Class / Patent application number | Description | Number of patent applications / Date published |
701470000 | Having multiple antennas or receivers (e.g., differential GPS, etc.) | 13 |
20120004846 | AIR NAVIGATION DEVICE WITH INERTIAL SENSOR UNITS, RADIO NAVIGATION RECEIVERS, AND AIR NAVIGATION TECHNIQUE USING SUCH ELEMENTS - The present invention relates to an air navigation device with inertial sensor units and radio navigation receivers, and is characterized in that its radio navigation receivers are multiple-constellation receivers and in that their output data are hybridized with the data from the inertial sensor units. According to another feature of the invention, at least some of the inertial sensor units are of MEMS type. | 01-05-2012 |
20120095679 | VEHICLE GUIDANCE AND SENSOR BIAS DETERMINATION - Systems and methods for guiding a vehicle and vehicle sensor bias determination methods are disclosed. A method for guiding a vehicle includes a primary antenna of a primary survey-grade GNSS-receiver and a secondary antenna of a secondary GNSS-receiver mounted to the vehicle, which are at least temporarily receiving GNSS-signals of a global positioning system. A plurality of physical sensors mounted to the vehicle generate physical data indicative of respective measured physical parameters of at least part of the vehicle. The method includes de-biasing the physical data and applying a recursive statistical estimator, such as a Kalman filter, to the de-biased physical data and an output of the primary and secondary GNSS-receivers to determine a position and velocity of the vehicle. | 04-19-2012 |
20120245845 | TRIPLE REDUNDANT RF LINK SYSTEM - A system comprises an outer shell having an inner spherical cavity and an inner sphere located in the spherical cavity. The inner sphere comprises a sensor; at least three transmit antennas; and at least three transmitters each coupled to the sensor and to a respective one of the at least three transmit antennas. The system comprises at least three receive antennas each located in the spherical cavity, wherein each of the at least three receive antennas is frequency matched to a transmit frequency of a respective one of the at least one transmit antennas. The system also comprises at least three receivers each coupled to a respective one of the at least three receive antennas and a data selection logic circuit configured to select at least one signal from the signals received from each of the at least three receivers based on the respective signal quality of the received signals. | 09-27-2012 |
20130090847 | VEHICLE GUIDANCE AND SENSOR BIAS DETERMINATION - Systems and methods for guiding a vehicle and vehicle sensor bias determination methods are disclosed. A method for guiding a vehicle includes a primary antenna of a primary survey-grade GNSS-receiver and a secondary antenna of a secondary GNSS-receiver mounted to the vehicle, which are at least temporarily receiving GNSS-signals of a global positioning system. A plurality of physical sensors mounted to the vehicle generate physical data indicative of respective measured physical parameters of at least part of the vehicle. The method includes de-biasing the physical data and applying a recursive statistical estimator, such as a Kalman filter, to the de-biased physical data and an output of the primary and secondary GNSS-receivers to determine a position and velocity of the vehicle. | 04-11-2013 |
20130096824 | VEHICLE GUIDANCE AND SENSOR BIAS DETERMINATION - Systems and methods for guiding a vehicle and vehicle sensor bias determination methods are disclosed. A method for guiding a vehicle includes a primary antenna of a primary survey-grade GNSS-receiver and a secondary antenna of a secondary GNSS-receiver mounted to the vehicle, which are at least temporarily receiving GNSS-signals of a global positioning system. A plurality of physical sensors mounted to the vehicle generate physical data indicative of respective measured physical parameters of at least part of the vehicle. The method includes de-biasing the physical data and applying a recursive statistical estimator, such as a Kalman filter, to the de-biased physical data and an output of the primary and secondary GNSS-receivers to determine a position and velocity of the vehicle. | 04-18-2013 |
20130131982 | SYSTEMS AND METHODS FOR IMPROVED AUGMENTATION FOR GPS CALCULATIONS - Various embodiments of the present invention provide systems, methods, and computer program products for providing improved augmentation for GPS calculations. In general, various embodiments of the invention involve using a plurality of GPS devices associated with stationary objects associated with a common carrier's delivery network and the common carrier's delivery fleet to calculate error corrections and to communicate these error corrections to a number of GPS enable devices to be used by these devices to augment GPS calculations to correct errors associated with GPS signals. Further, various embodiments of the invention involve collecting GPS data for a plurality of delivery routes traveled by the common carrier's delivery fleet. In particular embodiments, this collected data may be used to provide more accurate address information for locations along these delivery routes and more accurate renderings of various landscapes along these delivery routes. | 05-23-2013 |
20140012499 | GUIDING DEVICE, SENSOR UNIT, PORTABLE TERMINAL DEVICE, GUIDING METHOD AND GUIDING PROGRAM - A guiding device, includes: a first position detecting unit which detects a present position; an obtaining unit which obtains a present position detected by a second position detecting unit, from a sensor unit having the second position detecting unit which detects the present position; a detecting unit which detects a communication condition with the sensor unit; a determining unit which determines whether to preferentially use the present position detected by the first position detecting unit or the present position detected by the second position detecting unit, based on the communication condition; and a controlling unit which displays a guidance based on the present position determined by the determining unit, on a display unit. Therefore, since the present position can be calculated with accuracy, it becomes possible to appropriately perform the guide based on the present position. | 01-09-2014 |
20140163870 | DETERMINATION OF POSITION, VELOCITY AND/OR HEADING BY SIMULTANEOUS USE OF ON-DEVICE AND ON-VEHICLE INFORMATION - Systems, apparatus and methods to supplement, combine, replace, verify and calibrate in-vehicle and in-device sensors and GNSS systems are presented. A mobile device and a vehicle navigation system share sensor and GNSS information to arrive at an improved navigation solution. For example, a navigation solution computed by a vehicle may rely on a sensor signal from a mobile device. Similarly, a navigation solution computed by a mobile device may use a sensor signal or a GNSS signal from a vehicle. | 06-12-2014 |
20140207374 | SYSTEM AND METHOD FOR TRACKING AND LOCATING A PERSON, ANIMAL, OR MACHINE - A system and method for estimating the position of an object, such as a person, animal, or machine. The system includes first and second inertial measurement units, a first and second originator antennas, and a first and second transponder antennas. The system uses data from the inertial measurement units to estimate a position of the object. The system also calculates a range measurement between the first originator antenna and first transponder antenna. The system calculates a first CPD measurement between the second transponder antenna and the first originator antenna, and a second CPD measurement between the second originator antenna and the first transponder antenna. The range measurement and at least one CPD measurement are used to update a Kalman filter for estimating the position of the object. The system determines also updates the Kalman filter when one of the inertial measurement units is in a zero-velocity condition. | 07-24-2014 |
20140257690 | AUGMENTATION FOR GPS CALCULATIONS - Various embodiments of the present invention provide systems, methods, and computer program products for providing improved augmentation for GPS calculations. In general, various embodiments of the invention involve using a plurality of GPS devices associated with stationary objects associated with a common carrier's delivery network and the common carrier's delivery fleet to calculate error corrections and to communicate these error corrections to a number of GPS enable devices to be used by these devices to augment GPS calculations to correct errors associated with GPS signals. Further, various embodiments of the invention involve collecting GPS data for a plurality of delivery routes traveled by the common carrier's delivery fleet. In particular embodiments, this collected data may be used to provide more accurate address information for locations along these delivery routes and more accurate renderings of various landscapes along these delivery routes. | 09-11-2014 |
20140336929 | Determining Spatial Orientation Information of a Body from Multiple Electromagnetic Signals - A method for determining a spatial orientation of a body, including receiving, by receiving equipment located with the body, at least three electromagnetic signal sets, each of the received signal sets having been transmitted by a different one of at least three separate transmitters at different locations, detecting, for each one of the received signal sets, information that partially defines a direction from the body to the transmitter from which the signal set was received, the detected information including one of two angles that fully define an arrival direction from which the body received the signal set in relation to a body frame, the detected information not including a second of the two angles, and determining the spatial orientation of the body, including yaw, pitch, and roll angles relative to a navigation frame, using the detected information for each one of the received signal sets. | 11-13-2014 |
20140379255 | SYSTEMS AND METHODS OF DETERMINING LOCATION USING A MEDICAL DEVICE - A medical device capable of determining its location is provided. The medical device comprises a memory, one or more antennas, one or more processors coupled with the memory and the one or more antennas, a location manager component executable by the one or more processors. The location manager component is configured to receive first location information from a first location information source and second location information from a second location information source, to rank the first location information source and the second location information source according to a hierarchy of location information sources, the hierarchy of location information sources specifying that the first location information source is of higher rank than the second location information source, determine an approximate location of the medical device based on the first location information, and improve the accuracy of the approximate location based on the second location information. | 12-25-2014 |
20160170030 | Orientation Measurements for Drift Correction | 06-16-2016 |