Class / Patent application number | Description | Number of patent applications / Date published |
623100270 | Having plurality of parallel lumens | 6 |
20090099645 | Radiopaque markers and medical devices comprising binary alloys of titanium - There is disclosed medical devices, such as stents, guidewires and embolic filters, comprising a binary alloy of titanium and one binary element selected from platinum, palladium, rhodium, and gold. There is also disclosed a radiopaque marker comprising the disclosed binary alloy, as well as medical devices having the radiopaque marker attached thereto. Methods of attaching the radiopaque marker to the medical devices, such as by welding, are also disclosure also disclosed. | 04-16-2009 |
20100179642 | Vascular Graft With Kink Resistance After Clamping - A self-sealing vascular graft with kink resistance is described. The vascular graft includes a substrate that can be a PTFE, having a self-sealing region that may include several layers of material. The central section of the vascular graft may be constructed differently from surrounding self-sealing regions, in order to provide kink resistance following the clamping of the graft. Also described is a graft with a flared cuff attached to one or both ends, the attachment or transition region including reinforcement beading. | 07-15-2010 |
20120259406 | METHOD AND SYSTEM FOR TREATING ANEURYSMS - Methods for treatment of aneurysms using a sequential manifold console to deploy multiple filling structures are provided herein. In one aspect, aneurysms are treated by simultaneously filling two double-walled filling structure using a sequential manifold console to guide a user in the steps to be followed in the procedure and to reliably achieve a consistent and durable aneurysmal treatment using a curable medium. The structures may be delivered over balloon deployment mechanisms in order to shape and open tubular lumens therethrough. Pairs of filling structures delivered to the aneurysm from different access openings of a patient can be simultaneously prepared and pressurized from a single treatment console when treating abdominal aortic aneurysms using the described systems and methods. | 10-11-2012 |
20130158650 | PHASE SEPARATION SPRAYED SCAFFOLD - Systems and methods for producing scaffolds are disclosed. The system includes a polymer solution and a non-solvent, which are sprayed into receiving portions of support elements. After scaffolds are formed on the support elements, the support elements permit elongation of the scaffolds. Composites formed from a plurality of scaffolds are also disclosed. | 06-20-2013 |
20140081384 | BIOMIMETIC VASCULAR NETWORK AND DEVICES USING THE SAME - The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e). The invention also provides compositions comprising a vascular layer for use in tissue lamina as well as a medical devices having a vascular layer and kits. | 03-20-2014 |
20150366651 | BIOMIMETIC VASCULAR NETWORK AND DEVICES USING THE SAME - The invention provides method of fabricating a scaffold comprising a fluidic network, including the steps of: (a) generating an initial vascular layer for enclosing the chamber and providing fluid to the cells, the initial vascular layer having a network of channels for fluid; (b) translating the initial vascular layer into a model for fluid dynamics analysis; (c) analyzing the initial vascular layer based on desired parameters selected from the group consisting of a characteristic of a specific fluid, an input pressure, an output pressure, an overall flow rate and combinations thereof to determine sheer stress and velocity within the network of channels; (d) measuring the sheer stress and the velocity and comparing the obtained values to predetermined values; (e) determining if either of the shear stress or the velocity are greater than or less than the predetermined values, and (f) optionally modifying the initial vascular layer and repeating steps (b)-(e). The invention also provides compositions comprising a vascular layer for use in tissue lamina as well as a medical devices having a vascular layer and kits. | 12-24-2015 |