Class / Patent application number | Description | Number of patent applications / Date published |
716120000 | Power distribution | 27 |
20110072406 | METHOD AND SYSTEM FOR ESTIMATING POWER CONSUMPTION OF INTEGRATED CIRCUITRY - A design structure is embodied in a machine readable medium for designing, manufacturing, or testing integrated circuitry. The design structure includes first hardware for executing first software in response to macros that describe the integrated circuitry, and for generating a set of constants in response to the execution of the first software. Second hardware is for receiving the set of constants from the first hardware, and for executing second software in response to the macros and the set of constants, and for estimating a power consumption of the integrated circuitry in response to the execution of the second software. | 03-24-2011 |
20110083116 | POWER SWITCH DESIGN METHOD AND PROGRAM - A method of designing a power switch block ( | 04-07-2011 |
20110154282 | SYSTEMS AND METHODS FOR DESIGNING AND MAKING INTEGRATED CIRCUITS WITH CONSIDERATION OF WIRING DEMAND RATIO - A method for designing and making an integrated circuit is described. That method utilizes statistical models of wire segments to accurately estimate the expected length of minimum-length, orthogonal wire segments within a block. From these estimates, the method accurately estimates an ratio between the horizontal and vertical routing resources required, termed the “H/V Demand Ratio.” From the H/V Demand Ratio, an accurate estimate of the height and width of the block may be determined. Thereafter, placement and routing may be performed quickly and accurately, thereby allowing the block to be designed and manufactured quickly and cost effectively. A method for designing an integrated circuit with efficient metal-1 resource utilization is also described. | 06-23-2011 |
20110283248 | LAYOUT METHOD, LAYOUT SYSTEM, AND NON-TRANSITORY COMPUTER READABLE MEDIUM STORING LAYOUT PROGRAM OF SEMICODUCTOR INTEGRATED CIRCUIT - A layout method of a semiconductor integrated circuit according to the present invention includes selecting M (M is an integer of two or larger and N or smaller) pieces of sequential circuits from N (N is an integer of three or larger) pieces of sequential circuits mounted on the semiconductor integrated circuit, a clock being distributed to the N pieces of sequential circuits from the same clock route; and replacing the M pieces of sequential circuits that are selected with one multi-data input/output sequential circuit including M pieces of input terminals and output terminals and one clock terminal that receives the clock distributed from the clock route. | 11-17-2011 |
20120060138 | Method and System for Adaptive Physical Design - A method is provided that includes performing a free placement of a system design comprising a plurality of power domains, wherein the power domains are not constrained to physical regions, assigning a physical region to each of the power domains based on the free placement of cells in the power domains, performing a soft cluster placement of the system design with each power domain and corresponding physical region defined as a soft cluster, refining at least one physical region based on the soft cluster placement, redefining cells in at least one power domain based on the soft cluster placement of the cells and the corresponding physical region, and performing a hard cluster placement of the system design with each power domain and corresponding physical region defined as a hard cluster to generate final power domains. | 03-08-2012 |
20120066658 | System And Method For Integrated Circuit Power And Timing Optimization - A system for selecting gates for an integrated circuit design may include at least one processing device configured to identify gates of the integrated circuit design having a slack value less than a predefined slack threshold. The at least one processing device may be further configured to, for each of the identified gates, determine (i) a number of nodes of the integrated circuit design that experience a timing slack improvement if the gate is swapped with an alternative implementation having a reduced delay or (ii) a sum of timing slack improvements experienced by nodes of the integrated circuit design if the gate is swapped with the alternative implementation having a reduced delay. The at least one processing device may still be further configured to swap the gate with the alternative implementation having the reduced delay if the determined number or sum is greater than a corresponding predetermined threshold. | 03-15-2012 |
20120110534 | Self-Propelling Decoupling Capacitor Design for Flexible Area Decoupling Capacitor Fill Design Flow - A method of filling dcaps in an integrated circuit includes identifying a set of dcap-eligible areas of the integrated circuit for areas large enough to accommodate at least one dcap cell having a selected size smaller than a default size. The dcap cell includes at least one built-in power track. A set of dcap cells are filled in the identified set of dcap-eligible areas. Each of the built-in power tracks included in the set of dcap cells is connected to a corresponding power grid. An integrated circuit including a power grid channel formed between at least two power grids and a plurality of dcaps including a first dcap included in a dcap cell, the dcap cell including built-in power tracks, each one of the built-in power tracks being connected to a corresponding one of the at least two power grids is also described. | 05-03-2012 |
20120216164 | DETERMINING INTRA-DIE WIREBOND PAD PLACEMENT LOCATIONS IN INTEGRATED CIRCUIT - Solutions for determining intra-die wirebond pad placement locations in an integrated circuit (IC) die are disclosed. In one embodiment, a method includes generating a dividing band in the IC die, the dividing band dividing the IC die into a first region and a second region; determining a voltage (IR) drop across the first region and the second region; comparing the IR drops across the regions; and in response to the IR drops being substantially unequal, moving the dividing band, determining new IR drops across the regions, and comparing the new IR drops until the IR drops are substantially equal. The dividing band may provide desired locations for intra-die wirebond pads. | 08-23-2012 |
20120260226 | DESIGNING SUPPLY WIRINGS IN SEMICONDUCTOR INTEGRATED CIRCUIT BY DETECTING POWER SUPPLY WIRING OF SPECIFIC WIRING LAYER IN PROJECTION AREA - A design support method for causing a computer using layout data for providing a layout in which macro cells are arranged and in which power supply wirings are formed at certain intervals in each wiring layer to execute, the method including: extracting a set of adjacent macro cells from the layout data; specifying a region located between macro cells that constitute the set of adjacent macro cells extracted in the extracting step from among row regions included in the layout represented by the layout data; detecting a power supply wiring of a specific wiring layer in a projection area located above the region specified in the specifying step, the specific wiring layer being higher than a bottom layer of the layout represented by the layout data; and outputting a region where no power supply wiring of the specific wiring layer is detected in the detecting step. | 10-11-2012 |
20120331435 | INTEGRATED CIRCUIT DESIGN USING THROUGH SILICON VIAS - A method of integrated circuit design using through silicon vias (TSVs) can include determining that a stress field to which a first active circuit element of a circuit block is exposed and a stress field to which a second active circuit element of the circuit block is exposed are mismatched. Mismatch between the stress field of the first active circuit element and the stress field of the second active circuit element can be reduced by modifying a layout of the die for a TSV. | 12-27-2012 |
20130055185 | VERTICAL POWER BUDGETING AND SHIFTING FOR 3D INTEGRATION - A method is provided for managing power distribution on a 3D chip stack having two or more strata, a plurality of vertical power delivery structures, and multiple stack components. At least two stack components are on different strata. Operating modes are stored that respectively have different power dissipations. A respective effective power budget is determined for each of the at least two stack components based on respective ones of the operating modes targeted therefor, and power characteristics and thermal characteristics of at least some of the stack components inclusive or exclusive of the at least two stack components. The respective ones of the plurality of operating modes targeted for the at least two stack components are selectively accepted or re-allocated based on the respective effective power budget for each of the at least two stack components, power constraints, and thermal constraints. The power constraints include vertical structure electrical constraints. | 02-28-2013 |
20130104093 | SYSTEM AND METHOD FOR REDUCING RECONFIGURATION POWER USAGE - A system and method for reducing power consumption in a reconfigurable integrated circuit. Some embodiments provide placement and routing programs that reduce the number of bits to be reconfigured. Some embodiments provide placement and routing programs that increase the number of groups of circuits that do not need reconfiguration at some times. Some embodiments include circuits that selectively block reconfiguration. | 04-25-2013 |
20130326454 | APPARATUS AND METHOD FOR REDUCING PEAK POWER USING ASYNCHRONOUS CIRCUIT DESIGN TECHNOLOGY - Disclosed herein are an apparatus and method for reducing peak power using an asynchronous circuit design technology. The apparatus includes a combinational circuit unit and an asynchronous control circuit unit. The combinational circuit unit divides a combinational circuit into a plurality of partial circuits based on the depth of input and output. The asynchronous control circuit unit controls the combinational circuit so that the switching operations of the partial circuits are performed in an asynchronous manner according to temporal order and so that a switching operation is not performed in other partial circuits when a switching operation is performed in a partial circuit. | 12-05-2013 |
20130339917 | AUTOMATING CURRENT-AWARE INTEGRATED CIRCUIT AND PACKAGE DESIGN AND OPTIMIZATION - A system and method for improving and optimizing current delivery into a chip, which is limited by the physical properties of the connections (e.g., Controlled Collapse Chip Connection or C4s). The system and method enables rapid C4 bump current estimation and placement including generating a one-time computed sensitivity matrix that includes all of the contributions of macros (or groups of components) to C4 current. The system and method further enables the calculation of a C4 current changes using the one-time computed sensitivity matrix and redistributed currents due to deletion of one or more C4 connectors. The system coupled with design and programming methodologies improve and optimize current delivery is extendable to connections across layers in a multilayer 3D chip stack. | 12-19-2013 |
20140089882 | COMPUTING DEVICE AND METHOD FOR MODULARIZING POWER SUPPLIES PLACED ON PCB - In a method for modularizing power supplies placed on a printed circuit board (PCB) using a computing device, a circuit design drawing of a power supply is obtained from a database. The method acquires circuit design data of the power supply from the circuit design drawing of the power supply, and modularizes the circuit design data to generate a virtual power supply. The method generates a first layout of the virtual power supply on the PCB in a landscape orientation according to a horizontal dimension of the PCB, and generates a second layout of the virtual power supply on the PCB in a portrait orientation according to a vertical dimension of the PCB. A component information system (CIS) management library is created in the database, and the first layout and the second layout of the virtual power supply are stored in the CIS management library. | 03-27-2014 |
20140181773 | SHAPING INTEGRATED WITH POWER NETWORK SYNTHESIS (PNS) FOR POWER GRID (PG) ALIGNMENT - Embodiments are described in which shaping is integrated with power network synthesis (PNS) for power grid (PG) alignment. Specifically, some embodiments create placement constraints based on the PG that is expected to be created by PNS, and then perform shaping (or perform legalization) on the circuit design based on the placement constraints. This ensures that the physical partitions (e.g., instances of multiply-instantiated-blocks) are aligned with the power grid during shaping. | 06-26-2014 |
20140195996 | ADAPTIVE WORKLOAD BASED OPTIMIZATIONS COUPLED WITH A HETEROGENEOUS CURRENT-AWARE BASELINE DESIGN TO MITIGATE CURRENT DELIVERY LIMITATIONS IN INTEGRATED CIRCUITS - A dynamic system coupled with “pre-Silicon” design methodologies and “post-Silicon” current optimizing programming methodologies to improve and optimize current delivery into a chip, which is limited by the physical properties of the connections (e.g., Controlled Collapse Chip Connection or C4s). The mechanism consists of measuring or estimating power consumption at a certain granularity within a chip, converting the power information into C4 current information using a method, and triggering throttling mechanisms (including token based throttling) where applicable to limit the current delivery per C4 beyond pre-established limits or periods. Design aids are used to allocate C4s throughout the chip based on the current delivery requirements. The system coupled with design and programming methodologies improve and optimize current delivery is extendable to connections across layers in a multilayer 3D chip stack. | 07-10-2014 |
20140201695 | POWER GRID DESIGN FOR INTEGRATED CIRCUITS - A method of generating a power grid to supply current to a plurality of cells of an integrated circuit includes routing an initial power grid representing a power usage estimate for the plurality of cells. The method also includes performing power grid analysis prior to routing of signal wires to make a determination of whether the initial power grid meets power requirements of the integrated circuit, and selectively modifying portions of the initial power grid based on the performing the power grid analysis to generate the power grid. | 07-17-2014 |
20140282338 | SYSTEM AND METHOD FOR ALTERING CIRCUIT DESIGN HIERARCHY TO OPTIMIZE ROUTING AND POWER DISTRIBUTION - Systems and methods are disclosed for modifying the hierarchy of a System-on-Chip and other circuit designs to provide better routing and performance as well as more effective power distribution. A user specifies desired modifications to the design hierarchy and then the system automatically alters the hierarchy by performing group, ungroup, and move operations to efficiently and optimally implement the desired hierarchy modifications. Any modifications to port and signal names are automatically resolved by the system and the resultant RTL matches the function of the input RTL. The user then evaluates the revised hierarchy with regard to power distribution and routing congestion, and further hierarchy modifications are performed if necessary. A widget user interface facility is included to allow user-guided direction of hierarchy modifications in an iterative fashion. | 09-18-2014 |
20140351781 | METHOD FOR PLACING OPERATIONAL CELLS IN A SEMICONDUCTOR DEVICE - There is provided a method of placing a plurality of operational cells of a semiconductor device within a semiconductor layout, comprising determining timing data for each of the plurality of operational cells, determining switching activity from RTL or design constraints for each of the plurality of operational cells, determining power grid switch locations relative to each of the plurality of operational cells, deriving a cost function based upon the determined timing data, determined switching activity from RTL/design constraints and determined relative power grid switch locations and initially placing the plurality of operational cells according to the derived cost function. | 11-27-2014 |
20140365987 | INPUT/OUTPUT CELL DESIGN FOR THIN GATE OXIDE TRANSISTORS WITH RESTRICTED POLY GATE ORIENTATION - An input/output circuit layout has a first section in which first transistors having a thicker gate oxide are located and a second section in which second transistors having a thinner gate oxide are located. Due to process technology constraints, the gates of all of the second transistors are oriented in a single common direction. The second section has a perimeter having a square shape including a first edge and a second edge adjacent to the first edge. First connection pins coupled to the second transistors are provided with an orientation that extends inwardly from and perpendicular to the first edge. Second connection pins coupled to the second transistors are provided with an orientation that extends inwardly from and perpendicular to said second edge. The square shape and presence of pins on adjacent first and second edges permits rotation of the second section to fit within different orientations of the layout. | 12-11-2014 |
20150095868 | METHOD OF CONVERTING BETWEEN NON-VOLATILE MEMORY TECHNOLOGIES AND SYSTEM FOR IMPLEMENTING THE METHOD - A method of designing a charge trapping memory array including designing a floating gate memory array layout. The floating gate memory layout includes a first type of transistors, electrical connections between memory cells of the floating gate memory array layout, a first input/output (I/O) interface, a first type of charge pump, and an I/O block. The method further includes modifying the floating gate memory array layout, using a processor, to replace the first type of transistors with a second type of transistors different than the first type of transistors. The method further includes determining an operating voltage difference between the I/O block and the second type of transistors. The method further includes modifying the floating gate memory array layout, using the processor, to modify the first charge pump based on the determined operating voltage difference. | 04-02-2015 |
20150113493 | METHOD, SYSTEM AND COMPUTER PROGRAM PRODUCT FOR GENERATING LAYOUT FOR SEMICONDUCTOR DEVICE - A method is performed at least in part by at least one processor. In the method, a plurality of circuit elements are placed in a layout for a semiconductor device, the plurality of circuit elements having a plurality of pins. A layer assignment is generated to assign a plurality of interconnections to corresponding conductive layers of the semiconductor device, the plurality of interconnections connecting corresponding pairs of pins among the plurality of pins. The plurality of interconnections is routed in the layout in accordance with the layer assignment. | 04-23-2015 |
20150149976 | LAYOUT OF AN INTEGRATED CIRCUIT - A cell layout includes a first metal line for VDD power, which includes a first jog coupling to and being perpendicular to the first metal line. A second metal line is for VSS power, and includes a second jog coupling to and being perpendicular to the second metal line. The cell layout includes an upper cell boundary, a lower cell boundary, a first cell boundary and a second cell boundary. The upper cell boundary and the lower cell boundary extend along X direction. The first cell boundary and the second cell boundary extend along Y direction. The upper cell boundary is defined in a portion of the first metal line. The lower cell boundary is defined in a portion of the second metal line. The first cell boundary is defined in a portion of the first jog and a portion of the second jog. | 05-28-2015 |
20150302128 | ELECTROMIGRATION-AWARE LAYOUT GENERATION - In some embodiments, in a method, placement of a design layout is performed. The design layout includes a power rail segment, several upper-level power lines and several cells. The upper-level power lines cross over and bound the power rail segment at where the upper-level power lines intersect with the power rail segment. The cells are powered through the power rail segment. For each cell, a respective current through the power rail segment during a respective SW of the cell is obtained. One or more groups of cells with overlapped SWs are determined. One or more EM usages of the power rail segment by the one or more groups of cells using the respective currents of each group of cells are obtained. The design layout is adjusted when any of the one or more EM usages of the power rail segment causes an EM susceptibility of the power rail segment. | 10-22-2015 |
20150356226 | REMOTE CONFIGURATION OF VOLTAGE REGULATOR INTEGRATED CIRCUITS - A design server provides an online service for remotely configuring a voltage regulator integrated circuit (IC). A customer may employ a customer computing device to connect to the design server. The design server may receive from the customer computing device a user requirement for the voltage regulator IC. The design server may select one or more external components to configure the voltage regular IC to meet the user requirement. The design server may automatically place an order for the external components online. The external components may be available from commercial partners of the vendor of the voltage regulator IC. | 12-10-2015 |
20190148284 | MANAGED INTEGRATED CIRCUIT POWER SUPPLY DISTRIBUTION | 05-16-2019 |