Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Having accuracy improvement of position or location

Subclass of:

701 - Data processing: vehicles, navigation, and relative location

701400000 - NAVIGATION

701408000 - Employing position determining equipment

701468000 - Using satellite positioning system (e.g., Global Positioning System (GPS), etc.)

Patent class list (only not empty are listed)

Deeper subclasses:

Class / Patent application numberDescriptionNumber of patent applications / Date published
701472000 Having a self-contained position computing mechanism (e.g., dead-reckoning, etc.) 42
701470000 Having multiple antennas or receivers (e.g., differential GPS, etc.) 13
701479000 Using filter 7
701477000 Integer ambiguity resolution 1
20180023958NAVIGATION SATELLITE SYSTEM, ELECTRONIC DEVICE, AND POSITIONING METHOD01-25-2018
701478000 Correcting clock signal error 1
20140195152Autonomous Velocity Sensing by Time Dilation - A system and method for determination of a vehicle or crafts velocity uses on-board time dilation measurements of a moving signal generator and signal generator movement measurements to determine a velocity vector of a craft or vehicle.07-10-2014
Entries
DocumentTitleDate
20120059581POSITIONING APPARATUS JUDGING MOVEMENT METHOD TO CONTROL POSITIONING TIMING - A positioning apparatus includes: a first measuring section to directly measuring its own present position; a second measuring section to measure an azimuth and a movement of a user; a movement method judging section to judge a movement method of the user based on the measurement result by the second measuring section; an azimuth specifying section to specify a movement azimuth of the user based on the measurement result by the second measuring section; a movement speed calculating section to calculate an average movement speed in a period where the movement method of the user is judged to be a movement state by car; and a position calculating section to obtain a movement position by integrating a movement distance into the specified movement azimuth at the average movement speed to reference position information obtained by the first measuring section when the user is in the movement state by car.03-08-2012
20120116676Method of Augmenting GPS or GPS/Sensor Vehicle Positioning Using Additional In-Vehicle Vision Sensors - A method is provided for augmenting GPS data using an in-vehicle vision-based module. A vehicle position is determined utilizing position-related data obtained from a position module. A position error is estimated on a periodic basis. A determination is made whether the position error estimate exceeds a first predetermined error threshold. Tracking data is generated for the vehicle over a course of travel utilizing captured images from the in-vehicle vision based module. The tracking data is integrated with the position-related data to estimate the vehicle position in response to the position error estimate exceeding the first predetermined error threshold. A determination is made whether the position error estimate decreases below a second predetermined error threshold. The vehicle position is re-determined using only the position-related data when the position error estimate decreases below the second predetermined error threshold.05-10-2012
20120150439Automatic Determination of Tire Height for Improving Guidance Performance - A system and method improve guidance system performance. An accuracy improvement module (AIM) can be configured to compare observed and expected inclination compensation factors (ICFs) at a plurality of inclination angles to detect an inaccuracy in antenna height. In response to detecting an inaccuracy, an AIM can determine a revised antenna height that more accurately represents the height of an antenna above ground. A proposed antenna height can be determined using an observed ICF. A fixed vehicle body height can be subtracted from the proposed antenna height to provide a proposed tire radius. The proposed tire radius can be compared to a table of standard tire radii to determine a tire radius value, which can then be added to the fixed vehicle body height to provide a revised antenna height. The revised antenna height can improve the accuracy or calculated ground positions, thereby improving guidance system performance.06-14-2012
20120158295APPARATUS AND METHOD FOR RADIODETERMINATION AND MOBILE TERMINAL USING THE SAME - Disclosed herein is a radiodetermination technology, a radiodetermination device according to one embodiment of the disclosure comprising a positioning mode determination part and position Information generating part, thereby enhancing accuracy and speed of positioning in a resource-limited mobile terminal environment and also further improving energy efficiency and user conveniences.06-21-2012
20120239293Analyzing and Consolidating Track File Data - Methods, systems, and apparatus, including computer programs encoded on computer storage media, are disclosed for track simplification and correction. In one aspect, a track data set having track points defining a course can be accessed and inaccurate track points and incorrect track points can be identified, wherein identifying inaccurate track points includes comparing, for one or more of the track points, a dilution of precision (DOP) value associated with the track point to a DOP threshold, and identifying incorrect track points includes performing an error correction process. Also, a corrected track can be generated by removing identified inaccurate track points and incorrect track points from the track data set. Further, identifying an inaccurate track point can include determining that the DOP value associated with the track point exceeds the DOP threshold. Additionally, the DOP threshold can be specified by user input.09-20-2012
20120283947POSITIONING DEVICE, METHOD AND PROGRAM WITH ABSOLUTE POSITIONING AND RELATIVE POSITIONING MODES - The invention relates to a positioning device (PD) arranged to determine a position using an absolute positioning system and a relative positioning system. The positioning device is arranged to work in a first mode, in which the position is determined using the absolute positioning system and possibly the relative positioning system, and in a second mode, in which the position is determined using the relative positioning system and possibly the absolute positioning system. In the first mode the absolute positioning system being weighted more heavily than in the second mode and the positioning device is arranged to switch from the first to the second mode. The positioning device (PD) has access to a digital map database (DMD, 3DMD) and the switch from the first to the second mode is decided based on at least the determined position in combination with information stored in the digital map database (DMD, 3DMD).11-08-2012
20120323489METHOD AND APPARATUS FOR CONTROLLING DATA COMMUNICATION UNITS IN NAVIGATION RECEIVER - Navigation data processing system, comprising a navigation receiver that receives a positioning signal; a data communication subsystem comprising a plurality of data communication units for receiving correction signal and routing it to the navigation receiver, and conversion interfaces for communicating the correction data in a common format. The navigation receiver includes a navigation subsystem that generates augmented navigation data based on the positioning and correction signals. A user terminal displays the augmented data. Navigation receiver includes a profile database comprising a plurality of profiles for receiving the correction signal; a script database comprising commands for controlling a particular data communication unit. Navigation receiver sets up communication to the correction signal source, processes the positioning and correction signals and generates the augmented data based on a script and a profile of the data communication unit and the interface converter.12-20-2012
20130018581ACTIVATING AND DEACTIVATING SENSORS FOR DEAD RECKONINGAANM Sidhu; Gursharan S.AACI SeattleAAST WAAACO USAAGP Sidhu; Gursharan S. Seattle WA USAANM Agarwal; SharadAACI SeattleAAST WAAACO USAAGP Agarwal; Sharad Seattle WA US - An identification is made as to when a device is at an anchor location, which can be a proximity zone along an edge of a dead zone or a location where a signal from a beacon is detected. In response to the device being at the anchor location, one or more inertial sensors can be activated and data from the one or more inertial sensors collected to determine a position of the device using dead reckoning. Alternatively, in response to the device being at the anchor location, a determination is made as to when to deactivate one or more inertial sensors from which data is collected to determine the position of the device using dead reckoning.01-17-2013
20130184990Location-Determining Device in a Motor Vehicle and Information Merging Method - The invention relates to a location-determining device in a motor vehicle which comprises at least one receiver device for receiving position signals and time signals for a multiplicity of satellites assigned to a global navigation system and a location-calculating module for calculating location information on the basis of received position data and time data. The location-Determining device is distinguished by the fact that the at least one receiver device is structurally integrated into the housing of an optical sensor unit, wherein the housing is arranged in a passenger compartment in a region of an upper edge of a windscreen, and wherein the housing does not have more than a single connection to a vehicle data bus and not more than a single connection to a vehicle energy supply.07-18-2013
20130211714SELF-POSITION MEASURING TERMINAL - An information processing apparatus including a positioning unit that determines a position of the information processing apparatus based on an external signal; a sensor unit that detects a change in position of the information processing apparatus; and a processing unit that measures, according to a change in position detected at the sensor unit, an amount of displacement of the information processing apparatus from a first time when the positioning unit starts to determine the position of the information processing apparatus to a second time when the positioning unit completes determining the position of the information processing apparatus; and identifies a position of the information processing apparatus at the first time by compensating the position of the information processing apparatus determined by the positioning unit at the second time with the amount of displacement of the information processing apparatus.08-15-2013
20130211715APPARATUS AND METHOD FOR MEASURING POSITION USING GPS AND VISIBLE LIGHT COMMUNICATION - Methods and apparatus are provided for measuring a position of a mobile terminal. A first position is calculated by using a GPS signal. A visible light communication mode of the mobile terminal is activated, when the first position exceeds a predetermined error range. Visible light communication device position information is received. A third position is calculated by using a second position, which corresponds to a position prior to the first position, and the visible light communication device position information.08-15-2013
20130332072REFINING A POSITION ESTIMATE OF A LOW EARTH ORBITING SATELLITE - In a method for refining a position estimate of a low earth orbiting (LEO) satellite a first position estimate of a LEO satellite is generated with a GNSS receiver on-board the LEO satellite. Corrections are received at the LEO satellite. The corrections are processed on-board the LEO satellite such that a corrected LEO satellite position estimate of the LEO satellite is generated for the first position estimate.12-12-2013
20140019044Power Mode Control for Sensors - A method, system, and computer program product to provide accurate positioning of a vehicle while conserving power is provided. The system includes a receiver configured to receive a positioning signal that determines a position of the vehicle and an auxiliary sensor configured to provide data to supplement the positioning signal so as to provide the position of the vehicle more accurately than with using solely the positioning signal. The system also includes an auxiliary controller coupled to the auxiliary sensor. The auxiliary controller is configured to generate a first signal to power-up the auxiliary sensor if the vehicle is proximate to entering an area that reduces accuracy of the positioning signal, and calibrate the auxiliary sensor prior to the vehicle entering the area; and generate a second signal to power-down the auxiliary sensor if the vehicle is proximate to exiting the area.01-16-2014
20140046587TECHNIQUES FOR POSITIONING A VEHICLE - A system for determining a location of a vehicle in an environment provided with at least two landmarks whose location is known. The system includes at least one scanning distance sensor installed in the vehicle and configured to measure distance and direction from the vehicle to the at least two landmarks, as well as a data processing device configured to store in its memory the location of the at least two landmarks; and determine the location of the vehicle on the basis of at least the location of the at least two landmarks as well as the distance and direction from the vehicle to the at least two landmarks.02-13-2014
20140081570GRAPHICS-AIDED REMOTE POSITION MEASUREMENT WITH HANDHELD GEODESIC DEVICE - A graphics-aided geodesic device is provided. The device includes an antenna for receiving position data from a plurality of satellites and a receiver coupled to the antenna. The device further includes orientation circuitry for obtaining orientation data. The orientation data represents an orientation of the apparatus with respect to a plane parallel with a horizon. The device further includes positioning circuitry for determining the position of the point of interest based at least on the position data and the orientation data.03-20-2014
20140100774NAVIGATION SYSTEM CONFIGURED TO INTEGRATE MOTION SENSING DEVICE INPUTS - A navigation system can comprise a microprocessor, a memory, a navigational signal receiver configured to receive a radio signal from at least one external system, a motion sensing device, and a navigation program executable by the microprocessor. The navigational signal receiver can be communicatively coupled to the microprocessor via a communication port. The navigation program can be configured to receive messages from the navigational signal receiver by communicating to the driver of the communication port. The communication port driver can adjust the current position based on the data returned by the motion sensing device.04-10-2014
20140114568CHANGING A POSITION DETERMINATION SCHEME USED BY A USER EQUIPMENT DURING A TRANSITION BETWEEN INDOOR AND OUTDOOR SPACES RELATIVE TO AN ENCLOSED ENVIRONMENT - In an embodiment, a user equipment (UE) tracks its location using a first positioning scheme (PS) (e.g., an indoor PS or outdoor PS) while operating inside or outside of an enclosed environment, whereby the UE maintains transition region information related to the enclosed environment that characterizes one or more outdoor-to-indoor (OI) and/or indoor-to-outdoor (IO) transition regions of the enclosed environment. If the UE determines it has entered a transition region of the enclosed environment based on its location tracking using the first PS, the UE begins to track its location using a second PS. When the quality of the second PS rises above a threshold (e.g., such as the UE moves further inside or outside of the enclosed environment), the UE can switch to the second PS and turn off the first PS.04-24-2014
20140180578Apparatus and Method for a Mobile Navigation Computer - The present invention provides an apparatus and method for a robust and configurable mobile computer architecture with navigation computational capabilities. The present invention further provides a bus network which allows for an efficient and durable Input/Output (I/O) management system. The I/O management system has configurable connections to allow for modular addition, expansion, or replacement of navigation, crash detection, and communication line replacement units (LRUs). Additional I/O device connections allow several modes of input into the computational system. The present invention is a single, self-contained unit and provides an accessible user interface to the computer system.06-26-2014
20140180579MACHINE POSITIONING SYSTEM UTILIZING POSITION ERROR CHECKING - A system and method for estimating position of a machine is disclosed. The method may include receiving, from a perception sensor, scene data describing an environment in a vicinity of the machine and estimating a first position of the machine based on the scene data. The method may include determining whether a first signal indicative of a location of the machine is received by the machine and estimating a second position of the machine when it is determined that the first signal is received. The method may include comparing the second position with the first position and estimating a third position of the machine using at least one of the first position and the second position.06-26-2014
20140195150High Altitude, Long Endurance, Unmanned Aircraft and Methods of Operation Thereof - Embodiments include one or more high altitude, long endurance (HALE) unmanned aircraft (07-10-2014
20140214317POSITION CALCULATING METHOD AND POSITION CALCULATING DEVICE - To suggest a technique of more accurately calculating a position using both measurement results of a satellite positioning unit and an inertial positioning unit.07-31-2014
20140249750NAVIGATIONAL AND LOCATION DETERMINATION SYSTEM - A navigation and location system including an inertial navigation unit, a global positioning system, a control system, and a machine readable recording medium storing a plurality of non-transitory machine readable instructions adapted to determine a desired orientation of a sensor at a desired point with respect to the Earth based on determination of orientation of a reference axis of a sensor with respect to locations of multiple points and relationships between the multiple points with a significant degree of accuracy using non-magnetic directional sensing, orientation sensing comprising position determinations via the GPS, orientation data acquired from said inertial navigation unit, and a sequence of measurements along a displaced path including said position determinations and said orientation data. An additional embodiment can include a remote sensing system for remote sensing of an object of interest.09-04-2014
20140278077USING MULTIPLE SOURCES OF LOCATION-AID DATA TO DETERMINE POSITION INFORMATION - A wireless location/position computation system, device, and method are directed to multiple aid-data sources each providing location-related aid information, a wireless device configured to communicate with the aid-data sources, and a location computation module either integrated with or external to the wireless device. The wireless device may include a transceiver to communicate wireless, data and other signals. The wireless device may receive a position request to compute a position of the wireless device, and in response, initiate a compute-position session. In the compute-position session, the wireless device sends aid requests to and retrieves the location-related aid information from the aid-data sources and processes the location-related aid information from the aid-data sources to generate integrated location information. The location computation module may compute the position of the wireless device based on the integrated location information and satellite location information received from a satellite.09-18-2014
20140365117POSITION OUTPUT DEVICE USING SATELLITE NAVIGATION SYSTEM - A position output device for outputting position data indicating a current position of an object, is based on position data of a determined current position of the object as determined by a satellite navigation system. When a position jump has occurred in the position data from the satellite navigation system, an appropriate current position is outputted. An estimated current position is generated based on the output position outputted at the latest update time. It is determined whether or not a position jump has occurred, based on the distance between the estimated position and the satellite navigation system-based determined position, which is being updated by the satellite navigation system. When it is determined that a position jump has occurred, a position adjustment vector is generated by calculation, which is then used to generate an adjusted position.12-11-2014
20140372026METHOD AND APPARATUS FOR NAVIGATION WITH NONLINEAR MODELS - A navigation module and method for providing an INS/GNSS navigation solution for a device that can either be tethered or move freely within a moving platform is provided, comprising a receiver for receiving absolute navigational information from an external source (e.g., such as a satellite), an assembly of self-contained sensors capable of obtaining readings (e.g. such as relative or non-reference based navigational information) about the device, and further comprising at least one processor, coupled to receive the output information from the receiver and sensor assembly, and operative to integrate the output information to produce an enhanced navigation solution. The at least one processor may operate to provide a navigation solution by benefiting from nonlinear models and filters that do not suffer from approximation or linearization and which enhance the navigation solution of the device.12-18-2014
20150025797Precision Multiple Vehicle Navigation System - A method and apparatus for managing movement. A navigation system comprises a first inertial measurement unit enabled global positioning system device having a first inertial measurement unit with a first level of accuracy in a first vehicle and is configured to provide first information that identifies a position of the first vehicle relative to a second vehicle. The navigation system further comprises a second inertial measurement unit enabled global positioning system device in the first vehicle having a second inertial measurement unit with a second level of accuracy that is greater than the first level of accuracy and is configured to provide second information that identifies the position of the first vehicle relative to the second vehicle. The navigation system further comprises a controller that is configured to perform an action based on a desired level of accuracy of the first information.01-22-2015
20150142309PARKING GARAGE ENVIRONMENT DETECTION AND EHPE DETERMINATION FOR VEHICULAR NAVIGATION - Implementations of the present invention contemplate obtaining a more accurate estimated horizontal position error (EHPE) under conditions in which the telematics unit of a vehicle cannot receive GNSS signals. In particular, the invention contemplates determining that a vehicle is entering a parking garage and obtaining a more accurate estimated horizontal position error (EHPE) of the vehicle in the parking garage when GNSS signals are unavailable.05-21-2015
20150142310SELF-POSITION MEASURING TERMINAL - An information processing apparatus including a positioning unit that determines a position of the information processing apparatus based on an external signal; a sensor unit that detects a change in position of the information processing apparatus; and a processing unit that measures, according to a change in position detected at the sensor unit, an amount of displacement of the information processing apparatus from a first time when the positioning unit starts to determine the position of the information processing apparatus to a second time when the positioning unit completes determining the position of the information processing apparatus; and identifies a position of the information processing apparatus at the first time by compensating the position of the information processing apparatus determined by the positioning unit at the second time with the amount of displacement of the information processing apparatus.05-21-2015
20150345953ELECTRONIC DEVICE AND STORAGE MEDIUM - According to one embodiment, an electronic device includes a location detector, an acceleration detector, a processor and a navigator. The processor is configured to determine a mode of travel based on a detection value of the location detector and a detection value of the accelerometer, and record data associated with a location where the mode of travel changes. The navigator is configured to navigate a way to the location recorded in the data.12-03-2015
20150369921ELECTRONIC DEVICE AND METHOD FOR MEASURING POSITION INFORMATION OF ELECTRONIC DEVICE - A method of measuring position information of an electronic device is provided. The method includes measuring position information including at least one of a position, a direction of movement, or a distance of movement of the electronic device by using a Global Navigation Satellite System (GNSS) module, measuring at least one of the direction of movement, the distance of movement, or a change of speed of the electronic device by using at least one of a geomagnetic sensor or an accelerometer, calculating the position information based on the information measured by using the GNSS module, and the at least one of the direction of movement, the distance of movement, or the change of speed of the electronic device measured by using the at least one of the geomagnetic sensor or the accelerometer, and adjusting a position information measurement cycle using the GNSS module based on an error of the position information.12-24-2015
20150378015APPARATUS AND METHOD FOR SELF-LOCALIZATION OF VEHICLE - An apparatus for a self localization of a vehicle includes a sensor unit, a landmark detector, a landmark recognizer, and a location estimator. The sensor includes at least two sensors and is configured to measure information on environment around the vehicle using each of the at least two sensors. The landmark detector is configured to detect landmark information based on data measured by each sensor. The landmark recognizer is configured to selectively combine landmark information detected based on data measurement of at least one of the at least two sensors to recognize a landmark and reflect fused landmark information to update a probability distribution. The location estimator is configured to use the probability distribution updated by the landmark recognizer to estimate a self location of the vehicle.12-31-2015
20160025498Systems and Methods for Performing a Multi-Step Process for Map Generation or Device Localizing - Examples describe systems and methods for performing a multi-step approach for map generation and device localizing using data collected by the device and observations of interdependencies between the data. An example method includes receiving logs of data collected by the device, determining a constraint for locations of the device according to a comparison of data in the logs of data with available known signal strength maps of corresponding data, and performing a first simultaneous localization and mapping (SLAM) optimization of location estimates of the device using the logs of data and the constraint as a first initialization. A second SLAM optimization is performed using outputs of the first SLAM optimization and relative estimates of the device based on dead reckoning as a second initialization. An output location estimate of the device is provided based on the second SLAM optimization.01-28-2016
20160109577GPS CORRECTION METHOD AND SYSTEM - GPS correction method comprising providing benchmark GPS devices located respectively at a priori known stationary benchmark points within respective geographical zones, the stationary benchmark points having corresponding benchmark GPS coordinates; providing a benchmark database storing data mapping the GPS devices to the benchmark GPS coordinates of their respective stationary benchmark points and their respective geographical zones; receiving first GPS coordinates associated to objects within the geographical zones and second GPS coordinates associated to the stationary benchmark points measured at a same time period, the first GPS coordinates being transmitted by the benchmark GPS devices and the second GPS coordinates being transmitted by GPS devices associated to the objects; and generating corrected GPS coordinates of the object by measuring a deviation between the benchmark GPS coordinates and the second GPS coordinates and using the deviation for correcting the first GPS coordinates. There is also provided a GPS correction system.04-21-2016
20160116289POSITIONING SYSTEM IMPLEMENTING MULTI-SENSOR POSE SOLUTION - A system for determining the position of a mobile machine is disclosed. The system may include a first sensor configured to generate a first signal indicative of a pose of the mobile machine, a second sensor configured to generate a second signal indicative of a parameter of the mobile machine, and a controller in communication with the first and second sensors. The controller may be configured to generate a measured pose of the mobile machine based on the first signal, to generate an estimated pose of the mobile machine based on the second signal, and to determine uncertainty values associated with each of the measured and estimated poses. The controller may be further configured to determine overlap of the uncertainty values, to selectively adjust the measured pose based on the overlap, and to determine a pose solution based on the estimated pose and adjustment of the measured pose.04-28-2016
20160131765Method of Developing Flight Infrastructure in Conjunction with a Sale of an Aircraft - A method for providing WAAS infrastructure in conjunction with the sale of a WAAS enabled aircraft includes developing a sales package for a customer. The price of the sales package preferably includes a WAAS enabled aircraft and a WAAS infrastructure. The method further includes assembling a WAAS enabled aircraft and developing the WAAS infrastructure using a computer. The method also includes providing the customer with the WAAS enabled aircraft and the WAAS infrastructure.05-12-2016
20160139270A Network-Aided Method, Terminal and Network Side Device for Satellite Navigation and Positioning - Disclosed are a network-aided method, user equipment, and network side device for satellite navigation and positioning, related to the field of satellite navigation and positioning. The network-aided satellite navigation and positioning method includes: a user equipment sending a network side an auxiliary positioning information request containing an indication of providing ionospheric auxiliary information (A05-19-2016
20180023955GAMING SYSTEM AND METHOD FOR LOCATING AN ELECTRONIC GAMING MACHINE WITH A MOBILE DEVICE01-25-2018
20180023959MATCHING OBSERVATIONAL POINTS TO ROAD SEGMENTS REPRESENTED AS EDGES IN GRAPHS01-25-2018
20220136838AUTONOMOUS VEHICLE NAVIGATION USING WITH COALESCING CONSTRAINTS FOR STATIC MAP DATA - Systems, methods, and non-transitory computer readable media are provided for obtaining a slice of static map data comprising a plurality of blocks, each block comprising a plurality of cells, each, each cell having a cell value indicating a probability that an object is present in the cell; loading the slice into a cache memory of a parallel processor; arranging the static map data in the cache memory in contiguous memory spaces assigned to a group of workers of the parallel processor that have coalescing constraints; loading a frame of dynamic map data into the cache memory; obtaining a plurality of scan match candidates each representing a possible position and attitude of the vehicle; processing, in the parallel processor, the static and dynamic map data and the candidates to generate results each representing a candidate and score; and selecting the candidate having the highest score as a vehicle position.05-05-2022
Website © 2025 Advameg, Inc.