gcaattagct
cttcaagaag 60ctgcttcagc cggtttaaaa tctatggaac atttaatccg gttggtttct
caccaacaac 120agcagcagcc ggttcagctc gattgccgcg agataactga ctttaccgtc
tcgaaattta 180ggaaggttat ttctattctg gaccggaccg gtcatgctcg gttccgccgt
ggtcaggttc 240aggttcatcc tgataatttt acttctctgt ccctttctcc gtcaaatcag
cagctgttaa 300acttagctcc ggcgaaagag acaccgccgc ctcggccacc atcagtgtcg
ccgccattaa 360cggcgttgac gcttgacttt acgaagccaa acgttgaccg tccggcggga
aattctaatg 420ctattgttgc tgtgaagtca aaggagactt tctgtatatc tacgccgatg
gcgacttcga 480cgaactcgtc gtcgttcatt tcgtcgatta ccggcgaagg aagtgtatca
aacggaaaac 540aaggttcgtc aatgtttttg cctccggcac aagctgtttc cgccgggaaa
ccaccagtag 600ccggtaaaag atgccgcgag cacgaatact ctgaagatat ctctggcaaa
tccaccggct 660ccggcagatg tcactgcaaa aagaggaaat ctcgtgtaaa gaaagttgta
agaatcccag 720cgataagttc gagaattgcc gatataccgg gagatgagtt ctcgtggaga
aaatacgggc 780agaagccgat caagggttca ccatacccac ggggatatta taagtgtagc
agcgtaagag 840gatgtccagc gaagaaacac gtggaaaggg caattgatga tcctgctatg
ctgattgtga 900cttatgaagg ggaacatcgt catacgatag gcgcaataca ggagaacaat
tctcaaatga 960tggcgtttg
9691191291DNAPetroselinum crispum 119aatcccccca ctttctctcc
ctcccccaac ctatacttac aatttcttgt aagcatttct 60gggtctatct ccaatggccc
ttgatttgat gaacaacaat agttacaaat tccggtccaa 120aatggaagaa accgcggttc
aagaagcggc cgccgccggt ttacaaagcg tggagaattt 180gatcaaagct atatcccagt
ctaatcatca aactgcatat ttatcttctt catcttcatc 240tgaaaccggt gatacagatt
atagagctgt tacagatgtg gctgtcaaca agttcaagaa 300gttcatttct ttgttggata
agaaccgaac cggacatgcc cggttcagaa gaggaccggt 360tcaggaaaaa accggagttg
aaatgttggt taatccgatt cagaatcaga ttcagaatca 420tgggtctgat gggtttcaag
tttataggcc tactgccgtt catccagttc agccggttca 480accggttcag attcaaccgg
ttcagttggt tcagccggtt caacgtttac caccggttcc 540caaaaaggaa aatattagta
ctacaataaa ttttgctgct ccagctgtag ctgttgctgc 600accagcgacg tcgtttatgt
cgtcgttgac cggagataca gatgggtcgg gttttcagat 660tacgaatatg tccggttttt
cgtcgggtag ccgaccggtt tcgtcgttga agaggaagtg 720tagctcgatg aatgatgttt
cagccaagtg ttctggctct tctagtggtc gatgccattg 780tcctaagaaa aagaagttga
gagtgaagaa agtggtgaga atgccagcta taagtatgaa 840gacatctgat ataccaccag
atgatttttc ttggagaaaa tatggtcaaa agcctatcaa 900aggctctcca caccccagag
ggtattacaa gtgcagtagt gtaagagggt gtccggcaag 960aaagcatgta gagagggcag
tggatgatcc gacaatgctg atagtaactt acgaagggga 1020gcataaccat tcccagtctt
cgaatgaaaa cacaaacact tctcatatcc ttgaatctga 1080tggcctcaaa caatcataac
aagagactat atagactgat catgtttcag aatgttggat 1140gcttgggttt cagttgtgtg
ttgattgaat gattatgcaa ctgctttatt tggtgttgta 1200gttcaaaact tggagaatgc
catttaattt aagccctgag ttgttccttt ggtttacttc 1260attttggtaa ttataagatt
ccatttcttg c 1291120842DNAAsparagus
officinalis 120gggttcaaga agatgatctc gatcttgaac cgaaccggcc acgcccggtt
caggcggggg 60ccaactcatc agcctcagga cccgccgccg gcgattcatt cgccgactcc
gatccaggct 120gtaatgccac cggcacctca tagcttgact cttgacttca cgaagccgaa
gacagcgggc 180gagatcgcga cgatgaacag ccaatactcg aaggatacga gcaatttcag
catctcgtcc 240gcgaactcct cgtttttgtc gtcgatcacc ggagatggta gcgtttcgaa
tggaaagaac 300gggtcgtcga tgctactccc tcctctgcct cctgccgccg ccgtctccgc
cgggaaaccg 360ccgctgtcga cctcattcaa gaagaggtgt cacagccacg gcactgagat
ggccgggagc 420ttctcggcct ctggtggtcg ctgccactgc tcgaagaaaa gaaaatctcg
tgtgaagaga 480actatacgag taccggcgaa aagttctaag gtggctgata ttccctccga
cgagttctcg 540tggaggaagt acggtcagaa gccgatcaaa ggatcccctt atcctcgggg
ttattacaag 600tgcagcagta tgaggggatg cccggctcga aagcacgtgg agagagctcc
cgatgatccc 660tcaatgctca tcgtcaccta cgaaggcgag caccgccaca ctcacagtcc
gatccccgat 720gcactaatct taaagcaatc agagtgatct aggccgtcga tctttgttct
ctttctctct 780ctctctcccc tttttttttt ggctttcccc cctctgttcg gactgcagag
gtttagactt 840tg
842121796DNAPoncirus trifoliata 121gtgtgtcgtc gaactcgtcc
ttcatgtcct ctgctatcac cggagacggc agcgtttcga 60acgggaagca aggaggatct
tcgatcttct tggcgccaca agctcctgct gtttccgccg 120gaaagccgcc gctcgcggct
cagccttaca agaagaggtg tcaagatcag cacgatcatt 180ccgatggtct ttccggcaag
ttctccggct ccacctctgg cagcaacaag tgtcactgct 240ctaagagaag gaaaaaccga
gtaaagaaaa ctataagggt gccggcgatt agttcaaaaa 300tagccgatat tccaccggac
gagtattctt ggaggaagta tggtcaaaag ccgatcaagg 360gctcaccata cccacgcggc
tattacaagt gcagtacaat gcgagggtgc ccagccagga 420aacacgtgga gagggcacca
gacgatccaa cgatgctgat tgtgacgtac gaaggagagc 480accgtcattc gcaggccgcg
atgcaggaga acgtggtccc tgctggagtg ggtttggttt 540tcgagtcaac gtgagaaaat
gaacaaaaaa gaaaaagtag agagagagag agagagaatt 600gataaaggaa agtgggtggg
aactgggaag ataatgacaa gacgcggtag cattttctaa 660atatcgatgt tgttgcgggc
gccgatggat ggtctgatgg agggttttaa tgtaaatttt 720gttggagtaa aattaaaaaa
aaaattaatt aattaaattg tcattcggta gttatatgat 780aaaaaaaaaa aaaaaa
796122468DNALotus
corniculatus var. japonicus 122aaaatctaat gatcatcatt catcaacatc
aattaccttt gaaattgctt gtcacattga 60ttaacatgaa cttaagatga ttctaaaatg
agattagtag catctgctgc agagagagcg 120tgattgtgct ctccttcata ggtcactacc
agcatagcag catcatccag ggctcgttct 180acatgttttc ttgctgggca acctctcaca
ctactgcact tgtaatatcc ccttggatga 240ggggatcctt taataggttt ctgaccatat
tttctccagg aataatcatc tggtggaata 300tcagccatct tcaagcttat tgctggtacc
ctcacaaccc ttttcaacct cattttcctg 360cttttttggg aacaatgaca gcgtccagat
gaactgccac actttccaga acccaaggtt 420tcagagctgc acttcctctt taaggaggat
gatgacagag gaggcttc 4681231206DNAAvena sativa
123agcagagcac cggtacttgg gacgcagagg cggtcgcgat gatgaccatg gatctgatgg
60gaaggtacgg gagggcggac gagcaggtgg ccatccagga ggcggccgcg gcggggctgc
120gcggcatgga gcacctcatc ctgcagctct cccggacagg cacaggcaca ggcacgagcg
180agagctcgct ggctggggcc tcggagccgg ccgcgcaggg acagcagcag cagcagcagg
240tggactgccg ggagatcacc gatatgaccg tgtccaagtt caagaaggtg atttctatcc
300tcaaccaccg caccggccac gccaggttca ggcgcggacc tgtggtggcg cagtctcagg
360ggccctccgt gtccgagccg gcgccggtga ggacggcgtc ttcgtcgagg cccatgacgc
420tggacttctc caagtccgca tccgtgttcg ggaataagga cgccgcgtac agcgtgtcag
480ccgcgagctc gtcgttcctg tcgtcggtga caggcgacgg gagcgtgtcg aacggacgcg
540gtggcgggtc ctcgctgatg ctcccgccgc caccttcggc cagctgcggg aagccaccgc
600tggcggccgc cgccgccggc ccgaagcgga agtgccacga gcacgcgcac tccgagaacg
660tcgccggcgc ctccggtggc cgctgccact gctccaagcg caggaagtcc cgggtgaagc
720ggatgacccg cgtgccggcg atcagctcga aggcggcgga gatccccgcg gacgacttct
780cgtggcgcaa gtacgggcag aagcccatca agggctcccc atacccacga ggctactaca
840aatgcagcac ggtgcgcggg tgcccagcgc ggaagcacgt ggagcgcgac cccagcgacc
900cctcgatgct catcgtgacc tacgagggcg accaccgcca cacccccggc gaccaggaag
960cagcagcagc gctcaccccg ctcccggagc tgcacaagct ctgaagtttc tacccactgc
1020tactacaccg acctgttaat taattaaact tagcctgtca tggtgttccc tttgtcgccg
1080tatagtagta gctagtagag tttcttcttt tttgtttggt cgcaccagtg tattagcagc
1140atgtaaaaga atcaacttag ggaagctttg agcagctttg gttggagaaa aaaaaaaaaa
1200aaaaaa
12061241411DNACapsella rubella 124atggccgtcg atctaatgcg tttccccaag
atagatgatc aaacggctat tcaagaagct 60gcatcgcaag gtttacagag tatggagcat
ctgatccgcg tcctctctaa ccgtcccgaa 120caacaacaca ccgttgactg ctccgagatc
actgatttca ccgtttccaa attcaaaacc 180gtcatttctc ttcttaaccg taccggtcac
gcccggttta gacgcggacc tgttcgctca 240tcccccgtcg tatctcctcc actcccacag
atcgttaaaa ctgctccgat tgtttcgcag 300ccgttaagaa caacgactaa tctttctcaa
accgctcctc ctccgtcgag cttcgtcctt 360ccgaggcagc ccaggcggtc acactcggat
ttctctaaac cgaccatctt cggttccaaa 420tccaaaagct ccgacctaga gttctcgaag
gagaacttca gcgtctcttt aaactcttcc 480tacatgtcgt cggcgattac cggagacggc
agcgtctcaa acgggaaaat cttcctcgcc 540tctgctccgt cgcagccagt tacctcctca
ggaaagccac cgttggccgg tcatccttac 600agaaagagat gcctcgagca cgagcactcc
gagagtttct ccggcagagt ctccggctca 660ggtcacggga aatgccattg caaaaaaagg
tattgttacg ttacgttacg tcgcccgcct 720gtcgctttta acaaacttac tcaagtgact
tccgttattt ttaatttcga tatattccaa 780ccccttggtt ggctattatt accctcctcg
atacatcatt gattaaatta ctacttaatt 840attcaattag gtaaaccgtt aacattattc
ccggtttagt caatagttat ataggtttag 900ctcgccgaca actactttta aaaacctggg
ttttgaccat tgacttttta aatccgaacc 960agctcattaa ttgattgtta atttttatat
gaatgaagca ggaaaaacaa gatgaagaga 1020acagtgaggg taccggcgat aagtgcaaag
atcgccgata ttccaccgga cgagtactcg 1080tggaggaagt acggacaaaa gccgatcaaa
ggctcaccac acccacggta actatcgtct 1140atttatccac cgttgataaa taaattaatt
cccattgcaa tctataaaga tctaacggtg 1200gttatttgtt tatgatcgat gcagtggtta
ctacaagtgc agtacgtata gaggatgtcc 1260agcaaggaaa cacgtggaac gagcgttaga
tgatccaacg atgcttatcg ttacgtacga 1320aggagagcac cgtcacaacc aatccgcggg
gggaatgcac gagactattt cttcttcagg 1380cgttaatgat ttagtgtttg cctcggcttg a
14111251141DNAOryza sativa subsp.indica
125atgattacca tggatctgat gagtgggtac gggcgggtgg acgagcaggt ggccatccag
60gaggcggcgg cggcggggct gagggggatg gagcatctta ttctgcagct gtcccagact
120gggacgagcg agaggtcgcc ggcgccggcg ccggcgcagg agcagcagca gcagcagcag
180gtggactgca gggagatcac ggacatgacg gtgtccaagt tcaagaaggt gatctccatg
240ctgaaccgca ccggccacgc gcggttccgg cggggcccgg tggtggcgca gtcgtctggc
300ccggcggcgt ccgagccggc gccggtgagg tcgtccccgt cggcggtgtc gaggcccatg
360acgctcgact tcaccaaggc ggcgtccgga tacggcaagg acgccgggtt cagcgtctcc
420ggcatctccg ccgcgagctc gtccttcctc tcgtcggtca ccggcgacgg cagcgtgtcc
480aacgggcgcg gcggcgggtc atcctccctg atgcttcccc caccgccggc gaccagctgc
540ggcaagccac cgctgtcctc cgccgccgcc gccatgtcag ccggcgtcgg ccacaagcgc
600aagtgccacg accacgcgca ctccgagaac atcgccggcg gcaagtacgg ctccaccggc
660ggccgctgcc actgctccaa gcgccggtaa aaatcttcac gactccctcc atttccccca
720cctcgaattg aactcatcgg aattaatttt ccaggaagca tcgggtgaag aggacgatcc
780gcgtgccggc gataagctcg aaggtggcgg acatccccgc cgacgacttc tcgtggcgga
840agtacgggca gaagcccatc aagggctccc ccttcccacg gtgagcaccg cactgccccg
900ccgtctctcc tcactccgtc gacattaaca cttaaaacta atagtcgcct cattttttag
960aggatactac aagtgcagca cgctgcgcgg gtgcccggcg aggaagcacg tggagcgcga
1020ccccgccgac ccgtccatgc tcatcgtcac ctacgagggc gagcaccgcc acaccccctc
1080cgccgccggc caggaccacc cgccggcgcc gcctccgccg ctggcgctgc cgctcgcctg
1140a
11411261245DNALycopersicon esculentum 126atcatgagta gaaccaaatg gctgttttat
caaaaatgaa tgaaagtttt gctgttgaag 60aagcagcttc cgccggtttg aaatcaatgg
agaatttaat ccgattggtt tctcatgaac 120cggttcaggc tgattgccgt gaaatggctg
attttacggt ttcgaagttc aaaaaggtga 180tttcaatttt ggaccggacc ggtcatgctc
ggttccggcg aggaccggtt caggctcagg 240ctccggctcc ggttcaggtt agagctccgg
ttcgtggtcc ggtttatcct gattcgttta 300cttcgttgtc tcttgctccg tcgttaagct
ttgctacggc gaaggagaga cttgctccgt 360cgttaagctt tgcttcggcg aaggagagac
cggtggtgca ggtgcagacg gcgttgacgc 420ttgacttttc gaagctgaat gttaaccgtc
cgatcgggaa ttcaagtgct tttactgctt 480ttactgtgaa atctaaggag gttttaatgg
cggatccgac gccgacgaac tcgtcgtcgt 540ttatgtcgac gattaccggc gaagcaactg
tatctaatgg taagcaagtt tcttcttcta 600tgttgttgct tccgccacag gctgtgaatt
ttccgaccac cggaaaacgt tgccgcgagc 660atgaacaatc tgatgctatc tccggcagca
aatccaccgg ctccggcaag tgtcactgca 720aaaagaggaa agctaaggat cggaaagtga
ttaggattcc ggcgataagt acgagggtgg 780ctgatatacc gggagacgag ttttcatgga
ggaaatacgg gcaaaagccg atcaagggtt 840caaaataccc aaggggttat tacaagtgta
gcagcttacg tggatgtcca gcaaggaaac 900acgtggagcg cgcgatggac gatccaacga
tgctgattgt gacttatgaa gatgaacatt 960gtcataatcc agttgctgcg atgcatggga
acagttctca aatggtgaat tttgggttaa 1020tggaaaagaa gtagggggtg aaatgaagat
agaggagagt tgtagggtga ttttgtagtt 1080tggaatagtt ggggggttga agttatattt
gggaaaagtt ataagggtta aaagagtaga 1140gagtaggaag ttgtgggaat tggtttgtta
tgtaaatttg gaaagatttt aggggttgaa 1200agagaaaaaa aaagaaaagt ttcgcaaaaa
aaaaaaaaaa aaaaa 1245127396PRTGenus species 127Ala Ala
Arg Arg His Gly Ala Leu Leu Arg Ser Glu Glu Leu Arg Glu1 5
10 15Ser Glu Ala Ser Leu Ala Gly Leu
Ala Pro Ala Ala Ala Ala Ala Ala 20 25
30Ala Met Glu Glu Glu Val Glu Ala Ala Asn Arg Ala Ala Val Glu
Ser 35 40 45Cys His Arg Val Leu
Ala Leu Leu Ser Gln Gln Gln Asp Pro Ala Leu 50 55
60Leu Arg Ser Ile Ala Ser Glu Thr Gly Glu Ala Cys Ala Lys
Phe Arg65 70 75 80Lys
Val Val Ser Leu Leu Gly Asn Gly Gly Gly Gly Gly Gly Gly Gly
85 90 95Gly Gly Gly Gly His Ala Arg
Gly Arg Met Ala Gly Arg Ser Arg Pro 100 105
110Ser Ala Val Leu Arg Glu Lys Gly Phe Leu Glu Ser Ser Ser
Gly Gly 115 120 125Gly Gln Leu Gly
Met Val Met Ser Gly Ala Ala Thr Pro Ser Thr Ser 130
135 140Ser Ala Ala His Leu Arg Asn Arg Ile Gly Gly Gly
Ser Gly Val Pro145 150 155
160Pro Asp Ser Leu Arg Gly Leu Asp Leu Val Ser Ser Ser Ser Lys Gly
165 170 175Gly Ala His Gln Phe
Asp Pro Pro Lys Leu Val Gln Pro Leu Ser Val 180
185 190Gln Phe Gln Phe Gly Ala Thr Ala His Arg Tyr Pro
Phe Gln Gln His 195 200 205Gln His
Gln Gln Lys Leu Gln Ala Glu Met Phe Lys Arg Ser Asn Ser 210
215 220Gly Ile Ser Leu Lys Phe Asp Ser Pro Ser Ala
Thr Gly Thr Met Ser225 230 235
240Ser Ala Phe Met Ser Ser Leu Ser Met Asp Gly Ser Val Ala Ser Leu
245 250 255Glu Gly Lys Pro
Pro Phe His Leu Ile Ser Gly Pro Val Ala Ser Asp 260
265 270Pro Val Asn Ala His His Val Pro Lys Arg Arg
Cys Thr Gly Arg Gly 275 280 285Glu
Asp Gly Ser Gly Lys Cys Ala Thr Thr Gly Arg Cys His Cys Ser 290
295 300Lys Arg Arg Lys Leu Arg Ile Lys Arg Ser
Ile Lys Val Pro Ala Ile305 310 315
320Ser Asn Lys Ile Ala Asp Ile Pro Pro Asp Glu Tyr Ser Trp Arg
Lys 325 330 335Tyr Gly Gln
Lys Pro Ile Lys Gly Ser Pro His Pro Arg Gly Tyr Tyr 340
345 350Lys Cys Ser Ser Val Arg Gly Cys Pro Ala
Arg Lys His Val Glu Arg 355 360
365Cys Val Asp Asp Pro Ala Met Leu Ile Val Thr Tyr Glu Gly Glu His 370
375 380Asn His Thr Arg Leu Pro Thr Gln
Ser Ala Gln Thr385 390
395128214PRTAegilops speltoides 128Gly Thr His His Pro Arg Ala Lys Leu
Val Ser Arg Arg Gln Thr Pro1 5 10
15Gly Phe Leu Ser Gln Lys Ser Phe Leu Asp Ser Asn Thr Pro Val
Val 20 25 30Val Leu Asn Ser
Ala His Pro Ser Thr Ser Ser Ala Gln Val Tyr Pro 35
40 45Arg Asn Ser Ile Leu Glu Ser Gln Pro Ala His Pro
Ile Gly Gly Pro 50 55 60Pro Lys Leu
Val Gln Pro Leu Ser Ala His Phe Gln Phe Gly Asp Ser65 70
75 80Ser Arg Tyr Asn Gln Phe Gln Gln
His Gln His Gln Gln Gln Lys Met 85 90
95Arg Ala Glu Met Phe Lys Arg Ser Asn Ser Gly Ile Asn Leu
Lys Phe 100 105 110Asp Ser Pro
Ser Gly Thr Gly Thr Met Ser Ser Ala Arg Ser Phe Met 115
120 125Ser Ser Leu Ser Met Asp Gly Ser Val Ala Ser
Leu Asp Ala Lys Ser 130 135 140Ser Ser
Phe His Leu Ile Gly Gly Pro Ala Met Ser Asp Pro Val Asn145
150 155 160Ala Gln Gln Ala Pro Arg Arg
Arg Cys Ser Gly Arg Gly Glu Asp Gly 165
170 175Asn Gly Lys Cys Ala Ala Thr Gly Arg Cys His Cys
Ser Lys Arg Ser 180 185 190Arg
Lys Leu Arg Val Lys Arg Thr Ile Lys Val Pro Ala Ile Ser Asn 195
200 205Lys Ile Ala Asp Ile Pro
210129208PRTTriticum aestivum 129Asn Lys Phe Val Gln Lys Ser Arg Leu Val
Pro Val Arg Asn Ser Arg1 5 10
15Asp Ile Val Asp Pro Arg Val Arg Glu Met Phe Lys Arg Ser Asn Ser
20 25 30Gly Ile Asn Leu Lys Phe
Asp Ser Pro Ser Gly Thr Gly Thr Met Ser 35 40
45Ser Ala Arg Ser Phe Met Ser Ser Leu Ser Met Asp Gly Ser
Val Ala 50 55 60Ser Leu Asp Ala Lys
Ser Ser Ser Phe His Leu Ile Gly Gly Pro Ala65 70
75 80Met Ser Asp Pro Val Asn Ala Gln Gln Ala
Pro Arg Arg Arg Cys Ser 85 90
95Gly Arg Gly Glu Asp Gly Asn Gly Lys Cys Ala Ala Thr Gly Arg Cys
100 105 110His Cys Ser Lys Arg
Ser Arg Lys Leu Arg Leu Lys Arg Thr Ile Lys 115
120 125Val Pro Ala Ile Ser Asn Lys Ile Ala Asp Ile Pro
Pro Asp Glu Tyr 130 135 140Ser Trp Arg
Lys Tyr Gly Gln Lys Pro Ile Lys Gly Ser Pro His Pro145
150 155 160Arg Gly Tyr Tyr Lys Cys Ser
Ser Val Arg Gly Cys Pro Ala Arg Lys 165
170 175His Val Glu Arg Cys Val Asp Asp Pro Ser Met Leu
Ile Val Thr Tyr 180 185 190Glu
Gly Glu His Asn His Thr Arg Met Pro Thr Gln Ser Ala Gln Ala 195
200 205130237PRTSaccharum officinarum 130Ser
Leu Leu Ser Asn Gly Gly Val Gly Val Gly Glu Ala Gly Pro Ser1
5 10 15Asp Ala Ser Gly Ser Ala Ser
His Pro Arg Ala Lys Leu Val Ser Arg 20 25
30Arg Gln Asn Pro Gly Phe Leu Thr Gln Lys Gly Phe Leu Asp
Thr Asn 35 40 45Thr Ser Val Val
Val Leu Asn Ser Ala His Pro Ser Pro Thr Ser Ala 50 55
60Gln Val Tyr Pro Arg Thr Ala Val Ala Leu Asp Ala Gln
Gly Val His65 70 75
80Pro Leu Gly Gly Pro Pro Lys Leu Val Gln Pro Leu Ser Ala His Phe
85 90 95Gln Phe Gly Asn Val Pro
Ser Pro Tyr Gln Phe Pro Asn Gln Gln Gln 100
105 110Gln Gln Gln Lys Leu Gln Ala Glu Met Phe Lys Arg
Ser Asn Ser Gly 115 120 125Ile Asn
Leu Lys Phe Glu Ser Thr Ser Gly Thr Gly Thr Met Ser Ser 130
135 140Ala Arg Ser Phe Leu Ser Ser Leu Ser Met Asp
Gly Ser Val Ala Ser145 150 155
160Leu Asp Gly Lys Ser Ser Ser Phe His Leu Ile Gly Gly Pro Ala Met
165 170 175Ser Lys Ser Val
Asn Ala Gln Ala Gly Pro Lys Arg Arg Cys Thr Gly 180
185 190Arg Gly Glu Asp Gly Thr Gly Lys Cys Thr Val
Thr Gly Gly Cys His 195 200 205Cys
Ser Lys Arg Ser Arg Lys Val Arg Val Lys Arg Ser Asn Lys Val 210
215 220Pro Ala Ile Ser Asn Lys Ile Ala Asp Ile
Pro Ser Gly225 230 235131386PRTDactylis
glomerata 131Met Glu Gly Val Glu Glu Ser Asn Arg Glu Ala Val Gln Ser Cys
His1 5 10 15Arg Val Leu
Ser Leu Leu Ser Asn Pro His Gly Gln Leu Val Pro His 20
25 30Lys Glu Leu Val Glu Ala Thr Gly Glu Ala
Val Ser Lys Phe Gly Ser 35 40
45Val Ala Thr Lys Ile Ala Thr Asn Gly Asn Gly Arg Gln Gly His Ala 50
55 60Arg Val Arg Lys Lys Ile Asn Gln Pro
Met Pro Met Phe Asp Ser Ser65 70 75
80Leu Phe Leu Glu Thr Thr Ala Ser Ala Ala Asp Ala Ala Ala
Ala Lys 85 90 95Thr Ser
Gln Pro Gly Pro Asp Thr Ile Leu Arg Leu Phe Pro Arg Tyr 100
105 110Gln Gln Val Glu Gly Ser Ser Ser Lys
Asp Pro Val Arg Ile Pro Ala 115 120
125Gln Phe Pro Arg Arg Leu Leu Leu Glu Asn Pro Ser Val Gly Ser Asn
130 135 140Gly Pro Ala Arg Gly Pro Pro
Val Gln Leu Val Gln Pro Val Ser Val145 150
155 160Ala Pro Pro Ala Gly Thr Pro Ala Pro Ala Leu Pro
Ala Ala His Leu 165 170
175His Phe Ile Gln Gln Gln Gln Ser Tyr Gln Arg Phe Gln Leu Met His
180 185 190Gln Met Lys Leu Gln Ser
Glu Met Met Lys Arg Gly Gly Leu Gly Glu 195 200
205Gln Gly Gly Ser Asn Gly Gly Val Asn Leu Lys Phe Ala Ser
Ser Asn 210 215 220Cys Thr Gly Ser Ser
Ser Arg Ser Phe Leu Ser Ser Leu Ser Met Glu225 230
235 240Gly Ser Met Ala Ser Leu Asp Val Ser Arg
Ser Ser Arg Pro Phe Gln 245 250
255Leu Val Ser Gly Ser Gln Thr Ser Ser Thr Pro Glu Leu Gly Leu Met
260 265 270Gln Arg Lys Arg Cys
Ala Gly Lys Glu Asp Gly Ser Gly Arg Cys Ala 275
280 285Thr Gly Gly Arg Cys His Cys Ala Lys Lys Arg Lys
Leu Arg Ile Arg 290 295 300Arg Ser Ile
Lys Val Pro Ala Ile Ser Asn Lys Val Ala Asp Ile Pro305
310 315 320Ala Asp Glu Phe Ser Trp Arg
Lys Tyr Gly Gln Lys Pro Ile Lys Gly 325
330 335Ser Pro His Pro Arg Gly Tyr Tyr Lys Cys Ser Ser
Val Arg Gly Cys 340 345 350Pro
Ala Arg Lys His Val Glu Arg Cys Val Asp Asp Pro Ala Met Leu 355
360 365Ile Val Thr Tyr Glu Gly Asp His Asn
His Asn Arg Ala Ala Ala Gln 370 375
380Pro Ala385132246PRTAmborella trichopodamisc_feature(243)..(243)Xaa can
be any naturally occurring amino acid 132Ser Ala Arg Gly Glu Ser Pro Phe
Glu Thr Phe His Val Pro Ala Ile1 5 10
15Ser Thr Gly Asp Thr Gln Ile Glu Gln Pro Ile Ser Asp Ser
Lys Thr 20 25 30Gln Leu Gln
Ile Gln Gly Pro Asn Thr His Leu Gln Ile Ile Gln Gln 35
40 45Gln Gln Ile Gln His Met Met Gln Phe Gln Gln
Gln Met Lys Leu Gln 50 55 60Ala Gln
Ala Asp Leu Met Tyr Arg Arg Ser Asn Ser Gly Ser Met Asn65
70 75 80Leu Lys Phe Asp Asn Ser Ser
Cys Thr Pro Thr Ile Ser Ser Arg Ser 85 90
95Phe Ile Ser Ser Leu Ser Met Asp Gly Ser Val Ala Ser
Met Asp Gly 100 105 110Lys Pro
Phe His Leu Ile Pro Ala Ser Ser Gln Asp Arg Ser Gly His 115
120 125Ser Gln Lys Arg Arg Cys Ser Gly Lys Gly
Glu Asp Gly Ser Gly Lys 130 135 140Cys
Gly Thr Ser Gly Arg Cys His Cys Ser Lys Arg Arg Lys Ile Arg145
150 155 160Val Lys Arg Ser Ile Lys
Val Pro Ala Ile Ser Asn Lys Leu Ala Asp 165
170 175Ile Pro Pro Asp Glu Tyr Ser Trp Arg Lys Tyr Gly
Gln Lys Pro Ile 180 185 190Lys
Gly Ser Pro His Pro Arg Gly Tyr Tyr Lys Cys Ser Ser Met Arg 195
200 205Gly Cys Pro Ala Arg Lys His Val Glu
Arg Cys Leu Glu Asp Pro Ser 210 215
220Met Leu Ile Val Thr Tyr Glu Gly Glu His Asn His Ser Arg Ile Leu225
230 235 240Ser Gln Xaa Asn
Gln Ser 245133348PRTArabidopsis thaliana 133Arg Leu Ser
Phe Glu Val Phe Arg Phe Leu Arg Val Ser Phe Val Lys1 5
10 15Lys Lys Met Glu Glu Val Glu Ala Ala
Asn Lys Ala Ala Val Glu Ser 20 25
30Cys His Gly Val Leu Asn Leu Leu Ser Gln Gln Thr Asn Asp Ser Lys
35 40 45Ser Ile Met Val Glu Thr Arg
Glu Ala Val Cys Lys Phe Lys Arg Val 50 55
60Ser Ser Leu Leu Ser Arg Gly Leu Gly Gln Arg Lys Ile Lys Lys Leu65
70 75 80Asn Asn Asn Asn
Tyr Lys Phe Ser Ser Ser Leu Leu Pro Gln His Met 85
90 95Phe Leu Glu Ser Pro Val Cys Ser Asn Asn
Ala Ile Ser Gly Cys Ile 100 105
110Pro Ile Leu Ala Pro Lys Pro Leu Gln Ile Val Pro Ala Gly Pro Pro
115 120 125Pro Leu Met Leu Phe Asn Gln
Asn Met Cys Leu Asp Lys Ser Phe Leu 130 135
140Glu Leu Lys Pro Pro Ser Ser Arg Ala Val Asp Pro Lys Pro Tyr
Gln145 150 155 160Phe Ile
His Thr His Gln Gln Gly Val Tyr Ser Arg Ser Lys Ser Gly
165 170 175Leu Asn Leu Lys Phe Asp Gly
Ser Ile Gly Ala Ser Cys Tyr Ser Pro 180 185
190Ser Ile Ser Asn Gly Ser Arg Ser Phe Val Ser Ser Leu Ser
Met Asp 195 200 205Gly Ser Val Thr
Asp Tyr Asp Arg Asn Ser Phe His Leu Ile Gly Leu 210
215 220Pro Gln Gly Ser Asp His Ile Ser Gln His Ser Arg
Arg Thr Ser Cys225 230 235
240Ser Gly Ser Leu Lys Cys Gly Ser Lys Ser Lys Cys His Cys Ser Lys
245 250 255Lys Arg Lys Leu Arg
Val Lys Arg Ser Ile Lys Val Pro Ala Ile Ser 260
265 270Asn Lys Ile Ala Asp Ile Pro Pro Asp Glu Tyr Ser
Trp Arg Lys Tyr 275 280 285Gly Gln
Lys Pro Ile Lys Gly Ser Pro His Pro Arg Gly Tyr Tyr Lys 290
295 300Cys Ser Ser Val Arg Gly Cys Pro Ala Arg Lys
His Val Glu Arg Cys305 310 315
320Val Glu Glu Thr Ser Met Leu Ile Val Thr Tyr Glu Gly Glu His Asn
325 330 335His Ser Arg Ile
Leu Ser Ser Gln Ser Ala His Thr 340
345134207PRTGlycine max 134Gln Gln Gln Gln Gln Gln Gln Gln Gln Arg Leu
Leu Leu Gln Gln Gln1 5 10
15Gln Gln Gln Gln Gln Gln Met Lys His Gln Ala Glu Met Met Phe Arg
20 25 30Arg Asn Asn Ser Gly Ile Asn
Leu Asn Phe Asp Ser Thr Ser Cys Thr 35 40
45Pro Thr Met Ser Ser Thr Arg Ser Phe Ile Ser Ser Leu Ser Ile
Asp 50 55 60Gly Ser Val Ala Asn Leu
Asp Gly Ser Ala Phe His Leu Ile Gly Ala65 70
75 80Pro His Ser Ser Asp Gln Asn Ser Gln Gln His
Lys Arg Lys Cys Ser 85 90
95Ala Arg Gly Asp Glu Gly Ser Leu Lys Cys Gly Ser Ser Ala Arg Cys
100 105 110His Cys Ser Lys Lys Arg
Lys His Arg Val Lys Arg Ala Ile Lys Val 115 120
125Pro Ala Ile Ser Asn Lys Leu Ala Asp Ile Pro Pro Asp Asp
Tyr Ser 130 135 140Trp Arg Lys Tyr Gly
Gln Lys Pro Ile Lys Gly Ser Pro His Pro Arg145 150
155 160Gly Tyr Tyr Lys Cys Ser Ser Met Arg Gly
Cys Pro Ala Arg Lys His 165 170
175Val Glu Arg Cys Leu Glu Glu Pro Thr Met Leu Ile Val Thr Tyr Glu
180 185 190Gly Glu His Asn His
Pro Lys Leu Pro Thr Gln Ser Ala Asn Ala 195 200
205135225PRTGossypium raimondii 135Leu Ser Ile Trp Glu Pro
His Val Trp Asn Cys Ala Arg Met Val Lys1 5
10 15Thr Ser Leu Pro Leu Ala Gln Gln Pro Pro Pro Pro
Ala His Tyr His 20 25 30Phe
Leu His Gln Arg Gly Leu Gln Leu Gln Gln His Gln Ala Glu Met 35
40 45Leu Ser Arg Lys Ser Asn Cys Gly Ile
Asn Phe Asn Phe Asp Ser Ser 50 55
60Ser Cys Thr Pro Thr Met Ser Ser Thr Arg Ser Phe Ile Ser Ser Leu65
70 75 80Ser Ile Asp Gly Ser
Val Ala Asn Met Asp Ser Gly Asn Ala Phe His 85
90 95Leu Ile Gly Ala Pro Arg Ser Ser Asp Gln Gly
Ser Gln His Lys Lys 100 105
110Lys Cys Ser Gly Lys Gly Glu Asp Gly Ser Val Lys Cys Gly Ser Ser
115 120 125Gly Lys Cys His Cys Ser Lys
Lys Arg Lys Gln Arg Val Lys Arg Ser 130 135
140Ile Lys Val Pro Ala Ile Ser Thr Lys Leu Ala Asp Ile Pro Pro
Asp145 150 155 160Asp Tyr
Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile Lys Gly Ser Pro
165 170 175His Pro Arg Gly Tyr Tyr Lys
Cys Ser Ser Met Arg Gly Cys Pro Ala 180 185
190Arg Lys His Val Glu Arg Cys Leu Glu Glu Pro Ser Met Leu
Ile Val 195 200 205Thr Tyr Glu Gly
Glu His Asn His Pro Lys Leu Pro Ser Gln Ala Thr 210
215 220Thr225136164PRTPopulus tremula x Populus
tremuloides 136Ser Ser Ser Cys Thr Pro Thr Met Ser Ser Thr Arg Ser Phe
Ile Ser1 5 10 15Ser Leu
Ser Ile Asp Gly Ser Val Ala Asn Leu Glu Gly Ser Ala Phe 20
25 30His Leu Met Gly Pro Ala Arg Ser Ser
Asp Gln Ser Ser Gln Gln His 35 40
45Lys Arg Lys Cys Ser Gly Arg Gly Glu Asp Gly Ser Val Lys Cys Gly 50
55 60Ser Ser Gly Arg Cys His Cys Ser Lys
Lys Arg Lys His Arg Val Lys65 70 75
80Arg Ser Ile Lys Val Pro Ala Ile Ser Asn Lys Leu Ala Asp
Ile Pro 85 90 95Pro Asp
Asp Tyr Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile Lys Gly 100
105 110Ser Pro His Pro Arg Gly Tyr Tyr Lys
Cys Ser Ser Met Arg Gly Cys 115 120
125Pro Ala Arg Lys His Val Glu Arg Cys Leu Glu Asp Pro Ser Met Leu
130 135 140Ile Val Thr Tyr Glu Gly Glu
His Asn His Pro Arg Ile Pro Ala Gln145 150
155 160Ser Ala Asn Thr137176PRTMalus x
domesticamisc_feature(147)..(147)Xaa can be any naturally occurring amino
acid 137Arg Arg Ser Asn Ser Gly Ile Asn Leu Asn Phe Asp Ser Ser Ser Cys1
5 10 15Thr Pro Thr Met
Ser Ser Thr Arg Ser Phe Ile Ser Ser Leu Ser Ile 20
25 30Asp Gly Ser Val Ala Asn Phe Asp Gly Asn Ser
Phe His Leu Ile Gly 35 40 45Ala
Pro Leu Ser Ser Asp Gln Asn Ser Gln His Lys Arg Lys Cys Ser 50
55 60Ala Arg Gly Asp Asp Gly Ser Val Lys Cys
Gly Gly Ser Ser Gly Arg65 70 75
80Cys His Cys Ser Lys Lys Arg Lys His Arg Val Lys Arg Ser Ile
Lys 85 90 95Val Pro Ala
Ile Ser Asn Lys Leu Ala Asp Ile Pro Pro Asp Asp Tyr 100
105 110Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile
Lys Gly Ser Pro His Pro 115 120
125Arg Gly Tyr Tyr Lys Cys Ser Ser Met Arg Gly Cys Pro Ala Arg Lys 130
135 140His Val Xaa Arg Cys Leu Glu Glu
Pro Ser Met Leu Met Val Thr Tyr145 150
155 160Glu Gly Glu His Asn His Pro Arg Ile Pro Ser Gln
Ser Thr Thr Thr 165 170
175138259PRTSolanum tuberosum 138 Val Lys Thr Glu Cys Lys Ile Asp Asp His
Ala Lys Ala Leu Arg Leu1 5 10
15Leu Pro Ile Asp Ser Pro Glu Asn Arg Val Leu Glu Met Gly Ala Asn
20 25 30Val Lys Cys Asn Leu Thr
Leu Gly Ser Pro Ser Leu Glu Leu Ser Ser 35 40
45Asn Ser Arg Asn Pro Leu Asn Phe Gly Gln Gln Thr Pro Phe
Pro Ser 50 55 60Tyr Asn Tyr Leu Gln
Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln Gln65 70
75 80Gln Arg Arg Phe Leu Leu Gln Gln Gln Gln
Gln Leu Lys His Pro Ala 85 90
95Glu Met Met Tyr Arg Arg Ser Asn Ser Gly Val Ser Leu Asn Phe Asp
100 105 110Ser Ser Thr Cys Thr
Pro Thr Met Ser Ser Thr Arg Ser Phe Ile Ser 115
120 125Ser Leu Ser Val Asp Gly Ser Val Ala Asn Gly Asn
Ser Phe His Leu 130 135 140Ile Gly Ala
Ser His Ser Ala Asp Gln Ser Ser Phe Gln His Lys Arg145
150 155 160Lys Cys Ser Gly Arg Gly Asp
Glu Gly Ser Gly Lys Cys Gly Ser Ser 165
170 175Gly Arg Cys His Cys Ser Lys Lys Arg Lys His Arg
Val Lys Arg Ser 180 185 190Ile
Lys Ile Pro Ala Val Ser Asn Lys Leu Ala Asp Ile Pro Ser Asp 195
200 205Glu Tyr Ser Trp Arg Lys Tyr Gly Gln
Lys Pro Ile Lys Gly Ser Pro 210 215
220His Pro Arg Gly Tyr Tyr Lys Cys Ser Ser Met Arg Gly Cys Pro Ala225
230 235 240Arg Lys His Val
Glu Arg Cys Leu Glu Asp Ala Ser Met Leu Ile Val 245
250 255Thr Tyr Glu 139166PRTMedicago truncatula
139Phe Asp Lys Ala Thr Ser Ser Thr Pro Gln Met Ser Ser Thr Arg Ser1
5 10 15Ser Phe Ser Ser Leu Ser
Ile Asp Gly Ser Val Ala Asn Val Asp Gly 20 25
30Ser Pro Phe His Leu Ile Gly Ala Pro Ile Ser Ser Asp
Gln Asn Ser 35 40 45Gln His Lys
Arg Lys Cys Ser Ala Arg Gly Asp Glu Gly Ser Leu Lys 50
55 60Cys Ser Ser Ser Ser Lys Cys His Cys Ser Lys Lys
Arg Lys His Arg65 70 75
80Val Lys Arg Ser Ile Lys Val Pro Ala Ile Ser Asn Lys Leu Ala Asp
85 90 95Ile Pro Pro Asp Asp Tyr
Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile 100
105 110Lys Gly Ser Pro His Pro Arg Gly Tyr Tyr Lys Cys
Ser Ser Met Arg 115 120 125Gly Cys
Pro Ala Arg Lys His Val Glu Arg Cys Leu Asp Glu Pro Thr 130
135 140Met Leu Met Val Thr Tyr Glu Gly Glu His Asn
His Ala Lys Val Pro145 150 155
160Thr Gln Pro Ala Asn Ala 165140148PRTIpomoea
nilmisc_feature(2)..(2)Xaa can be any naturally occurring amino acid
140Ser Xaa Ser Ile Asp Gly Ser Val Ala Asn Met Asp Gly Asn Ala Phe1
5 10 15His Leu Ile Gly Ala Ser
Arg Ser Ala Asp Leu Ser Ser Tyr Gln His 20 25
30Lys Lys Arg Cys Ser Gly Arg Gly Glu Asp Gly Ser Thr
Lys Cys Gly 35 40 45Ser Ser Ser
Arg Cys His Cys Ser Lys Lys Arg Lys His Arg Val Lys 50
55 60Arg Ser Ile Lys Val Pro Ala Ile Ser Asn Lys Leu
Ala Asp Ile Pro65 70 75
80Gln Asp Glu Tyr Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile Lys Gly
85 90 95Ser Pro His Pro Arg Gly
Tyr Tyr Lys Cys Ser Ser Met Arg Gly Cys 100
105 110Pro Ala Arg Lys His Val Glu Arg Cys Leu Glu Asp
Pro Ser Met Leu 115 120 125Ile Val
Thr Tyr Glu Gly Asp His Asn His Pro Arg Val Pro Ser Gln 130
135 140Ser Ala Asn Thr145141163PRTHordeum vulgare
141His Glu Ala Ser Ser Arg Ser Phe Leu Thr Ser Leu Ser Leu Glu Gly1
5 10 15Ser Met Ala Ser Met Asp
Gly Ser Arg Ser Ser Arg Pro Phe Gln Leu 20 25
30Val Ser Gly Ser Gln Thr Ser Ser Thr Pro Glu Leu Gly
Leu Met Gln 35 40 45Gln Arg Arg
Arg Cys Ala Gly Lys Glu Asp Gly Ser Gly Arg Cys Ala 50
55 60Thr Gly Ser Arg Cys His Cys Ala Lys Lys Arg Lys
Leu Arg Ile Arg65 70 75
80Arg Ser Ile Lys Val Pro Ala Ile Ser Asn Lys Val Ala Asp Ile Pro
85 90 95Ala Asp Glu Phe Ser Trp
Arg Lys Tyr Gly Gln Lys Pro Ile Lys Gly 100
105 110Ser Pro His Pro Arg Gly Tyr Tyr Lys Cys Ser Ser
Val Arg Gly Cys 115 120 125Pro Ala
Arg Lys His Val Glu Arg Cys Val Asp Asp Pro Ala Met Leu 130
135 140Ile Val Thr Tyr Glu Gly Asp His Asn His Asn
Arg Ala Ala Ala Ala145 150 155
160Gln Pro Ala142159PRTCrocus sativus 142Ile Gly Arg Leu Gln Lys Leu
Gln Ala Glu Met Phe Lys Arg Ser Asn1 5 10
15Ser Gly Ile Asn Leu Lys Phe Asp Asn Ser Ser Cys Thr
Pro Ala Met 20 25 30Ser Ser
Thr Arg Ser Phe Leu Ser Ser Leu Ser Thr Glu Gly Ser Val 35
40 45Ala Ser Leu Gln Gly Lys Pro Phe Gln Leu
Ile Gly Gly Ser Leu Ser 50 55 60Ser
Glu Pro Val Asn Leu His Pro Thr Pro Lys Arg Arg Cys Leu Cys65
70 75 80Thr Gly Arg Gly Glu Asp
Gly Lys Cys Ala Ala Ser Gly Arg Cys His 85
90 95Cys Ser Lys Arg Arg Lys Leu Arg Val Lys Arg Ser
Ile Lys Val Pro 100 105 110Ala
Ile Ser Asn Lys Leu Ala Asp Ile Pro Pro Asp Glu Phe Ser Trp 115
120 125Arg Lys Tyr Gly Gln Lys Pro Ile Lys
Gly Ser Pro His Pro Arg Gly 130 135
140Tyr Tyr Lys Cys Ser Ser Ile Thr Ser Tyr Leu Leu Phe Asn His145
150 155143116PRTZea mays 143Phe Phe Phe Phe Leu
Asn Asn Gly Lys Cys Ala Leu Ala Gly Arg Cys1 5
10 15His Cys Ser Lys Arg Ser Lys Lys Leu Arg Val
Lys Arg Ser Ile Lys 20 25
30Val Pro Ala Val Ser Asn Lys Ile Ala Asp Ile Pro Pro Asp Glu Tyr
35 40 45Ser Trp Arg Lys Tyr Gly Gln Lys
Pro Ile Lys Gly Ser Pro His Pro 50 55
60Arg Gly Tyr Tyr Lys Cys Ser Ser Val Arg Gly Cys Pro Ala Arg Lys65
70 75 80His Val Glu Arg Cys
Val Asp Asp Ser Ala Met Leu Ile Val Thr Tyr 85
90 95Glu Gly Glu His Asn His Thr Gly Met Pro Ala
Gln Ser Ala Ala Ala 100 105
110Ala Ala Gln Val 115144132PRTSorghum bicolor 144Thr Arg Leu Val
Ser Gly Ser Gln Thr Ser Ser Thr Pro Glu Met Gly1 5
10 15Leu Val His Arg Lys Arg Cys Ala Gly Arg
Glu Asp Gly Gly Gly Arg 20 25
30Cys Thr Thr Gly Ser Arg Cys His Cys Ser Lys Lys Arg Lys Leu Arg
35 40 45Ile Arg Arg Ser Ile Lys Val Pro
Ala Ile Ser Asn Lys Val Ala Asp 50 55
60Ile Pro Ala Asp Glu Phe Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile65
70 75 80Lys Gly Ser Pro His
Pro Arg Gly Tyr Tyr Lys Cys Ser Ser Val Arg 85
90 95Gly Cys Pro Ala Arg Lys His Val Glu Arg Cys
Val Asp Asp Pro Ser 100 105
110Met Leu Ile Val Thr Tyr Glu Gly Asp His Asn His Asn Arg Val Leu
115 120 125Ala Gln Pro Ala
130145395PRTPhyscomitrella patens 145Met Gly Ala Leu Glu Ile Leu Asp Tyr
Asn Asn Thr Leu Gly Lys Arg1 5 10
15Asp Arg Asp Tyr Glu Val Lys Glu Ala Ala Cys Met Gly Ile Gln
Asn 20 25 30Ala Arg Gln Leu
Leu Gln Ser Leu Thr Gln Val Arg Ser Pro Val Val 35
40 45Asp Glu Glu Cys Asp Val Met Ala Gly Ala Ala Ile
Ser Lys Phe Gln 50 55 60Lys Val Val
Ser Leu Leu Ser Arg Thr Gly His Ala Arg Phe Arg Arg65 70
75 80Arg Thr Arg Asn Ala Ala Val Ala
Gly Tyr Ala Gly Val Phe Leu Glu 85 90
95Ser Ser Asn Phe Phe Arg Glu Asn Ser Gln Glu Thr Ser Arg
Asp Arg 100 105 110Ile Val Ser
Ser Gly His Ala Ser Pro Ser Gln Phe Thr Pro Thr Ser 115
120 125Ser Ser Lys Pro Pro Gln Ser Pro Glu Leu Gln
Ala Ile Lys Tyr Lys 130 135 140Val Phe
Pro Gln Ser Ser Arg Ser Ala Asp Ala Thr Pro Ala Ser Ser145
150 155 160Asp Pro Ala Ser Gly Val His
His Pro Lys Pro Leu Gln Ile Leu His 165
170 175Ser Ser Met Met Gln Gln Ser Ile Pro Glu His Ile
Leu Arg Pro Val 180 185 190Ala
Ser Ala Ala Tyr Arg Pro Thr Ala Leu Pro Pro Asn Pro Phe Asn 195
200 205Lys Gln Glu Val Gly Ser Lys Glu Gly
Val Ser Gly His Ser Pro Asp 210 215
220Ser Ser Leu Ser Ser Gly Pro Pro Gln Ser Thr Thr Thr Ala Ser Phe225
230 235 240Pro Thr Met Ser
Val Gln Asp Ala Arg Ile Thr Ser Leu Gln Asn Met 245
250 255Lys Thr Ala Glu Gln Pro Ser Ala Leu Pro
Pro Arg Pro Gln Pro Pro 260 265
270Thr Pro Lys Lys Lys Cys Ser Gly Gln Ser Asp Glu Asn Gly Ala Thr
275 280 285Cys Ala Ile Leu Gly Arg Cys
His Cys Ser Lys Arg Arg Lys Leu Arg 290 295
300Leu Lys Arg Thr Ile Thr Val Arg Ala Ile Ser Ser Lys Leu Ala
Asp305 310 315 320Ile Pro
Ser Asp Glu Tyr Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile
325 330 335Lys Gly Ser Pro His Pro Arg
Gly Tyr Tyr Lys Cys Ser Ser Ile Arg 340 345
350Gly Cys Pro Ala Arg Lys His Val Glu Arg Ser Met Glu Asp
Ser Ser 355 360 365Met Leu Ile Val
Thr Tyr Glu Gly Asp His Asn His Pro Gln Ser Ser 370
375 380Ser Ala Asn Gly Gly Leu Thr Val Gln Ser Gln385
390 395146166PRTVitis sp 146Thr Ser Ser Phe
Leu Ser Ser Ile Thr Gly Asp Gly Ser Val Ser Asn1 5
10 15Gly Lys Leu Gly Thr Ser Leu Phe Ala Pro
Pro Pro Ala Pro Ala Val 20 25
30Ser Ala Gly Lys Pro Pro Leu Ser Ser Ser Gln Arg Arg Lys Cys His
35 40 45Glu His Gly Ser Ser Asp Asn Ile
Ser Gly Lys Leu Ser Val Ser Gly 50 55
60Arg Cys His Cys Ser Lys Arg Arg Lys Asn Arg Val Lys Arg Thr Ile65
70 75 80Arg Val Pro Ala Ile
Ser Ser Lys Ile Ala Asp Ile Pro Ala Asp Glu 85
90 95Tyr Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile
Lys Gly Ser Pro Tyr 100 105
110Pro Arg Gly Tyr Tyr Lys Cys Ser Ser Val Arg Gly Cys Pro Ala Arg
115 120 125Lys His Val Glu Arg Ala Pro
Asp Asp Pro Ala Met Leu Ile Val Thr 130 135
140Tyr Glu Gly Glu His Arg His Ser Gln Thr Pro Ala Pro Ala Gly
Gly145 150 155 160Leu Met
Phe Pro Ser Thr 165147118PRTPicea engelmannii x Picea
sitchensis 147Arg Lys Cys Ser Gly Lys Gly Asp Asp Ser Ser Lys Cys Gly Ser
Thr1 5 10 15Gly Arg Cys
His Cys Ser Lys Arg Arg Lys Leu Arg Val Lys Arg Thr 20
25 30Ile Arg Val Pro Ala Ile Ser Ser Lys Leu
Ala Asp Ile Pro Pro Asp 35 40
45Glu Phe Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile Lys Gly Ser Pro 50
55 60His Pro Arg Gly Tyr Tyr Lys Cys Ser
Ser Met Arg Gly Cys Pro Ala65 70 75
80Arg Lys His Val Glu Arg Ser Leu Glu Asp Ala Ser Met Leu
Ile Val 85 90 95Thr Tyr
Glu Gly Glu His Asn His Ser Arg Leu Leu Ser Ser Asn Ser 100
105 110Ser Leu Ile Val His Pro
115148328PRTNicotiana tabacum 148Met Ala Val Asp Phe Ile Gly Phe Ser Lys
Met Asn Glu Gln Leu Ala1 5 10
15Leu Gln Glu Ala Ala Ser Ala Gly Leu Lys Ser Met Glu His Leu Ile
20 25 30Arg Leu Val Ser His Gln
Gln Gln Gln Gln Pro Val Gln Leu Asp Cys 35 40
45Arg Glu Ile Thr Asp Phe Thr Leu Ser Lys Phe Lys Lys Val
Val Ser 50 55 60Ile Leu Asp Arg Thr
Gly His Ala Arg Phe Arg Arg Gly Pro Val Gln65 70
75 80Val His Pro Asp Asn Phe Thr Ser Leu Ser
Leu Ser Pro Ser Asn Gln 85 90
95Gln Leu Leu Asn Leu Ala Pro Ala Lys Glu Thr Pro Pro Pro Pro Ser
100 105 110Val Ser Leu Pro Leu
Thr Ala Leu Thr Leu Asp Phe Thr Lys Pro Asn 115
120 125Val Asp Arg Pro Thr Gly Asn Ser Asn Ala Ile Val
Ala Val Lys Ser 130 135 140Lys Glu Thr
Phe Cys Ile Ser Thr Pro Met Ala Thr Ser Ala Asn Ser145
150 155 160Ser Ser Phe Met Ser Ser Ile
Thr Gly Glu Gly Ser Val Ser Asn Gly 165
170 175Lys Gln Gly Ser Ser Val Phe Leu Pro Pro Ala Pro
Ser Val Ser Ala 180 185 190Gly
Lys Pro Pro Ile Ser Gly Lys Arg Cys Arg Glu His Glu Pro Ser 195
200 205Glu Asp Ile Ser Gly Lys Ser Asn Gly
Ser Gly Lys Cys His Cys Lys 210 215
220Lys Arg Lys Ser Arg Val Lys Lys Val Val Arg Ile Pro Ala Ile Ser225
230 235 240Ser Arg Ile Ala
Asp Ile Pro Gly Asp Glu Tyr Ser Trp Arg Lys Tyr 245
250 255Gly Gln Lys Pro Ile Lys Gly Ser Pro Tyr
Pro Arg Gly Tyr Tyr Lys 260 265
270Cys Ser Ser Val Arg Gly Cys Pro Ala Arg Lys His Val Glu Arg Ala
275 280 285Met Asp Asp Pro Ala Met Leu
Ile Val Thr Tyr Glu Gly Glu His Arg 290 295
300His Thr Ile Gly Ala Met Gln Glu Asn Asn Thr Gln Met Met Val
Phe305 310 315 320Gly Ser
Thr Glu Glu Arg Arg Glu 325149196PRTLiriodendron
tulipifera 149His Arg Asn Phe Met Glu Asn Pro Ile Gln Gly Ile Asp Ser Ser
Gly1 5 10 15Gly Asn Thr
Leu Gln Leu Ala Lys Asn Met Phe Leu Glu Asn Pro Thr 20
25 30Gln Glu Leu Asp Ser Ser Ala Ala Ala Ala
Ala Val Ala Ala Ala Ala 35 40
45Lys Asn His Leu Gln Ser Thr His Leu Gln Phe Leu Gln Gln Gln Gln 50
55 60Gln Arg Phe Gln Phe Gln Gln Gln Gln
Met Lys Phe Gln Ala Asp Met65 70 75
80Phe Arg Arg Ser Asn Asn Gly Ile Asn Leu Lys Tyr Asp Asn
Ser Ser 85 90 95Cys Thr
Pro Thr Met Ser Ser Thr Arg Ser Phe Val Ser Ser Leu Ser 100
105 110Met Asp Gly Ser Val Ala Ser Leu Asp
Gly Lys Ala Phe His Leu Ile 115 120
125Gly Gly Pro Gln Thr Ser Ser Asp Arg Asn Pro Asn Gln Pro Pro Lys
130 135 140Arg Arg Cys Ser Gly Arg Gly
Glu Asp Gly Ser Gly Lys Cys Gly Thr145 150
155 160Ser Gly Arg Cys His Cys Ser Lys Arg Arg Lys Leu
Arg Met Lys Arg 165 170
175Ser Ile Lys Val Pro Ala Ile Ser Asn Lys Leu Ala Asp Ile Pro Pro
180 185 190Asp Glu Tyr Ser
195150322PRTNicotiana benthamiana 150Trp Gln Leu Asn Phe Val Gly Phe Ser
Lys Met Asn Glu Gln Leu Ala1 5 10
15Leu Gln Glu Ala Ala Ser Ala Gly Leu Lys Ser Met Glu His Leu
Ile 20 25 30Arg Leu Val Ser
His Gln Gln Gln Gln Gln Pro Val Gln Leu Asp Cys 35
40 45Arg Glu Ile Thr Asp Phe Thr Val Ser Lys Phe Arg
Lys Val Ile Ser 50 55 60Ile Leu Asp
Arg Thr Gly His Ala Arg Phe Arg Arg Gly Gln Val Gln65 70
75 80Val His Pro Asp Asn Phe Thr Ser
Leu Ser Leu Ser Pro Ser Asn Gln 85 90
95Gln Leu Leu Asn Leu Ala Pro Ala Lys Glu Thr Pro Pro Pro
Arg Pro 100 105 110Pro Ser Val
Ser Pro Pro Leu Thr Ala Leu Thr Leu Asp Phe Thr Lys 115
120 125Pro Asn Val Asp Arg Pro Ala Gly Asn Ser Asn
Ala Ile Val Ala Val 130 135 140Lys Ser
Lys Glu Thr Phe Cys Ile Ser Thr Pro Met Ala Thr Ser Thr145
150 155 160Asn Ser Ser Ser Phe Ile Ser
Ser Ile Thr Gly Glu Gly Ser Val Ser 165
170 175Asn Gly Lys Gln Gly Ser Ser Met Phe Leu Pro Pro
Ala Gln Ala Val 180 185 190Ser
Ala Gly Lys Pro Pro Val Ala Gly Lys Arg Cys Arg Glu His Glu 195
200 205Tyr Ser Glu Asp Ile Ser Gly Lys Ser
Thr Gly Ser Gly Arg Cys His 210 215
220Cys Lys Lys Arg Lys Ser Arg Val Lys Lys Val Val Arg Ile Pro Ala225
230 235 240Ile Ser Ser Arg
Ile Ala Asp Ile Pro Gly Asp Glu Phe Ser Trp Arg 245
250 255Lys Tyr Gly Gln Lys Pro Ile Lys Gly Ser
Pro Tyr Pro Arg Gly Tyr 260 265
270Tyr Lys Cys Ser Ser Val Arg Gly Cys Pro Ala Lys Lys His Val Glu
275 280 285Arg Ala Ile Asp Asp Pro Ala
Met Leu Ile Val Thr Tyr Glu Gly Glu 290 295
300His Arg His Thr Ile Gly Ala Ile Gln Glu Asn Asn Ser Gln Met
Met305 310 315 320Ala
Phe151341PRTPetroselinum crispum 151Met Ala Leu Asp Leu Met Asn Asn Asn
Ser Tyr Lys Phe Arg Ser Lys1 5 10
15Met Glu Glu Thr Ala Val Gln Glu Ala Ala Ala Ala Gly Leu Gln
Ser 20 25 30Val Glu Asn Leu
Ile Lys Ala Ile Ser Gln Ser Asn His Gln Thr Ala 35
40 45Tyr Leu Ser Ser Ser Ser Ser Ser Glu Thr Gly Asp
Thr Asp Tyr Arg 50 55 60Ala Val Thr
Asp Val Ala Val Asn Lys Phe Lys Lys Phe Ile Ser Leu65 70
75 80Leu Asp Lys Asn Arg Thr Gly His
Ala Arg Phe Arg Arg Gly Pro Val 85 90
95Gln Glu Lys Thr Gly Val Glu Met Leu Val Asn Pro Ile Gln
Asn Gln 100 105 110Ile Gln Asn
His Gly Ser Asp Gly Phe Gln Val Tyr Arg Pro Thr Ala 115
120 125Val His Pro Val Gln Pro Val Gln Pro Val Gln
Ile Gln Pro Val Gln 130 135 140Leu Val
Gln Pro Val Gln Arg Leu Pro Pro Val Pro Lys Lys Glu Asn145
150 155 160Ile Ser Thr Thr Ile Asn Phe
Ala Ala Pro Ala Val Ala Val Ala Ala 165
170 175Pro Ala Thr Ser Phe Met Ser Ser Leu Thr Gly Asp
Thr Asp Gly Ser 180 185 190Gly
Phe Gln Ile Thr Asn Met Ser Gly Phe Ser Ser Gly Ser Arg Pro 195
200 205Val Ser Ser Leu Lys Arg Lys Cys Ser
Ser Met Asn Asp Val Ser Ala 210 215
220Lys Cys Ser Gly Ser Ser Ser Gly Arg Cys His Cys Pro Lys Lys Lys225
230 235 240Lys Leu Arg Val
Lys Lys Val Val Arg Met Pro Ala Ile Ser Met Lys 245
250 255Thr Ser Asp Ile Pro Pro Asp Asp Phe Ser
Trp Arg Lys Tyr Gly Gln 260 265
270Lys Pro Ile Lys Gly Ser Pro His Pro Arg Gly Tyr Tyr Lys Cys Ser
275 280 285Ser Val Arg Gly Cys Pro Ala
Arg Lys His Val Glu Arg Ala Val Asp 290 295
300Asp Pro Thr Met Leu Ile Val Thr Tyr Glu Gly Glu His Asn His
Ser305 310 315 320Gln Ser
Ser Asn Glu Asn Thr Asn Thr Ser His Ile Leu Glu Ser Asp
325 330 335Gly Leu Lys Gln Ser
340152248PRTAsparagus officinalis 152Gly Phe Lys Lys Met Ile Ser Ile Leu
Asn Arg Thr Gly His Ala Arg1 5 10
15Phe Arg Arg Gly Pro Thr His Gln Pro Gln Asp Pro Pro Pro Ala
Ile 20 25 30His Ser Pro Thr
Pro Ile Gln Ala Val Met Pro Pro Ala Pro His Ser 35
40 45Leu Thr Leu Asp Phe Thr Lys Pro Lys Thr Ala Gly
Glu Ile Ala Thr 50 55 60Met Asn Ser
Gln Tyr Ser Lys Asp Thr Ser Asn Phe Ser Ile Ser Ser65 70
75 80Ala Asn Ser Ser Phe Leu Ser Ser
Ile Thr Gly Asp Gly Ser Val Ser 85 90
95Asn Gly Lys Asn Gly Ser Ser Met Leu Leu Pro Pro Leu Pro
Pro Ala 100 105 110Ala Ala Val
Ser Ala Gly Lys Pro Pro Leu Ser Thr Ser Phe Lys Lys 115
120 125Arg Cys His Ser His Gly Thr Glu Met Ala Gly
Ser Phe Ser Ala Ser 130 135 140Gly Gly
Arg Cys His Cys Ser Lys Lys Arg Lys Ser Arg Val Lys Arg145
150 155 160Thr Ile Arg Val Pro Ala Lys
Ser Ser Lys Val Ala Asp Ile Pro Ser 165
170 175Asp Glu Phe Ser Trp Arg Lys Tyr Gly Gln Lys Pro
Ile Lys Gly Ser 180 185 190Pro
Tyr Pro Arg Gly Tyr Tyr Lys Cys Ser Ser Met Arg Gly Cys Pro 195
200 205Ala Arg Lys His Val Glu Arg Ala Pro
Asp Asp Pro Ser Met Leu Ile 210 215
220Val Thr Tyr Glu Gly Glu His Arg His Thr His Ser Pro Ile Pro Asp225
230 235 240Ala Leu Ile Leu
Lys Gln Ser Glu 245153183PRTPoncirus trifoliata 153Val Ser
Ser Asn Ser Ser Phe Met Ser Ser Ala Ile Thr Gly Asp Gly1 5
10 15Ser Val Ser Asn Gly Lys Gln Gly
Gly Ser Ser Ile Phe Leu Ala Pro 20 25
30Gln Ala Pro Ala Val Ser Ala Gly Lys Pro Pro Leu Ala Ala Gln
Pro 35 40 45Tyr Lys Lys Arg Cys
Gln Asp Gln His Asp His Ser Asp Gly Leu Ser 50 55
60Gly Lys Phe Ser Gly Ser Thr Ser Gly Ser Asn Lys Cys His
Cys Ser65 70 75 80Lys
Arg Arg Lys Asn Arg Val Lys Lys Thr Ile Arg Val Pro Ala Ile
85 90 95Ser Ser Lys Ile Ala Asp Ile
Pro Pro Asp Glu Tyr Ser Trp Arg Lys 100 105
110Tyr Gly Gln Lys Pro Ile Lys Gly Ser Pro Tyr Pro Arg Gly
Tyr Tyr 115 120 125Lys Cys Ser Thr
Met Arg Gly Cys Pro Ala Arg Lys His Val Glu Arg 130
135 140Ala Pro Asp Asp Pro Thr Met Leu Ile Val Thr Tyr
Glu Gly Glu His145 150 155
160Arg His Ser Gln Ala Ala Met Gln Glu Asn Val Val Pro Ala Gly Val
165 170 175Gly Leu Val Phe Glu
Ser Thr 180154131PRTLotus corniculatus var. japonicus 154Lys
Pro Pro Leu Ser Ser Ser Ser Leu Lys Arg Lys Cys Ser Ser Glu1
5 10 15Thr Leu Gly Ser Gly Lys Cys
Gly Ser Ser Ser Gly Arg Cys His Cys 20 25
30Ser Gln Lys Ser Arg Lys Met Arg Leu Lys Arg Val Val Arg
Val Pro 35 40 45Ala Ile Ser Leu
Lys Met Ala Asp Ile Pro Pro Asp Asp Tyr Ser Trp 50 55
60Arg Lys Tyr Gly Gln Lys Pro Ile Lys Gly Ser Pro His
Pro Arg Gly65 70 75
80Tyr Tyr Lys Cys Ser Ser Val Arg Gly Cys Pro Ala Arg Lys His Val
85 90 95Glu Arg Ala Leu Asp Asp
Ala Ala Met Leu Val Val Thr Tyr Glu Gly 100
105 110Glu His Asn His Ala Leu Ser Ala Ala Asp Ala Thr
Asn Leu Ile Leu 115 120 125Glu Ser
Ser 130155321PRTAvena sativa 155Met Met Thr Met Asp Leu Met Gly Arg
Tyr Gly Arg Ala Asp Glu Gln1 5 10
15Val Ala Ile Gln Glu Ala Ala Ala Ala Gly Leu Arg Gly Met Glu
His 20 25 30Leu Ile Leu Gln
Leu Ser Arg Thr Gly Thr Gly Thr Gly Thr Ser Glu 35
40 45Ser Ser Leu Ala Gly Ala Ser Glu Pro Ala Ala Gln
Gly Gln Gln Gln 50 55 60Gln Gln Gln
Val Asp Cys Arg Glu Ile Thr Asp Met Thr Val Ser Lys65 70
75 80Phe Lys Lys Val Ile Ser Ile Leu
Asn His Arg Thr Gly His Ala Arg 85 90
95Phe Arg Arg Gly Pro Val Val Ala Gln Ser Gln Gly Pro Ser
Val Ser 100 105 110Glu Pro Ala
Pro Val Arg Thr Ala Ser Ser Ser Arg Pro Met Thr Leu 115
120 125Asp Phe Ser Lys Ser Ala Ser Val Phe Gly Asn
Lys Asp Ala Ala Tyr 130 135 140Ser Val
Ser Ala Ala Ser Ser Ser Phe Leu Ser Ser Val Thr Gly Asp145
150 155 160Gly Ser Val Ser Asn Gly Arg
Gly Gly Gly Ser Ser Leu Met Leu Pro 165
170 175Pro Pro Pro Ser Ala Ser Cys Gly Lys Pro Pro Leu
Ala Ala Ala Ala 180 185 190Ala
Gly Pro Lys Arg Lys Cys His Glu His Ala His Ser Glu Asn Val 195
200 205Ala Gly Ala Ser Gly Gly Arg Cys His
Cys Ser Lys Arg Arg Lys Ser 210 215
220Arg Val Lys Arg Met Thr Arg Val Pro Ala Ile Ser Ser Lys Ala Ala225
230 235 240Glu Ile Pro Ala
Asp Asp Phe Ser Trp Arg Lys Tyr Gly Gln Lys Pro 245
250 255Ile Lys Gly Ser Pro Tyr Pro Arg Gly Tyr
Tyr Lys Cys Ser Thr Val 260 265
270Arg Gly Cys Pro Ala Arg Lys His Val Glu Arg Asp Pro Ser Asp Pro
275 280 285Ser Met Leu Ile Val Thr Tyr
Glu Gly Asp His Arg His Thr Pro Gly 290 295
300Asp Gln Glu Ala Ala Ala Ala Leu Thr Pro Leu Pro Glu Leu His
Lys305 310 315
320Leu156334PRTCapsella rubella 156Met Ala Val Asp Leu Met Arg Phe Pro
Lys Ile Asp Asp Gln Thr Ala1 5 10
15Ile Gln Glu Ala Ala Ser Gln Gly Leu Gln Ser Met Glu His Leu
Ile 20 25 30Arg Val Leu Ser
Asn Arg Pro Glu Gln Gln His Thr Val Asp Cys Ser 35
40 45Glu Ile Thr Asp Phe Thr Val Ser Lys Phe Lys Thr
Val Ile Ser Leu 50 55 60Leu Asn Arg
Thr Gly His Ala Arg Phe Arg Arg Gly Pro Val Arg Ser65 70
75 80Ser Pro Val Val Ser Pro Pro Leu
Pro Gln Ile Val Lys Thr Ala Pro 85 90
95Ile Val Ser Gln Pro Leu Arg Thr Thr Thr Asn Leu Ser Gln
Thr Ala 100 105 110Pro Pro Pro
Ser Ser Phe Val Leu Pro Arg Gln Pro Arg Arg Ser His 115
120 125Ser Asp Phe Ser Lys Pro Thr Ile Phe Gly Ser
Lys Ser Lys Ser Ser 130 135 140Asp Leu
Glu Phe Ser Lys Glu Asn Phe Ser Val Ser Leu Asn Ser Ser145
150 155 160Tyr Met Ser Ser Ala Ile Thr
Gly Asp Gly Ser Val Ser Asn Gly Lys 165
170 175Ile Phe Leu Ala Ser Ala Pro Ser Gln Pro Val Thr
Ser Ser Gly Lys 180 185 190Pro
Pro Leu Ala Gly His Pro Tyr Arg Lys Arg Cys Leu Glu His Glu 195
200 205His Ser Glu Ser Phe Ser Gly Arg Val
Ser Gly Ser Gly His Gly Lys 210 215
220Cys His Cys Lys Lys Ser Arg Lys Asn Lys Met Lys Arg Thr Val Arg225
230 235 240Val Pro Ala Ile
Ser Ala Lys Ile Ala Asp Ile Pro Pro Asp Glu Tyr 245
250 255Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile
Lys Gly Ser Pro His Pro 260 265
270Arg Gly Tyr Tyr Lys Cys Ser Thr Tyr Arg Gly Cys Pro Ala Arg Lys
275 280 285His Val Glu Arg Ala Leu Asp
Asp Pro Thr Met Leu Ile Val Thr Tyr 290 295
300Glu Gly Glu His Arg His Asn Gln Ser Ala Gly Gly Met His Glu
Thr305 310 315 320Ile Ser
Ser Ser Gly Val Asn Asp Leu Val Phe Ala Ser Ala 325
330157330PRTOryza sativa subsp.indica 157Met Ile Thr Met Asp Leu
Met Ser Gly Tyr Gly Arg Val Asp Glu Gln1 5
10 15Val Ala Ile Gln Glu Ala Ala Ala Ala Gly Leu Arg
Gly Met Glu His 20 25 30Leu
Ile Leu Gln Leu Ser Gln Thr Gly Thr Ser Glu Arg Ser Pro Ala 35
40 45Pro Ala Pro Ala Gln Glu Gln Gln Gln
Gln Gln Gln Val Asp Cys Arg 50 55
60Glu Ile Thr Asp Met Thr Val Ser Lys Phe Lys Lys Val Ile Ser Met65
70 75 80Leu Asn Arg Thr Gly
His Ala Arg Phe Arg Arg Gly Pro Val Val Ala 85
90 95Gln Ser Ser Gly Pro Ala Ala Ser Glu Pro Ala
Pro Val Arg Ser Ser 100 105
110Pro Ser Ala Val Ser Arg Pro Met Thr Leu Asp Phe Thr Lys Ala Ala
115 120 125Ser Gly Tyr Gly Lys Asp Ala
Gly Phe Ser Val Ser Gly Ile Ser Ala 130 135
140Ala Ser Ser Ser Phe Leu Ser Ser Val Thr Gly Asp Gly Ser Val
Ser145 150 155 160Asn Gly
Arg Gly Gly Gly Ser Ser Ser Leu Met Leu Pro Pro Pro Pro
165 170 175Ala Thr Ser Cys Gly Lys Pro
Pro Leu Ser Ser Ala Ala Ala Ala Met 180 185
190Ser Ala Gly Val Gly His Lys Arg Lys Cys His Asp His Ala
His Ser 195 200 205Glu Asn Ile Ala
Gly Gly Lys Tyr Gly Ser Thr Gly Gly Arg Cys His 210
215 220Cys Ser Lys Arg Arg Lys His Arg Val Lys Arg Thr
Ile Arg Val Pro225 230 235
240Ala Ile Ser Ser Lys Val Ala Asp Ile Pro Ala Asp Asp Phe Ser Trp
245 250 255Arg Lys Tyr Gly Gln
Lys Pro Ile Lys Gly Ser Pro Phe Pro Arg Gly 260
265 270Tyr Tyr Lys Cys Ser Thr Leu Arg Gly Cys Pro Ala
Arg Lys His Val 275 280 285Glu Arg
Asp Pro Ala Asp Pro Ser Met Leu Ile Val Thr Tyr Glu Gly 290
295 300Glu His Arg His Thr Pro Ser Ala Ala Gly Gln
Asp His Pro Pro Ala305 310 315
320Pro Pro Pro Pro Leu Ala Leu Pro Leu Ala 325
330158338PRTLycopersicon esculentum 158Met Ala Val Leu Ser Lys
Met Asn Glu Ser Phe Ala Val Glu Glu Ala1 5
10 15Ala Ser Ala Gly Leu Lys Ser Met Glu Asn Leu Ile
Arg Leu Val Ser 20 25 30His
Glu Pro Val Gln Ala Asp Cys Arg Glu Met Ala Asp Phe Thr Val 35
40 45Ser Lys Phe Lys Lys Val Ile Ser Ile
Leu Asp Arg Thr Gly His Ala 50 55
60Arg Phe Arg Arg Gly Pro Val Gln Ala Gln Ala Pro Ala Pro Val Gln65
70 75 80Val Arg Ala Pro Val
Arg Gly Pro Val Tyr Pro Asp Ser Phe Thr Ser 85
90 95Leu Ser Leu Ala Pro Ser Leu Ser Phe Ala Thr
Ala Lys Glu Arg Leu 100 105
110Ala Pro Ser Leu Ser Phe Ala Ser Ala Lys Glu Arg Pro Val Val Gln
115 120 125Val Gln Thr Ala Leu Thr Leu
Asp Phe Ser Lys Leu Asn Val Asn Arg 130 135
140Pro Ile Gly Asn Ser Ser Ala Phe Thr Ala Phe Thr Val Lys Ser
Lys145 150 155 160Glu Val
Leu Met Ala Asp Pro Thr Pro Thr Asn Ser Ser Ser Phe Met
165 170 175Ser Thr Ile Thr Gly Glu Ala
Thr Val Ser Asn Gly Lys Gln Val Ser 180 185
190Ser Ser Met Leu Leu Leu Pro Pro Gln Ala Val Asn Phe Pro
Thr Thr 195 200 205Gly Lys Arg Cys
Arg Glu His Glu Gln Ser Asp Ala Ile Ser Gly Ser 210
215 220Lys Ser Thr Gly Ser Gly Lys Cys His Cys Lys Lys
Arg Lys Ala Lys225 230 235
240Asp Arg Lys Val Ile Arg Ile Pro Ala Ile Ser Thr Arg Val Ala Asp
245 250 255Ile Pro Gly Asp Glu
Phe Ser Trp Arg Lys Tyr Gly Gln Lys Pro Ile 260
265 270Lys Gly Ser Lys Tyr Pro Arg Gly Tyr Tyr Lys Cys
Ser Ser Leu Arg 275 280 285Gly Cys
Pro Ala Arg Lys His Val Glu Arg Ala Met Asp Asp Pro Thr 290
295 300Met Leu Ile Val Thr Tyr Glu Asp Glu His Cys
His Asn Pro Val Ala305 310 315
320Ala Met His Gly Asn Ser Ser Gln Met Val Asn Phe Gly Leu Met Glu
325 330 335Lys
Lys159207DNATriticum aestivum 159tgccggtgcc tggagatcct gtgcgccatc
ctcctcccgc ccctcggcgt ctgcctccgc 60cacggctgct gctccatgga gttctggatc
agcgtgctgc tcaccatcct cggctacctc 120cccggcgtcc tctacgccgc ctacgtcatc
tgctccgtcg accccgaccg cgtccgccgc 180cgcgacgacg actacatcta cgtcgcc
207160165DNAOryza sativa 160atgggttcag
agacgttctt ggagatcttg ctggccatcc tgctgccgcc gctcggcgtc 60ttcctccgct
acggcatcgg catggagttc tggatcgccc tgctgctcac catcctggga 120tacttacccg
gcatcatcta cgctgtttat gtgcttgttg cttaa
165161165DNAHordeum vulgare 161atggcctcag caacgttcat agaggtgatc
ctcgccatca tcctgcctcc agtaggcgtc 60ttcctgcgct acggcctcgc cgtggagttc
tggatctgtc tcttgctgac cctactgggg 120tacataccgg ggatcatcta cgcggtgtac
gtgctggtgg cttaa 165162698DNAZea mays 162gttccagcgt
ctgcttgctt gctaccacgc ctcctcatct gctgccaccg gcgtctctcc 60ttcccagctg
gggccctgag ctgagagcag agcagggagc gaaactttgc gctgagattg 120agctgctcct
acttggaagg cggcggcgtc ggcaatgggg tcggagacgt tcgtggagat 180cctgctggcc
atcctgctgc cgccggtcgg cgtcttcctc cgctacggca tcggggttga 240gttctggatc
tgcctgctgc tcaccatcct gggatacatc ccgggcatca tctacgccgt 300ctacgtcctc
gtcgcgtgaa agcacaacat ggtgtggtag gtatgacgac gatggtgacc 360gtccgcccgc
ccgccgggga gctggaatat atgagaccca gacccagtgc ttctgatcca 420tccattccat
gcatgcagtg atgcaggcat acgtacgttt agcccatgct gtatgtttgt 480gtcttgcttt
agttagcttt agctagctgc ttgcagctta gcttctctca gctcgtctac 540cggtccgttt
tgctgtgccc atggacatgg atgggaagaa ggaaccgtag cttgtatgca 600agtgtgtact
agagtccaga gtttctactc tgctactgat tctgaatcca gacatgtttt 660ctgagatctt
ccttcgtgct aaaaaaaaaa aaaaaaaa
698163488DNAOryza sativa 163tgagttccag ccatttcgtc agtgagggag agagagaggt
ctgagaagag gagagagagc 60cttctgcctg acaagaaatt ctgagaagag ggagaatggc
gtcggcgacg ttcctggagg 120tgctcctagc catcttcctg ccgccggtcg gcgtcttcct
gcgctacggc ttgggtattg 180agttctggat cgatctcttg ctgaccatac tgggatacat
cccggggatc atctacgcgg 240tgtatgtgct ggtggcctga tcgaaagagt tcgagcagag
ccagcgtcgg gtgatcgagc 300gatcgtgcaa cggtgcaata gcaactgatg ctgtgctgtg
gtgttaagag tacatttgta 360tgtgtgaaaa tgtgatttat gcgatgagat tagggtcttg
acgtcttgtg atgagagtct 420ttatgctatt ttagagactg taattgggtg tcatgttgct
tgtttctctt atctaagata 480cttttttg
488164165DNAOryza sativa 164atgggttcag agacgttctt
ggagatcttg ctggccatcc tgctgccgcc gctcggcgtc 60ttcctccgct acggcatcgg
catggagttc tggatcgccc tgctgctcac catcctggga 120tacttacccg gcatcatcta
cgctgtttat gtgcttgttg cttaa 165165740DNAOryza sativa
165tcctgtaata atctcctcgg cgcgacgcca cgccaccgac caacgcgaca aggcgagacg
60acgcgcacgc gacacacagc cagcggaagc agcagcagga cgacgaggag gaggaggaga
120tagcttagat cccgctcgcc tctgatcccc ccggatccga tccgagatcc tccacccatg
180gcgtccggcc ggtgctgcac gttcctcgag atcctgctcg ccatcatcct cccgcccctc
240ggcgtcttcc tccgcttcgg atgctgcagc atggagttct gcatctgctt gcttctcacc
300atccttggct atgtccctgg catcatctac gcagtctatg tgcttgttgc tcttgactca
360gaccagtacc agagggaata tcataccctt gcttaggcag tccacttcaa ttctgtcgaa
420acctatgctc tatccagaac agccaagttc tgctgttgaa ttggtatctg gtaacttggt
480ctgggttttt tgatatggcg ttgtgaatct tgtgattata aagtagaaac agtggttcgt
540atcaaggagg acgaggaggc acctagtcat ttggtcgtta aatctcccta ttcatctgtt
600ttgtgctaaa tgtataattt tatctggatc tcttgactcc ttatttcagt ctgttaaatg
660ctcaaactgt ggtctggtct ccattctgta attttgattc aagaaaataa gttgttgagg
720gtaaaaaaaa aaaaaaaaaa
740166620DNAOryza sativa 166agatcccgct cgcctctgat ccccccggat ccgatccgag
atcctccacc catggcgtcc 60ggccggtgct gcacgttcct cgagatcctg ctcgccatca
tcctcccgcc cctcggcgtc 120ttcctccgct tcggatgctg cagcatggag ttctgcatct
gcttgcttct caccatcctt 180ggctatgtcc ctggcatcat ctacgcagtc tatgtgcttg
ttgctcttga ctcagaccag 240taccagaggg aatatcatac ccttgcttag gcagtccact
tcaattctgt cgaaacctat 300gctctatcca gaacagccaa gttctgctgt tgaattggta
tctggtaact tcgtctgggt 360tttttgatat ggcgttgtga atcttgtgat tataaagtag
aaacagtggt tcgtatcaag 420gaggacgagg aggcacctag tcatttggtc gttaaatctc
cctattcatc tgttttgtgc 480taaatgtata attttatctg gatctcttga ctccttattt
cagtctgtta aatgctcaaa 540ctgtggtctg gtctccattc tgtaattttg attcaagaaa
ataagttgtt gagggtaaat 600attattggtg tttgtatgtc
620167846DNAZea mays 167gcacgagcca ccacgcaccc
caccaaccca tacccatacc agaggctctc tgattttact 60tctccgcggt agatcggctg
agcgagcgag cgaggcacac ggagctagct aaacagagca 120cacgggtaga aaagcaagat
gtcggacggc acggcgacct gcatcgacat catcctcgcc 180atcatcctgc cgccgctcgg
ggtcttcttc aagttcggct gcggggttga gttctggatc 240tgccttatcc tcaccttcct
cggctacctc cccggcatca tctacgccgt ctgggccatc 300accaagtagc cggccggagc
agatgaacca cggtcccctg ccagtgccag gcagctagct 360gtgactccgt cgcgtgcgtt
agcatgcaat gcaagcgcag ggtggtctcg tggggggacg 420tggtgtgcgc gtgtcttgag
atgtgattcc ttccttcttt gtttagttgc tgctgctcct 480gctggtgtag tactggtgta
tccagtcctt ttaatttctt gattagtttg ctcggctgaa 540gaaatcagga cgcgtgcctg
gtgtcgctcc tcagctccat gtacttgtac aaccgttcct 600ccctgcagct gctgcccctt
ctctcttttt tgtttacctt gggttgatgg gttgttaaat 660tcgttgtttg tctctttttt
aaccttcgcg attgtagtac tgggttggtt gcttgcttgg 720ttggtttcgg ttgggagatc
gatgggaata agtctatgat atatatcagt acaacaaaag 780agagaaagaa attgccgccg
tcaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 840aaaaaa
846168626DNAZea mays
168gcacgagctt ctttcagaag acgaaatcca ctcaggagcg aggaaagagg gacagaggag
60ggatagatcc ccgggctcca cgcctccaca accatccgtc ccgatcccga ccagctttga
120gatcgcgatg gcggacggcc gctgctgcac cttcctggag atcctcttcg ccatcatcct
180cccgcccctc ggcgtcttcc tccgattcgg ctgctgcaga atagagttct gcatctgcct
240gctgctcaca atccttggct acgtccccgg aatcatctac gcgatctatg tccttgttgc
300tctcgactct gaccagcacg agagggaata ctacaccctt gcttagagca tctggttgtg
360ccaggcgggc ctgcacagtt gagtcgaaat cagtattttt tttctcatgt ggattgtctg
420acatggcata agcggcaatg ggtaaccaag tgttgtggtc tatatctctg ttacccaact
480tgtgagctct ctttattgtg ctccagttat tcaatctgta attgtgatac tacaagagaa
540taagatgcgc atgtatctct gagagcaact gtgatttatg attggtgcta ccttgggctc
600aaaaacatgt gaacagtcgc tcgtgc
626169547DNAOryza sativa 169tactttactt tgcagctatt ttgcttctgc ttcttcttgt
tcttgttgct ggttggtaat 60actgcgagag aaattaatca gtagagtgtt catctactat
caatttttga tcgaggagag 120atggcgggaa cggcgaactg catcgacatc ctcatcgcca
tcatcctccc gcccctcggc 180gtcttcctca agttcggatg cgggcatgag ttctggatct
gcctgttgct caccttcctc 240ggctacatcc ccggcatcat ctacgccatc tacgccatca
ccaagtaatt catcattagt 300tactacatca tcaaccaaat cctcaaggga tgggctccaa
accgcttcat ctatcttctc 360gattgccgtg tgcttgttgg aatttggaaa tgatatatgc
atccaaaatt cagtcctgag 420tgctccaatt cttgtcatct agtcattttc aatgtccccc
cagtctcttc ctctaatgtt 480tgatgatatg tagaatctct tgctgttaat ctgttgcttt
cgtgtgaata aaaaaaaaaa 540aaaaaaa
547170716DNAHordeum vulgare 170tgggcaatac
caaaggacaa attctttgct tggttggcat tgcaaaactc tattttcctc 60ttatttaata
aaaaattatt gctttcacct tacctgctgc aattcgaact tgcatggtta 120aatacgagta
cgagactaat ctgtcgtcat gtttatgatt tacttctgaa ttagattaac 180ataaaatatt
gctgatttac taaccactta ttacttctcc atagaagatg ctacgtggag 240tcacaggtgg
ctaagccgtg tgtttgccaa tgacacgtac accagcacca aataaaacca 300gagcagttgc
tgaaaacacc cgaaatcttg tctatatata cgaacgtgta cacgatcttg 360caatccaaat
caaccacaac cacccaccgt cccaccccat cccaagcgct tctttcaaaa 420aggaagagca
gagaaagaaa caagccagaa agcctcgagt aaggtgagcc atggcctcag 480caacgttcat
agaggtgatc ctcgccatca tcctgcctcc agtaggcgtc ttcctgcgct 540acggcctcgc
cgtaagtggc tactctttct aattttacgg gtttcgccgt tccttgcgta 600gtcccctatc
tgatctggat gtgtcaattc aggtggagtt ctggatctgt ctcttgctga 660ccctactggg
gtacataccg gggatcatct acgcggtgta cgtgctggtg gcttaa
716171652DNALophopyrum elongatum 171ccggggacac gtacaccacc tacacatcaa
agtatcaaac cacaccagtt actaaaaaca 60cccgaagtct tgtctatata aatggacgtg
tgctacatga tatggcaatc caaatcatcc 120aatccaggcg cctctttcag aagggaaagc
agagagaaag aaagaagcca gaaagcctcg 180agtgaagttt atagctagcc atgggctcgg
caacagtcct ggaggtgatc ctcgccatta 240tcctgcctcc cgtcggcgtc ttcctacgct
acaaactcgg cgtggagttc tggatctgtc 300tcttgctgac catactcggc tacataccgg
ggatcatcta cgcggtgtac gtgctggtag 360tttaagcaac aacctctgct gcagggtcca
ggcttggacg agcgagtcgc tgtgcaagag 420caactgatgc tgtctgtgtt aagatagcat
gtctttgtgt atgcttgtat gtattgaata 480ttgcggattt tttttttgga actcggtatt
gttgattctg tgatgtcacg agtgtacgta 540gctcgagggc tttagggcat tcgtcggctc
cagtgtctgt gatcttaaat ttaaagtctt 600gatgtccaaa tgatcttcgg aatcaatcga
agtgggaggt cagtactatt gc 652172616DNAOryza sativa
172tcctttcttg actcctctct cttcgtctca gcttggagct ccctctttga tttttcttct
60tcttcttgtt tgtgcaattg tgcatcgttg ttagctggga acaagcagaa gaatggcgga
120cagcacggcg acctgcatcg acatcatcct cgccatcatc ctgccgccgc tcggcgtctt
180cttcaagttc ggctgcggga ttgagttctg gatctgcttg ctgctcacct tcttcggcta
240cctccccggc atcatctacg ctgtctgggt catcaccaag taggaggaga attactaccc
300ttccaaggtg atggtgaatt ggtgatccgg agcctgtgat tggttgtgcc tggtgtaagc
360ggcagttgtc aaagctgtga ttttctggtt ctttggacgg atggtgctcg ctgtggtgtt
420gtgtatgctg tacatctgtt ttggtgtttg tgcttaggtc cctcttctgt tacaacaatt
480gttttctccc tgttcttccg gggtaccttc tccagtttat cttctgcacc ttctcgtccc
540tgtactttga atattaatta attaattaat taattgctcc ttgttaaaaa aaaaaaaaaa
600aaaaaaaaaa aaaaaa
616173195DNAOryza sativa 173atggcggaca ggccgccggc gatggccgac aggacggcga
cgttcgtgga cctcgtcatc 60gccatcatcc tgcctcccct cggcgtcttc ctcaaggtcg
gctgcgagat cgagttctgg 120atctgcctct tgctcacatt cttgggctac ttcccgggga
tcatctacgc cgtctgggta 180attgtcaatc actag
195174553DNAZea mays 174gcacgaggcg tggacgcatc
gtcatcattc gagcagaggg gagagagaga gagagagaga 60gagagatgaa ggagggcacg
gcgaactgca tcgacatcct catcgccatc atcctcccgc 120ctctcggcgt cttcctcaag
ttcggctgca aggtcgaatt ctggctctgc ctcctgctca 180ccttcctcgc ctatctcccc
gggatcatct acgcgatata cgttatcacc aaggactagc 240cagctagcgc cgtaaaccgg
gacaaggtga gagagctagc tgatcagcca gcggaggtaa 300tggagatgaa ctgctgagat
cacttgccct gctgctcaat gtttctggat ggagactgaa 360tctcagctgt gctgtgctgt
gctgtgctgt gctgtgatgc tgctatatac taccgattga 420tcctgaaatt tgtcgctttt
cgttcgtgtc tgcatagtat gtgatgcata gtctgtaaaa 480tttctctcag actcttgtgc
tatagtatgt gatgcatgca tgtgtttgct tgatgaaaaa 540aaaaaaaaaa aaa
5531751693DNAHordeum vulgare
175agcttatcga tgtaaaagtc agttcctttc ctttcggaaa actcttctct attgcattgt
60ttgaagagaa tatcatacgg aaaccaacat ttggtggaaa ctggtaaaaa ccacaagaaa
120actatgtttt gaagtttaga aaaacctgaa acaaatactg gatcgttaag aggatcgatc
180gttttattgt caccgcaaaa tttcaaatcg taacacatta caaattgtaa gctatggaaa
240agaaatcacc tttgaataat gccaaatagt aatgtcacta ttcagcgctg aaatttgtca
300ttttcgtagc tcaaatctcc taatgtgttt caacttgaaa ttttgtgtgg caataaacat
360cattatctaa acattccatt tttttgaatt ctttgaaact ttaaaatatg atttttacaa
420agttttcgtt gaatgttggt tttcgtacta tgttctcccc actgtttggg atcagttcgc
480gcaacaacaa caaaaagcct tccaaagtct gcataggcgt ttcgtggaca accaaaattg
540ggtctctagt accacgggca gcacacaaga acgaacccat cacagccgtg gatgctgcaa
600aagcaagggc tccagctatg aatactttgg aaacacccca aagggccgtg cgacatgcat
660agatttttca cgggaagtgc cacatgcatg gatacaacca ggcagggaca caaaaaggat
720caggcacagc tcatcggaca agaacacgcc accagcaaac agagattttt aagagcaaag
780gatttagggg atgtttcttt ctaggtattt tttatgtagg gactaaaaaa agtccctttt
840agtcccatgt gaaagaaata ggagggactt ttagagatta aaaggggtat ctgagactca
900aggaagaagt ccctatggga gggacttttt gtgacttttt tggctctttt tcaacaatgc
960ccctacttta gcatgtcatt taataacttc taatatattt ctaggagtaa catggtcttt
1020ttgcatgtta tttaatgacc tctagtccat gtttggtttt tgaaaagaaa caggtacgga
1080ctaaaaactt tttagttggg actaaaaaag ttttcaggat tttttaaaaa acaggacctt
1140agtctaatct ccagagctcc agtatccaat attcgcacgc ggctccagaa gaagatgcta
1200cgtggagtgc aggtggccaa gccgcgtgca ggcccgggga cacgtacacc acctccacat
1260caaaccacac cagttactaa aacaacccgg agtcttgtct atataaatgg acgtgtacat
1320gatctggcaa tccaaatcaa ccaatccagg cgcctctttc agaagtgaaa gcaaggagaa
1380agaaagaaac cagactcaag tgaagcaaac catgggctct gcaacagtct tggaggtgat
1440cctcgccatc attctgccac cggtcggcgt cttcctgcgc tacaaactcg gtgtaagtgc
1500ctactcgttc tatttgtctt gcctactcgt tctatttgtc tacgggtttc gttgagcctt
1560attgtagtcc ctatctgatc tggttcctgg cgcggatgtg tcgattcagg tggagttctg
1620gatctgtctc ttgctgacca ttctggggta cataccgggg atcatctacg cggtgtatgt
1680gctggtggtt taa
1693176569DNASorghum bicolor 176ccggggcaaa attttgcact gagattgagc
tactacctcc tccagcgcct cttcttgcgc 60acctagaata gaaagagaac tactgtagaa
atatacagct acgagaacta gaaggcggcg 120agcacatcgg cggcaatggg gtcggagacg
ttcctggaga tcctgctggc catcctgctg 180ccgccggtcg gcgtcttcct ccgctacggc
atcggggttg agttctggat ctgcctgctg 240ctcaccatcc tgggatacat cccgggcatt
atctatgccg tctacgtcct cgtcgcatga 300ttatgattat tatatataat tatgatgtgt
gataatgacc ggccgggagc tagattggtt 360cgagaccacg ggtttctgaa ttctgatcca
tccattccat acatgtagcc catgctgtat 420gttcttgtat cttctaaatt agcttagcta
gcggttgttt ctcttgtgtc ctgatccatt 480ttgttgtgcc catggacaag gatgggagaa
aggaactgta gcttcgatgc ttcgtctatg 540caagtgtgct agatctagtc tagagtttc
569177516DNATriticum aestivum
177ccacgcgtcc gctagctctg gcctgcttgc tcactctccc acggcaagct agcaccatcg
60accacatctg tttctcatcg gaggagagaa gctctgcgag agaggaagtt ggttgcgatg
120ggttcggaga cgttcgtgga gatcctgctg gccatcttgc tgccgccggt cggcgtcttc
180ctccgctacg gcatcggcgt ggagttctgg atctgcctgc tgctcacggt gctgggctac
240atccccggca tcatctacgc catcttcgtc ctcgtcgcat agcttgttca cacaattaat
300cagatcggac tcttggagat agctagatag atagatccag aggcatcttt gttccagttg
360ctctatctgt tcatggatga gatggctggc gcatcggtgt aagcaggacc tctgctccat
420gaataaccac catgcatgcc ggttcagtta ctagaccagc tactactgtt tttgtactct
480tgtgcttagc gctatgtact gccgttctgt gcgtat
516178468DNAHordeum vulgare 178ctttttcaga gaacatatca ccggagaaga
agcaggctct gcgactgcga gccagacagg 60aatttgactg cgatgggttc ggagactttt
gtggagatcc tgctggccat cctgctgccg 120ccggtcggcg tcttcctccg ctacggcatc
ggcatggagt tctggatctg cctgctgctc 180accttgctgg gctacatccc cggcatcatc
tacgccatct tcgtcctcgt cgcttaaata 240gtttcagttt cagcaattaa gcagtacgga
ctagtgtgcg gagatggatc gttaccaggc 300agcatctctg ttccagttgc tctagcggtt
catggacgag ctggctggcg catcagtgca 360agcaggatct ttgctccatg actgaccacc
ctgcatgtcg gtccagttac taggccggct 420accactgttg tgttgagtgc tatattgccg
ttctgtgcgt accacttt 468179562DNAZea mays 179tagcgtggtc
gcggccgagg tacgcgggga cgcctcgcct cctcatctgc tgccaccggc 60gtctctcctt
cccagctggg gccctgagct gagagccgag ccgggagcga aactttgcgc 120tgagattgag
ctgctcctct acttactact actagaaggc ggcggcgtcg gcgtcggcgt 180cggcaatggg
gtcggagacg ttcgtggaga tcctgctggc catcctgctg ccgccggtcg 240gcgtcttcct
ccgctacggc atcggggttg agttctggat ctgcctgccg ctcaccatcc 300tgggctacat
cccgggcatc atctacgccg tctacgtcct cgtcgcgtga cagcacaaca 360tggtgtggta
ggtatgacga tggtgaccgt ccgcccgccg gccgggagct ggaatatatg 420agacttgaga
cccagtgctt ctgatccatc cattccatgc atgcagtgat gcaggcatac 480gtacgtttag
cccatgctgt atgtttgtgt cttgctttag ttagctttag ctagctgctg 540cagcttagct
tctctcagct cg
562180488DNAOryza sativa 180actacactga agaagaatcg atcgatatct gaaggaagtg
aactaagtga tgggttcaaa 60gacgttcttg gagatcttgc tggccatcct gctgccgccg
ctcggcgtct tcctccgcta 120cggcatcggc atggagttct ggatcgccct gctgctcacc
atcctgggat acttacccgg 180catcatctac gctgtttatg tgcttgttgc ttaattagtt
agttactacc aatgatctgt 240tctgatcgat cgattatgtt agtatcatgg tttagtttag
gtggtttcta ttatgtaagt 300cgtactagct gctacttacg gcatgttctt cggttcctgc
ttgcctggat cagtggagct 360attcgcctat actagacatc gatctctgta gtttctgtca
gcattcataa aagtgtgatc 420tgaattctga ctttctgatg gatcgatgac tatggatgat
tcatgtgtga tctgaatgga 480tgatgatc
4881811614DNAOryza sativa 181atgtcggacg gcacggccaa
ctgcatcgac atcctcatcg ccatcatcct ccctcctctc 60ggcgtcttcc tcaagttcgg
atgcaaggtg gagttctggc tctgtcttct gctcaccttc 120ttcggctatc tcccggggat
catctacgcg gtctatgcta tcaccaaact acggtggctc 180tggttcaaat ggaaagagga
caacaagcct tgggttggaa tggatttacc ttgcgatgac 240tgcgacaaaa gactctttca
ggctgccact acgataaatg tcggcaatgg agaaaaaata 300aatttttggc atgataagtg
gctgcaaaat acatgtccaa aagacattgc acccttgtgt 360ttcaacctag ctaagcgcaa
acagagatcg gttaaaacgg aattgacaaa caattcttgg 420cttctttcct ttcggcaaat
aactacaatt gaagaaatca gcgatcttgt ccagcttggg 480ggaatgctgc aaaatgttca
gcttctaccg caaaccaatg acgacatcac ttggaacctg 540aacgaatcgg gatcctactc
tgcaaacagt gcttatttat ttcagttcca agggtccttc 600tcttcgattg actttcattc
catttggagg tgcccagctg aaccaaagat gcgcttcttt 660ggatggctaa tccttcacca
aaaaactctc acggcccaaa atcttttgcg ccggcactgg 720ccttgcaatt ggatttgtag
cctgtgtgga gaggcgtttg aagacactaa ccatctcttc 780aatgtctgcc ccttcttcag
aaaagtttgg cttatggttt cgacttgctt gtcaatcttg 840aaagttgagg acatgacaaa
atcaccaagc cttagtcaat tgctgattag atcatgcatc 900tccaatggag atgcaggttc
tccacgatta gttgagacca cgcagccgtc gtctcaactt 960atcgccggtg accaacgtta
cgacggggtc atcgccctcg cctcgcctcc tccgatctcc 1020tcaccaccga atctcttttg
cgccgcaacc ggcgccctct ccacagcgca agtcagcttc 1080gatccctcgc gcgctgccac
cggcgccctc tccaccgtgc cgccatcagt tcgtcgatcc 1140ctcgcgcgtt gccaccggat
tccaccccac cgcgtcgcaa gtcagaaatg caaaatcgtt 1200atatcagtgg atgtgattaa
taatgcaact ttcatgtttc ttatacaata tcccccaaaa 1260gtcaagctca aaggatttcc
ccttgccaat agcattggtg gagataaagt ggaaggtgga 1320aaactaatga ccatgggaag
aaggtctgac tatctcattg tcttatttga cctgtatttc 1380agtatgcgtt tagcttcttg
gcaatcaatt gtggatgcaa tagaactgtt tgagcttctt 1440gctagattcg catttggata
tccgtacgtg ttggtgtggg tcctcgagac cgagggagta 1500gctgagagac tgatgatgaa
cgttgtgttt ttcatgggcg atggtgatct ggtggtgctg 1560gtgtttgaca cggaattttt
agataaacag agtagcaaat ttttgataga ctaa 1614182521DNAHordeum
vulgare 182tgaaagcaag gagaaagaaa gaaaccagac tcaagtgaag caaaccatgg
gctctgcaac 60agtcttggag gtgatcctcg ccatcattct gccaccggtc ggcgtcttcc
tgcgctacaa 120actcggtgtg gagttctgga tctgtctctt gctgaccatt ctggggtaca
taccggggat 180catctacgcg gtgtatgtgc tggtggttta agcaacagcc tctgctgcag
ggtccggcgt 240ttggacgagc gagtcgctgt gcaagatcaa ctgatgctca tgctctatgg
gttaagagag 300aatgtatgcg tgtatgtatg ggttaagaga gtatgtgtat cgatgtatct
attgaatatt 360gtggatttca tttttttttc tggaactcgg tattgttgat cctgtgatgt
cacgagtgta 420cctagctagc tcgagggcat ttgtagtaga gcattcgtcg gccacattgt
ttgtgatctt 480aaatttaaag tattggacgt cgaaaaaaaa aaaaaaaaaa a
521183234DNAArabidopsis thaliana 183atggcgaatg ggtgcgagat
ttgctgtgaa ataatgatcg ccatactcat ccctcctcta 60ggggtttgtc tgaggcatgg
ctgttgcact acggaattca tgatatgtct gatcctaacg 120ctcttgggat acgtaccggg
gatcatctac gcactctatg caatcgtgta cgtggatcgt 180gatcaatttt tcgatgagta
ccgtcgtcca cttttctatg cccagtcacc gtga 234184367DNAArabidopsis
thaliana 184tctcatctca tctctctgaa aaaatgccga gcaactgtga gattctgtgc
gagatcatta 60tcgcgatcct tcttcctcct ctcggagttt gcttcaggaa aggatgctgc
actgtggagt 120ttttgatatg cctggtgttg acgatcttag gctatgtccc ggggataata
tatgcgattt 180acgtgattgt gtttcagcac cgtgaagagt actttgatga atacagacgc
cccatctact 240ctgcttgatt tctgtttctt tggaactgtg ttgctttgac ttgtaccaat
aaagttgctt 300tgcagttgtt ttcagagatt tgaaaacgtt tgtgtgtcat ttatatgcaa
tattgaaagt 360ttcttct
367185575DNAArabidopsis thaliana 185ctaccgacta ctttcagtgt
tctcttcttc tccactaatt cagatcacat tcaagaatct 60tcttcactca catctctgaa
aaaatggcga gcaacatgga agttttctgc gagatcttaa 120tcgcgatcct tcttccacct
cttggagttt gtctcaaacg tggctgttgc actgtagagt 180tcttgatttg cttggtgctg
acaatcttag gatacatccc agggataatt tatgcactat 240acgtgatcgt gtttcaaaac
cgtgaaggct ctaccgaact tggagctcca cttaactcag 300cttgatctgt tttggtccat
tacacggatc aatatgttgt tgaaactgtt ttacttatca 360tgtaccaaat aataagttgc
tttgcaattt ttatgtattg aagatttgag aacattgtcg 420cgttattgat acattgctta
tctttttgat gtataacttg ttggcttttg caaagtcagg 480ctacggacct tcctaagagt
taatgtatca aattctttgc caagattgta tttaccggag 540tttaaacttc gcaaaatgcg
gaagcatttt tgagt 575186400DNABrassica rapa
186cgctctagat catctctgag aaaaaatggc tagcaatatg gaagttttct gcgagatctt
60aatagcgatc cttcttccac ctcttggagt ctgcctcaag cgtggctgtt gcactgtaga
120gttcttgata tgcttggtgt tgactatctt aggctacatc ccagggataa tctatgcgct
180ttacgtgatc gtgttccaga accgtgaagg ggaaactcag gattacagtg ctccactcaa
240ctcagcttga gattatctgt cggtccatac aacatgtctt tcacttgaaa ctgtttactt
300atggaaccac tcaataaagt tgcaatctat ctgattcctt cttatatgta attcaagtat
360ggcaatttca tgttaaaaaa aaaaaaaaaa aaaaaaaaaa
400187354DNAArabidopsis thaliana 187ctcttcttct ctttttcaag tcatcaaatc
tgatctaatc tccgtaaatt aatggcgagt 60agttgcgagc tttgctgcga gatcttcatc
gcaattcttc ttcctcctgt cggagtttgt 120ctcaggcatg gctgttgcac tgttgagttc
ttcatttgtt tgatactgac ttgcttaggc 180tacttaccag gaataatata cgcaatttac
gcaatttgtt tcttgcaccg cgatgagtat 240tttgatgaat acagacgccc aatctactat
gttgcttgac ctcttgattg attcttgctc 300ttgagcacac atattgtact ttaaagtgta
atttacttgt atcctggaga taat 354188165DNAArabidopsis thaliana
188atgggatcag aaactttctt ggaaattatt ctggcgattc ttctacctcc cgtcggcgtt
60ttccttcgat atggttgtgg ggtagagttc tggatctgtc tcttgttgac gatactgggt
120tacatccctg ggatcatcta tgctatctac gttcttgtcg gatga
165189428DNAArabidopsis thaliana 189tttgaagctt ttataatatt ttctcagaaa
ctttcaaaga gcttagaaaa atgagtacag 60ctactttcgt tgatattatt atcgccatcc
tcttgcctcc actcggtgtc tttctcagat 120ttggttgcgg ggttgagttt tggatatgtt
tggttttgac gctacttggg tatattcctg 180ggatcatata cgccatttat gtcctcacca
aatgatttac catctatcat catctccttg 240aacagctgtt ccgtcgtgtt ctcctatctt
tgtgactgat tcagcgtttc tttttctttc 300atcagagttt ttatgtttca agtaatttaa
ttaatcatca ctgttgtgtt tgcattgtta 360tataaatgtt gtgttgatat aaaagaagag
agcgttggtt tgtactttgt gtgaagattt 420tttaaaaa
428190771DNAArabidopsis thaliana
190aaaaaacaat ttgaagcttt tttttttttt tctctgtttc tttcttagag cttagaaaaa
60tgagtacagc tactttcgtt gatattatta tcgccatcct cttgcatcaa ctcggtgtct
120ttctcagatt tggttgcggg gttgagtttt ggatatgttt ggttttgacg ctacttgggt
180atattcctgg gatcatatac gccatttatg tcctcaccaa atgatttacc atctatcatc
240atctccttgt aagctctctc tctctctctc tctctttacc ctttggctca ctctcagagt
300catttttgat atagttttct tgtatgaagc tttttcattg ggaaagttta agtaaatgtt
360tggtaaacct acacatttca gaacaagtaa attcggataa tttggtttaa agcaaacgaa
420aattttgcta tgaaaacatg gtttcatgtt ataaatatta ttatgataat attttaagat
480attgttcaaa ccacataatt aatgtgtaca gatagagata aatatctact tattaataag
540ataagattat gagaaatgtc tgacacaaaa gagagtaata agactctaat gtggttttgt
600gttttttttt ttttttgtgg cctggccttt tgacttgact tacatttgtt gtttattgtg
660ctggaacagc tgttccgtcg tgttctccta cctttgtgac ttgattcagc gtttcttttt
720ctctcaacaa aaaatttatg ttcaattatt ttaattaatc ttctctgttg t
771191705DNAPoncirus trifoliata 191tttcataaac aaaaatacga agtacaaata
acaaaagcag ttactcaaaa ccctaaacac 60ttctttaatc aaagttcttg ttctttgact
ctaaatttta ttttattcca ttttatactt 120tttaagaatc aatcaaagat gggcacagca
acatgcgtag atattatctt ggctgttatc 180ttgcctcctc taggtgtctt tctcaaattt
ggttgcaagg ctgagttttg gatctgtttg 240ctcttgacaa ttctggggta tatccctgga
attatttatg ctgtttatgt catcaccaag 300tagtgatctc tcttcttcat ctttgattac
aaaagcaatt ggagaatttg ataaagactt 360acgaatcaat atcatccttc ttacaagctt
tgtaattttt cttttgactt gttttgacag 420atggagagat cccaagggca tcatgtgttt
atgagatctt ttatttacaa ccgttagatg 480gacagctctg atttgatgta gccagatggg
ttctgattct taatcaactg gggtgtgcgt 540gcgtgtggga gagagagcac ttgttccgtt
tgttaatctt tatcgttttg ttttctttaa 600tttgtccttt ttaatgaatt ttaattcaat
atgttgatgt aaagtggagt attattgagt 660gagtaaattg ccttgtgaat cattacaagt
cccccacaaa aaaaa 705192386DNAArabidopsis thaliana
192aaaacatcaa aaatgggatc agaaactttc ttggaaatta ttctggcgat tcttctacct
60cccgtcggcg ttttccttcg atatggttgt ggggtaagca ctaaattaca tctttactta
120gttttatgat taatgaatga atcgttaatt gattattgat aattaatgtg ttaatgaatg
180caggtagagt tctggatctg tctcttgttg acgatactgg gttacatccc tgggatcatc
240tatgctatct acgttcttgt cggatgatga ccaaattctc ttgtaaattt ttcataatct
300ttatttagcc tttgttgttc ttttcttatc gctctttgta ataaacaact cttgcgtttt
360cgctaaataa aatactattt ttgctt
386193484DNAArabidopsis thaliana 193ataatcatca agatttagtg tttaagcata
ataaatattt tctttgaaat ttgaagagct 60tgaaaatgag tacagccact ttcgtagaga
ttattcttgc tatcatcttg cctcctctcg 120gcgtctttct caaatttggt tgcaaggttg
agttttggat atgtttgatt ttgacgctgt 180ttggttatct tcccggaatc ctttacgctc
tttatatcat caccaagtga tttttcctat 240ctcctctgtt ctttcctctt gctcctcgaa
gaacagctgt ttcgtcgtgc tcttctccct 300ttgggactga ttcatcattt attttatgtt
atgagcaatt gtattctcat tgttgtattt 360gcattattgt atactttctg ctgatatcaa
gaaaaaatcg ttggtttatg tgaggaattt 420atttatttcg tttaatttgt acaattggta
aaatgttgca atgagcaggt ttggattccg 480gacc
484194159DNAArabidopsis thaliana
194atgggtagct tccttgaggt tctttgtgca atcttcatac ctcctgttgg tgtgttcctc
60agatatggcc ttgggttgga gttttgggtc tgtttgcttc taacgttatt cgcttttatc
120cccggactga tatatgccat ctacgttctc accaagtag
159195469DNASolanum tuberosum 195aaatctgtta tttaattagt atttgattat
cagaagaaga agagaaaaat gggagacagc 60acaatgacat gtgtagacat tcttttggca
atcatcttgc ctcctcttgg tgttttcctc 120aagtttggct gcaaggtgga gttctggatc
tgtgttttgt tgactctttt tggatggcta 180cctggtattg tctatgctgt ttgggttctt
accaagtgat catctcctct agagaagaga 240aaaaaggtga atatgtgatg aagcccatta
ctttatttcc cctaatggag tacattatct 300agctgttgtt ttatttattt cttggatgta
ttttttcaaa gtttatcccc tcctttttct 360ttattggcca ctattctctc ttgtcaggag
tgttggttgt gtacttccat tctgttattt 420taattgatga ataaccaata attgttttaa
aaaaaaaaaa aaaaaaaaa 469196356DNAMesembryanthemum
crystallinum 196gattggggag cagttttggt tgcaaattat tagatcgatt gatcgatcaa
ttgatactac 60tactatttga tagtcagaat caagaaggaa ggaaggaagg aaggaaataa
taataataat 120aatgggttca gagacattca ttgaagtcat ccttgctatt cttctccctc
ctgttggtgt 180ctttctccgt tatggctgtg gggtcgagtt ttggatctgc ttgttgttga
cgatattggg 240gtacattcca gggataatat acgcactata tgtgctcgtc gcatagaatg
aactcgtaat 300gcaatgttaa ttcttggtcg tcctatattt gtaactgctg tgtgtttgta
aagttc 356197333DNACitrus sinensis 197gaggattaac aaacccaatt
gtcaacatta catctattag ttcaccaaca aatttggaca 60aaaaaaaaaa aaaaagacat
caaattaact ccgttacaac atcataattt ttaatttatc 120atccaactaa cacataaatc
gcatatataa tccccggtat gtagcccaat actgtcagca 180acaaacatat ccagaactcc
accccacagc cataacgtag gaagacacca acaggaggaa 240gcagaatggc cagaatcact
tccaggaaag tctcggaacc cattcacaag aagaagaaga 300agcagcagca gccgatgatg
ataactgatg aaa 333198426DNAPopulus
balsamifera 198ggaagcttag ctgcgattta ggatattaaa acaccacaac caccatcacc
aacgatagca 60acatgggttc agagaccttc ctagaagtga tattggcgat tatccttcca
cccgtcgggg 120tcttcctgcg ttatggctgt ggagtggagt tttggatatg tttgctgttg
accatactgg 180gatatattcc agggattata tatgccctct atgtattagt tggatagtgt
ataaaatctc 240tcttggtgag gtttgctgtt tttacgtttc aaggacaatc ctgtttgctc
ctcttgtttt 300attgccttat cagctgtttt cacttcttgt cagataatca ctctttgttt
cagtatggtt 360tagatcatgg taaacctctt tgttcttaag tttttgacag tttgaacatt
aataaatgtc 420gtgtca
426199875DNAPhyscomitrella patens 199cggcgcgcca gaggacgaga
caagggggga tcaggagata aagcttccac tccatcgcag 60cagaatctct tctctcagac
ccacttccct gccttcatat ttgcgccatt ccgggtgtgt 120cctttgcccc tgctgcattg
tccagtgctc tgcttgtttc gccgtcgaca tatccagaga 180aggaggatca cctttttctc
ccttcgcagc cccgagcatt ttgcgaagat gccgatcggt 240tcacgaggcg cttacacgtt
cgttgatgtg ctgttggcca tcatcttgcc gccgttgggg 300gtcttcctca agtatggcct
tcagagtgag ttctggattt gtctcgtgct gacaatcctg 360ggttacttgc ccgggatcat
ctacgccatc tacgtcatcg ttggctaggc aatgagtccc 420tcttcctcca tgagagtagg
tgtggatctt gtgtctccac cgccggcatt ccttagcctc 480atcggagtga atcacagcac
ttagtggtga ggcgtggctc agagccatgc atctttcaca 540ccatgtacag gtttgagatt
gttttctaca cgctgagatt tcatggatta ggtagtttta 600ctcaaagtcg gccgacgaat
tgtgttacct ggagattttg tacagaaatt tgtttagagt 660tgtatgagtt gcatcggatt
tcttcagaag ttttgatggc actcttcatc atgccatatg 720caatgaattc gactgatggc
tcttgtagca tgagcagctt gaagtcaaga taaaactgaa 780aaccagtaat agcagatccc
accttagcat cttccttacc catcatcatg tacagtaaac 840ttgcactttt aatttcaata
cctttcaatg ttaac 875200698DNAPhyscomitrella
patens 200aggacaggca gaggacgaga caaggggggt tatcgaatat ttgatcgagg
tgtgaggttg 60ttcactagct attgttcgca taactcgatt tggtgctgca cagaagcgag
atttgttttc 120tggtcttagt cctgcgctcc gtgggccgag agaaacatct tgagaagtta
ggcttgtgat 180ctcatttgca aacatgggca agggaggctc cactgcgacc ttttgcgagg
tcttgttagc 240tattctgttg ccgcctctgg gcgtgtttct aagatatgcc tgcgggctgg
agttctggat 300ttgtctactt ttgaccatcc tgggatatat tcctgggatc ttgtatgcgc
tttacgtcat 360tgtaagataa ttctggaagg tctgctcgag gtcttgtgcg ccagacgggg
cgaacacaac 420agagagacgt ccatggtcgt ggactaggat tttgatacct agcacttcaa
tggttcaaag 480gcgtgttatc tatcggtctg ctgttttctt gtagataaag accatgctat
cagctttagg 540atctcaacag gagtttcacc ttgggaaggc tgcagtgatc atcggaccgt
ttgggtgctc 600gcggtaacca caccagaaat gatcatgttt tgtgaatgtt tgtaagagta
gatgaatagt 660ttatcttttg ttgcaataaa tttcatacgt tgaaactc
69820169PRTTriticum aestivum 201Cys Arg Cys Leu Glu Ile Leu
Cys Ala Ile Leu Leu Pro Pro Leu Gly1 5 10
15Val Cys Leu Arg His Gly Cys Cys Ser Met Glu Phe Trp
Ile Ser Val 20 25 30Leu Leu
Thr Ile Leu Gly Tyr Leu Pro Gly Val Leu Tyr Ala Ala Tyr 35
40 45Val Ile Cys Ser Val Asp Pro Asp Arg Val
Arg Arg Arg Asp Asp Asp 50 55 60Tyr
Ile Tyr Val Ala6520254PRTOryza sativa 202Met Gly Ser Glu Thr Phe Leu Glu
Ile Leu Leu Ala Ile Leu Leu Pro1 5 10
15Pro Leu Gly Val Phe Leu Arg Tyr Gly Ile Gly Met Glu Phe
Trp Ile 20 25 30Ala Leu Leu
Leu Thr Ile Leu Gly Tyr Leu Pro Gly Ile Ile Tyr Ala 35
40 45Val Tyr Val Leu Val Ala 5020354PRTHordeum
vulgare 203Met Ala Ser Ala Thr Phe Ile Glu Val Ile Leu Ala Ile Ile Leu
Pro1 5 10 15Pro Val Gly
Val Phe Leu Arg Tyr Gly Leu Ala Val Glu Phe Trp Ile 20
25 30Cys Leu Leu Leu Thr Leu Leu Gly Tyr Ile
Pro Gly Ile Ile Tyr Ala 35 40
45Val Tyr Val Leu Val Ala 5020454PRTZea mays 204Met Gly Ser Glu Thr
Phe Val Glu Ile Leu Leu Ala Ile Leu Leu Pro1 5
10 15Pro Val Gly Val Phe Leu Arg Tyr Gly Ile Gly
Val Glu Phe Trp Ile 20 25
30Cys Leu Leu Leu Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala
35 40 45Val Tyr Val Leu Val Ala
5020554PRTOryza sativa 205Met Ala Ser Ala Thr Phe Leu Glu Val Leu Leu Ala
Ile Phe Leu Pro1 5 10
15Pro Val Gly Val Phe Leu Arg Tyr Gly Leu Gly Ile Glu Phe Trp Ile
20 25 30Asp Leu Leu Leu Thr Ile Leu
Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35 40
45Val Tyr Val Leu Val Ala 5020677PRTOryza sativa 206Met Gly
Ser Glu Thr Phe Leu Glu Ile Leu Leu Ala Ile Leu Leu Pro1 5
10 15Pro Leu Gly Val Phe Leu Arg Tyr
Gly Ile Gly Val Ser Ser Ser Ser 20 25
30Phe Ile Leu Val Leu Phe Asp Leu Ile Phe Phe Met His Ser Cys
Trp 35 40 45Leu Gln Met Glu Phe
Trp Ile Ala Leu Leu Leu Thr Ile Leu Gly Tyr 50 55
60Leu Pro Gly Ile Ile Tyr Ala Val Tyr Val Leu Val Ala65
70 7520751PRTOryza sativa 207Thr Phe Leu Glu
Ile Leu Leu Ala Ile Ile Leu Pro Pro Leu Gly Val1 5
10 15Phe Leu Arg Phe Gly Cys Cys Ser Met Glu
Phe Cys Ile Cys Leu Leu 20 25
30Leu Thr Ile Leu Gly Tyr Val Pro Gly Ile Ile Tyr Ala Val Tyr Val
35 40 45Leu Val Ala 5020851PRTOryza
sativa 208Thr Phe Leu Glu Ile Leu Leu Ala Ile Ile Leu Pro Pro Leu Gly
Val1 5 10 15Phe Leu Arg
Phe Gly Cys Cys Ser Met Glu Phe Cys Ile Cys Leu Leu 20
25 30Leu Thr Ile Leu Gly Tyr Val Pro Gly Ile
Ile Tyr Ala Val Tyr Val 35 40
45Leu Val Ala 5020951PRTZea mays 209Gly Thr Ala Thr Cys Ile Asp Ile
Ile Leu Ala Ile Ile Leu Pro Pro1 5 10
15Leu Gly Val Phe Phe Lys Phe Gly Cys Gly Val Glu Phe Trp
Ile Cys 20 25 30Leu Ile Leu
Thr Phe Leu Gly Tyr Leu Pro Gly Ile Ile Tyr Ala Val 35
40 45Trp Ala Ile 5021051PRTZea mays 210Thr Phe
Leu Glu Ile Leu Phe Ala Ile Ile Leu Pro Pro Leu Gly Val1 5
10 15Phe Leu Arg Phe Gly Cys Cys Arg
Ile Glu Phe Cys Ile Cys Leu Leu 20 25
30Leu Thr Ile Leu Gly Tyr Val Pro Gly Ile Ile Tyr Ala Ile Tyr
Val 35 40 45Leu Val Ala
5021151PRTOryza sativa 211Gly Thr Ala Asn Cys Ile Asp Ile Leu Ile Ala Ile
Ile Leu Pro Pro1 5 10
15Leu Gly Val Phe Leu Lys Phe Gly Cys Gly His Glu Phe Trp Ile Cys
20 25 30Leu Leu Leu Thr Phe Leu Gly
Tyr Ile Pro Gly Ile Ile Tyr Ala Ile 35 40
45Tyr Ala Ile 5021280PRTHordeum vulgare 212Met Ala Ser Ala
Thr Phe Ile Glu Val Ile Leu Ala Ile Ile Leu Pro1 5
10 15Pro Val Gly Val Phe Leu Arg Tyr Gly Leu
Ala Val Ser Gly Tyr Ser 20 25
30Phe Phe Tyr Gly Phe Arg Arg Ser Leu Arg Ser Pro Leu Ser Asp Leu
35 40 45Asp Val Ser Ile Gln Val Glu Phe
Trp Ile Cys Leu Leu Leu Thr Leu 50 55
60Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala Val Tyr Val Leu Val Ala65
70 75 8021353PRTLophopyrum
elongatum 213Met Gly Ser Ala Thr Val Leu Glu Val Ile Leu Ala Ile Ile Leu
Pro1 5 10 15Pro Val Gly
Val Phe Leu Arg Tyr Lys Leu Gly Val Glu Phe Trp Ile 20
25 30Cys Leu Leu Leu Thr Ile Leu Gly Tyr Ile
Pro Gly Ile Ile Tyr Ala 35 40
45Val Tyr Val Leu Val 5021448PRTOryza sativa 214Thr Cys Ile Asp Ile
Ile Leu Ala Ile Ile Leu Pro Pro Leu Gly Val1 5
10 15Phe Phe Lys Phe Gly Cys Gly Ile Glu Phe Trp
Ile Cys Leu Leu Leu 20 25
30Thr Phe Phe Gly Tyr Leu Pro Gly Ile Ile Tyr Ala Val Trp Val Ile
35 40 4521564PRTOryza sativa 215Met Ala
Asp Arg Pro Pro Ala Met Ala Asp Arg Thr Ala Thr Phe Val1 5
10 15Asp Leu Val Ile Ala Ile Ile Leu
Pro Pro Leu Gly Val Phe Leu Lys 20 25
30Val Gly Cys Glu Ile Glu Phe Trp Ile Cys Leu Leu Leu Thr Phe
Leu 35 40 45Gly Tyr Phe Pro Gly
Ile Ile Tyr Ala Val Trp Val Ile Val Asn His 50 55
6021657PRTZea mays 216Met Lys Glu Gly Thr Ala Asn Cys Ile
Asp Ile Leu Ile Ala Ile Ile1 5 10
15Leu Pro Pro Leu Gly Val Phe Leu Lys Phe Gly Cys Lys Val Glu
Phe 20 25 30Trp Leu Cys Leu
Leu Leu Thr Phe Leu Ala Tyr Leu Pro Gly Ile Ile 35
40 45Tyr Ala Ile Tyr Val Ile Thr Lys Asp 50
5521754PRTHordeum vulgare 217Met Gly Ser Ala Thr Val Leu Glu Val
Ile Leu Ala Ile Ile Leu Pro1 5 10
15Pro Val Gly Val Phe Leu Arg Tyr Lys Leu Gly Val Glu Phe Trp
Ile 20 25 30Cys Leu Leu Leu
Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35
40 45Val Tyr Val Leu Val Val 5021854PRTSorghum
bicolor 218Met Gly Ser Glu Thr Phe Leu Glu Ile Leu Leu Ala Ile Leu Leu
Pro1 5 10 15Pro Val Gly
Val Phe Leu Arg Tyr Gly Ile Gly Val Glu Phe Trp Ile 20
25 30Cys Leu Leu Leu Thr Ile Leu Gly Tyr Ile
Pro Gly Ile Ile Tyr Ala 35 40
45Val Tyr Val Leu Val Ala 5021954PRTTriticum aestivum 219Met Gly Ser
Glu Thr Phe Val Glu Ile Leu Leu Ala Ile Leu Leu Pro1 5
10 15Pro Val Gly Val Phe Leu Arg Tyr Gly
Ile Gly Val Glu Phe Trp Ile 20 25
30Cys Leu Leu Leu Thr Val Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala
35 40 45Ile Phe Val Leu Val Ala
5022054PRTHordeum vulgare 220Met Gly Ser Glu Thr Phe Val Glu Ile Leu Leu
Ala Ile Leu Leu Pro1 5 10
15Pro Val Gly Val Phe Leu Arg Tyr Gly Ile Gly Met Glu Phe Trp Ile
20 25 30Cys Leu Leu Leu Thr Leu Leu
Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35 40
45Ile Phe Val Leu Val Ala 5022154PRTZea mays 221Met Gly Ser
Glu Thr Phe Val Glu Ile Leu Leu Ala Ile Leu Leu Pro1 5
10 15Pro Val Gly Val Phe Leu Arg Tyr Gly
Ile Gly Val Glu Phe Trp Ile 20 25
30Cys Leu Pro Leu Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala
35 40 45 Val Tyr Val Leu Val Ala
5022254PRTOryza sativa 222Met Gly Ser Lys Thr Phe Leu Glu Ile Leu Leu Ala
Ile Leu Leu Pro1 5 10
15Pro Leu Gly Val Phe Leu Arg Tyr Gly Ile Gly Met Glu Phe Trp Ile
20 25 30Ala Leu Leu Leu Thr Ile Leu
Gly Tyr Leu Pro Gly Ile Ile Tyr Ala 35 40
45Val Tyr Val Leu Val Ala 50223537PRTOryza sativa 223Met Ser
Asp Gly Thr Ala Asn Cys Ile Asp Ile Leu Ile Ala Ile Ile1 5
10 15Leu Pro Pro Leu Gly Val Phe Leu
Lys Phe Gly Cys Lys Val Glu Phe 20 25
30Trp Leu Cys Leu Leu Leu Thr Phe Phe Gly Tyr Leu Pro Gly Ile
Ile 35 40 45Tyr Ala Val Tyr Ala
Ile Thr Lys Leu Arg Trp Leu Trp Phe Lys Trp 50 55
60Lys Glu Asp Asn Lys Pro Trp Val Gly Met Asp Leu Pro Cys
Asp Asp65 70 75 80Cys
Asp Lys Arg Leu Phe Gln Ala Ala Thr Thr Ile Asn Val Gly Asn
85 90 95Gly Glu Lys Ile Asn Phe Trp
His Asp Lys Trp Leu Gln Asn Thr Cys 100 105
110Pro Lys Asp Ile Ala Pro Leu Cys Phe Asn Leu Ala Lys Arg
Lys Gln 115 120 125Arg Ser Val Lys
Thr Glu Leu Thr Asn Asn Ser Trp Leu Leu Ser Phe 130
135 140Arg Gln Ile Thr Thr Ile Glu Glu Ile Ser Asp Leu
Val Gln Leu Gly145 150 155
160Gly Met Leu Gln Asn Val Gln Leu Leu Pro Gln Thr Asn Asp Asp Ile
165 170 175Thr Trp Asn Leu Asn
Glu Ser Gly Ser Tyr Ser Ala Asn Ser Ala Tyr 180
185 190Leu Phe Gln Phe Gln Gly Ser Phe Ser Ser Ile Asp
Phe His Ser Ile 195 200 205Trp Arg
Cys Pro Ala Glu Pro Lys Met Arg Phe Phe Gly Trp Leu Ile 210
215 220Leu His Gln Lys Thr Leu Thr Ala Gln Asn Leu
Leu Arg Arg His Trp225 230 235
240Pro Cys Asn Trp Ile Cys Ser Leu Cys Gly Glu Ala Phe Glu Asp Thr
245 250 255Asn His Leu Phe
Asn Val Cys Pro Phe Phe Arg Lys Val Trp Leu Met 260
265 270Val Ser Thr Cys Leu Ser Ile Leu Lys Val Glu
Asp Met Thr Lys Ser 275 280 285Pro
Ser Leu Ser Gln Leu Leu Ile Arg Ser Cys Ile Ser Asn Gly Asp 290
295 300Ala Gly Ser Pro Arg Leu Val Glu Thr Thr
Gln Pro Ser Ser Gln Leu305 310 315
320Ile Ala Gly Asp Gln Arg Tyr Asp Gly Val Ile Ala Leu Ala Ser
Pro 325 330 335Pro Pro Ile
Ser Ser Pro Pro Asn Leu Phe Cys Ala Ala Thr Gly Ala 340
345 350Leu Ser Thr Ala Gln Val Ser Phe Asp Pro
Ser Arg Ala Ala Thr Gly 355 360
365Ala Leu Ser Thr Val Pro Pro Ser Val Arg Arg Ser Leu Ala Arg Cys 370
375 380His Arg Ile Pro Pro His Arg Val
Ala Ser Gln Lys Cys Lys Ile Val385 390
395 400Ile Ser Val Asp Val Ile Asn Asn Ala Thr Phe Met
Phe Leu Ile Gln 405 410
415Tyr Pro Pro Lys Val Lys Leu Lys Gly Phe Pro Leu Ala Asn Ser Ile
420 425 430Gly Gly Asp Lys Val Glu
Gly Gly Lys Leu Met Thr Met Gly Arg Arg 435 440
445Ser Asp Tyr Leu Ile Val Leu Phe Asp Leu Tyr Phe Ser Met
Arg Leu 450 455 460Ala Ser Trp Gln Ser
Ile Val Asp Ala Ile Glu Leu Phe Glu Leu Leu465 470
475 480Ala Arg Phe Ala Phe Gly Tyr Pro Tyr Val
Leu Val Trp Val Leu Glu 485 490
495Thr Glu Gly Val Ala Glu Arg Leu Met Met Asn Val Val Phe Phe Met
500 505 510Gly Asp Gly Asp Leu
Val Val Leu Val Phe Asp Thr Glu Phe Leu Asp 515
520 525Lys Gln Ser Ser Lys Phe Leu Ile Asp 530
53522453PRTHordeum vulgare 224Met Gly Ser Ala Thr Val Leu Glu Val
Ile Leu Ala Ile Ile Leu Pro1 5 10
15Pro Val Gly Val Phe Leu Arg Tyr Lys Leu Gly Val Glu Phe Trp
Ile 20 25 30Cys Leu Leu Leu
Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35
40 45Val Tyr Val Leu Val 5022577PRTArabidopsis
thaliana 225Met Ala Asn Gly Cys Glu Ile Cys Cys Glu Ile Met Ile Ala Ile
Leu1 5 10 15Ile Pro Pro
Leu Gly Val Cys Leu Arg His Gly Cys Cys Thr Thr Glu 20
25 30Phe Met Ile Cys Leu Ile Leu Thr Leu Leu
Gly Tyr Val Pro Gly Ile 35 40
45Ile Tyr Ala Leu Tyr Ala Ile Val Tyr Val Asp Arg Asp Gln Phe Phe 50
55 60Asp Glu Tyr Arg Arg Pro Leu Phe Tyr
Ala Gln Ser Pro65 70
7522674PRTArabidopsis thaliana 226Met Pro Ser Asn Cys Glu Ile Leu Cys Glu
Ile Ile Ile Ala Ile Leu1 5 10
15Leu Pro Pro Leu Gly Val Cys Phe Arg Lys Gly Cys Cys Thr Val Glu
20 25 30Phe Leu Ile Cys Leu Val
Leu Thr Ile Leu Gly Tyr Val Pro Gly Ile 35 40
45Ile Tyr Ala Ile Tyr Val Ile Val Phe Gln His Arg Glu Glu
Tyr Phe 50 55 60Asp Glu Tyr Arg Arg
Pro Ile Tyr Ser Ala65 7022773PRTArabidopsis thaliana
227Met Ala Ser Asn Met Glu Val Phe Cys Glu Ile Leu Ile Ala Ile Leu1
5 10 15Leu Pro Pro Leu Gly Val
Cys Leu Lys Arg Gly Cys Cys Thr Val Glu 20 25
30Phe Leu Ile Cys Leu Val Leu Thr Ile Leu Gly Tyr Ile
Pro Gly Ile 35 40 45Ile Tyr Ala
Leu Tyr Val Ile Val Phe Gln Asn Arg Glu Gly Ser Thr 50
55 60Glu Leu Gly Ala Pro Leu Asn Ser Ala65
7022874PRTBrassica rapa 228Met Ala Ser Asn Met Glu Val Phe Cys Glu
Ile Leu Ile Ala Ile Leu1 5 10
15Leu Pro Pro Leu Gly Val Cys Leu Lys Arg Gly Cys Cys Thr Val Glu
20 25 30Phe Leu Ile Cys Leu Val
Leu Thr Ile Leu Gly Tyr Ile Pro Gly Ile 35 40
45Ile Tyr Ala Leu Tyr Val Ile Val Phe Gln Asn Arg Glu Gly
Glu Thr 50 55 60Gln Asp Tyr Ser Ala
Pro Leu Asn Ser Ala65 7022975PRTArabidopsis thaliana
229Met Ala Ser Ser Cys Glu Leu Cys Cys Glu Ile Phe Ile Ala Ile Leu1
5 10 15Leu Pro Pro Val Gly Val
Cys Leu Arg His Gly Cys Cys Thr Val Glu 20 25
30Phe Phe Ile Cys Leu Ile Leu Thr Cys Leu Gly Tyr Leu
Pro Gly Ile 35 40 45Ile Tyr Ala
Ile Tyr Ala Ile Cys Phe Leu His Arg Asp Glu Tyr Phe 50
55 60Asp Glu Tyr Arg Arg Pro Ile Tyr Tyr Val Ala65
70 7523053PRTArabidopsis thaliana 230Met Gly
Ser Glu Thr Phe Leu Glu Ile Ile Leu Ala Ile Leu Leu Pro1 5
10 15Pro Val Gly Val Phe Leu Arg Tyr
Gly Cys Gly Val Glu Phe Trp Ile 20 25
30Cys Leu Leu Leu Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile Tyr
Ala 35 40 45Ile Tyr Val Leu Val
5023152PRTArabidopsis thaliana 231Met Ser Thr Ala Thr Phe Val Asp Ile
Ile Ile Ala Ile Leu Leu Pro1 5 10
15Pro Leu Gly Val Phe Leu Arg Phe Gly Cys Gly Val Glu Phe Trp
Ile 20 25 30Cys Leu Val Leu
Thr Leu Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35
40 45Ile Tyr Val Leu 5023252PRTArabidopsis thaliana
232Met Ser Thr Ala Thr Phe Val Asp Ile Ile Ile Ala Ile Leu Leu His1
5 10 15Gln Leu Gly Val Phe Leu
Arg Phe Gly Cys Gly Val Glu Phe Trp Ile 20 25
30Cys Leu Val Leu Thr Leu Leu Gly Tyr Ile Pro Gly Ile
Ile Tyr Ala 35 40 45Ile Tyr Val
Leu 5023352PRTPoncirus trifoliata 233Met Gly Thr Ala Thr Cys Val Asp
Ile Ile Leu Ala Val Ile Leu Pro1 5 10
15Pro Leu Gly Val Phe Leu Lys Phe Gly Cys Lys Ala Glu Phe
Trp Ile 20 25 30Cys Leu Leu
Leu Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35
40 45Val Tyr Val Ile 5023478PRTArabidopsis
thaliana 234Met Gly Ser Glu Thr Phe Leu Glu Ile Ile Leu Ala Ile Leu Leu
Pro1 5 10 15Pro Val Gly
Val Phe Leu Arg Tyr Gly Cys Gly Val Ser Thr Lys Leu 20
25 30His Leu Tyr Leu Val Leu Leu Met Asn Glu
Ser Leu Ile Asp Tyr Leu 35 40
45Met Cys Met Gln Val Glu Phe Trp Ile Cys Leu Leu Leu Thr Ile Leu 50
55 60Gly Tyr Ile Pro Gly Ile Ile Tyr Ala
Ile Tyr Val Leu Val65 70
7523552PRTArabidopsis thaliana 235Met Ser Thr Ala Thr Phe Val Glu Ile Ile
Leu Ala Ile Ile Leu Pro1 5 10
15Pro Leu Gly Val Phe Leu Lys Phe Gly Cys Lys Val Glu Phe Trp Ile
20 25 30Cys Leu Ile Leu Thr Leu
Phe Gly Tyr Leu Pro Gly Ile Leu Tyr Ala 35 40
45Leu Tyr Ile Ile 5023650PRTArabidopsis thaliana 236Met
Gly Ser Phe Leu Glu Val Leu Cys Ala Ile Phe Ile Pro Pro Val1
5 10 15Gly Val Phe Leu Arg Tyr Gly
Leu Gly Leu Glu Phe Trp Val Cys Leu 20 25
30Leu Leu Thr Leu Phe Ala Phe Ile Pro Gly Leu Ile Tyr Ala
Ile Tyr 35 40 45Val Leu
5023756PRTSolanum tuberosum 237Met Gly Asp Ser Thr Met Thr Cys Val Asp
Ile Leu Leu Ala Ile Ile1 5 10
15Leu Pro Pro Leu Gly Val Phe Leu Lys Phe Gly Cys Lys Val Glu Phe
20 25 30Trp Ile Cys Val Leu Leu
Thr Leu Phe Gly Trp Leu Pro Gly Ile Val 35 40
45Tyr Ala Val Trp Val Leu Thr Lys 50
5523854PRTMesembryanthemum crystallinum 238Met Gly Ser Glu Thr Phe Ile
Glu Val Ile Leu Ala Ile Leu Leu Pro1 5 10
15Pro Val Gly Val Phe Leu Arg Tyr Gly Cys Gly Val Glu
Phe Trp Ile 20 25 30Cys Leu
Leu Leu Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35
40 45Leu Tyr Val Leu Val Ala
5023953PRTCitrus sinensis 239Met Gly Ser Glu Thr Phe Leu Glu Val Ile Leu
Ala Ile Leu Leu Pro1 5 10
15Pro Val Gly Val Phe Leu Arg Tyr Gly Cys Gly Val Glu Phe Trp Ile
20 25 30Cys Leu Leu Leu Thr Val Leu
Gly Tyr Ile Pro Gly Ile Ile Tyr Ala 35 40
45Ile Tyr Val Leu Val 5024053PRTPopulus balsamifera 240Met
Gly Ser Glu Thr Phe Leu Glu Val Ile Leu Ala Ile Ile Leu Pro1
5 10 15Pro Val Gly Val Phe Leu Arg
Tyr Gly Cys Gly Val Glu Phe Trp Ile 20 25
30Cys Leu Leu Leu Thr Ile Leu Gly Tyr Ile Pro Gly Ile Ile
Tyr Ala 35 40 45Leu Tyr Val Leu
Val 5024159PRTPhyscomitrella patens 241Met Pro Ile Gly Ser Arg Gly Ala
Tyr Thr Phe Val Asp Val Leu Leu1 5 10
15Ala Ile Ile Leu Pro Pro Leu Gly Val Phe Leu Lys Tyr Gly
Leu Gln 20 25 30Ser Glu Phe
Trp Ile Cys Leu Val Leu Thr Ile Leu Gly Tyr Leu Pro 35
40 45Gly Ile Ile Tyr Ala Ile Tyr Val Ile Val Gly
50 5524249PRTPhyscomitrella patens 242Thr Phe Cys Glu
Val Leu Leu Ala Ile Leu Leu Pro Pro Leu Gly Val1 5
10 15Phe Leu Arg Tyr Ala Cys Gly Leu Glu Phe
Trp Ile Cys Leu Leu Leu 20 25
30Thr Ile Leu Gly Tyr Ile Pro Gly Ile Leu Tyr Ala Leu Tyr Val Ile
35 40 45Val2431178DNAArtificial
SequenceVector 243ggctggtaaa acaaatataa gtattaatat aaatataata caatagaagg
aaaataaata 60aaatttccct ctgtgccgtg caaaaatgca cggcaatggg ctggcccgca
cggcaaaggc 120atcgttgccg tgtccacggc aatgggttgg cccgcacggc aaaggcatcg
ttgccgtgtc 180cacgtcttcg ccgtgcgcct tggctctatc tttgccgtga agcgttcttt
gccgtgtgcc 240ttttatttct ttgccgtggg atgctgcctt tgccgagcgc tgagctggcg
ctttgccgtg 300cgcgtattgt ttgccgtgcg tcgtcccaga gctgtacggc aaagaattca
ctgccgtgca 360cgagacacac gggaaagaag ttttgcatgg caaagggcgc tgacagcaca
cggcaaagag 420cctggcacgg cattgagctt ttttcccgta atgatagacg gcataatata
atggacgcac 480atgctgatgt caggatgtca cccactcatc ctagtatttg tgggacgtga
attctttgtg 540agatgggcaa tggggtgtga acaaaataag ttttgtacta gtagataaac
atttttaccc 600ataaacaatt gttctgtatt gaatgagaaa ttattttgta ctggatgaaa
attttctgag 660taactgtgta agattaacat naatcaagag acaaatccaa tggctacaaa
gtcaactaat 720acttgttaaa agttccgata cttaaaatta tcaaaactga tatatagaat
attgcccatc 780tcgccaccgt gctagtttaa cagacgatgg acgaatatca gtcttgtatt
ggataatcga 840tgcatgcgag ctatcggcca cctgtccatg cttccagaag gagccgagac
gtggcgactt 900cgtccgacgc gccgactatc tgcacacgcc cggcttctcg tcgtgggcga
gtcagcagtt 960acgggctttc cgcctaccaa ctcacacgta gcgccctatc gtggcgcttg
atcgatgcaa 1020cagcgatgcc tatcccagct cctcaagctg cttataagta tgtcctcggc
catcactgct 1080tacacaacaa acacagctac ttatcgcagt gtactaaaca agacgtacta
gctagatttc 1140gtgaggtaaa atcagtgcaa tatcacttgt gcaagatg
117824411809DNAArtificial SequenceVector 244ggaattcgat
atcaagcttg gcactggccg tcgttttaca acgtcgtgac tgggaaaacc 60ctggcgttac
ccaacttaat cgccttgcag cacatccccc tttcgccagc tggcgtaata 120gcgaagaggc
ccgcaccgat cgcccttccc aacagttgcg cagcctgaat ggcgaatgct 180agagcagctt
gagcttggat cagattgtcg tttcccgcct tcagtttaaa ctatcagtgt 240ttgacaggat
atattggcgg gtaaacctaa gagaaaagag cgtttattag aataacggat 300atttaaaagg
gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat gccaaccaca 360gggttcccct
cgggatcaaa gtactttgat ccaacccctc cgctgctata gtgcagtcgg 420cttctgacgt
tcagtgcagc cgtcttctga aaacgacatg tcgcacaagt cctaagttac 480gcgacaggct
gccgccctgc ccttttcctg gcgttttctt gtcgcgtgtt ttagtcgcat 540aaagtagaat
acttgcgact agaaccggag acattacgcc atgaacaaga gcgccgccgc 600tggcctgctg
ggctatgccc gcgtcagcac cgacgaccag gacttgacca accaacgggc 660cgaactgcac
gcggccggct gcaccaagct gttttccgag aagatcaccg gcaccaggcg 720cgaccgcccg
gagctggcca ggatgcttga ccacctacgc cctggcgacg ttgtgacagt 780gaccaggcta
gaccgcctgg cccgcagcac ccgcgaccta ctggacattg ccgagcgcat 840ccaggaggcc
ggcgcgggcc tgcgtagcct ggcagagccg tgggccgaca ccaccacgcc 900ggccggccgc
atggtgttga ccgtgttcgc cggcattgcc gagttcgagc gttccctaat 960catcgaccgc
acccggagcg ggcgcgaggc cgccaaggcc cgaggcgtga agtttggccc 1020ccgccctacc
ctcaccccgg cacagatcgc gcacgcccgc gagctgatcg accaggaagg 1080ccgcaccgtg
aaagaggcgg ctgcactgct tggcgtgcat cgctcgaccc tgtaccgcgc 1140acttgagcgc
agcgaggaag tgacgcccac cgaggccagg cggcgcggtg ccttccgtga 1200ggacgcattg
accgaggccg acgccctggc ggccgccgag aatgaacgcc aagaggaaca 1260agcatgaaac
cgcaccagga cggccaggac gaaccgtttt tcattaccga agagatcgag 1320gcggagatga
tcgcggccgg gtacgtgttc gagccgcccg cgcacgtctc aaccgtgcgg 1380ctgcatgaaa
tcctggccgg tttgtctgat gccaagctgg cggcctggcc ggccagcttg 1440gccgctgaag
aaaccgagcg ccgccgtcta aaaaggtgat gtgtatttga gtaaaacagc 1500ttgcgtcatg
cggtcgctgc gtatatgatg cgatgagtaa ataaacaaat acgcaagggg 1560aacgcatgaa
ggttatcgct gtacttaacc agaaaggcgg gtcaggcaag acgaccatcg 1620caacccatct
agcccgcgcc ctgcaactcg ccggggccga tgttctgtta gtcgattccg 1680atccccaggg
cagtgcccgc gattgggcgg ccgtgcggga agatcaaccg ctaaccgttg 1740tcggcatcga
ccgcccgacg attgaccgcg acgtgaaggc catcggccgg cgcgacttcg 1800tagtgatcga
cggagcgccc caggcggcgg acttggctgt gtccgcgatc aaggcagccg 1860acttcgtgct
gattccggtg cagccaagcc cttacgacat atgggccacc gccgacctgg 1920tggagctggt
taagcagcgc attgaggtca cggatggaag gctacaagcg gcctttgtcg 1980tgtcgcgggc
gatcaaaggc acgcgcatcg gcggtgaggt tgccgaggcg ctggccgggt 2040acgagctgcc
cattcttgag tcccgtatca cgcagcgcgt gagctaccca ggcactgccg 2100ccgccggcac
aaccgttctt gaatcagaac ccgagggcga cgctgcccgc gaggtccagg 2160cgctggccgc
tgaaattaaa tcaaaactca tttgagttaa tgaggtaaag agaaaatgag 2220caaaagcaca
aacacgctaa gtgccggccg tccgagcgca cgcagcagca aggctgcaac 2280gttggccagc
ctggcagaca cgccagccat gaagcgggtc aactttcagt tgccggcgga 2340ggatcacacc
aagctgaaga tgtacgcggt acgccaaggc aagaccatta ccgagctgct 2400atctgaatac
atcgcgcagc taccagagta aatgagcaaa tgaataaatg agtagatgaa 2460ttttagcggc
taaaggaggc ggcatggaaa atcaagaaca accaggcacc gacgccgtgg 2520aatgccccat
gtgtggagga acgggcggtt ggccaggcgt aagcggctgg gttgtctgcc 2580ggccctgcaa
tggcactgga acccccaagc ccgaggaatc ggcgtgacgg tcgcaaacca 2640tccggcccgg
tacaaatcgg cgcggcgctg ggtgatgacc tggtggagaa gttgaaggcc 2700gcgcaggccg
cccagcggca acgcatcgag gcagaagcac gccccggtga atcgtggcaa 2760gcggccgctg
atcgaatccg caaagaatcc cggcaaccgc cggcagccgg tgcgccgtcg 2820attaggaagc
cgcccaaggg cgacgagcaa ccagattttt tcgttccgat gctctatgac 2880gtgggcaccc
gcgatagtcg cagcatcatg gacgtggccg ttttccgtct gtcgaagcgt 2940gaccgacgag
ctggcgaggt gatccgctac gagcttccag acgggcacgt agaggtttcc 3000gcagggccgg
ccggcatggc cagtgtgtgg gattacgacc tggtactgat ggcggtttcc 3060catctaaccg
aatccatgaa ccgataccgg gaagggaagg gagacaagcc cggccgcgtg 3120ttccgtccac
acgttgcgga cgtactcaag ttctgccggc gagccgatgg cggaaagcag 3180aaagacgacc
tggtagaaac ctgcattcgg ttaaacacca cgcacgttgc catgcagcgt 3240acgaagaagg
ccaagaacgg ccgcctggtg acggtatccg agggtgaagc cttgattagc 3300cgctacaaga
tcgtaaagag cgaaaccggg cggccggagt acatcgagat cgagctagct 3360gattggatgt
accgcgagat cacagaaggc aagaacccgg acgtgctgac ggttcacccc 3420gattactttt
tgatcgatcc cggcatcggc cgttttctct accgcctggc acgccgcgcc 3480gcaggcaagg
cagaagccag atggttgttc aagacgatct acgaacgcag tggcagcgcc 3540ggagagttca
agaagttctg tttcaccgtg cgcaagctga tcgggtcaaa tgacctgccg 3600gagtacgatt
tgaaggagga ggcggggcag gctggcccga tcctagtcat gcgctaccgc 3660aacctgatcg
agggcgaagc atccgccggt tcctaatgta cggagcagat gctagggcaa 3720attgccctag
caggggaaaa aggtcgaaaa ggtctctttc ctgtggatag cacgtacatt 3780gggaacccaa
agccgtacat tgggaaccgg aacccgtaca ttgggaaccc aaagccgtac 3840attgggaacc
ggtcacacat gtaagtgact gatataaaag agaaaaaagg cgatttttcc 3900gcctaaaact
ctttaaaact tattaaaact cttaaaaccc gcctggcctg tgcataactg 3960tctggccagc
gcacagccga agagctgcaa aaagcgccta cccttcggtc gctgcgctcc 4020ctacgccccg
ccgcttcgcg tcggcctatc gcggccgctg gccgctcaaa aatggctggc 4080ctacggccag
gcaatctacc agggcgcgga caagccgcgc cgtcgccact cgaccgccgg 4140cgcccacatc
aaggcaccct gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca 4200catgcagctc
ccggagacgg tcacagcttg tctgtaagcg gatgccggga gcagacaagc 4260ccgtcagggc
gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga cccagtcacg 4320tagcgatagc
ggagtgtata ctggcttaac tatgcggcat cagagcagat tgtactgaga 4380gtgcaccata
tgcggtgtga aataccgcac agatgcgtaa ggagaaaata ccgcatcagg 4440cgctcttccg
cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg 4500gtatcagctc
actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga 4560aagaacatgt
gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 4620gcgtttttcc
ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 4680aggtggcgaa
acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc 4740gtgcgctctc
ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg 4800ggaagcgtgg
cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 4860cgctccaagc
tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 4920ggtaactatc
gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc 4980actggtaaca
ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 5040tggcctaact
acggctacac tagaaggaca gtatttggta tctgcgctct gctgaagcca 5100gttaccttcg
gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc 5160ggtggttttt
ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 5220cctttgatct
tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt 5280ttggtcatgc
attctaggta ctaaaacaat tcatccagta aaatataata ttttattttc 5340tcccaatcag
gcttgatccc cagtaagtca aaaaatagct cgacatactg ttcttccccg 5400atatcctccc
tgatcgaccg gacgcagaag gcaatgtcat accacttgtc cgccctgccg 5460cttctcccaa
gatcaataaa gccacttact ttgccatctt tcacaaagat gttgctgtct 5520cccaggtcgc
cgtgggaaaa gacaagttcc tcttcgggct tttccgtctt taaaaaatca 5580tacagctcgc
gcggatcttt aaatggagtg tcttcttccc agttttcgca atccacatcg 5640gccagatcgt
tattcagtaa gtaatccaat tcggctaagc ggctgtctaa gctattcgta 5700tagggacaat
ccgatatgtc gatggagtga aagagcctga tgcactccgc atacagctcg 5760ataatctttt
cagggctttg ttcatcttca tactcttccg agcaaaggac gccatcggcc 5820tcactcatga
gcagattgct ccagccatca tgccgttcaa agtgcaggac ctttggaaca 5880ggcagctttc
cttccagcca tagcatcatg tccttttccc gttccacatc ataggtggtc 5940cctttatacc
ggctgtccgt catttttaaa tataggtttt cattttctcc caccagctta 6000tataccttag
caggagacat tccttccgta tcttttacgc agcggtattt ttcgatcagt 6060tttttcaatt
ccggtgatat tctcatttta gccatttatt atttccttcc tcttttctac 6120agtatttaaa
gataccccaa gaagctaatt ataacaagac gaactccaat tcactgttcc 6180ttgcattcta
aaaccttaaa taccagaaaa cagctttttc aaagttgttt tcaaagttgg 6240cgtataacat
agtatcgacg gagccgattt tgaaaccgcg gtgatcacag gcagcaacgc 6300tctgtcatcg
ttacaatcaa catgctaccc tccgcgagat catccgtgtt tcaaacccgg 6360cagcttagtt
gccgttcttc cgaatagcat cggtaacatg agcaaagtct gccgccttac 6420aacggctctc
ccgctgacgc cgtcccggac tgatgggctg cctgtatcga gtggtgattt 6480tgtgccgagc
tgccggtcgg ggagctgttg gctggctggt ggcaggatat attgtggtgt 6540aaacaaattg
acgcttagac aacttaataa cacattgcgg acgtttttaa tgtactgaat 6600taacgccgaa
ttaattcggg ggatctggat tttagtactg gattttggtt ttaggaatta 6660gaaattttat
tgatagaagt attttacaaa tacaaataca tactaagggt ttcttatatg 6720ctcaacacat
gagcgaaacc ctataggaac cctaattccc ttatctggga actactcaca 6780cattattatg
gagaaactcg agcttgtcga tcgacagatc cggtcggcat ctactctatt 6840tctttgccct
cggacgagtg ctggggcgtc ggtttccact atcggcgagt acttctacac 6900agccatcggt
ccagacggcc gcgcttctgc gggcgatttg tgtacgcccg acagtcccgg 6960ctccggatcg
gacgattgcg tcgcatcgac cctgcgccca agctgcatca tcgaaattgc 7020cgtcaaccaa
gctctgatag agttggtcaa gaccaatgcg gagcatatac gcccggagtc 7080gtggcgatcc
tgcaagctcc ggatgcctcc gctcgaagta gcgcgtctgc tgctccatac 7140aagccaacca
cggcctccag aagaagatgt tggcgacctc gtattgggaa tccccgaaca 7200tcgcctcgct
ccagtcaatg accgctgtta tgcggccatt gtccgtcagg acattgttgg 7260agccgaaatc
cgcgtgcacg aggtgccgga cttcggggca gtcctcggcc caaagcatca 7320gctcatcgag
agcctgcgcg acggacgcac tgacggtgtc gtccatcaca gtttgccagt 7380gatacacatg
gggatcagca atcgcgcata tgaaatcacg ccatgtagtg tattgaccga 7440ttccttgcgg
tccgaatggg ccgaacccgc tcgtctggct aagatcggcc gcagcgatcg 7500catccatagc
ctccgcgacc ggttgtagaa cagcgggcag ttcggtttca ggcaggtctt 7560gcaacgtgac
accctgtgca cggcgggaga tgcaataggt caggctctcg ctaaactccc 7620caatgtcaag
cacttccgga atcgggagcg cggccgatgc aaagtgccga taaacataac 7680gatctttgta
gaaaccatcg gcgcagctat ttacccgcag gacatatcca cgccctccta 7740catcgaagct
gaaagcacga gattcttcgc cctccgagag ctgcatcagg tcggagacgc 7800tgtcgaactt
ttcgatcaga aacttctcga cagacgtcgc ggtgagttca ggctttttca 7860tatctcattg
cccccccgga tctgcgaaag ctcgagagag atagatttgt agagagagac 7920tggtgatttc
agcgtgtcct ctccaaatga aatgaacttc cttatataga ggaaggtctt 7980gcgaaggata
gtgggattgt gcgtcatccc ttacgtcagt ggagatatca catcaatcca 8040cttgctttga
agacgtggtt ggaacgtctt ctttttccac gatgctcctc gtgggtgggg 8100gtccatcttt
gggaccactg tcggcagagg catcttgaac gatagccttt cctttatcgc 8160aatgatggca
tttgtaggtg ccaccttcct tttctactgt ccttttgatg aagtgacaga 8220tagctgggca
atggaatccg aggaggtttc ccgatattac cctttgttga aaagtctcaa 8280tagccctttg
gtcttctgag actgtatctt tgatattctt ggagtagacg agagtgtcgt 8340gctccaccat
gttatcacat caatccactt gctttgaaga cgtggttgga acgtcttctt 8400tttccacgat
gctcctcgtg ggtgggggtc catctttggg accactgtcg gcagaggcat 8460cttgaacgat
agcctttcct ttatcgcaat gatggcattt gtaggtgcca ccttcctttt 8520ctactgtcct
tttgatgaag tgacagatag ctgggcaatg gaatccgagg aggtttcccg 8580atattaccct
ttgttgaaaa gtctcaatag ccctttggtc ttctgagact gtatctttga 8640tattcttgga
gtagacgaga gtgtcgtgct ccaccatgtt ggcaagctgc tctagccaat 8700acgcaaaccg
cctctccccg cgcgttggcc gattcattaa tgcagctggc acgacaggtt 8760tcccgactgg
aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc tcactcatta 8820ggcaccccag
gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg 8880ataacaattt
cacacaggaa acagctatga ccatgattac gaattccctt aattaataag 8940agcagcttgc
caacatggtg gagcacgaca ctctcgtcta ctccaagaat atcaaagata 9000cagtctcaga
agaccaaagg gctattgaga cttttcaaca aagggtaata tcgggaaacc 9060tcctcggatt
ccattgccca gctatctgtc acttcatcaa aaggacagta gaaaaggaag 9120gtggcaccta
caaatgccat cattgcgata aaggaaaggc tatcgttcaa gatgcctctg 9180ccgacagtgg
tcccaaagat ggacccccac ccacgaggag catcgtggaa aaagaagacg 9240ttccaaccac
gtcttcaaag caagtggatt gatgtgaaca tggtggagca cgacactctc 9300gtctactcca
agaatatcaa agatacagtc tcagaaggcc aaagggctat tgagactttt 9360caacaaaggg
taatatcggg aaacctcctc ggattccatt gcccagctat ctgtcacttc 9420atcaaaagga
cagtagaaaa ggaaggtggc acctacaaat gccatcattg cgataaagga 9480aaggctatcg
ttcaagatgc tctgccgaca gtggtcccaa agatggaccc ccacccacga 9540ggagcatcgt
ggaaaaagaa gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg 9600atatctccac
tgacgtaagg gatgacgcac aatcccacta tccttcgcaa gacccttcct 9660ctatataagg
aagttcattt catttggaga ggacacgctg aaatcaccag tctctctcta 9720caaatctatc
tctctccatt agtctcttca ccttgtccca cctgctcccg ccgcatctca 9780ccagacacca
gccatgtgcg gcagcgcgat cctctccgac atcatcccgc cgccgcgccg 9840ggtcacggac
ggccccctct ggcggaacca gaagaagaag gggccgacgg gagatgctcc 9900ggtggcgagg
cgccgccgcg cgcccgagga ggaggagagc tacgaggact tcgaggccga 9960cttcgagggc
ttcgaggagg ggctcgggga ggccgagatc tggtccgagg acgaggccaa 10020gcccttctcc
gccgccagga aacgcgtcgc cgcaggtata gccgcccttt ttgggtcacc 10080ggctttggat
ctgtggaacc gcgtgctaat tctgtttacg atttgggaga tagatttgag 10140tttctcaggt
gatctgctgc tcggattaga tagttgcatc ttcgatttgt ttgctatgaa 10200gttaaatctg
tgcaattgtt catctcaagt ccgttaattc agcgggtcca tgttgtcgat 10260tagtctggtc
tctagtgctg tgtctttttt ttaaaaaaac acaatctctg gtgctgtgtc 10320gatccttagt
ttttaggata actctcctaa atcatgaata tggtatcaac tcttattggt 10380gcatacatag
atcgagcttc ctcgcaagca tatgagttgg gctgttcctc aggattagac 10440ttttaatgtc
aagtttcgac ttaccctgac tttctgtatg taaactaaaa tctttatctc 10500actgcttcat
cctgattgaa taaatgcatg tacagctgct gctgttgatg gctgggcatc 10560agagtccgcc
aaaaggaaga gaaagaccca gttcaggggc atccgccgcc gcccttgggg 10620taaatgggct
gctgaaatca gagaccctcg caagggtgtc cgtgtctggc ttggcactta 10680caactctgcc
gaggaagctg ccagagccta tgatgctgaa gcaagaagga tccgtggcaa 10740gaaggcaaag
gtcaatttcc cagatgaggc tcctgtggct tctcaaaagc actgtgctaa 10800gcctaccttt
gtgacgttgc ctgagttcaa caccgaagag aagccgatag tcaacgccgt 10860ggccaacaca
aacgcgtatt cctatcctct tgttgactac accgtctgtg agccatttgt 10920gcagcctcag
aacatgtcat ttgtgccagc ggttaatgca gttgaggttc ctttcatgaa 10980tctttcctct
gaccagggta gcaactcctt tggttgctca gactttagct gggagaatgg 11040taccaagact
cctgacatca catctgtgct tgcatccatt cccacctcga ccgaggttga 11100tgaatctgca
ttccttcaga acaatgccag tgatgcatca ctacctcctg tgatggatac 11160tgccaatgtt
gatctcgccg atttggaacc atacatgaag ttcctcgtgg atggtgcttc 11220agatgagtca
cttgacaact ttctaagctg tgacgggtct gaggacatgg tcagcaacct 11280ggacctttgg
actttcgatg acatgcccat ttctgccgat ttctactgag gctctgaggt 11340caattggtgc
ctgtacgtat agataatggg taagcatctg caactgcgga aataactcac 11400tgttatactt
cagtttccat ttccataact accccacttc acttttcagg aataagtatt 11460ctggacatca
agaagtgctt gtgtcaggcg cctctgttga gcagtagtta tgtttgtata 11520cttttatatc
tagcttaaat ctcagtttga tcgcaagtct gaagtgaggc ctggtttctc 11580cataataatg
tgtgagtagt tcccagataa gggaattagg gttcctatag ggtttcgctc 11640atgtgttgag
catataagaa acccttagta tgtatttgta tttgtaaaat acttctatca 11700ataaaatttc
taattcctaa aaccaaaatc cagtactaaa atccagatcc cccgaattaa 11760ttcggcgtta
attcagtatc ggcgcgcctt aattaaggcg cgccctgca
1180924511241DNAArtificial SequenceVector 245ggaattcgat atcaagcttg
gcactggccg tcgttttaca acgtcgtgac tgggaaaacc 60ctggcgttac ccaacttaat
cgccttgcag cacatccccc tttcgccagc tggcgtaata 120gcgaagaggc ccgcaccgat
cgcccttccc aacagttgcg cagcctgaat ggcgaatgct 180agagcagctt gagcttggat
cagattgtcg tttcccgcct tcagtttaaa ctatcagtgt 240ttgacaggat atattggcgg
gtaaacctaa gagaaaagag cgtttattag aataacggat 300atttaaaagg gcgtgaaaag
gtttatccgt tcgtccattt gtatgtgcat gccaaccaca 360gggttcccct cgggatcaaa
gtactttgat ccaacccctc cgctgctata gtgcagtcgg 420cttctgacgt tcagtgcagc
cgtcttctga aaacgacatg tcgcacaagt cctaagttac 480gcgacaggct gccgccctgc
ccttttcctg gcgttttctt gtcgcgtgtt ttagtcgcat 540aaagtagaat acttgcgact
agaaccggag acattacgcc atgaacaaga gcgccgccgc 600tggcctgctg ggctatgccc
gcgtcagcac cgacgaccag gacttgacca accaacgggc 660cgaactgcac gcggccggct
gcaccaagct gttttccgag aagatcaccg gcaccaggcg 720cgaccgcccg gagctggcca
ggatgcttga ccacctacgc cctggcgacg ttgtgacagt 780gaccaggcta gaccgcctgg
cccgcagcac ccgcgaccta ctggacattg ccgagcgcat 840ccaggaggcc ggcgcgggcc
tgcgtagcct ggcagagccg tgggccgaca ccaccacgcc 900ggccggccgc atggtgttga
ccgtgttcgc cggcattgcc gagttcgagc gttccctaat 960catcgaccgc acccggagcg
ggcgcgaggc cgccaaggcc cgaggcgtga agtttggccc 1020ccgccctacc ctcaccccgg
cacagatcgc gcacgcccgc gagctgatcg accaggaagg 1080ccgcaccgtg aaagaggcgg
ctgcactgct tggcgtgcat cgctcgaccc tgtaccgcgc 1140acttgagcgc agcgaggaag
tgacgcccac cgaggccagg cggcgcggtg ccttccgtga 1200ggacgcattg accgaggccg
acgccctggc ggccgccgag aatgaacgcc aagaggaaca 1260agcatgaaac cgcaccagga
cggccaggac gaaccgtttt tcattaccga agagatcgag 1320gcggagatga tcgcggccgg
gtacgtgttc gagccgcccg cgcacgtctc aaccgtgcgg 1380ctgcatgaaa tcctggccgg
tttgtctgat gccaagctgg cggcctggcc ggccagcttg 1440gccgctgaag aaaccgagcg
ccgccgtcta aaaaggtgat gtgtatttga gtaaaacagc 1500ttgcgtcatg cggtcgctgc
gtatatgatg cgatgagtaa ataaacaaat acgcaagggg 1560aacgcatgaa ggttatcgct
gtacttaacc agaaaggcgg gtcaggcaag acgaccatcg 1620caacccatct agcccgcgcc
ctgcaactcg ccggggccga tgttctgtta gtcgattccg 1680atccccaggg cagtgcccgc
gattgggcgg ccgtgcggga agatcaaccg ctaaccgttg 1740tcggcatcga ccgcccgacg
attgaccgcg acgtgaaggc catcggccgg cgcgacttcg 1800tagtgatcga cggagcgccc
caggcggcgg acttggctgt gtccgcgatc aaggcagccg 1860acttcgtgct gattccggtg
cagccaagcc cttacgacat atgggccacc gccgacctgg 1920tggagctggt taagcagcgc
attgaggtca cggatggaag gctacaagcg gcctttgtcg 1980tgtcgcgggc gatcaaaggc
acgcgcatcg gcggtgaggt tgccgaggcg ctggccgggt 2040acgagctgcc cattcttgag
tcccgtatca cgcagcgcgt gagctaccca ggcactgccg 2100ccgccggcac aaccgttctt
gaatcagaac ccgagggcga cgctgcccgc gaggtccagg 2160cgctggccgc tgaaattaaa
tcaaaactca tttgagttaa tgaggtaaag agaaaatgag 2220caaaagcaca aacacgctaa
gtgccggccg tccgagcgca cgcagcagca aggctgcaac 2280gttggccagc ctggcagaca
cgccagccat gaagcgggtc aactttcagt tgccggcgga 2340ggatcacacc aagctgaaga
tgtacgcggt acgccaaggc aagaccatta ccgagctgct 2400atctgaatac atcgcgcagc
taccagagta aatgagcaaa tgaataaatg agtagatgaa 2460ttttagcggc taaaggaggc
ggcatggaaa atcaagaaca accaggcacc gacgccgtgg 2520aatgccccat gtgtggagga
acgggcggtt ggccaggcgt aagcggctgg gttgtctgcc 2580ggccctgcaa tggcactgga
acccccaagc ccgaggaatc ggcgtgacgg tcgcaaacca 2640tccggcccgg tacaaatcgg
cgcggcgctg ggtgatgacc tggtggagaa gttgaaggcc 2700gcgcaggccg cccagcggca
acgcatcgag gcagaagcac gccccggtga atcgtggcaa 2760gcggccgctg atcgaatccg
caaagaatcc cggcaaccgc cggcagccgg tgcgccgtcg 2820attaggaagc cgcccaaggg
cgacgagcaa ccagattttt tcgttccgat gctctatgac 2880gtgggcaccc gcgatagtcg
cagcatcatg gacgtggccg ttttccgtct gtcgaagcgt 2940gaccgacgag ctggcgaggt
gatccgctac gagcttccag acgggcacgt agaggtttcc 3000gcagggccgg ccggcatggc
cagtgtgtgg gattacgacc tggtactgat ggcggtttcc 3060catctaaccg aatccatgaa
ccgataccgg gaagggaagg gagacaagcc cggccgcgtg 3120ttccgtccac acgttgcgga
cgtactcaag ttctgccggc gagccgatgg cggaaagcag 3180aaagacgacc tggtagaaac
ctgcattcgg ttaaacacca cgcacgttgc catgcagcgt 3240acgaagaagg ccaagaacgg
ccgcctggtg acggtatccg agggtgaagc cttgattagc 3300cgctacaaga tcgtaaagag
cgaaaccggg cggccggagt acatcgagat cgagctagct 3360gattggatgt accgcgagat
cacagaaggc aagaacccgg acgtgctgac ggttcacccc 3420gattactttt tgatcgatcc
cggcatcggc cgttttctct accgcctggc acgccgcgcc 3480gcaggcaagg cagaagccag
atggttgttc aagacgatct acgaacgcag tggcagcgcc 3540ggagagttca agaagttctg
tttcaccgtg cgcaagctga tcgggtcaaa tgacctgccg 3600gagtacgatt tgaaggagga
ggcggggcag gctggcccga tcctagtcat gcgctaccgc 3660aacctgatcg agggcgaagc
atccgccggt tcctaatgta cggagcagat gctagggcaa 3720attgccctag caggggaaaa
aggtcgaaaa ggtctctttc ctgtggatag cacgtacatt 3780gggaacccaa agccgtacat
tgggaaccgg aacccgtaca ttgggaaccc aaagccgtac 3840attgggaacc ggtcacacat
gtaagtgact gatataaaag agaaaaaagg cgatttttcc 3900gcctaaaact ctttaaaact
tattaaaact cttaaaaccc gcctggcctg tgcataactg 3960tctggccagc gcacagccga
agagctgcaa aaagcgccta cccttcggtc gctgcgctcc 4020ctacgccccg ccgcttcgcg
tcggcctatc gcggccgctg gccgctcaaa aatggctggc 4080ctacggccag gcaatctacc
agggcgcgga caagccgcgc cgtcgccact cgaccgccgg 4140cgcccacatc aaggcaccct
gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca 4200catgcagctc ccggagacgg
tcacagcttg tctgtaagcg gatgccggga gcagacaagc 4260ccgtcagggc gcgtcagcgg
gtgttggcgg gtgtcggggc gcagccatga cccagtcacg 4320tagcgatagc ggagtgtata
ctggcttaac tatgcggcat cagagcagat tgtactgaga 4380gtgcaccata tgcggtgtga
aataccgcac agatgcgtaa ggagaaaata ccgcatcagg 4440cgctcttccg cttcctcgct
cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg 4500gtatcagctc actcaaaggc
ggtaatacgg ttatccacag aatcagggga taacgcagga 4560aagaacatgt gagcaaaagg
ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 4620gcgtttttcc ataggctccg
cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 4680aggtggcgaa acccgacagg
actataaaga taccaggcgt ttccccctgg aagctccctc 4740gtgcgctctc ctgttccgac
cctgccgctt accggatacc tgtccgcctt tctcccttcg 4800ggaagcgtgg cgctttctca
tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 4860cgctccaagc tgggctgtgt
gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 4920ggtaactatc gtcttgagtc
caacccggta agacacgact tatcgccact ggcagcagcc 4980actggtaaca ggattagcag
agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 5040tggcctaact acggctacac
tagaaggaca gtatttggta tctgcgctct gctgaagcca 5100gttaccttcg gaaaaagagt
tggtagctct tgatccggca aacaaaccac cgctggtagc 5160ggtggttttt ttgtttgcaa
gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 5220cctttgatct tttctacggg
gtctgacgct cagtggaacg aaaactcacg ttaagggatt 5280ttggtcatgc attctaggta
ctaaaacaat tcatccagta aaatataata ttttattttc 5340tcccaatcag gcttgatccc
cagtaagtca aaaaatagct cgacatactg ttcttccccg 5400atatcctccc tgatcgaccg
gacgcagaag gcaatgtcat accacttgtc cgccctgccg 5460cttctcccaa gatcaataaa
gccacttact ttgccatctt tcacaaagat gttgctgtct 5520cccaggtcgc cgtgggaaaa
gacaagttcc tcttcgggct tttccgtctt taaaaaatca 5580tacagctcgc gcggatcttt
aaatggagtg tcttcttccc agttttcgca atccacatcg 5640gccagatcgt tattcagtaa
gtaatccaat tcggctaagc ggctgtctaa gctattcgta 5700tagggacaat ccgatatgtc
gatggagtga aagagcctga tgcactccgc atacagctcg 5760ataatctttt cagggctttg
ttcatcttca tactcttccg agcaaaggac gccatcggcc 5820tcactcatga gcagattgct
ccagccatca tgccgttcaa agtgcaggac ctttggaaca 5880ggcagctttc cttccagcca
tagcatcatg tccttttccc gttccacatc ataggtggtc 5940cctttatacc ggctgtccgt
catttttaaa tataggtttt cattttctcc caccagctta 6000tataccttag caggagacat
tccttccgta tcttttacgc agcggtattt ttcgatcagt 6060tttttcaatt ccggtgatat
tctcatttta gccatttatt atttccttcc tcttttctac 6120agtatttaaa gataccccaa
gaagctaatt ataacaagac gaactccaat tcactgttcc 6180ttgcattcta aaaccttaaa
taccagaaaa cagctttttc aaagttgttt tcaaagttgg 6240cgtataacat agtatcgacg
gagccgattt tgaaaccgcg gtgatcacag gcagcaacgc 6300tctgtcatcg ttacaatcaa
catgctaccc tccgcgagat catccgtgtt tcaaacccgg 6360cagcttagtt gccgttcttc
cgaatagcat cggtaacatg agcaaagtct gccgccttac 6420aacggctctc ccgctgacgc
cgtcccggac tgatgggctg cctgtatcga gtggtgattt 6480tgtgccgagc tgccggtcgg
ggagctgttg gctggctggt ggcaggatat attgtggtgt 6540aaacaaattg acgcttagac
aacttaataa cacattgcgg acgtttttaa tgtactgaat 6600taacgccgaa ttaattcggg
ggatctggat tttagtactg gattttggtt ttaggaatta 6660gaaattttat tgatagaagt
attttacaaa tacaaataca tactaagggt ttcttatatg 6720ctcaacacat gagcgaaacc
ctataggaac cctaattccc ttatctggga actactcaca 6780cattattatg gagaaactcg
agcttgtcga tcgacagatc cggtcggcat ctactctatt 6840tctttgccct cggacgagtg
ctggggcgtc ggtttccact atcggcgagt acttctacac 6900agccatcggt ccagacggcc
gcgcttctgc gggcgatttg tgtacgcccg acagtcccgg 6960ctccggatcg gacgattgcg
tcgcatcgac cctgcgccca agctgcatca tcgaaattgc 7020cgtcaaccaa gctctgatag
agttggtcaa gaccaatgcg gagcatatac gcccggagtc 7080gtggcgatcc tgcaagctcc
ggatgcctcc gctcgaagta gcgcgtctgc tgctccatac 7140aagccaacca cggcctccag
aagaagatgt tggcgacctc gtattgggaa tccccgaaca 7200tcgcctcgct ccagtcaatg
accgctgtta tgcggccatt gtccgtcagg acattgttgg 7260agccgaaatc cgcgtgcacg
aggtgccgga cttcggggca gtcctcggcc caaagcatca 7320gctcatcgag agcctgcgcg
acggacgcac tgacggtgtc gtccatcaca gtttgccagt 7380gatacacatg gggatcagca
atcgcgcata tgaaatcacg ccatgtagtg tattgaccga 7440ttccttgcgg tccgaatggg
ccgaacccgc tcgtctggct aagatcggcc gcagcgatcg 7500catccatagc ctccgcgacc
ggttgtagaa cagcgggcag ttcggtttca ggcaggtctt 7560gcaacgtgac accctgtgca
cggcgggaga tgcaataggt caggctctcg ctaaactccc 7620caatgtcaag cacttccgga
atcgggagcg cggccgatgc aaagtgccga taaacataac 7680gatctttgta gaaaccatcg
gcgcagctat ttacccgcag gacatatcca cgccctccta 7740catcgaagct gaaagcacga
gattcttcgc cctccgagag ctgcatcagg tcggagacgc 7800tgtcgaactt ttcgatcaga
aacttctcga cagacgtcgc ggtgagttca ggctttttca 7860tatctcattg cccccccgga
tctgcgaaag ctcgagagag atagatttgt agagagagac 7920tggtgatttc agcgtgtcct
ctccaaatga aatgaacttc cttatataga ggaaggtctt 7980gcgaaggata gtgggattgt
gcgtcatccc ttacgtcagt ggagatatca catcaatcca 8040cttgctttga agacgtggtt
ggaacgtctt ctttttccac gatgctcctc gtgggtgggg 8100gtccatcttt gggaccactg
tcggcagagg catcttgaac gatagccttt cctttatcgc 8160aatgatggca tttgtaggtg
ccaccttcct tttctactgt ccttttgatg aagtgacaga 8220tagctgggca atggaatccg
aggaggtttc ccgatattac cctttgttga aaagtctcaa 8280tagccctttg gtcttctgag
actgtatctt tgatattctt ggagtagacg agagtgtcgt 8340gctccaccat gttatcacat
caatccactt gctttgaaga cgtggttgga acgtcttctt 8400tttccacgat gctcctcgtg
ggtgggggtc catctttggg accactgtcg gcagaggcat 8460cttgaacgat agcctttcct
ttatcgcaat gatggcattt gtaggtgcca ccttcctttt 8520ctactgtcct tttgatgaag
tgacagatag ctgggcaatg gaatccgagg aggtttcccg 8580atattaccct ttgttgaaaa
gtctcaatag ccctttggtc ttctgagact gtatctttga 8640tattcttgga gtagacgaga
gtgtcgtgct ccaccatgtt ggcaagctgc tctagccaat 8700acgcaaaccg cctctccccg
cgcgttggcc gattcattaa tgcagctggc acgacaggtt 8760tcccgactgg aaagcgggca
gtgagcgcaa cgcaattaat gtgagttagc tcactcatta 8820ggcaccccag gctttacact
ttatgcttcc ggctcgtatg ttgtgtggaa ttgtgagcgg 8880ataacaattt cacacaggaa
acagctatga ccatgattac gaattccctt aattaataag 8940agcagcttgc caacatggtg
gagcacgaca ctctcgtcta ctccaagaat atcaaagata 9000cagtctcaga agaccaaagg
gctattgaga cttttcaaca aagggtaata tcgggaaacc 9060tcctcggatt ccattgccca
gctatctgtc acttcatcaa aaggacagta gaaaaggaag 9120gtggcaccta caaatgccat
cattgcgata aaggaaaggc tatcgttcaa gatgcctctg 9180ccgacagtgg tcccaaagat
ggacccccac ccacgaggag catcgtggaa aaagaagacg 9240ttccaaccac gtcttcaaag
caagtggatt gatgtgaaca tggtggagca cgacactctc 9300gtctactcca agaatatcaa
agatacagtc tcagaaggcc aaagggctat tgagactttt 9360caacaaaggg taatatcggg
aaacctcctc ggattccatt gcccagctat ctgtcacttc 9420atcaaaagga cagtagaaaa
ggaaggtggc acctacaaat gccatcattg cgataaagga 9480aaggctatcg ttcaagatgc
tctgccgaca gtggtcccaa agatggaccc ccacccacga 9540ggagcatcgt ggaaaaagaa
gacgttccaa ccacgtcttc aaagcaagtg gattgatgtg 9600atatctccac tgacgtaagg
gatgacgcac aatcccacta tccttcgcaa gacccttcct 9660ctatataagg aagttcattt
catttggaga ggacacgctg aaatcaccag tctctctcta 9720caaatctatc tctctccatt
agttgttgct ttcctgtgcc atcgactggc atggctcgga 9780aatgctccag ctgcgggcat
aatggccata actccaggac ctgcagtggc aacaacggcg 9840gcggtggtgc cggtggtggg
ctgaggctgt tcggtgtgca gctgcaagtt ggtgctgcac 9900ctctgaagaa gagcttcagc
atggagtgcc tctcgtcgtc ggcctactac gcggccgcag 9960cggtggccgc gtccaactcg
tcgtcgtccg tgtcatcgtc atcgtcgctg gtctcggtgg 10020aggagaacgc cgagaagatg
ggccacggct acctctccga tggtctcatg ggcagggctc 10080aggagaggaa gaagggtgag
ttcgtgtact ggtttcttga gcagttcgtt ggtccggtat 10140acctcgctga cacgcttgat
ttgctatgct atggattttg gatattaatc atattatagt 10200atgtgatagc gatctaacca
tcatgcatga tgtctaaggc cagattaaga aaactattct 10260gaaatttttt ttccccctag
ctagagacta aagatctgaa gattcttgtt gatgcatgag 10320tggttgtatg acttgtttgt
atccaattgt gccatcagtt gctatctgct atgccaaact 10380tgcaactaga taacaggaaa
tacttagtct ttcaggtctt aactttcagt aatcatgtct 10440aatagcttgc acgaatcagt
ttgttctctc ttcttcacct gaagatgtcc agttacgttg 10500ggtgaactaa tcgtgtgacg
catggcatca ggggttccat ggacggagga tgagcaccgg 10560aggttcctgg ccggcttaga
gaagctcggg aaaggcgact ggcgaggcat ctcccggcac 10620ttcgtcgcga cacgcacccc
gacgcaggtg gccagccacg cccagaagta cttcctccgg 10680caggccggcc tcgcgcagaa
gaagcggagg tccagcctct tcgacgtggt acgtgcacgc 10740ctcaaaacgc aagctggagt
tgtggacgta gtaacaaacc agctgacatg cacgaacctt 10800cctctctttt cttcaggccg
agaagaatgg cgacaaggcg gcgaaggaga gtcgtccgag 10860actgaaacac gagactagca
gctccgtgga cgggatggca attcggtcat tccctgctct 10920gtctctagga cccagcaggc
cgaggcccga cgccgccgtg cttccaccat gcctgacctt 10980gatgccgagc tattcgtctg
gcctggtttc tccataataa tgtgtgagta gttcccagat 11040aagggaatta gggttcctat
agggtttcgc tcatgtgttg agcatataag aaacccttag 11100tatgtatttg tatttgtaaa
atacttctat caataaaatt tctaattcct aaaaccaaaa 11160tccagtacta aaatccagat
cccccgaatt aattcggcgt taattcagta tcggcgcgcc 11220ttaattaagg cgcgccctgc a
1124124612113DNAArtificial
SequenceVector 246ggaattcgat atcaagcttg gcactggccg tcgttttaca acgtcgtgac
tgggaaaacc 60ctggcgttac ccaacttaat cgccttgcag cacatccccc tttcgccagc
tggcgtaata 120gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg cagcctgaat
ggcgaatgct 180agagcagctt gagcttggat cagattgtcg tttcccgcct tcagtttaaa
ctatcagtgt 240ttgacaggat atattggcgg gtaaacctaa gagaaaagag cgtttattag
aataacggat 300atttaaaagg gcgtgaaaag gtttatccgt tcgtccattt gtatgtgcat
gccaaccaca 360gggttcccct cgggatcaaa gtactttgat ccaacccctc cgctgctata
gtgcagtcgg 420cttctgacgt tcagtgcagc cgtcttctga aaacgacatg tcgcacaagt
cctaagttac 480gcgacaggct gccgccctgc ccttttcctg gcgttttctt gtcgcgtgtt
ttagtcgcat 540aaagtagaat acttgcgact agaaccggag acattacgcc atgaacaaga
gcgccgccgc 600tggcctgctg ggctatgccc gcgtcagcac cgacgaccag gacttgacca
accaacgggc 660cgaactgcac gcggccggct gcaccaagct gttttccgag aagatcaccg
gcaccaggcg 720cgaccgcccg gagctggcca ggatgcttga ccacctacgc cctggcgacg
ttgtgacagt 780gaccaggcta gaccgcctgg cccgcagcac ccgcgaccta ctggacattg
ccgagcgcat 840ccaggaggcc ggcgcgggcc tgcgtagcct ggcagagccg tgggccgaca
ccaccacgcc 900ggccggccgc atggtgttga ccgtgttcgc cggcattgcc gagttcgagc
gttccctaat 960catcgaccgc acccggagcg ggcgcgaggc cgccaaggcc cgaggcgtga
agtttggccc 1020ccgccctacc ctcaccccgg cacagatcgc gcacgcccgc gagctgatcg
accaggaagg 1080ccgcaccgtg aaagaggcgg ctgcactgct tggcgtgcat cgctcgaccc
tgtaccgcgc 1140acttgagcgc agcgaggaag tgacgcccac cgaggccagg cggcgcggtg
ccttccgtga 1200ggacgcattg accgaggccg acgccctggc ggccgccgag aatgaacgcc
aagaggaaca 1260agcatgaaac cgcaccagga cggccaggac gaaccgtttt tcattaccga
agagatcgag 1320gcggagatga tcgcggccgg gtacgtgttc gagccgcccg cgcacgtctc
aaccgtgcgg 1380ctgcatgaaa tcctggccgg tttgtctgat gccaagctgg cggcctggcc
ggccagcttg 1440gccgctgaag aaaccgagcg ccgccgtcta aaaaggtgat gtgtatttga
gtaaaacagc 1500ttgcgtcatg cggtcgctgc gtatatgatg cgatgagtaa ataaacaaat
acgcaagggg 1560aacgcatgaa ggttatcgct gtacttaacc agaaaggcgg gtcaggcaag
acgaccatcg 1620caacccatct agcccgcgcc ctgcaactcg ccggggccga tgttctgtta
gtcgattccg 1680atccccaggg cagtgcccgc gattgggcgg ccgtgcggga agatcaaccg
ctaaccgttg 1740tcggcatcga ccgcccgacg attgaccgcg acgtgaaggc catcggccgg
cgcgacttcg 1800tagtgatcga cggagcgccc caggcggcgg acttggctgt gtccgcgatc
aaggcagccg 1860acttcgtgct gattccggtg cagccaagcc cttacgacat atgggccacc
gccgacctgg 1920tggagctggt taagcagcgc attgaggtca cggatggaag gctacaagcg
gcctttgtcg 1980tgtcgcgggc gatcaaaggc acgcgcatcg gcggtgaggt tgccgaggcg
ctggccgggt 2040acgagctgcc cattcttgag tcccgtatca cgcagcgcgt gagctaccca
ggcactgccg 2100ccgccggcac aaccgttctt gaatcagaac ccgagggcga cgctgcccgc
gaggtccagg 2160cgctggccgc tgaaattaaa tcaaaactca tttgagttaa tgaggtaaag
agaaaatgag 2220caaaagcaca aacacgctaa gtgccggccg tccgagcgca cgcagcagca
aggctgcaac 2280gttggccagc ctggcagaca cgccagccat gaagcgggtc aactttcagt
tgccggcgga 2340ggatcacacc aagctgaaga tgtacgcggt acgccaaggc aagaccatta
ccgagctgct 2400atctgaatac atcgcgcagc taccagagta aatgagcaaa tgaataaatg
agtagatgaa 2460ttttagcggc taaaggaggc ggcatggaaa atcaagaaca accaggcacc
gacgccgtgg 2520aatgccccat gtgtggagga acgggcggtt ggccaggcgt aagcggctgg
gttgtctgcc 2580ggccctgcaa tggcactgga acccccaagc ccgaggaatc ggcgtgacgg
tcgcaaacca 2640tccggcccgg tacaaatcgg cgcggcgctg ggtgatgacc tggtggagaa
gttgaaggcc 2700gcgcaggccg cccagcggca acgcatcgag gcagaagcac gccccggtga
atcgtggcaa 2760gcggccgctg atcgaatccg caaagaatcc cggcaaccgc cggcagccgg
tgcgccgtcg 2820attaggaagc cgcccaaggg cgacgagcaa ccagattttt tcgttccgat
gctctatgac 2880gtgggcaccc gcgatagtcg cagcatcatg gacgtggccg ttttccgtct
gtcgaagcgt 2940gaccgacgag ctggcgaggt gatccgctac gagcttccag acgggcacgt
agaggtttcc 3000gcagggccgg ccggcatggc cagtgtgtgg gattacgacc tggtactgat
ggcggtttcc 3060catctaaccg aatccatgaa ccgataccgg gaagggaagg gagacaagcc
cggccgcgtg 3120ttccgtccac acgttgcgga cgtactcaag ttctgccggc gagccgatgg
cggaaagcag 3180aaagacgacc tggtagaaac ctgcattcgg ttaaacacca cgcacgttgc
catgcagcgt 3240acgaagaagg ccaagaacgg ccgcctggtg acggtatccg agggtgaagc
cttgattagc 3300cgctacaaga tcgtaaagag cgaaaccggg cggccggagt acatcgagat
cgagctagct 3360gattggatgt accgcgagat cacagaaggc aagaacccgg acgtgctgac
ggttcacccc 3420gattactttt tgatcgatcc cggcatcggc cgttttctct accgcctggc
acgccgcgcc 3480gcaggcaagg cagaagccag atggttgttc aagacgatct acgaacgcag
tggcagcgcc 3540ggagagttca agaagttctg tttcaccgtg cgcaagctga tcgggtcaaa
tgacctgccg 3600gagtacgatt tgaaggagga ggcggggcag gctggcccga tcctagtcat
gcgctaccgc 3660aacctgatcg agggcgaagc atccgccggt tcctaatgta cggagcagat
gctagggcaa 3720attgccctag caggggaaaa aggtcgaaaa ggtctctttc ctgtggatag
cacgtacatt 3780gggaacccaa agccgtacat tgggaaccgg aacccgtaca ttgggaaccc
aaagccgtac 3840attgggaacc ggtcacacat gtaagtgact gatataaaag agaaaaaagg
cgatttttcc 3900gcctaaaact ctttaaaact tattaaaact cttaaaaccc gcctggcctg
tgcataactg 3960tctggccagc gcacagccga agagctgcaa aaagcgccta cccttcggtc
gctgcgctcc 4020ctacgccccg ccgcttcgcg tcggcctatc gcggccgctg gccgctcaaa
aatggctggc 4080ctacggccag gcaatctacc agggcgcgga caagccgcgc cgtcgccact
cgaccgccgg 4140cgcccacatc aaggcaccct gcctcgcgcg tttcggtgat gacggtgaaa
acctctgaca 4200catgcagctc ccggagacgg tcacagcttg tctgtaagcg gatgccggga
gcagacaagc 4260ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga
cccagtcacg 4320tagcgatagc ggagtgtata ctggcttaac tatgcggcat cagagcagat
tgtactgaga 4380gtgcaccata tgcggtgtga aataccgcac agatgcgtaa ggagaaaata
ccgcatcagg 4440cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct
gcggcgagcg 4500gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga
taacgcagga 4560aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc
cgcgttgctg 4620gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg
ctcaagtcag 4680aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg
aagctccctc 4740gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt
tctcccttcg 4800ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt
gtaggtcgtt 4860cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg
cgccttatcc 4920ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact
ggcagcagcc 4980actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt
cttgaagtgg 5040tggcctaact acggctacac tagaaggaca gtatttggta tctgcgctct
gctgaagcca 5100gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac
cgctggtagc 5160ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc
tcaagaagat 5220cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg
ttaagggatt 5280ttggtcatgc attctaggta ctaaaacaat tcatccagta aaatataata
ttttattttc 5340tcccaatcag gcttgatccc cagtaagtca aaaaatagct cgacatactg
ttcttccccg 5400atatcctccc tgatcgaccg gacgcagaag gcaatgtcat accacttgtc
cgccctgccg 5460cttctcccaa gatcaataaa gccacttact ttgccatctt tcacaaagat
gttgctgtct 5520cccaggtcgc cgtgggaaaa gacaagttcc tcttcgggct tttccgtctt
taaaaaatca 5580tacagctcgc gcggatcttt aaatggagtg tcttcttccc agttttcgca
atccacatcg 5640gccagatcgt tattcagtaa gtaatccaat tcggctaagc ggctgtctaa
gctattcgta 5700tagggacaat ccgatatgtc gatggagtga aagagcctga tgcactccgc
atacagctcg 5760ataatctttt cagggctttg ttcatcttca tactcttccg agcaaaggac
gccatcggcc 5820tcactcatga gcagattgct ccagccatca tgccgttcaa agtgcaggac
ctttggaaca 5880ggcagctttc cttccagcca tagcatcatg tccttttccc gttccacatc
ataggtggtc 5940cctttatacc ggctgtccgt catttttaaa tataggtttt cattttctcc
caccagctta 6000tataccttag caggagacat tccttccgta tcttttacgc agcggtattt
ttcgatcagt 6060tttttcaatt ccggtgatat tctcatttta gccatttatt atttccttcc
tcttttctac 6120agtatttaaa gataccccaa gaagctaatt ataacaagac gaactccaat
tcactgttcc 6180ttgcattcta aaaccttaaa taccagaaaa cagctttttc aaagttgttt
tcaaagttgg 6240cgtataacat agtatcgacg gagccgattt tgaaaccgcg gtgatcacag
gcagcaacgc 6300tctgtcatcg ttacaatcaa catgctaccc tccgcgagat catccgtgtt
tcaaacccgg 6360cagcttagtt gccgttcttc cgaatagcat cggtaacatg agcaaagtct
gccgccttac 6420aacggctctc ccgctgacgc cgtcccggac tgatgggctg cctgtatcga
gtggtgattt 6480tgtgccgagc tgccggtcgg ggagctgttg gctggctggt ggcaggatat
attgtggtgt 6540aaacaaattg acgcttagac aacttaataa cacattgcgg acgtttttaa
tgtactgaat 6600taacgccgaa ttaattcggg ggatctggat tttagtactg gattttggtt
ttaggaatta 6660gaaattttat tgatagaagt attttacaaa tacaaataca tactaagggt
ttcttatatg 6720ctcaacacat gagcgaaacc ctataggaac cctaattccc ttatctggga
actactcaca 6780cattattatg gagaaactcg agcttgtcga tcgacagatc cggtcggcat
ctactctatt 6840tctttgccct cggacgagtg ctggggcgtc ggtttccact atcggcgagt
acttctacac 6900agccatcggt ccagacggcc gcgcttctgc gggcgatttg tgtacgcccg
acagtcccgg 6960ctccggatcg gacgattgcg tcgcatcgac cctgcgccca agctgcatca
tcgaaattgc 7020cgtcaaccaa gctctgatag agttggtcaa gaccaatgcg gagcatatac
gcccggagtc 7080gtggcgatcc tgcaagctcc ggatgcctcc gctcgaagta gcgcgtctgc
tgctccatac 7140aagccaacca cggcctccag aagaagatgt tggcgacctc gtattgggaa
tccccgaaca 7200tcgcctcgct ccagtcaatg accgctgtta tgcggccatt gtccgtcagg
acattgttgg 7260agccgaaatc cgcgtgcacg aggtgccgga cttcggggca gtcctcggcc
caaagcatca 7320gctcatcgag agcctgcgcg acggacgcac tgacggtgtc gtccatcaca
gtttgccagt 7380gatacacatg gggatcagca atcgcgcata tgaaatcacg ccatgtagtg
tattgaccga 7440ttccttgcgg tccgaatggg ccgaacccgc tcgtctggct aagatcggcc
gcagcgatcg 7500catccatagc ctccgcgacc ggttgtagaa cagcgggcag ttcggtttca
ggcaggtctt 7560gcaacgtgac accctgtgca cggcgggaga tgcaataggt caggctctcg
ctaaactccc 7620caatgtcaag cacttccgga atcgggagcg cggccgatgc aaagtgccga
taaacataac 7680gatctttgta gaaaccatcg gcgcagctat ttacccgcag gacatatcca
cgccctccta 7740catcgaagct gaaagcacga gattcttcgc cctccgagag ctgcatcagg
tcggagacgc 7800tgtcgaactt ttcgatcaga aacttctcga cagacgtcgc ggtgagttca
ggctttttca 7860tatctcattg cccccccgga tctgcgaaag ctcgagagag atagatttgt
agagagagac 7920tggtgatttc agcgtgtcct ctccaaatga aatgaacttc cttatataga
ggaaggtctt 7980gcgaaggata gtgggattgt gcgtcatccc ttacgtcagt ggagatatca
catcaatcca 8040cttgctttga agacgtggtt ggaacgtctt ctttttccac gatgctcctc
gtgggtgggg 8100gtccatcttt gggaccactg tcggcagagg catcttgaac gatagccttt
cctttatcgc 8160aatgatggca tttgtaggtg ccaccttcct tttctactgt ccttttgatg
aagtgacaga 8220tagctgggca atggaatccg aggaggtttc ccgatattac cctttgttga
aaagtctcaa 8280tagccctttg gtcttctgag actgtatctt tgatattctt ggagtagacg
agagtgtcgt 8340gctccaccat gttatcacat caatccactt gctttgaaga cgtggttgga
acgtcttctt 8400tttccacgat gctcctcgtg ggtgggggtc catctttggg accactgtcg
gcagaggcat 8460cttgaacgat agcctttcct ttatcgcaat gatggcattt gtaggtgcca
ccttcctttt 8520ctactgtcct tttgatgaag tgacagatag ctgggcaatg gaatccgagg
aggtttcccg 8580atattaccct ttgttgaaaa gtctcaatag ccctttggtc ttctgagact
gtatctttga 8640tattcttgga gtagacgaga gtgtcgtgct ccaccatgtt ggcaagctgc
tctagccaat 8700acgcaaaccg cctctccccg cgcgttggcc gattcattaa tgcagctggc
acgacaggtt 8760tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttagc
tcactcatta 8820ggcaccccag gctttacact ttatgcttcc ggctcgtatg ttgtgtggaa
ttgtgagcgg 8880ataacaattt cacacaggaa acagctatga ccatgattac gaattccctt
aattaataag 8940agcagcttgc caacatggtg gagcacgaca ctctcgtcta ctccaagaat
atcaaagata 9000cagtctcaga agaccaaagg gctattgaga cttttcaaca aagggtaata
tcgggaaacc 9060tcctcggatt ccattgccca gctatctgtc acttcatcaa aaggacagta
gaaaaggaag 9120gtggcaccta caaatgccat cattgcgata aaggaaaggc tatcgttcaa
gatgcctctg 9180ccgacagtgg tcccaaagat ggacccccac ccacgaggag catcgtggaa
aaagaagacg 9240ttccaaccac gtcttcaaag caagtggatt gatgtgaaca tggtggagca
cgacactctc 9300gtctactcca agaatatcaa agatacagtc tcagaaggcc aaagggctat
tgagactttt 9360caacaaaggg taatatcggg aaacctcctc ggattccatt gcccagctat
ctgtcacttc 9420atcaaaagga cagtagaaaa ggaaggtggc acctacaaat gccatcattg
cgataaagga 9480aaggctatcg ttcaagatgc tctgccgaca gtggtcccaa agatggaccc
ccacccacga 9540ggagcatcgt ggaaaaagaa gacgttccaa ccacgtcttc aaagcaagtg
gattgatgtg 9600atatctccac tgacgtaagg gatgacgcac aatcccacta tccttcgcaa
gacccttcct 9660ctatataagg aagttcattt catttggaga ggacacgctg aaatcaccag
tctctctcta 9720caaatctatc tctctccatt agtgatctgc tgtgctgtgg tgagagctgc
caagaagctg 9780agcagtgcta ctctggagga gctcaccaaa ggattgtttc tgtttcggtt
ttggcaatca 9840ctaaataatg gaggaagtgg aggaggccaa caggatagcc gttgagagct
gccacagagt 9900gctgggcctg ctttcccagt cgcaggaccc ggcgcagctc aggagcatag
ctctgggcac 9960ggacgacgcc tgcgccaagt tccgcaaggt ggtctccctc ctcggcaacg
aaggaggagg 10020gggagcagta agccatccca gagccaaggt tgcgagcagg aaacagaccc
cggccttctt 10080gagccagaag ggcttcctgg acaacaacac cccggtggtg gtgctgaaca
gcagcgccca 10140cccttccact agctccgcgc aggcgtatcc taggaacacc attctggatt
cgcacaccgc 10200gcacccgatc ggagggcctc ccaagctggt ccagccattg tccgcgcact
tccagttcgg 10260caacgtatcg cggtatcagt tccagcatca gcaccagcag cagaagatgc
aggctgagat 10320gttcaagaga agcaacagta tcagtgggat taacctgaag ttcgacagcc
ccagcgcggc 10380cacgggggcg atgtcgtccg cgagatcctt catgtcatct ttgagcatgg
atggtagcgt 10440ggctagcctg gatgccaagt cttcctcgtt ccatttgatc ggtgggcctg
ctatgagtga 10500cccggtgaat gcgcagcagg cgccgaggag gcggtgcacg gggcgtgggg
aggatgggaa 10560tggcaagtgc gctgcaaatg gcaggtgcca ttgctcaaag aggaggtaaa
tactcttatc 10620ttagtgtgta tgattcttgc ttgctcttct attcaaggta gaataccatg
agaattgttc 10680tgttccctat ttcagcagga agttgcgggt gaagaagacg attaaagttc
ctgccattag 10740taataaaatt gctgatatac ctccagatga atactcatgg aggaagtatg
ggcagaagcc 10800aattaagggt tcccctcatc ccaggtatga actgagcact atctgttagt
gtcattttct 10860tgcacacata ttcttgatta tacggtgatg gagtagtggc aatgatgcta
taatcaccat 10920gactcatcaa ttttctaatt atttatcata tgtataactg cacatatccc
ccatgaacta 10980ctcaagtgcc tcatgataaa tgatggctct gtgataatca gaacacactt
tatccatggt 11040ttgcagggtg ttttacatgc tcctgataat cagaacactc tttatacagt
atagtaatca 11100aaactctcct tatgcagggt gttttgtatg ttcctgaata gttactttgt
gaataatgtc 11160tttcattctt cttgtgcaca ctttcttaaa atagatcaat cccgagtctt
aaagtggcca 11220gtggccactt cgtaattcag tctaccatga ttcagtcttt aagtggacat
ctttaatgct 11280atcgtgattc agtctactac gtactatact ttacctattc atatcacttt
cccaccttgt 11340ctatcttaaa tttcctgatg ataaaataca caaatatagc tatacggtaa
tagcaaacgc 11400atgggtatct tttcgagaaa aaaacaaaca catgggtatg gctgtctgaa
ttgagaaaaa 11460acttttcctc tttctagcaa gcactagata tagaaacacg attcatggcg
catctatttt 11520tatctccaat ccacaatgct aattctgatg tgtctcttaa gaccaatcca
ctgattcctt 11580aaacataatg cagggggtac tacaaatgta gcagtgtcag gggctgccca
gccaggaagc 11640atgttgaacg ttgtgtggat gatgcgtcaa tgctcattgt gacatacgag
ggtgaacaca 11700accacacgcg aatgccggct cagtctgcac aggcttaggg aatcactttg
atcatcacac 11760cctctccagg gaatactaac tcgcctgccc ttgtcgatgg ccgactgcac
tgttcttcta 11820aattagaatt acaaagtgac aaaaactggg ttccatttga gcagttgatg
aggcctggtt 11880tctccataat aatgtgtgag tagttcccag ataagggaat tagggttcct
atagggtttc 11940gctcatgtgt tgagcatata agaaaccctt agtatgtatt tgtatttgta
aaatacttct 12000atcaataaaa tttctaattc ctaaaaccaa aatccagtac taaaatccag
atcccccgaa 12060ttaattcggc gttaattcag tatcggcgcg ccttaattaa ggcgcgccct
gca 1211324710291DNAArtificial SequenceVector 247gaatttctag
ttctagatgc atgctcgaaa ttcgattggc gcgccttaat taataagagc 60agcttgccaa
catggtggag cacgacactc tcgtctactc caagaatatc aaagatacag 120tctcagaaga
ccaaagggct attgagactt ttcaacaaag ggtaatatcg ggaaacctcc 180tcggattcca
ttgcccagct atctgtcact tcatcaaaag gacagtagaa aaggaaggtg 240gcacctacaa
atgccatcat tgcgataaag gaaaggctat cgttcaagat gcctctgccg 300acagtggtcc
caaagatgga cccccaccca cgaggagcat cgtggaaaaa gaagacgttc 360caaccacgtc
ttcaaagcaa gtggattgat gtgaacatgg tggagcacga cactctcgtc 420tactccaaga
atatcaaaga tacagtctca gaaggccaaa gggctattga gacttttcaa 480caaagggtaa
tatcgggaaa cctcctcgga ttccattgcc cagctatctg tcacttcatc 540aaaaggacag
tagaaaagga aggtggcacc tacaaatgcc atcattgcga taaaggaaag 600gctatcgttc
aagatgctct gccgacagtg gtcccaaaga tggaccccca cccacgagga 660gcatcgtgga
aaaagaagac gttccaacca cgtcttcaaa gcaagtggat tgatgtgata 720tctccactga
cgtaagggat gacgcacaat cccactatcc ttcgcaagac ccttcctcta 780tataaggaag
ttcatttcat ttggagagga cacgctgaaa tcaccagtct ctctctacaa 840atctatctct
ctccattagt aatgggttcg gagacctttc tggagatcct gctggccatc 900ctgctgccgc
cgctcggcgt tttcctccgc ttcggcatcg gcgtaagcta ccaaaccatt 960cagcgatttc
agggtgtgta tgtaatgata gatatattga tttgatggtc ggttcatgca 1020tgtctgcagg
tggagttctg gatctgcctg ctactcaccc tgctgggcta catccccggc 1080atcatctacg
ccgtcttcgt ccttgttgca tagaggcctg gtttctccat aataatgtgt 1140gagtagttcc
cagataaggg aattagggtt cctatagggt ttcgctcatg tgttgagcat 1200ataagaaacc
cttagtatgt atttgtattt gtaaaatact tctatcaata aaatttctaa 1260ttcctaaaac
caaaatccag tactaaaatc cagatccccc gaattaattc ggcgttaatt 1320cagtatcggc
gcgccttaat taaaatcgaa tttcgaccat actagtggat ccccctcgga 1380ctagaagctt
ggcactggcc gtcgttttac aacgtcgtga ctgggaaaac cctggcgtta 1440cccaacttaa
tcgccttgca gcacatcccc ctttcgccag ctggcgtaat agcgaagagg 1500cccgcaccga
tcgcccttcc caacagttgc gcagcctgaa tggcgaatgc tagagcagct 1560tgagcttgga
tcagattgtc gtttcccgcc ttcagtttaa actatcagtg tttgacagga 1620tatattggcg
ggtaaaccta agagaaaaga gcgtttatta gaataacgga tatttaaaag 1680ggcgtgaaaa
ggtttatccg ttcgtccatt tgtatgtgca tgccaaccac agggttcccc 1740tcgggatcaa
agtactttga tccaacccct ccgctgctat agtgcagtcg gcttctgacg 1800ttcagtgcag
ccgtcttctg aaaacgacat gtcgcacaag tcctaagtta cgcgacaggc 1860tgccgccctg
cccttttcct ggcgttttct tgtcgcgtgt tttagtcgca taaagtagaa 1920tacttgcgac
tagaaccgga gacattacgc catgaacaag agcgccgccg ctggcctgct 1980gggctatgcc
cgcgtcagca ccgacgacca ggacttgacc aaccaacggg ccgaactgca 2040cgcggccggc
tgcaccaagc tgttttccga gaagatcacc ggcaccaggc gcgaccgccc 2100ggagctggcc
aggatgcttg accacctacg ccctggcgac gttgtgacag tgaccaggct 2160agaccgcctg
gcccgcagca cccgcgacct actggacatt gccgagcgca tccaggaggc 2220cggcgcgggc
ctgcgtagcc tggcagagcc gtgggccgac accaccacgc cggccggccg 2280catggtgttg
accgtgttcg ccggcattgc cgagttcgag cgttccctaa tcatcgaccg 2340cacccggagc
gggcgcgagg ccgccaaggc ccgaggcgtg aagtttggcc cccgccctac 2400cctcaccccg
gcacagatcg cgcacgcccg cgagctgatc gaccaggaag gccgcaccgt 2460gaaagaggcg
gctgcactgc ttggcgtgca tcgctcgacc ctgtaccgcg cacttgagcg 2520cagcgaggaa
gtgacgccca ccgaggccag gcggcgcggt gccttccgtg aggacgcatt 2580gaccgaggcc
gacgccctgg cggccgccga gaatgaacgc caagaggaac aagcatgaaa 2640ccgcaccagg
acggccagga cgaaccgttt ttcattaccg aagagatcga ggcggagatg 2700atcgcggccg
ggtacgtgtt cgagccgccc gcgcacgtct caaccgtgcg gctgcatgaa 2760atcctggccg
gtttgtctga tgccaagctg gcggcctggc cggccagctt ggccgctgaa 2820gaaaccgagc
gccgccgtct aaaaaggtga tgtgtatttg agtaaaacag cttgcgtcat 2880gcggtcgctg
cgtatatgat gcgatgagta aataaacaaa tacgcaaggg gaacgcatga 2940aggttatcgc
tgtacttaac cagaaaggcg ggtcaggcaa gacgaccatc gcaacccatc 3000tagcccgcgc
cctgcaactc gccggggccg atgttctgtt agtcgattcc gatccccagg 3060gcagtgcccg
cgattgggcg gccgtgcggg aagatcaacc gctaaccgtt gtcggcatcg 3120accgcccgac
gattgaccgc gacgtgaagg ccatcggccg gcgcgacttc gtagtgatcg 3180acggagcgcc
ccaggcggcg gacttggctg tgtccgcgat caaggcagcc gacttcgtgc 3240tgattccggt
gcagccaagc ccttacgaca tatgggccac cgccgacctg gtggagctgg 3300ttaagcagcg
cattgaggtc acggatggaa ggctacaagc ggcctttgtc gtgtcgcggg 3360cgatcaaagg
cacgcgcatc ggcggtgagg ttgccgaggc gctggccggg tacgagctgc 3420ccattcttga
gtcccgtatc acgcagcgcg tgagctaccc aggcactgcc gccgccggca 3480caaccgttct
tgaatcagaa cccgagggcg acgctgcccg cgaggtccag gcgctggccg 3540ctgaaattaa
atcaaaactc atttgagtta atgaggtaaa gagaaaatga gcaaaagcac 3600aaacacgcta
agtgccggcc gtccgagcgc acgcagcagc aaggctgcaa cgttggccag 3660cctggcagac
acgccagcca tgaagcgggt caactttcag ttgccggcgg aggatcacac 3720caagctgaag
atgtacgcgg tacgccaagg caagaccatt accgagctgc tatctgaata 3780catcgcgcag
ctaccagagt aaatgagcaa atgaataaat gagtagatga attttagcgg 3840ctaaaggagg
cggcatggaa aatcaagaac aaccaggcac cgacgccgtg gaatgcccca 3900tgtgtggagg
aacgggcggt tggccaggcg taagcggctg ggttgtctgc cggccctgca 3960atggcactgg
aacccccaag cccgaggaat cggcgtgacg gtcgcaaacc atccggcccg 4020gtacaaatcg
gcgcggcgct gggtgatgac ctggtggaga agttgaaggc cgcgcaggcc 4080gcccagcggc
aacgcatcga ggcagaagca cgccccggtg aatcgtggca agcggccgct 4140gatcgaatcc
gcaaagaatc ccggcaaccg ccggcagccg gtgcgccgtc gattaggaag 4200ccgcccaagg
gcgacgagca accagatttt ttcgttccga tgctctatga cgtgggcacc 4260cgcgatagtc
gcagcatcat ggacgtggcc gttttccgtc tgtcgaagcg tgaccgacga 4320gctggcgagg
tgatccgcta cgagcttcca gacgggcacg tagaggtttc cgcagggccg 4380gccggcatgg
ccagtgtgtg ggattacgac ctggtactga tggcggtttc ccatctaacc 4440gaatccatga
accgataccg ggaagggaag ggagacaagc ccggccgcgt gttccgtcca 4500cacgttgcgg
acgtactcaa gttctgccgg cgagccgatg gcggaaagca gaaagacgac 4560ctggtagaaa
cctgcattcg gttaaacacc acgcacgttg ccatgcagcg tacgaagaag 4620gccaagaacg
gccgcctggt gacggtatcc gagggtgaag ccttgattag ccgctacaag 4680atcgtaaaga
gcgaaaccgg gcggccggag tacatcgaga tcgagctagc tgattggatg 4740taccgcgaga
tcacagaagg caagaacccg gacgtgctga cggttcaccc cgattacttt 4800ttgatcgatc
ccggcatcgg ccgttttctc taccgcctgg cacgccgcgc cgcaggcaag 4860gcagaagcca
gatggttgtt caagacgatc tacgaacgca gtggcagcgc cggagagttc 4920aagaagttct
gtttcaccgt gcgcaagctg atcgggtcaa atgacctgcc ggagtacgat 4980ttgaaggagg
aggcggggca ggctggcccg atcctagtca tgcgctaccg caacctgatc 5040gagggcgaag
catccgccgg ttcctaatgt acggagcaga tgctagggca aattgcccta 5100gcaggggaaa
aaggtcgaaa aggtctcttt cctgtggata gcacgtacat tgggaaccca 5160aagccgtaca
ttgggaaccg gaacccgtac attgggaacc caaagccgta cattgggaac 5220cggtcacaca
tgtaagtgac tgatataaaa gagaaaaaag gcgatttttc cgcctaaaac 5280tctttaaaac
ttattaaaac tcttaaaacc cgcctggcct gtgcataact gtctggccag 5340cgcacagccg
aagagctgca aaaagcgcct acccttcggt cgctgcgctc cctacgcccc 5400gccgcttcgc
gtcggcctat cgcggccgct ggccgctcaa aaatggctgg cctacggcca 5460ggcaatctac
cagggcgcgg acaagccgcg ccgtcgccac tcgaccgccg gcgcccacat 5520caaggcaccc
tgcctcgcgc gtttcggtga tgacggtgaa aacctctgac acatgcagct 5580cccggagacg
gtcacagctt gtctgtaagc ggatgccggg agcagacaag cccgtcaggg 5640cgcgtcagcg
ggtgttggcg ggtgtcgggg cgcagccatg acccagtcac gtagcgatag 5700cggagtgtat
actggcttaa ctatgcggca tcagagcaga ttgtactgag agtgcaccat 5760atgcggtgtg
aaataccgca cagatgcgta aggagaaaat accgcatcag gcgctcttcc 5820gcttcctcgc
tcactgactc gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct 5880cactcaaagg
cggtaatacg gttatccaca gaatcagggg ataacgcagg aaagaacatg 5940tgagcaaaag
gccagcaaaa ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc 6000cataggctcc
gcccccctga cgagcatcac aaaaatcgac gctcaagtca gaggtggcga 6060aacccgacag
gactataaag ataccaggcg tttccccctg gaagctccct cgtgcgctct 6120cctgttccga
ccctgccgct taccggatac ctgtccgcct ttctcccttc gggaagcgtg 6180gcgctttctc
atagctcacg ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag 6240ctgggctgtg
tgcacgaacc ccccgttcag cccgaccgct gcgccttatc cggtaactat 6300cgtcttgagt
ccaacccggt aagacacgac ttatcgccac tggcagcagc cactggtaac 6360aggattagca
gagcgaggta tgtaggcggt gctacagagt tcttgaagtg gtggcctaac 6420tacggctaca
ctagaaggac agtatttggt atctgcgctc tgctgaagcc agttaccttc 6480ggaaaaagag
ttggtagctc ttgatccggc aaacaaacca ccgctggtag cggtggtttt 6540tttgtttgca
agcagcagat tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc 6600ttttctacgg
ggtctgacgc tcagtggaac gaaaactcac gttaagggat tttggtcatg 6660cattctaggt
actaaaacaa ttcatccagt aaaatataat attttatttt ctcccaatca 6720ggcttgatcc
ccagtaagtc aaaaaatagc tcgacatact gttcttcccc gatatcctcc 6780ctgatcgacc
ggacgcagaa ggcaatgtca taccacttgt ccgccctgcc gcttctccca 6840agatcaataa
agccacttac tttgccatct ttcacaaaga tgttgctgtc tcccaggtcg 6900ccgtgggaaa
agacaagttc ctcttcgggc ttttccgtct ttaaaaaatc atacagctcg 6960cgcggatctt
taaatggagt gtcttcttcc cagttttcgc aatccacatc ggccagatcg 7020ttattcagta
agtaatccaa ttcggctaag cggctgtcta agctattcgt atagggacaa 7080tccgatatgt
cgatggagtg aaagagcctg atgcactccg catacagctc gataatcttt 7140tcagggcttt
gttcatcttc atactcttcc gagcaaagga cgccatcggc ctcactcatg 7200agcagattgc
tccagccatc atgccgttca aagtgcagga cctttggaac aggcagcttt 7260ccttccagcc
atagcatcat gtccttttcc cgttccacat cataggtggt ccctttatac 7320cggctgtccg
tcatttttaa atataggttt tcattttctc ccaccagctt atatacctta 7380gcaggagaca
ttccttccgt atcttttacg cagcggtatt tttcgatcag ttttttcaat 7440tccggtgata
ttctcatttt agccatttat tatttccttc ctcttttcta cagtatttaa 7500agatacccca
agaagctaat tataacaaga cgaactccaa ttcactgttc cttgcattct 7560aaaaccttaa
ataccagaaa acagcttttt caaagttgtt ttcaaagttg gcgtataaca 7620tagtatcgac
ggagccgatt ttgaaaccgc ggtgatcaca ggcagcaacg ctctgtcatc 7680gttacaatca
acatgctacc ctccgcgaga tcatccgtgt ttcaaacccg gcagcttagt 7740tgccgttctt
ccgaatagca tcggtaacat gagcaaagtc tgccgcctta caacggctct 7800cccgctgacg
ccgtcccgga ctgatgggct gcctgtatcg agtggtgatt ttgtgccgag 7860ctgccggtcg
gggagctgtt ggctggctgg tggcaggata tattgtggtg taaacaaatt 7920gacgcttaga
caacttaata acacattgcg gacgttttta atgtactgaa ttaacgccga 7980attaattcgg
gggatctgga ttttagtact ggattttggt tttaggaatt agaaatttta 8040ttgatagaag
tattttacaa atacaaatac atactaaggg tttcttatat gctcaacaca 8100tgagcgaaac
cctataggaa ccctaattcc cttatctggg aactactcac acattattat 8160ggagaaactc
gagcttgtcg atcgacagat ccggtcggca tctactctat ttctttgccc 8220tcggacgagt
gctggggcgt cggtttccac tatcggcgag tacttctaca cagccatcgg 8280tccagacggc
cgcgcttctg cgggcgattt gtgtacgccc gacagtcccg gctccggatc 8340ggacgattgc
gtcgcatcga ccctgcgccc aagctgcatc atcgaaattg ccgtcaacca 8400agctctgata
gagttggtca agaccaatgc ggagcatata cgcccggagt cgtggcgatc 8460ctgcaagctc
cggatgcctc cgctcgaagt agcgcgtctg ctgctccata caagccaacc 8520acggcctcca
gaagaagatg ttggcgacct cgtattggga atccccgaac atcgcctcgc 8580tccagtcaat
gaccgctgtt atgcggccat tgtccgtcag gacattgttg gagccgaaat 8640ccgcgtgcac
gaggtgccgg acttcggggc agtcctcggc ccaaagcatc agctcatcga 8700gagcctgcgc
gacggacgca ctgacggtgt cgtccatcac agtttgccag tgatacacat 8760ggggatcagc
aatcgcgcat atgaaatcac gccatgtagt gtattgaccg attccttgcg 8820gtccgaatgg
gccgaacccg ctcgtctggc taagatcggc cgcagcgatc gcatccatag 8880cctccgcgac
cggttgtaga acagcgggca gttcggtttc aggcaggtct tgcaacgtga 8940caccctgtgc
acggcgggag atgcaatagg tcaggctctc gctaaactcc ccaatgtcaa 9000gcacttccgg
aatcgggagc gcggccgatg caaagtgccg ataaacataa cgatctttgt 9060agaaaccatc
ggcgcagcta tttacccgca ggacatatcc acgccctcct acatcgaagc 9120tgaaagcacg
agattcttcg ccctccgaga gctgcatcag gtcggagacg ctgtcgaact 9180tttcgatcag
aaacttctcg acagacgtcg cggtgagttc aggctttttc atatctcatt 9240gcccccccgg
atctgcgaaa gctcgagaga gatagatttg tagagagaga ctggtgattt 9300cagcgtgtcc
tctccaaatg aaatgaactt ccttatatag aggaaggtct tgcgaaggat 9360agtgggattg
tgcgtcatcc cttacgtcag tggagatatc acatcaatcc acttgctttg 9420aagacgtggt
tggaacgtct tctttttcca cgatgctcct cgtgggtggg ggtccatctt 9480tgggaccact
gtcggcagag gcatcttgaa cgatagcctt tcctttatcg caatgatggc 9540atttgtaggt
gccaccttcc ttttctactg tccttttgat gaagtgacag atagctgggc 9600aatggaatcc
gaggaggttt cccgatatta ccctttgttg aaaagtctca atagcccttt 9660ggtcttctga
gactgtatct ttgatattct tggagtagac gagagtgtcg tgctccacca 9720tgttatcaca
tcaatccact tgctttgaag acgtggttgg aacgtcttct ttttccacga 9780tgctcctcgt
gggtgggggt ccatctttgg gaccactgtc ggcagaggca tcttgaacga 9840tagcctttcc
tttatcgcaa tgatggcatt tgtaggtgcc accttccttt tctactgtcc 9900ttttgatgaa
gtgacagata gctgggcaat ggaatccgag gaggtttccc gatattaccc 9960tttgttgaaa
agtctcaata gccctttggt cttctgagac tgtatctttg atattcttgg 10020agtagacgag
agtgtcgtgc tccaccatgt tggcaagctg ctctagccaa tacgcaaacc 10080gcctctcccc
gcgcgttggc cgattcatta atgcagctgg cacgacaggt ttcccgactg 10140gaaagcgggc
agtgagcgca acgcaattaa tgtgagttag ctcactcatt aggcacccca 10200ggctttacac
tttatgcttc cggctcgtat gttgtgtgga attgtgagcg gataacaatt 10260tcacacagga
aacagctatg accatgatta c
1029124863PRTArtificial SequenceConsensus polypeptide sequence 248Arg Lys
Arg Lys Xaa Xaa Xaa Arg Gly Xaa Arg Xaa Arg Pro Trp Gly1 5
10 15Lys Trp Ala Ala Glu Ile Arg Asp
Pro Arg Xaa Gly Xaa Arg Xaa Trp 20 25
30Leu Gly Thr Xaa Xaa Xaa Xaa Glu Xaa Ala Ala Xaa Ala Tyr Xaa
Xaa 35 40 45Xaa Xaa Arg Arg Ile
Arg Xaa Xaa Lys Ala Xaa Val Asn Phe Pro 50 55
6024927PRTArtificial SequenceConsensus polypeptide sequence
249Trp Arg Xaa Ile Xaa Arg Xaa Xaa Val Xaa Xaa Xaa Thr Pro Thr Gln1
5 10 15Val Ala Ser His Ala Gln
Lys Xaa Xaa Xaa Arg 20 2525060PRTArtificial
SequenceConsensus polypeptide sequence 250Ile Pro Xaa Xaa Xaa Xaa Ser Trp
Arg Lys Tyr Gly Gln Lys Pro Ile1 5 10
15Lys Gly Ser Xaa Xaa Pro Arg Gly Tyr Tyr Lys Cys Ser Xaa
Xaa Xaa 20 25 30Xaa Xaa Xaa
Xaa Xaa Xaa His Val Glu Arg Xaa Xaa Xaa Xaa Xaa Xaa 35
40 45Met Leu Xaa Val Thr Tyr Glu Xaa Xaa His Xaa
His 50 55 6025141PRTArtificial
SequenceVector 251Xaa Xaa Xaa Xaa Ala Ile Xaa Xaa Xaa Xaa Xaa Gly Val Xaa
Xaa Xaa1 5 10 15Xaa Xaa
Xaa Xaa Xaa Glu Phe Xaa Ile Xaa Xaa Xaa Leu Thr Xaa Xaa 20
25 30Xaa Xaa Xaa Pro Gly Xaa Xaa Tyr Ala
35 402526255DNAArtificial SequenceVector
252gcgcacattt ccccgaaaag tgccacctga tgcggtgtga aataccgcac agatgcgtaa
60ggagaaaata ccgcatcagg aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa
120tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa tcccttataa
180atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca agagtccact
240attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc
300actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta aagcactaaa
360tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg cgaacgtggc
420gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt
480cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat
540tcgccattca ggctgcgcaa ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta
600cgccagctgg cgaaaggggg atgtgctgca aggcgattaa gttgggtaac gccagggttt
660tcccagtcac gacgttgtaa aacgacggcc agtgaattgt aatacgactc actatagggc
720gaattgggcc cgacgtcgca tgctcccggc cgccatggcg gccgcgggaa ttcgattgat
780tggcgcgcct taattaacgg gctggtaaaa caaatataag tattaatata aatataatac
840aatagaagga aaataaataa aatttccctc tgtgccgtgc aaaaatgcac ggcaatgggt
900tggcccgcac ggcaaaggca tcgttgccgt gtccacggca atgggttggc ccgcacggca
960aaggcatcgt tgccgtgtcc acgtctttgc cgtgcgcctt ggctctatct ttgccgtgaa
1020gcgttctttg ccgtgtgcct tttatttctt tgccgtggga tgctgccttt gccgagcgct
1080gagctggcgc tttgccgtgc gcgtattgtt tgccgtgcgt cctcccagag ctgtacggca
1140aagaattcat tgccgtgcac gaggcacacg ggaaagaagt ttcgcatggc aaagggcgct
1200gacagcacac ggcaaagagc ccggcacggc attgagcttt ttttcccgta atgatagacg
1260gcataatata atggacgcac atgctgatgt caggatgtca cccactcatc ctagtatttg
1320tgggacgtga attctttgtg agatgggcaa tgggatgtga acaaaataag ttttgtacta
1380gtagataaac atttttaccc ataaacaatt gttctgtatt gaatgaaaaa ttattttgta
1440ctggatgaaa atcttctgag taactgtgta agattaacat gaatcaagag acaaatccaa
1500tggctacaaa gtcaactaat acttgttaaa agttccgata cttaaaatta tcaaaactga
1560tatatagaat attgcccatc tcgccaccgt gctagtttaa cagacgatgg acgaatatca
1620gtcttgtatt ggataatcga tgcatgcgag ctatcggtca cctgtccatg cttccagaag
1680gagccgagac gtggcgactt cgtccgacgc gccgactatc tgcacacgcc cggcttctcg
1740tcgtgggcga gtcagcagtc acaggctttc cgcctaccaa ctcacacgta gcgccctatc
1800gtggcgcttg atcgatgcaa cagcgatgcc tatcccagct cctcaagctg cttataagta
1860tgtcctcggc catcactgct tacacaacaa acacagctac ttatcgcagt gtactaaaca
1920agacgtacta gctagatttc gtgaggtaaa atcagtgcaa tatcacttgt gcaagccatt
1980agtctcttca ccttgtccca cctgctcccg ccgcatctca ccagacacca gccatgtgcg
2040gcagcgcgat cctctccgac atcatcccgc cgccgcgccg ggtcacggac ggccccctct
2100ggcggaacca gaagaagaag gggccgacgg gagatgctcc ggtggcgagg cgccgccgcg
2160cgcccgagga ggaggagagc tacgaggact tcgaggccga cttcgagggc ttcgaggagg
2220ggctcgggga ggccgagatc tggtccgagg acgaggccaa gcccttctcc gccgccagga
2280aacgcgtcgc cgcaggtata gccgcccttt ttgggtcacc ggctttggat ctgtggaacc
2340gcgtgctaat tctgtttacg atttgggaga tagatttgag tttctcaggt gatctgctgc
2400tcggattaga tagttgcatc ttcgatttgt ttgctatgaa gttaaatctg tgcaattgtt
2460catctcaagt ccgttaattc agcgggtcca tgttgtcgat tagtctggtc tctagtgctg
2520tgtctttttt ttaaaaaaac acaatctctg gtgctgtgtc gatccttagt ttttaggata
2580actctcctaa atcatgaata tggtatcaac tcttattggt gcatacatag atcgagcttc
2640ctcgcaagca tatgagttgg gctgttcctc aggattagac ttttaatgtc aagtttcgac
2700ttaccctgac tttctgtatg taaactaaaa tctttatctc actgcttcat cctgattgaa
2760taaatgcatg tacagctgct gctgttgatg gctgggcatc agagtccgcc aaaaggaaga
2820gaaagaccca gttcaggggc atccgccgcc gcccttgggg taaatgggct gctgaaatca
2880gagaccctcg caagggtgtc cgtgtctggc ttggcactta caactctgcc gaggaagctg
2940ccagagccta tgatgctgaa gcaagaagga tccgtggcaa gaaggcaaag gtcaatttcc
3000cagatgaggc tcctgtggct tctcaaaagc actgtgctaa gcctaccttt gtgacgttgc
3060ctgagttcaa caccgaagag aagccgatag tcaacgccgt ggccaacaca aacgcgtatt
3120cctatcctct tgttgactac accgtctgtg agccatttgt gcagcctcag aacatgtcat
3180ttgtgccagc ggttaatgca gttgaggttc ctttcatgaa tctttcctct gaccagggta
3240gcaactcctt tggttgctca gactttagct gggagaatgg taccaagact cctgacatca
3300catctgtgct tgcatccatt cccacctcga ccgaggttga tgaatctgca ttccttcaga
3360acaatgccag tgatgcatca ctacctcctg tgatggatac tgccaatgtt gatctcgccg
3420atttggaacc atacatgaag ttcctcgtgg atggtgcttc agatgagtca cttgacaact
3480ttctaagctg tgacgggtct gaggacatgg tcagcaacct ggacctttgg actttcgatg
3540acatgcccat ttctgccgat ttctactgag gctctgaggt caattggtgc ctgtacgtat
3600agataatggg taagcatctg caactgcgga aataactcac tgttatactt cagtttccat
3660ttccataact accccacttc acttttcagg aataagtatt ctggacatca agaagtgctt
3720gtgtcaggcg cctctgttga gcagtagtta tgtttgtata cttttatatc tagcttaaat
3780ctcagtttga tcgcaagtct gaagtgaagg cctggtttct ccataataat gtgtgagtag
3840ttcccagata agggaattag ggttcctata gggtttcgct catgtgttga gcatataaga
3900aacccttagt atgtatttgt atttgtaaaa tacttctatc aataaaattt ctaattccta
3960aaaccaaaat ccagtactaa aatccagatc ccccgaatta attcggcgtt aattcagtat
4020cggcgcgcct taattaaaat cgaatttcga ccatatggga gagctcccaa cgcgttggat
4080gcatagcttg agtattctat agtgtcacct aaatagcttg gcgtaatcat ggtcatagct
4140gtttcctgtg tgaaattgtt atccgctcac aattccacac aacatacgag ccggaagcat
4200aaagtgtaaa gcctggggtg cctaatgagt gagctaactc acattaattg cgttgcgctc
4260actgcccgct ttccagtcgg gaaacctgtc gtgccagctg cattaatgaa tcggccaacg
4320cgcggggaga ggcggtttgc gtattgggcg ctcttccgct tcctcgctca ctgactcgct
4380gcgctcggtc gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt
4440atccacagaa tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc
4500caggaaccgt aaaaaggccg cgttgctggc gtttttccat aggctccgcc cccctgacga
4560gcatcacaaa aatcgacgct caagtcagag gtggcgaaac ccgacaggac tataaagata
4620ccaggcgttt ccccctggaa gctccctcgt gcgctctcct gttccgaccc tgccgcttac
4680cggatacctg tccgcctttc tcccttcggg aagcgtggcg ctttctcata gctcacgctg
4740taggtatctc agttcggtgt aggtcgttcg ctccaagctg ggctgtgtgc acgaaccccc
4800cgttcagccc gaccgctgcg ccttatccgg taactatcgt cttgagtcca acccggtaag
4860acacgactta tcgccactgg cagcagccac tggtaacagg attagcagag cgaggtatgt
4920aggcggtgct acagagttct tgaagtggtg gcctaactac ggctacacta gaagaacagt
4980atttggtatc tgcgctctgc tgaagccagt taccttcgga aaaagagttg gtagctcttg
5040atccggcaaa caaaccaccg ctggtagcgg tggttttttt gtttgcaagc agcagattac
5100gcgcagaaaa aaaggatctc aagaagatcc tttgatcttt tctacggggt ctgacgctca
5160gtggaacgaa aactcacgtt aagggatttt ggtcatgaga ttatcaaaaa ggatcttcac
5220ctagatcctt ttaaattaaa aatgaagttt taaatcaatc taaagtatat atgagtaaac
5280ttggtctgac agttaccaat gcttaatcag tgaggcacct atctcagcga tctgtctatt
5340tcgttcatcc atagttgcct gactccccgt cgtgtagata actacgatac gggagggctt
5400accatctggc cccagtgctg caatgatacc gcgagaccca cgctcaccgg ctccagattt
5460atcagcaata aaccagccag ccggaagggc cgagcgcaga agtggtcctg caactttatc
5520cgcctccatc cagtctatta attgttgccg ggaagctaga gtaagtagtt cgccagttaa
5580tagtttgcgc aacgttgttg ccattgctac aggcatcgtg gtgtcacgct cgtcgtttgg
5640tatggcttca ttcagctccg gttcccaacg atcaaggcga gttacatgat cccccatgtt
5700gtgcaaaaaa gcggttagct ccttcggtcc tccgatcgtt gtcagaagta agttggccgc
5760agtgttatca ctcatggtta tggcagcact gcataattct cttactgtca tgccatccgt
5820aagatgcttt tctgtgactg gtgagtactc aaccaagtca ttctgagaat agtgtatgcg
5880gcgaccgagt tgctcttgcc cggcgtcaat acgggataat accgcgccac atagcagaac
5940tttaaaagtg ctcatcattg gaaaacgttc ttcggggcga aaactctcaa ggatcttacc
6000gctgttgaga tccagttcga tgtaacccac tcgtgcaccc aactgatctt cagcatcttt
6060tactttcacc agcgtttctg ggtgagcaaa aacaggaagg caaaatgccg caaaaaaggg
6120aataagggcg acacggaaat gttgaatact catactcttc ctttttcaat attattgaag
6180catttatcag ggttattgtc tcatgagcgg atacatattt gaatgtattt agaaaaataa
6240acaaataggg gttcc
62552535690DNAArtificial SequenceVector 253gcgcacattt ccccgaaaag
tgccacctga tgcggtgtga aataccgcac agatgcgtaa 60ggagaaaata ccgcatcagg
aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa 120tttttgttaa atcagctcat
tttttaacca ataggccgaa atcggcaaaa tcccttataa 180atcaaaagaa tagaccgaga
tagggttgag tgttgttcca gtttggaaca agagtccact 240attaaagaac gtggactcca
acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc 300actacgtgaa ccatcaccct
aatcaagttt tttggggtcg aggtgccgta aagcactaaa 360tcggaaccct aaagggagcc
cccgatttag agcttgacgg ggaaagccgg cgaacgtggc 420gagaaaggaa gggaagaaag
cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt 480cacgctgcgc gtaaccacca
cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat 540tcgccattca ggctgcgcaa
ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta 600cgccagctgg cgaaaggggg
atgtgctgca aggcgattaa gttgggtaac gccagggttt 660tcccagtcac gacgttgtaa
aacgacggcc agtgaattgt aatacgactc actatagggc 720gaattgggcc cgacgtcgca
tgctcccggc cgccatggcg gccgcgggaa ttcgattgat 780tggcgcgcct taattaacgg
gctggtaaaa caaatataag tattaatata aatataatac 840aatagaagga aaataaataa
aatttccctc tgtgccgtgc aaaaatgcac ggcaatgggt 900tggcccgcac ggcaaaggca
tcgttgccgt gtccacggca atgggttggc ccgcacggca 960aaggcatcgt tgccgtgtcc
acgtctttgc cgtgcgcctt ggctctatct ttgccgtgaa 1020gcgttctttg ccgtgtgcct
tttatttctt tgccgtggga tgctgccttt gccgagcgct 1080gagctggcgc tttgccgtgc
gcgtattgtt tgccgtgcgt cctcccagag ctgtacggca 1140aagaattcat tgccgtgcac
gaggcacacg ggaaagaagt ttcgcatggc aaagggcgct 1200gacagcacac ggcaaagagc
ccggcacggc attgagcttt ttttcccgta atgatagacg 1260gcataatata atggacgcac
atgctgatgt caggatgtca cccactcatc ctagtatttg 1320tgggacgtga attctttgtg
agatgggcaa tgggatgtga acaaaataag ttttgtacta 1380gtagataaac atttttaccc
ataaacaatt gttctgtatt gaatgaaaaa ttattttgta 1440ctggatgaaa atcttctgag
taactgtgta agattaacat gaatcaagag acaaatccaa 1500tggctacaaa gtcaactaat
acttgttaaa agttccgata cttaaaatta tcaaaactga 1560tatatagaat attgcccatc
tcgccaccgt gctagtttaa cagacgatgg acgaatatca 1620gtcttgtatt ggataatcga
tgcatgcgag ctatcggtca cctgtccatg cttccagaag 1680gagccgagac gtggcgactt
cgtccgacgc gccgactatc tgcacacgcc cggcttctcg 1740tcgtgggcga gtcagcagtc
acaggctttc cgcctaccaa ctcacacgta gcgccctatc 1800gtggcgcttg atcgatgcaa
cagcgatgcc tatcccagct cctcaagctg cttataagta 1860tgtcctcggc catcactgct
tacacaacaa acacagctac ttatcgcagt gtactaaaca 1920agacgtacta gctagatttc
gtgaggtaaa atcagtgcaa tatcacttgt gcaagccatt 1980agtttgttgc tttcctgtgc
catcgactgg catggctcgg aaatgctcca gctgcgggca 2040taatggccat aactccagga
cctgcagtgg caacaacggc ggcggtggtg ccggtggtgg 2100gctgaggctg ttcggtgtgc
agctgcaagt tggtgctgca cctctgaaga agagcttcag 2160catggagtgc ctctcgtcgt
cggcctacta cgcggccgca gcggtggccg cgtccaactc 2220gtcgtcgtcc gtgtcatcgt
catcgtcgct ggtctcggtg gaggagaacg ccgagaagat 2280gggccacggc tacctctccg
atggtctcat gggcagggct caggagagga agaagggtga 2340gttcgtgtac tggtttcttg
agcagttcgt tggtccggta tacctcgctg acacgcttga 2400tttgctatgc tatggatttt
ggatattaat catattatag tatgtgatag cgatctaacc 2460atcatgcatg atgtctaagg
ccagattaag aaaactattc tgaaattttt tttcccccta 2520gctagagact aaagatctga
agattcttgt tgatgcatga gtggttgtat gacttgtttg 2580tatccaattg tgccatcagt
tgctatctgc tatgccagac ttgcaactag ataacaggaa 2640atacttagtc tttcaggtcc
ttaactttca gtaatcatgt ctaatagctt gcacgaatca 2700gtttgttctt ttttttttca
cctgaagatg tccagttacg ttgggtgaac taattcgtgt 2760gacgcatggc atcaggggtt
ccatggacgg aggatgagca ccggaggttc ctggccggct 2820tagagaagct cgggaaaggc
gactggcgag gcatctcccg gcacttcgtc gcgacacgca 2880ccccgacgca ggtggccagc
cacgcccaga agtacttcct ccggcaggcc ggcctcgcgc 2940agaagaagcg gaggtccagc
ctcttcgacg tggtacgtgc acgcctcaaa acgcaagctg 3000gagttgtgga cgtagtaaca
aaccagctga catgcacgaa ccttcctctc ttttcttcag 3060gccgagaaga atggcgacaa
ggcggcgaag gagagtcgtc cgagactgaa acacgagact 3120agcagctccg tggacgggat
ggcaattcgg tcattccctg ctctgtctct aggacccagc 3180aggccgaggc ccgacgccgc
cgtgcttcca ccatgcctga ccttgatgcc gagctattcg 3240tcaggcctgg tttctccata
ataatgtgtg agtagttccc agataaggga attagggttc 3300ctatagggtt tcgctcatgt
gttgagcata taagaaaccc ttagtatgta tttgtatttg 3360taaaatactt ctatcaataa
aatttctaat tcctaaaacc aaaatccagt actaaaatcc 3420agatcccccg aattaattcg
gcgttaattc agtatcggcg cgccttaatt aaaatcgaat 3480ttcgaccata tgggagagct
cccaacgcgt tggatgcata gcttgagtat tctatagtgt 3540cacctaaata gcttggcgta
atcatggtca tagctgtttc ctgtgtgaaa ttgttatccg 3600ctcacaattc cacacaacat
acgagccgga agcataaagt gtaaagcctg gggtgcctaa 3660tgagtgagct aactcacatt
aattgcgttg cgctcactgc ccgctttcca gtcgggaaac 3720ctgtcgtgcc agctgcatta
atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt 3780gggcgctctt ccgcttcctc
gctcactgac tcgctgcgct cggtcgttcg gctgcggcga 3840gcggtatcag ctcactcaaa
ggcggtaata cggttatcca cagaatcagg ggataacgca 3900ggaaagaaca tgtgagcaaa
aggccagcaa aaggccagga accgtaaaaa ggccgcgttg 3960ctggcgtttt tccataggct
ccgcccccct gacgagcatc acaaaaatcg acgctcaagt 4020cagaggtggc gaaacccgac
aggactataa agataccagg cgtttccccc tggaagctcc 4080ctcgtgcgct ctcctgttcc
gaccctgccg cttaccggat acctgtccgc ctttctccct 4140tcgggaagcg tggcgctttc
tcatagctca cgctgtaggt atctcagttc ggtgtaggtc 4200gttcgctcca agctgggctg
tgtgcacgaa ccccccgttc agcccgaccg ctgcgcctta 4260tccggtaact atcgtcttga
gtccaacccg gtaagacacg acttatcgcc actggcagca 4320gccactggta acaggattag
cagagcgagg tatgtaggcg gtgctacaga gttcttgaag 4380tggtggccta actacggcta
cactagaaga acagtatttg gtatctgcgc tctgctgaag 4440ccagttacct tcggaaaaag
agttggtagc tcttgatccg gcaaacaaac caccgctggt 4500agcggtggtt tttttgtttg
caagcagcag attacgcgca gaaaaaaagg atctcaagaa 4560gatcctttga tcttttctac
ggggtctgac gctcagtgga acgaaaactc acgttaaggg 4620attttggtca tgagattatc
aaaaaggatc ttcacctaga tccttttaaa ttaaaaatga 4680agttttaaat caatctaaag
tatatatgag taaacttggt ctgacagtta ccaatgctta 4740atcagtgagg cacctatctc
agcgatctgt ctatttcgtt catccatagt tgcctgactc 4800cccgtcgtgt agataactac
gatacgggag ggcttaccat ctggccccag tgctgcaatg 4860ataccgcgag acccacgctc
accggctcca gatttatcag caataaacca gccagccgga 4920agggccgagc gcagaagtgg
tcctgcaact ttatccgcct ccatccagtc tattaattgt 4980tgccgggaag ctagagtaag
tagttcgcca gttaatagtt tgcgcaacgt tgttgccatt 5040gctacaggca tcgtggtgtc
acgctcgtcg tttggtatgg cttcattcag ctccggttcc 5100caacgatcaa ggcgagttac
atgatccccc atgttgtgca aaaaagcggt tagctccttc 5160ggtcctccga tcgttgtcag
aagtaagttg gccgcagtgt tatcactcat ggttatggca 5220gcactgcata attctcttac
tgtcatgcca tccgtaagat gcttttctgt gactggtgag 5280tactcaacca agtcattctg
agaatagtgt atgcggcgac cgagttgctc ttgcccggcg 5340tcaatacggg ataataccgc
gccacatagc agaactttaa aagtgctcat cattggaaaa 5400cgttcttcgg ggcgaaaact
ctcaaggatc ttaccgctgt tgagatccag ttcgatgtaa 5460cccactcgtg cacccaactg
atcttcagca tcttttactt tcaccagcgt ttctgggtga 5520gcaaaaacag gaaggcaaaa
tgccgcaaaa aagggaataa gggcgacacg gaaatgttga 5580atactcatac tcttcctttt
tcaatattat tgaagcattt atcagggtta ttgtctcatg 5640agcggataca tatttgaatg
tatttagaaa aataaacaaa taggggttcc 56902546558DNAArtificial
SequenceVector 254gcgcacattt ccccgaaaag tgccacctga tgcggtgtga aataccgcac
agatgcgtaa 60ggagaaaata ccgcatcagg aaattgtaag cgttaatatt ttgttaaaat
tcgcgttaaa 120tttttgttaa atcagctcat tttttaacca ataggccgaa atcggcaaaa
tcccttataa 180atcaaaagaa tagaccgaga tagggttgag tgttgttcca gtttggaaca
agagtccact 240attaaagaac gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg
gcgatggccc 300actacgtgaa ccatcaccct aatcaagttt tttggggtcg aggtgccgta
aagcactaaa 360tcggaaccct aaagggagcc cccgatttag agcttgacgg ggaaagccgg
cgaacgtggc 420gagaaaggaa gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa
gtgtagcggt 480cacgctgcgc gtaaccacca cacccgccgc gcttaatgcg ccgctacagg
gcgcgtccat 540tcgccattca ggctgcgcaa ctgttgggaa gggcgatcgg tgcgggcctc
ttcgctatta 600cgccagctgg cgaaaggggg atgtgctgca aggcgattaa gttgggtaac
gccagggttt 660tcccagtcac gacgttgtaa aacgacggcc agtgaattgt aatacgactc
actatagggc 720gaattgggcc cgacgtcgca tgctcccggc cgccatggcg gccgcgggaa
ttcgattgat 780tggcgcgcct taattaacgg gctggtaaaa caaatataag tattaatata
aatataatac 840aatagaagga aaataaataa aatttccctc tgtgccgtgc aaaaatgcac
ggcaatgggt 900tggcccgcac ggcaaaggca tcgttgccgt gtccacggca atgggttggc
ccgcacggca 960aaggcatcgt tgccgtgtcc acgtctttgc cgtgcgcctt ggctctatct
ttgccgtgaa 1020gcgttctttg ccgtgtgcct tttatttctt tgccgtggga tgctgccttt
gccgagcgct 1080gagctggcgc tttgccgtgc gcgtattgtt tgccgtgcgt cctcccagag
ctgtacggca 1140aagaattcat tgccgtgcac gaggcacacg ggaaagaagt ttcgcatggc
aaagggcgct 1200gacagcacac ggcaaagagc ccggcacggc attgagcttt ttttcccgta
atgatagacg 1260gcataatata atggacgcac atgctgatgt caggatgtca cccactcatc
ctagtatttg 1320tgggacgtga attctttgtg agatgggcaa tgggatgtga acaaaataag
ttttgtacta 1380gtagataaac atttttaccc ataaacaatt gttctgtatt gaatgaaaaa
ttattttgta 1440ctggatgaaa atcttctgag taactgtgta agattaacat gaatcaagag
acaaatccaa 1500tggctacaaa gtcaactaat acttgttaaa agttccgata cttaaaatta
tcaaaactga 1560tatatagaat attgcccatc tcgccaccgt gctagtttaa cagacgatgg
acgaatatca 1620gtcttgtatt ggataatcga tgcatgcgag ctatcggtca cctgtccatg
cttccagaag 1680gagccgagac gtggcgactt cgtccgacgc gccgactatc tgcacacgcc
cggcttctcg 1740tcgtgggcga gtcagcagtc acaggctttc cgcctaccaa ctcacacgta
gcgccctatc 1800gtggcgcttg atcgatgcaa cagcgatgcc tatcccagct cctcaagctg
cttataagta 1860tgtcctcggc catcactgct tacacaacaa acacagctac ttatcgcagt
gtactaaaca 1920agacgtacta gctagatttc gtgaggtaaa atcagtgcaa tatcacttgt
gcaagccatt 1980agtgatctgc tgtgctgtgg tgagagctgc caagaagctg agcagtgcta
ctctggagga 2040gctcaccaaa ggattgtttc tgtttcggtt ttggcaatca ctaaataatg
gaggaagtgg 2100aggaggccaa caggatagcc gttgagagct gccacagagt gctgggcctg
ctttcccagt 2160cgcaggaccc ggcgcagctc aggagcatag ctctgggcac ggacgacgcc
tgcgccaagt 2220tccgcaaggt ggtctccctc ctcggcaacg aaggaggagg gggagcagta
agccatccca 2280gagccaaggt tgcgagcagg aaacagaccc cggccttctt gagccagaag
ggcttcctgg 2340acaacaacac cccggtggtg gtgctgaaca gcagcgccca cccttccact
agctccgcgc 2400aggcgtatcc taggaacacc attctggatt cgcacaccgc gcacccgatc
ggagggcctc 2460ccaagctggt ccagccattg tccgcgcact tccagttcgg caacgtatcg
cggtatcagt 2520tccagcatca gcaccagcag cagaagatgc aggctgagat gttcaagaga
agcaacagta 2580tcagtgggat taacctgaag ttcgacagcc ccagcgcggc cacgggggcg
atgtcgtccg 2640cgagatcctt catgtcatct ttgagcatgg atggtagcgt ggctagcctg
gatgccaagt 2700cttcctcgtt ccatttgatc ggtgggcctg ctatgagtga cccggtgaat
gcgcagcagg 2760cgccgaggag gcggtgcacg gggcgtgggg aggatgggaa tggcaagtgc
gctgcaaatg 2820gcaggtgcca ttgctcaaag aggaggtaaa tactcttatc ttagtgtgta
tgattcttgc 2880ttgctcttct attcaaggta gaataccatg agaattgttc tgttccctat
ttcagcagga 2940agttgcgggt gaagaagacg attaaagttc ctgccattag taataaaatt
gctgatatac 3000ctccagatga atactcatgg aggaagtatg ggcagaagcc aattaagggt
tcccctcatc 3060ccaggtatga actgagcact atctgttagt gtcattttct tgcacacata
ttcttgatta 3120tacggtgatg gagtagtggc aatgatgcta taatcaccat gactcatcaa
ttttctaatt 3180atttatcata tgtataactg cacatatccc ccatgaacta ctcaagtgcc
tcatgataaa 3240tgatggctct gtgataatca gaacacactt tatccatggt ttgcagggtg
ttttacatgc 3300tcctgataat cagaacactc tttatacagt atagtaatca aaactctcct
tatgcagggt 3360gttttgtatg ttcctgaata gttactttgt gaataatgtc tttcattctt
cttgtgcaca 3420ctttcttaaa atagatcaat cccgagtctt aaagtggcca gtggccactt
cgtaattcag 3480tctaccatga ttcagtcttt aagtggacat ctttaatgct atcgtgattc
agtctactac 3540gtactatact ttacctattc atatcacttt cccaccttgt ctatcttaaa
tttcctgatg 3600ataaaataca caaatatagc tatacggtaa tagcaaacgc atgggtatct
tttcgagaaa 3660aaaacaaaca catgggtatg gctgtctgaa ttgagaaaaa acttttcctc
tttctagcaa 3720gcactagata tagaaacacg attcatggcg catctatttt tatctccaat
ccacaatgct 3780aattctgatg tgtctcttaa gaccaatcca ctgattcctt aaacataatg
cagggggtac 3840tacaaatgta gcagtgtcag gggctgccca gccaggaagc atgttgaacg
ttgtgtggat 3900gatgcgtcaa tgctcattgt gacatacgag ggtgaacaca accacacgcg
aatgccggct 3960cagtctgcac aggcttaggg aatcactttg atcatcacac cctctccagg
gaatactaac 4020tcgcctgccc ttgtcgatgg ccgactgcac tgttcttcta aattagaatt
acaaagtgac 4080aaaaactggg ttccatttga gcagttgatg aggcctggtt tctccataat
aatgtgtgag 4140tagttcccag ataagggaat tagggttcct atagggtttc gctcatgtgt
tgagcatata 4200agaaaccctt agtatgtatt tgtatttgta aaatacttct atcaataaaa
tttctaattc 4260ctaaaaccaa aatccagtac taaaatccag atcccccgaa ttaattcggc
gttaattcag 4320tatcggcgcg ccttaattaa aatcgaattt cgaccatatg ggagagctcc
caacgcgttg 4380gatgcatagc ttgagtattc tatagtgtca cctaaatagc ttggcgtaat
catggtcata 4440gctgtttcct gtgtgaaatt gttatccgct cacaattcca cacaacatac
gagccggaag 4500cataaagtgt aaagcctggg gtgcctaatg agtgagctaa ctcacattaa
ttgcgttgcg 4560ctcactgccc gctttccagt cgggaaacct gtcgtgccag ctgcattaat
gaatcggcca 4620acgcgcgggg agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc
tcactgactc 4680gctgcgctcg gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg
cggtaatacg 4740gttatccaca gaatcagggg ataacgcagg aaagaacatg tgagcaaaag
gccagcaaaa 4800ggccaggaac cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc
gcccccctga 4860cgagcatcac aaaaatcgac gctcaagtca gaggtggcga aacccgacag
gactataaag 4920ataccaggcg tttccccctg gaagctccct cgtgcgctct cctgttccga
ccctgccgct 4980taccggatac ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc
atagctcacg 5040ctgtaggtat ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg
tgcacgaacc 5100ccccgttcag cccgaccgct gcgccttatc cggtaactat cgtcttgagt
ccaacccggt 5160aagacacgac ttatcgccac tggcagcagc cactggtaac aggattagca
gagcgaggta 5220tgtaggcggt gctacagagt tcttgaagtg gtggcctaac tacggctaca
ctagaagaac 5280agtatttggt atctgcgctc tgctgaagcc agttaccttc ggaaaaagag
ttggtagctc 5340ttgatccggc aaacaaacca ccgctggtag cggtggtttt tttgtttgca
agcagcagat 5400tacgcgcaga aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg
ggtctgacgc 5460tcagtggaac gaaaactcac gttaagggat tttggtcatg agattatcaa
aaaggatctt 5520cacctagatc cttttaaatt aaaaatgaag ttttaaatca atctaaagta
tatatgagta 5580aacttggtct gacagttacc aatgcttaat cagtgaggca cctatctcag
cgatctgtct 5640atttcgttca tccatagttg cctgactccc cgtcgtgtag ataactacga
tacgggaggg 5700cttaccatct ggccccagtg ctgcaatgat accgcgagac ccacgctcac
cggctccaga 5760tttatcagca ataaaccagc cagccggaag ggccgagcgc agaagtggtc
ctgcaacttt 5820atccgcctcc atccagtcta ttaattgttg ccgggaagct agagtaagta
gttcgccagt 5880taatagtttg cgcaacgttg ttgccattgc tacaggcatc gtggtgtcac
gctcgtcgtt 5940tggtatggct tcattcagct ccggttccca acgatcaagg cgagttacat
gatcccccat 6000gttgtgcaaa aaagcggtta gctccttcgg tcctccgatc gttgtcagaa
gtaagttggc 6060cgcagtgtta tcactcatgg ttatggcagc actgcataat tctcttactg
tcatgccatc 6120cgtaagatgc ttttctgtga ctggtgagta ctcaaccaag tcattctgag
aatagtgtat 6180gcggcgaccg agttgctctt gcccggcgtc aatacgggat aataccgcgc
cacatagcag 6240aactttaaaa gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct
caaggatctt 6300accgctgttg agatccagtt cgatgtaacc cactcgtgca cccaactgat
cttcagcatc 6360ttttactttc accagcgttt ctgggtgagc aaaaacagga aggcaaaatg
ccgcaaaaaa 6420gggaataagg gcgacacgga aatgttgaat actcatactc ttcctttttc
aatattattg 6480aagcatttat cagggttatt gtctcatgag cggatacata tttgaatgta
tttagaaaaa 6540taaacaaata ggggttcc
65582554683DNAArtificial SequenceVector 255gcgcacattt
ccccgaaaag tgccacctga tgcggtgtga aataccgcac agatgcgtaa 60ggagaaaata
ccgcatcagg aaattgtaag cgttaatatt ttgttaaaat tcgcgttaaa 120tttttgttaa
atcagctcat tttttaacca ataggccgaa atcggcaaaa tcccttataa 180atcaaaagaa
tagaccgaga tagggttgag tgttgttcca gtttggaaca agagtccact 240attaaagaac
gtggactcca acgtcaaagg gcgaaaaacc gtctatcagg gcgatggccc 300actacgtgaa
ccatcaccct aatcaagttt tttggggtcg aggtgccgta aagcactaaa 360tcggaaccct
aaagggagcc cccgatttag agcttgacgg ggaaagccgg cgaacgtggc 420gagaaaggaa
gggaagaaag cgaaaggagc gggcgctagg gcgctggcaa gtgtagcggt 480cacgctgcgc
gtaaccacca cacccgccgc gcttaatgcg ccgctacagg gcgcgtccat 540tcgccattca
ggctgcgcaa ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta 600cgccagctgg
cgaaaggggg atgtgctgca aggcgattaa gttgggtaac gccagggttt 660tcccagtcac
gacgttgtaa aacgacggcc agtgaattgt aatacgactc actatagggc 720gaattgggcc
cgacgtcgca tgctcccggc cgccatggcg gccgcgggaa ttcgattgat 780tggcgcgcct
taattaacgg gctggtaaaa caaatataag tattaatata aatataatac 840aatagaagga
aaataaataa aatttccctc tgtgccgtgc aaaaatgcac ggcaatgggt 900tggcccgcac
ggcaaaggca tcgttgccgt gtccacggca atgggttggc ccgcacggca 960aaggcatcgt
tgccgtgtcc acgtctttgc cgtgcgcctt ggctctatct ttgccgtgaa 1020gcgttctttg
ccgtgtgcct tttatttctt tgccgtggga tgctgccttt gccgagcgct 1080gagctggcgc
tttgccgtgc gcgtattgtt tgccgtgcgt cctcccagag ctgtacggca 1140aagaattcat
tgccgtgcac gaggcacacg ggaaagaagt ttcgcatggc aaagggcgct 1200gacagcacac
ggcaaagagc ccggcacggc attgagcttt ttttcccgta atgatagacg 1260gcataatata
atggacgcac atgctgatgt caggatgtca cccactcatc ctagtatttg 1320tgggacgtga
attctttgtg agatgggcaa tgggatgtga acaaaataag ttttgtacta 1380gtagataaac
atttttaccc ataaacaatt gttctgtatt gaatgaaaaa ttattttgta 1440ctggatgaaa
atcttctgag taactgtgta agattaacat gaatcaagag acaaatccaa 1500tggctacaaa
gtcaactaat acttgttaaa agttccgata cttaaaatta tcaaaactga 1560tatatagaat
attgcccatc tcgccaccgt gctagtttaa cagacgatgg acgaatatca 1620gtcttgtatt
ggataatcga tgcatgcgag ctatcggtca cctgtccatg cttccagaag 1680gagccgagac
gtggcgactt cgtccgacgc gccgactatc tgcacacgcc cggcttctcg 1740tcgtgggcga
gtcagcagtc acaggctttc cgcctaccaa ctcacacgta gcgccctatc 1800gtggcgcttg
atcgatgcaa cagcgatgcc tatcccagct cctcaagctg cttataagta 1860tgtcctcggc
catcactgct tacacaacaa acacagctac ttatcgcagt gtactaaaca 1920agacgtacta
gctagatttc gtgaggtaaa atcagtgcaa tatcacttgt gcaagccatt 1980agtatgggtt
cggagacctt tctggagatc ctgctggcca tcctgctgcc gccgctcggc 2040gttttcctcc
gcttcggcat cggcgtaagc taccaaacca ttcagcgatt tcagggtgtg 2100tatgtaatga
tagatatatt gatttgatgg tcggttcatg catgtctgca ggtggagttc 2160tggatctgcc
tgctactcac cctgctgggc tacatccccg gcatcatcta cgccgtcttc 2220gtccttgttg
catagaggcc tggtttctcc ataataatgt gtgagtagtt cccagataag 2280ggaattaggg
ttcctatagg gtttcgctca tgtgttgagc atataagaaa cccttagtat 2340gtatttgtat
ttgtaaaata cttctatcaa taaaatttct aattcctaaa accaaaatcc 2400agtactaaaa
tccagatccc ccgaattaat tcggcgttaa ttcagtatcg gcgcgcctta 2460attaaaatcg
aatttcgacc atatgggaga gctcccaacg cgttggatgc atagcttgag 2520tattctatag
tgtcacctaa atagcttggc gtaatcatgg tcatagctgt ttcctgtgtg 2580aaattgttat
ccgctcacaa ttccacacaa catacgagcc ggaagcataa agtgtaaagc 2640ctggggtgcc
taatgagtga gctaactcac attaattgcg ttgcgctcac tgcccgcttt 2700ccagtcggga
aacctgtcgt gccagctgca ttaatgaatc ggccaacgcg cggggagagg 2760cggtttgcgt
attgggcgct cttccgcttc ctcgctcact gactcgctgc gctcggtcgt 2820tcggctgcgg
cgagcggtat cagctcactc aaaggcggta atacggttat ccacagaatc 2880aggggataac
gcaggaaaga acatgtgagc aaaaggccag caaaaggcca ggaaccgtaa 2940aaaggccgcg
ttgctggcgt ttttccatag gctccgcccc cctgacgagc atcacaaaaa 3000tcgacgctca
agtcagaggt ggcgaaaccc gacaggacta taaagatacc aggcgtttcc 3060ccctggaagc
tccctcgtgc gctctcctgt tccgaccctg ccgcttaccg gatacctgtc 3120cgcctttctc
ccttcgggaa gcgtggcgct ttctcatagc tcacgctgta ggtatctcag 3180ttcggtgtag
gtcgttcgct ccaagctggg ctgtgtgcac gaaccccccg ttcagcccga 3240ccgctgcgcc
ttatccggta actatcgtct tgagtccaac ccggtaagac acgacttatc 3300gccactggca
gcagccactg gtaacaggat tagcagagcg aggtatgtag gcggtgctac 3360agagttcttg
aagtggtggc ctaactacgg ctacactaga agaacagtat ttggtatctg 3420cgctctgctg
aagccagtta ccttcggaaa aagagttggt agctcttgat ccggcaaaca 3480aaccaccgct
ggtagcggtg gtttttttgt ttgcaagcag cagattacgc gcagaaaaaa 3540aggatctcaa
gaagatcctt tgatcttttc tacggggtct gacgctcagt ggaacgaaaa 3600ctcacgttaa
gggattttgg tcatgagatt atcaaaaagg atcttcacct agatcctttt 3660aaattaaaaa
tgaagtttta aatcaatcta aagtatatat gagtaaactt ggtctgacag 3720ttaccaatgc
ttaatcagtg aggcacctat ctcagcgatc tgtctatttc gttcatccat 3780agttgcctga
ctccccgtcg tgtagataac tacgatacgg gagggcttac catctggccc 3840cagtgctgca
atgataccgc gagacccacg ctcaccggct ccagatttat cagcaataaa 3900ccagccagcc
ggaagggccg agcgcagaag tggtcctgca actttatccg cctccatcca 3960gtctattaat
tgttgccggg aagctagagt aagtagttcg ccagttaata gtttgcgcaa 4020cgttgttgcc
attgctacag gcatcgtggt gtcacgctcg tcgtttggta tggcttcatt 4080cagctccggt
tcccaacgat caaggcgagt tacatgatcc cccatgttgt gcaaaaaagc 4140ggttagctcc
ttcggtcctc cgatcgttgt cagaagtaag ttggccgcag tgttatcact 4200catggttatg
gcagcactgc ataattctct tactgtcatg ccatccgtaa gatgcttttc 4260tgtgactggt
gagtactcaa ccaagtcatt ctgagaatag tgtatgcggc gaccgagttg 4320ctcttgcccg
gcgtcaatac gggataatac cgcgccacat agcagaactt taaaagtgct 4380catcattgga
aaacgttctt cggggcgaaa actctcaagg atcttaccgc tgttgagatc 4440cagttcgatg
taacccactc gtgcacccaa ctgatcttca gcatctttta ctttcaccag 4500cgtttctggg
tgagcaaaaa caggaaggca aaatgccgca aaaaagggaa taagggcgac 4560acggaaatgt
tgaatactca tactcttcct ttttcaatat tattgaagca tttatcaggg 4620ttattgtctc
atgagcggat acatatttga atgtatttag aaaaataaac aaataggggt 4680tcc
4683
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20210040312 | THERMOPLASTIC RESIN COMPOSITION AND MOLDED ARTICLE THEREOF |
20210040311 | RESIN COMPOSITION AND MOLDED ARTICLE THEREOF |
20210040310 | POLYACETAL RESIN COMPOSITION AND METHOD FOR PRODUCING THE SAME |
20210040309 | LOW MOLECULAR WEIGHT DRY POWDER POLYMER FOR USE AS PAPER-MAKING DRY STRENGTH AGENT |
20210040308 | BLOCK COPOLYMER COMPOSITION FOR FLEXOGRAPHIC PLATE |