Patent application title: COMPOSITIONS AND METHODS FOR PRODUCING PLANTS WITH IMPROVED STRESS TOLERANCE
Inventors:
Sathish Puthigae (Auckland, NZ)
Sathish Puthigae (Auckland, NZ)
Jonathan Robert Phillips (Bonn, DE)
Claudia Jeannette Smith-Espinoza (Bonn, DE)
Catherine Jane Bryant (Auckland, NZ)
Catherine Jane Bryant (Auckland, NZ)
Kieran Michael Elborough (Franklin, NZ)
Colin Robert South (Lexington, MA, US)
IPC8 Class: AA01H500FI
USPC Class:
800289
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part the polynucleotide confers resistance to heat or cold (e.g., chilling, etc.)
Publication date: 2010-09-30
Patent application number: 20100251427
Claims:
1. An isolated polynucleotide comprising:a) a sequence encoding a
polypeptide with at least 95% identity to the amino acid sequence of SEQ
ID NO:163; orb) the complement of the sequence of a).
2. The isolated polynucleotide of claim 1, wherein the polypeptide is derived from a plant species and comprises the sequence of SEQ ID NO:160.
3. The isolated polynucleotide of claim 1, wherein the polypeptide is derived from a dicotyledonous species and comprises the sequence of SEQ ID NO:161.
4. The isolated polynucleotide of claim 1, wherein the polypeptide is derived from a monocotyledonous species and comprises the sequence of SEQ ID NO:162.
5. The isolated polynucleotide of claim 1, wherein the polypeptide has the amino acid sequence of SEQ ID NO:163.
6. The isolated polynucleotide of claim 1, wherein the sequence encoding the polypeptide in a) has at least 95% identity to the sequence of SEQ ID NO:201.
7. The isolated polynucleotide of claim 1, wherein the sequence encoding the polypeptide in a) has at least 95% identity to the coding sequence of SEQ ID NO:201.
8. The isolated polynucleotide of claim 1, wherein the sequence encoding the polypeptide in a) has the sequence of SEQ ID NO:201.
9. The isolated polynucleotide of claim 1, wherein the sequence encoding the polypeptide in a) has the coding sequence of SEQ ID NO:201.
10. A genetic construct comprising the polynucleotide of claim 1.
11. A host cell comprising a genetic construct of claim 10.
12. The host cell of claim 11 genetically modified to express a polynucleotide comprising a sequence encoding a polypeptide with at least 95% identity to the amino acid sequence of SEQ ID NO:163.
13. A plant cell or plant comprising the genetic construct of claim 10, or a plant part, propagule, progeny or see of the plant, wherein the plant part, propagule, progeny or seed of the plant comprises the genetic construct.
14. A plant cell or plant of claim 13 genetically modified to express a polynucleotide same as claim 13, or a plant part, propagule, progeny or see of the plant, wherein the plant part, propagule, progeny or seed of the plant expresses the polynucleotide.
15. An isolated polypeptide comprising:a) a sequence with at least 95% identity to the amino acid sequence of SEQ ID NO: 163; orb) a fragment of at least 5 contiguous amino acids of the sequence in a), wherein the fragment has essentially the same activity as the polypeptide in a).
16. The isolated polypeptide of claim 15, wherein the sequence in a) has the sequence of SEQ ID NO: 163.
17. An antibody raised against a polypeptide of claim 16.
18. An isolated polynucleotide encoding a polypeptide consisting of:a) a sequence with at least 95% identity to the amino acid sequence of SEQ ID NO: 163; orb) a fragment of at least 5 contiguous amino acids of the sequence in a).
19. A genetic construct comprising the polynucleotide of claim 18.
20. A probe or primer capable of hybridizing under stringent hybridization conditions to a polynucleotide consisting of:a) a sequence encoding a polypeptide with at least 95% identity to the amino acid sequence of SEQ ID NO:163; orb) the complement of the sequence of a).
21. The probe or primer of claim 20, comprising at least 15 contiguous nucleotides of a polynucleotide consisting of:a) a sequence encoding a polypeptide with at least 95% identity to the amino acid sequence of SEQ ID NO:163; orb) the complement of the sequence of a).
22. A method for producing a plant cell or plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity; the method comprising the step of transformation of a plant cell or plant with a genetic construct including:a) at least one polynucleotide comprising:i) a sequence encoding a polypeptide with at least 95% identity to the amino acid sequence of SEQ ID NO:163; orii) the complement of the sequence of a); orb) at least one polynucleotide comprising a fragment, of at least 15 nucleotides in length, of the polynucleotide of a).
23. The method of claim 22, wherein the stress is environmental stress is drought stress.
24. A method for selecting a plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polynucleotide comprising:a) a sequence encoding a polypeptide with at least 95% identity to the amino acid sequence of SEQ ID NO:163; orb) the complement of the sequence of a).
25. A method for selecting a plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polypeptide comprising:a) a sequence with at least 95% identity to the amino acid sequence of SEQ ID NO: 163.
Description:
REFERENCE TO RELATED APPLICATIONS
[0001]The present application is a divisional of U.S. patent application Ser. No. 11/584,820, filed on Oct. 20, 2006, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/729,316, filed Oct. 21, 2005, each of which is hereby incorporated by reference in its entirety.
TECHNICAL FIELD
[0002]The present invention relates to compositions and methods for producing plants with improved stress tolerance.
BACKGROUND ART
[0003]Environmental abiotic stresses, including drought stress, cold stress, freezing stress, heat stress and salinity stress are major factors limiting plant growth and productivity. Crop losses and reduction in yield of major crops including maize, wheat and rice caused by such stresses represent significant economic issues and also lead to food shortages in several underdeveloped countries.
[0004]The development of stress tolerant plants has the potential to reduce or solve at least some of these problems. The use of traditional plant breeding strategies to produce new lines of plants that exhibit tolerance to these types of stresses has been slow. Lack of sufficient germplasm resources and incompatibility between distantly related plant species, present significant problems in conventional breeding. Further, the cellular processes leading to tolerance to such stresses are complex and involve multiple mechanisms of cellular adaptation and numerous metabolic pathways. This limits the success of both traditional breeding and that of genetic engineering approaches to development of stress tolerant plants. It would be beneficial to identify genes and proteins involved in controlling the complex processes leading to stress tolerance.
[0005]Regulators of gene expression, such as transcription factors, involved in controlling stress tolerance may be particularly useful in genetic engineering of plants, as a single gene may control a whole cascade of genes leading to the tolerance phenotype. Furthermore, there is sometimes commonality in many aspects of the different types of stress tolerant responses referred above. For example, genes that increase tolerance to cold or salt may also improve drought stress tolerance. This has been demonstrated in the case of the transcription factor At CBF/DREB 1 (Kasuga et al., 1999 Nature Biotech 17: 287-91) and the vacuolar pyrophosphatase AVP1 (Gaxiola et al., 2001 PNAS 98:11444-19).
[0006]Whilst some potentially useful genes have been identified, the identification and cloning of plant genes that confer tolerance to stress remains fragmented and incomplete. Although it is assumed that stress induced proteins may have a role in stress tolerance, evidence is still lacking and the function of many such stress responsive genes is unknown.
[0007]The hot and dry weather conditions in New Zealand and other countries in the summer period can have significant effect upon the yield of ryegrass. This is invariably during the dairy milking season and therefore has real effects on cost of dairy production through either reduced milk yield or the use of supplementary feeds and/or irrigation systems.
[0008]It would be beneficial to identify genes which have the capacity to confer stress tolerance in stress susceptible plant species. The development of stress tolerant crops will provide many advantages such as increasing yield and producing plants that may be cultivated in previously unsuitable environmental conditions. Thus, there exists a need for compositions and methods for producing plants with improved stress tolerance relative to their wild-type counterparts.
[0009]It is an object of the invention to provide improved compositions and methods for developing plant varieties with improved tolerance of at least one of the following stresses; drought, cold, freezing, heat and salinity, or at least to provide the public with a useful choice.
SUMMARY OF THE INVENTION
[0010]In the first aspect, the invention provides an isolated polynucleotide comprising:
[0011]a) a sequence encoding a polypeptide with at least 70% identity to the amino acid sequence of SEQ ID NO:4 or SEQ ID NO:163, wherein the polypeptide is capable of modulating in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity; or
[0012]b) the complement of the sequence of a).
[0013]Preferably the polypeptide has at least 70% identity to the amino acid sequence of SEQ ID NO:4. More preferably the polypeptide has the amino acid sequence of SEQ ID NO:4.
[0014]Preferably the sequence encoding the polypeptide in a) has at least 70% identity to the sequence of SEQ ID NO:82. More preferably the sequence encoding the polypeptide in a) has at least 70% identity to the coding sequence of SEQ ID NO:82. More preferably the sequence encoding the polypeptide in a) has the sequence of SEQ ID NO:82. More preferably the sequence encoding the polypeptide in a) has the coding sequence of SEQ ID NO:82.
[0015]In one embodiment the polypeptide is derived from a plant species and comprises the sequence of SEQ ID NO:1.
[0016]In a further embodiment the polypeptide is derived from a dicotyledonous species and comprises the sequence of SEQ ID NO:2.
[0017]In a further embodiment the polypeptide is derived from a monocotyledonous species and comprises the sequence of SEQ ID NO:3.
[0018]Alternatively the polypeptide has at least 70% identity to the amino acid sequence of SEQ ID NO:163. Preferably the polypeptide has the amino acid sequence of SEQ ID NO:163.
[0019]Preferably the sequence encoding the polypeptide in a) has at least 70% identity to the sequence of SEQ ID NO:201. More preferably the sequence encoding the polypeptide in a) has at least 70% identity to the coding sequence of SEQ ID NO:201. More preferably the sequence encoding the polypeptide in a) has the sequence of SEQ ID NO:201. More preferably the sequence encoding the polypeptide in a) has the coding sequence of SEQ ID NO:201.
[0020]In one embodiment the polypeptide is derived from a plant species and comprises the sequence of SEQ ID NO:4.
[0021]In a further embodiment the polypeptide is derived from a dicotyledonous species and comprises the sequence of SEQ ID NO:5.
[0022]In a further embodiment the polypeptide is derived from a monocotyledonous species and comprises the sequence of SEQ ID NO:6.
[0023]In a further embodiment the polypeptide comprises at least two repeats of the amino acid sequence motif QALGGHK (SEQ ID NO:242), the repeated moiety being separated by between 26 and 63 residues.
[0024]In a further aspect the invention provides an isolated polynucleotide comprising:
[0025]a) a sequence with at least 70% identity to the nucleotide sequence of SEQ ID NO:82 or 201, wherein the sequence encodes a polypeptide capable of modulating in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity; or
[0026]b) the complement of the sequence of a).
[0027]Preferably the sequence in a) has at least 70% identity to the sequence of SEQ ID NO:82. More preferably the sequence in a) has at least 70% identity to the coding sequence of SEQ ID NO:82. More preferably the sequence in a) has the sequence of SEQ ID NO:82. More preferably the sequence in a) has the coding sequence of SEQ ID NO:82.
[0028]Alternatively the sequence in a) has at least 70% identity to the sequence of SEQ ID NO:201. More preferably the sequence in a) has at least 70% identity to the coding sequence of SEQ ID NO:201. More preferably the sequence in a) has the sequence of SEQ ID NO:201. More preferably the sequence in a) has the coding sequence of SEQ ID NO:201.
[0029]In a further aspect the invention provides an isolated polypeptide comprising: [0030]a) a sequence with at least 70% identity to the amino acid sequence of SEQ ID NO:4 or 163, wherein the polypeptide is capable of modulating in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0031]Preferably the sequence in a) has at least 70% sequence identity to the amino acid sequence of SEQ ID NO: 4. More preferably the sequence in a) has the sequence of SEQ ID NO: 4.
[0032]Alternatively the sequence in a) has at least 70% sequence identity to the amino acid sequence of SEQ ID NO: 163. Preferably the sequence in a) has the sequence of SEQ ID NO: 163.
[0033]In a further aspect the invention provides an isolated polypeptide comprising a fragment of at least 5 contiguous amino acids of the polypeptide of the invention, wherein the fragment has essentially the same activity as the polypeptide.
[0034]In a further aspect the invention provides a polynucleotide encoding a polypeptide of the invention.
[0035]In a further aspect the invention provides an antibody raised against a polypeptide of the invention.
[0036]In a further aspect the invention provides a probe or primer capable of hybridizing to a polynucleotide of the invention, or a complement thereof, under stringent hybridization conditions.
[0037]Preferably the probe or primer comprises at least 15 contiguous nucleotides of polynucleotide of the invention.
[0038]In a further aspect the invention provides a genetic construct comprising a polynucleotide of the invention.
[0039]Preferably the genetic construct comprises a promoter operably linked to the polynucleotide. Preferably the promoter is the double CaMV 35S promoter. More preferably the promoter is the ryegrass promoter of SEQ ID NO:239. Alternatively the promoter is a portion of the ryegrass promoter of SEQ ID NO:239 that provides essentially the same expression pattern as the ryegrass promoter of SEQ ID NO:239.
[0040]In a further aspect the invention provides a vector comprising the genetic construct of the invention.
[0041]In a further aspect the invention provides a host cell comprising a genetic construct of the invention.
[0042]In a further aspect the invention provides a host cell genetically modified to express the polynucleotide of the invention.
[0043]In a further aspect the invention provides a plant cell comprising the genetic construct of the invention.
[0044]In a further aspect the invention provides a plant cell genetically modified to express a polynucleotide of the invention.
[0045]In a further aspect the invention provides a plant which comprises the plant cell of the invention.
[0046]In a further aspect the invention provides a method for producing a polypeptide of the invention, the method comprising culturing a host cell comprising a genetic construct of the invention designed to express the polypeptide.
[0047]In a further aspect the invention provides a method for producing a plant cell or plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity; the method comprising the step of transformation of a plant cell or plant with a genetic construct including:
[0048]a) at least one polynucleotide of the invention; or
[0049]b) at least one polynucleotide comprising a fragment, of at least 15 nucleotides in length, of the polynucleotide of a);
[0050]In a further aspect the invention provides a plant produced by the method of the invention.
[0051]In a further aspect the invention provides a method for selecting a plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0052]In a further aspect the invention provides a method for selecting a plant with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0053]In a further aspect the invention provides a plant selected by a selection method of the invention.
[0054]In a further aspect the invention provides a plant part, propagule, progeny or seed of the plant of the invention.
[0055]In preferred embodiments of the invention the environmental stress is drought stress.
[0056]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:82 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0057]Preferably the variant of SEQ ID NO:82 encodes a polypeptide comprising the amino acid sequence:
TABLE-US-00001 (SEQ ID NO: 1) LX1X2X3X4X5X6LX7X8X9KX10- X11X12RX13EKX14X15X16K wherein X1 = Q, E, H, L, R, T or S, X2 = E, D or Q, X3 = K, R, A, E or T, X4 = I or S, X5 = K, R, D or N, X6 = E, D or S, X7 = K, T or I, X8 = A, V, S, T, D, V or Q, X9 = E or D, X10 = N, D, T or S, X11 = E or D, X12 = L or S, X13 = D, H or E, X14 = Q, H, R, L, V, T or A and X15 = K, R, V, T or S, X16 = L or M,
the polypeptide modulating, in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0058]Alternatively the variant of SEQ ID NO:82 encodes a polypeptide comprising the amino acid sequence:
TABLE-US-00002 (SEQ ID NO: 2) LX1X2X3X4X5X6L.sub.X7X8X9KX10- X11LRX12EKX13X14X15K wherein X1 = Q, H, L, R, T or S, X2 = E, D or Q, X3 = K, R, A or E, X4 = I or S, X5 = K, R, D or N, X6 = E, D or S, X7 = K, T or I, X8 = A, V, S, T, D, or Q, X9 = E or D, X10 = N, T or S, X11 = E or D, X12 = D or E, X13 = Q, H, R, L, T or A, X14 = K, R, V, T or S and X15 = L or M,
the polypeptide modulating, in a dicotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0059]Alternatively the variant of SEQ ID NO:82 encodes a polypeptide comprising the amino acid sequence:
TABLE-US-00003 (SEQ ID NO: 3) LX1X2X3IX4X5LKX6X7KX8EX9RX.su- b.10EKX11X12X13K where X1 = Q, E or R, X2 = E or D, X3 = K or T, X4 = K or R, X5 = E or D, X6 = A or V, X7 = E or D, X8 = N or D, X9 = L or S, X10 = D or H, X11 = Q or V, X12 = K, R or T and X13 = L or M,
the polypeptide modulating, in a monocotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0060]Exemplary polynucleotide variants of SEQ ID NO: 82 are disclosed herein and identified as SEQ ID NOs: 83-159 of the sequence listing.
[0061]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO:82.
[0062]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO:82.
[0063]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO: 82. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0064]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO: 201 or a variant thereof, wherein the variant encodes a polypeptide which modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0065]Preferably the variant of SEQ ID NO:201 encodes a polypeptide comprising the amino acid sequence:
TABLE-US-00004 (SEQ ID NO: 160) X1X2CX3VCX4X5X6X7X8X9YQALGGHK- X10SHRX11 where X1 = H, F or Y, X2 = G, A, K, E or R, X3 = S, T, N or G, X4 = G, E, D, N or Y, X5 = K or R, X6 = A, S, V, G, or T, X7 = F or Y, X8 = A, P, S or G, X9 = S or T, X10 = A or T and X11 = K, S, I, P, T or V
the polypeptide modulating, in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0066]Alternatively the variant of SEQ ID NO:201 encodes a polypeptide comprising the amino acid sequence:
TABLE-US-00005 (SEQ ID NO: 161) X1X2CX3VCX4KX5FX6SYQALGGHKX7SHRX8 where X1 = H, F or Y, X2 = G, A, K, E or R, X3 = S, T, N or G, X4 = G, E, D, N or Y, X5 = A, S, G, or T, X6 = A, P. S or G, X7 = A or T and X8 = K, S, I, P, T or V
the polypeptide modulating, in a dicotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0067]Alternatively the variant of SEQ ID NO:201 encodes a polypeptide comprising the amino acid sequence:
TABLE-US-00006 (SEQ ID NO: 162) X1X2CSVCGX3X4X5X6SYQALGGHKX7SHRX8 where X1 = H, F or Y, X2 = G, A, K, E or R, X3 = K or R, X4 = A, S, V, or G, X5 = F or Y, X6 = A, P, S or G, X7 = A or T, X8 = K, P, T or V.
the polypeptide modulating, in a monocotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0068]Alternatively the variant of SEQ ID NO:201 encodes a polypeptide comprising at least two repeats of the amino acid sequence motif QALGGHK (SEQ ID NO:244), the repeated sequence motif being separated by about 36 to about 60 residues, wherein the polypeptide modulates, in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. Preferably the motif is separated by about 40 to about 60 residues, more preferably by about 50 to about 60 residues, most preferably by about 56 residues. Preferably the polypeptide encoded by the variant modulates tolerance to the environmental stress in a dicotyledonous plant. More preferably the polypeptide encoded by the variant modulates tolerance to the environmental stress in a moncotyledonous plant.
[0069]Exemplary polynucleotide variants of SEQ ID NO: 201 are disclosed herein and identified as SEQ ID NOs: 202-238 of the sequence listing.
[0070]In a further aspect the invention provides an isolated polynucleotide comprising the sequence of SEQ ID NO: 201.
[0071]In a further aspect the invention provides an isolated polynucleotide consisting of the sequence of SEQ ID NO: 201.
[0072]In a further aspect the invention provides polynucleotides comprising fragments of SEQ ID NO: 201. Polynucleotides comprising fragments of the polynucleotide variants also form part of the invention.
[0073]The isolated polynucleotides of the invention are also useful in methods for selecting plants tolerant to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0074]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO: 4 or a variant thereof, wherein the variant modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0075]Preferably the variant of SEQ ID NO: 4 comprises the amino acid sequence:
TABLE-US-00007 (SEQ ID NO: 1) LX1X2X3X4X5X6LX7X8X9KX10- X11X12RX13EKX14X15X16K wherein X1 = Q, E, H, L, R, T or S, X2 = E, D or Q, X3 = K, R, A, E or T, X4 = I or S, X5 = K, R, D or N, X6 = E, D or S, X7 = K, T or I, X8 = A, V, S, T, D, V or Q, X9 = E or D, X10 = N, D, T or S, X11 = E or D, X12 = L or S, X13 = D, H or E, X14 = Q, H, R, L, V, T or A and X15 = K, R, V, T or S, X16 = L or M,
and modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0076]Alternatively the variant of SEQ ID NO: 4 comprises the amino acid sequence:
TABLE-US-00008 (SEQ ID NO: 2) LX1X2X3X4X5X6L.sub.X7X8X9KX10- X11LRX12EKX13X14X15K wherein X1 = Q, H, L, R, T or S, X2 = E, D or Q, X3 = K, R, A or E, X4 = I or S, X5 = K, R, D or N, X6 = E, D or S, X7 = K, T or I, X8 = A, V, S, T, D, or Q, X9 = E or D, X10 = N, T or S, X11 = E or D, X12 = D or E, X13 = Q, H, R, L, T or A, X14 = K, R, V, T or S and X15 = L or M,
and modulates in a dicotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0077]Alternatively the variant of SEQ ID NO: 4 comprises the amino acid sequence:
TABLE-US-00009 (SEQ ID NO: 3) LX1X2X3IX4X5LKX6X7KX8EX9RX.su- b.10EKX11X12X13K where X1 = Q, E or R, X2 = E or D, X3 = K or T, X4 = K or R, X5 = E or D, X6 = A or V, X7 = E or D, X8 = N or D, X9 = L or S, X10 = D or H, X11 = Q or V, X12 = K, R or T and X13 = L or M,
and modulates in a in a monocotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0078]Exemplary polypeptide variants of SEQ ID NO: 4 are disclosed herein and identified as SEQ ID NOs: 5-81 of the sequence listing.
[0079]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO: 4.
[0080]In a further aspect the invention provides an isolated polypeptide consisting of the sequence of SEQ ID NO: 4.
[0081]In a further aspect the invention provides polypeptides comprising fragments of SEQ ID NO: 4. Polypeptides comprising fragments of variants, also form part of the invention.
[0082]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO: 163 or a variant thereof, wherein the variant modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0083]Preferably the variant of SEQ ID NO: 163 comprises the amino acid sequence:
TABLE-US-00010 (SEQ ID NO: 160) X1X2CX3VCX4X5X6X7X8X9YQALGGHK- X10SHRX11 where X1 = H, F or Y, X2 = G, A, K, E or R, X3 = S, T, N or G, X4 = G, E, D, N or Y, X5 = K or R, X6 = A, S, V, G, or T, X7 = F or Y, X8 = A, P, S or G, X9 = S or T, X10 = A or T and X11 = K, S, I, P, T or V
and modulates in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0084]Alternatively the variant of SEQ ID NO: 163 comprises the amino acid sequence:
TABLE-US-00011 (SEQ ID NO: 161) X1X2CX3VCX4KX5FX6SYQALGGHKX7SHRX8 where X1 = H, F or Y, X2 = G, A, K, E or R, X3 = S, T, N or G, X4 = G, E, D, N or Y, X5 = A, S, G, or T, X6 = A, P. S or G, X7 = A or T and X8 = K, S, I, P, T or V
and modulates in a dicotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0085]Alternatively the variant of SEQ ID NO: 163 comprises the amino acid sequence:
TABLE-US-00012 (SEQ ID NO: 162) X1X2CSVCGX3X4X5X6SYQALGGHKX7SHRX8 where X1 = H, F or Y, X2 = G, A, K, E or R, X3 = K or R, X4 = A, S, V, or G, X5 = F or Y, X6 = A, P, S or G, X7 = A or T, X8 = K, P, T or V.
and modulates in a monocotyledonous plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0086]Alternatively the variant of SEQ ID NO: 163 comprises at least two repeats of the amino acid sequence motif QALGGHK (SEQ ID NO:244), the repeated sequence motif being separated by about 36 to about 63 residues, wherein the polypeptide modulates, in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. Preferably the motif is separated by about 40 to about 60 residues, more preferably by about 50 to about 60 residues, most preferably by about 56 residues. Preferably the polypeptide modulates tolerance to the environmental stress in a dicotyledonous plant. More preferably the polypeptide modulates tolerance to the environmental stress in a monocotyledonous plant.
[0087]Exemplary polypeptide variants of SEQ ID NO: 163 are disclosed herein and identified as SEQ ID NOs: 164-200 of the sequence listing.
[0088]In a further aspect the invention provides an isolated polypeptide comprising the sequence of SEQ ID NO: 163.
[0089]In a further aspect the invention provides an isolated polypeptide consisting of the sequence of SEQ ID NO: 163.
[0090]In a further aspect the invention provides polypeptides comprising fragments of SEQ ID NO: 163. Polypeptides comprising fragments of variants, also form part of the invention.
[0091]In a further aspect the invention provides a polynucleotide encoding a polypeptide of the invention.
[0092]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of the invention.
[0093]In a further aspect the invention provides a genetic construct which comprises a polynucleotide encoding a polypeptide of the invention.
[0094]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of any one of SEQ ID NOs: 82-159, or a variant or fragment thereof
[0095]In a further aspect the invention provides a genetic construct which comprises a polynucleotide of any one of SEQ ID NOs: 201-238, or a variant or fragment thereof.
[0096]In a further aspect the invention provides a genetic construct which comprises the polynucleotide sequence of SEQ ID NO: 82, or a variant or fragment thereof
[0097]In a further aspect the invention provides a genetic construct which comprises the polynucleotide sequence of SEQ ID NO: 82.
[0098]In a further aspect the invention provides a genetic construct which comprises the polynucleotide sequence of SEQ ID NO: 201, or a variant or fragment thereof
[0099]In a further aspect the invention provides a genetic construct which comprises the polynucleotide sequence of SEQ ID NO: 201.
[0100]Preferably the constructs of the invention are expression constructs as herein defined. Preferably expression constructs of the invention include an environmental stress responsive promoter operably linked polynucleotide sequence. Preferably the environmental stress responsive promoter is responsive to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0101]Preferably the expression construct includes a promoter comprising the sequence of SEQ ID NO: 239 or a fragment, region, cis-element or variant of the sequence capable of regulating transcription of an operably linked polynucleotide sequence.
[0102]In a further aspect the invention provides a vector which comprises a genetic construct of the invention.
[0103]In a further aspect the invention provides a host cell which comprises a genetic construct of the invention.
[0104]In a further aspect the invention provides methods for the recombinant production of polypeptide of the invention comprising the steps of: [0105]a) culturing a host cell comprising a genetic construct of the invention, such as an expression construct as defined herein, capable of expressing a polypeptide of the invention, and [0106]b) separating the expressed polypeptide.
[0107]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NO: 82 or a variant or fragment thereof.
[0108]In a further aspect the invention provides a plant cell which comprises one or more of the genetic constructs of the invention. In a preferred embodiment the genetic construct comprises the polynucleotide sequence of SEQ ID NOs: 201 or a variant or fragment thereof.
[0109]In a further aspect the invention provides a plant cell with altered expression of a polynucleotide or polypeptide of the invention.
[0110]In a further aspect the invention provides a plant cell genetically modified to alter expression of a polynucleotide or polypeptide of the invention.
[0111]In a further aspect the invention provides a plant which comprises a plant cell of the invention.
[0112]In a further aspect the invention provides methods for altering in a plant, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising transformation of a plant cell, or plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0113]In a further aspect the invention provides methods for altering tolerance to drought stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0114]In a further aspect the invention provides methods for altering tolerance to cold stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0115]In a further aspect the invention provides methods for altering tolerance to freezing stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0116]In a further aspect the invention provides methods for altering tolerance to heat stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0117]In a further aspect the invention provides methods for altering tolerance to salinity stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide/polypeptide of the invention.
[0118]In a further aspect the invention provides methods for altering tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation in a plant of tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
[0119]In a further aspect the invention provides methods for altering tolerance to drought stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation tolerance to drought stress in a plant.
[0120]In a further aspect the invention provides methods for altering tolerance to cold stress in a plant the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to cold stress in a plant.
[0121]In a further aspect the invention provides methods for altering tolerance to freezing stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to freezing stress in a plant.
[0122]In a further aspect the invention provides methods for altering tolerance to heat stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to freezing stress in a plant.
[0123]In a further aspect the invention provides methods for altering tolerance to salinity stress in a plant, the method comprising transformation of a plant with a genetic construct of the invention capable of altering expression of a polynucleotide involved in modulation of tolerance to salinity stress in a plant.
[0124]It will be understood by those skilled in the art that transformation of a plant may involve transforming a plant cell/s and regenerating a transformed plant from the transformed plant cell/s.
[0125]In a further aspect the invention provides a method for selecting a plant with increased tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0126]In a further aspect the invention provides a method for selecting a plant with increased tolerance to drought stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0127]In a further aspect the invention provides a method for selecting a plant with increased tolerance to cold stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0128]In a further aspect the invention provides a method for selecting a plant with increased tolerance to freezing stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0129]In a further aspect the invention provides a method for selecting a plant with increased tolerance to heat stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0130]In a further aspect the invention provides a method for selecting a plant with increased tolerance to salinity stress, the method comprising testing of a plant for altered expression of a polynucleotide of the invention.
[0131]In a further aspect the invention provides a method for selecting a plant with increased tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0132]In a further aspect the invention provides a method for selecting a plant with increased tolerance to drought stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0133]In a further aspect the invention provides a method for selecting a plant with increased tolerance to cold stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0134]In a further aspect the invention provides a method for selecting a plant with increased tolerance to freezing stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0135]In a further aspect the invention provides a method for selecting a plant with increased tolerance to heat stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0136]In a further aspect the invention provides a method for selecting a plant with increased tolerance to salinity stress, the method comprising testing of a plant for altered expression of a polypeptide of the invention.
[0137]In a further aspect the invention provides a plant cell or plant produced by a method of the invention.
[0138]The polynucleotides and polynucleotide variants, of the invention may be derived from any species and/or may be produced recombinantly or synthetically.
[0139]In one embodiment the polynucleotide or variant, is derived from a plant species.
[0140]In a further embodiment the polynucleotide or variant, is derived from a gymnosperm plant species.
[0141]In a further embodiment the polynucleotide or variant, is derived from an angiosperm plant species.
[0142]In a further embodiment the polynucleotide or variant, is derived from a from dicotyledonous plant species.
[0143]In a further embodiment the polynucleotide or variant, is derived from a monocotyledonous plant species.
[0144]The polypeptide and polypeptide variants, of the invention may be derived from any species and/or may be produced recombinantly or synthetically.
[0145]In one embodiment the polypeptide or variant, is derived from a plant species.
[0146]In a further embodiment the polypeptide or variant, is derived from a gymnosperm plant species.
[0147]In a further embodiment the polypeptide or variant, is derived from an angiosperm plant species.
[0148]In a further embodiment the polypeptide or variant, is derived from a from dicotyledonous plant species.
[0149]In a further embodiment the polypeptide or variant, is derived from a monocotyledonous plant species.
[0150]The plant cell or plant may be derived from any plant species.
[0151]In a further embodiment the plant cell or plant, is derived from a gymnosperm plant species.
[0152]In a further embodiment the plant cell or plant, is derived from an angiosperm plant species.
[0153]In a further embodiment the plant cell or plant, is derived from a from dicotyledonous plant species.
[0154]In a further embodiment the plant cell or plant, is derived from a monocotyledonous plant species.
[0155]Preferred dicotyledonous genera include: Amygdalus, Anacardium, Arachis, Brassica, Cajanus, Cannabis, Carthamus, Carya, Ceiba, Cicer, Cocos, Coriandrum, Coronilla, Crotalaria, Dolichos, Elaeis, lycine, Gossypium, Helianthus, Lathyrus, Lens, Lespedeza, Linum, Lotus, Lupinus, Macadamia, Medicago, Melilotus, Mucuna, Olea, Onobrychis, Ornithopus, Papaver, Phaseolus, Phoenix, Pistacia, Pisum, Prunus, Pueraria, Ribes, Ricinus, Sesamum, Theobroma, Trtfolium, Trigonella, Vicia and Vigna.
[0156]Preferred dicotyledonous species include: Amygdalus communis, Anacardium occidentals, Arachis hypogaea, Arachis hypogea, Brassica napus Rape, Brassica. nigra. Brassica campestris, Cajanus cajan, Cajanus indicus, Cannabis saliva, Carthamus tinctorius, Carya illinoinensis, Ceiba pentandra, Cicer arietinum, Cocos nucifera, Coriandrum sativum, Coronilla varia, Crotalaria juncea, Dolichos lablab, Elaeis guineensis, Gossypium arboreum, Gossypium narking, Gossypium barbadense, Gossypium herbaceum, Gossypium hirsutum, Glycine max, Glycine ussuriensis, Glycine gracilis, Helianthus annus, Lupinus angustifolius, Lupinus luteus, Lupinus mutabilis, Lespedeza sericea, Lespedeza striata, Lotus uliginosus, Lathyrus sativus, Lens culinaris, Lespedeza stipulacea, Linum usitatissimum, Lotus corniculatus, Lupinus albus, Medicago arborea, Medicago falcate, Medicago hispida, Medicago officinalis, Medicago. saliva Alfalfa, Medicago tribuloides, Macadamia integrifolia, Medicago arabica, Melilotus albus, Mucuna pruriens, Olea europaea, Onobrychis viciifolia, Ornithopus sativus, Phaseolus aureus, Prunus cerasifera, Prunus cerasus, Phaseolus coccineus, Prunus domestica, Phaseolus lunatus, Prunus. maheleb, Phaseolus mungo, Prunus. persica, Prunus. pseudocerasus, Phaseolus vulgaris, Papaver somniferum, Phaseolus acutifolius, Phoenix dactylifera, Pistacia vera, Pisum sativum, Prunus amygdalus, Prunus armeniaca, Pueraria thunbergiana, Ribes nigrum, Ribes rubrum, Ribes grossularia, Ricinus communis, Sesamum indicum, Trifolium augustifolium, Trifolium diffusum, Trifolium hybridum, Trifolium incarnatum, Trifolium ingrescens, Trifolium pratense, Trifolium repens, Trifolium resupinatum, Trifolium subterraneum, Theobroma cacao, Trifolium alexandrinum, Trigonella foenumgraecum, Vicia angustifolia, Vicia atropurpurea, Vicia calcarata, Vicia dasycarpa, Vicia ervilia, Vaccinium oxycoccos, Vicia pannonica, Vigna sesquipedalis, Vigna sinensis, Vicia villosa, Vicki faba, Vicia sative and Vigna angularis.
[0157]Preferred monocotyledonous genera include: Agropyron, Allium, Alopecurus, Andropogon, Arrhenatherum, Asparagus, Avena, Bambusa, Bothrichloa, Bouteloua, Bromus, Calamovilfa, Cenchrus, Chloris, Cymbopogon, Cynodon, Dactylis, Dichanthium, Digitaria, Eleusine, Eragrostis, Fagopyrum, Festuca, Helianthus, Hordeum, Lolium, Miscanthis, Miscanthus×giganteus, Oryza, Panicum, Paspalum, Pennisetum, Phalaris, Phleum, Poa, Saccharum, Secale, Setaria, Sorgahastum, Sorghum, Triticum, Vanilla, X Triticosecale Triticale and Zea.
[0158]Preferred monocotyledonous species include: Agropyron cristatum, Agropyron desertorum, Agropyron elongatum, Agropyron intermedium, Agropyron smithii, Agropyron spicatum, Agropyron trachycaulum, Agropyron trichophorum, Allium ascalonicum, Allium cepa, Allium chinense, Allium porrum, Allium schoenoprasum, Allium. fistulosum, Allium. sativum, Alopecurus pratensis, Andropogon gerardi, Andropogon Gerardii, Andropogon scoparious, Arrhenatherum elatius, Asparagus officinalis, Avena nuda, Avena sativa, Bambusa vulgaris, Bothrichloa barbinodis, Bothrichloa ischaemum, Bothrichloa saccharoides, Bouteloua curipendula, Bouteloua eriopoda, Bouteloua gracilis, Bromus erectus, Bromus inermis, Bromus riparius, Calamovilfa longifilia, Cenchrus ciliaris, Chloris gayana, Cymbopogon nardus, Cynodon dactylon, Dactylis glomerata, Dichanthium annulatum, Dichanthium aristatum, Dichanthium sericeum, Digitaria decumbens, Digitaria smutsii, Eleusine coracan, Elymus angustus, Elymus junceus, Eragrostis curvula, Eragrostis tef, Fagopyrum esculentum, Fagopyrum tataricum, Festuca arundinacea, Festuca ovina, Festuca pratensis, Festuca rubra, Helianthus annuus sunflower, Hordeum distichum, Hordeum vulgare, Lolium multiflorum, Lolium perenne, Miscanthis sinensis, Miscanthus×giganteus, Oryza sativa, Panicum italicium, Panicum maximum, Panicum miliaceum, Panicum purpurascens, Panicum virgatum, Panicum virgatum, Paspalum dilatatum, Paspalum notatum, Pennisetum clandestinum, Pennisetum glaucum, Pennisetum purpureum, Pennisetum spicatum, Phalaris arundinacea, Phleum bertolinii, Phleum pratense, Poa fendleriana, Poa pratensis, Poa. nemoralis, Saccharum officinarum, Saccharum robustum, Saccharum sinense, Saccharum spontaneum, Secale cereale, Setaria sphacelata, Sorgahastum nutans, Sorghastrum nutans, Sorghum dochna, Sorghum halepense, Sorghum sudanense, Sorghum bicolor, Triticum aestivum, Triticum dicoccum, Triticum durum, Triticum monococcum, Vanilla fragrans, X Triticosecale and Zea mays.
[0159]Preferred plants are forage plant species from a group comprising but not limited to the following genera: Lolium, Festuca, Dactylis, Bromus, Trifolium, Medicago, Phleum, Phalaris, Holcus, Lotus, Plantago and Cichorium.
[0160]Particularly preferred plants are from the genera Lolium and Trifolium. Particularly preferred species are Lolium perenne and Trifolium repens.
[0161]Particularly preferred monocotyledonous plant species are: Lolium perenne and Oryza sativa.
[0162]The term "plant" is intended to include a whole plant, any part of a plant, propagules and progeny of a plant.
[0163]The term `propagule` means any part of a plant that may be used in reproduction or propagation, either sexual or asexual, including seeds and cuttings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0164]The present invention will be better understood with reference to the accompanying drawings in which:
[0165]FIG. 1 shows an alignment of polypeptides of the invention, including SEQ ID NO: 4 and sequences which are variants SEQ ID NO: 4 from several species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0166]FIG. 2 shows an alignment of polypeptides of the invention, including SEQ ID NO: 4 and sequences which are variants SEQ ID NO: 4 from several dicotyledonous species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0167]FIG. 3 shows an alignment of polypeptides of the invention, including SEQ ID NO: 4 and sequences which are variants SEQ ID NO: 4 from several monocotyledonous species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0168]FIG. 4 shows an alignment of polypeptides of the invention, including SEQ ID NO: 163 and sequences which are variants SEQ ID NO: 163 from several species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0169]FIG. 5 shows an alignment of polypeptides of the invention, including SEQ ID NO: 163 and sequences which are variants SEQ ID NO: 163 from several dicotyledonous species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0170]FIG. 6 shows an alignment of polypeptides of the invention, including SEQ ID NO: 163 and sequences which are variants SEQ ID NO: 163 from several monocotyledonous species and illustrates a consensus region (shown within bold box) identified by the applicants which is present in all of the such sequences.
[0171]FIG. 7 shows a map of a vector, for plant transformation, comprising ORF4 (SEQ ID NO:82) driven by the ryegrass promoter of SEQ ID NO:239.
[0172]FIG. 8 shows the sequence of a vector, for plant transformation, comprising ORF4 and corresponding to the map in FIG. 7. Sequence in bold corresponds to the Lolium perenne promoter (SEQ ID NO:239). Sequence in italics corresponds to ORF4. Sequence underlined corresponds to 3' terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0173]FIG. 9 shows a map of a vector, for plant transformation, comprising ORF12 (SEQ ID NO:201) driven by the ryegrass promoter of SEQ ID NO:243
[0174]FIG. 10 shows the sequence of a vector, for plant transformation, comprising ORF12 and corresponding to the map in FIG. 9. Sequence in bold corresponds to the Lolium perenne promoter (SEQ ID NO:239). Sequence in italics corresponds to ORF12. Sequence underlined corresponds to the 3' terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0175]FIG. 11 shows a map of a vector, for plant transformation, comprising ORF4 (SEQ ID NO:82) driven by the double CaMV35S promoter.
[0176]FIG. 12 shows the sequence of a vector, for plant transformation, comprising ORF4 (SEQ ID NO: 82) and corresponding to the map in FIG. 11. Sequence in bold corresponds to the double CaMV35S promoter. Sequence in italics corresponds to ORF4 (SEQ ID NO: 82). Sequence underlined corresponds to 3' terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0177]FIG. 13 shows a map of a vector, for plant transformation, comprising ORF12 (SEQ ID NO:201) driven by the double CaMV35S promoter.
[0178]FIG. 14 shows the sequence of a vector, for plant transformation, comprising ORF12 (SEQ ID NO:201) and corresponding to the map in FIG. 13. Sequence in bold corresponds to the double CaMV35S promoter. Sequence in italics corresponds to ORF12 (SEQ ID NO: 201). Sequence underlined corresponds to the 3' terminator sequence from CaMV35S gene. Sequence in regular font corresponds to vector sequence.
[0179]FIG. 15 shows measurements of Electron Transfer Rate (ETR) and Quantum Yield of PSII (Quantum yield), measured with PAM2000, in the leaves of transgenic (C4-14, D4-5, D4-7, D4-32, D12-58, D12-60 and D12-61) and non-transgenic (TC2) perennial ryegrass lines
[0180]FIG. 16 shows phenotypic response at recovery stage following two cycles of drought (4-h drought, 6-days recovery, 8-hour drought, 20-h recovery) in transgenic (D4-5 bottom left, D12-58--above D4-5, and D4-7--above TC2) and non-transgenic (TC2--bottom right) perennial ryegrass lines
[0181]FIG. 17 shows phenotypic response of transgenic ryegrass lines (D4-1, D4-7, D12-60 and D12-61) in comparison to a non-transgenic line wildtype) at the end of 14-day drought-stress (left) and at the end of 1-day recovery from drought-stress (right)
[0182]FIG. 18 shows measurement of Volumetric Water Content (VWC) of the soil during the experimental stage in the SUNLIT chamber as measured with a TDR300.
[0183]FIG. 19 shows phenotypic response of transgenic and non-transgenic ryegrass lines in the SUNLIT chamber after 54 days of sub-surface irrigation
[0184]FIG. 20 shows measurements of Electron Transfer Rate (ETR) in the leaves of transgenic (C4-19, C4-20, D12-60, D12-61, D4-1 and D4-7) and non-transgenic (WT) perennial ryegrass lines grown in the SUNLIT chamber before drought-stress (white column) and at the end of the drought-stress (black column)
[0185]FIG. 21 shows measurements of Quantum Yield of PSII (Yield) in the leaves of transgenic (C4-19, C4-20, D12-60, D12-61, D4-1 and D4-7) and non-transgenic (WT) perennial ryegrass lines grown in the SUNLIT chamber before drought-stress (white column) and at the end of the drought-stress (black column)
[0186]FIG. 22 shows measurement of above ground biomass (dark bars represent fresh weight and light bars represent dry weight) and % mass loss, two days after re-watering, post drought regime for transgenic (C4-19, C4-20, D12-60, D12-61, D4-1 and D4-7) and non-transgenic (WT) perennial ryegrass lines.
[0187]FIG. 23 shows newly produced above ground biomass during the during the drought screen, for transgenic (C4-19, C4-20, D12-60, D12-61, D4-1 and D4-7) and non-transgenic (WT) perennial ryegrass lines.
DETAILED DESCRIPTION
[0188]The term "plant" is intended to include a whole plant, any part of a plant, propagules and progeny of a plant.
[0189]The term `propagule` means any part of a plant that may be used in reproduction or propagation, either sexual or asexual, including seeds and cuttings.
[0190]The term "tolerance or tolerant to drought stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal hydration conditions than do suitable control plants in the same conditions.
[0191]The term "tolerance or tolerant to cold stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal-reduced reduced temperature conditions than suitable control plants in the same conditions.
[0192]The term "tolerance or tolerant to freezing stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under temperature conditions of less than or equal to 0° C., than do suitable control plants in the same conditions.
[0193]The term "tolerance or tolerant to heat stress" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal elevated temperature conditions than do suitable control plants in the same conditions.
[0194]The term "tolerance or tolerant to salinity" is intended to describe a plant or plants which perform more favourably in any aspect of their growth and development under sub-optimal elevated salinity conditions than do in the same conditions.
[0195]Suitable control plants may include non-transformed plants of the same species and variety, or plants of the same species or variety transformed with a control construct.
[0196]With reference to the selection methods of the invention, a plant with increased tolerance to environmental stress refers to a plant, selected from a population of plants, which performs more favourably in any aspect of growth and development under stress conditions than does an average member of the population under the same conditions.
[0197]The term "comprising" as used in this specification and claims means "consisting at least in part of"; that is to say when interpreting statements in this specification and claims which include "comprising", the features prefaced by this term in each statement all need to be present but other features can also be present. Related terms such as "comprise" and "comprised" are to be interpreted in similar manner.
Polynucleotides and Fragments
[0198]The term "polynucleotide(s)," as used herein, means a single or double-stranded deoxyribonucleotide or ribonucleotide polymer of any length, and include as non-limiting examples, coding and non-coding sequences of a gene, sense and antisense sequences, exons, introns, genomic DNA, cDNA, pre-mRNA, mRNA, rRNA, siRNA, miRNA, tRNA, ribozymes, recombinant polynucleotides, isolated and purified naturally occurring DNA or RNA sequences, synthetic RNA and DNA sequences, nucleic acid probes, primers, and fragments.
[0199]A "fragment" of a polynucleotide sequence provided herein is a subsequence of contiguous nucleotides that is capable of specific hybridization to a target of interest, e.g., a sequence that is at least 15 nucleotides in length. The fragments of the invention comprise 15 nucleotides, preferably at least 20 nucleotides, more preferably at least 30 nucleotides, more preferably at least 50 nucleotides, more preferably at least 50 nucleotides and most preferably at least 60 nucleotides of contiguous nucleotides of a polynucleotide of the invention. A fragment of a polynucleotide sequence can be used in antisense, gene silencing, triple helix or ribozyme technology, or as a primer, a probe, included in a microarray, or used in polynucleotide-based selection methods of the invention.
[0200]The term "primer" refers to a short polynucleotide, usually having a free 3'OH group, that is hybridized to a template and used for priming polymerization of a polynucleotide complementary to the target.
[0201]The term "probe" refers to a short polynucleotide that is used to detect a polynucleotide sequence, that is complementary to the probe, in a hybridization-based assay. The probe may consist of a "fragment" of a polynucleotide as defined herein.
Polypeptides and Fragments
[0202]The term "polypeptide", as used herein, encompasses amino acid chains of any length, but preferably at least 5 amino acids in length, including full-length proteins, in which amino acid residues are linked by covalent peptide bonds. Polypeptides of the present invention may be purified natural products, or may be produced partially or wholly using recombinant or synthetic techniques. The term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof
[0203]A "fragment" of a polypeptide is a subsequence of the polypeptide that performs a function that is required for the biological activity and/or provides three dimensional structure of the polypeptide. The term may refer to a polypeptide, an aggregate of a polypeptide such as a dimer or other multimer, a fusion polypeptide, a polypeptide fragment, a polypeptide variant, or derivative thereof capable of performing the above enzymatic activity.
[0204]The term "isolated" as applied to the polynucleotide or polypeptide sequences disclosed herein is used to refer to sequences that are removed from their natural cellular environment. An isolated molecule may be obtained by any method or combination of methods including biochemical, recombinant, and synthetic techniques.
[0205]The term "recombinant" refers to a polynucleotide sequence that is removed from sequences that surround it in its natural context and/or is recombined with sequences that are not present in its natural context.
[0206]A "recombinant" polypeptide sequence is produced by translation from a "recombinant" polynucleotide sequence.
[0207]The term "derived from" with respect to polynucleotides and polypeptides of the invention being "derived from" a particular genera or species, means that the polynucleotide or polypeptide has the same sequence as a polynucleotide or polypeptide found naturally in that genera or species. The polynucleotide or polypeptide which is derived from a genera or species may therefore be produced synthetically or recombinantly.
Variant
[0208]As used herein, the term "variant" refers to polynucleotide or polypeptide sequences different from the specifically identified sequences, wherein one or more nucleotides or amino acid residues is deleted, substituted, or added. Variants may be naturally occurring allelic variants, or non-naturally occurring variants. Variants may be from the same or from other species and may encompass homologues, paralogues and orthologues. In certain embodiments, variants of the inventive polypeptides and polynucleotides possess biological activities that are the same or similar to those of the inventive polypeptides or polynucleotides. The term "variant" with reference to polynucleotides and polypeptides encompasses all forms of polynucleotides and polypeptides as defined herein.
Polynucleotide Variants
[0209]Variant polynucleotide sequences preferably exhibit at least 50%, more preferably at least 51%, more preferably at least 52%, more preferably at least 53%, more preferably at least 54%, more preferably at least 55%, more preferably at least 56%, more preferably at least 57%, more preferably at least 58%, more preferably at least 59%, more preferably at least 60%, more preferably at least 61%, more preferably at least 62%, more preferably at least 63%, more preferably at least 64%, more preferably at least 65%, more preferably at least 66%, more preferably at least 67%, more preferably at least 68%, more preferably at least 69%, more preferably at least 70%, more preferably at least 71%, more preferably at least 72%, more preferably at least 73%, more preferably at least 74%, more preferably at least 75%, more preferably at least 76%, more preferably at least %, more preferably at least 77%, more preferably at least 78%, more preferably at least 79%, more preferably at least 80%, more preferably at least 81%, more preferably at least 82%, more preferably at least 83%, more preferably at least 84%, more preferably at least 85%, more preferably at least 86%, more preferably at least 87%, more preferably at least 88%, more preferably at least 89%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, and most preferably at least 99% identity to a specified polynucleotide sequence. Identity is found over a comparison window of at least 20 nucleotide positions, preferably at least 50 nucleotide positions, more preferably at least 100 nucleotide positions, and most preferably over the entire length of the specified polynucleotide sequence.
[0210]Polynucleotide sequence identity can be determined in the following manner. The subject polynucleotide sequence is compared to a candidate polynucleotide sequence using BLASTN (from the BLAST suite of programs, version 2.2.5 [November 2002]) in bl2seq (Tatiana A. Tatusova, Thomas L. Madden (1999), "Blast 2 sequences--a new tool for comparing protein and nucleotide sequences", FEMS Microbiol Lett. 174:247-250), which is publicly available from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The default parameters of bl2seq are utilized except that filtering of low complexity parts should be turned off
[0211]The identity of polynucleotide sequences may be examined using the following UNIX command line parameters: [0212]bl2seq nucleotideseq1 -j nucleotideseq2 -F F -p blastn
[0213]The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. The bl2seq program reports sequence identity as both the number and percentage of identical nucleotides in a line "Identities=".
[0214]Polynucleotide sequence identity may also be calculated over the entire length of the overlap between a candidate and subject polynucleotide sequences using global sequence alignment programs (e.g. Needleman, S. B. and Wunsch, C. D. (1970) J. Mol. Biol. 48, 443-453). A full implementation of the Needleman-Wunsch global alignment algorithm is found in the needle program in the EMBOSS package (Rice, P. Longden, I. and Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite, Trends in Genetics June 2000, vol 16, No 6. pp. 276-277) which can be obtained from http://www.hgmp.mrc.ac.uk/Software/EMBOSS/. The European Bioinformatics Institute server also provides the facility to perform EMBOSS-needle global alignments between two sequences on line at http:/www.ebi.ac.uk/emboss/align/.
[0215]Alternatively the GAP program may be used which computes an optimal global alignment of two sequences without penalizing terminal gaps. GAP is described in the following paper: Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the Biosciences 10, 227-235.
[0216]Polynucleotide variants of the present invention also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences and which could not reasonably be expected to have occurred by random chance. Such sequence similarity with respect to polynucleotides may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [November 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/).
[0217]The similarity of polynucleotide sequences may be examined using the following UNIX command line parameters: [0218]bl2seq -i nucleotideseq1 -j nucleotideseq2 -F F -p tblastx
[0219]The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an "E value" which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. The size of this database is set by default in the bl2seq program. For small E values, much less than one, the E value is approximately the probability of such a random match.
[0220]Variant polynucleotide sequences preferably exhibit an E value of less than 1×10-10 more preferably less than 1×10-20, more preferably less than 1×10-30, more preferably less than 1×10-40, more preferably less than 1×10-50, more preferably less than 1×10-60, more preferably less than 1×10-70, more preferably less than 1×10-80, more preferably less than 1×10-90 and most preferably less than 1×10-100 when compared with any one of the specifically identified sequences.
[0221]Alternatively, variant polynucleotides of the present invention hybridize to a specified polynucleotide sequence, or complements thereof under stringent conditions.
[0222]The term "hybridize under stringent conditions", and grammatical equivalents thereof, refers to the ability of a polynucleotide molecule to hybridize to a target polynucleotide molecule (such as a target polynucleotide molecule immobilized on a DNA or RNA blot, such as a Southern blot or Northern blot) under defined conditions of temperature and salt concentration. The ability to hybridize under stringent hybridization conditions can be determined by initially hybridizing under less stringent conditions then increasing the stringency to the desired stringency.
[0223]With respect to polynucleotide molecules greater than about 100 bases in length, typical stringent hybridization conditions are no more than 25 to 30° C. (for example, 10° C.) below the melting temperature (Tm) of the native duplex (see generally, Sambrook et al., Eds, 1987, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press; Ausubel et al., 1987, Current Protocols in Molecular Biology, Greene Publishing). Tm for polynucleotide molecules greater than about 100 bases can be calculated by the formula Tm=81.5+0.41% (G+C-log (Na+). (Sambrook et al., Eds, 1987, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press; Bolton and McCarthy, 1962, PNAS 84:1390). Typical stringent conditions for polynucleotide of greater than 100 bases in length would be hybridization conditions such as prewashing in a solution of 6×SSC, 0.2% SDS; hybridizing at 65° C., 6×SSC, 0.2% SDS overnight; followed by two washes of 30 minutes each in 1×SSC, 0.1% SDS at 65° C. and two washes of 30 minutes each in 0.2×SSC, 0.1% SDS at 65° C.
[0224]With respect to polynucleotide molecules having a length less than 100 bases, exemplary stringent hybridization conditions are 5 to 10° C. below Tm. On average, the Tm of a polynucleotide molecule of length less than 100 by is reduced by approximately (500/oligonucleotide length)° C.
[0225]With respect to the DNA mimics known as peptide nucleic acids (PNAs) (Nielsen et al., Science. 1991 Dec. 6; 254(5037):1497-500) Tm values are higher than those for DNA-DNA or DNA-RNA hybrids, and can be calculated using the formula described in Giesen et al., Nucleic Acids Res. 1998 Nov. 1; 26(21):5004-6. Exemplary stringent hybridization conditions for a DNA-PNA hybrid having a length less than 100 bases are 5 to 10° C. below the Tm.
[0226]Variant polynucleotides of the present invention also encompasses polynucleotides that differ from the sequences of the invention but that, as a consequence of the degeneracy of the genetic code, encode a polypeptide having similar activity to a polypeptide encoded by a polynucleotide of the present invention. A sequence alteration that does not change the amino acid sequence of the polypeptide is a "silent variation". Except for ATG (methionine) and TGG (tryptophan), other codons for the same amino acid may be changed by art recognized techniques, e.g., to optimize codon expression in a particular host organism.
[0227]Polynucleotide sequence alterations resulting in conservative substitutions of one or several amino acids in the encoded polypeptide sequence without significantly altering its biological activity are also included in the invention. A skilled artisan will be aware of methods for making phenotypically silent amino acid substitutions (see, e.g., Bowie et al., 1990, Science 247, 1306).
[0228]Variant polynucleotides due to silent variations and conservative substitutions in the encoded polypeptide sequence may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [November 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/) via the tblastx algorithm as previously described.
Polypeptide Variants
[0229]The term "variant" with reference to polypeptides encompass naturally occurring, recombinantly and synthetically produced polypeptides. Variant polypeptide sequences preferably exhibit at least 50%, more perferably at least 51%, more preferably at least 52%, more preferably at least 53%, more preferably at least 54%, more preferably at least 55%, more preferably at least 56%, more preferably at least 57%, more preferably at least 58%, more preferably at least 59%, more preferably at least 60%, more preferably at least 61%, more preferably at least 62%, more preferably at least 63%, more preferably at least 64%, more preferably at least 65%, more preferably at least 66%, more preferably at least 67%, more preferably at least 68%, more preferably at least 69%, more preferably at least 70%, more preferably at least 71%, more preferably at least 72%, more preferably at least 73%, more preferably at least 74%, more preferably at least 75%, more preferably at least 76%, more preferably at least 77%, more preferably at least 78%, more preferably at least 79%, more preferably at least 80%, more preferably at least 81%, more preferably at least 82%, more preferably at least 83%, more preferably at least 84%, more preferably at least 85%, more preferably at least 86%, more preferably at least 87%, more preferably at least 88%, more preferably at least 89%, more preferably at least 90%, more preferably at least 91%, more preferably at least 92%, more preferably at least 93%, more preferably at least 94%, more preferably at least 95%, more preferably at least 96%, more preferably at least 97%, more preferably at least 98%, and most preferably at least 99% identity to a sequences of the present invention. Identity is found over a comparison window of at least 20 amino acid positions, preferably at least 50 amino acid positions, more preferably at least 100 amin acid positions, and most preferably over the entir length of the specified polypeptide sequence.
[0230]Polypeptide sequence identity can be determined in the following manner. The subject polypeptide sequence is compared to a canidate polypeptide sequence using publicly available from NCBI (ftp://ftp.nvbi.nih.gov/blast/). The default parameters of bl2seq are utilized except that filtering of loq complexity regions should be turned off.
[0231]Polypeptide sequence identity may also be calculated over the entire length of the overlap between a canidate and subject polynucleotide sequences using global sequence alignment programs EMBOSS-needle (available at http:/www.ebi.ac.uk/emboss/align/) and GAP (Huang, X. (1994) On Global Sequence Alignment. Computer Applications in the Biosciences 10, 227-235.) as discussed above are also suitable global sequence alignment programs for calculating polypeptide sequence identity.
[0232]Polypeptide variants of the present invention also encompass those which exhibit a similarity to one or more of the specifically identified sequences that is likely to preserve the functional equivalence of those sequences and which could not reasonably be expected to have occurred by random chance. Such sequence similarity with respect to polypeptides may be determined using the publicly available bl2seq program from the BLAST suite of programs (version 2.2.5 [November 2002]) from NCBI (ftp://ftp.ncbi.nih.gov/blast/). The similarity of polypeptide sequences may be examined using the following UNIX command line parameters: [0233]bl2seq -i peptideseq1 -j peptideseq2 -F F -p blastp
[0234]Variant polypeptide sequences preferably exhibit an E value of less than 1×10-10 more preferably less than 1×10-20, more preferably less than 1×10-30, more preferably less than 1×10-40, more preferably less than 1×10-50, more preferably less than 1×10-60, more preferably less than 1×10-70, more preferably less than 1×10-80, more preferably less than 1×10-90 and most preferably less than 1×10-100 when compared with any one of the specifically identified sequences.
[0235]The parameter -F F turns off filtering of low complexity sections. The parameter -p selects the appropriate algorithm for the pair of sequences. This program finds regions of similarity between the sequences and for each such region reports an "E value" which is the expected number of times one could expect to see such a match by chance in a database of a fixed reference size containing random sequences. For small E values, much less than one, this is approximately the probability of such a random match.
[0236]Conservative substitutions of one or several amino acids of a described polypeptide sequence without significantly altering its biological activity are also included in the invention. A skilled artisan will be aware of methods for making phenotypically silent amino acid substitutions (see, e.g., Bowie et al., 1990, Science 247, 1306).
Constructs, Vectors and Components Thereof
[0237]The term "genetic construct" refers to a polynucleotide molecule, usually double-stranded DNA, which may have inserted into it another polynucleotide molecule (the insert polynucleotide molecule) such as, but not limited to, a cDNA molecule. A genetic construct may contain the necessary elements that permit transcribing the insert polynucleotide molecule, and, optionally, translating the transcript into a polypeptide. The insert polynucleotide molecule may be derived from the host cell, or may be derived from a different cell or organism and/or may be a recombinant polynucleotide. Once inside the host cell the genetic construct may become integrated in the host chromosomal DNA. The genetic construct may be linked to a vector.
[0238]The term "vector" refers to a polynucleotide molecule, usually double stranded DNA, which is used to transport the genetic construct into a host cell. The vector may be capable of replication in at least one additional host system, such as E. coli.
[0239]The term "expression construct" refers to a genetic construct that includes the necessary elements that permit transcribing the insert polynucleotide molecule, and, optionally, translating the transcript into a polypeptide. An expression construct typically comprises in a 5' to 3' direction: [0240]a) a promoter functional in the host cell into which the construct will be transformed, [0241]b) the polynucleotide to be expressed, and [0242]c) a terminator functional in the host cell into which the construct will be transformed.
[0243]The term "coding region" or "open reading frame" (ORF) refers to the sense strand of a genomic DNA sequence or a cDNA sequence that is capable of producing a transcription product and/or a polypeptide under the control of appropriate regulatory sequences. The coding sequence is identified by the presence of a 5' translation start codon and a 3' translation stop codon. When inserted into a genetic construct, a "coding sequence" is capable of being expressed when it is operably linked to promoter and terminator sequences.
[0244]"Operably-linked" means that the sequenced to be expressed is placed under the control of regulatory elements that include promoters, tissue-specific regulatory elements, temporal regulatory elements, enhancers, repressors and terminators.
[0245]The term "noncoding region" refers to untranslated sequences that are upstream of the translational start site and downstream of the translational stop site. These sequences are also referred to respectively as the 5' UTR and the 3' UTR. These regions include elements required for transcription initiation and termination and for regulation of translation efficiency.
[0246]Terminators are sequences, which terminate transcription, and are found in the 3' untranslated ends of genes downstream of the translated sequence. Terminators are important determinants of mRNA stability and in some cases have been found to have spatial regulatory functions.
[0247]The term "promoter" refers to nontranscribed cis-regulatory elements upstream of the coding region that regulate gene transcription. Promoters comprise cis-initiator elements which specify the transcription initiation site and conserved boxes such as the TATA box, and motifs that are bound by transcription factors.
[0248]A "transgene" is a polynucleotide that is taken from one organism and introduced into a different organism by transformation. The transgene may be derived from the same species or from a different species as the species of the organism into which the transgene is introduced.
[0249]An "inverted repeat" is a sequence that is repeated, where the second half of the repeat is in the complementary strand, e.g.,
TABLE-US-00013 (5')GATCTA . . . TAGATC(3') (3')CTAGAT . . . ATCTAG(5')
Read-through transcription will produce a transcript that undergoes complementary base-pairing to form a hairpin structure provided that there is a 3-5 by spacer between the repeated regions.
[0250]A "transgenic plant" refers to a plant which contains new genetic material as a result of genetic manipulation or transformation. The new genetic material may be derived from a plant of the same species as the resulting transgenic plant or from a different species.
[0251]The terms "to alter expression of" and "altered expression" of a polynucleotide or polypeptide of the invention, are intended to encompass the situation where genomic DNA corresponding to a polynucleotide of the invention is modified thus leading to altered expression of a polynucleotide or polypeptide of the invention. Modification of the genomic DNA may be through genetic transformation or other methods known in the art for inducing mutations. The "altered expression" can be related to an increase or decrease in the amount of messenger RNA and/or polypeptide produced and may also result in altered activity of a polypeptide due to alterations in the sequence of a polynucleotide and polypeptide produced.
[0252]The applicants have identified a polynucleotide from ryegrass (SEQ ID NO: 82) encoding a polypeptide (SEQ ID NO: 4) which modulates in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants have also identified polynucleotide variants of SEQ ID NO: 82 (SEQ ID NOs: 83-159) encoding polypeptide variants of SEQ ID NOs: 4 (SEQ ID NOs: 5-81) which modulate in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants identified consensus sequences (SEQ ID NO:1) present in all of polypeptides encoded by such polynucleotides, as shown in FIG. 1. Further the applicants have identified a consensus sequence (SEQ ID NO:2) specific to dicotyledonous polypeptide sequences (FIG. 2) and a consensus sequence (SEQ ID NO:3) specific to monocotyledonous sequences (FIG. 3).
[0253]The applicants have identified a polynucleotide from ryegrass (SEQ ID NO:201) encoding a polypeptide (SEQ ID NO: 163) which modulates in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants have also identified polynucleotide variants of SEQ ID NO: 201 (SEQ ID NOs: 202-238) encoding polypeptide variants of SEQ ID NOs: 163 (SEQ ID NOs: 164-200) which modulate in plants, tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The applicants identified consensus sequences (SEQ ID NO:160) present in all of polypeptides encoded by such polynucleotides, as shown in FIG. 4. Further the applicants have identified a consensus sequence (SEQ ID NO:161) specific to dicotyledonous polypeptide sequences (FIG. 5) and a consensus sequence (SEQ ID NO:162) specific to monocotyledonous sequences (FIG. 6).
[0254]The invention provides plants altered relative to wild-type plants in tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. The invention provides both plants with both increased tolerance to the above and plants with decreased tolerance to above characteristic stresses. The invention also provides methods for the production or selection of such plants.
[0255]The polynucleotide molecules of the invention can be isolated by using a variety of techniques known to those of ordinary skill in the art. By way of example, such polynucleotides can be isolated through use of the polymerase chain reaction (PCR) described in Mullis et al., Eds. 1994 The Polymerase Chain Reaction, Birkhauser, incorporated herein by reference. The polynucleotides of the invention can be amplified using primers, as defined herein, derived from the polynucleotide sequences of the invention.
[0256]The polynucleotide fragments of the invention may be produced by techniques well-known in the art such as restriction endonuclease digestion and oligonucleotide synthesis.
[0257]A partial polynucleotide sequence may be used, in methods well-known in the art to identify the corresponding full length polynucleotide sequence. Such methods would include PCR-based methods, 5'RACE (Frohman Mass., 1993, Methods Enzymol. 218: 340-56) and hybridization-based method, computer/database-based methods. Further, by way of example, inverse PCR permits acquisition of unknown sequences, flanking the polynucleotide sequences disclosed herein, starting with primers based on a known region (Triglia et al., 1998, Nucleic Acids Res 16, 8186, incorporated herein by reference). The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template. Divergent primers are designed from the known region. In order to physically assemble full-length clones, standard molecular biology approaches can be utilized (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987).
[0258]It may be beneficial, when producing a transgenic plant from a particular species, to transform such a plant with a sequence or sequences derived from that species. The benefit may be to alleviate public concerns regarding cross-species transformation in generating transgenic organisms. Additionally when down-regulation of a gene is the desired result, it may be necessary to utilise a sequence identical (or at least highly similar) to that in the plant, for which reduced expression is desired. For these reasons among others, it is desirable to be able to identify and isolate orthologues of a particular gene in several different plant species. Variants (including orthologues) may be identified by the methods described.
Methods for Identifying Variants
Physical Methods
[0259]Variant polynucleotides may be identified using PCR-based methods (Mullis et al., Eds. 1994 The Polymerase Chain Reaction, Birkhauser). Typically, the polynucleotide sequence of a primer, useful to amplify variant polynucleotide molecules by PCR, may be based on a sequence encoding a conserved region of the corresponding amino acid sequence.
[0260]Alternatively library screening methods will be known to those skilled in the art (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987) may be employed. When identifying variants of the probe sequence hybridisation and/or wash stringency conditions will typically be reduced relative to when exact sequence matches are sought.
[0261]Polypeptide variants of the invention may be identified by physical methods, for example by screening expression libraries using antibodies raised against polypeptides of the invention (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987) or by identifying polypeptides from natural sources with the aid of such antibodies.
Computer Based Methods
[0262]The variant sequences of the invention, including both polynucleotide and polypeptide variants, may also be identified by computer-based methods well-known to those skilled in the art, using public domain sequence alignment algorithms and sequence similarity search tools to search sequence databases (public domain databases include Genbank, EMBL, Swiss-Prot, PIR and others). See, e.g., Nucleic Acids Res. 29: 1-10 and 11-16, 2001 for examples of online resources. Similarity searches retrieve and align target sequences for comparison with a sequence to be analyzed (i.e., a query sequence). Sequence comparison algorithms use scoring matrices to assign an overall score to each of the alignments.
[0263]An exemplary family of programs useful for identifying variants in sequence databases is the BLAST suite of programs (version 2.2.5 [November 2002]) including BLASTN, BLASTP, BLASTX, tBLASTN and tBLASTX, which are publicly available from (ftp://ftp.ncbi.nih.gov/blast/) or from the National Center for Biotechnology Information (NCBI), National Library of Medicine, Building 38A, Room 8N805, Bethesda, Md. 20894 USA. The NCBI server also provides the facility to use the programs to screen a number of publicly available sequence databases. BLASTN compares a nucleotide query sequence against a nucleotide sequence database. BLASTP compares an amino acid query sequence against a protein sequence database. BLASTX compares a nucleotide query sequence translated in all reading frames against a protein sequence database. tBLASTN compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames. tBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database. The BLAST programs may be used with default parameters or the parameters may be altered as required to refine the screen.
[0264]The use of the BLAST family of algorithms, including BLASTN, BLASTP, and BLASTX, is described in the publication of Altschul et al., Nucleic Acids Res. 25: 3389-3402, 1997.
[0265]The "hits" to one or more database sequences by a queried sequence produced by BLASTN, BLASTP, BLASTX, tBLASTN, tBLASTX, or a similar algorithm, align and identify similar portions of sequences. The hits are arranged in order of the degree of similarity and the length of sequence overlap. Hits to a database sequence generally represent an overlap over only a fraction of the sequence length of the queried sequence.
[0266]The BLASTN, BLASTP, BLASTX, tBLASTN and tBLASTX algorithms also produce "Expect" values for alignments. The Expect value (E) indicates the number of hits one can "expect" to see by chance when searching a database of the same size containing random contiguous sequences. The Expect value is used as a significance threshold for determining whether the hit to a database indicates true similarity. For example, an E value of 0.1 assigned to a polynucleotide hit is interpreted as meaning that in a database of the size of the database screened, one might expect to see 0.1 matches over the aligned portion of the sequence with a similar score simply by chance. For sequences having an E value of 0.01 or less over aligned and matched portions, the probability of finding a match by chance in that database is 1% or less using the BLASTN, BLASTP, BLASTX, tBLASTN or tBLASTX algorithm.
[0267]Multiple sequence alignments of a group of related sequences can be carried out with CLUSTALW (Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22:4673-4680, http://www-igbmc.u-strasbg.fr/BioInfo/ClustalW/Top.html) or T-COFFEE (Cedric Notredame, Desmond G. Higgins, Jaap Heringa, T-Coffee: A novel method for fast and accurate multiple sequence alignment, J. Mol. Biol. (2000) 302: 205-217)) or PILEUP, which uses progressive, pairwise alignments. (Feng and Doolittle, 1987, J. Mol. Evol. 25, 351).
[0268]Pattern recognition software applications are available for finding motifs or signature sequences. For example, MEME (Multiple Em for Motif Elicitation) finds motifs and signature sequences in a set of sequences, and MAST (Motif Alignment and Search Tool) uses these motifs to identify similar or the same motifs in query sequences. The MAST results are provided as a series of alignments with appropriate statistical data and a visual overview of the motifs found. MEME and MAST were developed at the University of California, San Diego.
[0269]PROSITE (Bairoch and Bucher, 1994, Nucleic Acids Res. 22, 3583; Hofmann et al., 1999, Nucleic Acids Res. 27, 215) is a method of identifying the functions of uncharacterized proteins translated from genomic or cDNA sequences. The PROSITE database (www.expasy.org/prosite) contains biologically significant patterns and profiles and is designed so that it can be used with appropriate computational tools to assign a new sequence to a known family of proteins or to determine which known domain(s) are present in the sequence (Falquet et al., 2002, Nucleic Acids Res. 30, 235). Prosearch is a tool that can search SWISS-PROT and EMBL databases with a given sequence pattern or signature.
[0270]The function of a variant polynucleotide of the invention in modulating tolerance to environmental stresses in a plant may be assessed by expressing the polynucleotide in a plant and for example, analyzing the effect on stress tolerance by methods provided in the Example section. Further plant transformation protocols for several species are known to those skilled in the art. A list of such protocols is provided herein.
Methods for Isolating Polypeptides
[0271]The polypeptides of the invention, including variant polypeptides, may be prepared using peptide synthesis methods well known in the art such as direct peptide synthesis using solid phase techniques (e.g. Stewart et al., 1969, in Solid-Phase Peptide Synthesis, WH Freeman Co, San Francisco Calif., or automated synthesis, for example using an Applied Biosystems 431A Peptide Synthesizer (Foster City, California). Mutated forms of the polypeptides may also be produced during such syntheses.
[0272]The polypeptides and variant polypeptides of the invention may also be purified from natural sources using a variety of techniques that are well known in the art (e.g. Deutscher, 1990, Ed, Methods in Enzymology, Vol. 182, Guide to Protein Purification).
[0273]Alternatively the polypeptides and variant polypeptides of the invention may be expressed recombinantly in suitable host cells and separated from the cells as discussed below.
Methods for Producing Constructs and Vectors
[0274]The genetic constructs of the present invention comprise one or more polynucleotide sequences of the invention and/or polynucleotides encoding polypeptides of the invention, and may be useful for transforming, for example, bacterial, fungal, insect, mammalian or plant organisms. The genetic constructs of the invention are intended to include expression constructs as herein defined.
[0275]Methods for producing and using genetic constructs and vectors are well known in the art and are described generally in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing, 1987).
Methods for Producing Host Cells Comprising Constructs and Vectors
[0276]The invention provides a host cell which comprises a genetic construct or vector of the invention. Host cells may be derived from, for example, bacterial, fungal, insect, mammalian or plant organisms.
[0277]Host cells comprising genetic constructs, such as expression constructs, of the invention are useful in methods well known in the art (e.g. Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing, 1987) for recombinant production of polypeptides of the invention. Such methods may involve the culture of host cells in an appropriate medium in conditions suitable for or conducive to expression of a polypeptide of the invention. The expressed recombinant polypeptide, which may optionally be secreted into the culture, may then be separated from the medium, host cells or culture medium by methods well known in the art (e.g. Deutscher, Ed, 1990, Methods in Enzymology, Vol 182, Guide to Protein Purification).
Methods for Producing Plant Cells and Plants Comprising Constructs and Vectors
[0278]The invention further provides plant cells which comprise a genetic construct of the invention, and plant cells modified to alter expression of a polynucleotide or polypeptide of the invention. Plants comprising such cells also form an aspect of the invention.
[0279]Tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity in a plant, may also be altered through methods of the invention. Such methods may involve the transformation of plant cells and plants, with a construct of the invention designed to alter expression of a polynucleotide or polypeptide which modulates for example, tolerance to drought stress, in such plant cells and plants. Such methods also include the transformation of plant cells and plants with a combination of the construct of the invention and one or more other constructs designed to alter expression of one or more polynucleotides or polypeptides which modulate for example, tolerance to drought stress in such plant cells and plants.
[0280]Methods for transforming plant cells, plants and portions thereof with polynucleotides are described in Draper et al., 1988, Plant Genetic Transformation and Gene Expression. A Laboratory Manual, Blackwell Sci. Pub. Oxford, p. 365; Potrykus and Spangenberg, 1995, Gene Transfer to Plants. Springer-Verlag, Berlin; and Gelvin et al., 1993, Plant Molecular Biol. Manual. Kluwer Acad. Pub. Dordrecht. A review of transgenic plants, including transformation techniques, is provided in Galun and Breiman, 1997, Transgenic Plants. Imperial College Press, London.
Methods for Genetic Manipulation of Plants
[0281]A number of plant transformation strategies are available (e.g. Birch, 1997, Ann Rev Plant Phys Plant Mol Biol, 48, 297). For example, strategies may be designed to increase expression of a polynucleotide/polypeptide in a plant cell, organ and/or at a particular developmental stage where/when it is normally expressed or to ectopically express a polynucleotide/polypeptide in a cell, tissue, organ and/or at a particular developmental stage which/when it is not normally expressed. The expressed polynucleotide/polypeptide may be derived from the plant species to be transformed or may be derived from a different plant species.
[0282]Transformation strategies may be designed to reduce expression of a polynucleotide/polypeptide in a plant cell, tissue, organ or at a particular developmental stage which/when it is normally expressed. Such strategies are known as gene silencing strategies.
[0283]Genetic constructs for expression of genes in transgenic plants typically include promoters for driving the expression of one or more cloned polynucleotide, terminators and selectable marker sequences to detest presence of the genetic construct in the transformed plant.
[0284]The promoters suitable for use in the constructs of this invention are functional in a cell, tissue or organ of a monocot or dicot plant and include cell-, tissue- and organ-specific promoters, cell cycle specific promoters, temporal promoters, inducible promoters, constitutive promoters that are active in most plant tissues, and recombinant promoters. Choice of promoter will depend upon the temporal and spatial expression of the cloned polynucleotide, so desired. The promoters may be those normally associated with a transgene of interest, or promoters which are derived from genes of other plants, viruses, and plant pathogenic bacteria and fungi. Those skilled in the art will, without undue experimentation, be able to select promoters that are suitable for use in modifying and modulating plant traits using genetic constructs comprising the polynucleotide sequences of the invention. Examples of constitutive plant promoters include the CaMV 35S promoter, the nopaline synthase promoter and the octopine synthase promoter, and the Ubi 1 promoter from maize. Plant promoters which are active in specific tissues, respond to internal developmental signals or external abiotic or biotic stresses are described in the scientific literature. Exemplary promoters are described, e.g., in WO 02/00894, which is herein incorporated by reference.
[0285]Exemplary terminators that are commonly used in plant transformation genetic construct include, e.g., the cauliflower mosaic virus (CaMV) 35S terminator, the Agrobacterium tumefaciens nopaline synthase or octopine synthase terminators, the Zea mays zein gene terminator, the Oryza sativa ADP-glucose pyrophosphorylase terminator and the Solanum tuberosum PI-II terminator.
[0286]Selectable markers commonly used in plant transformation include the neomycin phophotransferase II gene (NPT II) which confers kanamycin resistance, the aadA gene, which confers spectinomycin and streptomycin resistance, the phosphinothricin acetyl transferase (bar gene) for Ignite (AgrEvo) and Basta (Hoechst) resistance, and the hygromycin phosphotransferase gene (hpt) for hygromycin resistance.
[0287]Use of genetic constructs comprising reporter genes (coding sequences which express an activity that is foreign to the host, usually an enzymatic activity and/or a visible signal (e.g., luciferase, GUS, GFP) which may be used for promoter expression analysis in plants and plant tissues are also contemplated. The reporter gene literature is reviewed in Herrera-Estrella et al., 1993, Nature 303, 209, and Schrott, 1995, In: Gene Transfer to Plants (Potrykus, T., Spangenberg. Eds) Springer Verlag. Berline, pp. 325-336.
[0288]Gene silencing strategies may be focused on the gene itself or regulatory elements which effect expression of the encoded polypeptide. "Regulatory elements" is used here in the widest possible sense and includes other genes which interact with the gene of interest.
[0289]Genetic constructs designed to decrease or silence the expression of a polynucleotide/polypeptide of the invention may include an antisense copy of a polynucleotide of the invention. In such constructs the polynucleotide is placed in an antisense orientation with respect to the promoter and terminator.
[0290]An "antisense" polynucleotide is obtained by inverting a polynucleotide or a segment of the polynucleotide so that the transcript produced will be complementary to the mRNA transcript of the gene, e.g.,
TABLE-US-00014 5'GATCTA 3' 3'CTAGAT 5' (coding strand) (antisense strand) 3'CUAGAU 5' 5'GAUCUA 3' mRNA antisense RNA
[0291]Genetic constructs designed for gene silencing may also include an inverted repeat as herein defined. The preferred approach to achieve this is via RNA-interference strategies using genetic constructs encoding self-complementary "hairpin" RNA (Wesley et al., 2001, Plant Journal, 27: 581-590).
[0292]The transcript formed may undergo complementary base pairing to form a hairpin structure. Usually a spacer of at least 3-5 by between the repeated regions is required to allow hairpin formation.
[0293]Another silencing approach involves the use of a small antisense RNA targeted to the transcript equivalent to an miRNA (Llave et al., 2002, Science 297, 2053). Use of such small antisense RNA corresponding to polynucleotide of the invention is expressly contemplated.
[0294]The term genetic construct as used herein also includes small antisense RNAs and other such polynucleotides effecting gene silencing.
[0295]Transformation with an expression construct, as herein defined, may also result in gene silencing through a process known as sense suppression (e.g. Napoli et al., 1990, Plant Cell 2, 279; de Carvalho Niebel et al., 1995, Plant Cell, 7, 347). In some cases sense suppression may involve over-expression of the whole or a partial coding sequence but may also involve expression of non-coding region of the gene, such as an intron or a 5' or 3' untranslated region (UTR). Chimeric partial sense constructs can be used to coordinately silence multiple genes (Abbott et al., 2002, Plant Physiol. 128(3): 844-53; Jones et al., 1998, Planta 204: 499-505). The use of such sense suppression strategies to silence the expression of a polynucleotide of the invention is also contemplated.
[0296]The polynucleotide inserts in genetic constructs designed for gene silencing may correspond to coding sequence and/or non-coding sequence, such as promoter and/or intron and/or 5' or 3' UTR sequence, or the corresponding gene.
[0297]Other gene silencing strategies include dominant negative approaches and the use of ribozyme constructs (McIntyre, 1996, Transgenic Res, 5, 257)
[0298]Pre-transcriptional silencing may be brought about through mutation of the gene itself or its regulatory elements. Such mutations may include point mutations, frameshifts, insertions, deletions and substitutions.
[0299]The following are representative publications disclosing genetic transformation protocols that can be used to genetically transform the following plant species: Rice (Alam et al., 1999, Plant Cell Rep. 18, 572); maize (U.S. Pat. Nos. 5,177,010 and 5,981,840); wheat (Ortiz et al., 1996, Plant Cell Rep. 15, 1996, 877); tomato (U.S. Pat. No. 5,159,135); potato (Kumar et al., 1996 Plant J. 9, : 821); cassava (Li et al., 1996 Nat. Biotechnology 14, 736); lettuce (Michelmore et al., 1987, Plant Cell Rep. 6, 439); tobacco (Horsch et al., 1985, Science 227, 1229); cotton (U.S. Pat. Nos. 5,846,797 and 5,004,863); grasses (U.S. Pat. Nos. 5,187,073 and 6,020,539); peppermint (Niu et al., 1998, Plant Cell Rep. 17, 165); citrus plants (Pena et al., 1995, Plant Sci. 104, 183); caraway (Krens et al., 1997, Plant Cell Rep, 17, 39); banana (U.S. Pat. No. 5,792,935); soybean (U.S. Pat. Nos. 5,416,011; 5,569,834; 5,824,877; 5,563,04455 and 5,968,830); pineapple (U.S. Pat. No. 5,952,543); poplar (U.S. Pat. No. 4,795,855); monocots in general (U.S. Pat. Nos. 5,591,616 and 6,037,522); brassica (U.S. Pat. Nos. 5,188,958; 5,463,174 and 5,750,871); and cereals (U.S. Pat. No. 6,074,877). Other species are contemplated and suitable methods and protocols are available in the scientific literature for use by those skilled in the art.
[0300]Several further methods known in the art may be employed to alter expression of a nucleotide and/or polypeptide of the invention. Such methods include but are not limited to Tilling (Till et al., 2003, Methods Mol Biol, 2%, 205), so called "Deletagene" technology (Li et al., 2001, Plant Journal 27(3), 235) and the use of artificial transcription factors such as synthetic zinc finger transcription factors. (e.g. Jouvenot et al., 2003, Gene Therapy 10, 513). Additionally antibodies or fragments thereof, targeted to a particular polypeptide may also be expressed in plants to modulate the activity of that polypeptide (Jobling et al., 2003, Nat. Biotechnol., 21(1), 35). Transposon tagging approaches may also be applied. Additionally peptides interacting with a polypeptide of the invention may be identified through technologies such as phase-display (Dyax Corporation). Such interacting peptides may be expressed in or applied to a plant to affect activity of a polypeptide of the invention. Use of each of the above approaches in alteration of expression of a nucleotide and/or polypeptide of the invention is specifically contemplated.
Methods for Plants
[0301]Methods are also provided for selecting plants altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. Such methods involve testing of plants for altered for the expression of a polynucleotide or polypeptide of the invention. Such methods may be applied at a young age or early developmental stage to accelerate breeding programs directed toward at least one of the characteristics described which may not be easily assessed until a later age or developmental stage.
[0302]The expression of a polynucleotide, such as a messenger RNA, is often used as an indicator of expression of a corresponding polypeptide. Exemplary methods for measuring the expression of a polynucleotide include but are not limited to Northern analysis, RT-PCR and dot-blot analysis (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Press, 1987). Polynucleotides or portions of the polynucleotides of the invention are thus useful as probes or primers, as herein defined, in methods for the identification of plants with altered tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity. For example an altered level in a plant, of a polypeptide involved in modulating tolerance to drought stress may be used as an indicator of eventual tolerance to drought stress in such a plant. The polynucleotides of the invention may be used as probes in hybridization experiments, or as primers in PCR based experiments, designed to identify such plants.
[0303]Alternatively antibodies may be raised against polypeptides of the invention. Methods for raising and using antibodies are standard in the art (see for example: Antibodies, A Laboratory Manual, Harlow A Lane, Eds, Cold Spring Harbour Laboratory, 1998). Such antibodies may be used in methods to detect altered expression of polypeptides which modulate flower size in plants. Such methods may include ELISA (Kemeny, 1991, A Practical Guide to ELISA, NY Pergamon Press) and Western analysis (Towbin & Gordon, 1994, J Immunol Methods, 72, 313).
[0304]These approaches for analysis of polynucleotide or polypeptide expression and the selection of plants with altered expression are useful in conventional breeding programs designed to produce varieties with altered in tolerance to at least one environmental stress selected from drought, cold, freezing, heat and salinity.
Plants
[0305]The plants of the invention may be grown and either selfed or crossed with a different plant strain and the resulting hybrids, with the desired phenotypic characteristics, may be identified. Two or more generations may be grown to ensure that the subject phenotypic characteristics are stably maintained and inherited. Plants resulting from such standard breeding approaches also form an aspect of the present invention.
Examples
[0306]The invention will now be illustrated with reference to the following non-limiting examples.
Example 1
Identification of Polynucleotides Which Modulate Tolerance to Environmental Stresses
Introduction
[0307]Transcript identification in different tissue and developmental stages is based mainly by the use of EST (expressed sequence tag)-based methods (Adams et al. 1991, Science 252:1651-1656). SAGE (serial analysis of gene expression) (Velculescu et al. 1995, Science 270: 484-487) is a modification of conventional EST methods and has many advantages over that of other methods, such as microarray (Richmond and Somerville 2000, Current Opinion in Plant Biology. 3:108-116). Transcript profiling by SAGE is not limited to studying known genes and is estimated to be 26 times more sensitive than EST method (Sun et al. 2004, BMC Genomics 5: 1.1-1.4). Unlike microarray, SAGE is free from cross-hybridization problem and accurate because of dimer-formation prior to amplification (Ruan et al. 2004, Trends in Biotechnology 22: 23-30.). Alternative splicing of the transcript is a well-known phenomenon, whose impact is not fully understood yet (Lee et al. 2003, PNAS 99:12257-12262). These splice variants can be identified by SAGE. SAGE is also able to detect antisense RNAs, since the orientation of the SAGE tag on the transcripts can be readily determined. Antisense transcripts are likely to represent novel genes whose function may or may not be related to regulation of the expression of the genes transcribed from the sense strand (Chen et al. 2002, Nucleic Acids Res. 31:101-105). Although SAGE is widely used in the analysis of transcriptomes from cancerous human cells, it is not widely applied in other organisms, including plants. To date only a handful of papers have appeared where SAGE has been applied to characterize plant transcriptome, for example; Lee and Lee, 2003 Plant Physiol. 132: 517-529. Most of the plant transcriptome analysed using SAGE has been confined to the two fully sequenced genomes, namely Arabidopsis and rice.
[0308]Perennial ryegrass (Lolium perenne L.) is a cool temperate pasture plant from the family Gramineae and the tribe Festucaceae. To generate a profile of relative gene expression patterns in ryegrass, RNA was extracted from samples obtained from ambient temperature growth, cold grown, hydrated, dehydrated and rehydrated or dehydration pre- and post-grazed plants during autumn, summer, spring and winter, and used for constructing a SAGE library.
Materials and Methods:
[0309]Perennial ryegrass (Lohum perenne L.) cv. Bronsyn was used throughout this study. Field grown samples were collected from active paddocks at Dexcel, Hamilton, New Zealand during the peak of each season. Grass samples were collected from pre-grazed (15 days post grazing) and post-grazed (1 day post grazing) ryegrass swards. Tufts of grass samples were harvested from 3-6 randomly chosen sites and stored in dry-ice after snap-freezing with liquid nitrogen. During spring, immature spike and floral initials were also harvested. For stress-treatment, the following conditions were used on lab-grown ryegrass: Mature lab-grown perennial ryegrass that was grown in growth chamber for 15 months at 85% RH, 20° C./18° C. and 16 h/8 h day/night regime; Hydrated control grown for 55 days at 85% RH, 20° C./18° C. and 16 h/8 h day/night regime; 6 days at 70% RH, 22° C./16° C. and 16 h/8 h day/night regime, seedlings were kept watered throughout their life; Dehydrated sample watered only for 55 days at 85% RH, 20° C./18° C. and 16 h/8 h day/night regime; 3 days at 70% RH, 28° C./20° C. and 16 h/8 h day/night regime; 3 days at 50% RH, 28° C./20° C. and 16 h/8 h day/night regime; Rehydrated samples were from dehydrated plants that was watered for 24 hours and grown at 70% RH, 22° C./16° C. and 16 h/8 h day/night regime; Cold-stressed plants were grown for 55 days at 85% RH, 20° C./18° C. and 16 h/8 h day/night regime; 7 days at 70% RH, 22° C./16° C. and 16 h/8h day/night regime; 7 days at 70% RH, 6° C./2° C. and 16 h/8 h day/night regime, seedlings were kept watered throughout their life.
Construction of SAGE Libraries
[0310]RNA was extracted using TRIZOL® reagent (Invitrogen, CA, USA) and by the protocol described by the manufacturer from tissue that was ground in liquid nitrogen. For each SAGE library 100 μg of total RNA was used and the libraries were created using I-SAGE® or I-SAGE® Long kit (Invitrogen, CA, USA) according to manufacturer's protocol. From each library 960-1,920 clones were sequenced (Australian Genome Research Facility, Brisbane, Australia) and the tags extracted using the SAGE2000 software.
SAGE Bioinformatics:
[0311]The relational database was designed to hold tags, libraries and expression counts of the SAGE experiments. Each tag sequence (including enzyme sequence) was searched against the whole Ryegrass non-overlapping Gene thresher and the EST sets. The search was carried out in both direction and used exact match only. Results were loaded to the relational database using General Feature Format (GFF) approach (http://www3.ebi.ac.uk/Services/WebFeat)
[0312]All Ryegrass Gene thresher and the EST sequences were annotated using homology searches against some or all the following public and propriety databases: [0313]AGI TIGR Gene Indices, Arabidopsis, release 11, Jan. 2004 [0314]OGI TIGR Gene Indices, Rice, release 14-1, Jan. 2004 [0315]GENESEQN Derwent patent DNA sequences Dec. 7, 2002 [0316]GENESEQP Derwent patent amino acid sequences Dec. 7, 2002 [0317]Os_unigene Oryza sativa Unigene unique sequences Mar. 18, 2004 [0318]est_others Other EST sequences (mammal, fungi, prokaryote) Mar. 11, 2003 [0319]est_plant Viridiplantae subset of Non-redundant Database of GenBank+EMBL+DDBJ EST Divisions Mar. 3, 2004 [0320]nr All non-redundant GenBank CDS translations+PDB+SwissProt+PIR Mar. 11, 2003 [0321]nr_plant Plant subset of HS subset of BT subset of All non-redundant GenBank CDS translations+PDB+SwissProt+PIR Aug. 8, 2003 [0322]nt All Non-redundant GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or HTGS sequences) Mar. 11, 2003 [0323]nt13 monocots Monocot subset of All Non-redundant GenBank+EMBL+DDBJ+PDB sequences (but no EST, STS, GSS, or HTGS sequences) Mar. 11, 2003 [0324]swissprot The last major release of the SWISS-PROT protein sequence database (no updates) Mar. 28, 2003
[0325]A cutoff of E value less than E-05 was used and maximum of 10 targets per database were stored in the relational database.
Tags Annotation:
[0326]Tags with hits to the Ryegrass sets were annotated by creating a summary of all the annotations of the involved sequences. The summary was generated using an algorithm to calculate the frequency of the occurrence of each word in the annotations and rank them in descending order based on the number off occurrences. The summary was limited to 10 words and a void word list was used to filter out insignificant information. The resulting summary line was used as an indication of what the tags were likely to be. Actual numbers are displayed; giving additional information that could be used to evaluate the significance of each of the words in the summary. This method of automatic annotation using keyword counts is similar to the Automatic comment that is used by the ProDom database (http://protein.toulouse.inra.fr/prodom/current/html/ home.php) to annotate the automatically generated protein domain families.
[0327]Detailed annotation based on the top hits of the involved sequences was displayed when viewing tags data.
[0328]Two polynucleotide sequences of particular interest were identified in the above analysis. These are ORF4 (corresponds to SEQ ID NO: 82) and ORF12 (corresponding to SEQ ID NO: 201).
[0329]ORF4 appears to encode a helix-loop-helix transcription factor. The transcript accumulates in cold, dehydrated and rehydrating tissues. The full transcript profile is shown in table 1.
TABLE-US-00015 TABLE 1 SAGE_TAG TGACACCGTT LPWPRE 0 LPWPOS 0 LPRWIN 0 LPSPRE 0 LPSPOS 2 LPISFI 1 LPUPOS 2 LPAPRE 2 LPAPOS 1 LPMALF 0 LPCOLD 2 LPHYDR 0 LPDEHY 4 LPREHY 2 Total 15
[0330]ORF12 appears to encode a zinc finger protein and the transcript accumulates in response to drought stimulus. The full transcript profile is shown in table 2 below.
TABLE-US-00016 TABLE 2 SAGE_TAG TGTATCATTA LPWPRE 0 LPWPOS 0 LPRWIN 0 LPSPRE 0 LPSPOS 0 LPISFI 0 LPUPOS 0 LPAPRE 0 LPAPOS 0 LPMALF 2 LPCOLD 0 LPHYDR 0 LPDEHY 6 LPREHY 0 Total 8
[0331]ORF12 appears to be a C2H2 class zinc finger transcription factor with two zinc fingers. The first zinc finger is contained in the polypeptide between amino acid residue 81 and 101 of SEQ ID NO:163 while the second zinc finger is contained in the polypeptide sequence between amino acid residue 144 and 164. Within the first zinc finger a conserved amino acid sequence motif QALGGHK was identified which is directly repeated in the second zinc finger domain, the conserved motif being separated by 56 residues. The H residue in this motif, in the first zinc finger, appears to be the first of the two H residues that is reported to be the active site in the C2H2 class zinc finger transcription factors.
Example 2
Identification Variants of ORF 4 and ORF 12
[0332]The polypeptide sequence encoded by the ORF4 and ORF12 were used as seed sequences to perform BLASTP search against NR PLANT database (release date Jul. 30, 04). Besides BLASTP, a TBLASTN search was also performed against EST PLANT database (release date Jul. 15, 04) and NT PLANT database (release date Jul. 15, 04). To identify the variants cut-off e value was generally set at greater than 1e-05, which was determined based upon the associated score value.
[0333]Selected variant sequences were aligned using the EMBOSS tool EMMA (Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994, CABIOS, 10, 19-29.), which is an interface to the popular multiple alignment program ClustalW. Aligned sequences were visualised using another EMBOSS tool called prettyplot, which displays aligned sequences with colouring and boxing.
[0334]All the ORF4 variant polypeptide sequences above were aligned as described above with ORF4 and a consensus motif (SEQ ID NO:1) common to ORF4 and ORF4 variants from all plant (both monocotyledonous and dicotyledonous) sequences was identified as shown in FIG. 1.
[0335]A similar consensus motif (SEQ ID NO:2) was identified which was specific to ORF4 and all of the dicotyledonous variant sequences as shown in FIG. 2.
[0336]A further consensus motif (SEQ ID NO:3) was identified which was specific to ORF4 and all of the monocotyledonous variant sequences as shown in FIG. 3.
[0337]All the ORF12 variant polypeptide sequences above were aligned as described above with ORF12 and a consensus motif (SEQ ID NO:4) common to ORF12 and ORF12 variants from all plant (both monocotyledonous and dicotyledonous) sequences was identified as shown in FIG. 4.
[0338]A similar consensus motif (SEQ ID NO:5) was identified which was specific to ORF4 and all of the dicotyledonous variant sequences as shown in FIG. 5.
[0339]A further consensus motif (SEQ ID NO:6) was identified which was specific to ORF4 and all of the monocotyledonous variant sequences as shown in FIG. 6.
[0340]We note that the repeated QALGGHK motif discussed above which was identified in ORF12 is also repeated in all of the ORF12 polypeptide variants being separated by between 36 and 63 amino acid residues. This is thus a distinctive feature of ORF12 and all of the ORF12 variant sequences identified.
Example 3
Preparation of Vectors Comprising Polynucleotides of the Invention for Plant Transformation
Vectors Comprising ORF4
[0341]A vector comprising ORF4 driven by the ryegrass promoter of SEQ ID NO:239 was produced by standard molecular biology techniques. A map to vectors is shown in FIG. 7. The sequence of the vector (SEQ ID NO:240) is shown in FIG. 8.
[0342]A vector comprising ORF4 driven by the double CaMV35S promoter was produced by standard molecular biology techniques. A map to vectors is shown in FIG. 11. The sequence of the vector (SEQ ID NO:242) is shown in FIG. 12.
Vector Comprising ORF12
[0343]A vector comprising ORF12 driven the by the ryegrass promoter of SEQ ID NO:239 was produced by standard molecular biology techniques. A map of the vector is shown in FIG. 9. The sequence (SEQ ID NO:241) and features of the vector is shown in FIG. 10.
[0344]A vector comprising ORF12 driven the by the double CaMV35S promoter was produced by standard molecular biology techniques. A map of the vector is shown in FIG. 13. The sequence (SEQ ID NO:243) and features of the vector is shown in FIG. 14.
Example 4
Transformation of Plants Within the Polynucleotides of the Invention
Donor Plant Production to Obtain Tissue Culture Explants
[0345]Seeds to establish contamination free in-vitro cultures were surface sterilized for 3 minutes with 70% (v/v) ethanol; followed by 60 minutes with sodium hypochlorite solution (2.4% active Chlorine) supplemented with a surfactant (0.1% (w/v) of Tween-20 and five rinses with autoclaved distilled water. Plantlets of perennial ryegrass (Lolium perenne L.) cultivar `Limes` (DSV Lippstadt/Germany) were clonally propagated in a 90 mm Petridish, containing Murashige and Skoog (Murashige, T and Skoog, F (1962) Physiol. Plant 15(3): 473-497) basal medium supplemented with 0.1 mg/l Benzylaminopurine; pH 5.8 and was solidified with 3.0g/l phytagel (Sigma), at 16° C. during night and 20° C. during the day with 14/12 h light/dark cycle. Light intensity of at least 360 μEm-2s-1 at plant height was maintained with sodium vapor lights (SON-T AGRO 400, Phillips). Axillary buds approximately 4-10 mm in size were excised and placed on callus induction medium. 12 explants were cultured per 90 mm petri-dish at 20 μEm-2s-1 and 25° C. for 28 to 56 days and calli sub-cultured to fresh medium every 14 days.
Biolistic Gene Transfer, Selection and Regeneration of Transgenic Plants
[0346]Calli were bombarded with DNA-coated particles six to ten weeks after culture of explants. Four to six hours prior to biolistic gene transfer calli were sub-cultured on medium with additional 64 gl-1 mannitol and retransferred to mannitol free callus subculture medium after the particle bombardment. Regeneration medium differed from the callus induction medium in the phytohormone composition (no 2,4-D and BAP) and the carbohydrate source and concentration (20 g-1-1 sucrose). Calli were cultured in low light at 20 μm-2s-1 and 24° C. and regenerated initially at 50 μm-2s-1 with a 16 h day, 8 h night cycle at 24° C. Two weeks after transfer to regeneration media light intensity was increased to 130 μm-2s-1 with fluorescent lamps (Philips TL-D 58 W/840R).
[0347]The plasmid pJFnpt contains the selectable nptII gene, encoding the enzyme neomycin phosphotransferase II under control of the maize ubiquitin promoter and first intron (Christensen and Quail 1996, Transgenic Res., 5, 213-218). The nptII expression cassette from pJFnpt was inserted into the pPZP 111 vector [P Hajdukiewicz, Z Svab, and P Maliga, 1994 Plant Molecular Biology 25: 989-994]. The plasmids pPZP 111, pCORF4, pCORF12, pDORF4 and pDORF12 were isolated as supercoiled DNA using commercially available DNA Maxiprep Kit. Vector backbone was removed from both the selectable marker gene expression cassette as well as from the target gene expression cassette by restriction digest, gel electrophoresis and gel purification prior gene transfer. Genetic transformation of perennial ryegrass was essentially carried out as described previously (Altpeter, F., Xu, J. and Ahmed S. 2000, Molecular Breeding, 6, 519-528). In brief, minimal transgene expression cassettes without vector backbone were precipitated on gold particles and delivered to target tissue in a 2:1 molar ratio (target gene expression cassette: selectable marker gene expression cassette) using a DuPont PDS-1000/He (BioRad, USA) device and 1100 psi rupture disks [Kikkert, J. R., 1993, Plant Cell, Tissue and Organ Culture, 33.(3) 221-226]. Particle density was adjusted by the final volume of ethanol in the gold-DNA suspension to 50 μg per bombardment. Five μl of the DNA coated particles were spread on the surface of the macrocarrier. Thirty to 35 callus pieces were put in the center of a petridish per bombardment six to ten weeks after callus initiation.
[0348]Selection was initiated five to seven days after biolistic gene transfer into calli. Two to three biweekly callus subcultures on CIM medium with 50 mgl-1 paromomycin were followed by two to three biweekly subcultures on 50 mg l-1 paromomycin containing SRM medium. Four to eight weeks after transfer of selected calli to light, rooted transgenic plants were screened by performing an ELISA for nptII expression using leaf protein extracts. nptII positive plants were further screened by performing a genomic PCR involving ORF4 or ORF12 specific primers as appropriate. Positive primary transformants were transferred to soil under controlled environment conditions and kept at 15° C./12° C. day/night with a 12 hour photoperiod and 400 μEm-2s-1. Illumination was provided by sodium vapor lamps (Philips SON-T AGRO 400) and vegetatively propagated to produce clones of uniform size and growth. RT-PCR was carried out using standard methodology on regenerated plants to determine the transgene expression levels and lines for drought screening were selected based on the transgene expression level.
[0349]Transgenic lines transformed with the double CaMV 35-driven ORF4 cassette used in further experiments included: C4 14, C4-19 and C4-20.
[0350]Transgenic lines transformed with the ryegrass promoter (SEQ ID NO:239)-driven ORF4 cassette, used in further experiments included D4-1, D4-5, D4-7 and D4-32.
[0351]Transgenic lines transformed with the ryegrass promoter (SEQ ID NO:239)-driven ORF12 cassette, used in further experiments included D12-58, D12-60 and D12-61.
Example 5
Alteration in Tolerance to Environmental Stress in Plants Transformed with Polynucleotides of the Invention
Drought Screening in Growth Chamber Based Hydroponics System.
[0352]Clones of selected lines and a non-transgenic control line were established in a hydroponics system that was set up in a growth chamber. The experimental setup involved four replications. After establishment, the plants were exposed to two rounds of drought-stress (plants lifted up from the hydroponic system) comprising of 4 h drought followed by 6 days of recovery in the first cycle and then by 8 hours of drought and 20 h recovery in the second cycle. Biometric parameters such as Quantum yield of Photosystem II (yield) and Electron Transfer Rate (ETR) were measured using a Pulse Modulated Fluorometer (PAM2000) before the drought stress, at the end of the first drought cycle, at the end of the first recovery period, at the end of the second drought stress and finally at the end of the second recovery period (FIG. 15). Each data point in the figure represents the average of 12 measurements (three measurements per plant and four plants per line). The non-transgenic control fared poorly as when compared with its transgenic counterparts expressing either ORF4 or ORF12. FIG. 16 shows the condition of non-transgenic plant (TC 2, bottom right) and some of the transgenic lines at the end of the second recovery period.
Drought Screening in Glasshouse Based Potted Plants.
[0353]Equal sized transgenic and non-transgenic clones were produced and established in pots filled with soil. Drought screening was carried out by withholding water for fourteen days and then the recovery observed after a day after irrigating the plants. Once again non-transgenic plants fared worse than the transgenic lines expressing either ORF4 or ORF12. FIG. 17 is a representative image of the outcome of this trial.
Drought Screening in SUN-Lit Chambers
[0354]Transgenic lines over-expressing ORF 4, or 12 were selected for a detailed physiological analysis in SUN-LIT chambers following their performance in hydroponic culture and soil (pots) under controlled environment conditions (growth chamber and greenhouse respectively). Six lines of transgenic ryegrass and a wildtype ryegrass (WT) were vegetatively propagated in the greenhouse before transplanting to the SPAR chamber, i.e., C4-19, C4-20, D4-1, D4-7, D12-60, D12-61, non-transgenic WT. These lines were randomized in a block design of 4 replications per chamber.
Soil Moisture Monitoring
[0355]The soil moisture (VWC, volumetric water content) was recorded with a TDR300 at an interval of two to three days starting 10 Feb. 2006. Measurements were taken in each row between each of the plants at 20 cm depth (there were 28 positions for monitoring soil water status in each chamber). The time course of the VWC (every data point represents the VWC average of 28 positions) is shown in FIG. 18 and the dates for subsurface irrigation are indicated. Following the establishment period subsurface irrigation was cut on 24 Feb. 2006. Soil moisture content declined and reached a VWC below 3% on 5 Apr. 2006. A 54 days period of no-irrigation was followed by a re-growth period coupled with weekly biomass harvest during the second dry down cycle. Plants showed progressive wilting from 20 Mar. 2006 and severe necrosis after 12 Apr. 2006 (FIG. 19).
Chlorophyll Content in Different Lines
[0356]The chlorophyll content of leaves was measured with a chlorophyll meter (SPAD-502, Konica Minolta Sensing, Inc., Japan). For each plant, the second youngest, fully expanded leaf from three different tillers per plant was measured. Each data point in Table 3 represented the average of 12 measurements from the four clones of each transgenic line or wild type. The statistical significance levels of the difference in chlorophyll content between transgenic lines and wild type are shown: * significant difference at P<0.05; ** significant difference at P<0.01. The data indicate that three transgenic lines displayed higher chlorophyll contents than the wild type over the majority of time points: C4-20, D4-1 and D4-7 and that the chlorophyll content of D4-1 and D4-7 actually increased after the drought cycles (19 May 2006) as compared to pre-drought state (14 Feb. 2006).
TABLE-US-00017 TABLE 3 Different Levels Of Chlorophyll Contents In Non-Transgenic And Transgenic Lines Date WT C4-19 C4-20 D12-60 D12-61 D4-1 D4-7 02-14 40.2 40.8 49.5 ** 42.9 43.1 * 40.2 46.9 ** 03-09 47.9 47.5 54.0 * 49.8 ** 49.7 49.4 51.8 * 03-20 45.7 44.0 53.0 * 50.1 48.1 46.5 49.1 * 04-05 49.2 51.3 56.2 * 52.4 51.5 53.8 56.8 * 04-13 48.5 44.8 ** 59.0 ** 49.3 49.0 56.7 ** 58.1 ** 04-18 33.0 35.4 49.5 ** 32.0 34.5 49.4 ** 51.0 ** 04-20 34.0 32.6 41.0 ** 38.6 36.0 41.0 * 39.9 * 04-28 41.0 39.4 47.2 ** 45.1 * 41.6 45.3 ** 52.6 ** 05-05 45.1 43.8 50.7 * 47.1 44.8 46.8 51.6 * 05-12 44.2 45.0 49.9 ** 44.9 44.9 46.3 49.1 * 05-19 40.2 38.8 47.8 ** 37.3 34.4 43.7 47.5
Chlorophyll Fluorescence Parameters (ETR & Yield)
[0357]The chlorophyll fluorescence parameters, electron transport rate (ETR) and quantum yield (Yield), were measured with the PAM2000 fluorometer and are presented in FIGS. 20 and 21, respectively. The second fully expanded leaf was measured from three tillers per plant. Each data point in the figures represents the average of 12 measurements (3 measurements per clone, four clones per line) for each line. The volumetric water content of the soil is given in brackets in the figure legend. The absence of data for C4-20 during the second round of drought period indicates that the leaves of these transgenic plants were too small or narrow to be measured. During severe stress (VWC less than 3%) the wildtype did not show a statistically lower ETR or yield than the transgenic lines although there were statistically significant differences in the chlorophyll contents.
Above-Ground Biomass
[0358]All leaves were cut 2 days after re-watering at 2.5 cm clipping height. The fresh weights (FW) of leaves were measured immediately, then leaves were dried at 80° C. for 48 h and the dry weight (DW) was measured. The difference between fresh weight and dry weight was used as an indicator of early recovery from drought stress. The aboveground biomass in chamber 1 and 2 produced since during the first dry down cycle is shown in FIG. 22. Mass loss indicates the difference of fresh weight and dry weight over fresh weight. No transgenic line produced significantly more biomass than wildtype in the first dry down cycle. However, transgenic lines C4-19, C4-20, D4-1 and D12-60 exhibited comparatively less biomass loss.
[0359]The time course of the newly produced leaf biomass (DW) during the second dry down cycle with clipping intervals of 7 to 10 days are shown in FIG. 23. The bars indicate the SE of four readings from four replications of each line in one chamber. With decreasing of soil moisture, the newly produced biomass of each line decreased. Wild type line, which had the highest biomass before the beginning of the trial, always had the highest amount of DW among all lines at any clipping time, but the differences declined with progressive drought stress and there was no significant difference between wildtype and transgenic lines at the 2 Jun. 2006 harvest. This indicates that the loss in the ability to produce aboveground biomass in the transgenic plants is lower than wild type under drought stress conditions.
[0360]The above examples illustrate practice of the invention. It will be appreciated by those skilled in the art that numerous variations and modifications may be made without departing from the spirit and scope of the invention.
TABLE-US-00018 SUMMARY OF SEQUENCES SEQ ID NO: TYPE SPECIES REFERENCE 1 Polypeptide Plant Consensus 2 Polypeptide Dicotyledonous Consensus 3 Polypeptide Monocotyledonous Consensus 4 Polypeptide Lolium perenne ORF4 5 Polypeptide Oryza sativa BAC8588.1 6 Polypeptide Oryza sativa BAD03011.1 7 Polypeptide Oryza sativa BAD07720.1 8 Polypeptide Triticum aestivum BQ805537 9 Polypeptide Hordeum vulgare BQ466561 10 Polypeptide Oryza sativa CB683708 11 Polypeptide Triticum aestivum BJ236148 12 Polypeptide Triticum aestivum BE490521 13 Polypeptide Hordeum vulgare BQ468417 14 Polypeptide Triticum aestivum BJ292865 15 Polypeptide Oryza sativa CB632480 16 Polypeptide Triticum aestivum BJ282803 17 Polypeptide Sorghum bicolor CN123916 18 Polypeptide Sorghum bicolor CN139457 19 Polypeptide Sorghum bicolor CF757974 20 Polypeptide Zea mays CA830789 21 Polypeptide Sorghum bicolor CF757859 22 Polypeptide Zea mays AW120094 23 Polypeptide Saccharum officinarum CA186576 24 Polypeptide Saccharum officinarum CA135735 25 Polypeptide Sorghum bicolor CN123829 26 Polypeptide Triticum aestivum BJ299272 27 Polypeptide Triticum aestivum BJ312914 28 Polypeptide Triticum aestivum CK214681 29 Polypeptide Zea mays BG841716 30 Polypeptide Zea mays CD439661 31 Polypeptide Sorghum bicolor CN130285 32 Polypeptide Sorghum bicolor CN130210 33 Polypeptide Hordeum vulgare BJ450702 34 Polypeptide Sorghum bicolor BE601333 35 Polypeptide Zea mays CB350589 36 Polypeptide Zea mays BU092370 37 Polypeptide Arabidopsis thaliana NP 200279.1 38 Polypeptide Arabidopsis thaliana AAM64276.1 39 Polypeptide Arabidopsis thaliana NP 175518.1 40 Polypeptide Arabidopsis thaliana AAM10939.1 41 Polypeptide Arabidopsis thaliana NP 188962.2 42 Polypeptide Arabidopsis thaliana NP 567431.1 43 Polypeptide Arabidopsis thaliana NP 849383.1 44 Polypeptide Arabidopsis thaliana BAB01300.1 45 Polypeptide Arabidopsis thaliana NP 188620.1 46 Polypeptide Arabidopsis thaliana AAL91266.1 47 Polypeptide Arabidopsis thaliana NP 849566.1 48 Polypeptide Arabidopsis thaliana NP 195330.2 49 Polypeptide Arabidopsis thaliana T05498 50 Polypeptide Vitis vinifera CF518638 51 Polypeptide Citrus reticulata CF830716 52 Polypeptide Medicago trunculata BG647802 53 Polypeptide Vitis vinifera CF212640 54 Polypeptide Gossypium raimondii CO114007 55 Polypeptide Citrus reticulata CF830658 56 Polypeptide Solanum tuberosum CK273638 57 Polypeptide Solanum tuberosum CK274846 58 Polypeptide Solanum tuberosum CK272231 59 Polypeptide Vitis vinifera CF212555 60 Polypeptide Glycine max CF805866 61 Polypeptide Solanum tuberosum CK270277 62 Polypeptide Citrus reticulata CF830657 63 Polypeptide Thellungiella halophila BM985503 64 Polypeptide Populus tremuloides CF118919 65 Polypeptide Vitis vinifera CF512838 66 Polypeptide Brassica napus BQ704279 67 Polypeptide Vitis vinifera CF518705 68 Polypeptide Gossypium raimondii CO090106 69 Polypeptide Populus tremuloides CF118982 70 Polypeptide Prunus dulcis BU645447 71 Polypeptide Glycine max BI972959 72 Polypeptide Medicago trunculata CA918862 73 Polypeptide Medicago trunculata CA922356 74 Polypeptide Glycine max BQ253067 75 Polypeptide Vitis vinifera CD800120 76 Polypeptide Glycine soja BG043667 77 Polypeptide Solanum tuberosum CK259672 78 Polypeptide Gossypium raimondii CO079077 79 Polypeptide Vitis vinifera CF518625 80 Polypeptide Lycopersicon esculentum BG643869 81 Polypeptide Pinus taeda CO364588 82 Polynucleotide Lolium perenne ORF4 83 polynucleotide Oryza sativa AB110196 84 Polynucleotide Oryza sativa AP003876 85 Polynucleotide Oryza sativa AP004121 86 Polynucleotide Triticum aestivum BQ805537 87 Polynucleotide Hordeum vulgare BQ466561 88 Polynucleotide Oryza sativa CB683708 89 Polynucleotide Triticum aestivum BJ236148 90 Polynucleotide Triticum aestivum BE490521 91 Polynucleotide Hordeum vulgare BQ468417 92 Polynucleotide Triticum aestivum BJ292865 93 Polynucleotide Oryza sativa CB632480 94 Polynucleotide Triticum aestivum BJ282803 95 Polynucleotide Sorghum bicolor CN123916 96 Polynucleotide Sorghum bicolor CN139457 97 Polynucleotide Sorghum bicolor CF757974 98 Polynucleotide Zea mays CA830789 99 Polynucleotide Sorghum bicolor CF757859 100 Polynucleotide Zea mays AW120094 101 Polynucleotide Saccharum officinarum CA186576 102 Polynucleotide Saccharum officinarum CA135735 103 Polynucleotide Sorghum bicolor CN123829 104 Polynucleotide Triticum aestivum BJ299272 105 Polynucleotide Triticum aestivum BJ312914 106 Polynucleotide Triticum aestivum CK214681 107 Polynucleotide Zea mays BG841716 108 Polynucleotide Zea mays CD439661 109 Polynucleotide Sorghum bicolor CN130285 110 Polynucleotide Sorghum bicolor CN130210 111 Polynucleotide Hordeum vulgare BJ450702 112 Polynucleotide Sorghum bicolor BE601333 113 Polynucleotide Zea mays CB350589 114 Polynucleotide Zea mays BU092370 115 Polynucleotide Arabidopsis thaliana NM 124849 116 Polynucleotide Arabidopsis thaliana AY086197 117 Polynucleotide Arabidopsis thaliana NM 103985 118 Polynucleotide Arabidopsis thaliana AF488573 119 Polynucleotide Arabidopsis thaliana NM 113222 120 Polynucleotide Arabidopsis thaliana NM 117520 121 Polynucleotide Arabidopsis thaliana NM 179052 122 Polynucleotide Arabidopsis thaliana AB025631 123 Polynucleotide Arabidopsis thaliana NM 112876 124 Polynucleotide Arabidopsis thaliana AY090362 125 Polynucleotide Arabidopsis thaliana NM 179235 126 Polynucleotide Arabidopsis thaliana NM 119773 127 Polynucleotide Arabidopsis thaliana AL022373 128 Polynucleotide Vitis vinifera CF518638 129 Polynucleotide Citrus reticulate CF830716 130 Polynucleotide Medicago trunculata BG647802 131 Polynucleotide Vitis vinifera CF212640 132 Polynucleotide Gossypium raimondii CO114007 133 Polynucleotide Citrus reticulata CF830658 134 Polynucleotide Solanum tuberosum CK273638 135 Polynucleotide Solanum tuberosum CK274846 136 Polynucleotide Solanum tuberosum CK272231 137 Polynucleotide Vitis vinifera CF212555 138 Polynucleotide Glycine max CF805866 139 Polynucleotide Solanum tuberosum CK270277 140 Polynucleotide Citrus reticulata CF830657 141 Polynucleotide Thellungiella halophila BM985503 142 Polynucleotide Populus tremuloides CF118919 143 Polynucleotide Vitis vinifera CF512838 144 Polynucleotide Brassica napus BQ704279 145 Polynucleotide Vitis vinifera CF518705 146 Polynucleotide Gossypium raimondii CO090106 147 Polynucleotide Populus tremuloides CF118982 148 Polynucleotides Prunus dulcis BU645447 149 Polynucleotide Glycine max BI972959 150 Polynucleotide Medicago trunculata CA918862 151 Polynucleotide Medicago trunculata CA922356 152 Polynucleotide Glycine max BQ253067 153 Polynucleotide Vitis vinifera CD800120 154 Polynucleotide Glycine soja BG043667 155 Polynucleotide Solanum tuberosum CK259672 156 Polynucleotide Gossypium raimondii CO079077 157 Polynucleotide Vitis vinifera CF518625 158 Polynucleotide Lycopersicon esculentum BG643869 159 Polynucleotide Pinus taeda CO364588 160 Polypeptide Plant Consensus 161 Polypeptide Dicotyledonous Consensus 162 Polypeptide Monocotyledonous Consensus 163 Polypeptide Lolium perenne ORF12 164 Polypeptide Oryza sativa AA046041 165 Polypeptide Oryza sativa AAP42273.1 166 Polypeptide Triticum aestivum Q42430 167 Polypeptide Oryza sativa AAK01713 168 Polypeptide Oryza sativa BAC83752 169 Polypeptide Aegilops speltoides BQ840910 170 Polypeptide Secale cereale CD453233 171 Polypeptide Saccharum officinarum CA142551 172 Polypeptide Nicotiana Benthamiana AAQ54303 173 Polypeptide Capsicum annum AAQ10954 174 Polypeptide Medicago sativa CAB77055 175 Polypeptide Glycine max T09602 176 Polypeptide Arabidopsis thaliana AAF24959 177 Polypeptide Arabidopsis thaliana NP 174094 178 Polypeptide Datisca glomerata AAD26942 179 Polypeptide Arabidopsis thaliana CAA67229 180 Polypeptide Petunia X hybrida BAA05079 181 Polypeptide Arabidopsis thaliana NP 188952 182 Polypeptide Arabidopsis thaliana BAC43454 183 Polypeptide Arabidopsis thaliana NP 196054 184 Polypeptide Brassica rapa T14408 185 Polypeptide Brassica rapa T14409 186 Polypeptide Nicotiana tabacum T01985 187 Polypeptide Petunia X Hybrida BAA05077 188 Polypeptide Arabidopsis thaliana NP 199131 189 Polypeptide Arabidopsis thaliana AAM67193 190 Polypeptide Arabidopsis thaliana NP 190562 191 Polypeptide Petunia X hybrida BAA05076 192 Polypeptide Arabidopsis thaliana NP 201546 193 Polypeptide Solanum tuberosum CK267005 194 Polypeptide Gossypium raimondii CO122574 195 Polypeptide Vitis aestivalis CB074681 196 Polypeptide Lycopersicon esculentum BI421491 197 Polypeptide Medicago trunculata BI308195 198 Polypeptide Populus sp. BU884157 199 Polypeptide Citrus sinensis CK938508 200 Polypeptide Lotus corniculatus AP004523 201 Polynucleotide Lolium perenne ORF12 202 Polynucleotide Oryza sativa AY219847 203 Polynucleotide Oryza sativa AY289189 204 Polynucleotide Triticum aestivum D16415 205 Polynucleotide Oryza sativa AF332876 206 Polynucleotide Oryza sativa AP005149 207 Polynucleotide Aegilops speltoides BQ840910 208 Polynucleotide Secale cereale CD453233 209 Polynucleotide Saccarum officinarum CA142551 210 Polynucleotide Nicotiana benthamiana AY290702 211 Polynucleotide Capsicum annuum AF539746 212 Polynucleotide Medicago sativa Y18788 213 Polynucleotide Glycine max GMU68763 214 Polynucleotide Arabidopsis thaliana AC012375 215 Polynucleotide Arabidopsis thaliana NM 102538 216 Polynucleotide Datisca glomerata AF119050 217 Polynucleotide Arabidopsis thaliana X98671 218 Polynucleotide Petunia X hybrida D26086 219 Polynucleotide Arabidopsis thaliana NM 112848 220 Polynucleotide Arabidopsis thaliana AK118868 221 Polynucleotide Arabidopsis thaliana NM 120516 222 Polynucleotide Brassica rapa BRU76554 223 Polynucleotide Brassica rapa BRU76555 224 Polynucleotide Nicotiana tabacum AF053077 225 Polynucleotide Petunia X hybrida D26084 226 Polynucleotide Arabidopsis Thaliana NM 123683 227 Polynucleotide Arabidopsis thaliana AY088887 228 Polynucleotide Arabidopsis thaliana NM 114853 229 Polynucleotide Petunia x hybrida D26083 230 Polynucleotide Arabidopsis thaliana NM 126145 231 Polynucleotide Solanum tuberosum CK267005 232 Polynucleotide Gossypium raimondii CO122574 233 Polynucleotide Vitis aestivalis CB074681 234 Polynucleotide Lycopersicon esculentum BI421491 235 Polynucleotide Medicago trunculata BI308195 236 Polynucleotide Populus sp. BU884157 237 Polynucleotide Citrus sinensis CK938508 238 Polynucleotide Lotus corniculatus AP004523 239 Polynucleotide Lolium perenne Promoter 240 Polynucleotide -- Genetic construct ORF4 (FIG. 7/8) 241 Polynucleotide -- Genetic Construct ORF 12 (FIG. 9/10) 242 Polynucleotide -- Genetic construct pCORF 4
(FIG. 11/12) 243 Polynucleotide -- Genetic construct (FIG. 13/14) pCORF 12 244 Polypeptide -- Motif
Sequence CWU
1
247123PRTArtificialplant consensus 1Leu Xaa Xaa Xaa Xaa Xaa Xaa Leu Xaa
Xaa Xaa Lys Xaa Xaa Xaa Arg1 5 10
15Xaa Glu Lys Xaa Xaa Xaa Lys
20223PRTArtificialdicotyledonous consensus 2Leu Xaa Xaa Xaa Xaa Xaa Xaa
Leu Xaa Xaa Xaa Lys Xaa Xaa Leu Arg1 5 10
15Xaa Glu Lys Xaa Xaa Xaa Lys
20323PRTArtificialmonocotyledonous consensus 3Leu Xaa Xaa Xaa Ile Xaa Xaa
Leu Lys Xaa Xaa Lys Xaa Glu Xaa Arg1 5 10
15Xaa Glu Lys Xaa Xaa Xaa Lys 204254PRTLolium
perenne 4Met Ala Ser Pro Glu Gly Ala Asn Trp Val Phe Asp Cys Pro Leu Met1
5 10 15Asp Asp Leu Ala
Ala Ala Asp Phe Thr Ala Pro Pro Ala Gly Gly Phe 20
25 30Tyr Trp Ala Pro Pro Met Gln Pro Gln Met His
Thr Gln Ala Pro Ala 35 40 45Val
Ser Ala Thr Pro Pro Pro Asn His Cys Ala Glu Ile Asn Ser Pro 50
55 60Ile Ser Val Asp Trp Asp His Ala Lys Gly
Gln Pro Thr Asn Lys Arg65 70 75
80Pro Arg Ser Glu Ser Gly Ala Gln Pro Ser Ser Lys Ala Cys Arg
Glu 85 90 95Lys Ala Arg
Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala 100
105 110Val Leu Asp Pro Gly Lys Thr Pro Lys Ile
Asp Lys Cys Ala Ile Leu 115 120
125Asn Asp Ala Ile Arg Ala Val Thr Glu Leu Arg Ser Glu Ala Glu Lys 130
135 140Leu Lys Asp Ser Asn Glu Ser Leu
Gln Glu Lys Ile Lys Glu Leu Lys145 150
155 160Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Lys
Leu Lys Ala Glu 165 170
175Lys Glu Ser Leu Glu Gln Gln Ile Lys Phe Met Asn Ala Arg Gln Ser
180 185 190Leu Val Pro His Leu Pro
His Pro Ser Val Ile Pro Ala Ala Ala Phe 195 200
205Ala Ala Pro Gln Gly Gln Val Pro Gly Gln Lys Leu Met Met
Pro Val 210 215 220Ile Gly Tyr His Gly
Phe Pro Met Trp Gln Phe Met Pro Pro Ser Asp225 230
235 240Val Asp Thr Ser Asp Asp Pro Lys Ser Cys
Pro Pro Val Ala 245 2505256PRTOryza sativa
5Met Ala Ser Pro Glu Gly Ser Thr Trp Val Phe Asp Cys Pro Leu Met1
5 10 15Asp Asp Leu Ala Ala Ala
Ala Gly Phe Asp Ala Ala Pro Ala Gly Gly 20 25
30Phe Tyr Trp Thr Thr Pro Ala Pro Pro Gln Ala Ala Leu
Gln Pro Pro 35 40 45Pro Pro Gln
Gln Gln Pro Val Ala Pro Ala Thr Ala Ala Pro Asn Ala 50
55 60Cys Ala Glu Ile Asn Gly Ser Val Asp Cys Glu His
Gly Lys Glu Gln65 70 75
80Pro Thr Asn Lys Arg Pro Arg Ser Glu Ser Gly Thr Arg Pro Ser Ser
85 90 95Lys Ala Cys Arg Glu Lys
Val Arg Arg Asp Lys Leu Asn Glu Arg Phe 100
105 110Leu Glu Leu Gly Ala Val Leu Glu Pro Gly Lys Thr
Pro Lys Met Asp 115 120 125Lys Ser
Ser Ile Leu Asn Asp Ala Ile Arg Val Met Ala Glu Leu Arg 130
135 140Ser Glu Ala Gln Lys Leu Lys Glu Ser Asn Glu
Ser Leu Gln Glu Lys145 150 155
160Ile Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln
165 170 175Lys Leu Lys Ala
Glu Lys Glu Ser Leu Glu Gln Gln Ile Lys Phe Leu 180
185 190Asn Ala Arg Pro Ser Phe Val Pro His Pro Pro
Val Ile Pro Ala Ser 195 200 205Ala
Phe Thr Ala Pro Gln Gly Gln Ala Ala Gly Gln Lys Leu Met Met 210
215 220Pro Val Ile Gly Tyr Pro Gly Phe Pro Met
Trp Gln Phe Met Pro Pro225 230 235
240Ser Asp Val Asp Thr Thr Asp Asp Thr Lys Ser Cys Pro Pro Val
Ala 245 250
2556253PRTOryza sativa 6Met Ser Gly Thr Pro Ala Asp Gly Gly Gly Gly Gly
Gly Gly Gly Gly1 5 10
15Gly Gly Ser Gly Asp Asp Trp Phe Leu Asp Cys Gly Ile Leu Glu Asp
20 25 30Leu Pro Ala Ala Ala Cys Gly
Ala Phe Pro Trp Asp Ala Ser Pro Ser 35 40
45Cys Ser Asn Pro Ser Val Glu Val Ser Ser Tyr Val Asn Thr Thr
Ser 50 55 60Tyr Val Leu Lys Glu Pro
Gly Ser Asn Lys Arg Val Arg Ser Gly Ser65 70
75 80Cys Gly Arg Pro Thr Ser Lys Ala Ser Arg Glu
Lys Ile Arg Arg Asp 85 90
95Lys Met Asn Asp Arg Phe Leu Glu Leu Gly Thr Thr Leu Glu Pro Gly
100 105 110Lys Pro Val Lys Ser Asp
Lys Ala Ala Ile Leu Ser Asp Ala Thr Arg 115 120
125Met Val Ile Gln Leu Arg Ala Glu Ala Lys Gln Leu Lys Asp
Thr Asn 130 135 140Glu Ser Leu Glu Asp
Lys Ile Lys Glu Leu Lys Ala Glu Lys Asp Glu145 150
155 160Leu Arg Asp Glu Lys Gln Lys Leu Lys Val
Glu Lys Glu Thr Leu Glu 165 170
175Gln Gln Val Lys Ile Leu Thr Ala Thr Pro Ala Tyr Met Pro His Pro
180 185 190Thr Leu Met Pro Ala
Pro Tyr Pro Gln Ala Pro Leu Ala Pro Phe His 195
200 205His Ala Gln Gly Gln Ala Ala Gly Gln Lys Leu Met
Met Pro Phe Val 210 215 220Gly Tyr Pro
Gly Tyr Pro Met Trp Gln Phe Met Pro Pro Ser Glu Val225
230 235 240Asp Thr Ser Lys Asp Ser Glu
Ala Cys Pro Pro Val Ala 245
2507236PRTOryza sativa 7Met Asp Gly Gly Gly Asp Pro Val Asp Glu Phe Leu
Ile Gly Gly Gly1 5 10
15Gly Glu Asp Gly Asp Leu Gly Val Phe Cys Asp Gly Val Pro Thr Leu
20 25 30Pro Cys Asp Gly Gly Leu Gly
Ile Asp Asp Val Ser Gly Asp Thr Cys 35 40
45Cys Leu Asp Gln Ser Val Leu Gly Lys Arg Gly Arg Asp Glu Ser
Ser 50 55 60Ser Ser Gly Pro Lys Ser
Lys Ala Cys Arg Glu Lys Ile Arg Arg Asp65 70
75 80Arg Leu Asn Asp Arg Phe Leu Glu Leu Ser Ser
Val Ile Asn Pro Asp 85 90
95Lys Gln Ala Lys Leu Asp Lys Ala Asn Ile Leu Ser Asp Ala Ala Arg
100 105 110Leu Leu Ala Glu Leu Arg
Gly Glu Ala Glu Lys Leu Lys Glu Ser Asn 115 120
125Glu Lys Leu Arg Glu Thr Ile Lys Asp Leu Lys Val Glu Lys
Asn Glu 130 135 140Leu Arg Asp Glu Lys
Val Thr Leu Lys Ala Glu Lys Glu Arg Leu Glu145 150
155 160Gln Gln Val Lys Ala Leu Ser Val Ala Pro
Thr Gly Phe Val Pro His 165 170
175Leu Pro His Pro Ala Ala Phe His Pro Ala Ala Phe Pro Pro Phe Ile
180 185 190Pro Pro Tyr Gln Ala
Leu Gly Asn Lys Asn Ala Pro Thr Pro Ala Ala 195
200 205Phe Gln Gly Met Ala Met Trp Gln Trp Leu Pro Pro
Thr Ala Val Asp 210 215 220Thr Thr Gln
Asp Pro Lys Leu Trp Pro Pro Asn Ala225 230
2358239PRTTriticum aestivum 8Cys Pro Leu Met Asp Asp Leu Ala Ala Ala Asp
Phe Ala Ala Ala Ser1 5 10
15Ala Gly Gly Phe Tyr Trp Thr Pro Pro Met Gln Pro Gln Met His Thr
20 25 30Leu Ala Gln Ala Val Ser Ala
Thr Pro Ala Pro Asn Pro Cys Ala Glu 35 40
45Ile Asn Ser Ser Val Ser Val Asp Trp Asp His Ala Lys Gly Gln
Pro 50 55 60Lys Asn Lys Arg Pro Arg
Ser Glu Thr Gly Ala Gln Pro Ser Ser Lys65 70
75 80Ala Cys Arg Glu Lys Val Arg Arg Asp Lys Leu
Asn Glu Arg Phe Leu 85 90
95Glu Leu Gly Ala Val Leu Asp Pro Gly Lys Thr Pro Lys Ile Asp Lys
100 105 110Cys Ala Ile Leu Asn Asp
Ala Ile Arg Ala Val Thr Glu Leu Arg Ser 115 120
125Glu Ala Gln Lys Leu Lys Asp Ser Asn Glu Ser Leu Gln Glu
Lys Ile 130 135 140Arg Glu Leu Lys Ala
Asp Lys Asn Glu Leu Arg His Glu Lys Gln Lys145 150
155 160Met Lys Ala Glu Lys Glu Ser Leu Glu Gln
Gln Ile Lys Phe Met Asn 165 170
175Ala Arg Gln Ser Leu Val Pro His Pro Ser Val Ile Pro Ala Ala Ala
180 185 190Phe Ala Ala Ala Gln
Gly Gln Ala Ala Gly His Lys Leu Met Met Pro 195
200 205Val Met Ser Tyr Pro Gly Phe Pro Met Trp Gln Phe
Met Pro Pro Ser 210 215 220Asp Val Asp
Thr Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala225 230
2359205PRTHordeum vulgare 9Met Ala Ser Pro Glu Gly Ser Asn
Trp Val Phe Asp Cys Pro Leu Met1 5 10
15Asp Asp Leu Ala Ala Ala Asp Phe Ala Ala Val Pro Ala Gly
Gly Phe 20 25 30Tyr Trp Asn
Pro Pro Met Pro Pro Gln Met His Thr Leu Ala Gln Ala 35
40 45Val Ser Ala Thr Pro Ala Pro Asn Pro Cys Ala
Glu Ile Asn Ser Ser 50 55 60Val Ser
Val Asp Trp Asp His Ala Lys Gly Gln Pro Lys Asn Lys Arg65
70 75 80Pro Arg Ser Glu Thr Gly Ala
Gln Pro Ser Ser Lys Ala Cys Arg Glu 85 90
95Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu
Leu Gly Ala 100 105 110Val Leu
Asp Pro Gly Lys Thr Pro Lys Ile Asp Lys Cys Ala Ile Leu 115
120 125Asn Asp Ala Ile Arg Ala Val Thr Glu Leu
Arg Ser Glu Ala Glu Lys 130 135 140Leu
Lys Asp Ser Asn Glu Ser Leu Gln Glu Lys Ile Arg Glu Leu Lys145
150 155 160Ala Glu Lys Asn Glu Leu
Arg Asp Glu Lys Gln Lys Leu Lys Ala Glu 165
170 175Lys Glu Ser Leu Glu Gln Gln Ile Lys Phe Met Asn
Ala Arg Gln Arg 180 185 190Leu
Val Pro His Pro Ser Val Ile Pro Ala Thr Ala Phe 195
200 20510243PRTOryza sativa 10Met Ala Ser Pro Glu Gly
Ser Thr Trp Val Phe Asp Cys Pro Leu Met1 5
10 15Asp Asp Leu Ala Ala Ala Ala Gly Phe Asp Ala Ala
Pro Ala Gly Gly 20 25 30Phe
Tyr Trp Thr Thr Pro Ala Pro Pro Gln Ala Ala Leu Gln Pro Pro 35
40 45Pro Pro Gln Gln Gln Pro Val Ala Pro
Ala Thr Ala Ala Pro Asn Ala 50 55
60Cys Ala Glu Ile Asn Gly Ser Val Asp Cys Glu His Gly Lys Glu Gln65
70 75 80Pro Thr Asn Lys Arg
Pro Arg Ser Glu Ser Gly Thr Arg Pro Ser Ser 85
90 95Lys Ala Cys Arg Glu Lys Val Arg Arg Asp Lys
Leu Asn Glu Arg Phe 100 105
110Leu Glu Leu Gly Ala Val Leu Glu Pro Gly Lys Thr Pro Lys Met Asp
115 120 125Lys Ser Ser Ile Leu Asn Asp
Ala Ile Arg Val Met Ala Glu Leu Arg 130 135
140Ser Glu Ala Gln Lys Leu Lys Glu Ser Asn Glu Ser Leu Gln Glu
Lys145 150 155 160Ile Lys
Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln
165 170 175Lys Leu Lys Ala Glu Lys Glu
Ser Leu Glu Gln Gln Ile Lys Phe Leu 180 185
190Asn Ala Arg Pro Ser Phe Val Pro His Pro Pro Val Ile Pro
Ala Ser 195 200 205Ala Phe Thr Ala
Pro Gln Gly Gln Ala Ala Gly Gln Lys Leu Met Met 210
215 220Pro Val Ile Gly Tyr Pro Gly Phe Pro Met Trp Gln
Phe Met Pro Pro225 230 235
240Ser Asp Val11192PRTTriticum aestivum 11Met Ala Ser Pro Glu Gly Ser
Asn Trp Val Phe Asp Cys Pro Leu Met1 5 10
15Asp Asp Leu Ala Ala Ala Asp Phe Ala Ala Ala Ser Ala
Gly Gly Phe 20 25 30Tyr Trp
Thr Pro Pro Met Gln Pro Gln Met His Thr Leu Ala Gln Ala 35
40 45Val Ser Ala Thr Pro Ala Pro Asn Pro Cys
Ala Glu Ile Asn Ser Ser 50 55 60Val
Ser Val Asp Trp Asp His Ala Lys Gly Gln Pro Lys Asn Lys Arg65
70 75 80Pro Arg Ser Glu Thr Gly
Ala Gln Pro Ser Ser Lys Ala Cys Arg Glu 85
90 95Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu
Glu Leu Gly Ala 100 105 110Val
Leu Asp Pro Gly Lys Thr Pro Lys Ile Asp Lys Cys Ala Ile Leu 115
120 125Asn Asp Ala Ile Arg Ala Val Thr Glu
Leu Arg Ser Glu Ala Glu Lys 130 135
140Leu Lys Asp Ser Asn Glu Ser Leu Gln Glu Lys Ile Arg Glu Leu Lys145
150 155 160Ala Glu Lys Asn
Glu Leu Arg Asp Glu Lys Gln Lys Leu Lys Ala Glu 165
170 175Lys Glu Ser Leu Glu Gln Gln Ile Lys Phe
Met Asn Ala Arg Gln Ser 180 185
19012191PRTTriticum aestivum 12Met Ala Ser Pro Glu Gly Ser Asn Trp Val
Phe Asp Cys Pro Leu Met1 5 10
15Asp Asp Leu Ala Ala Ala Asp Phe Ala Ala Ala Ser Thr Gly Gly Phe
20 25 30Tyr Trp Thr Pro Pro Met
Gln Pro Gln Met His Thr Leu Ala Gln Ala 35 40
45Val Ser Ala Thr Pro Ala Pro Asn Pro Cys Ala Glu Ile Asn
Ser Ser 50 55 60Val Ser Val Asp Trp
Asp His Ala Lys Gly Gln Pro Lys Asn Lys Arg65 70
75 80Pro Arg Ser Glu Thr Gly Ala Gln Pro Ser
Ser Lys Ala Cys Arg Glu 85 90
95Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala
100 105 110Val Leu Asp Pro Gly
Lys Thr Pro Lys Ile Asp Lys Cys Ala Ile Leu 115
120 125Asn Asp Ala Ile Arg Ala Val Thr Glu Leu Arg Ser
Glu Ala Glu Lys 130 135 140Leu Lys Asp
Ser Asn Asp Ser Leu Gln Glu Lys Ile Arg Glu Leu Lys145
150 155 160Ala Glu Lys Asn Glu Leu Arg
Asp Glu Lys Gln Lys Leu Lys Ala Glu 165
170 175Lys Glu Ser Leu Glu Gln Gln Ile Lys Phe Met Asn
Ala Arg Gln 180 185
19013190PRTHordeum vulgare 13Asn Ser Ser Val Ser Val Asp Trp Asp His Ala
Lys Gly Gln Pro Lys1 5 10
15Asn Lys Arg Pro Arg Ser Glu Thr Gly Ala Gln Pro Ser Ser Lys Ala
20 25 30Cys Arg Glu Lys Val Arg Arg
Asp Lys Leu Asn Glu Arg Phe Leu Glu 35 40
45Leu Gly Ala Val Leu Asp Pro Gly Lys Thr Pro Lys Ile Asp Lys
Cys 50 55 60Ala Ile Leu Asn Asp Ala
Ile Arg Ala Val Thr Glu Leu Arg Ser Glu65 70
75 80Ala Glu Lys Leu Lys Asp Ser Asn Glu Ser Leu
Gln Glu Lys Ile Arg 85 90
95Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Lys Leu
100 105 110Lys Ala Glu Lys Glu Ser
Leu Glu Gln Gln Ile Lys Phe Met Asn Ala 115 120
125Arg Gln Arg Leu Val Pro His Pro Ser Val Ile Pro Ala Thr
Ala Phe 130 135 140Ala Ala Ala Gln Gly
Gln Ala Ala Gly His Lys Leu Met Met Pro Val145 150
155 160Met Ser Tyr Pro Gly Phe Pro Met Trp Gln
Phe Met Pro Pro Ser Asp 165 170
175Val Asp Thr Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala
180 185 19014193PRTTriticum
aestivummisc_feature(4)..(4)Xaa can be any naturally occurring amino acid
14Pro Ser Trp Xaa Asp Leu Ala Ala Ala Asp Phe Ala Ala Ala Ser Ala1
5 10 15Gly Gly Phe Tyr Trp Thr
Pro Pro Met Gln Pro Gln Met His Thr Leu 20 25
30Ala Gln Ala Val Ser Ala Thr Pro Ala Pro Asn Pro Cys
Ala Glu Ile 35 40 45Asn Ser Ser
Val Ser Val Asp Trp Asp His Ala Lys Gly Gln Pro Lys 50
55 60Asn Lys Arg Pro Arg Ser Glu Thr Gly Ala Gln Pro
Ser Ser Lys Ala65 70 75
80Cys Arg Glu Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu
85 90 95Leu Gly Ala Val Leu Asp
Pro Gly Lys Thr Pro Lys Ile Asp Lys Cys 100
105 110Ala Ile Leu Asn Asp Ala Ile Arg Ala Val Thr Glu
Leu Arg Ser Glu 115 120 125Ala Glu
Lys Leu Lys Asp Ser Asn Glu Ser Leu Gln Glu Lys Ile Arg 130
135 140Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp
Glu Lys Gln Lys Leu145 150 155
160Lys Ala Glu Lys Glu Ser Leu Glu Gln Gln Ile Lys Phe Met Asn Ala
165 170 175Arg Gln Ser Leu
Val Pro His Pro Ser Val Ile Pro Ala Ala Ala Phe 180
185 190Ala15191PRTOryza sativa 15Ala Glu Ile Asn Gly
Ser Val Asp Cys Glu His Gly Lys Glu Gln Pro1 5
10 15Thr Asn Lys Arg Pro Arg Ser Glu Ser Gly Thr
Arg Pro Ser Ser Lys 20 25
30Ala Cys Arg Glu Lys Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu
35 40 45Glu Leu Gly Ala Val Leu Glu Pro
Gly Lys Thr Pro Lys Met Asp Lys 50 55
60Ser Ser Ile Leu Asn Asp Ala Ile Arg Val Met Ala Glu Leu Arg Ser65
70 75 80Glu Ala Gln Lys Leu
Lys Glu Ser Asn Glu Ser Leu Gln Glu Lys Ile 85
90 95Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg
Asp Glu Lys Gln Lys 100 105
110Leu Lys Ala Glu Lys Asp Ser Leu Glu Gln Gln Ile Lys Phe Leu Asn
115 120 125Ala Arg Pro Ser Phe Val Pro
His Pro Pro Val Ile Pro Ala Ser Ala 130 135
140Phe Thr Ala Pro Gln Gly Gln Ala Ala Gly Gln Lys Leu Met Met
Pro145 150 155 160Val Ile
Gly Tyr Pro Gly Phe Pro Met Trp Gln Phe Met Pro Pro Ser
165 170 175Asp Val Asp Thr Thr Asp Asp
Thr Lys Ser Cys Pro Pro Val Ala 180 185
19016170PRTTriticum aestivum 16Arg Ser Glu Thr Gly Ala Gln Pro
Ser Ser Lys Ala Cys Arg Glu Lys1 5 10
15Val Arg Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly
Ala Val 20 25 30Leu Asp Pro
Gly Lys Thr Pro Lys Ile Asp Lys Cys Ala Ile Leu Asn 35
40 45Asp Ala Ile Arg Ala Val Thr Glu Leu Arg Ser
Glu Ala Glu Lys Leu 50 55 60Lys Asp
Ser Asn Glu Ser Leu Gln Glu Lys Ile Arg Glu Leu Lys Ala65
70 75 80Glu Lys Asn Glu Leu Arg Asp
Glu Lys Gln Lys Leu Lys Ala Glu Lys 85 90
95Glu Ser Leu Glu Gln Gln Ile Lys Phe Met Asn Ala Arg
Gln Ser Leu 100 105 110Val Pro
His Pro Ser Val Ile Pro Ala Ala Ala Phe Ala Ala Ala Gln 115
120 125Gly Gln Ala Ala Gly His Lys Leu Met Met
Pro Val Met Ser Tyr Pro 130 135 140Gly
Phe Pro Met Trp Gln Phe Met Pro Pro Ser Asp Val Asp Thr Ser145
150 155 160Asp Asp Pro Lys Ser Cys
Pro Pro Val Ala 165 17017212PRTSorghum
bicolormisc_feature(145)..(145)Xaa can be any naturally occurring amino
acid 17Met Ala Ser Pro Glu Gly Thr Thr Trp Val Phe Asp Cys Pro Leu Met1
5 10 15Asp Asp Leu Ala Val
Ala Ala Asp Phe Ala Ala Ala Pro Ala Gly Gly 20
25 30Phe Phe Trp Ala Ala Pro Pro Ser Leu Gln Pro Gln
Val Val Gln Ala 35 40 45Pro Val
Gln Ser Val Val Ala Ala Ser Ala Pro Asn Pro Cys Val Glu 50
55 60Ile Ser Ser Ser Val Asp Cys Gly Gln Gly Lys
Glu Gln Pro Thr Asn65 70 75
80Lys Arg Pro Arg Ser Glu Ser Thr Ala Glu Pro Ser Thr Lys Ala Ser
85 90 95Arg Glu Lys Ile Arg
Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu 100
105 110Gly Ala Ile Leu Glu Pro Gly Lys Thr Pro Lys Met
Asp Lys Ser Ala 115 120 125Ile Leu
Asn Asp Ala Ile Arg Val Val Gly Glu Leu Arg Ser Glu Ala 130
135 140Xaa Glu Leu Lys Asp Ser Asn Glu Ser Leu Gln
Glu Lys Ile Lys Glu145 150 155
160Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys
165 170 175Ala Glu Lys Glu
Ser Leu Glu Gln Gln Ile Lys Phe Leu Asn Ala Arg 180
185 190Pro Ser Leu Val Pro His His Pro Val Ile Ser
Ala Ser Ala Phe Thr 195 200 205Ala
Pro Gln Gly 21018185PRTSorghum bicolor 18Asp Cys Gly Gln Gly Lys Glu
Gln Pro Thr Asn Lys Arg Pro Arg Ser1 5 10
15Glu Ser Thr Ala Glu Pro Ser Thr Lys Ala Ser Arg Glu
Lys Ile Arg 20 25 30Arg Asp
Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala Ile Leu Asp 35
40 45Pro Gly Lys Thr Pro Lys Met Asp Lys Ser
Ala Ile Leu Asn Asp Ala 50 55 60Ile
Arg Val Val Gly Glu Leu Arg Ser Glu Ala Lys Glu Phe Lys Asp65
70 75 80Ser Asn Glu Ser Leu Gln
Glu Lys Ile Lys Glu Leu Lys Ala Glu Lys 85
90 95Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Ala
Glu Lys Glu Ser 100 105 110Leu
Glu Gln Gln Ile Lys Phe Leu Asn Ala Arg Pro Ser Leu Val Pro 115
120 125His His Pro Val Ile Ser Ala Ser Ala
Phe Thr Ala Pro Gln Gly Pro 130 135
140Ala Val Ala Gly His Lys Leu Met Met Pro Val Leu Gly Tyr Pro Gly145
150 155 160Phe Pro Met Trp
Gln Phe Met Pro Pro Ser Asp Val Asp Thr Ser Asp 165
170 175Asp Pro Lys Ser Cys Pro Pro Val Ala
180 18519205PRTSorghum bicolor 19Pro Gln Val Val Gln
Ala Pro Val Gln Ser Val Val Ala Ala Ser Ala1 5
10 15Pro Asn Pro Cys Val Glu Ile Ser Ser Ser Val
Asp Cys Gly Gln Gly 20 25
30Lys Glu Gln Pro Thr Asn Lys Arg Pro Arg Ser Glu Ser Thr Ala Glu
35 40 45Pro Ser Thr Lys Ala Ser Arg Glu
Lys Ile Arg Arg Asp Lys Leu Asn 50 55
60Glu Arg Phe Leu Glu Leu Gly Ala Ile Leu Glu Pro Gly Lys Thr Pro65
70 75 80Lys Met Asp Lys Ser
Ala Ile Leu Asn Asp Ala Ile Arg Val Val Gly 85
90 95Glu Leu Arg Ser Glu Ala Lys Glu Leu Lys Asp
Ser Asn Glu Ser Leu 100 105
110Gln Glu Lys Ile Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp
115 120 125Glu Lys Gln Arg Leu Lys Ala
Glu Lys Glu Ser Leu Glu Gln Gln Ile 130 135
140Lys Phe Leu Asn Ala Arg Pro Ser Leu Val Pro His His Pro Val
Ile145 150 155 160Ser Ala
Ser Ala Phe Thr Ala Pro Gln Gly Pro Ala Val Ala Gly His
165 170 175Lys Leu Met Met Pro Val Leu
Gly Tyr Pro Gly Phe Pro Met Trp Gln 180 185
190Phe Met Pro Pro Ser Asp Val Asp Thr Ser Asp Asp Pro
195 200 20520197PRTZea mays 20Met Ala
Ser Pro Glu Gly Thr Thr Trp Val Phe Asp Cys Pro Leu Met1 5
10 15Asp Asp Leu Ala Val Ala Ala Asp
Phe Ala Ala Ala Pro Ala Gly Gly 20 25
30Phe Phe Trp Ala Ala Pro Pro Ser Leu Gln Pro Gln Ala Pro Val
Gln 35 40 45Ser Val Val Ala Ala
Ser Ala Pro Asn Pro Cys Met Glu Ile Ser Ser 50 55
60Ser Val Asp Cys Gly Gln Glu Lys Glu Gln Pro Thr Asn Lys
Arg Pro65 70 75 80Arg
Ser Glu Ser Thr Thr Glu Ser Ser Thr Lys Ala Ser Arg Glu Lys
85 90 95Ile Arg Arg Asp Lys Leu Asn
Glu Arg Phe Leu Glu Leu Gly Ala Ile 100 105
110Leu Glu Pro Gly Lys Thr Pro Lys Met Asp Lys Thr Ala Ile
Leu Ser 115 120 125Asp Ala Ile Arg
Val Val Gly Glu Leu Arg Ser Glu Ala Lys Lys Leu 130
135 140Lys Asp Ser Asn Glu Asn Leu Gln Glu Lys Ile Lys
Glu Leu Lys Ala145 150 155
160Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Ala Glu Lys
165 170 175Glu Ser Leu Glu Gln
Gln Ile Lys Phe Leu Asn Ala Arg Pro Ser Leu 180
185 190Val Pro His His Pro 19521205PRTSorghum
bicolor 21Pro Ser Leu Gln Pro Gln Val Val Gln Ala Pro Val Gln Ser Val
Val1 5 10 15Ala Ala Ser
Ala Pro Asn Pro Cys Val Glu Ile Ser Ser Ser Val Asp 20
25 30Cys Gly Gln Gly Lys Glu Gln Pro Thr Asn
Lys Arg Pro Arg Ser Glu 35 40
45Ser Thr Ala Glu Pro Ser Thr Lys Ala Ser Arg Glu Lys Ile Arg Arg 50
55 60Asp Lys Leu Asn Glu Arg Phe Leu Glu
Leu Gly Ala Ile Leu Glu Pro65 70 75
80Gly Lys Thr Pro Lys Met Asp Lys Ser Ala Ile Leu Asn Asp
Ala Ile 85 90 95Arg Val
Val Gly Glu Leu Arg Ser Glu Ala Lys Glu Leu Lys Asp Ser 100
105 110Asn Glu Ser Leu Gln Glu Lys Ile Lys
Glu Leu Lys Ala Glu Lys Asn 115 120
125Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Ala Glu Lys Glu Ser Leu
130 135 140Glu Gln Gln Ile Lys Phe Leu
Asn Ala Arg Pro Ser Leu Val Pro His145 150
155 160His Pro Val Ile Ser Ala Ser Ala Phe Thr Ala Pro
Gln Gly Pro Ala 165 170
175Val Ala Gly His Lys Leu Met Met Pro Val Leu Gly Tyr Pro Gly Phe
180 185 190Pro Met Trp Gln Phe Met
Pro Pro Ser Asp Val Asp Thr 195 200
20522202PRTZea maysmisc_feature(192)..(192)Xaa can be any naturally
occurring amino acid 22Ala Ala Asp Phe Ala Ala Ala Pro Ala Gly Gly Phe
Phe Trp Ala Ala1 5 10
15Pro Pro Ser Leu Gln Pro Gln Ala Pro Val Gln Ser Val Val Ala Ala
20 25 30Ser Ala Pro Asn Pro Cys Met
Glu Ile Ser Ser Ser Val Asp Cys Gly 35 40
45Gln Glu Lys Glu Gln Pro Thr Asn Lys Arg Pro Arg Ser Glu Ser
Thr 50 55 60Thr Glu Ser Ser Thr Lys
Ala Ser Arg Glu Lys Ile Arg Arg Asp Lys65 70
75 80Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala Ile
Leu Glu Pro Gly Lys 85 90
95Thr Pro Lys Met Asp Lys Thr Ala Ile Leu Ser Asp Ala Ile Arg Val
100 105 110Val Gly Glu Leu Arg Ser
Glu Ala Lys Lys Leu Lys Asp Ser Asn Glu 115 120
125Asn Leu Gln Glu Lys Ile Lys Glu Leu Lys Ala Glu Lys Asn
Glu Leu 130 135 140Arg Asp Glu Lys Gln
Arg Leu Lys Ala Glu Lys Glu Ser Leu Glu Gln145 150
155 160Gln Ile Lys Phe Leu Asn Ala Arg Pro Ser
Leu Val Pro His His Pro 165 170
175Val Ile Pro Ala Ser Ala Phe Pro Ala Pro Gln Gly Pro Ala Thr Xaa
180 185 190Ala Arg His Lys Leu
Met Met Pro Val Ile 195 20023193PRTSaccharum
officinarum 23Met Ala Ser Pro Glu Gly Thr Thr Trp Val Phe Asp Cys Pro Leu
Met1 5 10 15Asp Asp Leu
Ala Val Ala Ala Asp Phe Ala Ala Ala Pro Ala Gly Gly 20
25 30Phe Phe Trp Ala Ala Pro Pro Ser Leu Gln
Pro Gln Val Val Gln Ala 35 40
45Pro Val Gln Ser Val Val Ala Ala Ser Ala Pro Asn Pro Pro Cys Val 50
55 60Glu Ile Ser Ser Ser Val Asp Cys Gly
Gln Gly Lys Glu Gln Pro Thr65 70 75
80Asn Lys Arg Pro Arg Ser Glu Ser Thr Ala Glu Pro Ser Thr
Lys Ala 85 90 95Ser Arg
Glu Lys Ile Arg Arg Asp Lys Leu Asn Lys Arg Phe Leu Glu 100
105 110Trp Gly Ala Ile Leu Glu Pro Gly Glu
Thr Pro Lys Met Asp Lys Ser 115 120
125Ala Ile Leu Asn Asp Ala Ile Arg Ala Val Gly Glu Leu Arg Ser Glu
130 135 140Ala Lys Lys Leu Lys Asp Ser
Asn Glu Ser Leu Gln Glu Lys Ile Lys145 150
155 160Glu Leu Lys Ala Glu Lys Asn Glu Ser Arg Asp Glu
Lys Gln Arg Leu 165 170
175Lys Ala Glu Asn Glu Ser Leu Glu Gln Gln Ile Lys Phe Leu Asn Ala
180 185 190Arg24174PRTSaccharum
officinarummisc_feature(166)..(166)Xaa can be any naturally occurring
amino acid 24Glu Ile Ser Ser Ser Val Asp Cys Gly Gln Gly Lys Glu Gln Pro
Thr1 5 10 15Asn Lys Arg
Pro Arg Ser Glu Ser Thr Ala Glu Pro Ser Thr Lys Ala 20
25 30Ser Arg Glu Lys Ile Arg Arg Asp Lys Leu
Asn Lys Arg Phe Leu Glu 35 40
45Leu Gly Ala Ile Leu Glu Pro Gly Glu Thr Pro Lys Met Asp Lys Ser 50
55 60Ala Ile Leu Asn Asp Ala Ile Arg Ala
Val Gly Glu Leu Arg Ser Glu65 70 75
80Ala Lys Lys Leu Lys Asp Ser Asn Glu Ser Leu Gln Glu Lys
Ile Lys 85 90 95Glu Leu
Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu 100
105 110Lys Ala Glu Lys Glu Lys Pro Glu Gln
Gln Ile Lys Phe Leu Asn Ala 115 120
125Arg Pro Ser Leu Val Pro His His Ser Val Ile Pro Ala Ser Ala Phe
130 135 140Ala Ala Pro Gln Gly Pro Ala
Ala Ala Gly His Lys Leu Met Leu Pro145 150
155 160Val Leu Gly Tyr Pro Xaa Phe Pro Met Trp Gln Phe
Met Pro 165 17025154PRTSorghum bicolor
25Arg Asp Lys Leu Asn Glu Arg Phe Leu Glu Leu Gly Ala Ile Leu Glu1
5 10 15Pro Gly Lys Thr Pro Lys
Met Asp Lys Ser Ala Ile Leu Asn Asp Ala 20 25
30Ile Arg Val Val Gly Glu Leu Arg Ser Glu Ala Lys Glu
Leu Lys Asp 35 40 45Ser Asn Glu
Ser Leu Gln Glu Lys Ile Lys Glu Leu Lys Ala Glu Lys 50
55 60Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Ala
Glu Lys Glu Ser65 70 75
80Leu Glu Gln Gln Ile Lys Phe Leu Asn Ala Arg Pro Ser Leu Val Pro
85 90 95His His Pro Ser Val Ile
Ser Ala Ser Ala Phe Ile Ala Pro Gln Gly 100
105 110Pro Ala Val Ala Gly His Lys Leu Met Met Pro Val
Leu Gly Tyr Pro 115 120 125Gly Phe
Pro Met Trp Gln Phe Met Pro Pro Ser Asp Val Asp Thr Ser 130
135 140Asp Asp Pro Lys Ser Cys Pro Pro Val Ala145
15026128PRTTriticum aestivummisc_feature(5)..(5)Xaa can be
any naturally occurring amino acid 26Lys Cys Ala Ile Xaa Asn Asp Ala Ile
Arg Ala Val Thr Glu Leu Arg1 5 10
15Ser Glu Ala Glu Lys Leu Lys Asp Ser Asn Glu Ser Leu Gln Glu
Lys 20 25 30Ile Arg Glu Leu
Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln 35
40 45Lys Leu Lys Ala Glu Lys Glu Ser Leu Glu Gln Gln
Ile Lys Phe Met 50 55 60Asn Ala Arg
Gln Ser Leu Val Pro His Pro Ser Val Ile Pro Ala Ala65 70
75 80Ala Phe Ala Ala Ala Gln Gly Gln
Ala Ala Gly His Lys Leu Met Met 85 90
95Pro Val Met Ser Tyr Pro Gly Phe Pro Met Trp Gln Phe Met
Pro Pro 100 105 110Ser Asp Val
Asp Thr Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala 115
120 12527188PRTTriticum aestivum 27Asp Leu Pro Lys
Asp Ser Gly Ser Asn Lys Arg Leu Arg Ser Glu Pro1 5
10 15Cys Gly Arg Pro Thr Ser Lys Ala Cys Arg
Glu Lys Val Arg Arg Asp 20 25
30Lys Leu Asn Asp Arg Phe Leu Glu Leu Gly Thr Thr Leu Asp Pro Gly
35 40 45Lys Pro Val Lys Ala Asp Lys Ala
Ala Ile Leu Ser Asp Ala Thr Arg 50 55
60Met Val Thr Gln Leu Arg Ala Glu Ala Gln Gln Leu Lys Asp Thr Asn65
70 75 80Gly Ser Leu Glu Asp
Lys Ile Lys Glu Leu Lys Ala Glu Lys Asp Glu 85
90 95Leu Arg Asp Glu Lys Gln Lys Leu Lys Leu Glu
Lys Glu Thr Leu Glu 100 105
110His Gln Met Lys Leu Leu Thr Ala Thr Pro Ala Tyr Met Pro His Pro
115 120 125Thr Met Met Pro Ser Pro Phe
Ala Gln Ala Pro Met Ala Pro Phe His 130 135
140Ala Gln Gly Gln Ala Leu Gly Gln Lys Leu Met Met Pro Phe Val
Gly145 150 155 160Tyr Pro
Gly Tyr Pro Met Trp Gln Leu Met Pro Pro Ser Glu Val Asp
165 170 175Thr Ser Lys Asp Ser Glu Ala
Cys Pro Pro Val Ala 180 18528232PRTTriticum
aestivum 28Cys Asp Ser Trp Phe Leu Asp Cys Gly Ile Leu Lys Asp Leu Pro
Ala1 5 10 15Ala Ala Trp
Gly Val Phe Pro Gly Lys Ala Ser Phe Ser Trp Ser Asn 20
25 30Pro Ser Gly Glu Leu Gly Thr Gln Leu Thr
Asn Leu Val Phe Pro Lys 35 40
45Asp Ser Gly Thr Asn Asn Arg Leu Ser Gln Ser Pro Phe Gly Arg Pro 50
55 60Thr Ser Lys Ala Cys Arg Glu Lys Val
Arg Arg Asp Lys Leu Asn Asp65 70 75
80Arg Phe Leu Glu Leu Gly Thr Thr Leu Asp Pro Gly Lys Pro
Val Lys 85 90 95Ala Asp
Lys Ala Ala Ile Leu Ser Asp Ala Thr Arg Met Val Thr Gln 100
105 110Leu Arg Ala Glu Ala Gln Gln Leu Lys
Asp Thr Asn Gly Ser Leu Glu 115 120
125Asp Lys Ile Lys Glu Leu Lys Ala Glu Lys Asp Glu Leu Arg Asp Glu
130 135 140Lys Gln Lys Leu Lys Leu Glu
Lys Glu Thr Leu Glu His Gln Met Lys145 150
155 160Leu Leu Thr Ala Thr Pro Ala Tyr Met Pro His Pro
Thr Met Met Pro 165 170
175Ser Pro Phe Ala Gln Ala Pro Met Ala Pro Phe His Ala Gln Gly Gln
180 185 190Ala Leu Gly Gln Lys Leu
Met Met Pro Phe Val Gly Tyr Pro Gly Tyr 195 200
205Pro Met Trp Gln Leu Met Pro Pro Ser Glu Val Asp Thr Ser
Lys Asp 210 215 220Ser Glu Ala Cys Pro
Pro Val Ala225 23029144PRTZea
maysmisc_feature(11)..(11)Xaa can be any naturally occurring amino acid
29Leu Gly Ala Ile Leu Glu Pro Gly Lys Thr Xaa Lys Met Asp Lys Thr1
5 10 15Ala Ile Leu Ser Asp Ala
Ile Arg Val Val Gly Glu Leu Arg Ser Glu 20 25
30Ala Lys Lys Leu Lys Asp Ser Asn Glu Asn Leu Gln Glu
Lys Ile Lys 35 40 45Glu Leu Lys
Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu 50
55 60Lys Ala Glu Lys Glu Ser Leu Glu Gln Gln Ile Lys
Phe Leu Asn Ala65 70 75
80Arg Pro Ser Leu Val Pro His His Pro Val Ile Pro Ala Ser Ala Phe
85 90 95Pro Ala Pro Gln Gly Pro
Ala Ala Ala Ala Arg His Lys Leu Met Met 100
105 110Pro Val Ile Gly Tyr Pro Gly Phe Pro Met Trp Gln
Phe Met Pro Pro 115 120 125Ser Asp
Val Asp Thr Ser Asp Asp Pro Arg Ser Cys Pro Pro Val Ala 130
135 14030241PRTZea mays 30Gly Asp Asp Trp Phe Leu
Asp Cys Gly Ile Leu Asp Asp Leu Pro Ala1 5
10 15Ala Ala Cys Gly Ala Phe Pro Trp Asp Ala Ser Pro
Ser Ser Ser Asn 20 25 30Pro
Ser Val Glu Val Gly Ser Tyr Val Asn Thr Asn Asp Val Phe Lys 35
40 45Glu Pro Asn Asp Val Phe Lys Glu Pro
Gly Ser Asn Lys Arg Leu Arg 50 55
60Ser Gly Ser Asn Asp Val His Val Pro Thr Ser Lys Ala Ser Arg Glu65
70 75 80Lys Met Arg Arg Asn
Lys Leu Asn Asp Arg Phe Leu Glu Leu Gly Ser 85
90 95Thr Leu Glu Pro Gly Lys Pro Val Lys Ala Asp
Lys Ala Ala Ile Leu 100 105
110Ser Asp Ala Thr Arg Met Val Ile Gln Leu Arg Ser Glu Ala Gln Gln
115 120 125Leu Lys Glu Thr Asn Gly Ser
Leu Glu Glu Lys Ile Lys Glu Leu Lys 130 135
140Ala Glu Lys Asp Glu Leu Arg Asp Glu Lys Gln Lys Leu Lys Leu
Glu145 150 155 160Lys Glu
Ser Leu Glu His Gln Met Lys Leu Met Thr Ser Thr Pro Thr
165 170 175Tyr Met Pro His Pro Thr Leu
Met Pro Ala Pro Phe Pro Gln Ala Pro 180 185
190Leu Ala Pro Phe His Ala Gln Gly Gln Ala Ala Gly Gln Lys
Leu Met 195 200 205Met Pro Phe Val
Ser Tyr Pro Gly Tyr Pro Met Trp Gln Phe Met Pro 210
215 220Pro Ser Glu Val Asp Thr Ser Lys Asp Ser Glu Ala
Cys Pro Pro Val225 230 235
240Ala31187PRTSorghum bicolor 31Asp Val Phe Lys Glu Pro Gly Ser Asn Lys
Arg Leu Arg Ser Gly Ser1 5 10
15Asn Asp Val Pro Thr Ser Lys Ala Ser Arg Glu Lys Met Arg Arg Asn
20 25 30Lys Leu Asn Asp Arg Phe
Leu Glu Leu Gly Ser Thr Leu Glu Pro Gly 35 40
45Lys Pro Val Lys Ala Asp Lys Ala Ala Ile Leu Ser Asp Ala
Thr Arg 50 55 60Met Val Ile Gln Leu
Arg Ser Glu Ala Gln Gln Leu Lys Glu Thr Asn65 70
75 80Gly Ser Leu Glu Glu Lys Ile Lys Glu Leu
Lys Ala Glu Lys Asp Glu 85 90
95Leu Arg Asp Glu Lys Gln Lys Leu Lys Leu Glu Lys Glu Ser Leu Glu
100 105 110His Gln Met Lys Leu
Met Thr Ser Thr Pro Ala Tyr Met Pro His Pro 115
120 125Thr Leu Met Pro Ala Pro Phe Pro Gln Ala Pro Leu
Ala Pro Phe His 130 135 140Ala Gln Gly
Gln Ala Ala Gly Gln Lys Leu Met Met Pro Phe Val Ser145
150 155 160Tyr Pro Gly Tyr Pro Met Trp
Gln Phe Met Pro Pro Ser Glu Val Asp 165
170 175Thr Ser Lys Asp Ser Glu Ala Cys Pro Pro Val
180 18532181PRTSorghum bicolor 32Ser Asn Lys Arg Leu
Arg Ser Gly Ser Asn Asp Val Pro Thr Ser Lys1 5
10 15Ala Ser Arg Glu Lys Met Arg Arg Asn Lys Leu
Asn Asp Arg Phe Leu 20 25
30Glu Leu Gly Ser Thr Leu Glu Pro Gly Lys Pro Val Lys Ala Asp Lys
35 40 45Ala Ala Ile Leu Ser Asp Ala Thr
Arg Met Val Ile Gln Leu Arg Ser 50 55
60Glu Ala Gln Gln Leu Lys Glu Thr Asn Gly Ser Leu Glu Glu Lys Ile65
70 75 80Lys Glu Leu Lys Ala
Glu Lys Asp Glu Leu Arg Asp Glu Lys Gln Lys 85
90 95Leu Lys Leu Glu Lys Glu Ser Leu Glu His Gln
Met Lys Leu Met Thr 100 105
110Ser Thr Pro Ala Tyr Met Pro His Pro Thr Leu Met Pro Ala Pro Phe
115 120 125Pro Gln Ala Pro Leu Ala Pro
Phe His Ala Gln Gly Gln Ala Ala Gly 130 135
140Gln Lys Leu Met Met Pro Phe Val Ser Tyr Pro Gly Tyr Pro Met
Trp145 150 155 160Gln Phe
Met Pro Pro Ser Glu Val Asp Thr Ser Lys Asp Ser Glu Ala
165 170 175Cys Pro Pro Val Ala
18033179PRTHordeum vulgaremisc_feature(5)..(5)Xaa can be any naturally
occurring amino acid 33Lys Arg Leu Arg Xaa Gly Pro Cys Gly Arg Pro Thr
Ser Lys Ala Cys1 5 10
15Arg Glu Lys Val Arg Arg Asp Lys Leu Asn Asp Arg Phe Leu Glu Leu
20 25 30Gly Thr Thr Leu Asp Pro Gly
Lys Pro Val Lys Ala Asp Lys Ala Ala 35 40
45Ile Leu Ser Asp Ala Thr Arg Met Val Thr Gln Leu Arg Ala Glu
Ala 50 55 60Lys Gln Leu Lys Asp Thr
Asn Gly Ser Leu Glu Asp Lys Ile Lys Glu65 70
75 80Leu Lys Ala Glu Lys Asp Glu Leu Arg Asp Glu
Lys Gln Lys Leu Lys 85 90
95Leu Glu Lys Glu Thr Leu Glu His Gln Met Lys Leu Leu Thr Ala Thr
100 105 110Pro Ala Tyr Met Pro His
Pro Thr Met Met His Ser Pro Phe Ala Gln 115 120
125Ala Pro Met Ala Pro Phe His Ala Gln Gly His Ala Ser Ala
Gln Lys 130 135 140Leu Met Met Pro Phe
Val Gly Tyr Pro Gly Tyr Pro Met Trp Gln Leu145 150
155 160Met Pro Pro Ser Glu Val Asp Thr Ser Lys
Asp Ser Glu Ala Cys Pro 165 170
175Pro Val Ala34127PRTSorghum bicolor 34Ala Ile Leu Asn Asp Ala Ile
Arg Val Val Gly Glu Leu Arg Ser Glu1 5 10
15Ala Lys Glu Leu Lys Asp Ser Asn Glu Ser Leu Gln Glu
Lys Ile Lys 20 25 30Glu Leu
Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu 35
40 45Lys Ala Glu Lys Glu Ser Leu Glu Gln Gln
Ile Lys Phe Leu Asn Ala 50 55 60Arg
Pro Ser Leu Val Pro His His Pro Val Ile Ser Ala Ser Ala Phe65
70 75 80Thr Ala Pro Gln Gly Pro
Ala Val Ala Gly His Lys Leu Met Met Pro 85
90 95Val Leu Gly Tyr Pro Gly Phe Pro Met Trp Gln Phe
Met Pro Pro Ser 100 105 110Asp
Val Asp Thr Ser Asp Asp Pro Lys Ser Cys Pro Pro Val Ala 115
120 12535164PRTZea mays 35Cys Arg Glu Arg Met
Arg Arg Asn Lys Leu Asn Asp Arg Phe Leu Glu1 5
10 15Leu Gly Ser Ala Leu Glu Pro Gly Lys Pro Val
Lys Ala Asp Lys Ala 20 25
30Ala Ile Leu Ser Asp Ala Thr Arg Met Val Ile Gln Leu Arg Ser Glu
35 40 45Ser Gln Gln Leu Lys Glu Thr Asn
Gly Ser Leu Glu Glu Lys Ile Lys 50 55
60Glu Leu Lys Ala Glu Lys Asp Glu Leu Arg Asp Glu Lys Gln Lys Leu65
70 75 80Lys Leu Glu Lys Glu
Ser Leu Glu His Gln Met Lys Leu Met Ala Ser 85
90 95Ala Pro Ala Tyr Met Pro His Pro Thr Leu Met
Pro Ala Pro Phe Ala 100 105
110Gln Ala Pro Leu Ala Pro Phe His Ala Gln Gly Gln Ala Ala Gly Gln
115 120 125Lys Leu Met Met Pro Phe Val
Gly Tyr Pro Gly Tyr Pro Met Trp Gln 130 135
140Phe Met Pro Pro Ser Glu Val Asp Thr Ser Lys Asp Ser Glu Ala
Cys145 150 155 160Pro Pro
Val Ala36130PRTZea mays 36Lys Thr Ala Ile Leu Ser Asp Ala Ile Arg Val Val
Gly Glu Leu Arg1 5 10
15Ser Glu Ala Lys Lys Leu Lys Asp Ser Asn Glu Asn Leu Gln Glu Lys
20 25 30Ile Lys Glu Leu Lys Ala Glu
Lys Asn Glu Leu Arg Asp Glu Lys Gln 35 40
45Arg Leu Lys Ala Glu Lys Glu Ser Leu Glu Gln Gln Ile Lys Phe
Leu 50 55 60Asn Ala Arg Pro Ser Leu
Val Pro His Arg Pro Val Ile Pro Ala Ser65 70
75 80Ala Phe Pro Ala Pro Gln Gly Pro Ala Ala Ala
Ala Arg His Lys Leu 85 90
95Met Met Pro Val Ile Gly Tyr Pro Gly Phe Pro Met Trp Gln Phe Met
100 105 110Pro Pro Ser Asp Val Asp
Thr Ser Asp Asp Pro Arg Ser Cys Pro Pro 115 120
125Val Ala 13037234PRTArabidopsis thaliana 37Met Val Ser
Pro Glu Asn Ala Asn Trp Ile Cys Asp Leu Ile Asp Ala1 5
10 15Asp Tyr Gly Ser Phe Thr Ile Gln Gly
Pro Gly Phe Ser Trp Pro Val 20 25
30Gln Gln Pro Ile Gly Val Ser Ser Asn Ser Ser Ala Gly Val Asp Gly
35 40 45Ser Ala Gly Asn Ser Glu Ala
Ser Lys Glu Pro Gly Ser Lys Lys Arg 50 55
60Gly Arg Cys Glu Ser Ser Ser Ala Thr Ser Ser Lys Ala Cys Arg Glu65
70 75 80Lys Gln Arg Arg
Asp Arg Leu Asn Asp Lys Phe Met Glu Leu Gly Ala 85
90 95Ile Leu Glu Pro Gly Asn Pro Pro Lys Thr
Asp Lys Ala Ala Ile Leu 100 105
110Val Asp Ala Val Arg Met Val Thr Gln Leu Arg Gly Glu Ala Gln Lys
115 120 125Leu Lys Asp Ser Asn Ser Ser
Leu Gln Asp Lys Ile Lys Glu Leu Lys 130 135
140Thr Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Thr
Glu145 150 155 160Lys Glu
Lys Leu Glu Gln Gln Leu Lys Ala Met Asn Ala Pro Gln Pro
165 170 175Ser Phe Phe Pro Ala Pro Pro
Met Met Pro Thr Ala Phe Ala Ser Ala 180 185
190Gln Gly Gln Ala Pro Gly Asn Lys Met Val Pro Ile Ile Ser
Tyr Pro 195 200 205Gly Val Ala Met
Trp Gln Phe Met Pro Pro Ala Ser Val Asp Thr Ser 210
215 220Gln Asp His Val Leu Arg Pro Pro Val Ala225
23038234PRTArabidopsis thaliana 38Met Val Ser Pro Glu Asn Ala Asn
Trp Ile Cys Asp Leu Ile Asp Ala1 5 10
15Asp Tyr Gly Ser Phe Thr Ile Gln Gly Pro Gly Phe Ser Trp
Pro Val 20 25 30Gln Gln Pro
Ile Gly Val Ser Ser Asn Ser Ser Ala Gly Val Asp Gly 35
40 45Ser Ala Gly Asn Ser Glu Ala Ser Lys Glu Pro
Gly Ser Lys Lys Arg 50 55 60Gly Arg
Cys Glu Ser Ser Ser Ala Thr Ser Ser Lys Ala Cys Arg Glu65
70 75 80Lys Gln Arg Arg Asp Arg Leu
Asn Asp Lys Phe Met Glu Leu Gly Ala 85 90
95Ile Leu Glu Pro Gly Asn Pro Pro Lys Thr Asp Lys Ala
Ala Ile Leu 100 105 110Val Asp
Ala Val Arg Met Val Thr Gln Leu Arg Gly Glu Ala Gln Lys 115
120 125Leu Lys Asp Ser Asn Ser Ser Leu Gln Asp
Lys Ile Lys Glu Leu Lys 130 135 140Thr
Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Thr Glu145
150 155 160Lys Glu Lys Leu Glu Gln
Gln Leu Lys Ala Ile Asn Ala Pro Gln Pro 165
170 175Ser Phe Phe Pro Ala Pro Pro Met Met Pro Thr Ala
Phe Ala Ser Ala 180 185 190Gln
Gly Gln Ala Pro Gly Asn Lys Met Val Pro Ile Ile Ser Tyr Pro 195
200 205Gly Val Ala Met Trp Gln Phe Met Pro
Pro Ala Ser Val Asp Thr Ser 210 215
220Gln Asp His Val Leu Arg Pro Pro Val Ala225
23039226PRTArabidopsis thaliana 39Met Val Ser Pro Glu Asn Thr Asn Trp Leu
Ser Asp Tyr Pro Leu Ile1 5 10
15Glu Gly Ala Phe Ser Asp Gln Asn Pro Thr Phe Pro Trp Gln Ile Asp
20 25 30Gly Ser Ala Thr Val Ser
Val Glu Val Asp Gly Phe Leu Cys Asp Ala 35 40
45Asp Val Ile Lys Glu Pro Ser Ser Arg Lys Arg Ile Lys Thr
Glu Ser 50 55 60Cys Thr Gly Ser Asn
Ser Lys Ala Cys Arg Glu Lys Gln Arg Arg Asp65 70
75 80Arg Leu Asn Asp Lys Phe Thr Glu Leu Ser
Ser Val Leu Glu Pro Gly 85 90
95Arg Thr Pro Lys Thr Asp Lys Val Ala Ile Ile Asn Asp Ala Ile Arg
100 105 110Met Val Asn Gln Ala
Arg Asp Glu Ala Gln Lys Leu Lys Asp Leu Asn 115
120 125Ser Ser Leu Gln Glu Lys Ile Lys Glu Leu Lys Asp
Glu Lys Asn Glu 130 135 140Leu Arg Asp
Glu Lys Gln Lys Leu Lys Val Glu Lys Glu Arg Ile Asp145
150 155 160Gln Gln Leu Lys Ala Ile Lys
Thr Gln Pro Gln Pro Gln Pro Cys Phe 165
170 175Leu Pro Asn Pro Gln Thr Leu Ser Gln Ala Gln Ala
Pro Gly Ser Lys 180 185 190Leu
Val Pro Phe Thr Thr Tyr Pro Gly Phe Ala Met Trp Gln Phe Met 195
200 205Pro Pro Ala Ala Val Asp Thr Ser Gln
Asp His Val Leu Arg Pro Pro 210 215
220Val Ala22540291PRTArabidopsis thaliana 40Met Gln Thr Asn Glu Asp Asn
Ile Phe Gln Asp Phe Gly Ser Cys Gly1 5 10
15Val Asn Leu Met Gln Pro Gln Gln Glu Gln Phe Asp Ser
Phe Asn Gly 20 25 30Asn Leu
Glu Gln Val Cys Ser Ser Phe Arg Gly Gly Asn Asn Gly Val 35
40 45Val Tyr Ser Ser Ser Ile Gly Ser Ala Gln
Leu Asp Leu Ala Ala Ser 50 55 60Phe
Ser Gly Val Leu Gln Gln Glu Thr His Gln Val Cys Gly Phe Arg65
70 75 80Gly Gln Asn Asp Asp Ser
Ala Val Pro His Leu Gln Gln Gln Gln Gly 85
90 95Gln Val Phe Ser Gly Val Val Glu Ile Asn Ser Ser
Ser Ser Val Gly 100 105 110Ala
Val Lys Glu Glu Phe Glu Glu Glu Cys Ser Gly Lys Arg Arg Arg 115
120 125Thr Gly Ser Cys Ser Lys Pro Gly Thr
Lys Ala Cys Arg Glu Lys Leu 130 135
140Arg Arg Glu Lys Leu Asn Asp Lys Phe Met Asp Leu Ser Ser Val Leu145
150 155 160Glu Pro Gly Arg
Thr Pro Lys Thr Asp Lys Ser Ala Ile Leu Asp Asp 165
170 175Ala Ile Arg Val Val Asn Gln Leu Arg Gly
Glu Ala His Glu Leu Gln 180 185
190Glu Thr Asn Gln Lys Leu Leu Glu Glu Ile Lys Ser Leu Lys Ala Asp
195 200 205Lys Asn Glu Leu Arg Glu Glu
Lys Leu Val Leu Lys Ala Glu Lys Glu 210 215
220Lys Met Glu Gln Gln Leu Lys Ser Met Val Val Pro Ser Pro Gly
Phe225 230 235 240Met Pro
Ser Gln His Pro Ala Ala Phe His Ser His Lys Met Ala Val
245 250 255Ala Tyr Pro Tyr Gly Tyr Tyr
Pro Pro Asn Met Pro Met Trp Ser Pro 260 265
270Leu Pro Pro Ala Asp Arg Asp Thr Ser Arg Asp Leu Lys Asn
Leu Pro 275 280 285Pro Val Ala
29041320PRTArabidopsis thaliana 41Met Tyr Pro Ser Ile Glu Asp Asp Asp Asp
Leu Leu Ala Ala Leu Cys1 5 10
15Phe Asp Gln Ser Asn Gly Val Glu Asp Pro Tyr Gly Tyr Met Gln Thr
20 25 30Asn Glu Asp Asn Ile Phe
Gln Asp Phe Gly Ser Cys Gly Val Asn Leu 35 40
45Met Gln Pro Gln Gln Glu Gln Phe Asp Ser Phe Asn Gly Asn
Leu Glu 50 55 60Gln Val Cys Ser Ser
Phe Arg Gly Gly Asn Asn Gly Val Val Tyr Ser65 70
75 80Ser Ser Ile Gly Ser Ala Gln Leu Asp Leu
Ala Ala Ser Phe Ser Gly 85 90
95Val Leu Gln Gln Glu Thr His Gln Val Cys Gly Phe Arg Gly Gln Asn
100 105 110Asp Asp Ser Ala Val
Pro His Leu Gln Gln Gln Gln Gly Gln Val Phe 115
120 125Ser Gly Val Val Glu Ile Asn Ser Ser Ser Ser Val
Gly Ala Val Lys 130 135 140Glu Glu Phe
Glu Glu Glu Cys Ser Gly Lys Arg Arg Arg Thr Gly Ser145
150 155 160Cys Ser Lys Pro Gly Thr Lys
Ala Cys Arg Glu Lys Leu Arg Arg Glu 165
170 175Lys Leu Asn Asp Lys Phe Met Asp Leu Ser Ser Val
Leu Glu Pro Gly 180 185 190Arg
Thr Pro Lys Thr Asp Lys Ser Ala Ile Leu Asp Asp Ala Ile Arg 195
200 205Val Val Asn Gln Leu Arg Gly Glu Ala
His Glu Leu Gln Glu Thr Asn 210 215
220Gln Lys Leu Leu Glu Glu Ile Lys Ser Leu Lys Ala Asp Lys Asn Glu225
230 235 240Leu Arg Glu Glu
Lys Leu Val Leu Lys Ala Glu Lys Glu Lys Met Glu 245
250 255Gln Gln Leu Lys Ser Met Val Val Pro Ser
Pro Gly Phe Met Pro Ser 260 265
270Gln His Pro Ala Ala Phe His Ser His Lys Met Ala Val Ala Tyr Pro
275 280 285Tyr Gly Tyr Tyr Pro Pro Asn
Met Pro Met Trp Ser Pro Leu Pro Pro 290 295
300Ala Asp Arg Asp Thr Ser Arg Asp Leu Lys Asn Leu Pro Pro Val
Ala305 310 315
32042283PRTArabidopsis thaliana 42Met Tyr Pro Ser Leu Asp Asp Asp Phe Val
Ser Asp Leu Phe Cys Phe1 5 10
15Asp Gln Ser Asn Gly Ala Glu Leu Asp Asp Tyr Thr Gln Phe Gly Val
20 25 30Asn Leu Gln Thr Asp Gln
Glu Asp Thr Phe Pro Asp Phe Val Ser Tyr 35 40
45Gly Val Asn Leu Gln Gln Glu Pro Asp Glu Val Phe Ser Ile
Gly Ala 50 55 60Ser Gln Leu Asp Leu
Ser Ser Tyr Asn Gly Val Leu Ser Leu Glu Pro65 70
75 80Glu Gln Val Gly Gln Gln Asp Cys Glu Val
Val Gln Glu Glu Glu Val 85 90
95Glu Ile Asn Ser Gly Ser Ser Gly Gly Ala Val Lys Glu Glu Gln Glu
100 105 110His Leu Asp Asp Asp
Cys Ser Arg Lys Arg Ala Arg Thr Gly Ser Cys 115
120 125Ser Arg Gly Gly Gly Thr Lys Ala Cys Arg Glu Arg
Leu Arg Arg Glu 130 135 140Lys Leu Asn
Glu Arg Phe Met Asp Leu Ser Ser Val Leu Glu Pro Gly145
150 155 160Arg Thr Pro Lys Thr Asp Lys
Pro Ala Ile Leu Asp Asp Ala Ile Arg 165
170 175Ile Leu Asn Gln Leu Arg Asp Glu Ala Leu Lys Leu
Glu Glu Thr Asn 180 185 190Gln
Lys Leu Leu Glu Glu Ile Lys Ser Leu Lys Ala Glu Lys Asn Glu 195
200 205Leu Arg Glu Glu Lys Leu Val Leu Lys
Ala Asp Lys Glu Lys Thr Glu 210 215
220Gln Gln Leu Lys Ser Met Thr Ala Pro Ser Ser Gly Phe Ile Pro His225
230 235 240Ile Pro Ala Ala
Phe Asn His Asn Lys Met Ala Val Tyr Pro Ser Tyr 245
250 255Gly Tyr Met Pro Met Trp His Tyr Met Pro
Gln Ser Val Arg Asp Thr 260 265
270Ser Arg Asp Gln Glu Leu Arg Pro Pro Ala Ala 275
28043277PRTArabidopsis thaliana 43Met Asp Val Asn Leu Phe Gly His Asp
Asp Ser Cys Ser Asn Gly Ala1 5 10
15Glu Leu Asp Asp Tyr Thr Gln Phe Gly Val Asn Leu Gln Thr Asp
Gln 20 25 30Glu Asp Thr Phe
Pro Asp Phe Val Ser Tyr Gly Val Asn Leu Gln Gln 35
40 45Glu Pro Asp Glu Val Phe Ser Ile Gly Ala Ser Gln
Leu Asp Leu Ser 50 55 60Ser Tyr Asn
Gly Val Leu Ser Leu Glu Pro Glu Gln Val Gly Gln Gln65 70
75 80Asp Cys Glu Val Val Gln Glu Glu
Glu Val Glu Ile Asn Ser Gly Ser 85 90
95Ser Gly Gly Ala Val Lys Glu Glu Gln Glu His Leu Asp Asp
Asp Cys 100 105 110Ser Arg Lys
Arg Ala Arg Thr Gly Ser Cys Ser Arg Gly Gly Gly Thr 115
120 125Lys Ala Cys Arg Glu Arg Leu Arg Arg Glu Lys
Leu Asn Glu Arg Phe 130 135 140Met Asp
Leu Ser Ser Val Leu Glu Pro Gly Arg Thr Pro Lys Thr Asp145
150 155 160Lys Pro Ala Ile Leu Asp Asp
Ala Ile Arg Ile Leu Asn Gln Leu Arg 165
170 175Asp Glu Ala Leu Lys Leu Glu Glu Thr Asn Gln Lys
Leu Leu Glu Glu 180 185 190Ile
Lys Ser Leu Lys Ala Glu Lys Asn Glu Leu Arg Glu Glu Lys Leu 195
200 205Val Leu Lys Ala Asp Lys Glu Lys Thr
Glu Gln Gln Leu Lys Ser Met 210 215
220Thr Ala Pro Ser Ser Gly Phe Ile Pro His Ile Pro Ala Ala Phe Asn225
230 235 240His Asn Lys Met
Ala Val Tyr Pro Ser Tyr Gly Tyr Met Pro Met Trp 245
250 255His Tyr Met Pro Gln Ser Val Arg Asp Thr
Ser Arg Asp Gln Glu Leu 260 265
270Arg Pro Pro Ala Ala 27544337PRTArabidopsis thaliana 44Met Gly
Ile Arg Glu Asn Gly Ile Met Leu Val Ser Arg Glu Arg Glu1 5
10 15Arg Ala Arg Arg Leu Glu Asn Arg
Glu Ser Ile Phe Ala Glu Pro Pro 20 25
30Cys Leu Leu Leu Ala His Arg Ile Ser Pro Ser Pro Ser Ile Leu
Pro 35 40 45Ala Glu Glu Glu Val
Met Asp Val Ser Ala Arg Lys Ser Gln Lys Ala 50 55
60Gly Arg Glu Lys Leu Arg Arg Glu Lys Leu Asn Glu His Phe
Val Glu65 70 75 80Leu
Gly Asn Val Leu Asp Pro Glu Arg Pro Lys Asn Asp Lys Ala Thr
85 90 95Ile Leu Thr Asp Thr Val Gln
Leu Leu Lys Glu Leu Thr Ser Glu Val 100 105
110Asn Lys Leu Lys Ser Glu Tyr Thr Ala Leu Thr Asp Glu Ser
Arg Glu 115 120 125Leu Thr Gln Glu
Lys Asn Asp Leu Arg Glu Glu Lys Thr Ser Leu Lys 130
135 140Ser Asp Ile Glu Asn Leu Asn Leu Gln Tyr Gln Gln
Arg Leu Arg Ser145 150 155
160Met Ser Pro Trp Gly Ala Ala Met Asp His Thr Val Met Met Ala Pro
165 170 175Pro Pro Ser Phe Pro
Tyr Pro Met Pro Ile Ala Met Pro Pro Gly Ser 180
185 190Ile Pro Met His Pro Ser Met Pro Ser Tyr Thr Tyr
Phe Gly Asn Gln 195 200 205Asn Pro
Ser Met Ile Pro Ala Pro Cys Pro Thr Tyr Met Pro Tyr Met 210
215 220Pro Pro Asn Thr Val Val Glu Gln Gln Ser Val
His Ile Pro Gln Asn225 230 235
240Pro Gly Asn Arg Ser Arg Glu Pro Arg Ala Lys Val Ser Arg Glu Ser
245 250 255Arg Ser Glu Lys
Ala Glu Asp Ser Asn Glu Val Ala Thr Gln Leu Glu 260
265 270Leu Lys Thr Pro Gly Ser Thr Ser Asp Lys Asp
Thr Leu Gln Arg Pro 275 280 285Glu
Lys Thr Lys Arg Cys Lys Arg Asn Asn Asn Asn Asn Ser Ile Glu 290
295 300Glu Ser Ser His Ser Ser Lys Cys Ser Ser
Ser Pro Ser Val Arg Asp305 310 315
320His Ser Ser Ser Ser Ser Val Ala Gly Gly Gln Lys Pro Asp Asp
Ala 325 330
335Lys45284PRTArabidopsis thaliana 45Met Asp Val Ser Ala Arg Lys Ser Gln
Lys Ala Gly Arg Glu Lys Leu1 5 10
15Arg Arg Glu Lys Leu Asn Glu His Phe Val Glu Leu Gly Asn Val
Leu 20 25 30Asp Pro Glu Arg
Pro Lys Asn Asp Lys Ala Thr Ile Leu Thr Asp Thr 35
40 45Val Gln Leu Leu Lys Glu Leu Thr Ser Glu Val Asn
Lys Leu Lys Ser 50 55 60Glu Tyr Thr
Ala Leu Thr Asp Glu Ser Arg Glu Leu Thr Gln Glu Lys65 70
75 80Asn Asp Leu Arg Glu Glu Lys Thr
Ser Leu Lys Ser Asp Ile Glu Asn 85 90
95Leu Asn Leu Gln Tyr Gln Gln Arg Leu Arg Ser Met Ser Pro
Trp Gly 100 105 110Ala Ala Met
Asp His Thr Val Met Met Ala Pro Pro Pro Ser Phe Pro 115
120 125Tyr Pro Met Pro Ile Ala Met Pro Pro Gly Ser
Ile Pro Met His Pro 130 135 140Ser Met
Pro Ser Tyr Thr Tyr Phe Gly Asn Gln Asn Pro Ser Met Ile145
150 155 160Pro Ala Pro Cys Pro Thr Tyr
Met Pro Tyr Met Pro Pro Asn Thr Val 165
170 175Val Glu Gln Gln Ser Val His Ile Pro Gln Asn Pro
Gly Asn Arg Ser 180 185 190Arg
Glu Pro Arg Ala Lys Val Ser Arg Glu Ser Arg Ser Glu Lys Ala 195
200 205Glu Asp Ser Asn Glu Val Ala Thr Gln
Leu Glu Leu Lys Thr Pro Gly 210 215
220Ser Thr Ser Asp Lys Asp Thr Leu Gln Arg Pro Glu Lys Thr Lys Arg225
230 235 240Cys Lys Arg Asn
Asn Asn Asn Asn Ser Ile Glu Glu Ser Ser His Ser 245
250 255Ser Lys Cys Ser Ser Ser Pro Ser Val Arg
Asp His Ser Ser Ser Ser 260 265
270Ser Val Ala Gly Gly Gln Lys Pro Asp Asp Ala Lys 275
28046268PRTArabidopsis thaliana 46Met Ala Val Ser Cys Leu Phe Ile
Val Ser Ser Asn Tyr Arg Gly Ala1 5 10
15Glu Met Val Val Glu Val Lys Lys Glu Ala Val Cys Ser Gln
Lys Ala 20 25 30Glu Arg Glu
Lys Leu Arg Arg Asp Lys Leu Lys Glu Gln Phe Leu Glu 35
40 45Leu Gly Asn Ala Leu Asp Pro Asn Arg Pro Lys
Ser Asp Lys Ala Ser 50 55 60Val Leu
Thr Asp Thr Ile Gln Met Leu Lys Asp Val Met Asn Gln Val65
70 75 80Asp Arg Leu Lys Ala Glu Tyr
Glu Thr Leu Ser Gln Glu Ser Arg Glu 85 90
95Leu Ile Gln Glu Lys Ser Glu Leu Arg Glu Glu Lys Ala
Thr Leu Lys 100 105 110Ser Asp
Ile Glu Ile Leu Asn Ala Gln Tyr Gln His Gly Ile Lys Thr 115
120 125Met Val Pro Trp Val Pro His Tyr Ser Tyr
His Ile Pro Phe Val Ala 130 135 140Ile
Thr Gln Gly Gln Ser Ser Phe Ile Pro Tyr Ser Ala Ser Val Asn145
150 155 160Pro Leu Thr Glu Gln Gln
Ala Ser Val Gln Gln His Ser Ser Ser Ser 165
170 175Ala Asp Ala Ser Met Lys Gln Asp Ser Lys Ile Lys
Pro Leu Asp Leu 180 185 190Asp
Leu Met Met Asn Ser Asn His Ser Gly Gln Gly Asn Asp Gln Lys 195
200 205Asp Asp Val Arg Leu Lys Leu Glu Leu
Lys Ile His Ala Ser Ser Leu 210 215
220Ala Gln Gln Asp Val Ser Gly Lys Glu Lys Lys Val Ser Leu Thr Thr225
230 235 240Thr Ala Ser Ser
Ser Asn Ser Tyr Ser Leu Ser Gln Ala Val Gln Asp 245
250 255Ser Ser Pro Gly Thr Val Asn Asp Met Leu
Lys Pro 260 26547286PRTArabidopsis thaliana
47Met Asp Gln Pro Met Lys Pro Lys Thr Cys Ser Glu Ser Asp Phe Ala1
5 10 15Asp Asp Ser Ser Ala Ser
Ser Ser Ser Ser Ser Gly Gln Asn Leu Arg 20 25
30Gly Ala Glu Met Val Val Glu Val Lys Lys Glu Ala Val
Cys Ser Gln 35 40 45Lys Ala Glu
Arg Glu Lys Leu Arg Arg Asp Lys Leu Lys Glu Gln Phe 50
55 60Leu Glu Leu Gly Asn Ala Leu Asp Pro Asn Arg Pro
Lys Ser Asp Lys65 70 75
80Ala Ser Val Leu Thr Asp Thr Ile Gln Met Leu Lys Asp Val Met Asn
85 90 95Gln Val Asp Arg Leu Lys
Ala Glu Tyr Glu Thr Leu Ser Gln Glu Ser 100
105 110Arg Glu Leu Ile Gln Glu Lys Ser Glu Leu Arg Glu
Glu Lys Ala Thr 115 120 125Leu Lys
Ser Asp Ile Glu Ile Leu Asn Ala Gln Tyr Gln His Arg Ile 130
135 140Lys Thr Met Val Pro Trp Val Pro His Tyr Ser
Tyr His Ile Pro Phe145 150 155
160Val Ala Ile Thr Gln Gly Gln Ser Ser Phe Ile Pro Tyr Ser Ala Ser
165 170 175Val Asn Pro Leu
Thr Glu Gln Gln Ala Ser Val Gln Gln His Ser Ser 180
185 190Ser Ser Ala Asp Ala Ser Met Lys Gln Asp Ser
Lys Ile Lys Pro Leu 195 200 205Asp
Leu Asp Leu Met Met Asn Ser Asn His Ser Gly Gln Gly Asn Asp 210
215 220Gln Lys Asp Asp Val Arg Leu Lys Leu Glu
Leu Lys Ile His Ala Ser225 230 235
240Ser Leu Ala Gln Gln Asp Val Ser Gly Lys Glu Lys Lys Val Ser
Leu 245 250 255Thr Thr Thr
Ala Ser Ser Ser Asn Ser Tyr Ser Leu Ser Gln Ala Val 260
265 270Gln Asp Ser Ser Pro Gly Thr Val Asn Asp
Met Leu Lys Pro 275 280
28548268PRTArabidopsis thaliana 48Met Ala Val Ser Cys Leu Phe Ile Val Ser
Ser Asn Tyr Arg Gly Ala1 5 10
15Glu Met Val Val Glu Val Lys Lys Glu Ala Val Cys Ser Gln Lys Ala
20 25 30Glu Arg Glu Lys Leu Arg
Arg Asp Lys Leu Lys Glu Gln Phe Leu Glu 35 40
45Leu Gly Asn Ala Leu Asp Pro Asn Arg Pro Lys Ser Asp Lys
Ala Ser 50 55 60Val Leu Thr Asp Thr
Ile Gln Met Leu Lys Asp Val Met Asn Gln Val65 70
75 80Asp Arg Leu Lys Ala Glu Tyr Glu Thr Leu
Ser Gln Glu Ser Arg Glu 85 90
95Leu Ile Gln Glu Lys Ser Glu Leu Arg Glu Glu Lys Ala Thr Leu Lys
100 105 110Ser Asp Ile Glu Ile
Leu Asn Ala Gln Tyr Gln His Arg Ile Lys Thr 115
120 125Met Val Pro Trp Val Pro His Tyr Ser Tyr His Ile
Pro Phe Val Ala 130 135 140Ile Thr Gln
Gly Gln Ser Ser Phe Ile Pro Tyr Ser Ala Ser Val Asn145
150 155 160Pro Leu Thr Glu Gln Gln Ala
Ser Val Gln Gln His Ser Ser Ser Ser 165
170 175Ala Asp Ala Ser Met Lys Gln Asp Ser Lys Ile Lys
Pro Leu Asp Leu 180 185 190Asp
Leu Met Met Asn Ser Asn His Ser Gly Gln Gly Asn Asp Gln Lys 195
200 205Asp Asp Val Arg Leu Lys Leu Glu Leu
Lys Ile His Ala Ser Ser Leu 210 215
220Ala Gln Gln Asp Val Ser Gly Lys Glu Lys Lys Val Ser Leu Thr Thr225
230 235 240Thr Ala Ser Ser
Ser Asn Ser Tyr Ser Leu Ser Gln Ala Val Gln Asp 245
250 255Ser Ser Pro Gly Thr Val Asn Asp Met Leu
Lys Pro 260 26549272PRTArabidopsis thaliana
49Met Asp Gln Pro Met Lys Pro Lys Thr Cys Ser Glu Ser Asp Phe Ala1
5 10 15Asp Asp Ser Ser Ala Ser
Ser Ser Ser Ser Ser Gly Gln Asn Leu Arg 20 25
30Gly Ala Glu Met Val Val Glu Val Lys Lys Glu Ala Val
Cys Ser Gln 35 40 45Lys Ala Glu
Arg Glu Lys Leu Arg Arg Asp Lys Leu Lys Glu Gln Phe 50
55 60Leu Glu Leu Gly Asn Ala Leu Asp Pro Asn Arg Pro
Lys Ser Asp Lys65 70 75
80Ala Ser Val Leu Thr Asp Thr Ile Gln Met Leu Lys Asp Val Met Asn
85 90 95Gln Val Asp Arg Leu Lys
Ala Glu Tyr Glu Thr Leu Ser Gln Glu Ser 100
105 110Arg Glu Leu Ile Gln Glu Lys Ser Glu Leu Arg Glu
Glu Lys Ala Thr 115 120 125Leu Lys
Ser Asp Ile Glu Ile Leu Asn Ala Gln Tyr Gln His Arg Ile 130
135 140Lys Thr Met Val Pro Trp Gly Gln Ser Ser Phe
Ile Pro Tyr Ser Ala145 150 155
160Ser Val Asn Pro Leu Thr Glu Gln Gln Ala Ser Val Gln Gln His Ser
165 170 175Ser Ser Ser Ala
Asp Ala Ser Met Lys Gln Asp Ser Lys Ile Lys Pro 180
185 190Leu Asp Leu Asp Leu Met Met Asn Ser Asn His
Ser Gly Gln Gly Asn 195 200 205Asp
Gln Lys Asp Asp Val Arg Leu Lys Leu Glu Leu Lys Ile His Ala 210
215 220Ser Ser Leu Ala Gln Gln Val Ser Asp Leu
Phe Asn Ser Phe Ala Asn225 230 235
240Lys Leu Phe His Gly Leu Thr Arg Val Tyr Phe His Ala Gly Cys
Phe 245 250 255Trp Lys Arg
Glu Glu Ser Lys Leu Asp Asn His Cys Lys Leu Ile Glu 260
265 27050237PRTVitis vinifera 50Met Val Ser Pro
Glu Ala Thr Asn Trp Leu Tyr Glu Tyr Gly Leu Ile1 5
10 15Glu Asp Ile Pro Val Pro Asp Ser Asn Phe
Ala Asn Thr Asn Ser Gly 20 25
30Phe Ala Trp Thr Pro Val Gln Ala Leu Asn Thr Ser Ala Asn Val Ser
35 40 45Gly Glu Ile Asp Gly Ser Phe Gly
Asp Ser Asp Gly Ile Lys Glu Thr 50 55
60Gly Ser Lys Lys Arg Val Arg Ser Glu Ser Cys Gly Ala Ser Ser Ser65
70 75 80Lys Ala Cys Arg Glu
Lys Leu Arg Arg Asp Arg Leu Asn Asp Lys Phe 85
90 95Met Glu Leu Gly Ser Ile Leu Glu Pro Gly Arg
Pro Pro Lys Thr Asp 100 105
110Lys Ser Ser Ile Leu Ile Asp Ala Val Arg Met Val Thr Gln Leu Arg
115 120 125Gly Glu Ser Gln Lys Leu Lys
Asp Ser Asn Ser Ser Leu Gln Glu Lys 130 135
140Ile Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys
Gln145 150 155 160Arg Leu
Lys Ala Glu Lys Glu Lys Leu Glu Gln Gln Leu Lys Ala Met
165 170 175Asn Ala Gln Pro Ser Phe Leu
Pro Pro Val Pro Ser Ile Pro Ala Ala 180 185
190Phe Ala Ala Gln Gly Gln Ala Gly Gly Asp Lys Leu Val Pro
Phe Ile 195 200 205Gly Tyr Pro Gly
Val Ala Met Trp Gln Phe Met Pro Pro Ala Ala Val 210
215 220Asp Thr Ser Gln Asp His Val Leu Arg Pro Pro Val
Ala225 230 23551232PRTCitrus reticulata
51Glu Asn Thr Asn Trp Leu Leu Asp Tyr Pro Leu Ile Asp Asp Ile Thr1
5 10 15Val Pro Asp Gly Asn Phe
Ser Val Ser Ala Ser Gly Phe Thr Trp Thr 20 25
30Val Gln Pro Pro Ile Asn Gly Pro Ser Asn Gly Cys Val
Glu Ile Asp 35 40 45Ser Ala Phe
Gly Asp Ser Asn Gly Leu Lys Glu Ser Ser Lys Lys Arg 50
55 60Val Arg Ser Glu Ser Cys Gly Ser Ser Ser Ser Lys
Ala Cys Arg Glu65 70 75
80Lys Leu Arg Arg Asp Arg Leu Asn Asp Lys Phe Val Glu Leu Ala Ser
85 90 95Ile Leu Glu Pro Gly Arg
Pro Pro Lys Thr Asp Lys Ala Ala Ile Leu 100
105 110Ile Asp Ala Val Arg Met Val Thr Gln Leu Arg Ser
Glu Ala Gln Lys 115 120 125Leu Lys
Asp Ser Asn Ser Ser Leu Gln Glu Lys Ile Lys Glu Leu Lys 130
135 140Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln
Arg Leu Lys Ala Glu145 150 155
160Lys Glu Lys Ile Glu Gln Gln Leu Lys Ala Met Ser Thr Gln Pro Ser
165 170 175Phe Leu Thr Pro
Pro Pro Ala Ile Pro Ala Ala Phe Ala Ala Gln Gly 180
185 190Gln Ala Pro Gly Asn Lys Leu Met Pro Phe Ile
Ser Tyr Pro Gly Val 195 200 205Ala
Met Trp Gln Phe Met Pro Pro Ala Ala Val Asp Thr Ser Gln Asp 210
215 220His Val Leu Arg Pro Pro Val Ala225
23052230PRTMedicago truncatula 52Met Val Ser Pro Glu Asn Thr Asn
Trp Leu Phe Asp Tyr Pro Leu Ile1 5 10
15Asp Glu Ile Pro Val Ser Val Asp Gly Ser Phe Ala Phe Thr
Trp Pro 20 25 30Pro Pro His
Leu Ser Asn Gly Gly Ile Glu Met Asp Asp Ser Ser Leu 35
40 45Val Asp Ser Asp Gly Ile Lys Glu Pro Gly Ser
Lys Lys Arg Gly Arg 50 55 60Ser Asp
Ser Cys Ala Pro Ser Ser Ser Lys Ala Cys Arg Glu Lys Leu65
70 75 80Arg Arg Asp Arg Leu Asn Asp
Lys Phe Val Glu Leu Gly Ser Ile Leu 85 90
95Glu Pro Gly Arg Pro Pro Lys Thr Asp Lys Ala Ala Ile
Leu Ile Asp 100 105 110Ala Val
Arg Met Val Thr Gln Leu Arg Gly Glu Ala Gln Lys Leu Lys 115
120 125Asp Ser Asn Ser Arg Leu Gln Glu Lys Ile
Lys Glu Leu Lys Val Glu 130 135 140Lys
Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Ala Glu Lys Glu145
150 155 160Lys Leu Glu Gln Gln Val
Lys Ser Met Asn Thr Gln Pro Gly Phe Leu 165
170 175Thr His Pro Pro Ala Ile Pro Ala Ala Phe Ala His
Gln Gly Gln Ala 180 185 190Pro
Ser Asn Lys Leu Met Pro Phe Met Ser Tyr Pro Gly Val Ala Met 195
200 205Trp Gln Phe Met Pro Pro Ala Ala Val
Asp Thr Ser Gln Asp His Val 210 215
220Leu Arg Pro Pro Val Ala225 23053229PRTVitis vinifera
53Met Val Ser Pro Glu Ala Thr Asn Trp Leu Tyr Glu Tyr Gly Leu Ile1
5 10 15Glu Asp Ile Pro Val Pro
Asp Ser Asn Phe Ala Asn Thr Asn Ser Gly 20 25
30Phe Ala Trp Thr Pro Val Gln Ala Leu Asn Thr Ser Ala
Asn Val Ser 35 40 45Gly Glu Ile
Asp Gly Ser Phe Gly Asp Ser Asp Gly Ile Lys Glu Thr 50
55 60Gly Ser Lys Lys Arg Val Arg Ser Glu Ser Cys Gly
Ala Ser Ser Ser65 70 75
80Lys Ala Cys Arg Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp Lys Phe
85 90 95Met Glu Leu Gly Ser Ile
Leu Glu Pro Gly Arg Pro Pro Lys Thr Asp 100
105 110Lys Ser Ser Ile Leu Ile Asp Ala Val Arg Met Val
Thr Gln Leu Arg 115 120 125Gly Glu
Ser Gln Lys Leu Lys Asp Ser Asn Ser Ser Leu Gln Glu Lys 130
135 140Ile Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu
Arg Asp Glu Lys Gln145 150 155
160Arg Leu Lys Ala Glu Lys Glu Lys Leu Glu Gln Gln Leu Lys Ala Met
165 170 175Asn Ala Gln Pro
Ser Phe Leu Pro Pro Val Pro Ser Ile Pro Ala Ala 180
185 190Phe Ala Ala Gln Gly Gln Ala Gly Gly Asn Lys
Leu Val Pro Phe Ile 195 200 205Gly
Tyr Pro Gly Val Ala Met Trp Gln Phe Met Pro Pro Ala Ala Val 210
215 220Asp Thr Leu Thr Asp22554238PRTGossypium
raimondii 54Met Val Ser Pro Glu Asn Phe Asn Tyr Trp Ser His Phe Asp Tyr
Ala1 5 10 15Thr Leu Ile
His Asp Ile Pro Val Pro Asp Asp Pro Tyr Ala Gly Phe 20
25 30Ala Trp Ser Thr Gln Pro Ile Asp Ala Pro
Ser Asn Val Val Ser Val 35 40
45Glu Ile Asp Gly Ser Phe Gly Asp Ser Asp Gly Leu Lys Glu Ser Gly 50
55 60Ser Lys Lys Arg Val Arg Ser Glu Ser
Cys Asn Ala Ser Ser Ser Lys65 70 75
80Ala Cys Arg Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp Lys
Phe Met 85 90 95Glu Leu
Gly Ser Ile Leu Glu Pro Gly Arg Pro Pro Lys Thr Asp Lys 100
105 110Ser Ala Ile Leu Ile Asp Ala Val Arg
Met Val Thr Gln Leu Arg Gly 115 120
125Glu Ala Gln Lys Leu Lys Asp Ser Asn Thr Ser Leu Gln Glu Arg Ile
130 135 140Lys Glu Leu Lys Ser Glu Lys
Asn Glu Leu Arg Asp Glu Lys Gln Arg145 150
155 160Leu Lys Ala Glu Lys Glu Arg Leu Glu Gln Gln Leu
Lys Ala Met Asn 165 170
175Ala Gln Pro Ser Phe Met Pro Pro Ala Pro Pro Ala Ile Pro Ala Ala
180 185 190Phe Ala Ala Ala Pro Gly
Gln Ala Pro Gly Asn Lys Leu Val Pro Leu 195 200
205Ile Gly Tyr Pro Gly Val Ala Met Trp Gln Phe Met Pro Pro
Ala Ala 210 215 220Val Asp Thr Ser Gln
Asp His Val Leu Arg Pro Pro Val Ala225 230
23555220PRTCitrus reticulata 55Met Val Ser Pro Glu Asn Thr Asn Trp Leu
Leu Asp Tyr Pro Leu Ile1 5 10
15Asp Asp Ile Thr Val Pro Asp Gly Asn Phe Ser Val Ser Ala Ser Gly
20 25 30Phe Thr Trp Thr Val Gln
Pro Pro Ile Asn Gly Pro Ser Asn Gly Cys 35 40
45Val Glu Ile Asp Ser Ala Phe Gly Asp Ser Asn Gly Leu Lys
Glu Ser 50 55 60Ser Lys Lys Arg Val
Arg Ser Glu Ser Cys Gly Ser Ser Ser Ser Lys65 70
75 80Ala Cys Arg Glu Lys Leu Arg Arg Asp Arg
Leu Asn Asp Lys Phe Val 85 90
95Glu Leu Ala Ser Ile Leu Glu Pro Gly Arg Pro Pro Lys Thr Asp Lys
100 105 110Ala Ala Ile Leu Ile
Asp Ala Val Arg Met Val Thr Gln Leu Arg Ser 115
120 125Glu Ala Gln Lys Leu Lys Asp Ser Asn Ser Ser Leu
Gln Glu Lys Ile 130 135 140Lys Glu Leu
Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg145
150 155 160Leu Lys Ala Glu Lys Glu Lys
Ile Glu Gln Gln Leu Lys Ala Met Ser 165
170 175Thr Gln Pro Ser Phe Leu Thr Pro Pro Ala Ile Pro
Ala Ala Phe Ala 180 185 190Ala
Gln Gly Gln Ala Pro Gly Asn Lys Leu Met Pro Phe Ile Ser Tyr 195
200 205Pro Gly Val Ala Met Trp Gln Phe Met
Pro Pro Ala 210 215 22056233PRTSolanum
tuberosum 56Met Val Ser Pro Glu Asn Thr Asn Trp Leu Tyr Asp Tyr Gly Phe
Glu1 5 10 15Asp Ser Ser
Val Pro Asp Ser Asn Phe Ser Pro Ser Ala Ser Gly Phe 20
25 30Asn Trp Pro Val Gln Asn Leu Asn Gly Ser
Arg Asn Val Ser Ser Glu 35 40
45Ile Asp Gly Ser Ile Gly Glu Ser Asp Tyr Pro Lys Glu Ser Gly Ser 50
55 60Lys Lys Arg Ala Arg Val Glu Ser Cys
Ala Pro Thr Ser Ser Lys Ala65 70 75
80Cys Arg Glu Lys Leu Arg Arg Asp Lys Leu Asn Asp Lys Phe
Met Glu 85 90 95Leu Gly
Ala Leu Leu Glu Pro Gly Arg Pro Pro Lys Thr Asp Lys Ser 100
105 110Ala Ile Leu Val Asp Ala Val Arg Met
Val Thr Gln Leu Arg Asp Glu 115 120
125Ala Gln Lys Leu Lys Asp Ser Asn Leu Asn Leu Gln Glu Lys Ile Lys
130 135 140Glu Leu Lys Val Glu Lys Thr
Glu Leu Arg Asp Glu Lys Gln Arg Leu145 150
155 160Lys Ala Glu Lys Glu Lys Leu Glu Gln Gln Leu Lys
Thr Thr Ser Ala 165 170
175Gln Pro Ser Phe Leu Pro Pro Ala Ile Pro Ser Ala Phe Ala Ala His
180 185 190Gly Gln Phe Pro Gly Ser
Lys Leu Val Pro Ile Met Ser Tyr Pro Gly 195 200
205Val Ala Met Trp Gln Phe Met Pro Pro Ala Ala Val Asp Thr
Ser Gln 210 215 220Asp His Val Leu Arg
Pro Pro Val Ala225 23057233PRTSolanum tuberosum 57Met Val
Ser Pro Glu Asn Thr Asn Trp Leu Tyr Asp Tyr Gly Phe Glu1 5
10 15Asp Ser Ser Val Pro Asp Ser Asn
Phe Ser Ala Ser Ala Ser Gly Phe 20 25
30Asn Trp Pro Val Gln Asn Leu Asn Gly Ser Arg Asn Val Ser Ser
Glu 35 40 45Ile Asp Gly Ser Ile
Gly Glu Ser Asp Tyr Pro Lys Glu Ser Gly Ser 50 55
60Lys Lys Arg Ala Arg Val Glu Ser Cys Ala Pro Thr Ser Ser
Lys Ala65 70 75 80Cys
Arg Glu Lys Leu Arg Arg Asp Lys Leu Asn Asp Lys Phe Met Glu
85 90 95Leu Gly Ala Leu Leu Glu Pro
Gly Arg Pro Pro Lys Thr Asp Lys Ser 100 105
110Ala Ile Leu Val Asp Ala Val Arg Met Val Thr Gln Leu Arg
Asp Glu 115 120 125Ala Gln Lys Leu
Lys Asp Ser Asn Leu Asn Leu Gln Glu Lys Ile Lys 130
135 140Glu Leu Lys Val Glu Lys Thr Glu Leu Arg Asp Glu
Lys Gln Arg Leu145 150 155
160Lys Ala Glu Lys Glu Lys Leu Glu Gln Gln Leu Lys Thr Thr Ser Ala
165 170 175Gln Pro Ser Phe Leu
Pro Pro Ala Val Pro Ser Ala Phe Ala Ala His 180
185 190Gly Gln Phe Pro Gly Ser Lys Leu Val Pro Ile Met
Ser Tyr Pro Gly 195 200 205Val Ala
Met Trp Gln Phe Met Pro Pro Ala Ala Val Asp Thr Ser Gln 210
215 220Asp His Val Leu Arg Pro Pro Val Ala225
23058233PRTSolanum tuberosum 58Met Val Ser Pro Glu Asn Thr Asn
Trp Leu Tyr Asp Tyr Gly Phe Glu1 5 10
15Asp Ser Ser Val Pro Asp Ser Asn Phe Ser Ala Ser Ala Ser
Gly Phe 20 25 30Asn Trp Pro
Val Gln Asn Leu Asn Gly Ser Arg Asn Val Ser Ser Glu 35
40 45Ile Asp Gly Ser Ile Gly Glu Ser Asp Tyr Pro
Lys Glu Ser Gly Ser 50 55 60Lys Lys
Arg Ala Arg Val Glu Ser Cys Ala Pro Thr Ser Ser Lys Ala65
70 75 80Cys Arg Glu Lys Leu Arg Arg
Asp Lys Leu Asn Asp Lys Phe Met Glu 85 90
95Leu Gly Ala Leu Leu Glu Pro Gly Arg Pro Pro Lys Thr
Asp Lys Ser 100 105 110Ala Ile
Leu Val Asp Ala Val Arg Met Val Thr Gln Leu Arg Asp Glu 115
120 125Ala Gln Lys Leu Lys Asp Ser Asn Leu Asn
Leu Gln Glu Lys Ile Lys 130 135 140Glu
Leu Lys Val Glu Lys Thr Glu Leu Arg Asp Glu Lys Gln Arg Leu145
150 155 160Lys Ala Glu Lys Glu Lys
Leu Glu Gln Gln Leu Lys Thr Thr Ser Ala 165
170 175Gln Pro Ser Phe Leu Pro Pro Ala Ile Pro Ser Ala
Phe Ala Ala His 180 185 190Gly
Gln Phe Pro Gly Ser Lys Leu Val Pro Ile Met Ser Tyr Pro Gly 195
200 205Val Ala Met Trp Gln Phe Met Pro Pro
Ala Ala Val Asp Thr Ser Gln 210 215
220Asp His Val Leu Arg Pro Pro Val Ala225
23059223PRTVitis vinifera 59Leu Ile Glu Asp Ile Pro Val Pro Asp Ser Asn
Phe Ala Asn Thr Asn1 5 10
15Ser Gly Phe Ala Trp Thr Pro Val Gln Ala Leu Asn Thr Ser Ala Asn
20 25 30Val Ser Gly Glu Ile Asp Gly
Ser Phe Gly Asp Ser Asp Gly Ile Lys 35 40
45Glu Thr Gly Ser Lys Lys Arg Val Arg Ser Glu Ser Cys Gly Ala
Ser 50 55 60Ser Ser Lys Ala Cys Arg
Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp65 70
75 80Lys Phe Met Glu Leu Gly Ser Ile Leu Glu Pro
Gly Arg Pro Pro Lys 85 90
95Thr Asp Lys Ser Ser Ile Leu Ile Asp Ala Val Arg Met Val Thr Gln
100 105 110Leu Arg Gly Glu Ser Gln
Lys Leu Lys Asp Ser Asn Ser Ser Leu Gln 115 120
125Glu Lys Ile Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg
Asp Glu 130 135 140Lys Gln Arg Leu Lys
Ala Glu Lys Glu Lys Leu Glu Gln Gln Leu Lys145 150
155 160Ala Met Asn Ala Gln Pro Ser Phe Leu Pro
Pro Val Pro Ser Ile Pro 165 170
175Ala Ala Phe Ala Ala Gln Gly Gln Ala Gly Gly Asn Lys Leu Val Pro
180 185 190Phe Ile Gly Tyr Pro
Gly Val Ala Met Trp Gln Phe Met Pro Pro Ala 195
200 205Ala Val Asp Thr Ser Gln Asp His Val Leu Arg Pro
Pro Val Ala 210 215 22060214PRTGlycine
max 60Glu Asn Ser Asn Trp Leu Phe Asp Tyr Pro Leu Ile Asp Asp Asp Val1
5 10 15Ile Pro Val Gly Asp
Ser Ser Phe Ala Val Ser Ala Ser Thr Phe Ser 20
25 30Trp Pro Pro Pro Pro Ala Asn Val Ser Val Glu Ile
Asp Ala Ser Leu 35 40 45Gly Asp
Ser Asp Gly Leu Lys Asn Pro Ala Leu Lys Lys Arg Thr Lys 50
55 60Ser Asp Ser Ser Thr Ala Ser Ser Ser Lys Ala
Cys Arg Glu Lys Leu65 70 75
80Arg Arg Asp Arg Leu Asn Asp Lys Phe Val Glu Leu Gly Ser Ile Leu
85 90 95Glu Pro Gly Arg Pro
Pro Lys Thr Asp Lys Ala Ser Ile Leu Ile Asp 100
105 110Ala Ala Arg Met Val Thr Gln Leu Arg Asp Glu Ala
Leu Lys Leu Lys 115 120 125Asp Ser
Asn Thr Ser Leu Gln Glu Lys Ile Lys Glu Leu Lys Ala Glu 130
135 140Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu
Lys Ala Glu Lys Glu145 150 155
160Lys Leu Glu Val Gln Val Lys Ser Met Asn Ala Gln Pro Ala Phe Leu
165 170 175Pro Pro Pro Pro
Ala Ile Pro Ala Ala Phe Ala Pro Gln Gly Gln Ala 180
185 190Pro Gly Asn Lys Leu Val Pro Phe Ile Ser Tyr
Pro Gly Val Ala Met 195 200 205Trp
Gln Phe Met Pro Pro 21061233PRTSolanum tuberosum 61Met Val Ser Pro Glu
Asn Thr Asn Trp Leu Tyr Asp Tyr Gly Phe Glu1 5
10 15Asp Ser Ser Val Pro Asp Ser Asn Phe Ser Ala
Ser Ala Ser Gly Phe 20 25
30Asn Trp Pro Val Gln Asn Leu Asn Gly Ser Arg Asn Val Ser Ser Glu
35 40 45Ile Asp Gly Ser Ile Gly Glu Ser
Asp Cys Pro Lys Glu Ser Gly Ser 50 55
60Lys Lys Arg Ala Arg Val Glu Ser Cys Ala Pro Thr Ser Ser Lys Ala65
70 75 80Cys Arg Glu Lys Leu
Arg Arg Asp Lys Leu Asn Asp Lys Phe Met Glu 85
90 95Leu Gly Ala Leu Leu Glu Pro Gly Arg Pro Pro
Lys Thr Asp Lys Ser 100 105
110Ala Ile Leu Val Asp Ala Val Arg Met Val Thr Gln Leu Arg Asp Glu
115 120 125Ala Gln Lys Leu Lys Asp Ser
Asn Leu Asn Leu Gln Glu Lys Ile Lys 130 135
140Glu Leu Lys Val Glu Lys Thr Glu Leu Arg Asp Glu Lys Gln Arg
Leu145 150 155 160Lys Ala
Glu Lys Glu Lys Leu Glu Gln Gln Leu Lys Thr Thr Ser Ala
165 170 175Gln Pro Ser Phe Leu Pro Pro
Ala Ile Pro Ser Ala Phe Ala Ala His 180 185
190Gly Gln Phe Pro Gly Ser Lys Leu Val Pro Ile Met Ser Tyr
Pro Gly 195 200 205Val Ala Met Trp
Gln Phe Met Pro Pro Ala Ala Val Asp Thr Ser Gln 210
215 220Asp His Val Leu Arg Pro Pro Val Ala225
23062192PRTCitrus reticulata 62Pro Ser Asn Gly Cys Val Glu Ile Asp
Ser Ala Phe Gly Asp Ser Asn1 5 10
15Gly Leu Lys Glu Ser Ser Lys Lys Arg Val Arg Ser Glu Ser Cys
Gly 20 25 30Ser Ser Ser Ser
Lys Ala Cys Arg Glu Lys Leu Arg Arg Asp Arg Leu 35
40 45Asn Asp Lys Phe Val Glu Leu Ala Ser Ile Leu Glu
Pro Gly Arg Pro 50 55 60Pro Lys Thr
Asp Lys Ala Ala Ile Leu Ile Asp Ala Val Arg Met Val65 70
75 80Thr Gln Leu Arg Ser Glu Ala Gln
Lys Leu Lys Asp Ser Asn Ser Ser 85 90
95Leu Gln Glu Lys Ile Lys Glu Leu Lys Ala Glu Lys Asn Glu
Leu Arg 100 105 110Asp Glu Lys
Gln Arg Leu Lys Ala Glu Lys Glu Lys Ile Glu Gln Gln 115
120 125Leu Lys Ala Met Ser Thr Gln Pro Ser Phe Leu
Thr Pro Pro Ala Ile 130 135 140Pro Ala
Ala Phe Ala Ala Gln Gly Gln Ala Pro Gly Asn Lys Leu Met145
150 155 160Pro Phe Ile Ser Tyr Pro Gly
Val Ala Met Trp Gln Phe Met Pro Pro 165
170 175Ala Ala Val Asp Thr Ser Gln Asp His Val Leu Arg
Pro Pro Val Ala 180 185
19063230PRTThellungiella halophila 63Glu Asn Ala Asn Trp Ile Cys Asp Leu
Ile Asp Ala Asp Tyr Gly Ser1 5 10
15Phe Thr Ile Gln Gly Pro Gly Phe Ser Trp Pro Val Gln Gln Pro
Ile 20 25 30Gly Val Ser Ser
Asn Ser Ser Ala Gly Val Asp Val Ser Ala Gly Asn 35
40 45Ser Glu Ala Ser Lys Glu Pro Gly Ser Lys Lys Arg
Gly Arg Cys Glu 50 55 60Ser Ser Ser
Ala Thr Gly Ser Lys Ala Cys Arg Glu Lys Leu Arg Arg65 70
75 80Asp Arg Leu Asn Asp Lys Phe Thr
Glu Leu Gly Ala Ile Leu Glu Pro 85 90
95Gly Asn Pro Pro Lys Thr Asp Lys Ala Ala Ile Leu Val Asp
Ala Val 100 105 110Arg Met Val
Ala Gln Leu Arg Gly Glu Ala Gln Lys Leu Lys Asp Ser 115
120 125Asn Ser Ser Leu Gln Asp Lys Ile Lys Glu Leu
Lys Thr Glu Lys Asn 130 135 140Glu Leu
Arg Asp Glu Lys Gln Arg Leu Lys Thr Glu Lys Glu Lys Leu145
150 155 160Glu Gln Gln Leu Lys Thr Met
Asn Ala Pro Gln Pro Ser Phe Phe Pro 165
170 175Ala Pro Pro Met Met Pro Thr Ala Phe Ala Ser Ala
Gln Gly Gln Ala 180 185 190Pro
Gly Asn Lys Met Val Pro Ile Ile Ser Tyr Pro Gly Val Ala Met 195
200 205Trp Gln Phe Met Pro Pro Ala Ser Val
Asp Thr Ser Gln Asp His Val 210 215
220Leu Arg Pro Pro Val Ala225 23064238PRTPopulus
tremuloides 64Glu Asn Asp Asn Trp Val Phe Asp Cys Gly Leu Ile Glu Asp Ile
Ser1 5 10 15Val Pro Gly
Gly Asp Leu Leu Gly Leu Glu Ser Leu Asp Glu Thr Pro 20
25 30Asn Gly Ser Leu Trp Ser Ser His Asn Phe
Thr Asp Ser Ala Phe Leu 35 40
45Ser Val Glu Phe Asn Asn Ser Tyr Glu Asn Ser Asp Gly His Lys Glu 50
55 60Ser Gly Cys Arg Lys Arg Val Arg Pro
Gly Ser Ser Asn Ala Thr Gly65 70 75
80Ser Lys Ala Cys Arg Glu Lys Leu Arg Arg Asp Arg Leu Asn
Asp Arg 85 90 95Phe Met
Glu Leu Gly Ala Leu Leu Asp Pro Gly Arg Pro Pro Lys Val 100
105 110Asp Lys Ser Ala Ile Leu Val Asp Ala
Ala Arg Met Val Thr Gln Leu 115 120
125Arg Asp Glu Ser Gln Lys Leu Lys Glu Ser Asn Val Ser Leu Gln Glu
130 135 140Lys Ile Asp Glu Leu Lys Ala
Glu Lys Asn Glu Leu Arg Asp Glu Lys145 150
155 160Gln Arg Leu Lys Thr Glu Lys Glu Asn Leu Glu Arg
Gln Val Lys Ala 165 170
175Leu Ser Ala Pro Pro Asn Phe Leu Pro His Pro Ser Ala Ile Pro Ala
180 185 190Pro Phe Ser Ala Pro Gly
Gln Val Val Gly Ser Lys Met Met Pro Phe 195 200
205Val Gly Tyr Pro Gly Ile Ser Met Trp Gln Phe Met Pro Pro
Ala Val 210 215 220Val Asp Thr Ser Gln
Asp His Val Leu Arg Pro Pro Val Ala225 230
23565232PRTVitis vinifera 65Met Val Ser Pro Glu Glu Asp Pro Asn Trp Ile
Phe Asp Tyr Gly Leu1 5 10
15Ile Asp Asp Val Pro Val Pro Ser Leu Gln Ala Thr Phe Asn Trp Pro
20 25 30Ser His Asp Phe Thr Ala Ser
Val Ala Leu Gly Val Glu Phe Asp Asp 35 40
45Ser Pro Val Asn Leu Asp Asp Val Lys Glu Asn His Ser Arg Lys
Arg 50 55 60Met Arg Ser Gly Leu Cys
Ser Ala Ser Gly Ser Lys Ala Cys Arg Glu65 70
75 80Lys Val Arg Arg Asp Arg Leu Asn Asp Arg Phe
Leu Glu Leu Gly Ser 85 90
95Ile Leu Glu Pro Gly Arg Pro Pro Lys Met Asp Lys Ala Val Ile Leu
100 105 110Ser Asp Ala Leu Arg Met
Met Thr Gln Leu Arg Ser Glu Gly Gln Lys 115 120
125Leu Lys Lys Ser Cys Glu Asp Leu Gln Glu Lys Ile Asn Glu
Leu Lys 130 135 140Ala Glu Lys Asn Glu
Leu Arg Asp Glu Lys Gln Arg Leu Lys Thr Glu145 150
155 160Lys Glu Asn Ile Val Gln Gln Ile Lys Ala
Leu Ser Thr Gln Ala Gly 165 170
175Phe Leu Pro His Pro Ser Ala Ile Pro Ala Pro Phe Ala Ala Pro Gly
180 185 190Gln Val Val Gly Ser
Lys Leu Met Pro Phe Ile Gly Tyr Pro Gly Val 195
200 205Ser Met Trp Gln Phe Met Pro Pro Ala Ala Val Asp
Thr Ser Gln Asp 210 215 220His Val Leu
Arg Pro Pro Val Ala225 23066191PRTBrassica
napusmisc_feature(2)..(2)Xaa can be any naturally occurring amino acid
66Ser Xaa Val Met Leu Ser Trp Lys Phe Arg Ser His Gln Gly Thr Cys1
5 10 15Ser Lys Lys Arg Ala Arg
Cys Glu Ser Ser Ser Ala Thr Ser Ser Lys 20 25
30Ala Cys Arg Glu Lys Gln Arg Arg Asp Arg Leu Asn Asp
Lys Phe Met 35 40 45Glu Leu Gly
Ala Ile Leu Glu Pro Gly Asn Pro Pro Xaa Thr Asp Lys 50
55 60Ala Ala Ile Leu Val Asp Ala Val Arg Met Val Thr
Gln Leu Arg Gly65 70 75
80Glu Ala Gln Lys Leu Lys Asp Ser Asn Ser Ser Leu Gln Asp Lys Ile
85 90 95Lys Glu Leu Lys Thr Glu
Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg 100
105 110Leu Lys Thr Glu Lys Glu Lys Leu Glu Gln Gln Leu
Lys Ala Met Asn 115 120 125Ala Pro
Pro Gln Pro Ser Phe Phe Pro Ala Pro Pro Met Met Pro Thr 130
135 140Ala Phe Ala Ser Ala Gln Gly Gln Ala Pro Gly
Asn Lys Met Val Pro145 150 155
160Val Ile Ser Tyr Pro Gly Val Ala Met Trp Gln Phe Met Pro Pro Ala
165 170 175Ser Val Asp Thr
Ser Gln Asp His Val Leu Arg Pro Pro Val Ala 180
185 19067181PRTVitis vinifera 67Asp Ser Asp Gly Ile Lys
Glu Thr Gly Ser Lys Lys Arg Val Arg Ser1 5
10 15Glu Ser Cys Gly Ala Ser Ser Ser Lys Ala Cys Arg
Glu Lys Leu Arg 20 25 30Arg
Asp Arg Leu Asn Asp Lys Ser Met Glu Leu Gly Ser Ile Leu Glu 35
40 45Pro Gly Arg Pro Pro Lys Thr Asp Lys
Ser Ser Ile Leu Ile Asp Ala 50 55
60Val Arg Met Val Thr Gln Leu Arg Gly Glu Ser Gln Lys Leu Lys Asp65
70 75 80Ser Asn Ser Ser Leu
Gln Glu Lys Ile Lys Glu Leu Lys Ala Glu Lys 85
90 95Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys
Ala Glu Lys Glu Lys 100 105
110Leu Glu Gln Gln Leu Lys Ala Met Asn Ala Gln Pro Ser Phe Leu Pro
115 120 125Pro Val Pro Ser Ile Pro Ala
Ala Phe Ala Ala Gln Gly Gln Ala Gly 130 135
140Gly Asn Lys Leu Val Pro Phe Ile Gly Tyr Pro Gly Val Ala Met
Trp145 150 155 160Gln Phe
Met Pro Pro Ala Ala Val Asp Thr Ser Gln Asp His Val Leu
165 170 175Arg Pro Pro Val Ala
18068237PRTGossypium raimondii 68Met Val Ser Pro Glu Asn Thr Asn Tyr Trp
Ser Ser Phe Asp Tyr Ala1 5 10
15Thr Leu Ile Asn Asp Ile Pro Ala Pro Asp Gly Pro Tyr Ser Gly Phe
20 25 30Ser Trp Pro Thr Arg Pro
Ile Asn Ala Ser Ser Asn Val Phe Ser Val 35 40
45Glu Thr Asp Gly Ser Phe Glu Asp Ser Asp Gly Leu Lys Glu
Ser Gly 50 55 60Ser Lys Lys Arg Val
Arg Ser Glu Ser Cys Asn Val Ser Ser Ser Lys65 70
75 80Ala Cys Arg Glu Lys Leu Arg Arg Asp Lys
Leu Asn Glu Lys Phe Met 85 90
95Glu Leu Ser Ser Ile Leu Glu Pro Glu Lys Pro Pro Lys Thr Asp Lys
100 105 110Ala Ala Ile Leu Val
Asp Ala Val Arg Met Val Thr Gln Leu Arg Gly 115
120 125Glu Ala Gln Lys Leu Lys Asp Ser Ile Ser Ser Leu
His Asp Arg Ile 130 135 140Lys Glu Leu
Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg145
150 155 160Leu Lys Ala Glu Lys Glu Lys
Leu Glu Gln Gln Leu Lys Ala Met Asn 165
170 175Ser Gln Pro Ser Phe Met Pro Pro Ala Pro Ala Phe
Pro Ala Ala Phe 180 185 190Ala
Thr Ala Gln Gly Gln Val Pro Gly Asn Lys Leu Val Pro Phe Phe 195
200 205Gly Tyr Pro Gly Val Ala Met Trp Gln
Phe Met Leu Pro Ala Ser Leu 210 215
220Asp Thr Ser Glu Asp His Val Leu Arg Pro Pro Val Ala225
230 23569238PRTPopulus tremuloides 69Glu Asn Asp Asn Trp
Val Phe Asp Cys Gly Leu Ile Glu Asp Ile Ser1 5
10 15Val Pro Gly Gly Asp Leu Leu Gly Leu Glu Ser
Leu Asp Glu Thr Pro 20 25
30Asn Gly Ser Leu Trp Ser Ser His Asn Phe Thr Asp Ser Ala Phe Leu
35 40 45Ser Val Glu Phe Asn Asn Ser Tyr
Glu Asn Ser Asp Gly His Lys Glu 50 55
60Ser Gly Cys Arg Lys Arg Val Arg Pro Gly Ser Ser Asn Ala Thr Gly65
70 75 80Ser Lys Ala Cys Arg
Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp Arg 85
90 95Phe Met Glu Leu Gly Ala Leu Leu Asp Pro Gly
Arg Pro Pro Lys Val 100 105
110Asp Lys Ser Ala Ile Leu Val Asp Ala Ala Arg Met Val Thr Gln Leu
115 120 125Arg Asp Glu Ser Gln Lys Leu
Lys Glu Ser Asn Val Ser Leu Gln Glu 130 135
140Lys Ile Asp Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu
Lys145 150 155 160Gln Arg
Leu Lys Thr Glu Lys Glu Asn Leu Glu Arg Gln Val Lys Ala
165 170 175Leu Ser Ala Pro Pro Asn Phe
Leu Pro His Pro Ser Ala Ile Pro Ala 180 185
190Pro Phe Ser Ala Pro Gly Gln Val Val Gly Ser Lys Met Met
Pro Phe 195 200 205Val Gly Tyr Pro
Gly Ile Ser Met Trp Gln Phe Met Pro Pro Ala Val 210
215 220Val Asp Thr Ser Gln Asp His Val Leu Arg Pro Ser
Val Ala225 230 23570170PRTPrunus dulcis
70Lys Arg Val Arg Thr Glu Ser Cys Ser Gly Ser Ser Ser Lys Ala Cys1
5 10 15Arg Glu Lys Leu Arg Arg
Asp Arg Leu Asn Asp Lys Phe Leu Glu Leu 20 25
30Gly Ser Ile Leu Glu Pro Gly Arg Pro Pro Lys Thr Asp
Lys Ala Ala 35 40 45Ile Leu Val
Asp Ala Val Arg Met Val Asn Gln Leu Arg Gly Glu Ala 50
55 60Gln Lys Leu Lys Asp Ser Asn Ser Ser Leu Gln Glu
Lys Ile Lys Glu65 70 75
80Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys
85 90 95Leu Glu Lys Glu Lys Leu
Glu Gln Gln Leu Lys Ala Met Asn Ala Gln 100
105 110Pro Gly Phe Leu Pro Pro Pro Pro Ala Ile Pro Ala
Ala Phe Ala Ala 115 120 125Gln Gly
Gln Ala His Gly Asn Lys Leu Val Pro Phe Ile Gly Tyr Pro 130
135 140Gly Val Ala Met Trp Gln Phe Met Pro Pro Ala
Ser Val Asp Thr Ser145 150 155
160Gln Asp His Val Leu Arg Pro Pro Val Ala 165
17071170PRTGlycine max 71Lys Arg Thr Lys Ser Asp Ser Ser Thr Ala
Ser Ser Ser Lys Ala Cys1 5 10
15Arg Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp Lys Phe Val Glu Leu
20 25 30Gly Ser Ile Leu Glu Pro
Gly Arg Pro Pro Lys Thr Asp Lys Ala Ser 35 40
45Ile Leu Ile Asp Ala Ala Arg Met Val Thr Gln Leu Arg Asp
Glu Ala 50 55 60Leu Lys Leu Lys Asp
Ser Asn Thr Ser Leu Gln Glu Lys Ile Lys Glu65 70
75 80Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp
Glu Lys Gln Arg Leu Lys 85 90
95Ala Glu Lys Glu Lys Leu Glu Val Gln Val Lys Ser Met Asn Ala Gln
100 105 110Pro Ala Phe Leu Pro
Pro Pro Pro Ala Ile Pro Ala Ala Phe Ala Pro 115
120 125Gln Gly Gln Ala Pro Gly Asn Lys Leu Val Pro Phe
Ile Ser Tyr Pro 130 135 140Gly Val Ala
Met Trp Gln Phe Met Pro Pro Ala Ala Val Asp Thr Ser145
150 155 160Gln Asp His Val Leu Arg Pro
Pro Val Ala 165 17072181PRTMedicago
truncatula 72Asp Ser Asp Gly Leu Lys Glu Ser Gly Ser Lys Lys Arg Val Arg
Ser1 5 10 15Glu Ser Cys
Ala Ala Thr Ser Ser Lys Ala Cys Arg Glu Lys Leu Arg 20
25 30Arg Asp Arg Leu Asn Asp Lys Phe Ile Glu
Leu Gly Ser Ile Leu Glu 35 40
45Pro Gly Arg Pro Ala Lys Thr Asp Lys Ala Ala Ile Leu Ile Asp Ala 50
55 60Val Arg Met Val Thr Gln Leu Arg Gly
Glu Ala Gln Lys Leu Lys Asp65 70 75
80Ala Asn Ser Gly Leu Gln Glu Lys Ile Lys Glu Leu Lys Val
Glu Lys 85 90 95Asn Glu
Leu Arg Asp Glu Lys Gln Arg Leu Lys Ala Glu Lys Glu Lys 100
105 110Leu Glu Gln Gln Leu Lys Ser Met Asn
Ala Pro Pro Ser Phe Leu Pro 115 120
125Thr Pro Thr Ala Leu Pro Ala Ala Phe Ala Ala Gln Gly Gln Ala His
130 135 140Gly Asn Lys Leu Val Pro Phe
Ile Ser Tyr Pro Gly Val Ala Met Trp145 150
155 160Gln Phe Met Pro Pro Ala Ala Val Asp Thr Ser Gln
Asp His Val Leu 165 170
175Arg Pro Pro Val Ala 18073189PRTMedicago truncatula 73Ala
Glu Val Asp Gly Ser Leu Gly Asp Ser Asp Gly Leu Lys Glu Ser1
5 10 15Gly Ser Lys Lys Arg Val Arg
Ser Glu Ser Cys Ala Ala Thr Ser Ser 20 25
30Lys Ala Cys Arg Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp
Lys Phe 35 40 45Ile Glu Leu Gly
Ser Ile Leu Glu Pro Gly Gly Pro Ala Lys Thr Asp 50 55
60Lys Ala Ala Ile Leu Ile Asp Ala Val Arg Met Val Thr
Gln Leu Arg65 70 75
80Gly Glu Ala Gln Lys Leu Lys Asp Ala Asn Ser Gly Leu Gln Glu Lys
85 90 95Ile Lys Glu Leu Lys Val
Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln 100
105 110Arg Leu Lys Ala Glu Lys Glu Lys Leu Glu Gln Gln
Leu Lys Ser Met 115 120 125Asn Ala
Pro Pro Ser Phe Leu Pro Thr Pro Thr Ala Leu Pro Ala Ala 130
135 140Phe Ala Ala Gln Gly Gln Ala His Gly Asn Lys
Leu Val Pro Phe Ile145 150 155
160Ser Tyr Pro Gly Val Ala Met Trp Gln Phe Met Pro Pro Ala Ala Val
165 170 175Asp Thr Ser Gln
Asp His Val Leu Arg Pro Pro Val Ala 180
18574169PRTGlycine max 74Arg Ala Arg Cys Asp Ser Ser Thr Ala Ser Ser Ser
Lys Ala Cys Arg1 5 10
15Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp Lys Phe Val Glu Leu Gly
20 25 30Ser Ile Leu Glu Pro Gly Arg
Pro Pro Lys Thr Asp Lys Ala Ala Ile 35 40
45Leu Ile Asp Ala Ala Arg Met Val Thr Gln Leu Arg Asp Glu Ala
Leu 50 55 60Lys Leu Lys Asp Ser Asn
Thr Ser Leu Gln Glu Lys Ile Lys Glu Leu65 70
75 80Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys
Gln Arg Leu Lys Ala 85 90
95Glu Lys Glu Lys Leu Glu Met Gln Val Lys Ser Met Asn Ala Gln Pro
100 105 110Ala Phe Leu Pro Pro Pro
Pro Ala Ile Pro Ala Ala Phe Ala Pro Gln 115 120
125Gly Gln Ala Pro Gly Asn Lys Leu Met Pro Phe Ile Arg Tyr
Pro Gly 130 135 140Val Ala Met Trp Gln
Phe Met Pro Pro Ala Thr Met Asp Thr Ser Gln145 150
155 160Asp His Val Leu Arg Pro Pro Val Ala
16575158PRTVitis vinifera 75Thr Lys Ala Cys Arg Glu Lys Leu Arg
Arg Asp Arg Leu Asn Glu Arg1 5 10
15Phe Leu Glu Leu Gly Ser Ile Leu Glu Pro Gly Arg Pro Pro Lys
Thr 20 25 30Asp Lys Ala Ala
Ile Leu Ser Asp Ala Val Arg Met Val Thr Gln Leu 35
40 45Arg Ser Glu Ala Gln Lys Leu Lys Glu Ser Asn Gly
Asp Leu Gln Glu 50 55 60Lys Ile Lys
Glu Leu Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys65 70
75 80Gln Arg Leu Lys Ala Glu Lys Glu
Lys Leu Glu Gln Gln Val Lys Ala 85 90
95Ile Ser Ala Gln Pro Gly Phe Leu Pro His Pro Ser Ala Met
Pro Ala 100 105 110Ala Phe Ala
Ala Gln Gly Arg Ala Pro Gly Asn Lys Leu Met Pro Phe 115
120 125Ile Gly Tyr Pro Ser Val Ala Met Trp Gln Phe
Met Pro Pro Ala Ala 130 135 140Val Asp
Thr Ser Gln Asp His Val Leu Arg Pro Pro Val Ala145 150
15576181PRTGlycine soja 76Asp Ser Asp Ser Leu Lys Glu Ser
Gly Ser Lys Lys Arg Val Arg Ser1 5 10
15Glu Ser Cys Ala Ala Ser Gly Ser Lys Ala Cys Arg Glu Lys
Leu Arg 20 25 30Arg Asp Arg
Leu Asn Asp Lys Phe Val Glu Leu Gly Ala Ile Leu Glu 35
40 45Pro Gly Arg Pro Ala Lys Thr Asp Lys Ala Ala
Ile Leu Ile Asp Ala 50 55 60Val Arg
Met Val Thr Gln Leu Arg Gly Glu Ala Gln Lys Leu Lys Asp65
70 75 80Thr Asn Gln Gly Leu Gln Glu
Lys Ile Lys Glu Leu Lys Ala Glu Lys 85 90
95Asn Glu Leu Arg Asp Glu Lys Gln Arg Leu Lys Ala Glu
Lys Glu Lys 100 105 110Leu Glu
Gln Gln Leu Lys Ser Leu Asn Ala Gln Pro Ser Phe Met Pro 115
120 125Pro Pro Ala Ala Met Pro Ala Ala Phe Ala
Ala Gln Gly Gln Ala His 130 135 140Gly
Asn Lys Leu Val Pro Phe Ile Ser Tyr Ser Gly Ser Cys Met Trp145
150 155 160Gln Phe Met Pro Pro Ala
Ala Val Asp Thr Ser Gln Asp His Val Leu 165
170 175Arg Pro Pro Val Ser 18077235PRTSolanum
tuberosum 77Asn Trp Leu Phe Asp Tyr Glu Leu Ile Thr Asp Ile Thr Ser Ala
Ala1 5 10 15Ser Val Thr
Val Thr Asp Phe Gln Ser Pro Ala Thr Ile Asp Phe Ser 20
25 30Trp Pro Ala Gln Thr Ile Tyr Ala Ser Ser
Asn Leu Ile Ala Glu Thr 35 40
45Asp Tyr Thr Phe Ala Asp Ser Glu Val Ser Lys Glu Ala Ser Ser Arg 50
55 60Lys Arg Leu Lys Ser Glu Trp Cys Ser
Ser Pro Arg Ser Lys Ala Cys65 70 75
80Arg Glu Lys Leu Arg Arg Asp Arg Leu Asn Glu Arg Phe Leu
Glu Leu 85 90 95Ser Ser
Val Leu Asp Pro Gly Arg Pro Pro Lys Thr Glu Lys Val Ala 100
105 110Ile Leu Ser Asp Ala Gln Arg Met Leu
Ile Glu Leu Arg Thr Glu Thr 115 120
125Gln Lys Leu Lys Glu Ser Asn Glu Glu Leu Gln Glu Lys Ile Lys Glu
130 135 140Leu Lys Ala Glu Lys Asn Glu
Leu Arg Asp Glu Lys Arg Arg Leu Lys145 150
155 160Glu Glu Lys Glu Asn Leu Glu Gln Gln Val Lys Ser
Leu Ala Ser Lys 165 170
175Pro Gly Phe Leu Ser His Pro Ser Ala Val Gly Ala Ala Phe Thr Ala
180 185 190Gln Gly Gln Val Ala Ala
Gly Asn Lys Leu Met Pro Phe Ile Gly Tyr 195 200
205Pro Ser Val Ala Met Trp Gln Phe Met Gln Pro Ala Val Val
Asp Thr 210 215 220Ser Gln Asp His Val
Leu Arg Pro Pro Val Ala225 230
23578229PRTGossypium raimondii 78Met Val Ser Pro Glu Asn Thr Asn Tyr Trp
Ser Ser Phe Asp Tyr Ala1 5 10
15Thr Leu Ile Asn Asp Ile Pro Ala Pro Asp Gly Pro Tyr Ser Gly Phe
20 25 30Ser Trp Pro Thr Arg Pro
Ile Asn Ala Ser Ser Asn Val Phe Ser Val 35 40
45Glu Ile Asp Gly Ser Phe Glu Asp Ser Asp Gly Leu Lys Glu
Ser Gly 50 55 60Ser Lys Lys Arg Val
Arg Ser Glu Ser Cys Asn Val Ser Ser Ser Lys65 70
75 80Ala Cys Arg Glu Lys Leu Arg Arg Asp Lys
Leu Asn Glu Lys Phe Met 85 90
95Glu Leu Ser Ser Ile Leu Glu Pro Glu Lys Pro Pro Lys Thr Asp Lys
100 105 110Ala Ala Ile Leu Val
Asp Ala Val Arg Met Val Thr Gln Leu Arg Gly 115
120 125Glu Ala Gln Lys Leu Lys Asp Ser Ile Ser Ser Leu
His Asp Arg Ile 130 135 140Lys Glu Leu
Lys Ala Glu Lys Asn Glu Leu Arg Asp Glu Lys Gln Arg145
150 155 160Leu Lys Ala Glu Lys Glu Lys
Leu Glu Gln Gln Leu Lys Ala Met Asn 165
170 175Ser Gln Pro Ser Phe Met Pro Pro Ala Pro Ala Phe
Pro Ala Ala Phe 180 185 190Ala
Thr Ala Gln Gly Gln Val Pro Gly Asn Lys Leu Val Pro Phe Phe 195
200 205Gly Tyr Pro Gly Val Ala Met Trp Gln
Phe Met Leu Pro Ala Ser Leu 210 215
220Asp Thr Ser Glu Asp22579218PRTVitis
viniferamisc_feature(197)..(197)Xaa can be any naturally occurring amino
acid 79Met Val Ser Pro Glu Ala Thr Asn Trp Leu Tyr Glu Tyr Gly Leu Ile1
5 10 15Glu Asp Ile Pro Val
Pro Asp Ser Asn Phe Ala Asn Thr Asn Ser Gly 20
25 30Phe Ala Trp Thr Pro Val Gln Ala Leu Asn Thr Ser
Ala Asn Val Ser 35 40 45Gly Glu
Ile Asp Gly Ser Phe Gly Asp Ser Asp Gly Ile Lys Glu Thr 50
55 60Gly Ser Lys Lys Arg Val Arg Ser Glu Ser Cys
Gly Ala Ser Ser Ser65 70 75
80Lys Ala Cys Arg Glu Lys Leu Arg Arg Asp Arg Leu Asn Asp Lys Ser
85 90 95Met Glu Leu Gly Ser
Ile Leu Glu Pro Gly Arg Pro Pro Lys Thr Asp 100
105 110Lys Ser Ser Ile Leu Ile Asp Ala Val Arg Met Val
Thr Gln Leu Arg 115 120 125Gly Glu
Ser Gln Lys Leu Lys Asp Ser Asn Ser Ser Leu Gln Glu Lys 130
135 140Ile Lys Glu Leu Lys Ala Glu Lys Asn Glu Leu
Arg Asp Glu Lys Gln145 150 155
160Arg Leu Lys Ala Glu Lys Glu Lys Leu Glu Gln Gln Leu Lys Ala Met
165 170 175Asn Ala Gln Pro
Ser Phe Leu Pro Pro Val Pro Ser Ile Pro Ala Ala 180
185 190Phe Ala Ala Gln Xaa Gln Ala Gly Gly Asn Lys
Leu Val Pro Phe Ile 195 200 205Gly
Tyr Pro Gly Val Ala Met Trp Gln Phe 210
21580222PRTLycopersicon esculentum 80Met Val Ser Pro Glu Ser Thr Asn Trp
Leu Tyr Asp Tyr Gly Phe Glu1 5 10
15Asp Ser Cys Val Pro Asp Ser Asn Phe Ser Ala Ser Ala Ser Gly
Phe 20 25 30Asn Trp Ser Val
Gln Asn Leu Asn Gly Ser Arg Asn Val Ser Ser Glu 35
40 45Ile Asp Gly Ser Ile Gly Glu Ser Asp Tyr Pro Lys
Glu Ser Gly Ser 50 55 60Lys Lys Arg
Ala Arg Val Glu Ser Cys Ala Pro Thr Ser Ser Lys Ala65 70
75 80Cys Arg Glu Lys Leu Arg Arg Asp
Arg Leu Asn Asp Lys Phe Met Glu 85 90
95Leu Gly Ala Leu Leu Glu Pro Gly Arg Pro Pro Lys Thr Asp
Lys Ser 100 105 110Ala Ile Leu
Val Asp Ala Val Arg Leu Val Thr Gln Leu Arg Asp Glu 115
120 125Ala Gln Lys Leu Lys Asp Ser Asn Leu Asn Leu
Gln Glu Lys Ile Lys 130 135 140Glu Leu
Lys Val Glu Lys Thr Glu Leu Arg Asp Glu Lys His Arg Leu145
150 155 160Lys Ala Glu Lys Glu Lys Leu
Glu Gln Gln Leu Lys Thr Thr Ser Ala 165
170 175Arg Pro Ser Tyr Leu Pro Pro Ala Ile Pro Ser Ala
Phe Ala Ala His 180 185 190Gly
Gln Phe Pro Gly Ser Lys Leu Val Pro Ile Met Ser Tyr Pro Cys 195
200 205Val Pro Met Trp Gln Phe Met Pro Pro
Ala Ala Val Asp Thr 210 215
22081238PRTPinus taeda 81Met Ser Ser Pro Gln Ser Asn Lys Trp Leu Ser Tyr
Phe Asp Glu Pro1 5 10
15Leu Leu Asp Asp Val Gly Val Gly Gln Pro Ala Asn Pro Phe Phe Trp
20 25 30Cys Gly Gln Gly Ile Asn Asp
Gln Pro Asp Val Ser Gly Ser Val Glu 35 40
45Ile Asp Gly Pro Asn Lys Asp Met Asp Glu Gln Asp Lys Leu Cys
Pro 50 55 60Arg Lys Arg Ser Arg Glu
Glu Ser Ser Gly Gly Pro Gly Ser Lys Ala65 70
75 80Cys Arg Glu Lys Met Arg Arg Asp Arg Leu Asn
Asp Arg Phe Met Glu 85 90
95Leu Ser Ser Val Leu Glu Pro Gly Arg Pro Pro Lys Thr Ala Asp Lys
100 105 110Ala Thr Ile Leu Ser Asp
Ala Ala Arg Val Met Thr Gln Leu Arg Thr 115 120
125Glu Ala Gln Asn Leu Lys Ala Glu Asn Glu Arg Leu Gln Glu
Ala Ile 130 135 140Lys Asp Leu Lys Ala
Glu Lys Asn Glu Leu Arg Asp Glu Lys Leu Arg145 150
155 160Met Lys Ala Glu Lys Glu Lys Leu Glu Gln
Gln Val Lys Ala Met Ala 165 170
175Leu Pro Thr Gly Phe Val Pro His Pro Ala Ala Phe His Ala Ala Ala
180 185 190Ala Phe Ala Ala Gln
Ser Gln Ala Ala Ala Asn Lys Thr Met Pro Val 195
200 205Pro Gly Tyr Pro Gly Met Ala Met Trp Gln Trp Met
Pro Pro Ala Val 210 215 220Val Asp Thr
Ser Gln Asp His Val Leu Arg Pro Pro Val Ala225 230
23582783DNALolium perenne 82tccgtcgcca tggcgtcccc ggagggcgcc
aactgggtct tcgactgccc gctcatggac 60gaccttgctg ccgccgactt caccgcaccg
cccgcaggag gcttctactg ggcaccaccg 120atgcagccgc agatgcacac ccaggccccg
gccgtctccg ccaccccgcc tcccaaccac 180tgtgccgaaa tcaatagccc tatttctgtg
gactgggacc atgccaaagg acagccaaca 240aataaacgtc ctaggtcaga atctggtgct
caacccagct ccaaagcatg cagggagaaa 300gcgagaaggg acaagctaaa cgagaggttc
ttggaattgg gtgctgtctt ggatccaggg 360aaaacaccta aaatcgacaa gtgtgctata
ttgaatgatg ctattcgtgc ggtgactgag 420ctacgtagtg aagcagagaa gctgaaggat
tcaaacgagt ctctccaaga gaagatcaaa 480gagctgaagg ctgagaagaa tgagctgcgg
gatgagaagc aaaagctgaa ggcagagaaa 540gagagcctgg agcagcagat caagttcatg
aatgcccgtc agagcctcgt accacaccta 600ccgcaccctt cggttatccc agcggctgca
tttgctgctc cccaagggca agtgccaggg 660cagaagctga tgatgcctgt cattggctac
catggatttc ccatgtggca attcatgcca 720ccttctgatg ttgatacctc cgatgatccc
aagtcgtgcc ctcctgttgc ataagccagc 780taa
783831040DNAOryza sativa 83gtgagcggcc
ccaccccccc gcagccatgg cctccccgga gggctccacg tgggtcttcg 60actgccctct
gatggacgac ctcgccgccg ccgccggctt cgacgccgcc cccgccggag 120gcttctactg
gacgacgccc gctcctccgc aggcggcgct acagccgccg ccgccgcagc 180agcagcccgt
cgcccctgcc accgcggctc cgaacgcctg tgctgaaatc aatggctctg 240tggactgtga
acatggcaaa gaacagccaa caaataaacg tccgagatca gaaagtggca 300ctcgaccaag
ctccaaagca tgcagggaaa aagtaagaag ggacaagttg aacgagaggt 360tcttggaact
gggtgctgtc ctggaaccag ggaagacacc caaaatggac aaatcgtcta 420tattgaacga
tgctattcgt gtaatggctg agctgcgtag tgaggcacag aagttgaagg 480aatcaaatga
gagtctccaa gagaaaatca aagagttgaa ggctgagaaa aacgagctgc 540gtgatgagaa
gcaaaagctg aaggcagaga aagagagcct ggagcagcag ataaagttcc 600tgaatgctcg
accaagcttc gtaccacacc ctccggttat cccagccagt gcattcactg 660ctcctcaagg
gcaagctgcc gggcagaagc tgatgatgcc tgtgattggc tacccaggat 720ttccgatgtg
gcagttcatg ccgccttctg atgttgatac cacagatgac accaagtcat 780gccctcctgt
tgcataagtc aaagcaaaga tcaatttgcc tcgccttgta ggaaagaggt 840gaaactgcct
tccattcaag cccagtttgg tcgtcagtgt ttaaactacc tagctaatcc 900caggattaaa
ccgaagcttc gctgtatcga agtatcaacc ggtgacatgt gaactgacga 960aagatgacac
cgttgtatat tacatattag taaataaatt ccatctgtcc aattaaatga 1020gaattagatg
ccatataatt
104084762DNAOryza sativa 84atgtccggta ccccggcgga cggcggcggc ggaggcggcg
gaggcggcgg agggagcggg 60gacgactggt tcctcgactg cggcatcctc gaggacctcc
cggcggccgc gtgcggggcc 120ttcccgtggg acgcatcccc gtcctgctcc aacccgagtg
tggaagtaag cagctatgtg 180aacaccacct cttatgtcct caaggaacct ggcagtaata
aacgtgtaag gtcagggtct 240tgtggtaggc caacatcaaa agcttccagg gaaaagatca
gaagagataa gatgaatgat 300aggtttcttg aattggggac tactttggag cctgggaagc
cagtaaaatc tgacaaagct 360gctatcctaa gtgatgccac tcgcatggta attcaacttc
gtgctgaagc gaagcagcta 420aaggatacta acgagagtct tgaagataag attaaagaac
tgaaggcaga gaaggacgag 480cttcgtgatg agaagcagaa gctgaaagta gagaaggaga
cattagagca gcaggtgaag 540attctgactg caactccagc ctacatgcct caccccacat
tgatgccagc accgtaccca 600caagcaccac ttgccccctt ccaccatgcc caggggcaag
ccgcggggca gaagctgatg 660atgccttttg ttggataccc ggggtacccg atgtggcagt
tcatgccgcc ttccgaagtc 720gacacctcca aggacagcga agcgtgcccg cctgtcgcgt
aa 76285711DNAOryza sativa 85atggacggag gcggagaccc
cgttgacgag ttcctcatcg gcggcggcgg cgaggacggc 60gacctcggcg tcttctgcga
cggtgtgccg acgctgccct gcgatggagg acttgggatt 120gatgatgtca gtggagatac
ttgttgcctt gaccaatctg ttttagggaa aagaggtaga 180gatgaatcat catcatctgg
tccaaagtcc aaagcttgcc gtgagaaaat tcggagggat 240agactgaatg acaggttcct
tgagttatct tccgttatca atcctgacaa gcaagctaag 300ttggataaag caaatatctt
gagtgatgca gctcgtctgt tggcagaact cagaggcgag 360gcagaaaagc ttaaagaatc
taatgagaag ctacgagaaa caatcaagga ccttaaggtg 420gagaagaatg aactccgtga
tgagaaagtt actctgaagg cagagaagga gaggctggaa 480cagcaagtta aagcattgag
tgttgctcct acaggatttg ttcctcatct ccctcatcca 540gctgcattcc atcccgctgc
attccctcca tttataccac cttatcaagc tctgggcaac 600aaaaatgctc ctacgcccgc
agcattccaa gggatggcaa tgtggcagtg gttgcctcca 660actgctgtgg acacaactca
agatccaaag ctttggccac caaatgctta a 71186775DNATriticum
aestivum 86ctgccccctc atggacgacc ttgctgccgc cgacttcgcc gcggcatccg
caggaggctt 60ctactggacc ccgccgatgc agccgcagat gcacactctt gcgcaggccg
tctccgccac 120cccggctccc aatccctgtg ctgaaatcaa tagctctgtt tcggtggact
gggaccatgc 180caaaggacaa ccgaaaaata aacgtcctag gtcagaaact ggtgctcaac
ctagctccaa 240agcatgcagg gagaaagtga gaagggacaa gctaaacgag aggttcttgg
aattgggtgc 300tgtcttggat ccggggaaaa cacctaaaat cgacaaatgt gctatattaa
atgatgctat 360ccgtgcggta actgaattgc gtagtgaagc acagaagttg aaggattcca
atgagtctct 420ccaagagaag attagagagc taaaggctga caagaatgag ctacgacatg
agaagcaaaa 480gatgaaggcg gagaaagaga gcctggagca gcagattaag ttcatgaatg
cccgtcagag 540cctcgtacca cacccttctg tcatcccagc tgctgcattc gctgccgccc
aaggccaagc 600ggcagggcac aagctgatga tgcctgtgat gagctaccca ggatttccca
tgtggcagtt 660catgccgcct tcagatgttg atacctccga tgaccccaag tcatgccctc
cggttgcata 720agccagcaaa aatcatttgc ctcatctatc tcatggggaa ggatggctaa
aaagc 77587674DNAHordeum vulgare 87ccgcgaaacc ctagtccccc
ggcaaccttc gctggacccg gggagccgct ccggcgccat 60ggcatccccg gaaggatcaa
actgggtctt cgactgcccc ctcatggacg accttgctgc 120cgccgacttc gccgcggtac
ccgcaggagg cttctactgg aacccgccga tgccgccgca 180gatgcacact ctggcgcagg
ccgtctccgc caccccggct cccaatccct gtgctgaaat 240caatagctct gtttcggtgg
actgggacca tgccaaagga caaccgaaaa ataaacgtcc 300tagatcagaa actggtgctc
aacctagctc caaagcatgc agggagaaag ttagaaggga 360caagctaaat gagaggttct
tggaattggg tgctgtcttg gacccgggga aaacacctaa 420aatcgacaaa tgtgctatat
taaatgatgc tatccgtgcg gtaactgaat tgcgtagtga 480agcagagaag ttgaaggatt
caaatgagtc tctccaagag aagattagag agctgaaggc 540tgagaagaat gagctgcgag
atgagaagca aaagctgaag gcggaaaaag agagcctgga 600gcagcagatt aagttcatga
atgcccgtca gagactcgta ccacaccctt ctgtcatccc 660agctactgca ttcg
67488820DNAOryza sativa
88ccgcccccaa atctcctcgc gacctcgaaa ccctagcctc ctccggccac cgtcgccggc
60cacggtgagc ggccccaccc ccccgcagcc atggcctccc cggagggctc cacgtgggtc
120ttcgactgcc ctctgatgga cgacctcgcc gccgccgccg gcttcgacgc cgcccccgcc
180ggaggcttct actggacgac gcccgctcct ccgcaggcgg cgctacagcc gccgccgccg
240cagcagcagc ccgtcgcccc tgccaccgcg gctccgaacg cctgtgctga aatcaatggc
300tctgtggact gtgaacatgg caaagaacag ccaacaaata aacgtccgag atcagaaagt
360ggcactcgac caagctccaa agcatgcagg gaaaaagtaa gaagggacaa gttgaacgag
420aggttcttgg aactgggtgc tgtcctggaa ccagggaaga cacccaaaat ggacaaatcg
480tctatattga acgatgctat tcgtgtaatg gctgagctgc gtagtgaggc acagaagttg
540aaggaatcaa atgagagtct ccaagagaaa atcaaagagt tgaaggctga gaaaaacgag
600ctgcgtgatg agaagcaaaa gctgaaggca gagaaagaga gcctggagca gcagataaag
660ttcctgaatg ctcgaccaag cttcgtacca caccctccgg ttatcccagc cagtgcattc
720actgctcctc aagggcaagc tgccgggcag aagctgatga tgcctgtgat tggctaccca
780ggatttccga tgtggcagtt catgccgcct tctgatgttg
82089703DNATriticum aestivummisc_feature(34)..(34)n is a, c, g, or t
89aggaattcgg cacgaggccg cttccccgct accnccccaa ccccgaaata tcccccaatt
60ccgacgcgac cgcggaaccc tagccccccg gcaatcttcg ctggacccgg agagccgctc
120cggcgccatg gcatccccgg aaggatcaaa ctgggtattc gactgccccc tcatggacga
180ccttgctgcc gccgacttcg ccgcggcatc cgcaggaggc ttctactgga ccccgccgat
240gcagccgcag atgcacactc ttgcgcaggc cgtctccgcc accccggctc ccaatccctg
300tgctgaaatc aatagctctg tttcggtgga ctgggaccat gccaaaggac aaccgaaaaa
360taaacgtcct aggtcagaaa ctggtgctca acctagctcc aaagcatgca gggagaaagt
420gagaagggac aagctaaacg agaggttctt ggaattgggt gctgtcttgg atccggggaa
480aacacctaaa atcgacaaat gtgctatatt aaatgatgct atccgtgcgg taactgaatt
540gcgtagtgaa gcagagaagt tgaaggattc caatgagtct ctccaagaga agattagaga
600gctaaaggct gagaagaatg agctacgaga tgagaagcaa aagttgaagg cggagaaaga
660gagcctggag cagcagatta agttcatgaa tgcccgtcag agc
70390586PRTTriticum aestivum 90Cys Cys Gly Cys Thr Cys Cys Gly Gly Cys
Gly Cys Cys Ala Thr Gly1 5 10
15Gly Cys Ala Thr Cys Cys Cys Cys Gly Gly Ala Ala Gly Gly Ala Thr
20 25 30Cys Ala Ala Ala Cys Thr
Gly Gly Gly Thr Ala Thr Thr Cys Gly Ala 35 40
45Cys Thr Gly Cys Cys Cys Thr Cys Thr Cys Ala Thr Gly Gly
Ala Cys 50 55 60Gly Ala Cys Cys Thr
Thr Gly Cys Thr Gly Cys Cys Gly Cys Cys Gly65 70
75 80Ala Cys Thr Thr Cys Gly Cys Cys Gly Cys
Gly Gly Cys Ala Thr Cys 85 90
95Cys Ala Cys Ala Gly Gly Ala Gly Gly Cys Thr Thr Cys Thr Ala Cys
100 105 110Thr Gly Gly Ala Cys
Cys Cys Cys Gly Cys Cys Gly Ala Thr Gly Cys 115
120 125Ala Gly Cys Cys Gly Cys Ala Gly Ala Thr Gly Cys
Ala Cys Ala Cys 130 135 140Thr Cys Thr
Thr Gly Cys Gly Cys Ala Gly Gly Cys Cys Gly Thr Cys145
150 155 160Thr Cys Cys Gly Cys Cys Ala
Cys Cys Cys Cys Gly Gly Cys Thr Cys 165
170 175Cys Cys Ala Ala Thr Cys Cys Cys Thr Gly Thr Gly
Cys Thr Gly Ala 180 185 190Ala
Ala Thr Cys Ala Ala Thr Ala Gly Cys Thr Cys Thr Gly Thr Thr 195
200 205Thr Cys Gly Gly Thr Gly Gly Ala Cys
Thr Gly Gly Gly Ala Cys Cys 210 215
220Ala Thr Gly Cys Cys Ala Ala Ala Gly Gly Ala Cys Ala Ala Cys Cys225
230 235 240Gly Ala Ala Ala
Ala Ala Thr Ala Ala Ala Cys Gly Thr Cys Cys Thr 245
250 255Ala Gly Gly Thr Cys Ala Gly Ala Ala Ala
Cys Thr Gly Gly Thr Gly 260 265
270Cys Thr Cys Ala Ala Cys Cys Thr Ala Gly Cys Thr Cys Cys Ala Ala
275 280 285Ala Gly Cys Ala Thr Gly Cys
Ala Gly Gly Gly Ala Gly Ala Ala Ala 290 295
300Gly Thr Gly Ala Gly Ala Ala Gly Gly Gly Ala Cys Ala Ala Gly
Cys305 310 315 320Thr Ala
Ala Ala Cys Gly Ala Gly Ala Gly Gly Thr Thr Cys Thr Thr
325 330 335Gly Gly Ala Ala Thr Thr Gly
Gly Gly Thr Gly Cys Thr Gly Thr Cys 340 345
350Thr Thr Gly Gly Ala Thr Cys Cys Gly Gly Gly Gly Ala Ala
Ala Ala 355 360 365Cys Ala Cys Cys
Thr Ala Ala Ala Ala Thr Cys Gly Ala Cys Ala Ala 370
375 380Ala Thr Gly Thr Gly Cys Thr Ala Thr Ala Thr Thr
Ala Ala Ala Thr385 390 395
400Gly Ala Thr Gly Cys Thr Ala Thr Cys Cys Gly Thr Gly Cys Ala Gly
405 410 415Thr Ala Ala Cys Thr
Gly Ala Ala Thr Thr Gly Cys Gly Thr Ala Gly 420
425 430Thr Gly Ala Gly Gly Cys Ala Gly Ala Gly Ala Ala
Gly Thr Thr Gly 435 440 445Ala Ala
Gly Gly Ala Thr Thr Cys Ala Ala Ala Cys Gly Ala Cys Thr 450
455 460Cys Thr Cys Thr Cys Cys Ala Ala Gly Ala Gly
Ala Ala Gly Ala Thr465 470 475
480Thr Ala Gly Ala Gly Ala Gly Cys Thr Ala Ala Ala Gly Gly Cys Thr
485 490 495Gly Ala Gly Ala
Ala Gly Ala Ala Thr Gly Ala Gly Cys Thr Gly Cys 500
505 510Gly Ala Gly Ala Thr Gly Ala Gly Ala Ala Gly
Cys Ala Ala Ala Ala 515 520 525Gly
Thr Thr Gly Ala Ala Gly Gly Cys Gly Gly Ala Gly Ala Ala Ala 530
535 540Gly Ala Gly Ala Gly Cys Cys Thr Gly Gly
Ala Gly Cys Ala Gly Cys545 550 555
560Ala Gly Ala Thr Thr Ala Ala Gly Thr Thr Cys Ala Thr Gly Ala
Ala 565 570 575Thr Gly Cys
Cys Cys Gly Thr Cys Ala Gly 580
58591651DNAHordeum vulgare 91cggcacgagg ccaccccggc tcccaatccc tgtgctgaaa
taatagctct gtttcggtgg 60actgggacca tgccaaagga caaccgaaaa ataaacgtcc
tagatcagaa actggtgctc 120aacctagctc caaagcatgc agggagaaag ttagaaggga
caagctaaat gagaggttct 180tggaattggg tgctgtcttg gacccgggga aaacacctaa
aatcgacaaa tgtgctatat 240taaatgatgc tatccgtgcg gtaactgaat tgcgtagtga
agcagagaag ttgaaggatt 300caaatgagtc tctccaagag aagattagag agctgaaggc
tgagaagaat gagctgcgag 360atgagaagca aaagctgaag gcggaaaaag agagcctgga
gcagcagatt aagttcatga 420atgcccgtca gagactcgta ccacaccctt ctgtcatccc
agctactgca ttcgctgccg 480cccaaggcca agcggcaggg cataagctta tgatgcctgt
aatgagctac ccaggatttc 540ccatgtggca gttcatgccg ccttcagatg ttgatacctc
ggatgaccct aagtcatgcc 600ctcctgttgc ataagccagc gaaaatcatt tgcctcatct
atctcatggg g 65192590DNATriticum
aestivummisc_feature(21)..(21)n is a, c, g, or t 92gagggactgc cccctcatgg
nacgaccttg ctgccgccga cttcgccgcg gcatccgcag 60gaggcttcta ctggaccccg
ccgatgcagc cgcagatgca cactcttgcg caggccgtct 120ccgccacccc ggctcccaat
ccctgtgctg aaatcaatag ctctgtttcg gtggactggg 180accatgccaa aggacaaccg
aaaaataaac gtcctaggtc agaaactggt gctcaaccta 240gctccaaagc atgcagggag
aaagtgagaa gggacaagct aaacgagagg ttcttggaat 300tgggtgctgt cttggatccg
gggaaaacac ctaaaatcga caaatgtgct atattaaatg 360atgctatccg tgcggtaact
gaattgcgta gtgaagcaga gaagttgaag gattccaatg 420agtctctcca agagaagatt
agagagctaa aggctgagaa gaatgagcta cgagatgaga 480agcaaaagtt gaaggcggag
aaagagagcc tggagcagca gattaagttc atgaatgccc 540gtcagagcct cgtaccacac
ccttctgtca tcccagctgc tgcattcgct 59093845DNAOryza sativa
93ctttttttaa ttggacagat ggaatttatt tactaatatg caatatacaa cggtgtcatc
60tttcgtcagt tcacatgtca ccggttgata cttcgataca gcgaagcttc ggtttaatcc
120tgggtttagc taggtagtaa acactgacga ccaaactggg cttgaatgga aggcagtttc
180acctctttcc tacaaggcga ggcaaattga tctttgcttt gacttatgca acaggagggc
240atgacttggt gtcatctgtg gtatcaacat cagaaggcgg catgaactgc cacatcggaa
300atcctgggta gccaatcaca ggcatcatca gcttctgccc ggcagcttga ccttgaggag
360cagtgaatgc actggctggg ataaccggag ggtgtggtac gaagcttggt cgagcattca
420ggaactttat ctgctgctcc aggctatctt tctctgcctt cagcttttgc ttctcatcac
480gcagctcgtt tttctcagcc ttcaactctt tgattttctc ttggagactc tcatttgatt
540ccttcaactt ctgtgcctca ctacgcagct cagccattac acgaatagca tcgttcaata
600tagacgattt gtccattttg ggtgtcttcc ctggttccag gacagcaccc agttccaaga
660acctctcgtt caacttgtcc cttcttactt tttccctgca tgctttggag cttggtcgag
720tgccactttc tgatctcgga cgtttatttg ttggctgttc tttgccatgt tcacagtcca
780cagagccatt gatttcagca ctagtgaaaa aaataaactt gtacttcagt atgccatatg
840tcatg
84594730DNATriticum aestivummisc_feature(32)..(32)n is a, c, g, or t
94ggtatttatt tactaacaat atacacggtt tncaagataa tnaatgttcc cgggtgatac
60aacgacgacg cttcagttcg gttcttgatt taactacata tagtaacact aaacggcttc
120tgcatagtaa cactgacgac taagatatac tttaacggac ggctttttag ccatccttcc
180ccatgagata gatgaggcaa atgatttttg ctggcttatg caaccggagg gcatgacttg
240gggtcatcgg aggtatcaac atctgaaggc ggcatgaact gccacatggg aaatcctggg
300tagctcatca caggcatcat cagcttgtgc cctgccgctt ggccttgggc ggcagcgaat
360gcagcagctg ggatgacaga agggtgtggt acgaggctct gacgggcatt catgaactta
420atctgctgct ccaggctctc tttctccgcc ttcaactttt gcttctcatc tcgtagctca
480ttcttctcag cctttagctc tctaatcttc tcttggagag actcattgga atccttcaac
540ttctctgctt cactacgcaa ttcagttacc gcacggatag catcatttaa tatagcacat
600ttgtcgattt taggtgtttt ccccggatcc aagacagcac ccaattccaa gaacctctcg
660tttagcttgt cccttctcac tttctccctg catgctttgg agctaggttg agcaccagtt
720tctgacctag
73095770DNASorghum bicolormisc_feature(559)..(559)n is a, c, g, or t
95cctactggac gaccgcttcc gccccagtcc ccaccgccct cgaccccgat tcccccaatc
60cctgccgcga ccgctgaacc ctagcctact ccggccatct gccgctggcc ccggcgatcc
120cccgccatgg cctcccccga gggaaccacg tgggtcttcg actgtcccct catggacgac
180ctcgcggtgg ccgccgactt cgcggcagcc cccgcggggg gatttttctg ggcagcgccg
240ccgtcgctac agccgcaggt ggtgcaggcg ccggtccagt ctgtcgttgc cgcgtcggct
300cccaacccat gtgtggaaat cagtagctct gtggactgtg gtcagggaaa agaacagcca
360acaaataaac gtcctaggtc agaaagtacc gcagaaccaa gcacaaaagc atccagggag
420aaaattagaa gggataagct gaacgagaga ttcctggaat tgggtgccat tttggagcca
480gggaaaactc ctaaaatgga caagtcagct atattaaatg atgctattcg tgtagtaggt
540gaattgcgta gcgaagcana agagctcaag gattcaaatg agagcctaca agagaagatt
600aaagagctaa aggctgagaa gaatgagctg cgagacgaga agcaaaggct gaaggccgag
660aaggagagcc tggagcagca gatcaagttc ctgaatgccc gcccaagtct ggtaccacac
720cacccagtga tctcagcctc tgccttcact gctccccaag ggccggcagt
77096761DNASorghum bicolor 96ggactgtggt cagggaaaag aacagccaac aaataaacgt
cctaggtcag aaagtaccgc 60agaaccaagc acaaaagcat ccagggagaa aattagaagg
gataagctga acgagagatt 120cctggaattg ggtgccattt tggacccagg gaaaactcct
aaaatggaca agtcagctat 180attaaatgat gctattcgtg tagtaggtga attgcgtagc
gaagcaaaag agttcaagga 240ttcaaatgag agcctacaag agaagattaa agagctaaag
gctgagaaga atgagttgcg 300agacgagaag caaaggctga aggccgagaa ggagagcctg
gagcagcaga tcaagttcct 360gaatgcccgc ccaagtctgg taccacacca cccagtgatt
tcagcctctg ccttcactgc 420tccccagggg ccggcagtcg ccgggcacaa gctgatgatg
cctgtgcttg gctaccctgg 480attcccgatg tggcagttca tgccgccttc tgatgttgac
acctctgatg accccaagtc 540ttgcccacct gtggcgtaag caagtgaaga ggcgatgctg
ccctccattg attcaagtct 600agatcgtgat cagtctgcag tgttgttggt gtagttgact
ccactctcca gaatggaagg 660gaaggttata tgtgtcggat ggtgacatgg ggtgatctga
tgaccccttt gtatattata 720tggtaaatga ataaattccg tgaccagttg caaatgagga t
76197630DNASorghum bicolor 97ggggtcatca gaggtgtcaa
catcagaagg cggcatgaac tgccacatcg ggaatccagg 60gtagccaagc acaggcatca
tcagcttgtg cccggcgact gccggcccct ggggagcagt 120gaaggcagag gctgagatca
ctgggtggtg tggtaccaga cttgggcggg cattcaggaa 180cttgatctgc tgctccaggc
tctccttctc ggccttcagc ctttgcttct cgtctcgcag 240ctcattcttc tcagccttta
gctctttaat cttctcttgt aggctctcat ttgaatcctt 300gagctctttt gcttcgctac
gcaattcacc tactacacga atagcatcat ttaatatagc 360tgacttgtcc attttaggag
ttttccctgg ctccaaaatg gcacccaatt ccaggaatct 420ctcgttcagc ttatcccttc
taattttctc cctggatgct tttgtgcttg gttctgcggt 480actttctgac ctaggacgtt
tatttgttgg ctgttctttt ccctgaccac agtccacaga 540gctactgatt tccacacatg
ggttgggagc cgacgcggca acgacagact ggaccggcgc 600ctgcaccacc tgcggcgtag
cgacggcggc 63098639DNAZea mays
98accctagcat actccggcat ctgctgcggc cccggcgatc ccccgccatg gcctcccccg
60agggcacaac gtgggtcttc gactgtcccc ttatggacga cctcgcggtc gccgccgact
120tcgcggcagc ccccgcggga ggatttttct gggcagcgcc gccgtcgctg cagccgcagg
180cgccagtgca gtctgtcgtt gccgcgtcgg ctcccaaccc atgtatggaa atcagtagct
240ctgtggactg tggtcaggaa aaagaacagc caacaaataa acgtccaagg tcagaaagta
300ctacagaatc aagcacaaaa gcatccaggg agaaaattag aagggacaag ctgaacgaga
360gattcttgga attgggtgcc attttggagc cagggaaaac tcctaaaatg gacaaaacag
420ctatattgag tgatgctatt cgtgtagtag gtgaattgcg tagtgaagca aaaaagctca
480aggattcaaa tgagaatctc caagagaaga ttaaagagct gaaggccgag aagaatgagc
540tgcgagacga gaagcaaagg ctgaaggccg agaaggagag cctggagcag cagatcaagt
600tcctgaatgc ccggccaagc ctcgtaccac accacccag
63999633DNASorghum bicolor 99gaggtgtcaa catcagaagg cggcatgaac tgccacatcg
ggaatccagg gtagccaagc 60acaggcatca tcagcttgtg cccggcgact gccggcccct
gggggagcag tgaaggcaga 120ggctgagatc actgggtggt gtggtaccag acttgggcgg
gcattcagga acttgatctg 180ctgctccagg ctctccttct cggccttcag cctttgcttc
tcgtctcgca gctcattctt 240ctcagccttt agctctttaa tcttctcttg taggctctca
tttgaatcct tgagctcttt 300tgcttcgcta cgcaattcac ctactacacg aatagcatca
tttaatatag ctgacttgtc 360cattttagga gttttccctg gctccaaaat ggcacccaat
tccaggaatc tctcgttcag 420cttatccctt ctaattttct ccctggatgc ttttgtgctt
ggttctgcgg tactttctga 480cctaggacgt ttatttgttg gctgttcttt tccctgacca
cagtccacag agctactgat 540ttccacacat gggttgggag ccgacgcggc aacgacagac
tggaccggcg cctgcaccac 600ctgcggctgt agcgacggcg gcgggggggc ccg
633100622DNAZea maysmisc_feature(591)..(591)n is
a, c, g, or t 100gcacgagctc gcggtcgccg ccgacttcgc ggcagccccc gcgggaggat
ttttctgggc 60agcgccgccg tcgctgcagc cgcaggcgcc agtgcagtct gtcgttgccg
cgtcggctcc 120caacccatgt atggaaatca gtagctctgt ggactgtggt caggaaaaag
aacagccaac 180aaataaacgt ccaaggtcag aaagtactac agaatcaagc acaaaagcat
ccagggagaa 240aattagaagg gacaagctga acgagagatt cttggaattg ggtgccattt
tggagccagg 300gaaaactcct aaaatggaca aaacagctat attgagtgat gctattcgtg
tagtaggtga 360attgcgtagt gaagcaaaaa agctcaagga ttcaaatgag aatctccaag
agaagattaa 420agagctgaag gccgagaaga atgagctgcg agacgagaag caaaggctga
aggccgagaa 480ggagagcctg gagcagcaga tcaagttcct gaatgcccgg ccaagcctcg
taccacacca 540cccagtgatc ccagcctctg cgttccctgc tccccagggg ccagcaaccg
ncgccaggca 600caagctgatg atgcctgtga tt
622101705DNASaccharum officinarum 101cgtagtgacc gggtcgaccc
acgcgtccgc cgccctcgac cccgaatccc ccaatccctg 60acgtgaccgc tgaaccctag
cctactccgg ccatctgccg ctggccccgg cgatcccccg 120ccatggcctc ccccgaggga
accacgtggg tcttcgactg tccccttatg gacgacctcg 180cggtggccgc tgacttcgcg
gcagcccccg cgggggggtt tttctgggcg gcgccgccgt 240cgctgcagcc gcaggtggtg
caggcgccgg tgcagtctgt cgttgccgcg tcggctccta 300accccccatg tgtggaaatt
agtagctctg tggattgtgg tcagggaaaa gaacaaccaa 360caaataaacg tcctaggtca
gaaagtactg cagaaccaag cacaaaagca tccagggaga 420aaattagaag ggacaagctg
aacaagagat tcctggaatg gggtgccatt ttggagccag 480gggaaactcc taaaatggac
aaatcagcta tattgaatga tgctattcgt gcagtaggtg 540aattgcgtag cgaagcaaaa
aagctgaagg actcaaatga gagtttgcag gagaagatta 600aagagctgaa ggctgagaag
aatgagtcgc gagacgagaa gcaaaggctg aaagccgaga 660acgagagcct ggagcagcag
atcaagttcc tgaatgcccg cccaa 705102624DNASaccharum
officinarummisc_feature(598)..(598)n is a, c, g, or t 102attttgttta
caatgccatg ttatttgttt tcttgctgct tattatggtg cattatcttg 60atatttggca
tcctaacatt ggcttctatt ttagcagtgt ggaaattagt agctctgtgg 120attgtggtca
gggaaaagaa caaccaacaa ataaacgtcc taggtcagaa agtactgcag 180aaccaagcac
aaaagcatcc agggagaaaa ttagaaggga caagctgaac aagagattcc 240tggaattggg
tgccattttg gagccagggg aaactcctaa aatggacaaa tcagctatat 300tgaatgatgc
tattcgtgca gtaggtgaat tgcgtagcga agcaaaaaag ctgaaggact 360caaatgagag
tttgcaggag aagattaaag agctgaaggc tgagaagaat gagttgcgag 420acgagaagca
aaggctgaag gccgagaagg agaagcctga gcagcagatc aagttcctga 480atgcccgccc
aagcctggta ccacaccact cggtgatccc agcctctgcc ttcgctgctc 540cccaggggcc
ggcagcagct gggcacaaac tgatgctgcc tgtgcttggc taccctgnat 600tcccaatgtg
gcagttcatg cccc
624103671DNASorghum bicolor 103agggataagc tgaacgagag attcctggaa
ttgggtgcca ttttggagcc agggaaaact 60cctaaaatgg acaagtcagc tatattaaat
gatgctattc gtgtagtagg tgaattgcgt 120agcgaagcaa aagagctcaa ggattcaaat
gagagcctac aagagaagat taaagagcta 180aaggctgaga agaatgagtt gcgagacgag
aagcaaaggc tgaaggccga gaaggagagc 240ctggagcagc agatcaagtt cctgaatgcc
cgcccaagtc tggtaccaca ccaccccagt 300gatttcagct tctgccttca ttgctcccca
ggggccggca gtcgccgggc acaagctgat 360gatgcctgtg cttggctacc ctggattccc
gatgtggcag ttcatgccgc cttctgatgt 420tgacacctct gatgacccca agtcttgccc
acctgtggcg taagcaagtg aagaggcgat 480gctgccctcc attgattcaa gtctagatcg
tgatcagtct gcagtgttgt tggtgtagtt 540gactccactc tccagaatgg aagggaaggt
tatatgtgtc ggatggtgac atggggtgat 600ctgatgaccc ctttgtatat tatatggtaa
atgaataaat tccgtgacca gttgcaaatg 660aggattagca g
671104610DNATriticum
aestivummisc_feature(592)..(592)n is a, c, g, or t 104tggtatttat
ttactaacaa tatacaacgg tttcacaaga taatcaaatg ttcccgggtg 60atacaacgac
gacgcttcag ttcggttctt gatttaacta catatagtaa cactaaacgg 120cttctgcata
gtaacactga cgactaagat atactttaac ggacggcttt ttagccatcc 180ttccccatga
gatagatgag gcaaatgatt tttgctggct tatgcaaccg gagggcatga 240cttggggtca
tcggaggtat caacatctga aggcggcatg aactgccaca tgggaaatcc 300tgggtagctc
atcacaggca tcatcagctt gtgccctgcc gcttggcctt gggcggcagc 360gaatgcagca
gctgggatga cagaagggtg tggtacgagg ctctgacggg cattcatgaa 420cttaatctgc
tgctccaggc tctctttctc cgccttcaac ttttgcttct catctcgtag 480ctcattcttc
tcagccttta gctctctaat cttctcttgg agagactcat tggaatcctt 540caacttctct
gcttcactac gcaattcagt taccgcacgg atagcatcat tnaatatagc 600acatttgncg
610105628DNATriticum aestivummisc_feature(47)..(47)n is a, c, g, or t
105ggttagatct ccccaaggat tccggcagca ataaacgctt aaggtcngag ccctgtggta
60ggccgacatc taaggcttgt agggaaaaag tgagaagaga caagctgaat gacaggttcc
120ttgaattggg tactacattg gatcctggta agccagtaaa agctgacaaa gctgctatcc
180tgagtgatgc gactcgcatg gttactcagc ttcgtgctga agcgcagcag ctaaaggata
240ctaatggaag tctagaagac aagattaaag agttgaaggc agagaaggat gaacttcgtg
300atgagaagca gaagctgaaa ctagagaaag agacattaga gcaccagatg aaacttttga
360cggcaactcc agcctatatg cctcatccta ctatgatgcc ctccccgttc gctcaggctc
420cgatggctcc cttccatgca cagggacaag ctctaggaca gaaactgatg atgccctttg
480ttggttaccc aggatatccg atgtggcagt tgatgccgcc ctctgaagtc gacacctcaa
540aggacagcga agcatgcccg cctgttgcgt gatatgcttg gaccgcttaa atcgcatgaa
600ctcatggtaa cctaaaacag catagttg
6281061136DNATriticum aestivummisc_feature(9)..(9)n is a, c, g, or t
106ggtgatacna gagcggccgc cctttttttt ttttttagtt agaaaaggaa agcatcccat
60tcgaattgtg attcgtttct aggcggagat cagaacaaga acgagcattc tttctttctc
120gagaaaaaat gtattataca gtggacgaag ggtagtagac tctatagagc gcacaactgc
180cagcattctc ctcatcaaca aaaactaccg catgagaaca atagttaatc tgaatcagag
240agactatgcg caaccaatgg atcaaacaac tatgctgttt taggtgacca ggggttcatg
300cgatttaagc ggtccaagca tatcacgcaa caggcgggca tgcttcgctg tcctttgagg
360tgtcgacttc agagggcggc atcaactgcc acatcggata tcctgggtaa ccaacaaagg
420gcatcatcag tttctgtcct agagcttgtc cctgtgcatg gaagggagcc atcggagcct
480gagcgaacgg ggagggcatc atagtaggat gaggcatata ggctggagtt gccgtcaaaa
540gtttcatctg gtgctctaat gtctctttct ctagtttcag cttctgcttc tcatcacgaa
600gttcatcctt ctctgccttc aactctttaa tcttgtcttc tagacttcca ttagtatcct
660ttagctgctg cgcttcagca cgaagctgag taaccatgcg agtcgcatca ctcaggatag
720cagctttgtc agcttttact ggcttaccag gatccaatgt agtacccaat tcaaggaacc
780tgtcattcag cttgtctctt ctcacttttt ccctacaagc cttagatgtt ggcctaccaa
840aagggctctg acttaagcgg ttattggtgc cggaatcctt ggggaaaact aaattggtca
900attgggtgcc taattcccca ctgggattgg accaagaaaa cgatgctttc ccggggaaaa
960cgccccaagc agcggccggg aggtccttca agattccgca atcgaggaac caactgtctc
1020cccccttcgg tcggagggaa aaaaattggg gccgggggaa cttacctccc gtttgtgctc
1080cagcggtccc ccaaaggggg gggggcaatt ttccgcccca tcttgtgttg ggtgtt
1136107646DNAZea maysmisc_feature(614)..(614)n is a, c, g, or t
107tttttttttt ttttttgccc gcggaattta tttataccat accatatata atatacaaag
60gggtcatcag atcaccccat gtcaccgtcc gacacatgta acatcccctt cagttctgga
120atcaactaca ccaacaacac tgcggaccga tcaagatttg aatcaatgga aggcagcatc
180gcctctttcc aacaggattt cgcacggctt ctacgccaca ggaggacaag acctagggtc
240atcagaggtg tcaacatctg aaggcggcat gaactgccac atcgggaatc cagggtagcc
300aatcacaggc atcatcagct tgtgcctggc ggcggctgct ggcccctggg gagcagggaa
360cgcagaggct gggatcactg ggtggtgtgg tacgaggctt ggccgggcat tcaggaactt
420gatctgctgc tccaggctct ccttctcggc cttcagcctt tgcttctcgt ctcgcagctc
480attcttctcg gccttcagct ctttaatctt ctcttggaga ttctcatttg aatccttgag
540cttttttgct tcactacgca attcacctac tacacgaata gcatcactca atatagctgt
600tttgtccatt ttangagttt tccctggctc caaaatggca cccaat
646108916DNAZea mays 108gcacgcggta aggtctctct tcggcggcgg cgatgtctct
cccccctgac ccggcgggcg 60gcggcgccgg caccggcacc ggcgacgact ggttcctcga
ctgcggcatc ctcgacgacc 120tcccggccgc ggcctgcggg gccttcccgt gggacgcgtc
cccgtcttct tccaacccca 180gtgtggaagt gggcagctat gtgaacacca atgatgtttt
caaggagccc aatgatgtct 240tcaaggagcc tggcagcaat aagcgtttga ggtcaggatc
caatgatgtg catgtgccaa 300catctaaagc ttctagggaa aaaatgagga ggaacaagct
gaatgacagg ttccttgaat 360tggggtctac attagaacca gggaagccag taaaagctga
caaagctgct atcctaagtg 420atgctactcg catggttatt cagcttcgtt cagaagcaca
gcagctgaag gaaactaatg 480gtagtcttga agaaaagatc aaagaactca aggccgagaa
ggatgaactt cgtgatgaga 540agcagaagct gaaattggag aaggagagtt tagaacacca
gatgaagctg atgacatcga 600ctccaaccta catgcctcat ccaaccctga tgccggcgcc
tttccctcag gcacccctag 660cgccgttcca tgcccagggg caagctgcag ggcagaagct
gatgatgccc tttgtcagct 720atccggggta cccaatgtgg cagttcatgc cgccttcaga
ggtcgacacc tcgaaggaca 780gtgaagcgtg ccctcctgtt gcataatcgc ttcgactggc
ggctggtcgt gctcacacca 840tgcgaattag tcgcaactga agcccccccc ctagctgtcg
atccattgat tggctataac 900tgctgttgtt atattt
916109778DNASorghum bicolor 109gaattttgtt
atagtcccca aaaggtctct tcggcggcgg ctgcggcggt ggcgatgtct 60ctccccccgg
acggcggcgg tgtcaccggc gacgactggt tcctcgactg cggcatcctc 120gacgacctcc
cgtgggacgc gtccccgtcg tcttcttccc cagtgtggaa gtgggcagct 180atgtgaacac
aaatgatgtc ttcaaggagc ccaatgatgt cttcaaggag cctggcagca 240ataaacgttt
aaggtcagga tccaatgatg tgccaacatc taaagcttct agggaaaaaa 300tgaggaggaa
caaactgaat gataggtttc ttgaattggg gtctacatta gaaccaggga 360agccagtaaa
agctgacaag gctgctatcc taagtgatgc tactcgcatg gttattcagc 420ttcgttcaga
agcacagcag ctcaaggaaa ctaatggtag ccttgaagaa aagattaaag 480aactaaaggc
tgagaaggat gagcttcgtg atgagaagca gaagttgaaa ttagagaagg 540agagtttaga
gcaccagatg aagcttatga cctcaactcc agcctacatg cctcatccga 600ccctgatgcc
agcgcctttc cctcaggcgc ccttagcacc attccatgcc caggggcaag 660ctgcagggca
gaagctgatg atgccctttg tcagctatcc ggggtaccca atgtggcagt 720tcatgccgcc
atcagaagtt gacacctcga aggacagcga agcgtgccct cctgttgc
778110832DNASorghum bicolor 110caaggagcct ggcagcaata aacgtttaag
gtcaggatcc aatgatgtgc caacatctaa 60agcttctagg gaaaaaatga ggaggaacaa
actgaatgat aggtttcttg aattggggtc 120tacattagaa ccagggaagc cagtaaaagc
tgacaaggct gctatcctaa gtgatgctac 180tcgcatggtt attcagcttc gttcagaagc
acagcagctc aaggaaacta atggtagcct 240tgaagaaaag attaaagaac taaaggctga
gaaggatgag cttcgtgatg agaagcagaa 300gttgaaatta gagaaggaga gtttagagca
ccagatgaag cttatgacct caactccagc 360ctacatgcct catccgaccc tgatgccagc
gcctttccct caggcgccct tagcaccatt 420ccatgcccag gggcaagctg cagggcagaa
gctgatgatg ccctttgtca gctatccggg 480gtacccaatg tggcagttca tgccgccatc
agaagttgac acctcgaagg acagcgaagc 540gtgccctcct gttgcgtaat tgcttcggtc
gactggccac gcttgcacca tgtgaattaa 600tcacaactga agcccccccc tagtcgttga
tccattgatt gggtataact atttgttctt 660atgtggtagt tcattggtaa cgaagtaaag
ctgctgatgt aagcgtccta ctatatagag 720gctactactg ctgccccttc aatggctgta
caatttttgt ggagaaaaga agaatgttcg 780ttcttgttct ccatagcaac aatgtgacgc
tatctatatg tcatatatat tc 832111636DNAHordeum
vulgaremisc_feature(15)..(15)n is a, c, g, or t 111gaaacgctta aggtnagggc
cctgtggtag gccaacatct aaggcttgta gggaaaaagt 60gagaagagac aagctgaatg
acaggttcct tgaattgggt actacattgg atcctggtaa 120gccagtaaaa gctgacaaag
ctgctatcct aagtgatgcg actcgcatgg ttactcagct 180tcgtgctgaa gcgaagcagc
taaaggatac caatggaagt ctagaagaca agattaaaga 240gttgaaggca gagaaggatg
aacttcgtga cgagaagcag aagctgaaat tagagaaaga 300gacattagag caccagatga
aactattgac tgcaactcca gcctatatgc ctcatcctac 360catgatgcac tccccatttg
ctcaggcgcc aatggctccc ttccatgcac aggggcacgc 420ttcagcacag aaactgatga
tgccctttgt tggttacccg ggatatccga tgtggcagtt 480gatgccgccc tccgaagtcg
acacctcaaa ggacagcgaa gcttgcccgc ctgttgcgtg 540atgcttggac cgtttaaatc
acatgaactc atggtaacct taaacagcgt agttgtttga 600tccattggtt gcgcatagtc
tctctgattc agatta 636112644DNASorghum
bicolor 112agtcagctat attaaatgat gctattcgtg tagtaggtga attgcgtagc
gaagcaaaag 60agctcaagga ttcaaatgag agcctacaag agaagattaa agagctaaag
gctgagaaga 120atgagctgcg agacgagaag caaaggctga aggccgagaa ggagagcctg
gagcagcaga 180tcaagttcct gaatgcccgc ccaagtctgg taccacacca cccagtgatc
tcagcctctg 240ccttcactgc tccccagggg ccggcagtcg ccgggcacaa gctgatgatg
cctgtgcttg 300gctaccctgg attcccgatg tggcagttca tgccgccttc tgatgttgac
acctctgatg 360accccaagtc ttgcccacct gtggcgtaag caagtgaaga ggcgatgctg
ccctccattg 420attcaagtct agatcgtgat cagtctgcag tgttgttggt gtagttgact
ccactctcca 480gaatggaagg gaaggttata tgtgtcggat ggtgacatgg ggtgatctga
tgaccccttt 540gtatattata tggtaaatga ataaattccg tgaccagttg caaatgagga
ttagcagact 600agctcatgtc tattcctgct ttttgtcgta taaaccacgt tgtg
644113731DNAZea mays 113tttttttttt ttttttccag ccagcgtgga
tataaacatg caaaacattg tcttacacta 60tagactgtac tgtttacaga gtaaaattta
aaatagggag taagatagag aataggatag 120agaggctgct ggagatagcc taagaacatc
agttataccc catcaatgga tcgacaacga 180caactagttg cggctaatcc acatggtgtg
agcaggacca gccccatcaa ggtgatcatg 240cgacaggagg gcacgcctcg ctgtccttcg
aggtgtcgac ctctgaaggc ggcatgaact 300gccacattgg gtaccctggg tagccgacga
agggcatcat cagcttctgc cctgcagctt 360ggccctgggc atggaatgga gctaggggcg
cctgggcgaa aggcgccggc atcagggtcg 420gatggggcat gtaggctgga gccgatgcca
tcagcttcat ctggtgctct agactctcct 480tctccagttt cagtttctgc ttctcgtcgc
gaagctcgtc cttctcggcc tttagttctt 540taatcttttc ttcgaggctg ccattagtct
ccttcagttg ctgtgattct gaacggagct 600gaataaccat gcgagtagca tcgcttagga
tggcagcttt gtcagctttc actggcttcc 660caggttctaa tgcagacccc agttcaagaa
acctgtcatt cagcttgttc ctcctcattc 720tttccctgca a
731114572DNAZea mays 114tataccatac
catatataat atacaaaggg gtcatcagat caccccatgt caccgtccga 60cacatgtaac
atccccttca gttctgcgaa tcaactacac caacaacact gcggaccgat 120caagatttga
atcaagggaa ggcagcatcg cctctttcca acaggatttc gcacggcttc 180tacgccacag
gaggacaaga cctagggtca tcagaggtgt caacatctga aggcggcatg 240aactgccaca
tcgggaatcc agggtagcca atcacaggca tcatcagctt gtgcctggcg 300gcggctgctg
gcccctgggg agcagggaac gcagaggctg ggatcactgg gcggtgtggt 360acgaggcttg
gccgggcatt caggaacttg atctgctgct ccaggctctc cttctcggcc 420ttcagccttt
gcttctcgtc tcgcagctca ttcttctcgg ccttcagctc tttaatcttc 480tcttggagat
tctcatttga atccttgagc ttttttgctt cactacgcaa ttcacctact 540acacgaatag
catcactcaa tatagctgtt tt
572115705DNAArabidopsis thaliana 115atggtgtcac ccgaaaacgc taattggatt
tgtgacttga tcgatgctga ttacggaagt 60ttcacaatcc aaggtcctgg tttctcttgg
cctgttcagc aacctattgg tgtttcttct 120aactccagtg ctggagttga tggctcggct
ggaaactcag aagctagcaa agaacctgga 180tccaaaaaga gggggagatg tgaatcatcc
tctgccacta gctcgaaagc atgtagagag 240aagcagcgac gggacaggtt gaatgacaag
tttatggaat tgggtgcaat tttggagcct 300ggaaatcctc ccaaaacaga caaggctgct
atcttggttg atgctgtccg catggtgaca 360cagctacggg gcgaggccca gaagctgaag
gactccaatt caagtcttca ggacaaaatc 420aaagagttaa agactgagaa aaacgagctg
cgagatgaga aacagaggct gaagacagag 480aaagaaaagc tggagcagca gctgaaagcc
atgaatgctc ctcaaccaag ttttttccca 540gccccaccta tgatgcctac tgcttttgct
tcagcgcaag gccaagctcc tggaaacaag 600atggtgccaa tcatcagtta cccaggagtt
gccatgtggc agttcatgcc tcctgcttca 660gtcgatactt ctcaggatca tgtccttcgt
cctcctgttg cttaa 705116705DNAArabidopsis thaliana
116atggtgtcac ccgaaaacgc taattggatt tgtgacttga tcgatgctga ttacggaagt
60ttcacaatcc aaggtcctgg tttctcttgg cctgttcagc aacctattgg tgtttcttct
120aactccagtg ctggagttga tggctcggct ggaaactcag aagctagcaa agaacctgga
180tccaaaaaga gggggagatg tgaatcatcc tctgccacta gctcgaaagc atgtagagag
240aagcagcgac gggacaggtt gaatgacaag tttatggaat tgggtgcaat tttggagcct
300ggaaatcctc ccaaaacaga caaggctgct atcttggttg atgctgtccg catggtgaca
360cagctacggg gcgaggccca gaagctgaag gactccaatt caagtcttca ggacaaaatc
420aaagagttaa agactgagaa aaacgagctg cgagatgaga aacagaggct gaagacagag
480aaagaaaagc tggagcagca gctgaaagcc attaatgctc ctcaaccaag ttttttccca
540gccccaccta tgatgcctac tgcttttgct tcagcgcaag gccaagctcc tggaaacaag
600atggtgccaa tcatcagtta cccaggagtt gccatgtggc agttcatgcc tcctgcttca
660gtcgatactt ctcaggatca tgtccttcgt cctcctgttg cttaa
705117681DNAArabidopsis thaliana 117atggtgtctc cggagaatac gaactggctt
agtgattacc ctttgattga aggtgctttc 60tctgatcaga accccacttt cccttggcag
atagatggct cagctactgt cagtgttgaa 120gtggatggct tcctttgtga tgcagatgtg
atcaaagaac caagttcaag gaagaggatc 180aaaactgaat cttgcactgg ttctaactcg
aaagcttgta gggagaaaca aagacgtgat 240agactaaatg acaagtttac ggagttgagt
tccgtattgg aacctgggag aactccaaaa 300acagacaagg ttgctattat caatgatgca
attcgcatgg tgaatcaagc aagagatgaa 360gcgcagaaac taaaggactt gaactcaagc
ctccaggaga aaatcaagga gttgaaggat 420gagaagaacg agctgcgtga tgagaaacag
aagcttaagg tcgagaagga gagaatcgat 480cagcaactga aagctattaa gacacagcct
cagcctcaac cttgtttctt accaaatccg 540caaacactct ctcaagctca agctcctgga
agcaagcttg tccctttcac aacttatccc 600ggctttgcaa tgtggcaatt catgcctcct
gctgctgttg atacctcaca ggaccatgtc 660cttcgtcctc cagttgctta a
681118876DNAArabidopsis thaliana
118atgcaaacaa atgaagataa catatttcag gattttgggt cttgtggtgt gaatctgatg
60cagccacaac aagaacaatt tgattctttt aatggaaatc ttgagcaagt ttgtagtagc
120tttagaggag gaaacaatgg agttgtttat agtagtagca ttggatcagc acaattggat
180ttggctgcat cgtttagtgg agttttgcag caagagacac atcaagtctg tggctttaga
240ggacaaaacg acgattctgc agtgcctcat ttgcagcagc aacaaggaca ggtgtttagt
300ggtgtagtgg aaatcaattc ttcgtcatct gttggagctg ttaaggaaga gtttgaggaa
360gaatgttcgg ggaagaggag acgaactgga tcatgtagca agccaggaac caaagcctgt
420cgcgagaaac taagaaggga aaagctaaat gacaagttca tggacttgag ctctgtttta
480gagcctggca ggactccaaa gacggataaa tcagctatac tcgacgatgc aatccgggtt
540gtgaatcagc ttagaggtga agctcatgag cttcaagaaa ccaaccaaaa gcttctagaa
600gagatcaaga gtctaaaggc ggataaaaac gagctacgag aggaaaagct ggtgttgaag
660gcggagaagg agaagatgga gcaacagtta aaatctatgg tggttccatc accaggtttc
720atgccctccc agcatccagc agctttccat tcccataaga tggcggtggc ttacccttac
780ggctactatc ctccaaacat gccaatgtgg tcacccttac ctcctgctga ccgtgatacg
840tctcgtgatc tcaaaaatct tcctcctgtt gcttaa
876119963DNAArabidopsis thaliana 119atgtatccat caatcgaaga cgatgatgat
cttctcgctg ctctttgttt tgatcaaagc 60aatggagtag aagatcctta tggatatatg
caaacaaatg aagataacat atttcaggat 120tttgggtctt gtggtgtgaa tctgatgcag
ccacaacaag aacaatttga ttcttttaat 180ggaaatcttg agcaagtttg tagtagcttt
agaggaggaa acaatggagt tgtttatagt 240agtagcattg gatcagcaca attggatttg
gctgcatcgt ttagtggagt tttgcagcaa 300gagacacatc aagtctgtgg ctttagagga
caaaacgacg attctgcagt gcctcatttg 360cagcagcaac aaggacaggt gtttagtggt
gtagtggaaa tcaattcttc gtcatctgtt 420ggagctgtta aggaagagtt tgaggaagaa
tgttcgggga agaggagacg aactggatca 480tgtagcaagc caggaaccaa agcctgtcgc
gagaaactaa gaagggaaaa gctaaatgac 540aagttcatgg acttgagctc tgttttagag
cctggcagga ctccaaagac ggataaatca 600gctatactcg acgatgcaat ccgggttgtg
aatcagctta gaggtgaagc tcatgagctt 660caagaaacca accaaaagct tctagaagag
atcaagagtc taaaggcgga taaaaacgag 720ctacgagagg aaaagctggt gttgaaggcg
gagaaggaga agatggagca acagttaaaa 780tctatggtgg ttccatcacc aggtttcatg
ccctcccagc atccagcagc tttccattcc 840cataagatgg cggtggctta cccttacggc
tactatcctc caaacatgcc aatgtggtca 900cccttacctc ctgctgaccg tgatacgtct
cgtgatctca aaaatcttcc tcctgttgct 960taa
963120852DNAArabidopsis thaliana
120atgtatcctt ctctcgacga tgatttcgtc tctgatttgt tttgcttcga tcaaagcaat
60ggagcagaac ttgatgatta cacacagttt ggtgtaaatt tgcagactga tcaagaggat
120acctttccag attttgtgtc atatggtgtg aatttgcagc aggagccaga tgaagtcttt
180agtattggag cttctcaatt ggatttgtcc tcgtataatg gagttttgtc gctagagcca
240gaacaggtgg ggcaacaaga ttgtgaagtt gtgcaggaag aagaagtaga gatcaattct
300ggttcatctg gtggagctgt taaggaagaa caggaacatt tagatgacga ttgctccaga
360aagcgggcaa ggactggatc gtgtagcaga ggaggaggaa ctaaagcgtg tcgtgaaagg
420ttgaggaggg agaagctaaa tgagaggttt atggatttga gctcggtttt ggagcctggg
480aggactccta agactgataa accggctata ctcgatgatg caatccgtat attgaatcaa
540cttagagatg aagctcttaa gcttgaagaa actaaccaga agcttttaga ggagatcaag
600agtctcaagg cggagaagaa cgagctgagg gaggaaaagc tggtgttgaa ggcggataaa
660gagaagacag aacaacagtt aaagtctatg acggctccat cttcagggtt catacctcat
720attccagctg catttaacca caacaaaatg gctgtttatc caagttacgg ttacatgcca
780atgtggcatt atatgcctca atccgttcgt gacacatctc gtgatcaaga actcaggcct
840cctgctgctt aa
852121834DNAArabidopsis thaliana 121atggatgtga atctttttgg tcatgatgac
tcttgtagca atggagcaga acttgatgat 60tacacacagt ttggtgtaaa tttgcagact
gatcaagagg atacctttcc agattttgtg 120tcatatggtg tgaatttgca gcaggagcca
gatgaagtct ttagtattgg agcttctcaa 180ttggatttgt cctcgtataa tggagttttg
tcgctagagc cagaacaggt ggggcaacaa 240gattgtgaag ttgtgcagga agaagaagta
gagatcaatt ctggttcatc tggtggagct 300gttaaggaag aacaggaaca tttagatgac
gattgctcca gaaagcgggc aaggactgga 360tcgtgtagca gaggaggagg aactaaagcg
tgtcgtgaaa ggttgaggag ggagaagcta 420aatgagaggt ttatggattt gagctcggtt
ttggagcctg ggaggactcc taagactgat 480aaaccggcta tactcgatga tgcaatccgt
atattgaatc aacttagaga tgaagctctt 540aagcttgaag aaactaacca gaagctttta
gaggagatca agagtctcaa ggcggagaag 600aacgagctga gggaggaaaa gctggtgttg
aaggcggata aagagaagac agaacaacag 660ttaaagtcta tgacggctcc atcttcaggg
ttcatacctc atattccagc tgcatttaac 720cacaacaaaa tggctgttta tccaagttac
ggttacatgc caatgtggca ttatatgcct 780caatccgttc gtgacacatc tcgtgatcaa
gaactcaggc ctcctgctgc ttaa 8341221014DNAArabidopsis thaliana
122atggggataa gagaaaatgg aataatgctt gtgagcagag agagagagcg agcgaggagg
60ctagagaatc gagaatcgat cttcgccgaa ccaccttgtc ttctcttagc tcatcgaatc
120tctccgtcgc cgtcgattct tcccgccgaa gaggaggtca tggacgtttc tgctagaaag
180tcacaaaaag ctgggcgcga aaagttgagg agggaaaaac tgaatgagca ttttgttgaa
240ctgggaaatg tactcgatcc agagagaccc aagaatgaca aagccacgat tctgactgat
300actgttcagt tgttgaaaga gctcacatct gaagtcaaca aactgaaatc tgagtacacc
360gcattgacag atgagtcccg cgagttgaca caggagaaaa acgacctgag agaagaaaag
420acatcgctga aatcagatat agagaatctc aatcttcaat accagcagag attaaggtca
480atgtctccat ggggagctgc gatggatcac acagtcatga tggctccacc accctccttt
540ccatacccta tgcctattgc tatgcctccc gggtcaatcc caatgcatcc atcaatgcca
600tcttacacat actttgggaa ccagaaccct agcatgatcc cagctccatg tcctacatac
660atgccctaca tgcctcctaa tacagtcgtt gagcaacaat ccgtgcacat tccacagaac
720cccggtaacc gttctcggga acctagagca aaggtttcaa gagagagcag atctgagaaa
780gcagaggact ccaacgaagt tgcaacacaa ctcgaattaa aaacccctgg atctacttct
840gataaggata cattgcaaag gccagagaag acaaagagat gtaagagaaa caacaacaac
900aactcaatag aagaaagctc tcattctagc aagtgttcat cttctccgag cgtacgagac
960cacagttctt ccagtagcgt agctggtggc caaaaacctg atgatgcaaa atga
1014123855DNAArabidopsis thaliana 123atggacgttt ctgctagaaa gtcacaaaaa
gctgggcgcg aaaagttgag gagggaaaaa 60ctgaatgagc attttgttga actgggaaat
gtactcgatc cagagagacc caagaatgac 120aaagccacga ttctgactga tactgttcag
ttgttgaaag agctcacatc tgaagtcaac 180aaactgaaat ctgagtacac cgcattgaca
gatgagtccc gcgagttgac acaggagaaa 240aacgacctga gagaagaaaa gacatcgctg
aaatcagata tagagaatct caatcttcaa 300taccagcaga gattaaggtc aatgtctcca
tggggagctg cgatggatca cacagtcatg 360atggctccac caccctcctt tccataccct
atgcctattg ctatgcctcc cgggtcaatc 420ccaatgcatc catcaatgcc atcttacaca
tactttggga accagaaccc tagcatgatc 480ccagctccat gtcctacata catgccctac
atgcctccta atacagtcgt tgagcaacaa 540tccgtgcaca ttccacagaa ccccggtaac
cgttctcggg aacctagagc aaaggtttca 600agagagagca gatctgagaa agcagaggac
tccaacgaag ttgcaacaca actcgaatta 660aaaacccctg gatctacttc tgataaggat
acattgcaaa ggccagagaa gacaaagaga 720tgtaagagaa acaacaacaa caactcaata
gaagaaagct ctcattctag caagtgttca 780tcttctccga gcgtacgaga ccacagttct
tccagtagcg tagctggtgg ccaaaaacct 840gatgatgcaa aatga
855124807DNAArabidopsis thaliana
124atggctgtgt catgtttatt catagtttcg tctaattaca gaggagctga gatggtggtg
60gaagtgaaga aggaagcagt ttgttcccag aaagcagagc gagagaagct tcgtagagat
120aagcttaagg aacagtttct tgagcttgga aatgcacttg atccgaatag gcctaagagt
180gacaaagcct cagttctcac tgatacaata caaatgctca aggatgtaat gaaccaagtt
240gatagactaa aagctgagta tgaaacacta tctcaagagt ctcgtgagct aattcaagag
300aagagtgagc tgagagagga gaaagcgact ttaaagtctg atatcgagat tcttaatgct
360caatatcagc atggaatcaa aaccatggtt ccatgggtac ctcattacag ttatcatatc
420cccttcgtag ccataactca gggtcagtcc agttttatac cttattcagc ctctgtcaat
480cctctaaccg aacaacaagc atcggttcag cagcattctt cttcttctgc cgatgcttca
540atgaaacaag attccaaaat caagccgtta gatttggatc tgatgatgaa cagtaaccat
600tcaggtcaag gaaatgatca aaaagatgat gttcgtttaa agctcgagct taaaatccat
660gcctcttctt tagctcaaca ggatgtttct ggaaaagaga agaaagtaag cttgacaacc
720actgcaagct catcgaatag ttactcatta tctcaagctg ttcaagatag ttcccccggt
780accgtaaatg acatgttgaa gccataa
807125861DNAArabidopsis thaliana 125atggatcaac caatgaaacc aaaaacttgc
tctgaatctg attttgctga tgattcctct 60gcttcttctt cttcttcttc gggacaaaat
ctcagaggag ctgagatggt ggtggaagtg 120aagaaggaag cagtttgttc ccagaaagca
gagcgagaga agcttcgtag agataagctt 180aaggaacagt ttcttgagct tggaaatgca
cttgatccga ataggcctaa gagtgacaaa 240gcctcagttc tcactgatac aatacaaatg
ctcaaggatg taatgaacca agttgataga 300ctaaaagctg agtatgaaac actatctcaa
gagtctcgtg agctaattca agagaagagt 360gagctgagag aggagaaagc gactttaaag
tctgatatcg agattcttaa tgctcaatat 420cagcatagaa tcaaaaccat ggttccatgg
gtacctcatt acagttatca tatccccttc 480gtagccataa ctcagggtca gtccagtttt
ataccttatt cagcctctgt caatcctcta 540accgaacaac aagcatcggt tcagcagcat
tcttcttctt ctgccgatgc ttcaatgaaa 600caagattcca aaatcaagcc gttagatttg
gatctgatga tgaacagtaa ccattcaggt 660caaggaaatg atcaaaaaga tgatgttcgt
ttaaagctcg agcttaaaat ccatgcctct 720tctttagctc aacaggatgt ttctggaaaa
gagaagaaag taagcttgac aaccactgca 780agctcatcga atagttactc attatctcaa
gctgttcaag atagttcccc cggtaccgta 840aatgacatgt tgaagccata a
861126807DNAArabidopsis thaliana
126atggctgtgt catgtttatt catagtttcg tctaattaca gaggagctga gatggtggtg
60gaagtgaaga aggaagcagt ttgttcccag aaagcagagc gagagaagct tcgtagagat
120aagcttaagg aacagtttct tgagcttgga aatgcacttg atccgaatag gcctaagagt
180gacaaagcct cagttctcac tgatacaata caaatgctca aggatgtaat gaaccaagtt
240gatagactaa aagctgagta tgaaacacta tctcaagagt ctcgtgagct aattcaagag
300aagagtgagc tgagagagga gaaagcgact ttaaagtctg atatcgagat tcttaatgct
360caatatcagc atagaatcaa aaccatggtt ccatgggtac ctcattacag ttatcatatc
420cccttcgtag ccataactca gggtcagtcc agttttatac cttattcagc ctctgtcaat
480cctctaaccg aacaacaagc atcggttcag cagcattctt cttcttctgc cgatgcttca
540atgaaacaag attccaaaat caagccgtta gatttggatc tgatgatgaa cagtaaccat
600tcaggtcaag gaaatgatca aaaagatgat gttcgtttaa agctcgagct taaaatccat
660gcctcttctt tagctcaaca ggatgtttct ggaaaagaga agaaagtaag cttgacaacc
720actgcaagct catcgaatag ttactcatta tctcaagctg ttcaagatag ttcccccggt
780accgtaaatg acatgttgaa gccataa
807127819DNAArabidopsis thaliana 127atggatcaac caatgaaacc aaaaacttgc
tctgaatctg attttgctga tgattcctct 60gcttcttctt cttcttcttc gggacaaaat
ctcagaggag ctgagatggt ggtggaagtg 120aagaaggaag cagtttgttc ccagaaagca
gagcgagaga agcttcgtag agataagctt 180aaggaacagt ttcttgagct tggaaatgca
cttgatccga ataggcctaa gagtgacaaa 240gcctcagttc tcactgatac aatacaaatg
ctcaaggatg taatgaacca agttgataga 300ctaaaagctg agtatgaaac actatctcaa
gagtctcgtg agctaattca agagaagagt 360gagctgagag aggagaaagc gactttaaag
tctgatatcg agattcttaa tgctcaatat 420cagcatagaa tcaaaaccat ggttccatgg
ggtcagtcca gttttatacc ttattcagcc 480tctgtcaatc ctctaaccga acaacaagca
tcggttcagc agcattcttc ttcttctgcc 540gatgcttcaa tgaaacaaga ttccaaaatc
aagccgttag atttggatct gatgatgaac 600agtaaccatt caggtcaagg aaatgatcaa
aaagatgatg ttcgtttaaa gctcgagctt 660aaaatccatg cctcttcttt agctcaacag
gtgagtgatc tcttcaatag ttttgccaac 720aagctctttc atggactgac cagagtttac
ttccatgcag gatgtttctg gaaaagagaa 780gaaagtaagc ttgacaacca ctgcaagctc
atcgaatag 819128799DNAVitis vinifera
128ccctaacgcg ctcctccctc tcccgggaaa ttgcaccggg cctcctcgat ttttcggagg
60ttccttcgag atggtttctc cagaagccac caattggctg tacgagtacg ggctcatcga
120ggacatccct gtccctgatt caaacttcgc taatacgaat tcagggttcg cctggactcc
180tgtgcaggcc ttgaacactt ctgctaatgt cagtggggaa attgatggtt catttgggga
240ctctgacggc attaaggaaa ctggatcaaa gaagagggtg agatctgaat catgtggtgc
300atctagctcg aaggcatgta gggagaagtt gcggagggac aggctaaatg acaagtttat
360ggaattgggt tctatcctgg agcctggaag gcctccaaaa acagacaagt cttctatttt
420gattgatgca gttcgaatgg taactcagtt acgaggtgag tcgcagaagt tgaaggactc
480aaattctagt ctccaggaga agattaaaga attgaaggct gagaagaatg agcttcgtga
540tgagaagcaa aggctaaagg ccgagaaaga gaaactggag cagcaactga aagcaatgaa
600tgctcaacct agtttcctgc ctcccgttcc ttcaatccct gctgcatttg cagctcaagg
660ccaagctggc ggcgacaagt tggttccatt catcggctac ccaggagttg ctatgtggca
720attcatgcca cctgctgcag ttgatacctc acaagatcat gtgctccgtc caccagttgc
780ttaaatcagc aactcaacc
799129839DNACitrus reticulata 129tttttttttt tttttttcaa tacagtcacc
caccaatcat taaagacttc ggaaaaacta 60atacagtcag agaacaatga taaaaccaat
acacttgttg ggtgcaaatt gcaaacccaa 120atcattgtag gttgcatact taagcaaccg
gaggacggag tacatgatcc tgtgaggtat 180ccactgcagc aggaggcatg aattgccaca
ttgcgactcc agggtagctg atgaaaggca 240tcagcttgtt tccaggtgct tggccttggg
cagcaaatgc agcagggatt gcaggaggag 300gagttaagaa actgggttgt gtgctcatag
ctttgagttg ctgctctatc ttctctttct 360ctgcctttag cctctgcttc tcatcacgaa
gctcattctt ctcagccttc aactctttga 420tcttctcctg gagacttgaa tttgagtcct
tcaacttctg ggcttcactg cgtaattgag 480tcaccatccg gacggcatca atcaaaatag
ctgccttatc tgttttgggg ggccttccag 540gctctaagat agaggctaac tccacaaact
tgtcattaag acgatcccta cgcaactttt 600ccctgcacgc cttggagcta gaagacccac
atgattctga tctaaccctc ttttttgagc 660tttccttgag accatttgaa tccccaaatg
cagaatcaat ttccacacag ccatttgacg 720gcccgttaat tggcggctga acggtccaag
tgaaacccga agcggaaacg gagaaattgc 780catcagggac agtgatatcg tcgatcaagg
ggtaatctaa tagccaattc gtattttcc 839130730DNAMedicago truncatula
130ttttccggga aattccccca ctatggtttc cccggaaaac accaattggc ttttcgatta
60ccctttgatt gatgaaattc ctgtttctgt tgatggctcc tttgccttca cgtggccccc
120acctcacctc tccaatggcg gtattgaaat ggatgatagc tctctagtgg attctgatgg
180tatcaaagaa cctggttcga agaagagagg tagatcagat tcatgtgctc cttccagctc
240taaggcatgt cgagagaagt tgcggaggga taggctgaac gacaagtttg ttgaattagg
300ctccatcttg gagcctggaa ggcctcctaa aacagacaag gcggcaattc tgattgatgc
360tgtccgaatg gtgacacagt tgcggggtga agcccaaaag ttgaaagact caaattcacg
420tcttcaagag aagattaaag agttaaaggt tgagaagaat gaactccgcg atgagaagca
480gaggcttaag gctgagaagg agaagttgga gcagcaggtg aaatcaatga acacccaacc
540cggtttcttg acacaccctc ctgcaatccc tgctgcattt gctcatcaag gccaagcccc
600aagcaacaag ttaatgcctt tcatgagtta tccaggagtt gccatgtggc aattcatgcc
660accagccgcc gtggatacct cacaggatca tgtactccgt ccaccagttg cctaaattgg
720cactgtacaa
730131811DNAVitis vinifera 131cttttctccc tcgagaaaac cccccttttc tctctcccca
aacaccctaa cgcgctcctc 60cctctcccgg gaaattgcac cgggcctcct cgatttttcg
gaggttcctt cgagatggtt 120tctccagaag ccaccaattg gctgtacgag tacgggctca
tcgaggacat ccctgtccct 180gattcaaact tcgctaatac gaattcaggg ttcgcctgga
ctcctgtgca ggccttgaac 240acttctgcta atgtcagtgg ggaaattgat ggttcatttg
gggactctga cggcattaag 300gaaactggat caaagaagag ggtgagatct gaatcatgtg
gtgcatctag ctcgaaggca 360tgtagggaga agttgcggag ggacaggcta aatgacaagt
ttatggaatt gggttctatc 420ctggagcctg gaaggcctcc aaaaacagac aagtcttcta
ttttgattga tgcagttcga 480atggtaactc agttacgagg tgagtcgcag aagttgaagg
actcaaattc tagtctccag 540gagaagatta aagaattgaa ggctgagaag aatgagcttc
gtgatgagaa gcaaaggcta 600aaggccgaga aagagaaact ggagcagcaa ctgaaagcaa
tgaatgctca acctagtttc 660ctgcctcccg ttccttcaat ccctgctgca tttgcagctc
aaggccaagc tggcggcaac 720aagttggttc cattcatcgg ctacccagga gttgctatgt
ggcaattcat gccacctgct 780gcagttgata ccctcacaga tcatgtgctc c
811132833DNAGossypium raimondii 132cggagaatgg
tgtcccctga aaactttaat tattggtctc acttcgatta tgctaccttg 60atccacgata
tccctgtccc tgatgatcct tatgccggtt ttgcttggtc tacgcagcca 120atcgacgccc
cttctaatgt tgtcagtgtg gaaattgatg gctcatttgg agattcagac 180ggtctaaagg
aatctggttc aaagaagagg gttagatccg aatcatgcaa tgcatctagc 240tccaaagcat
gtagggagaa gttgcgtaga gataggctaa atgacaagtt tatggagttg 300ggttctattt
tggaacctgg aaggcctccc aaaactgata agtctgctat tttgattgat 360gctgtccgaa
tggtgaccca gttacgaggt gaagcccaga aattgaagga ttcaaatact 420agtctacagg
aaaggattaa agagttgaag tctgaaaaga atgagcttcg tgacgaaaag 480caaaggctga
aggcagagaa agaaaggctg gagcagcaac tcaaagcaat gaatgcacaa 540cctagcttca
tgccgcccgc accaccagca atccctgctg catttgctgc ggctccgggt 600caagctcctg
ggaacaagtt ggtacctctc attggctatc ctggagttgc aatgtggcag 660ttcatgccgc
ctgcagcagt ggatacttca caggaccatg tcctccgccc tccggttgcc 720taagttggca
accaacaatg attggggttg cattttgatg caaacaaggg tataacgtaa 780tgttctgggc
tgtttagatt tcgctgaagt ttttctaact ggctttgttg ggt
833133745DNACitrus reticulata 133aggtgaaact caaccgctgt ttgtttccca
ggaaaatttc tctccgccgg aaaacccata 60aatattatcc tggaaattca aaatggtttc
tccggaaaat acgaattggc tattagatta 120ccccttgatc gacgatatca ctgtccctga
tggcaatttc tccgtttccg cttcgggttt 180cacttggacc gttcagccgc caattaacgg
gccgtcaaat ggctgtgtgg aaattgattc 240tgcatttggg gattcaaatg gtctcaagga
aagctcaaaa aagagggtta gatcagaatc 300atgtgggtct tctagctcca aggcgtgcag
ggaaaagttg cgtagggatc gtcttaatga 360caagtttgtg gagttagcct ctatcttaga
gcctggaagg ccccccaaaa cagataaggc 420agctattctg attgatgccg tccggatggt
gactcaatta cgcagtgaag cccagaagtt 480gaaggactca aattcaagtc tccaggagaa
gatcaaagag ttgaaggctg agaagaatga 540gcttcgtgat gagaagcaga ggctaaaggc
agagaaagag aagatagagc agcaactcaa 600agctatgagc acacaaccca gtttcttaac
tcctcctgca atccctgctg catttgctgc 660ccaaggccaa gcacctggaa acaagctgat
gcctttcatc agctaccctg gagtcgcaat 720gtggcaattc atgcctcctg ctgca
745134916DNASolanum tuberosum
134gataatccaa acagcaattg gaaaccctca tcggagaatt ttccgggaga attatttttt
60tcatcttctg gccggcgatt gatcggagat ggtttcaccg gagaacacca actggcttta
120tgattatgga tttgaagata gttccgtccc tgattcgaat ttctcacctt ctgcatctgg
180gtttaactgg cctgtgcaga atttgaatgg ttcaaggaat gttagttctg aaattgatgg
240gtcgattggt gaatcagatt acccaaagga aagtggttct aagaaacggg caagggttga
300atcatgtgct ccaacaagtt ccaaagcttg cagagagaaa ctgcgaagag ataagctgaa
360tgacaagttc atggaattgg gtgcactcct tgagcctggc aggcccccca aaacagacaa
420atccgctatt cttgttgatg ctgttcgcat ggtgacccag ttacgtgatg aagctcaaaa
480gttgaaagac tcaaacttga atctgcaaga aaagatcaag gagttaaagg ttgagaaaac
540cgagcttcga gatgaaaaac agaggctgaa agctgaaaag gagaagctag agcaacaact
600aaagactaca agtgcgcaac ctagtttctt gcctcctgct ataccttctg catttgctgc
660tcatggtcaa tttccaggaa gcaagctggt gccaatcatg agttaccctg gtgtcgcgat
720gtggcaattc atgcctcctg ctgctgttga tacttcacag gaccatgtcc tccgtcctcc
780agttgcttaa cttgttgcag cttaaagcct acgaaggttg ccttcactgt cccgttaaat
840taatcgtcta gttaatgtcc ttcggttgta ttagttttgg ctcaactccc cttcctgtat
900ttggtggatg atagat
916135959DNASolanum tuberosum 135gatccctcat cggagaattt tccgggagaa
ttattttttt catcttctgg ccggcgattg 60atccgagatg gtttcaccgg agaacaccaa
ctggctttat gattatggat tcgaagatag 120ttccgtccct gattcgaatt tctcagcttc
tgcatctggg tttaactggc ctgtgcagaa 180tttgaatggt tcaaggaatg ttagttctga
aattgatggg tcgattggtg aatcagatta 240cccaaaggaa agtggttcta agaaacgggc
aagggttgaa tcatgtgctc caacaagttc 300caaagcttgc agagagaaac tgcgaagaga
taagctgaat gacaagttca tggaattggg 360tgcactcctt gagcctggca ggccccccaa
aacagacaaa tccgctattc ttgttgatgc 420tgttcgcatg gtgacccagt tacgtgacga
agctcaaaag ttgaaagact caaacttgaa 480tctgcaagaa aagatcaagg agttaaaggt
tgagaaaacc gagcttcgag atgaaaaaca 540gaggttgaaa gctgaaaagg agaagctaga
gcaacaacta aagactacaa gtgcgcaacc 600tagtttcttg cctcctgctg taccttctgc
atttgctgct catggtcaat ttccaggaag 660caagctggtg ccaatcatga gttaccctgg
tgtcgcgatg tggcaattca tgcctcctgc 720tgctgttgat acttcacagg accatgtcct
ccgtcctcca gttgcttaac ttgttgcagc 780ttaatgccta caactgtccc attaaattaa
tcgtctagtc aatgttcttc ggttgtatta 840gttttggctc aactcccctt actgtatttt
ggtggatgat agataacttg tgactttgaa 900acttataacg gtttaatgct tgctttatgt
gtaaaattaa ataaatttaa actataaaa 959136943DNASolanum tuberosum
136gtaattggaa accctcatcg gagaattttc cgggagaatt atttttttca tcttctggcc
60ggcgattgat cggagatggt ttcaccggag aacaccaact ggctttatga ttatggattc
120gaagatagtt ccgtccctga ttcgaatttc tcagcttctg catctgggtt taactggcct
180gtgcagaatt tgaatggttc aaggaatgtt agttctgaaa ttgatgggtc gattggtgaa
240tcagattacc caaaggaaag tggttctaag aaacgggcaa gggttgaatc atgtgctcca
300acaagttcca aagcttgcag agagaaattg cgaagagata agctgaatga caagttcatg
360gaattgggtg cactccttga gcctggcagg ccccccaaaa cagacaaatc tgctattctt
420gttgatgctg ttcgcatggt gacccagtta cgtgatgaag ctcaaaagtt gaaagactca
480aacttgaatc tgcaagaaaa gatcaaggag ttaaaggttg agaaaaccga gcttcgagat
540gaaaaacaga ggctgaaagc tgaaaaggag aagctagagc aacaactaaa gactacaagt
600gcgcaaccta gtttcttgcc tcctgctata ccttctgcat ttgctgctca tggtcaattt
660ccaggaagca agctggtgcc aatcatgagt taccctggtg tcgcgatgtg gcaattcatg
720cctcctgctg ctgttgatac ttcacaggac catgtcctcc gtcctccagt tgcttaactt
780gttgcagctt aaagcctaca aaggttgcct tcactgtccc gttaaattaa tcgtctagtc
840aatgtccttc ggttgtatta gttttggctc aactcccctt actgtatttg gtggatgata
900gataacttgt gactttgaaa cttataacgg tttaatgctt gct
943137917DNAVitis vinifera 137tttttttttt tttttttttt tttttttttt ccagattaaa
cttattgaga tttacatgca 60aataccatca ctaattcagg taagttctta aattgcaaac
atcttccatc acccacgaaa 120tccagttaga accaggaaca ctaatagtct aatacagtcc
agaaacgaca aaatgaaagt 180aaacttcttt ggggcaaaat gcaaacccaa atcattagag
gttgagttgc tgatttaagc 240aactggggga cggagcacat gatcttgtga ggtatcaact
gcagcagggg gcatgaattg 300ccacatagca actcctgggt agccgatgaa tggaaccaac
ttgttgccgc cagcttggcc 360ttgagctgca aatgcagcag ggattgaagg aacgggaggc
aggaaactag gttgagcatt 420cattgctttc agttgctgct ccagtttctc tttctcggcc
tttagccttt gcttctcatc 480acgaagctca ttcttctcag ccttcaattc tttaatcttc
tcctggagac tagaatttga 540gtccttcaac ttctgcgact cacctcgtaa ctgagttacc
attcgaactg catcaatcaa 600aatagaagac ttgtctgttt ttggaggcct tccaggctcc
aggatagaac ccaattccat 660aaacttgtca tttagcctgt ccctccgcaa cttctcccta
catgccttcg agctagatgc 720accacatgat tcagatctca ccctcttctt tgatccagtt
tccttaatgc cgtcagagtc 780cccaaatgaa ccatcaattt ccccactgac attagcagaa
gtgttcaagg cctgcacagg 840agtccaggcg aaccctgaat tcgtattagc gaagtttgaa
tcagggacag ggatgtcctc 900gatgagcccg tactcgt
917138652DNAGlycine max 138tccaaagcgg aaaacagcaa
ttggctgttt gattacccgt tgatcgacga cgacgttatt 60cccgtcggcg actcctcctt
cgccgtctcc gcttccacct tctcctggcc cccacctccc 120gccaatgtca gtgtcgaaat
tgatgcttcg cttggggatt ctgatggcct aaaaaatcct 180gctttgaaga aaaggactaa
atctgattca agtactgctt ctagctccaa agcgtgtcgg 240gagaagttga ggagggatag
gcttaatgac aagtttgttg aattgggctc catcttggag 300cccggaaggc ctcccaaaac
agacaaggct tccattctga ttgatgctgc ccgaatggtg 360acacagctgc gggatgaagc
cctgaagttg aaagactcaa atacgagtct tcaagagaag 420attaaagagt taaaggctga
gaagaatgaa cttcgtgatg agaaacagag gcttaaggca 480gagaaagaga agttggaggt
gcaggtaaaa tcaatgaatg ctcaacctgc tttcttgcca 540ccccctcctg caatccctgc
tgcatttgct ccacaaggcc aagcccctgg caacaagttg 600gtgcctttca tcagctatcc
gggagttgcc atgtggcaat ttatgcctcc gg 652139955DNASolanum
tuberosum 139gatcaattgg aaaccctcat cggagaattt tccgggagaa ttattttttt
catattctgg 60ccggcgattg atcggagatg gtttcaccgg agaacaccaa ctggctttat
gattatggat 120ttgaagatag ttccgtccct gattcgaatt tctcagcttc tgcatctggg
tttaactggc 180ctgtgcagaa tttgaatggt tcaaggaatg ttagttctga aattgatggg
tcgattggtg 240aatcagattg cccaaaggaa agtggttcta agaaacgggc aagggttgaa
tcatgtgctc 300caacaagttc caaagcttgc agagagaaac tgcgaagaga taagctgaat
gacaagttca 360tggaattggg tgcactcctt gagcctggca ggccccccaa aacagacaaa
tccgctattc 420ttgttgatgc tgttcgcatg gtgacccagt tacgtgatga agctcaaaag
ttgaaagact 480caaatttgaa tctgcaagaa aagatcaagg agttaaaggt tgagaaaacc
gagcttcgag 540atgaaaaaca gaggctgaaa gctgaaaagg agaagctaga gcaacaacta
aagactacaa 600gtgcgcaacc tagtttcttg cctcctgcta taccttctgc atttgctgct
catggtcaat 660ttccaggaag caagctggtg ccaatcatga gttaccctgg tgtcgcgatg
tggcaattca 720tgcctcctgc tgctgttgat acttcacagg accatgtcct ccgtcctcca
gttgcttaac 780ttgttgcagc ttaaagccta caaaggttgc cttcactgtc ccgttaaatt
aatcgtctag 840tcaatgtcct tcggttgtat tagatttggc tcaactcccc ttactgtatt
tggtggatga 900tagataactt gtgactttga aacttataac ggttttatgc ttgctttatg
tgtaa 955140792DNACitrus reticulata 140ccttttttgc cgacgaactt
attgaaattt acatgcaaaa gccagcaaca atccactatt 60gacagagaga ttcaaataca
gtcacccacc aatcattaaa gacttcggaa aaactaatac 120agtcagagaa caatgataaa
acgaatacac ttgttgggtg caaattgcaa acccaaatca 180ttgtaggttg catacttaag
caaccggagg acggagtaca tgatcctgtg aggtatccac 240tgcagcagga ggcatgaatt
gccacattgc gactccaggg tagctgatga aaggcatcag 300cttgtttcca ggtgcttggc
cttgggcagc aaatgcagca gggattgcag gaggagttaa 360gaaactgggt tgtgtgctca
tagctttgag ttgctgctct atcttctctt tctctgcctt 420tagcctctgc ttctcatcac
gaagctcatt cttctcagcc ttcaactctt tgatcttctc 480ctggagactt gaatttgagt
ccttcaactt ctgggcttca ctgcgtaatt gagtcaccat 540ccggacggca tcaatcagaa
tagctgcctt atctgttttg gggggccttc caggctctaa 600gatagaggct aactccacaa
acttgtcatt aagacgatcc ctacgcaact tttccctgca 660cgccttggag ctagaagacc
cacatgattc tgatctaacc ctcttttttg agctttcctt 720gagaccattt gaatccccaa
atgcagaatc aatttccaca cagccatttg acggcccgtt 780aattggcggc tg
792141840DNAThellungiella
halophila 141ggcacgaggc ctcgtgccga attcggcacg aggccgaaaa cgctaattgg
atttgcgacc 60tgattgatgc cgactatgga agtttcacaa tccaaggtcc aggtttctct
tggcccgtgc 120agcaacctat tggcgtttct tcaaactcca gcgcgggagt tgatgtctca
gctggaaatt 180cagaagccag caaggaacct ggctccaaaa agaggggtag atgtgaatca
tcctctgcca 240ctggctcaaa agcatgtaga gagaagctgc gacgtgacag attgaatgac
aagtttacgg 300aattgggtgc aattttggag cctgggaatc ctcccaaaac agacaaggct
gcaatcttgg 360ttgatgctgt ccgcatggtg gcacagctac ggggcgaagc ccagaagttg
aaggactcca 420attcaagtct ccaggacaaa atcaaagagt taaagactga gaaaaacgag
ttgcgagatg 480agaaacagag gctgaagaca gagaaagaga agctggagca acagctgaaa
accatgaatg 540ctcctcaacc aagctttttc ccagctccac ctatgatgcc aactgctttt
gcttctgcac 600aaggccaagc tcccggaaac aagatggtgc caatcatcag ttacccagga
gttgccatgt 660ggcagttcat gcctcctgct tcagtcgata cttctcagga tcatgtcctt
cgtccaccag 720ttgcttaact gggagacaaa gacctcagga aaaaaaatca tcaattggtt
tggcttctcg 780cttacgctga aaggaaaggc tccatttgtt ttgcctctct ctttttcggc
tctcttagcc 840142822DNAPopulus tremuloidesmisc_feature(788)..(788)n is
a, c, g, or t 142cggcggctca ccggaacaca cgccgggaac cttgaattcc ggcggagatg
gtgttaccta 60atgaaaatga taactgggtt tttgattgtg ggttgattga ggacatttcg
gtccctggtg 120gtgaccttct tggtcttgaa tctcttgatg aaaccccgaa tgggtctctg
tggtcttctc 180ataatttcac tgattctgcc ttcttaagtg tggaattcaa taattcatat
gagaattcgg 240atggccataa ggaaagtggg tgtcggaaac gagtgaggcc tggatcaagt
aatgcaactg 300gctccaaagc atgtagagag aaactgcggc gggataggct gaacgacagg
ttcatggaat 360tgggtgctct tctagatcct ggaaggcctc ctaaagtgga caaatctgct
atactggttg 420atgctgctcg aatggtgact cagttacgag atgaatctca gaagctgaaa
gagtctaatg 480tgagtctaca ggagaagatc gatgaattga aggcggagaa gaatgagctt
cgtgatgaga 540aacagaggct aaagacagaa aaggagaacc tagagcggca agtgaaagcc
ttgagtgctc 600caccaaactt cctgcctcat ccctctgcca ttccagctcc attttctgcc
ccaggccaag 660ttgttggcag caagatgatg ccctttgttg gttatcctgg aatttctatg
tggcagttca 720tgccccctgc tgttgttgat acctctcagg atcatgttct acgccctcca
gttgcttaag 780ttattcangc agaaatttta tgtctacgtc ctcgcagagc at
822143911DNAVitis vinifera 143atgtgaacgg tggtgtgtga
tggtgaatgg tgccaccgat ccctaaaacc agaaaaaaaa 60agaagaaaaa aacccaaatt
catttctctt ctcaccaccg actttaattt cgccggagaa 120aactccggta tggtatctcc
agaagaagat ccaaattgga tcttcgacta cggcttgatc 180gacgacgttc ctgtcccctc
cctccaagca acctttaatt ggccttctca tgatttcact 240gcttccgtcg ccctcggtgt
ggaatttgat gactcacctg tgaatttgga tgatgtgaag 300gaaaatcact cccggaaaag
gatgaggtct ggactgtgca gcgcgtctgg ctccaaagca 360tgtcgggaga aagtacggag
ggataggctg aatgacaggt tcctagaatt gggttctatc 420ctggagcctg gaagaccccc
taaaatggac aaggctgtta tattaagtga tgctcttaga 480atgatgactc agctgcgtag
tgaaggacag aagctgaaga aatcatgtga ggatctgcaa 540gagaagatca atgaattgaa
ggctgagaag aatgagcttc gtgatgagaa gcagaggctg 600aagacagaga aagagaacat
tgtgcagcaa ataaaagctc tgagtaccca agcaggcttc 660ctgccacacc cttctgcaat
cccagctcca tttgccgctc caggccaagt tgttggcagc 720aagctgatgc ctttcattgg
ctaccctgga gtttccatgt ggcagttcat gccacctgct 780gccgttgata cttcacagga
tcatgttctc cggcccccag ttgcttaaat ttgaaggcgt 840taactgtgga tcttccttcc
ctgtggatcg agcatgattc tatgatctgg gttttcttct 900ggctcttgaa g
911144849DNABrassica napus
144tgttataaga agataacacc ggagaagacc aaagcaacca taagactaag aaagccgaga
60aagaggagag caaaacaaat ggacttttct tgcttttttt ctttttttcc ggrgragcaa
120gaagcaaacc agttgatgat tttcttgagg gtcgtcccag ttaagcaact ggtggacgaa
180ggacgtgatc ctgagaagta tcgactgaag caggaggcat gaactgccac atggcaactc
240ctgggtaact gatgactggc accatcttgt ttccgggagc ttggccttgc gcagaagcaa
300aagcagttgg catcataggt ggggctggga agaagcttgg ttgaggagga gcattcatgg
360ctttcagctg ttgctccagc ttctctttct ctgtcttcag cctctgcttc tcatctcgca
420gctcgttctt ctcggtcttt aactctttga ttttgtcttg aagactcgaa ttggagtcct
480tcaacttctg cgcctcgcca cgtagttgtg taaccatgcg gacagcatcg accaagattg
540cagccttgtc tgtsttggga ggattccccg gctccaaaat tgcacccaat tccataaact
600tgtcattcag cctgtcacgt cgctgcttct ctctacaggc tttagagcta gtggcagagg
660acgattcaca tctcgccctc tttttggagc aggttccttg gtggcttctg aatttccagc
720tgagcatcac tchagactgg aacgccatag gtgctggtga gaggcaggag agcaggcttg
780aatgtgaact tcatagtctg cgtygatcaw tcggtatcaa tagcgtttcg gggcacatct
840ctcaactca
849145852DNAVitis vinifera 145tttttttttt tttttttttt tttttttttc gtaatgtaag
ttgccagatt aaacttattg 60agatttacat gcaaatacca tcactaattc aggtaagttc
ttaaattgca aacatcttcc 120atcacccacg aaatccagtt agaaccagga acactaatag
tctaatacag tccagaaacg 180acaaaatgaa agtaaacttc tttggggcaa aatgcaaacc
caaatcatta gaggttgagt 240tgctgattta agcaactggg ggacggagca catgatcttg
tgaggtatca actgcagcag 300ggggcatgaa ttgccacata gcaactcctg ggtagccgat
gaatggaacc aacttgttgc 360cgccagcttg gccttgagct gcaaatgcag cagggattga
aggaacggga ggcaggaaac 420taggttgagc attcattgct ttcagttgct gctccagttt
ctctttctcg gcctttagcc 480tttgcttctc atcacgaagc tcattcttct cagccttcaa
ttctttaatc ttctcctgga 540gactagaatt tgagtccttc aacttctgcg actcacctcg
taactgagtt accattcgaa 600ctgcatcaat caaaatagaa gacttgtctg tttttggagg
ccttccaggc tccaggatag 660aacccaattc catagacttg tcatttagcc tgtccctccg
caacttctcc ctacatgcct 720tcgagctaga tgcaccacat gattcagatc tcaccctctt
ctttgatcca gtttccttaa 780tgccgtcaga gtccccaaat gaaccatcaa tttccccact
gacattagca gaagtgttca 840aggcctgcac ag
852146837DNAGossypium
raimondiimisc_feature(831)..(831)n is a, c, g, or t 146caccaatcct
ctgtgtcccg ccctttgttc ttatttttct ctcttgccaa acagaaactc 60cattttcttt
gccaaaagcc ggaaatcaaa ccaaaccctt ccggctaaaa gcaaattcag 120tggagaatgg
tatcacctga aaacaccaat tattggtcta gcttcgatta tgcaaccttg 180atcaacgata
tccctgcccc tgacggacct tattccggat tttcttggcc cactcggcca 240atcaatgcat
cttctaatgt tttcagtgtg gaaactgacg gctcgtttga ggattcagat 300ggccttaagg
aatctggttc aaagaagaga gttagatctg agtcttgcaa tgtttcaagc 360tccaaagcat
gcagggagaa gttgcgtagg gataagctaa atgagaagtt tatggagctg 420agttctattt
tggaacctga aaagcctccc aagacagaca aggctgctat tttggttgat 480gctgtccgaa
tggtaaccca gttacgaggt gaagcccaga aattgaagga ttcaatttca 540agtctccatg
acaggattaa agaattgaag gctgaaaaga atgaacttcg tgatgaaaag 600caaaggctga
aggccgagaa ggaaaagctg gagcaacagc tgaaggccat gaattcacaa 660cccagcttca
tgcctcctgc acctgcattc cctgctgcat ttgctactgc ccaaggtcaa 720gttccaggaa
acaagttggt tcctttcttt ggttatcctg gagttgccat gtggcagttt 780atgctgcctg
cgtcgttaga cacctcagag gatcatgtac tccgccctcc ngttgcc
837147806DNAPopulus tremuloides 147cggcggctca ccggaacaca cgccgggaac
cttgaattcc ggcggagatg gtgttaccta 60atgaaaatga taactgggtt tttgattgtg
ggttgattga ggacatttcg gtccctggtg 120gtgaccttct tggtcttgaa tctcttgatg
aaaccccgaa tgggtctctg tggtcttctc 180ataatttcac tgattctgcc ttcttaagtg
tggaattcaa taattcatat gagaattcgg 240atggccataa ggaaagtggg tgtcggaaac
gagtgaggcc tggatcaagt aatgcaactg 300gctccaaagc atgtagagag aaactgcggc
gggataggct gaacgacagg ttcatggaat 360tgggtgctct tctagatcct ggaaggcctc
ctaaagtgga caaatctgct atactggttg 420atgctgctcg aatggtgact cagttacgag
atgaatctca gaagctgaaa gagtctaatg 480tgagtctaca ggagaagatc gatgaattga
aggcggagaa gaatgagctt cgtgatgaga 540aacagaggct aaagacagaa aaggagaacc
tagagcggca agtgaaagcc ttgagtgctc 600caccaaactt cctgcctcat ccctctgcca
ttccagctcc attttctgcc ccaggccaag 660ttgttggcag caagatgatg ccctttgttg
gttatcctgg aatttctatg tggcagttca 720tgccccctgc tgttgttgat acctctcagg
atcatgttct acgcccctca gttgcttaag 780ttattcaggc agggatttta tgtcta
806148598DNAPrunus dulcis 148caaaaaagag
ggtcagaact gaatcatgca gtggatctag ttccaaggca tgcagggaga 60agttgcgaag
ggataggcta aacgacaagt ttctcgaatt gggctctata ttggagcctg 120gaaggccccc
caagactgac aaggctgcta tattggtgga tgctgtccga atggtgaatc 180agttacgcgg
tgaagcccaa aagttgaagg actcaaattc aagcctccag gagaagatca 240aggaattgaa
ggcagagaag aatgaacttc gtgatgagaa gcagaggttg aagttagaga 300aagagaagtt
ggagcagcaa ctgaaggcca tgaatgcaca gccaggcttc ttgcctcccc 360ctcctgcaat
tcctgctgca tttgctgccc aaggccaagc tcacggcaac aagctggtgc 420ctttcattgg
ataccctggg gttgccatgt ggcagttcat gccacctgcc tcagtggata 480cttcgcagga
tcatgtactc cgcccaccag ttgcttaagt tggcaagatc taagatgatt 540cggctgattt
gggataacat tttgtcccca acatgtttat tgtcctgtca ttgctctt
598149568DNAGlycine max 149cctgctttga agaaaaggac taaatctgat tcaagtactg
cttctagctc caaagcgtgt 60cgggagaagt tgaggaggga taggcttaat gacaagtttg
ttgaattggg ctccatcttg 120gagcccggaa ggcctcccaa aacagacaag gcttccattc
tgattgatgc tgcccgaatg 180gtgacacagc tgcgggatga agccctgaag ttgaaagact
caaatacgag tcttcaagag 240aagattaaag agttaaaggc tgagaagaat gaacttcgtg
atgagaaaca gaggcttaag 300gcagagaaag agaagttgga ggtgcaggta aaatcaatga
atgctcaacc tgctttcttg 360ccaccccctc ctgcaatccc tgctgcattt gctccacaag
gccaagcccc tggcaacaag 420ttggtgcctt tcatcagcta tccgggagtt gccatgtggc
aatttatgcc tccggccgcc 480gtggatacct cacaggatca tgtactccgt ccaccggttg
cctaagttgg cattgtacaa 540ttatttgggc ttccattttg gctcaaaa
568150708DNAMedicago truncatula 150atagaaaact
aacaaagcaa gaaggtattg gtgataggat acaatcttga gctaaaatgg 60aagcccggag
aattgcacag agccagctta ggcaactgga ggacgaagta catgatcctg 120tgaggtatcc
actgcagcag gtggcataaa ttgccacatt gcaactccag gataactaat 180aaagggtacc
aatttgttgc catgggcttg gccttgtgca gcaaatgccg cagggagtgc 240agtgggggta
ggcaagaaac taggaggtgc attcatagat ttcagctgct gctccaactt 300ctctttctct
gccttgagcc tctgtttctc gtcacggagt tcgttcttct caacctttaa 360ctctttaatc
ttttcttgaa gacccgagtt ggcatctttc aacttttggg cttcacccct 420taactgtgtc
accattcgga cagcatcaat caggatggca gccttgtctg ttttggcagg 480ccttccaggc
tccaaaatgg agcccaattc aataaacttg tcgttaagcc tatctctacg 540caacttctcc
cgacatgctt tggagctagt agcagcacat gactcagatc taaccctctt 600ctttgaacca
gactctttga gaccgtcaga atcccctatg agcccatcac ttcagcactg 660acattggaaa
aaaggttgaa ggggggctga attggccagg tgaaagcg
708151797DNAMedicago truncatula 151ttaattcata agtattcata agccaaatac
aaacggaagc cactgggtcc agttagaata 60gatagaaaac taacaaagca agaaggtatt
ggtgatagga tacaatcttg agctaaaatg 120gaagcccgga gaattgcaca gagccagctt
aggcaactgg aggacgaagt acatgatcct 180gtgaggtatc cactgcagca ggtggcataa
attgccacat tgcaactcca ggataactaa 240taaagggtac caatttgttg ccatgggctt
ggccttgtgc agcaaatgcc gcagggagtg 300cagtgggggt aggcaagaaa ctaggaggtg
cattcataga tttcagctgc tgctccaact 360tctctttctc tgccttgagc ctctgtttct
cgtcacggag ttcgttcttc tcaaccttta 420actctttaat cttttcttga agacccgagt
tggcatcttt caacttttgg gcttcacccc 480ttaactgtgt caccattcgg acagcatcaa
tcaggatggc agccttgtct gttttggcag 540gccctccagg ctccaaaatg gagcccaatt
caataaactt gtcgttaagc ctatctctac 600gcaacttctc ccgacatgct ttggagctag
tagcagcaca tgactcagat ctaaccctct 660tctttgaacc agactctttg agaccgtcag
aatcccctaa tgagccatca acttcagcac 720ccattctcat gtcaacagca tcagtccatg
gaaagttgca ctgtttgaag ttagacagcg 780tacccctatc tcactaa
797152524DNAGlycine max 152agggctagat
gtgattcaag tactgcttct agctctaaag cgtgtcggga gaagttgcgg 60agggataggc
ttaatgacaa atttgttgaa ttgggctcca tcttggagcc tggaaggcct 120cccaaaacag
acaaggctgc cattctgatt gatgctgccc gaatggtaac acagctgcgg 180gatgaagccc
tgaagttgaa agactcaaat acgagtcttc aagagaagat taaagagtta 240aaggctgaga
agaatgaact tcgtgacgag aaacagaggc ttaaggcaga gaaagagaag 300ttggagatgc
aggtaaaatc aatgaatgct caacctgctt tcttgccacc ccctcctgca 360atccctgctg
catttgctcc acaaggccaa gcccccggca acaagttgat gcctttcatc 420aggtacccgg
gagttgccat gtggcaattt atgcctccgg ccaccatgga tacctcccag 480gatcatgttc
tccgtccacc agttgcctaa gttggcattg taca
524153738DNAVitis vinifera 153cgcaagtgtt tgttccaaag atgtacttgg cttacttcaa
cagttgattt aaaaacatac 60aacaatcata tttgcttatt gtattttaca tgcaatcagc
agaaatccaa gggagtcatt 120ggtttctgat aacaatgaca aagtaaaata gacgaggaac
tctttgggca ctgagaatgt 180agaccaacca ttgatgtcct ccaacttaag ccactggggg
acggagaaca tgatcctgtg 240atgtgtcaac tgcagcaggt ggcatgaatt gccacatggc
aacactaggg taaccaatga 300aaggcatcag cttgttgcca ggagctcggc cttgggcagc
aaatgcagct ggcattgcag 360aaggatgagg cagaaagcct ggctgtgcac taatggcttt
gacttgctgc tccagcttct 420ccttttcggc ttttaacctt tgcttctcat cccgaagctc
atttttctca gccttcaact 480ccttaatctt ctcttgcaaa tccccatttg actccttcag
cttctgtgct tcacttcgta 540attgagtcac cattcgaaca gcatcactca gaatagcagc
cttgtccgtt ttgggtggcc 600ttccaggctc caagatagaa cccaattcca agaacctctc
attcagccta tccctccgca 660atttttcccg gcaagctttg gtgccagttg caccacatga
gattcatgct tcaaccgttt 720tcggggtcca agttcttt
738154559DNAGlycine soja 154tgatggctcg ttgggggatt
ctgacagtct caaagagtct ggctcaaaga aaagggttag 60gtctgagtca tgtgctgctt
ctggctccaa ggcatgtcgg gagaagttga gaagggatag 120gcttaatgac aagtttgttg
aattgggcgc cattttggag cctggaaggc ctgccaaaac 180agacaaggct gctatcctga
ttgatgctgt ccgaatggtg acccagttac ggggtgaagc 240ccagaagttg aaagacacta
atcagggtct tcaagaaaag attaaagagt taaaggctga 300gaagaacgaa cttcgcgatg
agaaacagag gctcaaggca gagaaggaga aactggagca 360gcagctgaaa tctttgaatg
cacagcctag tttcatgcct ccccctgctg caatgcctgc 420tgcatttgcg gcacaaggcc
aagcccatgg caacaagttg gtacctttta ttagttattc 480cggaagttgc atgtggcaat
tcatgccacc tgctgcagtg gatacctcac aggatcatgt 540tctccgtcca ccagtttcc
559155943DNASolanum
tuberosum 155gtgggaatcc taattggtta tttgattatg agttgataac ggatattact
tctgctgctt 60ctgttaccgt cactgatttt cagtctccgg ctactattga tttcagctgg
cctgctcaaa 120caatctatgc ttcctctaat ctcattgctg aaacagatta cacatttgcg
gattcagaag 180tcagtaagga ggcaagctca cgaaagaggt taaaaagtga atggtgcagc
tctccgagat 240ctaaggcatg ccgagagaaa ttgcggaggg acagactgaa tgagaggttc
ctcgaattga 300gctctgtcct tgatcctgga aggccaccaa aaactgagaa agttgcaatt
ctgagtgatg 360ctcaaaggat gctgattgag ctgcgaactg aaacccagaa gctgaaggag
tcaaatgagg 420agctgcaaga gaagataaaa gaacttaagg cagagaagaa tgagctccgt
gatgaaaagc 480gaaggctaaa ggaagaaaag gagaatttgg agcagcaggt taaaagctta
gcttctaaac 540caggatttct ctcccatcct tctgccgtgg gagctgcatt tactgcacaa
ggacaagtcg 600ctgcaggcaa caaattgatg cctttcattg gttatcccag tgttgcaatg
tggcaattca 660tgcaacctgc tgttgttgac acatctcaag atcatgtgct ccgtcctcca
gttgcttaaa 720ctgaatttgc caggtgactt gctactggaa ctttgttctt tttgttgctc
ctgtgagtgc 780taaaggtgac aaacaactga gacaatttgc tggttgtatt tatatgtcta
gcttttatgt 840atgagtcagt cttgatgatt tgctaaatca tgtatatgac gggtatatac
tcacccgaaa 900aacagttacg tattatgatt ccctagatgg gactccttct gaa
943156831DNAGossypium raimondii 156ctcccaccaa tcctctgtgt
cccgccctct ttttttagtt ttctctcttg ccaaacagaa 60actccattct tttttgccaa
aagccggaaa tcaaaccaaa cccttccggc taaaagcaaa 120ttcagtggag aatggtatca
cctgaaaaca ccaattattg gtctagcttc gattatgcaa 180ccttgatcaa cgatatccct
gcccctgacg gaccttattc cggattttct tggcccactc 240ggccaatcaa tgcatcttct
aatgttttca gtgtggaaat tgacggctcg tttgaggatt 300cagatggcct taaggaatct
ggttcaaaga agagagttag atctgagtct tgcaatgttt 360caagctccaa agcatgcagg
gagaagttgc gtagggataa gctaaatgag aagtttatgg 420agctgagttc tattttggaa
cctgaaaagc ctcccaagac agacaaggct gctattttgg 480ttgatgctgt ccgaatggta
acccagttac gaggtgaagc ccagaaattg aaggattcaa 540tttcaagtct ccatgacagg
attaaagaat tgaaggctga aaagaatgaa cttcgtgatg 600aaaagcaaag gctgaaggcc
gagaaggaaa agctggagca acagctgaag gccatgaatt 660cacaacccag cttcatgcct
cctgcacctg cattccctgc tgcatttgct actgcccaag 720gtcaagttcc aggaaacaag
ttggttcctt tctttggtta tcctggagtt gccatgtggc 780agtttatgct gcctgcgtcg
ttagacacct cagaggatca tgtactccgc c 831157791DNAVitis
viniferamisc_feature(725)..(725)n is a, c, g, or t 157catttttccc
actcggattc ccttttctcc ctcgagaaaa cccccctttt ctctctcccc 60aaacacccta
acgcgctcct ccctctcccg ggaaattgca ccgggcctcc tcgatttttc 120ggaggttcct
tcgagatggt ttctccagaa gccaccaatt ggctgtacga gtacgggctc 180atcgaggaca
tccctgtccc tgattcaaac ttcgctaata cgaattcagg gttcgcctgg 240actcctgtgc
aggccttgaa cacttctgct aatgtcagtg gggaaattga tggttcattt 300ggggactctg
acggcattaa ggaaactgga tcaaagaaga gggtgagatc tgaatcatgt 360ggtgcatcta
gctcgaaggc atgtagggag aagttgcgga gggacaggct aaatgacaag 420tctatggaat
tgggttctat cctggagcct ggaaggcctc caaaaacaga caagtcttct 480attttgattg
atgcagttcg aatggtaact cagttacgag gtgagtcgca gaagttgaag 540gactcaaatt
ctagtctcca ggagaagatt aaagaattga aggctgagaa gaatgagctt 600cgtgatgaga
agcaaaggct aaaggccgag aaagagaaac tggagcagca actgaaagca 660atgaatgctc
aacctagttt cctgcctccc gttccttcaa tccctgctgc atttgcagct 720caagnccaag
ctggcggcaa caagttggtt ccattcatcg gctacccagg agttgctatg 780tggcaattca t
791158693DNALycopersicon esculentum 158catcttctgg ccggcgactg atcggagatg
gtttcaccgg agagtaccaa ttggctttat 60gattacggat tcgaagatag ttgcgtccct
gattcgaatt tctcagcttc tgcatctggg 120tttaactggt ctgtgcagaa tttgaatggt
tcaaggaatg ttagttctga aatcgatggg 180tcaattggtg aatcagatta ccccaaggaa
agtggttcta agaaacgggc aagggttgaa 240tcatgtgctc caacaagttc caaagcttgc
agagagaaac tgcgaagaga taggctgaat 300gacaagttca tggaattggg tgcactcctt
gagcctggaa gaccccctaa aacagacaaa 360tccgctattc ttgttgatgc tgttcgcttg
gtgacccagt tacgtgatga agctcaaaag 420ttgaaagact caaacttgaa tctgcaagaa
aagatcaagg agttaaaggt tgagaaaacc 480gagcttcgag atgaaaaaca caggctgaaa
gctgaaaagg agaagctaga gcaacaacta 540aagactacaa gtgcacggcc tagttacttg
cctcctgcta taccttctgc atttgctgct 600catggtcaat ttccaggaag caagctggtg
ccaatcatga gttacccctg tgtcccgatg 660tggcaattca tgcctcctgc tgctgttgat
act 693159877DNAPinus taeda 159ctggacacct
cgaatctcct ccggtcattt tttgttttga cagggccggt ttggtgatta 60gggtttcaga
taacaggagg acaagtgttc gaattcgaga gaagccagaa tgagctctcc 120gcagagcaat
aagtggctgt catatttcga cgagccattg ttggatgatg taggcgtggg 180gcagccggcc
aatccattct tctggtgcgg tcagggcata aatgatcagc ccgacgtaag 240tggtagtgta
gaaattgatg gccccaataa ggacatggac gagcaagata aattatgtcc 300tagaaagagg
tcacgggaag aatctagtgg gggacctggg tcaaaagctt gccgtgagaa 360gatgcggagg
gacagactta atgataggtt catggagcta agctctgtgt tagaaccggg 420taggcctccc
aagacggcag acaaagccac aattttgtct gatgctgcac gtgttatgac 480ccagctacga
actgaggcgc agaacctgaa agctgagaat gaacgactgc aggaagccat 540taaagatctg
aaggcagaga aaaatgaact tcgtgatgaa aagctgagaa tgaaagcaga 600aaaggaaaaa
ttggagcaac aagtaaaagc aatggctttg cccacaggct ttgtgccgca 660tcctgcagca
tttcatgcgg ctgctgcttt tgcagcccaa agtcaagcag cagcaaacaa 720aactatgcct
gttccaggat atcctggaat ggcaatgtgg caatggatgc ctccagctgt 780ggttgatact
tcgcaggatc atgtgctaag gcctcctgtt gcttgaagca ggctcttatt 840ttatattcca
aactggtgct actatttctt tggccct
87716025PRTArtificialplant consensus 160Xaa Xaa Cys Xaa Val Cys Xaa Xaa
Xaa Xaa Xaa Xaa Tyr Gln Ala Leu1 5 10
15Gly Gly His Lys Xaa Ser His Arg Xaa 20
2516125PRTArtificialdicotyledonous consensus 161Xaa Xaa Cys Xaa
Val Cys Xaa Lys Xaa Phe Xaa Ser Tyr Gln Ala Leu1 5
10 15Gly Gly His Lys Xaa Ser His Arg Xaa
20 2516225PRTArtificialmonocotyledonous consensus
162Xaa Xaa Cys Ser Val Cys Gly Xaa Xaa Xaa Xaa Ser Tyr Gln Ala Leu1
5 10 15Gly Gly His Lys Xaa Ser
His Arg Xaa 20 25163228PRTLolium perenne
163Met Ala Val Glu Ala Val Leu Glu Ala Ala Ala Met Ile Gln Ser Pro1
5 10 15Pro Ser Lys Lys Met Glu
Ala Ser Ser Ser Ser Asp Glu Ala Phe Glu 20 25
30Ala Leu Gln Gln His Thr Glu Gly Trp Ser Lys Lys Lys
Arg Ser Arg 35 40 45Arg Pro Arg
Ala Leu Glu Pro Ser Glu Glu Glu Tyr Leu Ala Phe Cys 50
55 60Leu Val Met Leu Ala Arg Gly His Arg Asp Ala Ala
Pro Glu His Gly65 70 75
80Cys Ser Val Cys Gly Lys Ala Phe Ala Ser Tyr Gln Ala Leu Gly Gly
85 90 95His Lys Ala Ser His Arg
Lys Pro Pro Thr Ala Pro Ala Ala Val Ala 100
105 110Ala Ser Ala Val Pro Glu Glu Asp Lys Pro Arg Ala
Ala Ala Ser Ser 115 120 125Ser Ser
Gly Ser Gly Asp Ala Ala Gly Gly Gly Lys Val His Glu Cys 130
135 140Asn Val Cys Gln Lys Thr Phe Pro Thr Gly Gln
Ala Leu Gly Gly His145 150 155
160Lys Arg Cys His Tyr Asp Gly Thr Ile Gly Ser Ala Ala Ala Pro Thr
165 170 175Val Lys Ala Ala
Lys Ala Ala Ala Ala Ala Ser Ala Pro Thr Ala Thr 180
185 190Asn Arg Gly Phe Asp Leu Asn Val Pro Ala Leu
Pro Gly Leu Ala Glu 195 200 205Glu
Gly Glu Glu Val Leu Ser Pro Val Ser Phe Lys Lys Pro Arg Leu 210
215 220Met Ile Thr Ala225164250PRTOryza sativa
164Met Ala Val Glu Ala Val Leu Glu Ala Ser Arg Ser Ser Ser Glu Glu1
5 10 15Glu Ala Glu Val Ile Val
Thr His Gly Gly Gly Gly Gly Gly Gly Gly 20 25
30Gly Gly Gly Gln Val Glu Gly Trp Gly Lys Arg Lys Arg
Ser Arg Arg 35 40 45Arg Arg Pro
Gln Leu Pro Pro Ser Glu Glu Glu Tyr Leu Ala Leu Cys 50
55 60Leu Leu Met Leu Ala Arg Gly Arg Arg Asp Gly Asp
Asp Val Ala Ala65 70 75
80Ser Ala Ser Ala Ala Ala Ala Ala Val Glu His Arg Cys Ser Val Cys
85 90 95Gly Lys Ala Phe Ala Ser
Tyr Gln Ala Leu Gly Gly His Lys Ala Ser 100
105 110His Arg Lys Pro Pro Pro Pro Pro Pro Pro Ala Met
Val Asp Asp Asp 115 120 125Glu Val
Val Val Glu Thr Lys Pro Ala Ala Ile Ala Thr Pro Ser Ser 130
135 140Ser Ala Ser Gly Val Ser Gly Gly Gly Gly Gly
Arg Ala His Glu Cys145 150 155
160Asn Val Cys Gly Lys Ala Phe Pro Thr Gly Gln Ala Leu Gly Gly His
165 170 175Lys Arg Cys His
Tyr Asp Gly Thr Ile Gly Ser Ala Ala Gly Ala Gly 180
185 190Ala Ser Lys Pro Ala Ala Lys Thr Thr Val Ala
Val Ala Ala Ser Arg 195 200 205Gly
Phe Asp Leu Asn Leu Pro Ala Leu Pro Asp Val Ala Ala Ala Ala 210
215 220Asp Gln Arg Cys Ala Ala Glu Asp Asp Glu
Val Leu Ser Pro Leu Ala225 230 235
240Phe Lys Lys Pro Arg Leu Met Ile Pro Ala 245
250165238PRTOryza sativa 165Met Ala Val Glu Glu Val Leu Asp
Gly Ala Ala Pro Met Leu Ser Ser1 5 10
15Ser Pro Ala Ala Ser Gly Glu Glu Val Gly Ala Arg Lys Pro
Gln Gln 20 25 30Arg Cys Gly
Gly Ala Glu Gly Trp Ser Lys Arg Lys Arg Ser Arg Arg 35
40 45Arg His Arg Asp Arg Ala Ala Ala Pro Pro Pro
His Gly Ser Glu Glu 50 55 60Glu His
Leu Ala Leu Ser Leu Leu Met Leu Ala Arg Gly His Arg Asp65
70 75 80Pro Ser Pro Ala Pro Gln Glu
Gln His Gly Cys Ser Val Cys Gly Arg 85 90
95Val Phe Ser Ser Tyr Gln Ala Leu Gly Gly His Lys Thr
Ser His Arg 100 105 110Pro Arg
Thr Pro Pro Thr Met Ala Ala Val Val Val Val Asp Glu Pro 115
120 125Ala Ala Thr Thr Ala Ser Pro Ala Ala Ser
Ser Ser Asn Ser Gly Ser 130 135 140Gly
Ser Gly Gly Gly Gly Gly Asn Lys Val His Glu Cys Ser Val Cys145
150 155 160Lys Lys Thr Phe Pro Thr
Gly Gln Ala Leu Gly Gly His Lys Arg Cys 165
170 175His Tyr Glu Gly Pro Ile Gly Ser Gly Gly Gly Ala
Ala Val Ala Gly 180 185 190Arg
Gly Phe Asp Leu Asn Leu Pro Ala Val Ala Leu Pro Asp Ile Met 195
200 205Thr Glu Arg Cys Leu Pro Ala Ala Ala
Glu Glu Glu Glu Val Leu Ser 210 215
220Pro Leu Ala Ser Phe Lys Lys Pro Arg Leu Met Ile Pro Ala225
230 235166261PRTTriticum aestivum 166Met Ser Ser Ser
Ala Met Glu Ala Leu His Ala Leu Ile Pro Glu Gln1 5
10 15His Gln Leu Asp Val Glu Ala Ala Ala Ala
Val Ser Ser Ala Thr Ser 20 25
30Gly Glu Glu Ser Gly His Val Leu Gln Gly Trp Ala Lys Arg Lys Arg
35 40 45Ser Arg Arg Gln Arg Ser Glu Glu
Glu Asn Leu Ala Leu Cys Leu Leu 50 55
60Met Leu Ser Arg Gly Gly Lys Gln Arg Val Gln Ala Pro Gln Pro Glu65
70 75 80Ser Phe Ala Ala Pro
Val Pro Ala Glu Phe Lys Cys Ser Val Cys Gly 85
90 95Lys Ser Phe Ser Ser Tyr Gln Ala Leu Gly Gly
His Lys Thr Ser His 100 105
110Arg Val Lys Gln Pro Ser Pro Pro Ser Asp Ala Ala Ala Ala Pro Leu
115 120 125Val Ala Leu Pro Ala Val Ala
Ala Ile Leu Pro Ser Ala Glu Pro Ala 130 135
140Thr Ser Ser Thr Ala Ala Ser Ser Asp Gly Ala Thr Asn Arg Val
His145 150 155 160Arg Cys
Ser Ile Cys Gln Lys Glu Phe Pro Thr Gly Gln Ala Leu Gly
165 170 175Gly His Lys Arg Lys His Tyr
Asp Gly Gly Val Gly Ala Ala Ala Ser 180 185
190Ser Thr Glu Leu Leu Ala Ala Ala Ala Ala Glu Ser Glu Val
Gly Ser 195 200 205Thr Gly Asn Gly
Ser Ser Ala Ala Arg Ala Phe Asp Leu Asn Ile Pro 210
215 220Ala Val Pro Glu Phe Val Trp Arg Pro Cys Ala Lys
Gly Lys Met Met225 230 235
240Trp Glu Asp Asp Glu Glu Val Gln Ser Pro Leu Ala Phe Lys Lys Pro
245 250 255Arg Leu Leu Thr Ala
260167269PRTOryza sativa 167Met Ser Ser Ala Ser Ser Met Glu Ala
Leu His Ala Ala Val Leu Lys1 5 10
15Glu Glu Gln Gln Gln His Glu Val Glu Glu Ala Thr Val Val Thr
Ser 20 25 30Ser Ser Ala Thr
Ser Gly Glu Glu Gly Gly His Leu Pro Gln Gly Trp 35
40 45Ala Lys Arg Lys Arg Ser Arg Arg Gln Arg Ser Glu
Glu Glu Asn Leu 50 55 60Ala Leu Cys
Leu Leu Met Leu Ala Arg Gly Gly His His Arg Val Gln65 70
75 80Ala Pro Pro Pro Leu Ser Ala Ser
Ala Pro Pro Pro Ala Gly Ala Glu 85 90
95Phe Lys Cys Ser Val Cys Gly Lys Ser Phe Ser Ser Tyr Gln
Ala Leu 100 105 110Gly Gly His
Lys Thr Ser His Arg Val Lys Leu Pro Thr Pro Pro Ala 115
120 125Ala Pro Val Leu Ala Pro Ala Pro Val Ala Ala
Leu Leu Pro Ser Ala 130 135 140Glu Asp
Arg Glu Pro Ala Thr Ser Ser Thr Ala Ala Ser Ser Asp Gly145
150 155 160Met Thr Asn Arg Val His Arg
Cys Ser Ile Cys Gln Lys Glu Phe Pro 165
170 175Thr Gly Gln Ala Leu Gly Gly His Lys Arg Lys His
Tyr Asp Gly Gly 180 185 190Val
Gly Ala Gly Ala Gly Ala Ser Ser Thr Glu Leu Leu Ala Thr Val 195
200 205Ala Ala Glu Ser Glu Val Gly Ser Ser
Gly Asn Gly Gln Ser Ala Thr 210 215
220Arg Ala Phe Asp Leu Asn Leu Pro Ala Val Pro Glu Phe Val Trp Arg225
230 235 240Pro Cys Ser Lys
Gly Lys Lys Met Trp Asp Glu Glu Glu Glu Val Gln 245
250 255Ser Pro Leu Ala Phe Lys Lys Pro Arg Leu
Leu Thr Ala 260 265168220PRTOryza sativa
168Met Ala Leu Asp Gly Lys Pro Pro Val Pro Pro Pro Ser Thr Pro Pro1
5 10 15Met Asp Ser Trp Ala Cys
Gly Gly Arg Arg Ser Lys Arg Arg Gly Gly 20 25
30Gly Gly Gly Ser Ser Gly Ser Ser Gly Ser Ser Gly Gly
Gly Gly Gly 35 40 45Gly Glu Ser
Glu Glu Glu Tyr Leu Ala Ala Cys Leu Leu Met Leu Ala 50
55 60His Gly Val Arg Asp Glu Ala Glu Val Val Gly Val
Ala Ala Ala Thr65 70 75
80Ala Lys Pro Gln His Gly Tyr Glu Cys Ser Val Cys Gly Lys Val Tyr
85 90 95Gly Ser Tyr Gln Ala Leu
Gly Gly His Lys Thr Ser His Arg Lys Pro 100
105 110Pro Ser Pro Ala Ala Glu Pro Ala Ala Gly Glu Glu
Pro Ser Ser Gly 115 120 125Gly Val
Ala Gly Glu Ala Lys Val His Arg Cys Ser Ile Cys Leu Arg 130
135 140Thr Phe Pro Ser Gly Gln Ala Leu Gly Gly His
Lys Arg Leu His Tyr145 150 155
160Glu Gly Gly Ala Val Gly Asp Ala Val Lys Glu Lys Asn Ser Leu Lys
165 170 175Thr Lys Ala Ala
Val Ala Thr Ala Val Leu Lys Asp Phe Asp Leu Asn 180
185 190Leu Pro Ala Ala Ala Thr Thr Ala Gly Asp Glu
Ala Glu Ser Ser Pro 195 200 205Pro
Glu Ala Lys Arg Ala Arg Leu Leu Leu Leu Val 210 215
220169189PRTAegilops speltoides 169Met Ala Val Asp Ala Val
Arg Asp Ala Ala Ala Met Val Ser Glu Glu1 5
10 15Glu Glu Glu Gly Gln Leu Arg Cys Asp Glu Gly Trp
Gly Lys Arg Arg 20 25 30Arg
Pro Arg Arg Gln Arg Gln Arg Ala Pro Ser Glu Glu Glu His Leu 35
40 45Ala Leu Ser Leu Leu Met Leu Ala Arg
Gly His Arg Asp Arg His Leu 50 55
60Leu Gly Ser Ser Glu Pro Ala Gln Glu His Arg Cys Ser Val Cys Gly65
70 75 80Lys Gly Phe Pro Ser
Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His 85
90 95Arg Pro Lys Pro Ala Pro Ala Gly Ala Asp Glu
Pro Ala Ala Thr Thr 100 105
110Ala Ala Ser Pro Ala Ala Ser Ser Ser Thr Thr Ser Ser Gly Ala Gly
115 120 125Gly Gly Gly Arg Val His Glu
Cys Ser Val Cys Lys Lys Thr Phe Pro 130 135
140Thr Gly Gln Ala Leu Gly Gly His Lys Arg Cys His Tyr Glu Gly
Pro145 150 155 160Ile Gly
Ala Thr Val Val Ala Ser Arg Gly Phe Asp Leu Asn Leu Pro
165 170 175Ala Leu Pro Asp Ile Val Thr
Glu Arg Glu Arg Cys Met 180 185170184PRTSecale
cereale 170Arg Arg Arg Pro Arg Arg Gln Arg Gln Arg Ala Pro Ser Glu Glu
Glu1 5 10 15His Leu Ala
Leu Ser Leu Leu Met Leu Ala Arg Gly His Arg Asp Arg 20
25 30His Leu Pro Pro Ser Ser Glu Pro Ala Gln
Glu His Arg Cys Ser Val 35 40
45Cys Gly Lys Gly Phe Pro Ser Tyr Gln Ala Leu Gly Gly His Lys Ala 50
55 60Ser His Arg Pro Lys Pro Ala Pro Ala
Gly Ala Asp Glu Pro Ala Ala65 70 75
80Thr Ala Ala Ala Ser Pro Ala Ala Ser Ser Ser Thr Thr Ser
Ser Gly 85 90 95Ala Gly
Val Lys Val His Glu Cys Ser Val Cys Lys Lys Thr Phe Pro 100
105 110Thr Gly Gln Ala Leu Gly Gly His Lys
Arg Cys His Tyr Glu Gly Pro 115 120
125Ile Gly Gly Gly Gly Ala Pro Ala Val Ala Ser Arg Gly Phe Asp Leu
130 135 140Asn Leu Pro Ala Leu Pro Asp
Ile Val Thr Glu Arg Glu Arg Cys Met145 150
155 160Pro Ala Pro Ala Asp Glu Glu Glu Val Leu Ser Pro
Leu Ala Phe Lys 165 170
175Lys Pro Arg Leu Met Ile Pro Ala 180171200PRTSaccharum
officinarum 171Asp Val Val Ala Ala Ala Ala Asp Gln Val Ala Thr Thr Ser
Asn Ser1 5 10 15Ser Gly
Thr Ala Ala Glu Glu Asp Lys Asp Val Lys Thr Ala Val Gln 20
25 30Gln Glu His Gly Gln Gly Leu Ala Lys
Arg Lys Arg Ser Arg Arg Arg 35 40
45Arg Asp Arg Glu Gln Gln Gln Leu Pro Lys Glu His Pro Thr Gln Glu 50
55 60Glu Tyr Leu Ala Gln Cys Leu Val Met
Leu Ala Thr Gly Arg Arg Asp65 70 75
80Gly Asp Val Pro Ala Leu Ala Ser Ala Pro Pro Pro Pro Gln
Gly Gln 85 90 95Gln Gln
Asp His Ala Cys Ser Val Cys Gly Lys Ala Phe Pro Thr Tyr 100
105 110Gln Ala Leu Gly Gly His Lys Ala Ser
His Arg Thr Arg Pro Ser Pro 115 120
125Pro Ser Ala Ala Thr Glu Val Val Gly Asp His His Glu Glu Gln Lys
130 135 140Pro Val Leu Pro Ser Ser Ser
Ser Ala Ala Ser Ala Gly Ala Asp Asn145 150
155 160Asn Lys Pro Ala Ala Ala His Glu Cys Asn Val Cys
Gly Lys Ala Phe 165 170
175Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg Arg His Tyr Asp Gly
180 185 190Thr Ile Gly Ser Ala Ala
Ala Pro 195 200172253PRTNicotiana benthamiana
172Met Ala Leu Glu Ala Leu Asn Ser Pro Thr Thr Thr Thr Pro Pro Thr1
5 10 15Phe Gln Phe Glu Asn Asn
Gly Pro Leu Arg Tyr Leu Glu Asn Trp Thr 20 25
30Lys Gly Lys Arg Ser Lys Arg Pro Arg Ser Met Glu Arg
Gln Pro Thr 35 40 45Glu Glu Glu
Tyr Leu Ala Leu Cys Leu Ile Met Leu Ala Arg Ser Asp 50
55 60Gly Ser Ala Asn Arg Glu Gln Ser Leu Pro Pro Pro
Pro Val Pro Val65 70 75
80Met Lys Ile His Ala Pro Pro Glu Glu Lys Met Val Tyr Lys Cys Ser
85 90 95Val Cys Gly Lys Gly Phe
Gly Ser Tyr Gln Ala Leu Gly Gly His Lys 100
105 110Ala Ser His Arg Lys Leu Val Ala Gly Gly Gly Gly
Gly Asp Asp Gln 115 120 125Ser Thr
Thr Ser Thr Thr Thr Asn Ala Thr Gly Thr Thr Ser Ser Ala 130
135 140Asn Gly Asn Gly Asn Gly Ser Gly Lys Thr His
Glu Cys Ser Ile Cys145 150 155
160His Lys Arg Phe Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg Cys
165 170 175His Tyr Asp Gly
Gly Asn Ser Asn Gly Gly Val Ser Val Ser Ala Ser 180
185 190Val Gly Leu Thr Ser Ser Glu Gly Val Gly Ser
Thr Val Ser His Arg 195 200 205Asp
Phe Asp Leu Asn Ile Pro Ala Leu Pro Glu Phe Trp Pro Gly Phe 210
215 220Gly Ser Gly Glu Asp Glu Val Glu Ser Pro
His Pro Thr Lys Lys Ser225 230 235
240Arg Leu Ser Leu Pro Pro Lys Phe Glu Leu Phe Arg Glu
245 250173261PRTCapsicum annuum 173Met Ala Leu Glu
Ala Leu Asn Ser Pro Thr Gly Thr Pro Thr Pro Pro1 5
10 15Pro Phe Gln Phe Glu Ser Asp Gly Gln Gln
Leu Arg Tyr Ile Glu Asn 20 25
30Trp Arg Lys Gly Lys Arg Ser Lys Arg Ser Arg Ser Met Glu His Gln
35 40 45Pro Thr Glu Glu Glu Tyr Leu Ala
Leu Cys Leu Ile Met Leu Ala Arg 50 55
60Ser Gly Gly Ser Val Asn His Gln Arg Ser Leu Pro Pro Pro Ala Pro65
70 75 80Val Met Lys Leu His
Ala Pro Ser Ser Ser Ser Ala Ala Glu Glu Glu 85
90 95Lys Glu Lys Met Val Tyr Lys Cys Ser Val Cys
Gly Lys Gly Phe Gly 100 105
110Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg Lys Leu Val
115 120 125Pro Gly Gly Asp Asp Gln Ser
Thr Thr Ser Thr Thr Thr Asn Ala Thr 130 135
140Gly Thr Thr Thr Ser Val Asn Gly Asn Gly Asn Arg Ser Gly Arg
Thr145 150 155 160His Glu
Cys Ser Ile Cys His Lys Cys Phe Pro Thr Gly Gln Ala Leu
165 170 175Gly Gly His Lys Arg Cys His
Tyr Asp Gly Gly Ile Gly Asn Gly Asn 180 185
190Ala Asn Ser Gly Val Ser Ala Ser Val Gly Val Thr Ser Ser
Glu Gly 195 200 205Val Gly Ser Thr
Val Ser His Arg Asp Phe Asp Leu Asn Ile Pro Ala 210
215 220Leu Pro Glu Phe Trp Leu Gly Phe Gly Ser Gly Glu
Asp Glu Val Glu225 230 235
240Ser Pro His Pro Ala Lys Lys Ser Arg Leu Cys Leu Pro Pro Lys Tyr
245 250 255Glu Leu Phe Gln His
260174235PRTMedicago sativa 174Met Ala Met Glu Ala Leu Asn Ser
Pro Thr Thr Ala Thr Pro Phe Thr1 5 10
15Pro Phe Glu Glu Pro Asn Leu Ser Tyr Leu Glu Thr Pro Trp
Thr Lys 20 25 30Gly Lys Arg
Ser Lys Arg Ser Arg Met Asp Gln Ser Ser Cys Thr Glu 35
40 45Glu Glu Tyr Leu Ala Leu Cys Leu Ile Met Leu
Ala Arg Ser Gly Asn 50 55 60Asn Asn
Asp Lys Lys Ser Asp Ser Val Ala Thr Pro Leu Thr Thr Val65
70 75 80Lys Leu Ser His Lys Cys Ser
Val Cys Asn Lys Ala Phe Ser Ser Tyr 85 90
95Gln Ala Leu Gly Gly His Lys Ala Ser His Arg Lys Ala
Val Met Ser 100 105 110Ala Thr
Thr Ala Glu Asp Gln Ile Thr Thr Thr Ser Ser Ala Val Thr 115
120 125Thr Ser Ser Ala Ser Asn Gly Lys Asn Lys
Thr His Glu Cys Ser Ile 130 135 140Cys
His Lys Ser Phe Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg145
150 155 160Cys His Tyr Glu Gly Ser
Val Gly Ala Gly Ala Gly Ala Gly Ser Asn 165
170 175Ala Val Thr Ala Ser Glu Gly Val Gly Leu Ser His
Ser His His Arg 180 185 190Asp
Phe Asp Leu Asn Leu Pro Ala Phe Pro Asp Phe Ser Lys Lys Phe 195
200 205Phe Val Asp Asp Glu Val Phe Ser Pro
Leu Pro Ala Ala Lys Lys Pro 210 215
220Cys Leu Phe Lys Leu Glu Ile Pro Ser His Tyr225 230
235175240PRTGlycine max 175Met Ala Leu Glu Ala Leu Asn Ser
Pro Thr Thr Thr Ala Pro Ser Phe1 5 10
15Pro Phe Asp Asp Pro Thr Ile Pro Trp Ala Lys Arg Lys Arg
Ser Lys 20 25 30Arg Ser Arg
Asp His Pro Ser Glu Glu Glu Tyr Leu Ala Leu Cys Leu 35
40 45Ile Met Leu Ala Arg Gly Gly Thr Thr Thr Val
Asn Asn Arg His Val 50 55 60Ser Pro
Pro Pro Leu Gln Pro Gln Pro Gln Pro Thr Pro Asp Pro Ser65
70 75 80Thr Lys Leu Ser Tyr Lys Cys
Ser Val Cys Asp Lys Ser Phe Pro Ser 85 90
95Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg Lys
Leu Ala Gly 100 105 110Ala Ala
Glu Asp Gln Pro Pro Ser Thr Thr Thr Ser Ser Ala Ala Ala 115
120 125Thr Ser Ser Ala Ser Gly Gly Lys Ala His
Glu Cys Ser Ile Cys His 130 135 140Lys
Ser Phe Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg Cys His145
150 155 160Tyr Glu Gly Asn Gly Asn
Gly Asn Asn Asn Asn Ser Asn Ser Val Val 165
170 175Thr Val Ala Ser Glu Gly Val Gly Ser Thr His Thr
Val Ser His Gly 180 185 190His
His Arg Asp Phe Asp Leu Asn Ile Pro Ala Phe Pro Asp Phe Ser 195
200 205Thr Lys Val Gly Glu Asp Glu Val Glu
Ser Pro His Pro Val Met Lys 210 215
220Lys Pro Arg Leu Phe Val Ile Pro Lys Ile Glu Ile Pro Gln Phe Gln225
230 235
240176265PRTArabidopsis thaliana 176Met Val Ala Tyr Pro Thr Lys Lys Thr
Ala Ile Lys Gln Phe Leu His1 5 10
15Cys Asn Ser Gln Ala Thr Phe Lys Leu Lys Leu Glu Arg Gln Glu
Ile 20 25 30Leu Arg Ile Phe
Asn Leu Met Ala Leu Glu Ala Leu Thr Ser Pro Arg 35
40 45Leu Ala Ser Pro Ile Pro Pro Leu Phe Glu Asp Ser
Ser Val Phe His 50 55 60Gly Val Glu
His Trp Thr Lys Gly Lys Arg Ser Lys Arg Ser Arg Ser65 70
75 80Asp Phe His His Gln Asn Leu Thr
Glu Glu Glu Tyr Leu Ala Phe Cys 85 90
95Leu Met Leu Leu Ala Arg Asp Asn Arg Gln Pro Pro Pro Pro
Pro Ala 100 105 110Val Glu Lys
Leu Ser Tyr Lys Cys Ser Val Cys Asp Lys Thr Phe Ser 115
120 125Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser
His Arg Lys Asn Leu 130 135 140Ser Gln
Thr Leu Ser Gly Gly Gly Asp Asp His Ser Thr Ser Ser Ala145
150 155 160Thr Thr Thr Ser Ala Val Thr
Thr Gly Ser Gly Lys Ser His Val Cys 165
170 175Thr Ile Cys Asn Lys Ser Phe Pro Ser Gly Gln Ala
Leu Gly Gly His 180 185 190Lys
Arg Cys His Tyr Glu Gly Asn Asn Asn Ile Asn Thr Ser Ser Val 195
200 205Ser Asn Ser Glu Gly Ala Gly Ser Thr
Ser His Val Ser Ser Ser His 210 215
220Arg Gly Phe Asp Leu Asn Ile Pro Pro Ile Pro Glu Phe Ser Met Val225
230 235 240Asn Gly Asp Asp
Glu Val Met Ser Pro Met Pro Ala Lys Lys Pro Arg 245
250 255Phe Asp Phe Pro Val Lys Leu Gln Leu
260 265177227PRTArabidopsis thaliana 177Met Ala Leu
Glu Ala Leu Thr Ser Pro Arg Leu Ala Ser Pro Ile Pro1 5
10 15Pro Leu Phe Glu Asp Ser Ser Val Phe
His Gly Val Glu His Trp Thr 20 25
30Lys Gly Lys Arg Ser Lys Arg Ser Arg Ser Asp Phe His His Gln Asn
35 40 45Leu Thr Glu Glu Glu Tyr Leu
Ala Phe Cys Leu Met Leu Leu Ala Arg 50 55
60Asp Asn Arg Gln Pro Pro Pro Pro Pro Ala Val Glu Lys Leu Ser Tyr65
70 75 80Lys Cys Ser Val
Cys Asp Lys Thr Phe Ser Ser Tyr Gln Ala Leu Gly 85
90 95Gly His Lys Ala Ser His Arg Lys Asn Leu
Ser Gln Thr Leu Ser Gly 100 105
110Gly Gly Asp Asp His Ser Thr Ser Ser Ala Thr Thr Thr Ser Ala Val
115 120 125Thr Thr Gly Ser Gly Lys Ser
His Val Cys Thr Ile Cys Asn Lys Ser 130 135
140Phe Pro Ser Gly Gln Ala Leu Gly Gly His Lys Arg Cys His Tyr
Glu145 150 155 160Gly Asn
Asn Asn Ile Asn Thr Ser Ser Val Ser Asn Ser Glu Gly Ala
165 170 175Gly Ser Thr Ser His Val Ser
Ser Ser His Arg Gly Phe Asp Leu Asn 180 185
190Ile Pro Pro Ile Pro Glu Phe Ser Met Val Asn Gly Asp Asp
Glu Val 195 200 205Met Ser Pro Met
Pro Ala Lys Lys Pro Arg Phe Asp Phe Pro Val Lys 210
215 220Leu Gln Leu225178247PRTDatisca glomerata 178Met
Ala Leu Glu Ala Leu Asn Ser Pro Thr Thr Ala Thr Pro Val Phe1
5 10 15His Tyr Asp Asp Pro Ser Leu
Asn Tyr Leu Glu Pro Trp Thr Lys Arg 20 25
30Lys Arg Ser Lys Arg Thr Arg Leu Asp Ser Pro His Thr Glu
Glu Glu 35 40 45Tyr Leu Ala Phe
Cys Leu Ile Met Leu Ala Arg Gly Arg Val Ala Ser 50 55
60Ala Asn Arg Arg Asp Ser Gln Ser Ser Ile Gln Ile Gln
Pro Glu Ala65 70 75
80Thr Thr Ser Ala Thr Lys Val Ser Tyr Lys Cys Ser Val Cys Asp Lys
85 90 95Ala Phe Ser Ser Tyr Gln
Ala Leu Gly Gly His Lys Ala Ser His Arg 100
105 110Lys Leu Ala Gly Gly Glu Asp Gln Ser Thr Ser Phe
Ala Thr Thr Asn 115 120 125Ser Ala
Thr Val Thr Thr Thr Thr Ala Ser Gly Gly Gly Gly Arg Ser 130
135 140His Glu Cys Ser Ile Cys His Lys Ser Phe Pro
Thr Gly Gln Ala Leu145 150 155
160Gly Gly His Lys Arg Cys His Tyr Glu Gly Ser Ile Gly Gly Asn Ser
165 170 175Ile His His His
Asn Asn Thr Thr Asn Ser Gly Ser Asn Gly Gly Met 180
185 190Ser Met Thr Ser Glu Val Gly Ser Thr His Thr
Val Ser His Ser His 195 200 205Arg
Asp Phe Asp Leu Asn Ile Pro Ala Leu Pro Glu Phe Arg Ser Asn 210
215 220Phe Phe Ile Ser Gly Asp Asp Glu Val Glu
Ser Pro His Pro Ala Lys225 230 235
240Lys Pro Arg Ile Leu Met Lys
245179227PRTArabidopsis thaliana 179Met Ala Leu Glu Ala Leu Thr Ser Pro
Arg Leu Ala Ser Pro Ile Pro1 5 10
15Pro Leu Phe Glu Asp Ser Ser Val Phe His Gly Val Glu His Trp
Thr 20 25 30Lys Gly Lys Arg
Ser Lys Arg Ser Arg Ser Asp Phe His His Gln Asn 35
40 45Leu Thr Glu Glu Glu Tyr Leu Ala Phe Trp Leu Met
Leu Leu Ala Arg 50 55 60Asp Asn Arg
Gln Pro Pro Pro Pro Pro Ala Val Glu Lys Leu Ser Tyr65 70
75 80Lys Cys Ser Val Cys Asp Lys Thr
Phe Ser Ser Tyr Gln Ala Leu Gly 85 90
95Gly His Lys Ala Ser His Arg Lys Asn Leu Ser Gln Thr Leu
Ser Gly 100 105 110Gly Gly Asp
Asp His Ser Thr Ser Ser Ala Thr Thr Thr Ser Ala Val 115
120 125Thr Thr Gly Ser Gly Lys Ser His Val Cys Thr
Ile Cys Asn Lys Ser 130 135 140Phe Pro
Ser Gly Gln Ala Leu Gly Gly His Lys Arg Cys His Tyr Glu145
150 155 160Gly Asn Asn Asn Ile Asn Thr
Ser Ser Val Ser Asn Ser Glu Gly Ala 165
170 175Gly Ser Thr Ser His Val Ser Ser Ser His Arg Gly
Phe Asp Leu Asn 180 185 190Ile
Pro Pro Ile Pro Glu Phe Ser Met Val Asn Gly Asp Asp Glu Val 195
200 205Met Ser Pro Met Pro Ala Lys Lys Pro
Arg Phe Asp Phe Pro Val Lys 210 215
220Leu Gln Leu225180253PRTPetunia x hybrida 180Met Ala Leu Glu Ala Leu
Asn Ser Pro Thr Thr Thr Thr Pro Pro Ser1 5
10 15Phe Gln Phe Glu Asn Asn Gly Leu Lys Tyr Leu Glu
Ser Trp Thr Lys 20 25 30Gly
Lys Arg Ser Lys Arg Gln Arg Ser Met Glu Arg Gln Cys Thr Glu 35
40 45Glu Glu Tyr Leu Ala Leu Cys Leu Ile
Met Leu Ala Arg Ser Asp Gly 50 55
60Ser Val Asn Asn Ser Arg Ser Leu Pro Pro Pro Pro Leu Pro Pro Ser65
70 75 80Val Pro Val Thr Ser
Gln Ile Asn Ala Thr Leu Leu Glu Gln Lys Asn 85
90 95Leu Tyr Lys Cys Ser Val Cys Gly Lys Gly Phe
Gly Ser Tyr Gln Ala 100 105
110Leu Gly Gly His Lys Ala Ser His Arg Lys Leu Val Ser Met Gly Gly
115 120 125Asp Glu Gln Ser Thr Thr Ser
Thr Thr Thr Asn Val Thr Gly Thr Ser 130 135
140Ser Ala Asn Val Asn Gly Asn Gly Arg Thr His Glu Cys Ser Ile
Cys145 150 155 160His Lys
Cys Phe Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg Cys
165 170 175His Tyr Asp Gly Gly Asn Gly
Asn Gly Asn Gly Ser Val Ser Val Gly 180 185
190Val Thr Ser Ser Glu Gly Val Gly Ser Thr Ile Ser His His
Arg Asp 195 200 205Phe Asp Leu Asn
Ile Pro Ala Leu Pro Glu Phe Trp Pro Gly Phe Gly 210
215 220Ser Gly Glu Asp Glu Val Glu Ser Pro His Pro Ala
Lys Lys Ser Arg225 230 235
240Leu Ser Leu Pro Pro Lys Leu Glu Leu Phe Lys Gly Leu
245 250181273PRTArabidopsis thaliana 181Met Ala Leu Glu
Ala Met Asn Thr Pro Thr Ser Ser Phe Thr Arg Ile1 5
10 15Glu Thr Lys Glu Asp Leu Met Asn Asp Ala
Val Phe Ile Glu Pro Trp 20 25
30Leu Lys Arg Lys Arg Ser Lys Arg Gln Arg Ser His Ser Pro Ser Ser
35 40 45Ser Ser Ser Ser Pro Pro Arg Ser
Arg Pro Lys Ser Gln Asn Gln Asp 50 55
60Leu Thr Glu Glu Glu Tyr Leu Ala Leu Cys Leu Leu Met Leu Ala Lys65
70 75 80Asp Gln Pro Ser Gln
Thr Arg Phe His Gln Gln Ser Gln Ser Leu Thr 85
90 95Pro Pro Pro Glu Ser Lys Asn Leu Pro Tyr Lys
Cys Asn Val Cys Glu 100 105
110Lys Ala Phe Pro Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His
115 120 125Arg Ile Lys Pro Pro Thr Val
Ile Ser Thr Thr Ala Asp Asp Ser Thr 130 135
140Ala Pro Thr Ile Ser Ile Val Ala Gly Glu Lys His Pro Ile Ala
Ala145 150 155 160Ser Gly
Lys Ile His Glu Cys Ser Ile Cys His Lys Val Phe Pro Thr
165 170 175Gly Gln Ala Leu Gly Gly His
Lys Arg Cys His Tyr Glu Gly Asn Leu 180 185
190Gly Gly Gly Gly Gly Gly Gly Ser Lys Ser Ile Ser His Ser
Gly Ser 195 200 205Val Ser Ser Thr
Val Ser Glu Glu Arg Ser His Arg Gly Phe Ile Asp 210
215 220Leu Asn Leu Pro Ala Leu Pro Glu Leu Ser Leu His
His Asn Pro Ile225 230 235
240Val Asp Glu Glu Ile Leu Ser Pro Leu Thr Gly Lys Lys Pro Leu Leu
245 250 255Leu Thr Asp His Asp
Gln Val Ile Lys Lys Glu Asp Leu Ser Leu Lys 260
265 270Ile182238PRTArabidopsis thaliana 182Met Ala Leu
Glu Thr Leu Thr Ser Pro Arg Leu Ser Ser Pro Met Pro1 5
10 15Thr Leu Phe Gln Asp Ser Ala Leu Gly
Phe His Gly Ser Lys Gly Lys 20 25
30Arg Ser Lys Arg Ser Arg Ser Glu Phe Asp Arg Gln Ser Leu Thr Glu
35 40 45Asp Glu Tyr Ile Ala Leu Cys
Leu Met Leu Leu Ala Arg Asp Gly Asp 50 55
60Arg Asn Arg Asp Leu Asp Leu Pro Ser Ser Ser Ser Ser Pro Pro Leu65
70 75 80Leu Pro Pro Leu
Pro Thr Pro Ile Tyr Lys Cys Ser Val Cys Asp Lys 85
90 95Ala Phe Ser Ser Tyr Gln Ala Leu Gly Gly
His Lys Ala Ser His Arg 100 105
110Lys Ser Phe Ser Leu Thr Gln Ser Ala Gly Gly Asp Glu Leu Ser Thr
115 120 125Ser Ser Ala Ile Thr Thr Ser
Gly Ile Ser Gly Gly Gly Gly Gly Ser 130 135
140Val Lys Ser His Val Cys Ser Ile Cys His Lys Ser Phe Ala Thr
Gly145 150 155 160Gln Ala
Leu Gly Gly His Lys Arg Cys His Tyr Glu Gly Lys Asn Gly
165 170 175Gly Gly Val Ser Ser Ser Val
Ser Asn Ser Glu Asp Val Gly Ser Thr 180 185
190Ser His Val Ser Ser Gly His Arg Gly Phe Asp Leu Asn Ile
Pro Pro 195 200 205Ile Pro Glu Phe
Ser Met Val Asn Gly Asp Glu Glu Val Met Ser Pro 210
215 220Met Pro Ala Lys Lys Leu Arg Phe Asp Phe Pro Gly
Lys Pro225 230 235183238PRTArabidopsis
thaliana 183Met Ala Leu Glu Thr Leu Thr Ser Pro Arg Leu Ser Ser Pro Met
Pro1 5 10 15Thr Leu Phe
Gln Asp Ser Ala Leu Gly Phe His Gly Ser Lys Gly Lys 20
25 30Arg Ser Lys Arg Ser Arg Ser Glu Phe Asp
Arg Gln Ser Leu Thr Glu 35 40
45Asp Glu Tyr Ile Ala Leu Cys Leu Met Leu Leu Ala Arg Asp Gly Asp 50
55 60Arg Asn Arg Asp Leu Asp Leu Pro Ser
Ser Ser Ser Ser Pro Pro Leu65 70 75
80Leu Pro Pro Leu Pro Thr Pro Ile Tyr Lys Cys Ser Val Cys
Asp Lys 85 90 95Ala Phe
Ser Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg 100
105 110Lys Ser Phe Ser Leu Thr Gln Ser Ala
Gly Gly Asp Glu Leu Ser Thr 115 120
125Ser Ser Ala Ile Thr Thr Ser Gly Ile Ser Gly Gly Gly Gly Gly Ser
130 135 140Val Lys Ser His Val Cys Ser
Ile Cys His Lys Ser Phe Ala Thr Gly145 150
155 160Gln Ala Leu Gly Gly His Lys Arg Cys His Tyr Glu
Gly Lys Asn Gly 165 170
175Gly Gly Val Ser Ser Ser Val Ser Asn Ser Glu Asp Val Gly Ser Thr
180 185 190Ser His Val Ser Ser Gly
His Arg Gly Phe Asp Leu Asn Ile Pro Pro 195 200
205Ile Pro Glu Phe Ser Met Val Asn Gly Asp Glu Glu Val Met
Ser Pro 210 215 220Met Pro Ala Lys Lys
Leu Arg Phe Asp Phe Pro Glu Lys Pro225 230
235184235PRTBrassica rapa 184Met Ala Leu Glu Thr Leu Asn Ser Pro Thr Ser
Ala Thr Ala Ser Ala1 5 10
15Arg Pro Leu Leu Arg Tyr Arg Glu Glu Met Glu Pro Glu Asn Leu Glu
20 25 30Gln Trp Ala Lys Arg Lys Arg
Thr Lys Arg Gln Arg Phe Asp Gln Ser 35 40
45Arg Leu Asn Gln Glu Thr Ala Pro Ser Glu Glu Glu Tyr Leu Ala
Leu 50 55 60Cys Leu Leu Met Leu Ala
Arg Gly Ser Ala Val Gln Ser Pro Leu Pro65 70
75 80Pro Ser Ser Ser Ser Asp His Arg Gly Tyr Lys
Cys Thr Val Cys Gly 85 90
95Lys Ser Phe Ser Ser Tyr Gln Ala Leu Gly Gly His Lys Thr Ser His
100 105 110Arg Lys Pro Ala Ser Asn
Val Asn Val Pro Ile Asn Gln Glu Gln Ser 115 120
125Asn Asn Ser His Ser Asn Ser Asn Gly Gly Ser Val Val Ile
Asn Gly 130 135 140Asn Gly Val Ser Gln
Ser Gly Lys Ile His Thr Cys Ser Ile Cys Phe145 150
155 160Lys Ser Phe Ser Ser Gly Gln Ala Leu Gly
Gly His Lys Arg Cys His 165 170
175Tyr Asp Ala Gly Asn Asn Gly Asn Gly Asn Gly Ser Ser Ser Asn Ser
180 185 190Val Glu Val Val Gly
Gly Ser Asp Gly Ser Tyr Val Asp Asp Glu Arg 195
200 205Ser Ser Glu Gln Ser Ala Thr Gly Asp Asn Arg Gly
Phe Asp Leu Asn 210 215 220Leu Pro Ala
Asp Gln Val Ala Val Val Ile Ser225 230
235185237PRTBrassica rapa 185Met Ala Leu Glu Thr Leu Asn Ser Pro Thr Ser
Ala Thr Ala Ser Ala1 5 10
15Arg Pro Leu Leu Arg Tyr Arg Glu Glu Met Glu Pro Glu Asn Leu Glu
20 25 30Gln Trp Ala Lys Arg Lys Arg
Thr Lys Arg Gln Arg Phe Asp Gln Ser 35 40
45Arg Leu Asn Gln Glu Thr Ala Pro Ser Glu Glu Glu Tyr Leu Ala
Leu 50 55 60Cys Leu Leu Met Leu Ala
Arg Gly Ser Ala Val Gln Ser Pro Leu Pro65 70
75 80Pro Ser Ser Ser Ser Asp His Arg Gly Tyr Lys
Cys Thr Val Cys Gly 85 90
95Lys Ser Phe Ser Ser Tyr Gln Ala Leu Gly Gly His Lys Thr Ser His
100 105 110Arg Lys Pro Ala Ser Asn
Val Asn Val Pro Ile Asn Gln Glu Gln Ser 115 120
125Asn Asn Ser His Ser Asn Ser Asn Gly Gly Ser Val Ala Ile
Asn Gly 130 135 140Asn Gly Val Ser Gln
Ser Gly Lys Ile His Thr Cys Ser Ile Cys Phe145 150
155 160Lys Ser Phe Ser Ser Gly Gln Ala Leu Gly
Gly His Lys Arg Cys His 165 170
175Tyr Asp Ala Gly Ile Asn Gly Asn Gly Asn Gly Ser Ser Ser Asn Ser
180 185 190Val Glu Val Val Gly
Gly Ser Asp Gly Asn Tyr Val Asp Asp Glu Arg 195
200 205Ser Ser Glu Gln Ser Ala Thr Gly Asp Asn Arg Gly
Phe Asp Leu Asn 210 215 220Leu Pro Ala
Asp Gln Val Ala Val Val Ile Ser Lys Arg225 230
235186273PRTNicotiana tabacum 186Met Thr Leu Glu Ala Leu Lys Ser Pro
Thr Ala Ala Thr Pro Thr Leu1 5 10
15Pro Pro Arg Tyr Glu Asp Asp Asp Glu Ile His Asn Leu Asp Ser
Trp 20 25 30Ala Lys Gly Lys
Arg Ser Lys Arg Pro Arg Ile Asp Ala Pro Pro Thr 35
40 45Glu Glu Glu Tyr Leu Ala Leu Cys Leu Ile Met Leu
Ala Arg Ser Gly 50 55 60Thr Gly Thr
Arg Thr Gly Leu Thr Asp Ala Thr Thr Ser Gln Gln Pro65 70
75 80Ala Asp Lys Lys Thr Ala Glu Leu
Pro Pro Val His Lys Lys Glu Val 85 90
95Ala Thr Glu Gln Ala Glu Gln Ser Tyr Lys Cys Ser Val Cys
Asp Lys 100 105 110Ala Phe Ser
Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg 115
120 125Lys Thr Thr Thr Thr Ala Thr Ala Ala Ser Asp
Asp Asn Asn Pro Ser 130 135 140Thr Ser
Thr Ser Thr Gly Ala Val Asn Ile Ser Ala Leu Asn Pro Thr145
150 155 160Gly Arg Ser His Val Cys Ser
Ile Cys His Lys Ala Phe Pro Thr Gly 165
170 175Gln Ala Leu Gly Gly His Lys Arg Arg His Tyr Glu
Gly Lys Leu Gly 180 185 190Gly
Asn Ser Arg Asp Leu Gly Gly Gly Gly Gly Gly Gly His Ser Gly 195
200 205Ser Val Leu Thr Thr Ser Asp Gly Gly
Ala Ser Thr His Thr Leu Arg 210 215
220Asp Phe Asp Leu Asn Met Pro Ala Ser Pro Glu Leu Gln Leu Gly Leu225
230 235 240Ser Ile Asp Cys
Gly Arg Lys Ser Gln Leu Leu Pro Met Val Gln Glu 245
250 255Val Glu Ser Pro Met Pro Ala Lys Lys Pro
Arg Leu Leu Phe Ser Leu 260 265
270Gly 187274PRTPetunia x hybrida 187Met Ala Leu Glu Ala Leu Lys Ser Pro
Thr Ala Ala Thr Pro Ser Leu1 5 10
15Pro Pro Arg Tyr Glu Asp His Val Asp Met Asn Asn Leu Asp Ser
Trp 20 25 30Val Lys Gly Lys
Arg Ser Lys Arg Pro Arg Ile Glu Thr Pro Pro Ser 35
40 45Glu Glu Glu Tyr Leu Ala Leu Cys Leu Ile Met Leu
Ala Arg Ser Gly 50 55 60Asn Gly Thr
Thr Pro Gly Ser Thr Asp Thr Thr Ile Thr Thr Thr Ile65 70
75 80Ser Lys Glu Pro Glu Lys Lys Asn
Arg Glu Leu Thr Pro Val His Gln 85 90
95Glu Thr Glu Gln Ser Tyr Lys Cys Ser Val Cys Asp Lys Ser
Phe Ser 100 105 110Ser Tyr Gln
Ala Leu Gly Gly His Lys Ala Ser His Arg Lys Ile Thr 115
120 125Thr Ile Ala Thr Thr Ala Leu Leu Asp Asp Asn
Asn Asn Asn Pro Thr 130 135 140Thr Ser
Asn Ser Thr Ser Gly Asn Val Val Asn Asn Ile Ser Ala Leu145
150 155 160Asn Pro Ser Gly Arg Ser His
Val Cys Ser Ile Cys His Lys Ala Phe 165
170 175Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg Arg
His Tyr Glu Gly 180 185 190Lys
Leu Gly Gly Asn Asn Asn Asn His Arg Asp Gly Gly Gly His Ser 195
200 205Gly Ser Val Val Thr Thr Ser Asp Gly
Gly Ala Ser Thr His Thr Leu 210 215
220Arg Asp Phe Asp Leu Asn Met Leu Pro Pro Ser Pro Glu Leu Gln Leu225
230 235 240Gly Leu Ser Ile
Asp Cys Asp Leu Lys Ser Gln Ile Pro Ile Glu Gln 245
250 255Glu Val Glu Ser Pro Met Pro Leu Lys Lys
Pro Arg Leu Leu Phe Ser 260 265
270Met Asp 188193PRTArabidopsis thaliana 188Met Ala Leu Glu Ala Leu Asn
Ser Pro Arg Leu Val Glu Asp Pro Leu1 5 10
15Arg Phe Asn Gly Val Glu Gln Trp Thr Lys Cys Lys Lys
Arg Ser Lys 20 25 30Arg Ser
Arg Ser Asp Leu His His Asn His Arg Leu Thr Glu Glu Glu 35
40 45Tyr Leu Ala Phe Cys Leu Met Leu Leu Ala
Arg Asp Gly Gly Asp Leu 50 55 60Asp
Ser Val Thr Val Ala Glu Lys Pro Ser Tyr Lys Cys Gly Val Cys65
70 75 80Tyr Lys Thr Phe Ser Ser
Tyr Gln Ala Leu Gly Gly His Lys Ala Ser 85
90 95His Arg Ser Leu Tyr Gly Gly Gly Glu Asn Asp Lys
Ser Thr Pro Ser 100 105 110Thr
Ala Val Lys Ser His Val Cys Ser Val Cys Gly Lys Ser Phe Ala 115
120 125Thr Gly Gln Ala Leu Gly Gly His Lys
Arg Cys His Tyr Asp Gly Gly 130 135
140Val Ser Asn Ser Glu Gly Val Gly Ser Thr Ser His Val Ser Ser Ser145
150 155 160Ser His Arg Gly
Phe Asp Leu Asn Ile Ile Pro Val Gln Gly Phe Ser 165
170 175Pro Asp Asp Glu Val Met Ser Pro Met Ala
Thr Lys Lys Pro Arg Leu 180 185
190Lys189193PRTArabidopsis thaliana 189Met Ala Leu Glu Ala Leu Asn Ser
Pro Arg Leu Val Glu Asp Pro Leu1 5 10
15Arg Phe Asn Gly Val Glu Gln Trp Thr Lys Cys Lys Lys Arg
Ser Lys 20 25 30Arg Ser Arg
Ser Asp Leu His His Asn His Arg Leu Thr Glu Glu Glu 35
40 45Tyr Leu Ala Phe Cys Leu Met Leu Leu Ala Arg
Asp Gly Gly Asp Leu 50 55 60Asp Ser
Val Thr Val Glu Glu Lys Pro Ser Tyr Lys Cys Gly Val Cys65
70 75 80Tyr Lys Thr Phe Ser Ser Tyr
Gln Ala Leu Gly Gly His Lys Ala Ser 85 90
95His Arg Ser Leu Tyr Gly Gly Gly Asp Asn Asp Lys Ser
Thr Pro Ser 100 105 110Thr Ala
Val Lys Ser His Val Cys Ser Val Cys Gly Lys Ser Phe Ala 115
120 125Thr Gly Gln Ala Leu Gly Gly His Lys Arg
Cys His Tyr Asp Gly Gly 130 135 140Val
Ser Asn Ser Glu Gly Val Gly Ser Thr Ser His Val Ser Ser Ser145
150 155 160Ser His Arg Gly Phe Asp
Leu Asn Ile Leu Pro Val Gln Gly Phe Ser 165
170 175Arg Asp Asp Glu Val Met Ser Pro Met Ala Thr Lys
Lys Pro Arg Leu 180 185
190Lys190215PRTArabidopsis thaliana 190Met Ala Leu Asp Thr Leu Asn Ser
Pro Thr Ser Thr Thr Thr Thr Thr1 5 10
15Ala Pro Pro Pro Phe Leu Arg Cys Leu Asp Glu Thr Glu Pro
Glu Asn 20 25 30Leu Glu Ser
Trp Thr Lys Arg Lys Arg Thr Lys Arg His Arg Ile Asp 35
40 45Gln Pro Asn Pro Pro Pro Ser Glu Glu Glu Tyr
Leu Ala Leu Cys Leu 50 55 60Leu Met
Leu Ala Arg Gly Ser Ser Asp His His Ser Pro Pro Ser Asp65
70 75 80His His Ser Leu Ser Pro Leu
Ser Asp His Gln Lys Asp Tyr Lys Cys 85 90
95Ser Val Cys Gly Lys Ser Phe Pro Ser Tyr Gln Ala Leu
Gly Gly His 100 105 110Lys Thr
Ser His Arg Lys Pro Val Ser Val Asp Val Asn Asn Ser Asn 115
120 125Gly Thr Val Thr Asn Asn Gly Asn Ile Ser
Asn Gly Leu Val Gly Gln 130 135 140Ser
Gly Lys Thr His Asn Cys Ser Ile Cys Phe Lys Ser Phe Pro Ser145
150 155 160Gly Gln Ala Leu Gly Gly
His Lys Arg Cys His Tyr Asp Gly Gly Asn 165
170 175Gly Asn Ser Asn Gly Asp Asn Ser His Lys Phe Asp
Leu Asn Leu Pro 180 185 190Ala
Asp Gln Val Ser Asp Glu Thr Ile Gly Lys Ser Gln Leu Ser Gly 195
200 205Glu Glu Thr Lys Ser Val Leu 210
215191277PRTPetunia x hybrida 191Met Ala Leu Glu Ala Leu Lys
Ser Pro Thr Ala Ala Thr Pro Thr Leu1 5 10
15Pro Pro Arg Tyr Glu Asp Gln Val Asp Met Ser Asn Leu
Asp Ser Trp 20 25 30Val Lys
Gly Lys Arg Ser Lys Arg Pro Arg Ile Glu Thr Pro Pro Ser 35
40 45Glu Glu Glu Tyr Leu Ala Leu Cys Leu Ile
Met Leu Ala Arg Ser Gly 50 55 60Asn
Gly Thr Thr Pro Ser Ser Ile Pro Gly Ser Thr Asp Thr Thr Thr65
70 75 80Ile Ser Lys Glu Pro Glu
Lys Lys Asn Arg Asp Val Ala Pro Val Tyr 85
90 95Gln Glu Thr Glu Gln Ser Tyr Lys Cys Ser Val Cys
Asp Lys Ser Phe 100 105 110Ser
Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg Lys Ile 115
120 125Thr Thr Ile Ala Thr Thr Ala Leu Leu
Asp Asp Asn Asn Asn Asn Pro 130 135
140Thr Thr Ser Asn Ser Thr Asn Gly Asn Val Val Asn Asn Ile Ser Thr145
150 155 160Leu Asn Pro Ser
Gly Arg Ser His Val Cys Ser Ile Cys His Lys Ala 165
170 175Phe Pro Ser Gly Gln Ala Leu Gly Gly His
Lys Arg Arg His Tyr Glu 180 185
190Gly Lys Leu Gly Gly Asn Asn Asn Asn Asn His Arg Asp Gly Gly Gly
195 200 205His Ser Gly Ser Val Val Thr
Thr Ser Asp Gly Gly Ala Ser Thr His 210 215
220Thr Leu Arg Asp Phe Asp Leu Asn Met Leu Pro Pro Ser Pro Glu
Leu225 230 235 240Gln Leu
Gly Leu Ser Ile Asp Cys Gly Leu Lys Ser Gln Gln Val Pro
245 250 255Ile Glu Gln Glu Val Glu Ser
Pro Met Pro Leu Lys Lys Pro Arg Leu 260 265
270Leu Phe Ser Met Asp 275192245PRTArabidopsis
thaliana 192Met Ala Leu Glu Thr Leu Asn Ser Pro Thr Ala Thr Thr Thr Ala
Arg1 5 10 15Pro Leu Leu
Arg Tyr Arg Glu Glu Met Glu Pro Glu Asn Leu Glu Gln 20
25 30Trp Ala Lys Arg Lys Arg Thr Lys Arg Gln
Arg Phe Asp His Gly His 35 40
45Gln Asn Gln Glu Thr Asn Lys Asn Leu Pro Ser Glu Glu Glu Tyr Leu 50
55 60Ala Leu Cys Leu Leu Met Leu Ala Arg
Gly Ser Ala Val Gln Ser Pro65 70 75
80Pro Leu Pro Pro Leu Pro Ser Arg Ala Ser Pro Ser Asp His
Arg Asp 85 90 95Tyr Lys
Cys Thr Val Cys Gly Lys Ser Phe Ser Ser Tyr Gln Ala Leu 100
105 110Gly Gly His Lys Thr Ser His Arg Lys
Pro Thr Asn Thr Ser Ile Thr 115 120
125Ser Gly Asn Gln Glu Leu Ser Asn Asn Ser His Ser Asn Ser Gly Ser
130 135 140Val Val Ile Asn Val Thr Val
Asn Thr Gly Asn Gly Val Ser Gln Ser145 150
155 160Gly Lys Ile His Thr Cys Ser Ile Cys Phe Lys Ser
Phe Ala Ser Gly 165 170
175Gln Ala Leu Gly Gly His Lys Arg Cys His Tyr Asp Gly Gly Asn Asn
180 185 190Gly Asn Gly Asn Gly Ser
Ser Ser Asn Ser Val Glu Leu Val Ala Gly 195 200
205Ser Asp Val Ser Asp Val Asp Asn Glu Arg Trp Ser Glu Glu
Ser Ala 210 215 220Ile Gly Gly His Arg
Gly Phe Asp Leu Asn Leu Pro Ala Asp Gln Val225 230
235 240Ser Val Thr Thr Ser
245193248PRTSolanum tuberosum 193Ile Glu Met Ala Leu Glu Ala Leu Asn Ser
Pro Thr Gly Thr Ser Asn1 5 10
15Pro Gln Thr Phe Lys Phe Glu Ser Lys Gly Gln Gln Gln Leu Arg Tyr
20 25 30Leu Glu Asn Trp Thr Lys
Gly Lys Arg Ser Lys Arg Ser Arg Ser Met 35 40
45Glu Arg Gln Pro Thr Glu Glu Glu Tyr Leu Ala Ile Cys Leu
Ile Met 50 55 60Leu Ala Arg Ser Asp
Gly Ser Val Asn Gln Val Arg Ser Leu Pro Pro65 70
75 80Pro Val Pro Val Met Lys Ile His Ala Pro
Ser Glu Lys Met Glu Tyr 85 90
95Lys Cys Ser Val Cys Gly Lys Gly Phe Gly Ser Tyr Gln Ala Leu Gly
100 105 110Gly His Lys Ala Ser
His Arg Lys Leu Ile Ala Gly Val Ser Gly Gly 115
120 125Gly Asp Asp Gln Ser Thr Thr Ser Thr Thr Thr Asn
Ala Thr Gly Thr 130 135 140Thr Ser Ser
Gly Asn Gly Asn Gly Ser Gly Arg Thr His Glu Cys Ser145
150 155 160Ile Cys His Lys Cys Phe Pro
Thr Gly Gln Ala Leu Gly Gly His Lys 165
170 175Arg Cys His Tyr Asp Gly Gly Asn Gly Asn Gly Asn
Ala Asn Ser Ser 180 185 190Val
Ser Ala Ser Val Gly Val Thr Ser Ser Glu Gly Val Gly Ser Thr 195
200 205Ile Ser His Arg Asp Phe Asp Leu Asn
Ile Pro Ala Leu Pro Glu Phe 210 215
220Trp Pro Gly Phe Gly Ser Gly Glu Asp Glu Val Glu Ser Pro His Pro225
230 235 240Ala Lys Lys Ser
Arg Leu Ser Leu 245194269PRTGossypium raimondii 194Leu Ala
Leu Cys Phe Cys Ser Gln Thr Arg Arg Asp Ser Glu Val Phe1 5
10 15Asp Met Ala Leu Glu Ala Leu Asn
Ser Pro Ala Thr Pro Phe Thr Asn 20 25
30Lys Tyr Asp Asp Val Asp Asn Asn Tyr Val Glu Thr Trp Lys Lys
Gly 35 40 45Lys Arg Ser Lys Arg
Gln Arg Gly Asp Ser Pro Ala Ala Val Glu Leu 50 55
60Gln Pro Thr Thr Glu Glu Glu Tyr Leu Ala Leu Cys Leu Ile
Met Leu65 70 75 80Ala
Arg Gly Ser Ser Gly Ala Asp Leu Asp Val Ile Arg Arg Ser Ser
85 90 95Ser Ser Ser Ser Pro Pro Pro
Pro Pro Pro Ala Leu Lys Leu Ser Tyr 100 105
110Lys Cys Ser Val Cys Asp Lys Ala Phe Pro Ser Tyr Gln Ala
Leu Gly 115 120 125Gly His Lys Ala
Ser His Arg Lys Pro Leu Ser Ala Asp Ala Ala Thr 130
135 140Thr Thr Ala Ala Ala Asn Val Asp Asn Pro Ser Thr
Thr Ser Thr Ala145 150 155
160Thr Thr Ala Thr Ser Ser Gly Arg Leu His Glu Cys Ser Ile Cys His
165 170 175Lys Ser Phe Pro Thr
Gly Gln Ala Leu Gly Gly His Lys Arg Cys His 180
185 190Tyr Glu Gly Gly Asn Asn Asn Asn Asn Asn Asn Lys
Asn Asn Asn Asn 195 200 205Ser Gly
Ser Val Ser Val Ser Gly Val Thr Ser Ser Asp Gly Gly Ala 210
215 220Leu Ser His Asn His Arg Ala Val Asp Phe Asp
Phe Asp Leu Asn Leu225 230 235
240Pro Ala Leu Pro Glu Phe Ser Gln Met Tyr Pro Asp Glu Glu Glu Val
245 250 255Gln Ser Pro Leu
Pro Thr Gln Lys Pro Arg Phe Leu Ile 260
265195195PRTVitis aestivalis 195Glu Ser Trp Ala Lys Arg Lys Arg Ser Lys
Arg Pro Arg Phe Asp Asn1 5 10
15Gln Pro Thr Glu Glu Glu Tyr Leu Ala Leu Cys Leu Ile Met Leu Ala
20 25 30Arg Gly Gly Ala Ala Ser
Ser Thr Val Ser His Arg Arg His Leu Ser 35 40
45Pro Pro Pro Ala Leu Gln Val Glu Ala Pro Lys Leu Thr Tyr
Lys Cys 50 55 60Ser Val Cys Asn Lys
Ala Phe Ala Ser Tyr Gln Ala Leu Gly Gly His65 70
75 80Lys Ala Ser His Arg Lys Gln Ser Gly Ser
Asp Asp Leu Ser Ala Ser 85 90
95Ile Thr Thr Thr Ser Thr Ala Ala Ala Ala Ser Gly Gly Arg Thr His
100 105 110Glu Cys Ser Ile Cys
His Lys Thr Phe Pro Thr Gly Gln Ala Leu Gly 115
120 125Gly His Lys Arg Cys His Tyr Glu Gly Gly Ala Ser
Val Ser Ser Gly 130 135 140Val Thr Ser
Ser Glu Gly Val Gly Ser Thr His Ser His Arg Asp Phe145
150 155 160Asp Leu Asn Leu Pro Ala Phe
Pro Glu Leu Trp Ser Ala Arg Arg Phe 165
170 175Pro Val Asp Asp Glu Val Glu Ser Pro Leu Pro Thr
Lys Lys Pro Arg 180 185 190Leu
Gln Met 195196226PRTLycopersicon esculentum 196Met Ala Leu Glu Ala
Leu Asn Ser Pro Thr Gly Thr Thr Ser Asn Pro1 5
10 15Gln Thr Phe Gln Phe Glu Ser Lys Gly Gln Gln
Gln Leu Arg Tyr Leu 20 25
30Glu Asn Trp Thr Lys Gly Lys Arg Ser Lys Arg Ser Arg Ser Met Asp
35 40 45Arg Gln Pro Thr Glu Glu Glu Tyr
Leu Ala Leu Cys Leu Ile Met Leu 50 55
60Ala Arg Ser Asp Gly Ser Val Asn His Val Arg Ser Leu Pro Pro Pro65
70 75 80Val Pro Val Met Lys
Ile His Glu Thr Ala Glu Lys Met Leu Tyr Arg 85
90 95Cys Ser Val Cys Gly Lys Gly Phe Gly Ser Tyr
Gln Ala Leu Gly Gly 100 105
110His Lys Ala Ser His Arg Lys Leu Ile Ala Gly Gly Asp Asp Gln Ser
115 120 125Thr Thr Ser Thr Thr Thr Asn
Ala Asn Gly Thr Thr Ser Ser Gly Asn 130 135
140Gly Asn Gly Asn Gly Ser Gly Thr Gly Arg Thr His Glu Cys Ser
Ile145 150 155 160Cys His
Lys Cys Phe Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg
165 170 175Cys His Tyr Asp Gly Gly Asn
Ser Asn Gly Asn Gly Asn Ala Asn Ala 180 185
190Asn Ser Ser Ile Ser Ala Ser Val Gly Val Thr Ser Ser Glu
Gly Val 195 200 205Gly Ser Thr Ile
Ser His Arg Asp Phe Asp Leu Asn Ile Pro Ala Leu 210
215 220Pro Gly225197198PRTMedicago truncatula 197Trp Thr
Lys Gly Lys Arg Ser Lys Arg Ser Arg Met Asp Gln Ser Ser1 5
10 15Cys Thr Glu Glu Glu Tyr Leu Ala
Leu Cys Leu Ile Met Leu Ala Arg 20 25
30Ser Gly Asn Asn Asn Asp Asn Lys Thr Glu Ser Val Pro Val Pro
Ala 35 40 45Pro Leu Thr Thr Val
Lys Leu Ser His Lys Cys Ser Val Cys Asn Lys 50 55
60Ala Phe Ser Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser
His Arg65 70 75 80Lys
Ala Val Met Ser Ala Thr Thr Val Glu Asp Gln Thr Thr Thr Thr
85 90 95Ser Ser Ala Val Thr Thr Ser
Ser Ala Ser Asn Gly Lys Asn Lys Thr 100 105
110His Glu Cys Ser Ile Cys His Lys Ser Phe Pro Thr Gly Gln
Ala Leu 115 120 125Gly Gly His Lys
Arg Cys His Tyr Glu Gly Ser Val Gly Ala Gly Ala 130
135 140Gly Ser Ser Ala Val Thr Ala Ala Ser Glu Gly Val
Gly Ser Ser His145 150 155
160Ser His His Arg Asp Phe Asp Leu Asn Leu Pro Ala Phe Pro Asp Phe
165 170 175Ser Lys Lys Phe Phe
Val Asp Asp Glu Val Ser Ser Pro Leu Pro Ala 180
185 190Ala Lys Lys Pro Cys Leu
195198219PRTPopulus sp.misc_feature(199)..(199)Xaa can be any naturally
occurring amino acid 198Lys Lys Asn Ser Val Ser Arg Ile Gln Ile Met Ala
Leu Glu Ala Leu1 5 10
15Asn Ser Pro Thr Thr Ala Ala Pro Leu Asn Tyr Glu Glu Thr Trp Ile
20 25 30Lys Arg Lys Arg Ser Lys Arg
Pro Arg Ser Glu Ser Pro Ser Thr Glu 35 40
45Glu Glu Tyr Leu Ala Phe Cys Leu Ile Met Leu Ala Arg Gly Gly
Ser 50 55 60Thr Ala Ala Thr Ala Lys
Lys Thr Ala Ser Ala Ser Pro Ala Pro Pro65 70
75 80Gln Pro Pro Thr Leu Asp Leu Ser Tyr Lys Cys
Thr Val Cys Asn Lys 85 90
95Ala Phe Ser Ser Tyr Gln Ala Leu Gly Gly His Lys Ala Ser His Arg
100 105 110Lys Ser Ser Ser Glu Ser
Thr Val Ala Thr Ala Ala Glu Asn Pro Ser 115 120
125Ala Ser Thr Thr Thr Asn Thr Thr Thr Thr Thr Thr Asn Gly
Arg Thr 130 135 140His Glu Cys Ser Ile
Cys His Lys Thr Phe Leu Thr Gly Gln Ala Leu145 150
155 160Gly Gly His Lys Arg Cys His Tyr Glu Gly
Thr Ile Gly Gly Asn Asn 165 170
175Ser Ser Ser Ala Ser Ala Ala Ile Thr Thr Ser Asp Gly Gly Ala Val
180 185 190Gly Gly Gly Gly Val
Ser Xaa Ser Lys Ser Gln Arg Ser Gly Gly Gly 195
200 205Phe Asp Phe Asp Leu Asn Leu Pro Ala Leu Pro 210
215199240PRTCitrus sinensismisc_feature(235)..(236)Xaa
can be any naturally occurring amino acid 199Arg Tyr Glu Asp Ser Trp Thr
Lys Arg Arg Arg Ser Lys Arg Leu Arg1 5 10
15Thr Asp Glu Ser Pro Gln Leu Pro Ala Ala Ala Ala Ala
Pro Thr Glu 20 25 30Glu Glu
Tyr Met Ala Leu Cys Leu Ile Met Leu Ala Arg Gly Thr Thr 35
40 45Thr Ala Asn Thr Ala Pro Ala Glu Arg Thr
Pro Thr Leu Ala Pro Glu 50 55 60Gln
Lys Pro Leu Asp Gln Phe Pro Glu Pro Pro Ser Leu Lys Leu Ser65
70 75 80Tyr Lys Cys Ser Val Cys
Asn Lys Ala Phe Ser Ser Tyr Gln Ala Leu 85
90 95Gly Gly His Lys Ala Ser His Arg Lys Asn Ala Ala
Asp Ala Ser Ala 100 105 110Ser
Pro Asn Ala Ala Ala Ala Ser Asp Val Thr Pro Pro Pro Ser Ala 115
120 125Thr Ala Ser Ser Gly Ser Gly Gly Arg
Thr His Glu Cys Ser Ile Cys 130 135
140His Lys Ser Phe Pro Thr Gly Gln Ala Leu Gly Gly His Lys Arg Cys145
150 155 160His Tyr Glu Gly
Gly Ile Asn Asn Asn Asn Asn Ser Ser Ser Asn Asn 165
170 175Asn Lys Ser Asn Asn Asn Ser Asp Val Val
Thr Ser Gly Ser Ala Ser 180 185
190Val Gly Ala Ser Ala Val Thr Phe Ser Glu Gly Gly Gly Ser Ser Ser
195 200 205Gln Arg Gly Phe Asp Leu Asn
Leu Pro Ala Leu Pro Glu Phe Trp Ser 210 215
220Gln Glu Val Glu Ser Pro Leu Pro Ala Lys Xaa Xaa Lys Leu Leu
Met225 230 235
240200196PRTLotus corniculatus 200Trp Ala Lys Arg Lys Arg Ser Lys Arg Ser
Arg Thr Asp Ser His His1 5 10
15Asn His Ala Ser Cys Thr Glu Glu Glu Tyr Leu Ala Leu Cys Leu Ile
20 25 30Met Leu Ala Arg Gly Ser
Thr Ala Val Thr Pro Lys Leu Thr Leu Ser 35 40
45Arg Pro Ala Pro Val Thr Ala Glu Lys Leu Ser Tyr Lys Cys
Ser Val 50 55 60Cys Glu Lys Thr Phe
Pro Ser Tyr Gln Ala Leu Gly Gly His Lys Ala65 70
75 80Ser His Arg Lys Leu Ala Gly Ala Ala Ala
Glu Asp His Ser Thr Ser 85 90
95Ser Ala Val Thr Thr Ser Ser Ala Ser Asn Gly Gly Gly Lys Val His
100 105 110Gln Cys Ser Ile Cys
Gln Lys Ser Phe Pro Thr Gly Gln Ala Leu Gly 115
120 125Gly His Lys Arg Cys His Tyr Glu Gly Gly Gly Gly
Ala Ser Ser Thr 130 135 140Ala Thr Ala
Thr Ala Ser Glu Gly Val Gly Ser Thr His Ser His Gln145
150 155 160Arg Asn Phe Asp Leu Asn Leu
Pro Ala Phe Pro Asp Phe Ser Ala Ser 165
170 175Lys Phe Phe Val Glu Glu Glu Val Ser Ser Pro Leu
Pro Ser Lys Lys 180 185 190Pro
Arg Leu Leu 195201687DNALolium perenne 201atggccgtgg aggcggttct
cgaagcggcg gcgatgatac agtcgccgcc gagcaagaag 60atggaggcgt ctagtagcag
cgacgaggcg ttcgaggcgt tgcagcagca cacggagggg 120tggtccaaga agaagcgctc
gaggcggcca cgggcgctcg agcccagcga ggaggagtac 180ctcgcgttct gcctcgtcat
gctggcgcgc ggccaccgcg acgccgcgcc ggagcacggg 240tgctccgtct gcggcaaggc
gttcgcgtcg taccaggcgc tcggcggcca caaggccagc 300caccggaagc cacccacagc
tccagccgcg gtggcagcaa gcgccgtccc cgaggaggac 360aagccacggg cggctgcctc
gtcctcgtct gggtccggcg atgccgctgg cggcggcaag 420gtccacgagt gcaacgtgtg
ccagaagacg ttcccgacgg ggcaggcgct gggcggccac 480aagcggtgcc actacgacgg
caccatcggc agcgccgccg cgcccacggt gaaggctgcc 540aaggccgccg ccgcggcgag
cgcgccgacg gcgacgaacc gggggttcga cctgaacgtg 600ccggcgctgc cgggactcgc
ggaggagggg gaggaggtgc tcagcccggt atccttcaag 660aagccgaggc tcatgatcac
cgcgtga 687202753DNAOryza sativa
202atggcggtgg aggcggttct tgaggcgtcg agaagtagta gtgaggagga ggcggaggtg
60atcgtcacgc acggcggcgg cggcggcggc ggaggaggag gaggacaggt ggaggggtgg
120gggaagcgga agcggtcgcg gcggcggcga ccgcagctgc cgccctccga ggaggagtac
180ctcgcgctct gcctcctcat gctggcgcgc gggcgacgcg acggcgacga cgtggcggcg
240tcggcgtcgg cggcggcggc ggcggtggag caccggtgct ccgtctgcgg caaggcgttc
300gcgtcctacc aggctctcgg cggccacaag gccagccacc ggaagccgcc gccgccgccg
360ccgcccgcca tggtcgacga cgacgaggtg gtggtggaga cgaaaccggc ggctatcgcg
420acgccgtcct cgtcggcgtc gggcgtctcc ggcggcggcg gcgggagggc gcacgagtgc
480aacgtgtgcg gcaaggcgtt cccgacgggg caggcgctgg gcggccacaa gcgatgccac
540tacgacggca cgatcggcag cgccgccggc gccggcgcgt ccaagccggc ggcgaagacg
600accgtggcgg tggcggcgag ccggggcttc gacctcaacc tgccggcgct gccggacgtc
660gccgccgccg ccgaccagcg gtgcgcggcg gaggacgacg aggtgctcag ccctctcgcc
720ttcaagaagc ccaggctcat gatcccggca tag
753203717DNAOryza sativa 203atggcggtgg aggaggttct tgatggcgcc gcgccgatgc
tgtcgtcgtc gccggcggcg 60agcggcgagg aggtgggggc gcggaagccg cagcaacggt
gcggcggcgc cgaggggtgg 120tccaagcgga agcgctcgag gcggcgccac cgcgaccgcg
ccgctgcgcc gccgcctcac 180ggttcggagg aggagcacct cgcgctcagc ctcctcatgc
tggcgcgcgg ccaccgcgac 240ccctcgccgg cgccgcagga gcagcacggg tgctccgtgt
gcggcagggt gttctcgtcc 300taccaggcgc tcggcggcca caagacgagc caccgcccca
ggacgccgcc gacgatggcg 360gccgttgtcg tcgtagacga gccggcagcg acgacggcct
cgccggccgc gtcctcgtcc 420aattccggct ccggcagcgg cggcggcggc ggaaacaagg
tgcacgagtg ctccgtgtgc 480aagaagacgt tcccgacggg gcaggcgctg ggcgggcaca
agcggtgcca ctacgagggc 540ccgatcggaa gcggcggcgg cgccgctgtc gccggccgcg
ggttcgatct gaacctgccg 600gcggtggcgc tgccggacat catgacggag cggtgcttgc
cggcggcggc cgaggaggag 660gaggtgctca gcccgcttgc aagcttcaag aagccaaggc
taatgatccc tgcttaa 717204786DNATriticum aestivum 204atgtcgtcgt
cggccatgga agcgctccac gccctgatcc cggagcagca ccagctggac 60gttgaggcgg
ctgcggctgt cagcagcgcc accagcggcg aggagagcgg ccacgtgctg 120caggggtggg
ccaagaggaa gcgatcgcgc cgccagcgct ccgaggagga gaacctcgcg 180ctctgcctcc
tcatgctctc gcgcggcggc aagcagcgtg ttcaggcgcc gcagccggag 240tcgttcgctg
cgccggtgcc tgccgagttc aagtgctccg tctgcggcaa gtccttcagc 300tcctaccagg
cgctcggagg ccacaagacg agccaccggg tgaagcagcc gtctcctccc 360tctgatgccg
ctgctgcccc actcgtggcc ctcccggccg tcgccgccat cctgccgtcc 420gccgagccgg
ccacgtcgtc caccgccgcg tcctccgacg gcgcgaccaa cagagtccac 480aggtgctcca
tctgccaaaa ggagttcccg actgggcagg cgctcggcgg gcacaagagg 540aagcactacg
acggaggcgt gggcgccgcc gcctcgtcga ccgagcttct ggccgccgcg 600gccgccgagt
ctgaggtggg gagcaccggc aacgggagct ccgccgcccg ggccttcgac 660ctgaacattc
cggccgtgcc ggagttcgtg tggaggccgt gcgccaaggg caagatgatg 720tgggaggacg
atgaggaggt gcagagcccc ctcgccttca agaagcctcg gcttctcacc 780gcttga
786205810DNAOryza
sativa 205atgtcgagcg cgtcgtccat ggaagcgctc cacgccgcgg tgctcaagga
ggagcagcag 60cagcacgagg tggaggaggc gacggtcgtg acgagcagca gcgccacgag
cggggaggag 120ggcggacacc tgccccaggg gtgggcgaag cggaagcggt cgcgccgcca
gcgatcggag 180gaggagaacc tcgcgctctg cctcctcatg ctcgcccgcg gcggccacca
ccgcgtccag 240gcgccgcctc cgctctcggc ttcggcgccc ccgccggcag gtgcggagtt
caagtgctcc 300gtctgcggca agtccttcag ctcctaccag gcgctcggcg gccacaagac
gagccaccgg 360gtcaagctgc cgactccgcc cgcagctccc gtcttggctc ccgcccccgt
cgccgccttg 420ctgccttccg ccgaggaccg cgagccagcc acgtcatcca ccgccgcgtc
ctccgacggc 480atgaccaaca gagtccacag gtgttccatc tgccagaagg agttccccac
cgggcaggcg 540ctcggcgggc acaagaggaa gcactacgac ggtggcgtag gcgccggcgc
cggcgcatct 600tcaaccgagc tcctggccac ggtggccgcc gagtccgagg tgggaagctc
cggcaacggc 660cagtccgcca cccgggcgtt cgacctcaac ctcccggccg tgccggagtt
cgtgtggcgg 720ccgtgctcca agggcaagaa gatgtgggac gaggaggagg aggtccagag
ccccctcgcc 780ttcaagaagc cccggcttct caccgcgtaa
810206663DNAOryza sativa 206atggcgctcg acgggaagcc accggtgccg
ccgccgtcca cgccgccgat ggactcgtgg 60gcctgcggtg gtcgccgctc caagcgccgc
ggcggcggcg gcgggagcag cgggagtagt 120ggcagctccg gcggcggcgg cggcggcgag
tccgaggagg agtacctcgc ggcctgcctc 180ttgatgctcg cgcatggcgt ccgcgacgag
gccgaggtcg tcggcgtcgc ggcggcgacg 240gcgaagccac agcatgggta cgagtgctcg
gtgtgcggca aggtgtacgg gtcctaccag 300gcgctgggcg ggcacaagac gagccaccgc
aagccgccgt cgccggcggc cgaaccggcg 360gccggcgaag agccgtcctc cggcggggtg
gccggcgagg cgaaggtgca ccgttgctcc 420atctgcctcc gcacgttccc gtccgggcag
gcgctgggcg ggcacaagcg gctgcactac 480gagggcggcg ccgtcggaga cgccgtcaag
gagaagaact ccctgaagac caaggcggcg 540gtggcgacag cggtgctgaa ggacttcgac
ctgaacctgc cggccgcggc gacgacggcg 600ggggacgagg ccgagagctc accaccggag
gccaagagag cacgtctgct gcttctcgtc 660taa
663207737DNAAegilops speltoides
207tcggcacgag gccctgctcc atcaccacta gccagtagct agctactccc tcgcctcact
60tccttcccga accactagct aactactgcc caccactcct ccttcgtgcc agagagaata
120agcaacacgt tcttgcgtgt gttggatcgg cgtacgtgcg tgcatggcgg tggacgcggt
180tcgcgacgcg gcggcgatgg tgagcgagga ggaggaggag gggcagctgc ggtgcgacga
240ggggtggggc aagcggaggc gcccgaggcg ccagcggcag cgcgcgccca gcgaggagga
300gcacctcgcg ctcagcctcc tcatgctggc gcgcggtcac cgcgaccggc acctgcttgg
360gtcgtccgag ccggcgcagg agcaccgctg ctccgtgtgc ggcaaggggt tcccgtccta
420ccaggccctg ggcgggcaca aggcgagcca ccgcccgaag ccggcgcccg ccggcgcgga
480cgagcccgct gccacgacgg cggcctcgcc cgccgcatcc tcgtcaacga cgtccagcgg
540cgcgggcgga ggtggcaggg tgcacgagtg ctccgtgtgc aagaagacct tcccgaccgg
600gcaggcgctg ggcgggcaca agcggtgcca ctacgagggc cccatcggcg ccaccgtggt
660tgcgagccga gggttcgacc tgaacctgcc ggcgctgccg gacatcgtca ccgagcgcga
720gcggtgcatg ccggcac
737208655DNASecale cereale 208gcggaggcgc ccgaggcggc agcggcagcg cgcgcccagc
gaggaggagc acctcgcgct 60cagcctcctc atgctggcgc gcggtcaccg cgaccggcac
ctgcctccgt cgtccgagcc 120ggcacaggag caccgctgct ccgtgtgcgg caaggggttc
ccgtcctacc aggccctcgg 180cgggcacaag gcgagccacc gcccgaagcc ggcgcccgcc
ggcgcggacg agcccgctgc 240cacggcggcg gcctcgcccg ccgcatcctc gtcaacgacg
tccagcggcg cgggtgtcaa 300ggtgcacgag tgctccgtgt gcaagaagac cttcccgacg
gggcaggcgc tgggcgggca 360caagcggtgc cactacgagg gccccatcgg cggcggcggt
gcccccgcgg ttgcgagccg 420agggttcgac ctgaaccttc cggcgctgcc ggacatcgtc
accgagcgcg agcggtgcat 480gccggcgccg gccgatgagg aggaggtgct cagcccgctg
gcgttcaaga agccgaggct 540aatgatcccg gcataattaa atcatcaaag aattaatgag
tgaattgcgt cggtgtgtat 600tctttttgga ttgcttatgc tcggctggtt ggtgtaaaaa
aaaaaaaaaa aaaaa 655209666DNASaccharum
officinarummisc_feature(615)..(615)n is a, c, g, or t 209ggacgacgtg
gtggcggctg cagcggatca ggtcgccacg accagcaaca gcagcggcac 60ggcggcagag
gaggacaagg atgtcaagac ggcggtgcag caggagcatg gccaagggct 120ggcgaagcgg
aagcgctcca ggcgccgccg cgaccgcgag cagcagcagc tgcccaagga 180gcaccccacc
caggaggagt acctggcgca gtgcctcgtc atgctggcca ccggccgccg 240cgacggcgac
gtcccggccc tggcctccgc gccgccgccg ccgcaggggc agcagcagga 300ccacgcgtgc
tccgtctgcg gcaaggcgtt cccgacgtac caggcgctcg gcgggcacaa 360ggccagccac
cgcaccaggc cctcgccgcc gtcggcggca acggaagtag taggggatca 420ccacgaggag
cagaagccgg tgctgccgtc ctcgtcgtcc gcggcctccg ctggcgccga 480caacaacaag
cccgcggcgg cgcacgagtg caacgtgtgc ggcaaggcgt tcccgacggg 540gcaggcgctg
ggcggccaca agcgccgcca ctacgacggc accatcggca gcgccgccgc 600gcccgcgcgc
gcgtnctnct nctnctncgc gggcggcggc caacagcagc cgcgccacgc 660cggcgn
666210762DNANicotiana benthamiana 210atggcacttg aagctttgaa ttctccaact
acaacaactc caccaacttt ccaatttgag 60aacaacggcc cgcttcgata ccttgaaaat
tggactaaag gtaaaagatc aaaaaggcct 120cgtagtatgg aacgacagcc tactgaagaa
gagtatttgg ctctttgttt gattatgcta 180gcgcgtagcg atggctctgc taatcgggaa
cagtctctac caccaccgcc agttccagtg 240atgaaaatac acgcgccacc ggaggagaag
atggtgtaca agtgttcagt ttgtggtaag 300ggttttggat cttatcaagc tttaggagga
cacaaggcta gtcaccggaa gctcgtcgcc 360ggcggtggag gaggagatga ccagtcaact
acctccacaa ccactaacgc tacaggaact 420actagctctg ctaacggtaa cggtaacgga
agcggaaaaa ctcacgagtg ttcaatttgc 480cacaagcgtt ttcctactgg acaggctttg
ggtggacaca aaaggtgtca ctacgacggc 540ggtaacagta acggtggcgt tagcgttagt
gctagcgttg gactgacgtc atcagaaggt 600gtggggtcca ctgtgagtca ccgtgacttt
gacttgaaca ttccggcgtt gccggaattc 660tggcccggat ttggttccgg cgaggatgaa
gtggagagtc ctcatccgac gaagaaatcg 720cggctatctc tgcctccaaa atttgaatta
ttccgggaat ag 762211786DNACapsicum annuum
211atggcacttg aagctttgaa ttctccaact ggtacaccaa ctccgccacc gtttcaattt
60gagagcgacg gccaacagct tcgatatatc gaaaactgga ggaagggaaa gagatctaaa
120aggtcacgca gcatggagca ccagcctact gaggaagaat acttagcgct ttgtttgatc
180atgcttgcac gtagcggtgg ctccgttaat catcaacgat ctctaccacc gccggctccg
240gtgatgaaac tgcacgcgcc gtcgtcatca tcggcggcgg aggaggagaa ggagaagatg
300gtgtataagt gttcggtttg tggtaaggga tttgggtctt atcaagcttt aggtggacac
360aaagctagtc accggaaact cgtacccggc ggagatgatc agtcaactac ctccacaacc
420actaacgcaa ccggaacaac aacctccgtt aacggcaacg gcaacagaag tggaaggact
480cacgagtgtt cgatttgtca caagtgtttt cccactggac aagctttagg tggacacaaa
540aggtgtcact acgacggcgg tatcggtaac ggaaacgcta acagtggcgt tagtgctagc
600gttggagtga cgtcatcgga gggtgtgggg tccacagtca gtcaccggga tttcgacttg
660aacattccgg cgttgccgga attctggctg ggatttggtt ccggcgaaga tgaggtggag
720agtccacatc cggcgaagaa atcgcggtta tgtttgcctc caaaatatga attatttcaa
780cattaa
786212708DNAMedicago sativa 212atggctatgg aagcacttaa ctcacccacc
actgctactc ctttcacacc ctttgaggaa 60ccaaatctga gttatcttga aacaccgtgg
acgaaaggta aacgatcaaa gcgttctcgc 120atggatcaat cttcatgcac tgaagaagag
tatctcgctc tttgtctcat catgcttgct 180cgcagcggta acaacaacga caaaaagtct
gattcggtgg cgacgccgct aaccaccgtt 240aaactcagtc acaaatgctc agtctgcaac
aaagctttct catcttatca agccctaggt 300ggacacaaag ccagtcaccg gaaagctgtt
atgtccgcaa ccaccgctga agatcagatc 360accaccactt catccgccgt gactaccagc
tctgcttcca acggtaagaa caagactcat 420gagtgttcca tctgtcacaa atccttccct
actggacagg ctttgggagg acacaagcgt 480tgtcactacg aaggcagcgt tggtgccggt
gccggtgctg gaagtaacgc tgtaactgcc 540tctgaaggag ttggattgtc acacagccac
caccgtgatt ttgatcttaa cctcccggct 600tttccggact tttcaaagaa gtttttcgtg
gatgacgagg tttttagtcc tttacctgct 660gcaaagaagc cctgtctttt caagctggaa
attccttctc attactga 708213723DNAArtificialGlycine max
213atggctttgg aagctctcaa ctcaccaaca acaaccgctc catcttttcc ctttgacgac
60ccaactattc catgggcgaa acgaaaacgt tcaaagcgtt ctcgcgacca tccttctgaa
120gaagagtacc tcgccctctg cctcatcatg ctcgctcgcg gcggcaccac caccgtcaac
180aaccgccacg tcagccctcc gccgctacag ccacagccac agccgacacc agatccttcc
240accaagctca gttacaaatg ctccgtttgc gacaagagct tcccctctta ccaagcgctc
300ggtggacaca aggccagtca ccggaaactc gccggcgccg ccgaagacca accccccagc
360accaccactt cctccgccgc cgccaccagc tccgcctccg gaggtaaggc ccatgagtgc
420tccatttgcc acaaatcctt ccccaccgga caggcccttg gcggacacaa acgttgtcac
480tacgaaggta acggtaacgg aaataacaac aacagtaaca gcgttgtcac cgtcgcctcg
540gaaggcgtgg gctccaccca cactgtcagt cacggccacc accgcgactt cgatctcaac
600atcccggcct ttccggattt ttcgaccaag gtcggagaag acgaggttga gagccctcac
660cctgtcatga agaagcctcg cctcttcgtc attcccaaga tcgaaatccc ccaatttcaa
720tga
723214798DNAArabidopsis thaliana 214atggttgcat acccaaccaa aaaaacagca
attaaacaat ttcttcactg caattcacaa 60gcaaccttca aactaaaact cgagagacaa
gaaatcctca gaatctttaa cttaatggcg 120ctcgaggctc ttacatcacc aagattagct
tctccgattc ctcctttgtt cgaagattct 180tcagtcttcc atggagtcga gcactggaca
aagggtaagc gatctaagag atcaagatcc 240gatttccacc accaaaacct cactgaggaa
gagtatctag ctttttgcct catgcttctc 300gctcgcgaca accgtcagcc tcctcctcct
ccggcggtgg agaagttgag ctacaagtgt 360agcgtctgcg acaagacgtt ctcttcttac
caagctctcg gtggtcacaa ggcaagccac 420cgtaagaact tatcacagac tctctccggc
ggaggagatg atcattcaac ctcgtcggcg 480acaaccacat ccgccgtgac tactggaagt
gggaaatcac acgtttgcac catctgtaac 540aagtcttttc cttccggtca agctctcggc
ggacacaagc ggtgccacta cgaaggaaac 600aacaacatca acactagtag cgtgtccaac
tccgaaggtg cggggtccac tagccacgtt 660agcagtagcc accgtgggtt tgacctcaac
atccctccga tccctgaatt ctcgatggtc 720aacggagacg acgaagtcat gagccctatg
ccggcgaaga agcctcggtt tgactttccg 780gtcaaacttc aactttaa
798215684DNAArabidopsis thaliana
215atggcgctcg aggctcttac atcaccaaga ttagcttctc cgattcctcc tttgttcgaa
60gattcttcag tcttccatgg agtcgagcac tggacaaagg gtaagcgatc taagagatca
120agatccgatt tccaccacca aaacctcact gaggaagagt atctagcttt ttgcctcatg
180cttctcgctc gcgacaaccg tcagcctcct cctcctccgg cggtggagaa gttgagctac
240aagtgtagcg tctgcgacaa gacgttctct tcttaccaag ctctcggtgg tcacaaggca
300agccaccgta agaacttatc acagactctc tccggcggag gagatgatca ttcaacctcg
360tcggcgacaa ccacatccgc cgtgactact ggaagtggga aatcacacgt ttgcaccatc
420tgtaacaagt cttttccttc cggtcaagct ctcggcggac acaagcggtg ccactacgaa
480ggaaacaaca acatcaacac tagtagcgtg tccaactccg aaggtgcggg gtccactagc
540cacgttagca gtagccaccg tgggtttgac ctcaacatcc ctccgatccc tgaattctcg
600atggtcaacg gagacgacga agtcatgagc cctatgccgg cgaagaagcc tcggtttgac
660tttccggtca aacttcaact ttaa
684216744DNADatisca glomerata 216atggctctag aagcgctcaa ctctccgacc
acagctacgc cggtgtttca ctacgacgac 60cccagcttga attaccttga gccatggacc
aagcgtaagc gttccaagcg tacgcgctta 120gatagccctc ataccgagga agagtacctt
gctttctgcc tcatcatgct cgctcgtggc 180cgcgttgcct ctgcaaatcg acgggattct
cagtcttcca ttcagattca gcctgaagca 240acgacttcgg ctaccaaagt cagttataag
tgctctgtgt gcgataaggc cttttcgtct 300tatcaggctt tgggtgggca caaggccagc
cacagaaagc tcgctggcgg cgaagatcaa 360tcgacttcct ttgccaccac gaattcagcc
accgtcacta ccaccacagc ctccggaggt 420ggtggcaggt ctcatgagtg ttctatttgc
cacaaatcgt tcccgactgg ccaggccttg 480ggtggtcaca agcgctgcca ctacgaaggc
agtatcggcg gcaatagtat tcaccaccac 540aacaatacca ccaacagcgg aagcaacggt
ggcatgagca tgacctccga agtaggttcc 600acacacacag tcagccacag tcaccgtgac
ttcgatctca acatcccggc cttgccggag 660tttcggtcga atttcttcat atccggggat
gacgaggtcg agagtcctca tccggccaag 720aaaccccgta tattgatgaa ataa
744217684DNAArabidopsis thaliana
217atggcgctcg aggctcttac atcaccaaga ttagcttctc cgattcctcc tttgttcgaa
60gattcttcag tcttccatgg agtcgagcac tggacaaagg gtaagcgatc taagagatca
120agatccgatt tccaccacca aaacctcact gaggaagagt atctagcttt ttggctcatg
180cttctcgctc gcgacaaccg tcagcctcct cctcctccgg cggtggagaa gttgagctac
240aagtgtagcg tctgcgacaa gacgttctct tcttaccaag ctctcggtgg tcacaaggca
300agccaccgta agaacttatc acagactctc tccggcggag gagatgatca ttcaacctcg
360tcggcgacaa ccacatccgc cgtgactact ggaagtggga aatcacacgt ttgcaccatc
420tgtaacaagt cttttccttc cggtcaagct ctcggcggac acaagcggtg ccactacgaa
480ggaaacaaca acatcaacac tagtagcgtg tccaactccg aaggtgcggg gtccactagc
540cacgttagca gtagccaccg tgggtttgac ctcaacatcc ctccgatccc tgaattctcg
600atggtcaacg gagacgacga agtcatgagc cctatgccgg cgaagaagcc tcggtttgac
660tttccggtca aacttcaact ttaa
684218762DNAPetunia x hybrida 218atggcacttg aagcattgaa ttctccaact
acaacaacac caccatcatt ccaatttgag 60aacaacgggc ttaagtacct tgagagttgg
acaaaaggta aaagatcaaa aaggcaacgc 120agcatggaac gacagtgtac tgaagaagag
tatttagcac tttgtcttat catgctagca 180cgtagcgatg gttctgttaa taactcacgg
tctctaccac caccaccact accaccatca 240gttccagtaa cgtcgcaaat aaacgcgacg
ttattggaac agaagaattt gtacaagtgt 300tccgtttgtg gtaaagggtt tgggtcttat
caagctttag gtggacataa agcaagtcac 360cggaaacttg tcagcatggg aggagatgaa
caatctacta cttccactac tactaacgta 420acgggaacta gttccgctaa cgttaacggt
aacggaagaa ctcacgaatg ttcaatttgt 480cacaagtgct ttcctactgg acaagcttta
ggtggtcata aaaggtgcca ctatgacggt 540ggtaacggta acggtaacgg aagtgtaagt
gttggggtga cgtcatctga aggtgtgggg 600tccactatta gtcatcaccg tgactttgac
ttgaatattc ccgcgttgcc ggagttttgg 660ccgggatttg gttccggcga ggatgaggtg
gagagtcctc atccagcaaa gaagtcaagg 720ctatctcttc cacctaaact tgaattattc
aaaggattat ag 762219822DNAArabidopsis thaliana
219atggccctcg aagcgatgaa cactccaact tcttctttca ccagaatcga aacgaaagaa
60gatttgatga acgacgccgt tttcattgag ccgtggctta aacgcaaacg ctccaaacgt
120cagcgttctc acagcccttc ttcgtcttct tcctcaccgc ctcgatctcg acccaaatcc
180cagaatcaag atcttacgga agaagagtat ctcgctcttt gtctcctcat gctcgctaaa
240gatcaaccgt cgcaaacgcg atttcatcaa cagtcgcaat cgttaacgcc gccgccagaa
300tcaaagaacc ttccgtacaa gtgtaacgtc tgtgaaaaag cgtttccttc ctatcaggct
360ttaggcggtc acaaagcaag tcaccgaatc aaaccaccaa ccgtaatctc aacaaccgcc
420gatgattcaa cagctccgac catctccatc gtcgccggag aaaaacatcc gattgctgcc
480tccggaaaga tccacgagtg ttcaatctgt cataaagtgt ttccgacggg tcaagcttta
540ggcggtcaca aacgttgtca ctacgaaggc aacctcggcg gcggaggagg aggaggaagc
600aaatcaatca gtcacagtgg aagcgtgtcg agcacggtat cggaagaaag gagccaccgt
660ggattcatcg atctaaacct accggcgtta cctgaactca gccttcatca caatccaatc
720gtcgacgaag agatcttgag tccgttgacc ggtaaaaaac cgcttttgtt gaccgatcac
780gaccaagtca tcaagaaaga agatttatct ttaaaaatct aa
822220717DNAArabidopsis thaliana 220atggcacttg aaactcttac ttctccaaga
ttatcttctc cgatgccgac tctgtttcaa 60gattcagcac tagggtttca tggaagcaaa
ggcaaacgat ctaagcgatc aagatctgaa 120ttcgaccgtc agagtctcac ggaggatgaa
tatatcgctt tatgtctcat gcttcttgct 180cgcgacggag atagaaaccg tgaccttgac
ctgccttctt cttcgtcttc acctcctctg 240cttcctcctc ttcctactcc gatctacaag
tgtagcgtct gtgacaaggc gttttcgtct 300taccaggctc ttggtggaca caaggcaagt
caccggaaaa gcttttcgct tactcaatct 360gccggaggag atgagctgtc gacatcgtcg
gcgataacca cgtctggtat atccggtggc 420gggggaggaa gtgtgaagtc gcacgtttgc
tctatctgtc ataaatcgtt cgccaccggt 480caagctctcg gcggccacaa acggtgccac
tacgaaggaa agaacggagg cggtgtgagt 540agtagcgtgt cgaattctga agatgtgggg
tctacaagcc acgtcagcag tggccaccgt 600gggtttgacc tcaacatacc gccgataccg
gaattctcga tggtcaacgg agacgaagag 660gtgatgagtc ctatgccggc gaagaaactc
cggtttgact tcccggggaa accctaa 717221717DNAArabidopsis thaliana
221atggcacttg aaactcttac ttctccaaga ttatcttctc cgatgccgac tctgtttcaa
60gattcagcac tagggtttca tggaagcaaa ggcaaacgat ctaagcgatc aagatctgaa
120ttcgaccgtc agagtctcac ggaggatgaa tatatcgctt tatgtctcat gcttcttgct
180cgcgacggag atagaaaccg tgaccttgac ctgccttctt cttcgtcttc acctcctctg
240cttcctcctc ttcctactcc gatctacaag tgtagcgtct gtgacaaggc gttttcgtct
300taccaggctc ttggtggaca caaggcaagt caccggaaaa gcttttcgct tactcaatct
360gccggaggag atgagctgtc gacatcgtcg gcgataacca cgtctggtat atccggtggc
420gggggaggaa gtgtgaagtc gcacgtttgc tctatctgtc ataaatcgtt cgccaccggt
480caagctctcg gcggccacaa acggtgccac tacgaaggaa agaacggagg cggtgtgagt
540agtagcgtgt cgaattctga agatgtgggg tctacaagcc acgtcagcag tggccaccgt
600gggtttgacc tcaacatacc gccgataccg gaattctcga tggtcaacgg agacgaagag
660gtgatgagtc ctatgccggc gaagaaactc cggtttgact tcccggagaa accctaa
717222708DNABrassica rapa 222atggctcttg agactctcaa ttctccgact tcagccaccg
cctccgctcg gcctcttctc 60cggtatcgcg aagaaatgga gccggagaat ctcgagcaat
gggctaaaag aaaacgcacc 120aaacgacaac gttttgatca gagtcgtctg aatcaagaaa
cggctccttc agaagaagag 180tatctcgctc tttgtctcct catgctcgct cgtggctccg
ccgtgcaatc tcctctccct 240ccgtcttcgt cctccgacca ccgtggttac aagtgtacgg
tctgcggaaa gtcgttttcc 300tcttaccaag ccttaggtgg acacaagacg agtcaccgga
aaccggcgag caacgttaac 360gttcccatca accaagagca gtctaataac agtcatagta
acagcaacgg tggttccgtc 420gttatcaacg gtaacggcgt tagtcaaagc gggaagattc
atacttgctc gatatgtttc 480aagtcgtttt cgtcaggtca ggctttgggt ggacacaaac
ggtgtcacta tgacgctggt 540aataacggaa acggtaacgg cagtagcagc aacagcgtgg
aggtcgtcgg tggcagtgac 600ggcagctatg tggatgatga aagatcgtca gaacagagcg
cgaccggcga caaccggggg 660tttgacttga atttaccggc tgatcaagtc gcagttgtga
tatcttaa 708223714DNABrassica rapa 223atggctcttg
agactctcaa ttctccgact tcagccaccg cctccgctcg gcctcttctc 60cggtatcgcg
aagaaatgga gccggagaat ctcgagcaat gggctaaaag aaaacgcacc 120aaacgacaac
gttttgatca gagtcgtctg aatcaagaaa cggctccttc agaagaagag 180tatctcgctc
tttgtctcct catgctcgct cgtggctccg ccgtgcaatc tcctctccct 240ccgtcttcgt
cctccgacca ccgtggttac aagtgtacgg tctgcggaaa gtcgttttcc 300tcttaccaag
ccttaggtgg acacaagacg agtcaccgga aaccggcgag caacgttaac 360gttcccatca
accaagagca gtctaataac agtcatagta acagcaacgg tggttccgtc 420gctatcaacg
gtaacggcgt tagtcaaagc gggaagattc atacttgctc gatatgtttc 480aagtcgtttt
cgtcaggtca ggctttgggt ggacacaaac ggtgtcacta tgacgctggt 540attaacggaa
acggtaacgg cagtagcagc aacagcgtgg aggtcgtcgg tggcagtgac 600ggcaactatg
tggatgatga aagatcgtca gaacagagcg cgaccggcga caaccggggg 660tttgacttga
atttaccggc tgatcaagtc gcagttgtga tatctaaacg ttga
714224822DNANicotiana tabacum 224atgactcttg aagctttgaa gtcacctacg
gcggcaacgc cgactctacc accacgctat 60gaagatgatg atgaaattca taatttggat
tcttgggcta aaggaaaacg atcaaaacgg 120ccccgtattg atgccccacc gactgaagaa
gagtatttag ccctctgtct catcatgctc 180gctcgcagcg gaaccggaac cagaaccggt
ttaactgatg ctactacttc ccaacaacct 240gccgataaaa aaaccgccga gttgccgccg
gttcataaga aagaggtggc aacagagcaa 300gcagagcaat cttacaagtg tagcgtgtgt
gacaaggctt tttcttctta tcaagcactc 360ggtgggcata aagcaagtca ccgtaaaact
actactactg ctaccgccgc ctctgatgat 420aacaatcctt caacttcaac ttccactggc
gccgttaata tctctgctct taatccaact 480ggtcgttcac acgtctgttc tatttgccac
aaggcttttc ctactggcca agctttgggt 540gggcacaagc gccgccacta tgaaggcaaa
ctcggtggta acagccgcga cttaggcggc 600ggcggcggcg gcggtcatag tggaagcgtc
ttgactactt cagacggcgg cgcgtcgact 660cacacgctac gtgactttga cctgaacatg
cctgcttcgc cggaattgca actgggtctg 720agtattgatt gtggacggaa aagtcaactg
ttgccgatgg tccaagaggt ggaaagtcct 780atgcctgcaa agaaaccgcg tttattgttt
tcgttgggtt ga 822225825DNAPetunia x hybrida
225atggctcttg aagctttaaa gtcacccaca gcagcaacac catctctacc accacgttat
60gaagatcatg ttgatatgaa taatttggat tcttgggtta aaggaaaacg atccaaacga
120cctcgaattg aaaccccacc ttctgaagaa gaatatttag cactttgtct tattatgctt
180gcccgtagcg gtaacggaac tacacccggt tcaactgata ctactattac tactactatt
240tctaaagaac cggagaagaa aaaccgtgag ctgacaccgg ttcatcaaga aacagaacaa
300tcttacaagt gtagcgtgtg tgacaagtct tttagttctt atcaagctct tggtggacac
360aaagcaagtc ataggaaaat tacaactatt gccaccaccg ccttattaga tgacaacaac
420aataatccta caacgtcaaa ttctacaagt ggcaacgttg ttaataatat ttctgcttta
480aacccaagtg gacgttcaca cgtatgttct atatgtcaca aggcttttcc aactggacaa
540gctttaggtg gacacaaacg ccgccactat gaaggcaaac taggtggtaa caacaacaac
600caccgtgacg gcggtggtca tagtggaagt gtcgtgacaa cttctgatgg tggcgcgtct
660actcacacgc tccgtgactt tgacttgaac atgttgcctc cttccccaga attgcaattg
720gggttgagta ttgactgtga tttgaaaagt caaataccaa ttgaacaaga agttgaaagt
780cctatgcctt tgaagaaacc gcgtttattg ttttctatgg attga
825226582DNAArabidopsis thaliana 226atggcgcttg aagctcttaa ttcaccaaga
ttggtcgagg atcccttaag attcaatggc 60gttgagcagt ggaccaaatg taagaaacga
tccaaacgtt cgagatctga tcttcatcat 120aaccaccgtc tcactgagga agagtatcta
gctttctgtc tcatgcttct tgctcgggat 180ggcggcgatc ttgactctgt gacggttgcg
gagaagccga gttataagtg tggcgtttgt 240tacaagacgt tttcgtctta ccaagctctc
ggcggtcata aagcgagcca ccggagctta 300tacggtggtg gagagaatga taaatcgaca
ccatccaccg ccgtgaaatc tcacgtttgt 360tcggtttgcg ggaaatcttt cgccaccggt
caagctctcg gcggccacaa gcggtgccac 420tacgatggtg gcgtttcgaa ctcggaaggt
gtggggtcta ctagccacgt cagcagtagt 480agccaccgtg gatttgacct taatattata
ccggtgcagg gattttcgcc ggacgacgaa 540gtgatgagtc cgatggcgac taagaagcct
cgcctgaagt aa 582227582DNAArabidopsis thaliana
227atggctcttg aagctcttaa ttcaccaaga ttggtcgagg atcccttaag attcaatggc
60gttgagcagt ggaccaaatg taagaaacga tccaaacgtt cgagatctga tcttcatcat
120aaccaccgtc tcactgagga agagtatcta gctttctgtc tcatgcttct tgctcgtgat
180ggcggcgatc ttgattctgt gacggttgag gagaagccga gttataagtg tggcgtttgt
240tacaagacgt tttcgtctta ccaagctctc ggtggtcaca aagcgagtca ccggagttta
300tacggtggtg gagataacga taagtcgaca ccatccaccg ccgtgaaatc tcacgtttgt
360tcggtttgcg ggaaatcttt cgccaccggt caagctctcg gcggccacaa gcggtgccac
420tatgatggtg gcgtttcgaa ctcggaaggt gtggggtcta ctagccacgt tagtagtagt
480agccaccgtg gatttgacct taatatttta ccggtgcagg gattctcgcg ggacgacgaa
540gtgatgagtc cgatggcgac taagaagcct cgcctgaagt aa
582228648DNAArabidopsis thaliana 228atggctctcg acactctcaa ttctcccacc
tccaccacca caaccaccgc tcctcctcct 60ttcctccgtt gcctcgacga aaccgagccc
gaaaacctcg aatcatggac caaaagaaaa 120cgtacaaaac gtcaccgtat agatcaacca
aaccctcctc cttctgaaga agagtatctc 180gctctttgcc tccttatgct cgctcgtggc
tcctccgatc atcactctcc accgtcggat 240catcactctc tttctccact gtccgatcat
cagaaagatt acaagtgttc cgtctgtggc 300aaatctttcc cgtcttacca agcgttaggt
ggacacaaaa caagtcaccg gaaaccggtt 360agtgtcgatg ttaataatag taacggaacc
gttactaata acggaaatat tagtaacggt 420ttagttggtc aaagtgggaa gactcataac
tgctctatat gttttaagtc gtttccctct 480ggtcaagcat tgggtggtca caaacgttgt
cactatgatg gtggtaacgg taacagtaac 540ggtgacaata gccacaagtt tgacctaaat
ttaccggctg atcaagttag tgatgagaca 600attggaaaaa gtcaactctc cggtgaagaa
acaaagtcgg tgttgtga 648229834DNAPetunia x hybrida
229atggctcttg aagctttaaa atcacccaca gcagcaacac caactctacc accacgttat
60gaagatcaag ttgatatgag taatttggat tcatgggtta aaggaaaacg atccaaacga
120cctcggattg aaaccccacc ttctgaagaa gaatatctag cactttgtct tatcatgctt
180gcccgtagcg gtaacggaac tacacccagt tcaattcccg gttcaactga tacaactact
240atttctaaag aaccggagaa gaaaaaccgt gacgtggcac cggtttatca agaaacagaa
300caatcttaca agtgtagcgt gtgtgacaag tcttttagtt cttatcaagc tcttggcgga
360cacaaagcaa gtcataggaa aattacaact attgccacca ccgccttatt agatgacaac
420aacaataatc ctacaacgtc aaattctaca aatggcaacg ttgttaataa tatttctact
480ttgaacccaa gtggacgttc acacgtgtgt tctatatgtc acaaggcttt tccaagtgga
540caagctttag gtggacacaa gcgccgtcac tatgaaggca aacttggcgg caacaacaac
600aacaaccacc gtgacggcgg tggtcatagt ggaagtgttg tgacaacttc tgatggtggc
660gcgtctactc acacgctccg tgactttgac ttgaacatgt tgcctccttc cccagagttg
720caattggggt tgagtattga ctgtggtttg aaaagtcaac aagttcctat tgaacaagaa
780gttgaaagtc ctatgccttt gaagaaaccg cgtttattgt tttccatgga ttga
834230738DNAArabidopsis thaliana 230atggctctcg agactctcaa ttctccaaca
gctaccacca ccgctcggcc tcttctccgg 60tatcgtgaag aaatggagcc tgagaatctc
gagcaatggg ctaaaagaaa acgaacaaaa 120cgtcaacgtt ttgatcacgg tcatcagaat
caagaaacga acaagaacct tccttctgaa 180gaagagtatc tcgctctttg tctcctcatg
ctcgctcgtg gctccgccgt acaatctcct 240cctcttcctc ctctaccgtc acgtgcgtca
ccgtccgatc accgagatta caagtgtacg 300gtctgtggga agtccttttc gtcataccaa
gccttaggtg gacacaagac gagtcaccgg 360aaaccgacga acactagtat cacttccggt
aaccaagaac tgtctaataa cagtcacagt 420aacagcggtt ccgttgttat taacgttacc
gtgaacactg gtaacggtgt tagtcaaagc 480ggaaagattc acacttgctc aatctgtttc
aagtcgtttg cgtctggtca agccttaggt 540ggacacaaac ggtgtcacta tgacggtggc
aacaacggta acggtaacgg aagtagcagc 600aacagcgtag aactcgtcgc tggtagtgac
gtcagcgatg ttgataatga gagatggtcc 660gaagaaagtg cgatcggtgg ccaccgtgga
tttgacctaa acttaccggc tgatcaagtc 720tcagtgacga cttcttaa
738231846DNASolanum tuberosum
231ctcacaaaac ttctcaagtt ttataatatt cttaacactc tctctctcta aacaaaacag
60acgaataatt caatcaaatt gatattgaga tggcccttga agctttgaat tctccaactg
120gtacttcaaa tccgcagacg tttaaatttg agagcaaagg ccagcagcag cttcggtacc
180ttgagaattg gactaaaggg aagagatcta agaggtcacg gagtatggaa cgccagccga
240ctgaagagga atatttggcg atttgtttga ttatgcttgc gcgtagcgat ggctctgtta
300atcaggtacg atctctacca ccgccggtgc cagtgatgaa aatccacgcg ccgtcggaga
360agatggagta taagtgttcg gtttgtggta agggatttgg atcttatcaa gctttaggag
420gacataaagc tagtcaccgg aaactcatcg ccggcgtcag cggcggcgga gatgatcagt
480caactacctc tactactact aacgctaccg gaactactag ctccggtaac ggtaacggta
540gtggaaggac tcacgagtgt tcgatttgtc acaagtgttt tcctactgga caagctttgg
600gaggacacaa acggtgtcac tacgacggtg gtaacggtaa cggaaacgct aacagtagcg
660ttagcgctag cgtcggagtt acgtcgtcgg agggcgtggg gtcaacaatc agccaccgtg
720attttgactt gaacatcccg gcgttgccgg aattctggcc tggatttggt tccggcgagg
780atgaggtgga gagtccacat ccggcgaaga aatcacggct atctctacct ccaaaatttg
840aattat
846232819DNAGossypium raimondii 232ttacttttag ctctctgttt ttgctctcaa
actcgaaggg attcggaagt atttgatatg 60gcgcttgaag ctctgaactc gccggcgacg
cctttcacca acaaatacga tgacgtggac 120aacaattacg tcgagacatg gaagaaaggc
aagcgttcga agcgacaacg tggcgactct 180cctgctgctg ttgaacttca acccaccacc
gaagaagagt acctcgctct ttgtctcatc 240atgctcgctc gcggctcttc cggtgctgat
cttgatgtta ttcgtcggtc ttcctcttcg 300tcgtcaccgc ctccgccgcc gcctgctttg
aagttgtctt acaagtgtag tgtttgtgac 360aaggcgttcc cttcttatca agctttgggc
ggtcataaag ccagccaccg caaacccctt 420tccgccgacg ccgctaccac caccgccgcc
gccaacgtcg ataacccatc aacaaccagc 480accgccacca ccgccaccag cagcggtagg
cttcacgagt gttccatctg ccacaagagt 540ttccctacag gccaagcctt gggtggtcat
aaacgctgcc actacgaagg tggcaacaac 600aacaacaaca acaacaaaaa taacaacaac
agcggtagcg ttagcgttag cggggtgact 660tcttcggatg ggggcgcgtt gagccacaac
caccgtgcag tcgactttga ctttgacctc 720aacttgccgg ccttgccgga gttcagtcaa
atgtacccag atgaagaaga ggtccaaagc 780ccattgccga cccagaaacc acgtttcttg
atcgccaag 819233705DNAVitis aestivalis
233cctctttcat ggctctggaa gctctcaact caccaaccac acccacgcct tcctttcact
60acgaacaacc cagcctccac tctctggagt catgggccaa gcgcaagcgt tccaagcgtc
120ctcgcttcga caaccaacct acagaggaag agtatctggc tctctgcctc atcatgttgg
180ctcgaggagg cgccgcctcc tccaccgtct cacaccgccg ccatctctct ccccctcctg
240ccctgcaggt ggaagctcct aaactcacat acaaatgttc agtttgtaac aaggccttcg
300catcctacca ggcactaggg ggacacaagg ccagccaccg taagcagtcc ggatccgatg
360acctgtcggc ctccatcacc accacaagca ccgcggccgc tgccagcggt ggtaggactc
420atgagtgttc catctgtcac aagactttcc ccactggaca ggctttgggt ggacacaagc
480gatgccacta cgaaggcggc gccagcgtca gcagtggcgt tacctcctcc gaaggtgtgg
540ggtcaaccca cagccaccgt gacttcgacc tcaacctgcc ggcctttccc gaattatggt
600ccgcacgtcg attcccagtc gatgacgagg tcgagagtcc tctaccgaca aagaagcccc
660gtctccagat gctgccgcca aaaaccgaaa ttctctcaga ttacc
705234742DNALycopersicon esculentum 234acactctcga taactctgaa cgaacaattt
gaattaaatt gatatcgaaa tggctcttga 60agctttgaat tctccaactg gtactacttc
aaatccgcaa acgtttcaat ttgagagcaa 120aggccagcag cagcttcggt accttgagaa
ttggactaaa gggaagagat ctaagaggtc 180acggagtatg gatcgtcaac cgactgaaga
ggaatatttg gcgctttgtt tgattatgct 240tgcaaggagc gatggctctg ttaatcacgt
acggtctcta ccaccgccgg tgccagtgat 300gaaaattcac gagacggcgg agaagatgtt
gtataggtgt tcggtttgtg gtaagggatt 360cggatcttat caagctttag gaggacataa
agctagtcac cggaaactca tcgccggcgg 420agatgatcag tcgactacct ctactactac
gaacgctaac ggaactacaa gctccggtaa 480cggtaacggt aacggtagtg gaactggaag
gactcacgag tgttcgattt gtcacaagtg 540ttttccgact gggcaagctt tgggaggaca
caaacggtgt cactacgacg gtggtaacag 600taacggtaac ggaaatgcta acgctaacag
tagcattagc gctagcgtcg gagttacgtc 660gtcggagggc gtgggttcaa caatcagcca
ccgtgatttt gacttgaaca ttccggcgtt 720gccgggattc tggcctggat tt
742235804DNAMedicago truncatula
235cgctactcct ttccaccctt tgaggaacca aatctgagtt atcttgaaac accgtggacg
60aaaggtaaac gttcaaagcg ttctcgtatg gatcaatctt catgcactga agaagagtat
120ctcgctcttt gtctcatcat gcttgctcgc agcggaaaca acaacgacaa caagactgaa
180tcggtgccgg tgccggcgcc gctaaccacc gttaaactca gtcacaaatg ctcagtctgc
240aacaaagctt tttcatctta tcaagcccta ggtggacaca aagccagtca ccggaaagct
300gttatgtccg caaccaccgt tgaagatcag accaccacca cttcatctgc cgtgactacc
360agctctgcat ccaacggtaa gaacaagact catgagtgtt ccatctgtca caaatccttt
420cctactggac aggctttggg aggacacaag cgttgtcact acgaaggcag cgttggtgcc
480ggtgccggaa gtagcgctgt aactgccgcc tctgaaggag ttggatcgtc tcacagtcac
540caccgtgatt ttgatcttaa cctaccggct tttccggact tttcaaagaa gtttttcgtg
600gatgacgagg tttctagtcc tttacctgct gcaaagaagc cctgtctttt caagcttgaa
660attccttctc attactgatc aataatagat ccaattttat tgttattatt agtaataatt
720attatcgctt agggcatagt tattttcttt tttctttcaa tattttggat caatttgttc
780tgtacataca aattgggact ggct
804236743DNAPopulus sp.misc_feature(680)..(680)n is a, c, g, or t
236tccctcctcc ctgtctctct caataccttt cttcctctcc ttggaaatct tgttcgtttg
60tacccctcgt tgcccactca cacaagaaaa actcagtatc aagaatccaa atcatggctc
120ttgaagctct gaactctcct acaacagccg ctcctttaaa ttatgaagaa acatggatta
180agaggaaacg ctctaagaga cctcgtagtg agtccccttc gaccgaggaa gaatacctcg
240ctttttgcct tatcatgctt gctcgtggcg gctccactgc cgcaaccgcc aaaaaaaccg
300cttccgcctc ccctgcacca ccccaaccac caactttgga tctttcttac aagtgtacgg
360tttgcaacaa ggctttctct tcttaccagg ctctcggcgg gcacaaagcc agtcacagga
420aatcctcctc cgagtcaacc gtcgccacag ccgctgaaaa cccatcagcc tccaccacaa
480ctaacacaac caccacgacc accaatggta ggactcatga gtgttctatc tgccacaaga
540ctttccttac tggacaggcc ttaggcggac acaaacgttg tcactatgag ggcacaattg
600gaggcaacaa cagcagcagt gctagcgctg caatcaccac ctcagacggt ggtgctgttg
660gaggcggtgg cgtgagccan agtaagagtc aaagaagcgg tggtggattt gactttgacc
720tgaacttgcc tgctttgcct gaa
743237894DNACitrus sinensismisc_feature(872)..(874)n is a, c, g, or t
237ggggatcatt tccatccatt tgaaatcacc tctctctctc tctcgaaact caacagattc
60aaccacaaga gtcgagaatt cactaacaag aaaagaaaaa attcacgact atggctctag
120aagctctaaa ctcccctaca acaagcaccc acaatcatca tccgtttaga tacgaagact
180catggactaa aagaaggcgc tcaaaacgac tccgtaccga cgagtcccca caactaccag
240cagcagcagc agctcccacg gaagaagagt acatggctct ctgtctcatc atgctcgccc
300gcggtaccac caccgccaac accgctccgg ccgaaagaac cccaaccctg gcgccggaac
360agaagccgct ggatcagttc ccggagccgc caagtttgaa actctcttac aagtgcagtg
420tgtgcaacaa ggctttctct tcgtaccagg cccttggtgg gcacaaagcc agccaccgca
480agaacgctgc tgacgcctcg gcttctccca acgccgcagc cgccagtgac gtcaccccac
540caccgtcggc aacggcgagc agcggaagcg gtggtaggac ccacgagtgc tctatttgtc
600acaagtcttt tcccacggga caagctctag gaggccacaa gcggtgtcac tatgaaggcg
660gcatcaacaa caacaacaac agcagcagca ataataataa aagtaataat aatagcgacg
720ttgttactag tggtagcgct agcgttggtg caagtgcggt gacgttttcg gaaggcggag
780ggagcagcag tcaacgcgga tttgacctga acttgccggc gttgccggag ttttggtcac
840aggaagttga gtctccgttg ccggccaaga annncaagtt gttgatgcac tact
894238900DNALotus corniculatus 238tcaccaacca ccgccgctcc aaccttcact
cccttccagg aaccgaacca cagctacatg 60gtcgacgcac cgtgggcgaa gagaaagcgt
tccaagcgtt ctcgcacgga cagccatcac 120aaccacgctt cctgcacgga ggaagagtat
ctcgctctct gcctcatcat gctcgctcgc 180ggcagcaccg ccgtaacacc caagctcact
ctgtctcgtc cggcaccggt aaccgctgaa 240aagctcagtt acaagtgctc tgtctgcgaa
aaaaccttcc cctcttacca agcccttggc 300ggacacaagg ccagccaccg gaaactcgcc
ggcgccgccg ctgaggacca ctccacctcc 360tccgccgtga ccaccagctc tgcctccaac
ggtggaggca aggtccacca gtgctccatc 420tgccagaaat ccttccctac aggacaggcc
ttgggaggac acaagcgttg ccactatgaa 480ggcggtggtg gtgctagtag caccgccaca
gccaccgcat cggaaggtgt gggatccaca 540cacagccacc agcgcaactt cgatctgaac
ctgccggctt ttccggactt ctccgccagc 600aaatttttcg tggaagaaga ggtttccagt
cccctgcctt cgaagaagcc acgtcttttg 660cccaagattg aaatccctca ttattattaa
ttaattaatg catttagatc aaagttaatt 720agtgcttaat tagcttttca attgtttggg
aattgggatt tgatttgttc ttgtacatat 780acagtagcta gctagctgga cttggagctt
attagctggt tttaggattt cttctacatt 840gtattttgac agtcattcat tatcatataa
ttcaattcat ttattcaatc tatctattta 9002391178DNALolium
perennemisc_feature(681)..(681)n is a, c, g, or t 239ggctggtaaa
acaaatataa gtattaatat aaatataata caatagaagg aaaataaata 60aaatttccct
ctgtgccgtg caaaaatgca cggcaatggg ctggcccgca cggcaaaggc 120atcgttgccg
tgtccacggc aatgggttgg cccgcacggc aaaggcatcg ttgccgtgtc 180cacgtcttcg
ccgtgcgcct tggctctatc tttgccgtga agcgttcttt gccgtgtgcc 240ttttatttct
ttgccgtggg atgctgcctt tgccgagcgc tgagctggcg ctttgccgtg 300cgcgtattgt
ttgccgtgcg tcgtcccaga gctgtacggc aaagaattca ctgccgtgca 360cgagacacac
gggaaagaag ttttgcatgg caaagggcgc tgacagcaca cggcaaagag 420cctggcacgg
cattgagctt ttttcccgta atgatagacg gcataatata atggacgcac 480atgctgatgt
caggatgtca cccactcatc ctagtatttg tgggacgtga attctttgtg 540agatgggcaa
tggggtgtga acaaaataag ttttgtacta gtagataaac atttttaccc 600ataaacaatt
gttctgtatt gaatgagaaa ttattttgta ctggatgaaa attttctgag 660taactgtgta
agattaacat naatcaagag acaaatccaa tggctacaaa gtcaactaat 720acttgttaaa
agttccgata cttaaaatta tcaaaactga tatatagaat attgcccatc 780tcgccaccgt
gctagtttaa cagacgatgg acgaatatca gtcttgtatt ggataatcga 840tgcatgcgag
ctatcggcca cctgtccatg cttccagaag gagccgagac gtggcgactt 900cgtccgacgc
gccgactatc tgcacacgcc cggcttctcg tcgtgggcga gtcagcagtt 960acgggctttc
cgcctaccaa ctcacacgta gcgccctatc gtggcgcttg atcgatgcaa 1020cagcgatgcc
tatcccagct cctcaagctg cttataagta tgtcctcggc catcactgct 1080tacacaacaa
acacagctac ttatcgcagt gtactaaaca agacgtacta gctagatttc 1140gtgaggtaaa
atcagtgcaa tatcacttgt gcaagatg
11782405214DNAArtificialgenetic construct 240ggcgcgcctt aattaacggg
ctggtaaaac aaatataagt attaatataa atataataca 60atagaaggaa aataaataaa
atttccctct gtgccgtgca aaaatgcacg gcaatgggtt 120ggcccgcacg gcaaaggcat
cgttgccgtg tccacggcaa tgggttggcc cgcacggcaa 180aggcatcgtt gccgtgtcca
cgtctttgcc gtgcgccttg gctctatctt tgccgtgaag 240cgttctttgc cgtgtgcctt
ttatttcttt gccgtgggat gctgcctttg ccgagcgctg 300agctggcgct ttgccgtgcg
cgtattgttt gccgtgcgtc ctcccagagc tgtacggcaa 360agaattcatt gccgtgcacg
aggcacacgg gaaagaagtt tcgcatggca aagggcgctg 420acagcacacg gcaaagagcc
cggcacggca ttgagctttt tttcccgtaa tgatagacgg 480cataatataa tggacgcaca
tgctgatgtc aggatgtcac ccactcatcc tagtatttgt 540gggacgtgaa ttctttgtga
gatgggcaat gggatgtgaa caaaataagt tttgtactag 600tagataaaca tttttaccca
taaacaattg ttctgtattg aatgaaaaat tattttgtac 660tggatgaaaa tcttctgagt
aactgtgtaa gattaacatg aatcaagaga caaatccaat 720ggctacaaag tcaactaata
cttgttaaaa gttccgatac ttaaaattat caaaactgat 780atatagaata ttgcccatct
cgccaccgtg ctagtttaac agacgatgga cgaatatcag 840tcttgtattg gataatcgat
gcatgcgagc tatcggtcac ctgtccatgc ttccagaagg 900agccgagacg tggcgacttc
gtccgacgcg ccgactatct gcacacgccc ggcttctcgt 960cgtgggcgag tcagcagtca
caggctttcc gcctaccaac tcacacgtag cgccctatcg 1020tggcgcttga tcgatgcaac
agcgatgcct atcccagctc ctcaagctgc ttataagtat 1080gtcctcggcc atcactgctt
acacaacaaa cacagctact tatcgcagtg tactaaacaa 1140gacgtactag ctagatttcg
tgaggtaaaa tcagtgcaat atcacttgtg caagccatta 1200gttccgtcgc catggcgtcc
ccggagggcg ccaactgggt cttcgactgc ccgctcatgg 1260acgaccttgc tgccgccgac
ttcaccgcac cgcccgcagg aggcttctac tgggcaccac 1320cgatgcagcc gcagatgcac
acccaggccc cggccgtctc cgccaccccg cctcccaacc 1380actgtgccga aatcaatagc
cctatttctg tggactggga ccatgccaaa ggacagccaa 1440caaataaacg tcctaggtca
gaatctggtg ctcaacccag ctccaaagca tgcagggaga 1500aagcgagaag ggacaagcta
aacgagaggt tcttggaatt gggtgctgtc ttggatccag 1560ggaaaacacc taaaatcgac
aagtgtgcta tattgaatga tgctattcgt gcggtgactg 1620agctacgtag tgaagcagag
aagctgaagg attcaaacga gtctctccaa gagaagatca 1680aagagctgaa ggctgagaag
aatgagctgc gggatgagaa gcaaaagctg aaggcagaga 1740aagagagcct ggagcagcag
atcaagttca tgaatgcccg tcagagcctc gtaccacacc 1800taccgcaccc ttcggttatc
ccagcggctg catttgctgc tccccaaggg caagtgccag 1860ggcagaagct gatgatgcct
gtcattggct accatggatt tcccatgtgg caattcatgc 1920caccttctga tgttgatacc
tccgatgatc ccaagtcgtg ccctcctgtt gcataagcca 1980gctaaaggcc tggtttctcc
ataataatgt gtgagtagtt cccagataag ggaattaggg 2040ttcctatagg gtttcgctca
tgtgttgagc atataagaaa cccttagtat gtatttgtat 2100ttgtaaaata cttctatcaa
taaaatttct aattcctaaa accaaaatcc agtactaaaa 2160tccagatccc ccgaattaat
tcggcgttaa ttcagtatcg gcgcgcctta attaaaatcg 2220aatttcgacc atatgggaga
gctcccaacg cgttggatgc atagcttgag tattctatag 2280tgtcacctaa atagcttggc
gtaatcatgg tcatagctgt ttcctgtgtg aaattgttat 2340ccgctcacaa ttccacacaa
catacgagcc ggaagcataa agtgtaaagc ctggggtgcc 2400taatgagtga gctaactcac
attaattgcg ttgcgctcac tgcccgcttt ccagtcggga 2460aacctgtcgt gccagctgca
ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt 2520attgggcgct cttccgcttc
ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg 2580cgagcggtat cagctcactc
aaaggcggta atacggttat ccacagaatc aggggataac 2640gcaggaaaga acatgtgagc
aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg 2700ttgctggcgt ttttccatag
gctccgcccc cctgacgagc atcacaaaaa tcgacgctca 2760agtcagaggt ggcgaaaccc
gacaggacta taaagatacc aggcgtttcc ccctggaagc 2820tccctcgtgc gctctcctgt
tccgaccctg ccgcttaccg gatacctgtc cgcctttctc 2880ccttcgggaa gcgtggcgct
ttctcatagc tcacgctgta ggtatctcag ttcggtgtag 2940gtcgttcgct ccaagctggg
ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc 3000ttatccggta actatcgtct
tgagtccaac ccggtaagac acgacttatc gccactggca 3060gcagccactg gtaacaggat
tagcagagcg aggtatgtag gcggtgctac agagttcttg 3120aagtggtggc ctaactacgg
ctacactaga agaacagtat ttggtatctg cgctctgctg 3180aagccagtta ccttcggaaa
aagagttggt agctcttgat ccggcaaaca aaccaccgct 3240ggtagcggtg gtttttttgt
ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa 3300gaagatcctt tgatcttttc
tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa 3360gggattttgg tcatgagatt
atcaaaaagg atcttcacct agatcctttt aaattaaaaa 3420tgaagtttta aatcaatcta
aagtatatat gagtaaactt ggtctgacag ttaccaatgc 3480ttaatcagtg aggcacctat
ctcagcgatc tgtctatttc gttcatccat agttgcctga 3540ctccccgtcg tgtagataac
tacgatacgg gagggcttac catctggccc cagtgctgca 3600atgataccgc gagacccacg
ctcaccggct ccagatttat cagcaataaa ccagccagcc 3660ggaagggccg agcgcagaag
tggtcctgca actttatccg cctccatcca gtctattaat 3720tgttgccggg aagctagagt
aagtagttcg ccagttaata gtttgcgcaa cgttgttgcc 3780attgctacag gcatcgtggt
gtcacgctcg tcgtttggta tggcttcatt cagctccggt 3840tcccaacgat caaggcgagt
tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc 3900ttcggtcctc cgatcgttgt
cagaagtaag ttggccgcag tgttatcact catggttatg 3960gcagcactgc ataattctct
tactgtcatg ccatccgtaa gatgcttttc tgtgactggt 4020gagtactcaa ccaagtcatt
ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg 4080gcgtcaatac gggataatac
cgcgccacat agcagaactt taaaagtgct catcattgga 4140aaacgttctt cggggcgaaa
actctcaagg atcttaccgc tgttgagatc cagttcgatg 4200taacccactc gtgcacccaa
ctgatcttca gcatctttta ctttcaccag cgtttctggg 4260tgagcaaaaa caggaaggca
aaatgccgca aaaaagggaa taagggcgac acggaaatgt 4320tgaatactca tactcttcct
ttttcaatat tattgaagca tttatcaggg ttattgtctc 4380atgagcggat acatatttga
atgtatttag aaaaataaac aaataggggt tccgcgcaca 4440tttccccgaa aagtgccacc
tgatgcggtg tgaaataccg cacagatgcg taaggagaaa 4500ataccgcatc aggaaattgt
aagcgttaat attttgttaa aattcgcgtt aaatttttgt 4560taaatcagct cattttttaa
ccaataggcc gaaatcggca aaatccctta taaatcaaaa 4620gaatagaccg agatagggtt
gagtgttgtt ccagtttgga acaagagtcc actattaaag 4680aacgtggact ccaacgtcaa
agggcgaaaa accgtctatc agggcgatgg cccactacgt 4740gaaccatcac cctaatcaag
ttttttgggg tcgaggtgcc gtaaagcact aaatcggaac 4800cctaaaggga gcccccgatt
tagagcttga cggggaaagc cggcgaacgt ggcgagaaag 4860gaagggaaga aagcgaaagg
agcgggcgct agggcgctgg caagtgtagc ggtcacgctg 4920cgcgtaacca ccacacccgc
cgcgcttaat gcgccgctac agggcgcgtc cattcgccat 4980tcaggctgcg caactgttgg
gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc 5040tggcgaaagg gggatgtgct
gcaaggcgat taagttgggt aacgccaggg ttttcccagt 5100cacgacgttg taaaacgacg
gccagtgaat tgtaatacga ctcactatag ggcgaattgg 5160gcccgacgtc gcatgctccc
ggccgccatg gcggccgcgg gaattcgatt gatt
52142415118DNAArtificialgenetic construct 241ggcgcgcctt aattaacggg
ctggtaaaac aaatataagt attaatataa atataataca 60atagaaggaa aataaataaa
atttccctct gtgccgtgca aaaatgcacg gcaatgggtt 120ggcccgcacg gcaaaggcat
cgttgccgtg tccacggcaa tgggttggcc cgcacggcaa 180aggcatcgtt gccgtgtcca
cgtctttgcc gtgcgccttg gctctatctt tgccgtgaag 240cgttctttgc cgtgtgcctt
ttatttcttt gccgtgggat gctgcctttg ccgagcgctg 300agctggcgct ttgccgtgcg
cgtattgttt gccgtgcgtc ctcccagagc tgtacggcaa 360agaattcatt gccgtgcacg
aggcacacgg gaaagaagtt tcgcatggca aagggcgctg 420acagcacacg gcaaagagcc
cggcacggca ttgagctttt tttcccgtaa tgatagacgg 480cataatataa tggacgcaca
tgctgatgtc aggatgtcac ccactcatcc tagtatttgt 540gggacgtgaa ttctttgtga
gatgggcaat gggatgtgaa caaaataagt tttgtactag 600tagataaaca tttttaccca
taaacaattg ttctgtattg aatgaaaaat tattttgtac 660tggatgaaaa tcttctgagt
aactgtgtaa gattaacatg aatcaagaga caaatccaat 720ggctacaaag tcaactaata
cttgttaaaa gttccgatac ttaaaattat caaaactgat 780atatagaata ttgcccatct
cgccaccgtg ctagtttaac agacgatgga cgaatatcag 840tcttgtattg gataatcgat
gcatgcgagc tatcggtcac ctgtccatgc ttccagaagg 900agccgagacg tggcgacttc
gtccgacgcg ccgactatct gcacacgccc ggcttctcgt 960cgtgggcgag tcagcagtca
caggctttcc gcctaccaac tcacacgtag cgccctatcg 1020tggcgcttga tcgatgcaac
agcgatgcct atcccagctc ctcaagctgc ttataagtat 1080gtcctcggcc atcactgctt
acacaacaaa cacagctact tatcgcagtg tactaaacaa 1140gacgtactag ctagatttcg
tgaggtaaaa tcagtgcaat atcacttgtg caagccatta 1200gtatggccgt ggaggcggtt
ctcgaagcgg cggcgatgat acagtcgccg ccgagcaaga 1260agatggaggc gtctagtagc
agcgacgagg cgttcgaggc gttgcagcag cacacggagg 1320ggtggtccaa gaagaagcgc
tcgaggcggc cacgggcgct cgagcccagc gaggaggagt 1380acctcgcgtt ctgcctcgtc
atgctggcgc gcggccaccg cgacgccgcg ccggagcacg 1440ggtgctccgt ctgcggcaag
gcgttcgcgt cgtaccaggc gctcggcggc cacaaggcca 1500gccaccggaa gccacccaca
gctccagccg cggtggcagc aagcgccgtc cccgaggagg 1560acaagccacg ggcggctgcc
tcgtcctcgt ctgggtccgg cgatgccgct ggcggcggca 1620aggtccacga gtgcaacgtg
tgccagaaga cgttcccgac ggggcaggcg ctgggcggcc 1680acaagcggtg ccactacgac
ggcaccatcg gcagcgccgc cgcgcccacg gtgaaggctg 1740ccaaggccgc cgccgcggcg
agcgcgccga cggcgacgaa ccgggggttc gacctgaacg 1800tgccggcgct gccgggactc
gcggaggagg gggaggaggt gctcagcccg gtatccttca 1860agaagccgag gctcatgatc
accgcgtgaa ggcctggttt ctccataata atgtgtgagt 1920agttcccaga taagggaatt
agggttccta tagggtttcg ctcatgtgtt gagcatataa 1980gaaaccctta gtatgtattt
gtatttgtaa aatacttcta tcaataaaat ttctaattcc 2040taaaaccaaa atccagtact
aaaatccaga tcccccgaat taattcggcg ttaattcagt 2100atcggcgcgc cttaattaaa
atcgaatttc gaccatatgg gagagctccc aacgcgttgg 2160atgcatagct tgagtattct
atagtgtcac ctaaatagct tggcgtaatc atggtcatag 2220ctgtttcctg tgtgaaattg
ttatccgctc acaattccac acaacatacg agccggaagc 2280ataaagtgta aagcctgggg
tgcctaatga gtgagctaac tcacattaat tgcgttgcgc 2340tcactgcccg ctttccagtc
gggaaacctg tcgtgccagc tgcattaatg aatcggccaa 2400cgcgcgggga gaggcggttt
gcgtattggg cgctcttccg cttcctcgct cactgactcg 2460ctgcgctcgg tcgttcggct
gcggcgagcg gtatcagctc actcaaaggc ggtaatacgg 2520ttatccacag aatcagggga
taacgcagga aagaacatgt gagcaaaagg ccagcaaaag 2580gccaggaacc gtaaaaaggc
cgcgttgctg gcgtttttcc ataggctccg cccccctgac 2640gagcatcaca aaaatcgacg
ctcaagtcag aggtggcgaa acccgacagg actataaaga 2700taccaggcgt ttccccctgg
aagctccctc gtgcgctctc ctgttccgac cctgccgctt 2760accggatacc tgtccgcctt
tctcccttcg ggaagcgtgg cgctttctca tagctcacgc 2820tgtaggtatc tcagttcggt
gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc 2880cccgttcagc ccgaccgctg
cgccttatcc ggtaactatc gtcttgagtc caacccggta 2940agacacgact tatcgccact
ggcagcagcc actggtaaca ggattagcag agcgaggtat 3000gtaggcggtg ctacagagtt
cttgaagtgg tggcctaact acggctacac tagaagaaca 3060gtatttggta tctgcgctct
gctgaagcca gttaccttcg gaaaaagagt tggtagctct 3120tgatccggca aacaaaccac
cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt 3180acgcgcagaa aaaaaggatc
tcaagaagat cctttgatct tttctacggg gtctgacgct 3240cagtggaacg aaaactcacg
ttaagggatt ttggtcatga gattatcaaa aaggatcttc 3300acctagatcc ttttaaatta
aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa 3360acttggtctg acagttacca
atgcttaatc agtgaggcac ctatctcagc gatctgtcta 3420tttcgttcat ccatagttgc
ctgactcccc gtcgtgtaga taactacgat acgggagggc 3480ttaccatctg gccccagtgc
tgcaatgata ccgcgagacc cacgctcacc ggctccagat 3540ttatcagcaa taaaccagcc
agccggaagg gccgagcgca gaagtggtcc tgcaacttta 3600tccgcctcca tccagtctat
taattgttgc cgggaagcta gagtaagtag ttcgccagtt 3660aatagtttgc gcaacgttgt
tgccattgct acaggcatcg tggtgtcacg ctcgtcgttt 3720ggtatggctt cattcagctc
cggttcccaa cgatcaaggc gagttacatg atcccccatg 3780ttgtgcaaaa aagcggttag
ctccttcggt cctccgatcg ttgtcagaag taagttggcc 3840gcagtgttat cactcatggt
tatggcagca ctgcataatt ctcttactgt catgccatcc 3900gtaagatgct tttctgtgac
tggtgagtac tcaaccaagt cattctgaga atagtgtatg 3960cggcgaccga gttgctcttg
cccggcgtca atacgggata ataccgcgcc acatagcaga 4020actttaaaag tgctcatcat
tggaaaacgt tcttcggggc gaaaactctc aaggatctta 4080ccgctgttga gatccagttc
gatgtaaccc actcgtgcac ccaactgatc ttcagcatct 4140tttactttca ccagcgtttc
tgggtgagca aaaacaggaa ggcaaaatgc cgcaaaaaag 4200ggaataaggg cgacacggaa
atgttgaata ctcatactct tcctttttca atattattga 4260agcatttatc agggttattg
tctcatgagc ggatacatat ttgaatgtat ttagaaaaat 4320aaacaaatag gggttccgcg
cacatttccc cgaaaagtgc cacctgatgc ggtgtgaaat 4380accgcacaga tgcgtaagga
gaaaataccg catcaggaaa ttgtaagcgt taatattttg 4440ttaaaattcg cgttaaattt
ttgttaaatc agctcatttt ttaaccaata ggccgaaatc 4500ggcaaaatcc cttataaatc
aaaagaatag accgagatag ggttgagtgt tgttccagtt 4560tggaacaaga gtccactatt
aaagaacgtg gactccaacg tcaaagggcg aaaaaccgtc 4620tatcagggcg atggcccact
acgtgaacca tcaccctaat caagtttttt ggggtcgagg 4680tgccgtaaag cactaaatcg
gaaccctaaa gggagccccc gatttagagc ttgacgggga 4740aagccggcga acgtggcgag
aaaggaaggg aagaaagcga aaggagcggg cgctagggcg 4800ctggcaagtg tagcggtcac
gctgcgcgta accaccacac ccgccgcgct taatgcgccg 4860ctacagggcg cgtccattcg
ccattcaggc tgcgcaactg ttgggaaggg cgatcggtgc 4920gggcctcttc gctattacgc
cagctggcga aagggggatg tgctgcaagg cgattaagtt 4980gggtaacgcc agggttttcc
cagtcacgac gttgtaaaac gacggccagt gaattgtaat 5040acgactcact atagggcgaa
ttgggcccga cgtcgcatgc tcccggccgc catggcggcc 5100gcgggaattc gattgatt
511824210821DNAArtificialgenetic construct 242gaatttctag ttctagatgc
atgctcgaaa ttcgattggc gcgccttaat taataagagc 60agcttgccaa catggtggag
cacgacactc tcgtctactc caagaatatc aaagatacag 120tctcagaaga ccaaagggct
attgagactt ttcaacaaag ggtaatatcg ggaaacctcc 180tcggattcca ttgcccagct
atctgtcact tcatcaaaag gacagtagaa aaggaaggtg 240gcacctacaa atgccatcat
tgcgataaag gaaaggctat cgttcaagat gcctctgccg 300acagtggtcc caaagatgga
cccccaccca cgaggagcat cgtggaaaaa gaagacgttc 360caaccacgtc ttcaaagcaa
gtggattgat gtgaacatgg tggagcacga cactctcgtc 420tactccaaga atatcaaaga
tacagtctca gaaggccaaa gggctattga gacttttcaa 480caaagggtaa tatcgggaaa
cctcctcgga ttccattgcc cagctatctg tcacttcatc 540aaaaggacag tagaaaagga
aggtggcacc tacaaatgcc atcattgcga taaaggaaag 600gctatcgttc aagatgctct
gccgacagtg gtcccaaaga tggaccccca cccacgagga 660gcatcgtgga aaaagaagac
gttccaacca cgtcttcaaa gcaagtggat tgatgtgata 720tctccactga cgtaagggat
gacgcacaat cccactatcc ttcgcaagac ccttcctcta 780tataaggaag ttcatttcat
ttggagagga cacgctgaaa tcaccagtct ctctctacaa 840atctatctct ctccattagt
tccgtcgcca tggcgtcccc ggagggcgcc aactgggtct 900tcgactgccc gctcatggac
gaccttgctg ccgccgactt caccgcaccg cccgcaggag 960gcttctactg ggcaccaccg
atgcagccgc agatgcacac ccaggccccg gccgtctccg 1020ccaccccgcc tcccaaccac
tgtgccgaaa tcaatagccc tatttctgtg gactgggacc 1080atgccaaagg acagccaaca
aataaacgtc ctaggtcaga atctggtgct caacccagct 1140ccaaagcatg cagggagaaa
gcgagaaggg acaagctaaa cgagaggttc ttggaattgg 1200gtgctgtctt ggatccaggg
aaaacaccta aaatcgacaa gtgtgctata ttgaatgatg 1260ctattcgtgc ggtgactgag
ctacgtagtg aagcagagaa gctgaaggat tcaaacgagt 1320ctctccaaga gaagatcaaa
gagctgaagg ctgagaagaa tgagctgcgg gatgagaagc 1380aaaagctgaa ggcagagaaa
gagagcctgg agcagcagat caagttcatg aatgcccgtc 1440agagcctcgt accacaccta
ccgcaccctt cggttatccc agcggctgca tttgctgctc 1500cccaagggca agtgccaggg
cagaagctga tgatgcctgt cattggctac catggatttc 1560ccatgtggca attcatgcca
ccttctgatg ttgatacctc cgatgatccc aagtcgtgcc 1620ctcctgttgc ataagccagc
taaaggcctg gtttctccat aataatgtgt gagtagttcc 1680cagataaggg aattagggtt
cctatagggt ttcgctcatg tgttgagcat ataagaaacc 1740cttagtatgt atttgtattt
gtaaaatact tctatcaata aaatttctaa ttcctaaaac 1800caaaatccag tactaaaatc
cagatccccc gaattaattc ggcgttaatt cagtatcggc 1860gcgccttaat taaaatcgaa
tttcgaccat actagtggat ccccctcgga ctagaagctt 1920ggcactggcc gtcgttttac
aacgtcgtga ctgggaaaac cctggcgtta cccaacttaa 1980tcgccttgca gcacatcccc
ctttcgccag ctggcgtaat agcgaagagg cccgcaccga 2040tcgcccttcc caacagttgc
gcagcctgaa tggcgaatgc tagagcagct tgagcttgga 2100tcagattgtc gtttcccgcc
ttcagtttaa actatcagtg tttgacagga tatattggcg 2160ggtaaaccta agagaaaaga
gcgtttatta gaataacgga tatttaaaag ggcgtgaaaa 2220ggtttatccg ttcgtccatt
tgtatgtgca tgccaaccac agggttcccc tcgggatcaa 2280agtactttga tccaacccct
ccgctgctat agtgcagtcg gcttctgacg ttcagtgcag 2340ccgtcttctg aaaacgacat
gtcgcacaag tcctaagtta cgcgacaggc tgccgccctg 2400cccttttcct ggcgttttct
tgtcgcgtgt tttagtcgca taaagtagaa tacttgcgac 2460tagaaccgga gacattacgc
catgaacaag agcgccgccg ctggcctgct gggctatgcc 2520cgcgtcagca ccgacgacca
ggacttgacc aaccaacggg ccgaactgca cgcggccggc 2580tgcaccaagc tgttttccga
gaagatcacc ggcaccaggc gcgaccgccc ggagctggcc 2640aggatgcttg accacctacg
ccctggcgac gttgtgacag tgaccaggct agaccgcctg 2700gcccgcagca cccgcgacct
actggacatt gccgagcgca tccaggaggc cggcgcgggc 2760ctgcgtagcc tggcagagcc
gtgggccgac accaccacgc cggccggccg catggtgttg 2820accgtgttcg ccggcattgc
cgagttcgag cgttccctaa tcatcgaccg cacccggagc 2880gggcgcgagg ccgccaaggc
ccgaggcgtg aagtttggcc cccgccctac cctcaccccg 2940gcacagatcg cgcacgcccg
cgagctgatc gaccaggaag gccgcaccgt gaaagaggcg 3000gctgcactgc ttggcgtgca
tcgctcgacc ctgtaccgcg cacttgagcg cagcgaggaa 3060gtgacgccca ccgaggccag
gcggcgcggt gccttccgtg aggacgcatt gaccgaggcc 3120gacgccctgg cggccgccga
gaatgaacgc caagaggaac aagcatgaaa ccgcaccagg 3180acggccagga cgaaccgttt
ttcattaccg aagagatcga ggcggagatg atcgcggccg 3240ggtacgtgtt cgagccgccc
gcgcacgtct caaccgtgcg gctgcatgaa atcctggccg 3300gtttgtctga tgccaagctg
gcggcctggc cggccagctt ggccgctgaa gaaaccgagc 3360gccgccgtct aaaaaggtga
tgtgtatttg agtaaaacag cttgcgtcat gcggtcgctg 3420cgtatatgat gcgatgagta
aataaacaaa tacgcaaggg gaacgcatga aggttatcgc 3480tgtacttaac cagaaaggcg
ggtcaggcaa gacgaccatc gcaacccatc tagcccgcgc 3540cctgcaactc gccggggccg
atgttctgtt agtcgattcc gatccccagg gcagtgcccg 3600cgattgggcg gccgtgcggg
aagatcaacc gctaaccgtt gtcggcatcg accgcccgac 3660gattgaccgc gacgtgaagg
ccatcggccg gcgcgacttc gtagtgatcg acggagcgcc 3720ccaggcggcg gacttggctg
tgtccgcgat caaggcagcc gacttcgtgc tgattccggt 3780gcagccaagc ccttacgaca
tatgggccac cgccgacctg gtggagctgg ttaagcagcg 3840cattgaggtc acggatggaa
ggctacaagc ggcctttgtc gtgtcgcggg cgatcaaagg 3900cacgcgcatc ggcggtgagg
ttgccgaggc gctggccggg tacgagctgc ccattcttga 3960gtcccgtatc acgcagcgcg
tgagctaccc aggcactgcc gccgccggca caaccgttct 4020tgaatcagaa cccgagggcg
acgctgcccg cgaggtccag gcgctggccg ctgaaattaa 4080atcaaaactc atttgagtta
atgaggtaaa gagaaaatga gcaaaagcac aaacacgcta 4140agtgccggcc gtccgagcgc
acgcagcagc aaggctgcaa cgttggccag cctggcagac 4200acgccagcca tgaagcgggt
caactttcag ttgccggcgg aggatcacac caagctgaag 4260atgtacgcgg tacgccaagg
caagaccatt accgagctgc tatctgaata catcgcgcag 4320ctaccagagt aaatgagcaa
atgaataaat gagtagatga attttagcgg ctaaaggagg 4380cggcatggaa aatcaagaac
aaccaggcac cgacgccgtg gaatgcccca tgtgtggagg 4440aacgggcggt tggccaggcg
taagcggctg ggttgtctgc cggccctgca atggcactgg 4500aacccccaag cccgaggaat
cggcgtgacg gtcgcaaacc atccggcccg gtacaaatcg 4560gcgcggcgct gggtgatgac
ctggtggaga agttgaaggc cgcgcaggcc gcccagcggc 4620aacgcatcga ggcagaagca
cgccccggtg aatcgtggca agcggccgct gatcgaatcc 4680gcaaagaatc ccggcaaccg
ccggcagccg gtgcgccgtc gattaggaag ccgcccaagg 4740gcgacgagca accagatttt
ttcgttccga tgctctatga cgtgggcacc cgcgatagtc 4800gcagcatcat ggacgtggcc
gttttccgtc tgtcgaagcg tgaccgacga gctggcgagg 4860tgatccgcta cgagcttcca
gacgggcacg tagaggtttc cgcagggccg gccggcatgg 4920ccagtgtgtg ggattacgac
ctggtactga tggcggtttc ccatctaacc gaatccatga 4980accgataccg ggaagggaag
ggagacaagc ccggccgcgt gttccgtcca cacgttgcgg 5040acgtactcaa gttctgccgg
cgagccgatg gcggaaagca gaaagacgac ctggtagaaa 5100cctgcattcg gttaaacacc
acgcacgttg ccatgcagcg tacgaagaag gccaagaacg 5160gccgcctggt gacggtatcc
gagggtgaag ccttgattag ccgctacaag atcgtaaaga 5220gcgaaaccgg gcggccggag
tacatcgaga tcgagctagc tgattggatg taccgcgaga 5280tcacagaagg caagaacccg
gacgtgctga cggttcaccc cgattacttt ttgatcgatc 5340ccggcatcgg ccgttttctc
taccgcctgg cacgccgcgc cgcaggcaag gcagaagcca 5400gatggttgtt caagacgatc
tacgaacgca gtggcagcgc cggagagttc aagaagttct 5460gtttcaccgt gcgcaagctg
atcgggtcaa atgacctgcc ggagtacgat ttgaaggagg 5520aggcggggca ggctggcccg
atcctagtca tgcgctaccg caacctgatc gagggcgaag 5580catccgccgg ttcctaatgt
acggagcaga tgctagggca aattgcccta gcaggggaaa 5640aaggtcgaaa aggtctcttt
cctgtggata gcacgtacat tgggaaccca aagccgtaca 5700ttgggaaccg gaacccgtac
attgggaacc caaagccgta cattgggaac cggtcacaca 5760tgtaagtgac tgatataaaa
gagaaaaaag gcgatttttc cgcctaaaac tctttaaaac 5820ttattaaaac tcttaaaacc
cgcctggcct gtgcataact gtctggccag cgcacagccg 5880aagagctgca aaaagcgcct
acccttcggt cgctgcgctc cctacgcccc gccgcttcgc 5940gtcggcctat cgcggccgct
ggccgctcaa aaatggctgg cctacggcca ggcaatctac 6000cagggcgcgg acaagccgcg
ccgtcgccac tcgaccgccg gcgcccacat caaggcaccc 6060tgcctcgcgc gtttcggtga
tgacggtgaa aacctctgac acatgcagct cccggagacg 6120gtcacagctt gtctgtaagc
ggatgccggg agcagacaag cccgtcaggg cgcgtcagcg 6180ggtgttggcg ggtgtcgggg
cgcagccatg acccagtcac gtagcgatag cggagtgtat 6240actggcttaa ctatgcggca
tcagagcaga ttgtactgag agtgcaccat atgcggtgtg 6300aaataccgca cagatgcgta
aggagaaaat accgcatcag gcgctcttcc gcttcctcgc 6360tcactgactc gctgcgctcg
gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 6420cggtaatacg gttatccaca
gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 6480gccagcaaaa ggccaggaac
cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 6540gcccccctga cgagcatcac
aaaaatcgac gctcaagtca gaggtggcga aacccgacag 6600gactataaag ataccaggcg
tttccccctg gaagctccct cgtgcgctct cctgttccga 6660ccctgccgct taccggatac
ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 6720atagctcacg ctgtaggtat
ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 6780tgcacgaacc ccccgttcag
cccgaccgct gcgccttatc cggtaactat cgtcttgagt 6840ccaacccggt aagacacgac
ttatcgccac tggcagcagc cactggtaac aggattagca 6900gagcgaggta tgtaggcggt
gctacagagt tcttgaagtg gtggcctaac tacggctaca 6960ctagaaggac agtatttggt
atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 7020ttggtagctc ttgatccggc
aaacaaacca ccgctggtag cggtggtttt tttgtttgca 7080agcagcagat tacgcgcaga
aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg 7140ggtctgacgc tcagtggaac
gaaaactcac gttaagggat tttggtcatg cattctaggt 7200actaaaacaa ttcatccagt
aaaatataat attttatttt ctcccaatca ggcttgatcc 7260ccagtaagtc aaaaaatagc
tcgacatact gttcttcccc gatatcctcc ctgatcgacc 7320ggacgcagaa ggcaatgtca
taccacttgt ccgccctgcc gcttctccca agatcaataa 7380agccacttac tttgccatct
ttcacaaaga tgttgctgtc tcccaggtcg ccgtgggaaa 7440agacaagttc ctcttcgggc
ttttccgtct ttaaaaaatc atacagctcg cgcggatctt 7500taaatggagt gtcttcttcc
cagttttcgc aatccacatc ggccagatcg ttattcagta 7560agtaatccaa ttcggctaag
cggctgtcta agctattcgt atagggacaa tccgatatgt 7620cgatggagtg aaagagcctg
atgcactccg catacagctc gataatcttt tcagggcttt 7680gttcatcttc atactcttcc
gagcaaagga cgccatcggc ctcactcatg agcagattgc 7740tccagccatc atgccgttca
aagtgcagga cctttggaac aggcagcttt ccttccagcc 7800atagcatcat gtccttttcc
cgttccacat cataggtggt ccctttatac cggctgtccg 7860tcatttttaa atataggttt
tcattttctc ccaccagctt atatacctta gcaggagaca 7920ttccttccgt atcttttacg
cagcggtatt tttcgatcag ttttttcaat tccggtgata 7980ttctcatttt agccatttat
tatttccttc ctcttttcta cagtatttaa agatacccca 8040agaagctaat tataacaaga
cgaactccaa ttcactgttc cttgcattct aaaaccttaa 8100ataccagaaa acagcttttt
caaagttgtt ttcaaagttg gcgtataaca tagtatcgac 8160ggagccgatt ttgaaaccgc
ggtgatcaca ggcagcaacg ctctgtcatc gttacaatca 8220acatgctacc ctccgcgaga
tcatccgtgt ttcaaacccg gcagcttagt tgccgttctt 8280ccgaatagca tcggtaacat
gagcaaagtc tgccgcctta caacggctct cccgctgacg 8340ccgtcccgga ctgatgggct
gcctgtatcg agtggtgatt ttgtgccgag ctgccggtcg 8400gggagctgtt ggctggctgg
tggcaggata tattgtggtg taaacaaatt gacgcttaga 8460caacttaata acacattgcg
gacgttttta atgtactgaa ttaacgccga attaattcgg 8520gggatctgga ttttagtact
ggattttggt tttaggaatt agaaatttta ttgatagaag 8580tattttacaa atacaaatac
atactaaggg tttcttatat gctcaacaca tgagcgaaac 8640cctataggaa ccctaattcc
cttatctggg aactactcac acattattat ggagaaactc 8700gagcttgtcg atcgacagat
ccggtcggca tctactctat ttctttgccc tcggacgagt 8760gctggggcgt cggtttccac
tatcggcgag tacttctaca cagccatcgg tccagacggc 8820cgcgcttctg cgggcgattt
gtgtacgccc gacagtcccg gctccggatc ggacgattgc 8880gtcgcatcga ccctgcgccc
aagctgcatc atcgaaattg ccgtcaacca agctctgata 8940gagttggtca agaccaatgc
ggagcatata cgcccggagt cgtggcgatc ctgcaagctc 9000cggatgcctc cgctcgaagt
agcgcgtctg ctgctccata caagccaacc acggcctcca 9060gaagaagatg ttggcgacct
cgtattggga atccccgaac atcgcctcgc tccagtcaat 9120gaccgctgtt atgcggccat
tgtccgtcag gacattgttg gagccgaaat ccgcgtgcac 9180gaggtgccgg acttcggggc
agtcctcggc ccaaagcatc agctcatcga gagcctgcgc 9240gacggacgca ctgacggtgt
cgtccatcac agtttgccag tgatacacat ggggatcagc 9300aatcgcgcat atgaaatcac
gccatgtagt gtattgaccg attccttgcg gtccgaatgg 9360gccgaacccg ctcgtctggc
taagatcggc cgcagcgatc gcatccatag cctccgcgac 9420cggttgtaga acagcgggca
gttcggtttc aggcaggtct tgcaacgtga caccctgtgc 9480acggcgggag atgcaatagg
tcaggctctc gctaaactcc ccaatgtcaa gcacttccgg 9540aatcgggagc gcggccgatg
caaagtgccg ataaacataa cgatctttgt agaaaccatc 9600ggcgcagcta tttacccgca
ggacatatcc acgccctcct acatcgaagc tgaaagcacg 9660agattcttcg ccctccgaga
gctgcatcag gtcggagacg ctgtcgaact tttcgatcag 9720aaacttctcg acagacgtcg
cggtgagttc aggctttttc atatctcatt gcccccccgg 9780atctgcgaaa gctcgagaga
gatagatttg tagagagaga ctggtgattt cagcgtgtcc 9840tctccaaatg aaatgaactt
ccttatatag aggaaggtct tgcgaaggat agtgggattg 9900tgcgtcatcc cttacgtcag
tggagatatc acatcaatcc acttgctttg aagacgtggt 9960tggaacgtct tctttttcca
cgatgctcct cgtgggtggg ggtccatctt tgggaccact 10020gtcggcagag gcatcttgaa
cgatagcctt tcctttatcg caatgatggc atttgtaggt 10080gccaccttcc ttttctactg
tccttttgat gaagtgacag atagctgggc aatggaatcc 10140gaggaggttt cccgatatta
ccctttgttg aaaagtctca atagcccttt ggtcttctga 10200gactgtatct ttgatattct
tggagtagac gagagtgtcg tgctccacca tgttatcaca 10260tcaatccact tgctttgaag
acgtggttgg aacgtcttct ttttccacga tgctcctcgt 10320gggtgggggt ccatctttgg
gaccactgtc ggcagaggca tcttgaacga tagcctttcc 10380tttatcgcaa tgatggcatt
tgtaggtgcc accttccttt tctactgtcc ttttgatgaa 10440gtgacagata gctgggcaat
ggaatccgag gaggtttccc gatattaccc tttgttgaaa 10500agtctcaata gccctttggt
cttctgagac tgtatctttg atattcttgg agtagacgag 10560agtgtcgtgc tccaccatgt
tggcaagctg ctctagccaa tacgcaaacc gcctctcccc 10620gcgcgttggc cgattcatta
atgcagctgg cacgacaggt ttcccgactg gaaagcgggc 10680agtgagcgca acgcaattaa
tgtgagttag ctcactcatt aggcacccca ggctttacac 10740tttatgcttc cggctcgtat
gttgtgtgga attgtgagcg gataacaatt tcacacagga 10800aacagctatg accatgatta c
1082124310905DNAArtificialgenetic construct 243gaatttctag ttctagatgc
atgctcgaaa ttcgattggc gcgccttaat taataagagc 60agcttgccaa catggtggag
cacgacactc tcgtctactc caagaatatc aaagatacag 120tctcagaaga ccaaagggct
attgagactt ttcaacaaag ggtaatatcg ggaaacctcc 180tcggattcca ttgcccagct
atctgtcact tcatcaaaag gacagtagaa aaggaaggtg 240gcacctacaa atgccatcat
tgcgataaag gaaaggctat cgttcaagat gcctctgccg 300acagtggtcc caaagatgga
cccccaccca cgaggagcat cgtggaaaaa gaagacgttc 360caaccacgtc ttcaaagcaa
gtggattgat gtgaacatgg tggagcacga cactctcgtc 420tactccaaga atatcaaaga
tacagtctca gaaggccaaa gggctattga gacttttcaa 480caaagggtaa tatcgggaaa
cctcctcgga ttccattgcc cagctatctg tcacttcatc 540aaaaggacag tagaaaagga
aggtggcacc tacaaatgcc atcattgcga taaaggaaag 600gctatcgttc aagatgctct
gccgacagtg gtcccaaaga tggaccccca cccacgagga 660gcatcgtgga aaaagaagac
gttccaacca cgtcttcaaa gcaagtggat tgatgtgata 720tctccactga cgtaagggat
gacgcacaat cccactatcc ttcgcaagac ccttcctcta 780tataaggaag ttcatttcat
ttggagagga cacgctgaaa tcaccagtct ctctctacaa 840atctatctct ctccattagt
ttgcccactg cttgctgcta ctctctcgat ctgtagttgc 900tcaggtgtgc aagaaagata
ctcacacgcg agcttgcttg gcatggccgt ggaggcggtt 960ctcgaagcgg cggcgatgat
acagtcgccg ccgagcaaga agatggaggc gtctagtagc 1020agcgacgagg cgttcgaggc
gttgcagcag cacacggagg ggtggtccaa gaagaagcgc 1080tcgaggcggc cacgggcgct
cgagcccagc gaggaggagt acctcgcgtt ctgcctcgtc 1140atgctggcgc gcggccaccg
cgacgccgcg ccggagcacg ggtgctccgt ctgcggcaag 1200gcgttcgcgt cgtaccaggc
gctcggcggc cacaaggcca gccaccggaa gccacccaca 1260gctccagccg cggtggcagc
aagcgccgtc cccgaggagg acaagccacg ggcggctgcc 1320tcgtcctcgt ctgggtccgg
cgatgccgct ggcggcggca aggtccacga gtgcaacgtg 1380tgccagaaga cgttcccgac
ggggcaggcg ctgggcggcc acaagcggtg ccactacgac 1440ggcaccatcg gcagcgccgc
cgcgcccacg gtgaaggctg ccaaggccgc cgccgcggcg 1500agcgcgccga cggcgacgaa
ccgggggttc gacctgaacg tgccggcgct gccgggactc 1560gcggaggagg gggaggaggt
gctcagcccg gtatccttca agaagccgag gctcatgatc 1620accgcgtgat ttgaccatac
aatctgcata tagttggtca aaatcaaggg ttcttctgta 1680gcttagcttc tgttagtgat
tgccgtacat agattgttgg tgattgaagg cctggtttct 1740ccataataat gtgtgagtag
ttcccagata agggaattag ggttcctata gggtttcgct 1800catgtgttga gcatataaga
aacccttagt atgtatttgt atttgtaaaa tacttctatc 1860aataaaattt ctaattccta
aaaccaaaat ccagtactaa aatccagatc ccccgaatta 1920attcggcgtt aattcagtat
cggcgcgcct taattaaaat cgaatttcga ccatactagt 1980ggatccccct cggactagaa
gcttggcact ggccgtcgtt ttacaacgtc gtgactggga 2040aaaccctggc gttacccaac
ttaatcgcct tgcagcacat ccccctttcg ccagctggcg 2100taatagcgaa gaggcccgca
ccgatcgccc ttcccaacag ttgcgcagcc tgaatggcga 2160atgctagagc agcttgagct
tggatcagat tgtcgtttcc cgccttcagt ttaaactatc 2220agtgtttgac aggatatatt
ggcgggtaaa cctaagagaa aagagcgttt attagaataa 2280cggatattta aaagggcgtg
aaaaggttta tccgttcgtc catttgtatg tgcatgccaa 2340ccacagggtt cccctcggga
tcaaagtact ttgatccaac ccctccgctg ctatagtgca 2400gtcggcttct gacgttcagt
gcagccgtct tctgaaaacg acatgtcgca caagtcctaa 2460gttacgcgac aggctgccgc
cctgcccttt tcctggcgtt ttcttgtcgc gtgttttagt 2520cgcataaagt agaatacttg
cgactagaac cggagacatt acgccatgaa caagagcgcc 2580gccgctggcc tgctgggcta
tgcccgcgtc agcaccgacg accaggactt gaccaaccaa 2640cgggccgaac tgcacgcggc
cggctgcacc aagctgtttt ccgagaagat caccggcacc 2700aggcgcgacc gcccggagct
ggccaggatg cttgaccacc tacgccctgg cgacgttgtg 2760acagtgacca ggctagaccg
cctggcccgc agcacccgcg acctactgga cattgccgag 2820cgcatccagg aggccggcgc
gggcctgcgt agcctggcag agccgtgggc cgacaccacc 2880acgccggccg gccgcatggt
gttgaccgtg ttcgccggca ttgccgagtt cgagcgttcc 2940ctaatcatcg accgcacccg
gagcgggcgc gaggccgcca aggcccgagg cgtgaagttt 3000ggcccccgcc ctaccctcac
cccggcacag atcgcgcacg cccgcgagct gatcgaccag 3060gaaggccgca ccgtgaaaga
ggcggctgca ctgcttggcg tgcatcgctc gaccctgtac 3120cgcgcacttg agcgcagcga
ggaagtgacg cccaccgagg ccaggcggcg cggtgccttc 3180cgtgaggacg cattgaccga
ggccgacgcc ctggcggccg ccgagaatga acgccaagag 3240gaacaagcat gaaaccgcac
caggacggcc aggacgaacc gtttttcatt accgaagaga 3300tcgaggcgga gatgatcgcg
gccgggtacg tgttcgagcc gcccgcgcac gtctcaaccg 3360tgcggctgca tgaaatcctg
gccggtttgt ctgatgccaa gctggcggcc tggccggcca 3420gcttggccgc tgaagaaacc
gagcgccgcc gtctaaaaag gtgatgtgta tttgagtaaa 3480acagcttgcg tcatgcggtc
gctgcgtata tgatgcgatg agtaaataaa caaatacgca 3540aggggaacgc atgaaggtta
tcgctgtact taaccagaaa ggcgggtcag gcaagacgac 3600catcgcaacc catctagccc
gcgccctgca actcgccggg gccgatgttc tgttagtcga 3660ttccgatccc cagggcagtg
cccgcgattg ggcggccgtg cgggaagatc aaccgctaac 3720cgttgtcggc atcgaccgcc
cgacgattga ccgcgacgtg aaggccatcg gccggcgcga 3780cttcgtagtg atcgacggag
cgccccaggc ggcggacttg gctgtgtccg cgatcaaggc 3840agccgacttc gtgctgattc
cggtgcagcc aagcccttac gacatatggg ccaccgccga 3900cctggtggag ctggttaagc
agcgcattga ggtcacggat ggaaggctac aagcggcctt 3960tgtcgtgtcg cgggcgatca
aaggcacgcg catcggcggt gaggttgccg aggcgctggc 4020cgggtacgag ctgcccattc
ttgagtcccg tatcacgcag cgcgtgagct acccaggcac 4080tgccgccgcc ggcacaaccg
ttcttgaatc agaacccgag ggcgacgctg cccgcgaggt 4140ccaggcgctg gccgctgaaa
ttaaatcaaa actcatttga gttaatgagg taaagagaaa 4200atgagcaaaa gcacaaacac
gctaagtgcc ggccgtccga gcgcacgcag cagcaaggct 4260gcaacgttgg ccagcctggc
agacacgcca gccatgaagc gggtcaactt tcagttgccg 4320gcggaggatc acaccaagct
gaagatgtac gcggtacgcc aaggcaagac cattaccgag 4380ctgctatctg aatacatcgc
gcagctacca gagtaaatga gcaaatgaat aaatgagtag 4440atgaatttta gcggctaaag
gaggcggcat ggaaaatcaa gaacaaccag gcaccgacgc 4500cgtggaatgc cccatgtgtg
gaggaacggg cggttggcca ggcgtaagcg gctgggttgt 4560ctgccggccc tgcaatggca
ctggaacccc caagcccgag gaatcggcgt gacggtcgca 4620aaccatccgg cccggtacaa
atcggcgcgg cgctgggtga tgacctggtg gagaagttga 4680aggccgcgca ggccgcccag
cggcaacgca tcgaggcaga agcacgcccc ggtgaatcgt 4740ggcaagcggc cgctgatcga
atccgcaaag aatcccggca accgccggca gccggtgcgc 4800cgtcgattag gaagccgccc
aagggcgacg agcaaccaga ttttttcgtt ccgatgctct 4860atgacgtggg cacccgcgat
agtcgcagca tcatggacgt ggccgttttc cgtctgtcga 4920agcgtgaccg acgagctggc
gaggtgatcc gctacgagct tccagacggg cacgtagagg 4980tttccgcagg gccggccggc
atggccagtg tgtgggatta cgacctggta ctgatggcgg 5040tttcccatct aaccgaatcc
atgaaccgat accgggaagg gaagggagac aagcccggcc 5100gcgtgttccg tccacacgtt
gcggacgtac tcaagttctg ccggcgagcc gatggcggaa 5160agcagaaaga cgacctggta
gaaacctgca ttcggttaaa caccacgcac gttgccatgc 5220agcgtacgaa gaaggccaag
aacggccgcc tggtgacggt atccgagggt gaagccttga 5280ttagccgcta caagatcgta
aagagcgaaa ccgggcggcc ggagtacatc gagatcgagc 5340tagctgattg gatgtaccgc
gagatcacag aaggcaagaa cccggacgtg ctgacggttc 5400accccgatta ctttttgatc
gatcccggca tcggccgttt tctctaccgc ctggcacgcc 5460gcgccgcagg caaggcagaa
gccagatggt tgttcaagac gatctacgaa cgcagtggca 5520gcgccggaga gttcaagaag
ttctgtttca ccgtgcgcaa gctgatcggg tcaaatgacc 5580tgccggagta cgatttgaag
gaggaggcgg ggcaggctgg cccgatccta gtcatgcgct 5640accgcaacct gatcgagggc
gaagcatccg ccggttccta atgtacggag cagatgctag 5700ggcaaattgc cctagcaggg
gaaaaaggtc gaaaaggtct ctttcctgtg gatagcacgt 5760acattgggaa cccaaagccg
tacattggga accggaaccc gtacattggg aacccaaagc 5820cgtacattgg gaaccggtca
cacatgtaag tgactgatat aaaagagaaa aaaggcgatt 5880tttccgccta aaactcttta
aaacttatta aaactcttaa aacccgcctg gcctgtgcat 5940aactgtctgg ccagcgcaca
gccgaagagc tgcaaaaagc gcctaccctt cggtcgctgc 6000gctccctacg ccccgccgct
tcgcgtcggc ctatcgcggc cgctggccgc tcaaaaatgg 6060ctggcctacg gccaggcaat
ctaccagggc gcggacaagc cgcgccgtcg ccactcgacc 6120gccggcgccc acatcaaggc
accctgcctc gcgcgtttcg gtgatgacgg tgaaaacctc 6180tgacacatgc agctcccgga
gacggtcaca gcttgtctgt aagcggatgc cgggagcaga 6240caagcccgtc agggcgcgtc
agcgggtgtt ggcgggtgtc ggggcgcagc catgacccag 6300tcacgtagcg atagcggagt
gtatactggc ttaactatgc ggcatcagag cagattgtac 6360tgagagtgca ccatatgcgg
tgtgaaatac cgcacagatg cgtaaggaga aaataccgca 6420tcaggcgctc ttccgcttcc
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 6480gagcggtatc agctcactca
aaggcggtaa tacggttatc cacagaatca ggggataacg 6540caggaaagaa catgtgagca
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 6600tgctggcgtt tttccatagg
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 6660gtcagaggtg gcgaaacccg
acaggactat aaagatacca ggcgtttccc cctggaagct 6720ccctcgtgcg ctctcctgtt
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 6780cttcgggaag cgtggcgctt
tctcatagct cacgctgtag gtatctcagt tcggtgtagg 6840tcgttcgctc caagctgggc
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 6900tatccggtaa ctatcgtctt
gagtccaacc cggtaagaca cgacttatcg ccactggcag 6960cagccactgg taacaggatt
agcagagcga ggtatgtagg cggtgctaca gagttcttga 7020agtggtggcc taactacggc
tacactagaa ggacagtatt tggtatctgc gctctgctga 7080agccagttac cttcggaaaa
agagttggta gctcttgatc cggcaaacaa accaccgctg 7140gtagcggtgg tttttttgtt
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 7200aagatccttt gatcttttct
acggggtctg acgctcagtg gaacgaaaac tcacgttaag 7260ggattttggt catgcattct
aggtactaaa acaattcatc cagtaaaata taatatttta 7320ttttctccca atcaggcttg
atccccagta agtcaaaaaa tagctcgaca tactgttctt 7380ccccgatatc ctccctgatc
gaccggacgc agaaggcaat gtcataccac ttgtccgccc 7440tgccgcttct cccaagatca
ataaagccac ttactttgcc atctttcaca aagatgttgc 7500tgtctcccag gtcgccgtgg
gaaaagacaa gttcctcttc gggcttttcc gtctttaaaa 7560aatcatacag ctcgcgcgga
tctttaaatg gagtgtcttc ttcccagttt tcgcaatcca 7620catcggccag atcgttattc
agtaagtaat ccaattcggc taagcggctg tctaagctat 7680tcgtataggg acaatccgat
atgtcgatgg agtgaaagag cctgatgcac tccgcataca 7740gctcgataat cttttcaggg
ctttgttcat cttcatactc ttccgagcaa aggacgccat 7800cggcctcact catgagcaga
ttgctccagc catcatgccg ttcaaagtgc aggacctttg 7860gaacaggcag ctttccttcc
agccatagca tcatgtcctt ttcccgttcc acatcatagg 7920tggtcccttt ataccggctg
tccgtcattt ttaaatatag gttttcattt tctcccacca 7980gcttatatac cttagcagga
gacattcctt ccgtatcttt tacgcagcgg tatttttcga 8040tcagtttttt caattccggt
gatattctca ttttagccat ttattatttc cttcctcttt 8100tctacagtat ttaaagatac
cccaagaagc taattataac aagacgaact ccaattcact 8160gttccttgca ttctaaaacc
ttaaatacca gaaaacagct ttttcaaagt tgttttcaaa 8220gttggcgtat aacatagtat
cgacggagcc gattttgaaa ccgcggtgat cacaggcagc 8280aacgctctgt catcgttaca
atcaacatgc taccctccgc gagatcatcc gtgtttcaaa 8340cccggcagct tagttgccgt
tcttccgaat agcatcggta acatgagcaa agtctgccgc 8400cttacaacgg ctctcccgct
gacgccgtcc cggactgatg ggctgcctgt atcgagtggt 8460gattttgtgc cgagctgccg
gtcggggagc tgttggctgg ctggtggcag gatatattgt 8520ggtgtaaaca aattgacgct
tagacaactt aataacacat tgcggacgtt tttaatgtac 8580tgaattaacg ccgaattaat
tcgggggatc tggattttag tactggattt tggttttagg 8640aattagaaat tttattgata
gaagtatttt acaaatacaa atacatacta agggtttctt 8700atatgctcaa cacatgagcg
aaaccctata ggaaccctaa ttcccttatc tgggaactac 8760tcacacatta ttatggagaa
actcgagctt gtcgatcgac agatccggtc ggcatctact 8820ctatttcttt gccctcggac
gagtgctggg gcgtcggttt ccactatcgg cgagtacttc 8880tacacagcca tcggtccaga
cggccgcgct tctgcgggcg atttgtgtac gcccgacagt 8940cccggctccg gatcggacga
ttgcgtcgca tcgaccctgc gcccaagctg catcatcgaa 9000attgccgtca accaagctct
gatagagttg gtcaagacca atgcggagca tatacgcccg 9060gagtcgtggc gatcctgcaa
gctccggatg cctccgctcg aagtagcgcg tctgctgctc 9120catacaagcc aaccacggcc
tccagaagaa gatgttggcg acctcgtatt gggaatcccc 9180gaacatcgcc tcgctccagt
caatgaccgc tgttatgcgg ccattgtccg tcaggacatt 9240gttggagccg aaatccgcgt
gcacgaggtg ccggacttcg gggcagtcct cggcccaaag 9300catcagctca tcgagagcct
gcgcgacgga cgcactgacg gtgtcgtcca tcacagtttg 9360ccagtgatac acatggggat
cagcaatcgc gcatatgaaa tcacgccatg tagtgtattg 9420accgattcct tgcggtccga
atgggccgaa cccgctcgtc tggctaagat cggccgcagc 9480gatcgcatcc atagcctccg
cgaccggttg tagaacagcg ggcagttcgg tttcaggcag 9540gtcttgcaac gtgacaccct
gtgcacggcg ggagatgcaa taggtcaggc tctcgctaaa 9600ctccccaatg tcaagcactt
ccggaatcgg gagcgcggcc gatgcaaagt gccgataaac 9660ataacgatct ttgtagaaac
catcggcgca gctatttacc cgcaggacat atccacgccc 9720tcctacatcg aagctgaaag
cacgagattc ttcgccctcc gagagctgca tcaggtcgga 9780gacgctgtcg aacttttcga
tcagaaactt ctcgacagac gtcgcggtga gttcaggctt 9840tttcatatct cattgccccc
ccggatctgc gaaagctcga gagagataga tttgtagaga 9900gagactggtg atttcagcgt
gtcctctcca aatgaaatga acttccttat atagaggaag 9960gtcttgcgaa ggatagtggg
attgtgcgtc atcccttacg tcagtggaga tatcacatca 10020atccacttgc tttgaagacg
tggttggaac gtcttctttt tccacgatgc tcctcgtggg 10080tgggggtcca tctttgggac
cactgtcggc agaggcatct tgaacgatag cctttccttt 10140atcgcaatga tggcatttgt
aggtgccacc ttccttttct actgtccttt tgatgaagtg 10200acagatagct gggcaatgga
atccgaggag gtttcccgat attacccttt gttgaaaagt 10260ctcaatagcc ctttggtctt
ctgagactgt atctttgata ttcttggagt agacgagagt 10320gtcgtgctcc accatgttat
cacatcaatc cacttgcttt gaagacgtgg ttggaacgtc 10380ttctttttcc acgatgctcc
tcgtgggtgg gggtccatct ttgggaccac tgtcggcaga 10440ggcatcttga acgatagcct
ttcctttatc gcaatgatgg catttgtagg tgccaccttc 10500cttttctact gtccttttga
tgaagtgaca gatagctggg caatggaatc cgaggaggtt 10560tcccgatatt accctttgtt
gaaaagtctc aatagccctt tggtcttctg agactgtatc 10620tttgatattc ttggagtaga
cgagagtgtc gtgctccacc atgttggcaa gctgctctag 10680ccaatacgca aaccgcctct
ccccgcgcgt tggccgattc attaatgcag ctggcacgac 10740aggtttcccg actggaaagc
gggcagtgag cgcaacgcaa ttaatgtgag ttagctcact 10800cattaggcac cccaggcttt
acactttatg cttccggctc gtatgttgtg tggaattgtg 10860agcggataac aatttcacac
aggaaacagc tatgaccatg attac 109052447PRTArtificialmotif
244Gln Ala Leu Gly Gly His Lys1 5245120PRTTriticum aestivum
245Met Ala Ser Pro Glu Gly Ser Asn Trp Val Phe Asp Cys Pro Leu Met1
5 10 15Asp Asp Leu Ala Ala Ala
Asp Phe Ala Ala Ala Pro Ala Gly Gly Phe 20 25
30Tyr Trp Thr Pro Pro Met Gln Pro Gln Met His Thr Leu
Ala Gln Ala 35 40 45Val Ser Ala
Thr Pro Ala Pro Asn Pro Cys Ala Glu Ile Asn Ser Ser 50
55 60Val Ser Val Cys Trp Asp His Ala Lys Gly Gln Pro
Lys Asn Lys Arg65 70 75
80Pro Arg Ser Glu Thr Gly Ala Gln Pro Ser Ser Lys Ala Cys Arg Glu
85 90 95Lys Ala Arg Arg Asp Lys
Leu Asn Glu Arg Phe Leu Glu Ser Ser Ala 100
105 110Asp Leu Asp Pro Gly Asn Thr Pro 115
120246135PRTSecale cerealemisc_feature(86)..(86)Unknown 246Met
Ala Ser Pro Glu Gly Ser Asn Trp Val Phe Asp Cys Pro Leu Met1
5 10 15Asp Asp Leu Ala Ala Ala Asp Phe
Ala Ala Ala Pro Ala Gly Gly Phe 20 25
30Tyr Trp Thr Pro Gln Met His Thr Leu Ala Gln Ala Val Ser Ala
Thr 35 40 45Pro Ala Pro Asn Gly
Gly Ala Glu Ile Asn Ser Ser Val Ser Val Asp 50 55
60Cys Asp His Val Lys Gly Gln Pro Lys Asn Lys Arg Pro Arg
Ser Glu65 70 75 80Thr
Gly Ala Gln Pro Xaa Ser Lys Ala Cys Arg Glu Lys Val Arg Arg
85 90 95Asp Lys Leu Asn Glu Arg Phe
Leu Glu Leu Gly Ala Val Leu Asp Pro 100 105
110Gly Lys Thr Pro Lys Ile Asp Lys Cys Ala Ile Leu Asn Asp
Ala Ile 115 120 125Arg Ala Val Thr
Glu Leu Arg 130 135247151PRTOryza sativa 247Met Ala
Ser Pro Glu Gly Ser Thr Trp Val Phe Asp Cys Pro Leu Met1 5
10 15Asp Asp Leu Ala Ala Ala Ala Gly Phe
Asp Ala Ala Pro Ala Gly Gly 20 25
30Phe Tyr Trp Thr Thr Pro Ala Pro Pro Gln Ala Ala Leu Gln Pro Pro
35 40 45Pro Pro Gln Gln Gln Pro Val
Ala Pro Ala Thr Ala Ala Pro Asn Ala 50 55
60Cys Ala Glu Ile Asn Gly Ser Val Asp Cys Glu His Gly Lys Glu Gln65
70 75 80Pro Thr Asn Lys
Arg Pro Arg Ser Glu Ser Gly Thr Arg Pro Ser Ser 85
90 95Lys Ala Cys Arg Glu Lys Val Arg Arg Asp
Lys Leu Asn Glu Arg Phe 100 105
110Leu Glu Leu Gly Ala Val Leu Glu Pro Gly Lys Thr Pro Lys Met Asp
115 120 125Lys Ser Ser Ile Leu Asn Asp
Ala Ile Arg Val Met Ala Glu Leu Arg 130 135
140Ser Glu Ala Gln Lys Val Glu145 150
User Contributions:
Comment about this patent or add new information about this topic: